APPENDIX G SLOPE STABILITY ANALYSES FOR SCA DESIGN

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client:	Honeywell	Project:	Onondaga Lak	ke SCA Design	_ Project/Proposal #:	GJ4299	Task #:	18		
TITLE	OF COMPU	TATIONS	SI	LOPE STABILI	ΓΥ ANALYSES FOR	SCA DES	SIGN			
COMPU	JTATIONS B	Y:	Signature Printed Nan and Title	Joseph Sura Staff Engin	eer eer	<u>///2</u> DA	<u> /2010</u> re			
CHECK	MPTIONS AN KED BY: eviewer)	D PROCED	Printed Nan	R. Kulasinga Project Eng		DAT	12/201 TE	_0		
COMPU	TATIONS CH	ECKED BY:	Signature Printed Nan and Title	Fan Zhu Staff Engine		<i>l//,</i> DA7	12/20/0 TE	>		
	JTATIONS KCHECKED ator)	BY:	Signature (Printed Namand Title	JasyMSa		<u> </u> 2 DAT	2/2010 E			
	VED BY: Designate)		Signature Printed Namand Title	Jay Decell	/254x 2016 DATE					
APPRO	VAL NOTES	:		Principaloge Rofes	SIONE					
REVISI	ONS (Numbe	r and initial	all revisions)							
NO.	SHE	ET	DATE .	BY	CHECKED BY	A	PPROVAL			

consultants

						Page		1	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bo	eech	Date:	12/8	3/2009
Client:	Honeywell	Project:	Onon	ıdaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	1299	Task No.	: 18

SLOPE STABILITY ANALYSES FOR SCA DESIGN

INTRODUCTION

This package was prepared in support of the design of the Sediment Consolidation Area (SCA) for the Onondaga Lake Bottom Site, which will be constructed on Wastebed 13 (WB-13). Specifically, this package presents static slope stability analyses for the SCA, which will contain geotextile tubes (geo-tubes) filled with dredged material surrounded by a perimeter dike (SCA perimeter dike). For purposes of this calculation package, the SCA perimeter dike refers to the dike that will be constructed around the geo-tubes within WB-13; whereas, the WB-13 perimeter dike refers to the exterior perimeter dike around WB-13.

Seismic slope stability analyses were not performed because the site is not located in a seismic impact zone, as defined by New York State Department of Environmental Conservation (NYSDEC) Regulations Section 360-2.7(b)(7). A detailed explanation regarding the seismic impact zone assessment is presented in Attachment 1 of this package.

METHODOLOGY

Static Slope Stability

Static slope stability analyses were performed using Janbu's method and Spencer's method, using the computer program SLIDE version 5.043 [Rocscience, 2009]. Four potential slip modes were evaluated in the analyses: (i) block slip mode along geo-tube interfaces; (ii) block slip mode along the liner system; (iii) circular slip surfaces through dredge material contained in geo-tubes and WB-13 foundation materials; and (iv) circular slip surfaces through existing WB-13 perimeter dikes.

Spencer's method [Spencer, 1973] satisfies both force and moment equilibrium and is therefore considered more rigorous than other methods, such as Janbu's method [Janbu, 1973] and the simplified Bishop method [Bishop, 1955]. However, Spencer's method often encounters numerical convergence difficulties when considering block slip surfaces. Therefore, Spencer's method was used for the circular slip surfaces, while Janbu's method was used for block slip surfaces.

Information required for the static slope stability analyses included the slope geometry, the subsurface soil stratigraphy, the groundwater table elevation, the material properties of the

Page

consultants

212

Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bed	e ch Date	: 12/8/20	009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

subsurface soils, dredge material, liner and cover system materials, and the external surface loading, if any, at the selected cross section locations.

Target Factor of Safety

Target factors of safety (FSs) were considered for slope stability of the proposed SCA, one for the interim condition and one for the long-term condition. The interim condition is the condition during the SCA construction and dredge operation period and shortly after the SCA is capped with the final cover system. The long-term condition is the condition a relatively long time after the SCA is capped. In addition, both peak and residual shear strengths were considered in identifying the appropriate FSs for interim and final conditions, as appropriate for geosynthetic materials.

The target FS corresponding to the peak shear strength was considered to be 1.3 for the interim condition and 1.5 for the long-term condition according to U.S. Army Engineer Waterways Experiment Station Technical Report D-77-9 [Hammer and Blackburn, 1977] and U.S. Army Corps of Engineers Engineering Manual 1110-2-1902 [USACE, 2003]. The target FS corresponding to large displacement (i.e., residual) shear strength was considered to be 1.1 for the interim condition and 1.3 for the long-term condition, consistent with general engineering practice.

SUBSURFACE STRATIGRAPHY

Detailed information regarding the subsurface stratigraphy was presented in a calculation package titled "Subsurface Stratigraphy Model of Wastebed 13 for the Design of Sediment Consolidation Area" (referred to as the Data Package). In summary, the subsurface stratigraphy consists primarily of three types of material: the Solvay waste (SOLW), the existing WB-13 perimeter dike soil, and the foundation soil, as shown schematically in Figure 1. The SOLW was divided into three zones (i.e., Zone 1, Zone 2, and Zone 3, as shown in the figure) based on its distinct characteristics.

The groundwater table was found to be approximately 50 ft below ground surface (bgs) of the wastebed (or at approximately El. 375 ft) as presented in the Data Package. However, it is noted that "perched" water zones exist in WB-13 according to the site investigation results presented in the Data Package. These "perched" water zones vary spatially and seasonally according to the piezometer data presented in the Data Package but have an average elevation of approximately 15 ft bgs. The slope stability analysis presented in this package conservatively assumes the "perched" water zones are connected to the groundwater table. The groundwater

Page

consultants

						1 480			<u> </u>	112
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ech Da	te:	12/8/20)09
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	T	ask No.:	18

table was, therefore, modeled using a single groundwater table 15 ft bgs. Additionally, within the gravel drainage layer in the liner system, a second water table one foot above the top of the liner layer was assumed in the model. This represents the one foot maximum allowable head within the gravel drainage layer. It should be noted that this water table is confined by the liner system and will only affect the gravel drainage layer in the slope stability analysis.

ANALYZED CROSS-SECTIONS

The proposed SCA consists of a single containment cell surrounded by the SCA perimeter dike as shown in Figure 2. Two cross sections (i.e., Cross-Section A-A and B-B, as shown in Figures 3 and 4) were analyzed for static slope stability. As can be seen in Figure 3, Cross-Section A-A has significantly more vertical interfaces to consider than Cross-Section B-B because of geo-tube orientation. The design height of the proposed SCA perimeter dikes is a minimum of 5 ft above the existing ground surface and a minimum of 2 ft above the top of the gravel at the same location. The elevations of the dikes will vary, as the existing ground elevations vary along the perimeter. The maximum dike height is approximately 10 ft, located near the western sump area. The SCA perimeter dikes are approximately 28 ft wide at the top and have a 2.5 horizontal:1 vertical (2.5H:1V) side slope. There is a 10 ft setback distance between the edge of the lowest geo-tube layer and the dikes.

Cross-Section A-A

Cross-Section A-A was selected because it follows the direction of minimum overlap between the geo-tube stacks, which is expected to result in the lowest FS for block slip mode stability. Cross-Section A-A runs approximately north-south through WB-13. The geo-tubes are assumed to be 40 ft in width and between 250 ft to 320 ft in length. In the direction of Cross-Section A-A, each additional stack of geo-tubes will straddle geo-tubes that are already in place. This results in each stack of geo-tubes being offset approximately 20 feet from the layer below.

The existing ground below the liner at Cross-Section A-A (i.e., top of existing SOLW elevation) is naturally sloped. The thickness of the SOLW underneath the liner varies, but typically is between 50 and 60 ft. Cross-Section A-A was extended to include the existing WB-13 perimeter dike.

Cross-Section B-B

Cross-Section B-B runs approximately east-west through WB-13. In this direction, the geotubes are assumed to be between 250 ft and 320 ft long for purposes of this analysis. At the edge

Page

consultants 4 of

212

							· ·		
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech Dat	te: 12/8	8/2009
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.	.: 18

of the geo-tube layers, tubes are offset approximately 20 ft. Through the interior of the SCA, the offsets between geo-tube layers vary because of the different lengths and number of geo-tubes per layer, but is planned to be a minimum of 20 ft.

MATERIAL PROPERTIES

Table 1 summarizes the material properties (i.e., unit weights and shear strengths) of the SOLW, the dike soil, the foundation soil, the dredged material, the final cover soil, and geosynthetic materials used in the slope stability analyses. The unit weight and the shear strength of the SOLW in WB-13 were considered to be the same for Zone 1, Zone 2, and Zone 3 according to the Data Package. In the stability models presented in this package, the existing WB-13 perimeter dike soil was treated the same as the base foundation material based on previous investigations indicating that these existing WB-13 perimeter dikes were constructed using the native foundation material from beneath WB-13. The term "dike soil" as used in this package therefore refers only to the SCA perimeter dikes that will be constructed. The interfaces between adjacent geo-tubes and between the bottom geo-tube and gravel drainage layer are modeled as thin layers of frictional material. For purposes of this analysis, the final cover is assumed to have a thickness of 3 ft. Figures 5 and 6 show a representation of the layers included in the model.

Unit Weight

The unit weights of the SOLW, the dike soil, and the foundation soil were considered to be 82 pcf, 120 pcf, and 120 pcf, respectively, according to the Data Package. The unit weights of the proposed liner soil and gravel drainage layer were assumed to be 100 pcf and 120 pcf, respectively. The unit weight of the interface between the gravel drainage layer and the geo-tubes was assumed to have the same calculated unit weight as the dredge material (i.e., 86 pcf). The unit weight of the dredged material was calculated to be approximately 86 pcf as presented in Attachment 2 to the package titled "Settlement Analyses for SCA" (Appendix H of the IDS). It is noted that the interfaces were required to be assigned material properties for numerical stability of the SLIDE program. The unit weight of horizontal interfaces between geotubes was assumed to be 86 pcf (i.e., the same as the dredge material) because there is no potential for a gap between two stacks of geo-tubes along a horizontal interface. However, due to the ellipsoidal shape of the filled geo-tubes, there is potential for gaps between two adjacent geo-tubes along a vertical interface. Therefore, vertical interfaces between geo-tubes were assumed to have a unit weight of 43 pcf (i.e., half of the dredge material). It is noted that the use of half of the unit weight versus the full unit weight along vertical interfaces is not expected to

Page

consultants

						1 uge	•	,	01	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:	12/8/2	009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ42	99	Task No.:	18

cause significant differences in the calculation results. The unit weight of the final cover soil was assumed to be 120 pcf.

Drained Shear Strength

The drained shear strength was used for the slope stability analyses under the long-term condition. The effective stress friction angles of the SOLW, the dike soil, and the foundation soil were considered to be 34 degrees, 35 degrees, and 37 degrees, respectively, according to the Data Package. For the liner system, laboratory interface direct shear testing was performed on four liner types (i.e., smooth and textured high density polyethylene [HDPE], ethylene propylene diene monomer [EPDM], and polypropylene [PP]), and the results are included in Attachment 2. The peak effective stress friction angle of the proposed liner system varied depending on the type of geomembrane (GM) chosen. Based on these results, smooth HDPE GM is not being considered for use on this project. Among the remaining GM options tested, the peak effective stress friction angle varied from 19 degrees to 27 degrees; therefore, 19 degrees was conservatively assumed in Table 1. The effective stress friction angle of the gravel layer was assumed to be 38 degrees.

The effective stress friction angle for the interface between the bottom geo-tube layer and the gravel drainage layer was considered to be 24 degrees, based on data presented by Koerner [1994] for the interface between woven geotextiles and sand. The geotextiles composing the geo-tubes are modeled as two-end anchored geotextile sheets. The ultimate tensile strength was assumed to be 4800 lb/ft based on standard strength parameters for commercially available geotubes. A reduction factor of 3.0 [GRI, 1992] was then applied to result in a design tensile strength of 1600 lb/ft. Current information indicates the dredge material from the In Lake Waste Deposit (ILWD) has a drained friction angle of 37 degrees and, as indicated previously, the existing SOLW in WB-13 has a drained friction angle of 34 degrees. Considering the dredge material as remolded SOLW, the long-term drained effective stress friction angle of the dredge material was conservatively assumed to be 30 degrees. Under short-term conditions, the dredge material was assumed to have half of the drained effective stress friction angle of the material under long-term conditions (i.e., 15 degrees).

The effective stress friction angle of the vertical geo-tube/geo-tube interface was assumed to be negligible due to gaps between the geo-tubes. A value of 0.1 degrees was chosen for this interface to maintain numerical stability of the SLIDE program. Using representative geo-tube samples, the peak effective stress friction angle of the horizontal geo-tube/geo-tube interface was measured to be 15 degrees in laboratory interface direct shear testing (see Attachment 2 for

Page

consultants

-						1 age		0	- 01	21	
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bed	ech	Date:	12	2/8/200)9
Client:	Honeywell	Project:	Onon	ıdaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	299	Task N	lo.:	18

results), which is the assumed value provided in Table 1. The effective stress friction angle for the final cover was assumed to be 30 degrees.

At the time this package was initially prepared, the GM component in the final liner system had not been selected; therefore the minimum measured interface friction values of 19 degrees (peak) and 17 degrees (residual) were selected. Once the critical stability cases were established using the minimum value of liner system friction angle from laboratory testing, the critical cases were rerun using the maximum liner system friction angle (both peak and residual) from laboratory testing. These analyses were performed to provide an approximate range of FS values that may be expected. The peak and residual interface friction angles for linear low-density polyethylene (LLDPE) are generally close to the interface friction angles of HDPE. Therefore, the interface friction angle of LLDPE is expected to fall within the range shown in this package. The range of calculated FS values based on the variability in test results is discussed further in Attachment 3.

Stability analyses were also performed to back-calculate the range in effective stress friction angles that would be acceptable for a given target FS, thus providing a range in values that can be used to establish the acceptability of actual geo-tube and liner system components based on laboratory testing, without needing to perform additional analyses. The back-calculation of this range in values is described further in Attachment 4. In cases involving the drained shear strength, the effective stress cohesion intercept was conservatively assumed to be zero.

Undrained Shear Strength

The undrained shear strength (S_u) of the WB-13 SOLW was used for the slope stability analyses under the interim condition. It is noted that undrained shear strengths were not assigned to the dike soil, the foundation soil, and the proposed gravel drainage layer because they primarily consist of coarse soil particles and drain relatively quickly under loading. Undrained shear strengths were also not assigned to the models used to represent the vertical and horizontal interfaces between geo-tubes because these interfaces are extremely thin and also drain quickly under loading. For these layers, the drained shear strengths were used for the interim condition as well.

The $S_{\rm u}$ of SOLW was developed using the SHANSEP (i.e., stress history and normalized soil engineering properties) method developed by Ladd and Foott [1974], based on the results of the laboratory consolidated-undrained (CU) triaxial compression tests and consolidation tests as presented in the Data Package. The SHANSEP method can be expressed using the following equation:

consultants

212

Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ech Date:	12/8/20)09
Client:	Honeywell	Project:	Onon	idaga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

$$S_u = S \times \sigma'_{vc} \times OCR^m \tag{1}$$

Page

where,

S = undrained shear strength ratio under normal consolidation, obtained from CU tests;

 σ_{vc}' = effective vertical consolidation stress for a given loading;

OCR = over-consolidation ratio, obtained from consolidation tests which is the ratio of the preconsolidation pressure (p_c') to the in-situ vertical effective stress $(\sigma_{v'})$; and

m = SHANSEP modeling parameter (m = 0.8 for most cohesive soils and typical applications [Ladd and DeGroot, 2003]).

As presented in the Data Package, an S of 0.3 was established from CU tests on the WB-13 SOLW samples. Data of p_c , preconsolidation pressure, were obtained from the Data Package and are plotted in Figure 7 together with the profile of σ_v , the effective in-situ vertical stress. An initial OCR profile was also developed in the Data Package for the SOLW, as shown in Figure 8.

Due to the effective stress increase ($\Delta \sigma_{\nu}$) imposed by the liner system and geo-tubes, the SOLW will gain additional undrained shear strength as indicated by Equation 1. However, the undrained shear strength gain will occur gradually as the SOLW consolidates over time. To consider the shear strength gain of SOLW during the process of consolidation under the geo-tube load, three S_u profiles were calculated and are described below.

Initial S_u profile: This S_u profile represents the in-situ shear strength of the SOLW before construction of the SCA liner system. The S_u was calculated by Equation 1 using the in-situ effective stress $\sigma_{v,'initial}$ in the SOLW. The calculated initial S_u profile is presented in Figure 9 along with the S_u measured by the UU tests.

 S_u profile for $U_{avg} = 75\%$: This S_u profile corresponds to the shear strength of the SOLW after it achieves an average degree of consolidation (U_{avg}) of 75%. The S_u in the SOLW at $U_{avg} = 75\%$ ($\sigma_v'_{75\%}$) was calculated as a four-step process. The time factor T_v necessary to reach an average degree of consolidation of 75% is 0.477 [Das, 2005]. This time factor was used to calculate the variation of the consolidation ratio with depth (U_z) for an average consolidation ratio of $U_{avg} = 75\%$, as shown in Figure 10 [Lambe and Whitman, 1969]. Next, $\sigma_v'_{75\%}$ was calculated using Equation 2.

$$\sigma'_{v75\%} = \sigma'_{v,initial} + U_z \times \Delta \sigma_v \tag{2}$$

consultants

Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:	12	2/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4	299	Task N	o.: 18

Third, the OCR at $U_{avg} = 75\%$ was back-calculated using the original preconsolidation pressure p_c' and the current effective stress $\sigma_{v'75\%}$. Lastly, these OCR values are applied to the SHANSEP formula to derive the S_u profile when the SOLW achieves U_{avg} =75%. Note that to calculate the S_u profile for U_{avg} =75%, the additional effective stress $\Delta \sigma_{v'}$ was based on three layers (18 ft) of dredged material in geo-tubes, 1 ft of gravel, and 1 ft of low permeability soil. The actual thicknesses of gravel and low permeability soil are greater or equal to 1 ft, however, with regards to shear strength gain, this assumption is conservative. The selection of three layers of geo-tubes as additional loading was based on the minimum number of geo-tube layers that would likely be placed the first year and the required time to consolidate, which is explained in detail below.

 S_u profile for $U_{avg} = 100\%$: This S_u profile corresponds to the shear strength of the SOLW after it reaches full consolidation under the same loading conditions as the $U_{avg} = 75\%$ condition (i.e., three layers [18 ft] of dredged material in geo-tubes, 1 ft of gravel, and 1 ft of low permeability soil). The effective stress after consolidation was calculated using Equation 3. Due to the large additional load of the geo-tubes, the OCR for SOLW when the soil is fully consolidated was assumed to be 1.0. The SHANSEP formula was applied to calculate the final S_u profile.

$$\sigma'_{v} = \sigma'_{v,initial} + \Delta \sigma_{v} \tag{3}$$

Vertical effective stress profiles for these three stages of consolidation are shown in Figure 11. The resulting undrained shear strength profiles are shown in Figure 12.

Consolidation Rate

The time to achieve a U_{avg} of 75% can be calculated using Equation 4 below [Das, 2005]:

$$t = \frac{T_{\nu}H_{dr}^2}{c_{\nu}} \tag{4}$$

where, c_v is the coefficient of consolidation, H_{dr} is the 50 ft distance to the drainage layer, and T_v is the time factor based on the required degree of consolidation. For U_{avg} of 75%, T_v equals

Page

consultants

212

Written by:	Joseph Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech		2: 12/8/2	12/8/2009	
Client:	Honeywell Project	t: Ono	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18	

0.477 [Das, 2005]. Using a c_v of 0.009 cm²/sec from the laboratory consolidation tests and a c_v of 0.14 cm²/sec from the field test as presented in the Data Package, the time for the SOLW to achieve a U_{avg} of 75% was calculated to range from approximately 90 to 1420 days (3.9 years). As discussed in the Data Package, the consolidation rate in the field occurred at a much faster rate than in the lab due to lateral drainage. However, since the actual loaded area of the SCA is large enough that lateral drainage likely will not greatly affect the consolidation rate, the lab test rate of $c_v = 0.009$ cm²/sec is considered more representative than the field test rate of actual conditions during SCA construction and operation. Therefore, it is conservatively assumed herein that the SOLW will require approximately 1420 days (3 years, 11 months) to reach the $U_{avg} = 75\%$ condition.

Based on the current phasing plan, the anticipated effective stress increase of the first year of construction was used to calculate the SOLW undrained shear strength at $U_{avg} = 75\%$. The consolidation due to the first year of geo-tube placement will have adequate time to consolidate to be at or near a $U_{avg} = 75\%$ condition after placement of the final cover. However, consolidation due to years 2, 3, and 4 of geo-tube construction may not have sufficient time to reach $U_{avg} = 75\%$ conditions, therefore the additional strength gain from these stages of construction was conservatively ignored in calculation of the $U_{avg} = 75\%$ profile. Additionally, the edges of the geo-tube loaded area will not have the full $\Delta\sigma_{v}$ load calculated above. Therefore, in calculation of the $U_{avg} = 75\%$ profile, undrained shear strength gain in locations under the side slopes of the SCA was conservatively ignored. A potential first-year geo-tube phasing plan is shown in Figure 13.

In summary, the following items should be noted regarding the incorporation of the S_u profiles into the slope stability analyses:

- The groundwater table was considered to be at 50 feet bgs (or at approximately El. 375 ft) in the calculation of the undrained shear strength. However, in the SLIDE program, the effect of the perched water zones was taken into account and modeled as a single groundwater table at 15 feet bgs as previously discussed.
- The S_u profile for $U_{avg} = 100\%$ was not used in the analyses. The maximum undrained shear strength that the SOLW can achieve under loading was considered to be the S_u profile for $U_{avg} = 75\%$ under three stacks of geo-tube loading.
- The initial S_u profile as a function of depth was input directly into the SLIDE program and used for calculations with the exception of calculating global stability after placement of the final cover, for which the S_u profile for $U_{avg} = 75\%$ was used.

10

consultants of

212

Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch Date	12/8/20	009
Client:	Honeywell	Project:	Onone	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

In order to facilitate the calculations of the undrained shear strength, the initial stepwise S_u profile of SOLW and the OCR profile recommended in the Data Package have been slightly modified to be smooth curves in this package.

Page

- Due to the low permeability soil liner system, it was assumed that SOLW consolidation will occur in a single-drained state at the foundation soil layer at an average depth of 50 feet bgs.
- The computations for U_{avg} =75% and U_{avg} =100% are based on calculations of the expected required consolidation time. The actual field consolidation will be monitored through field instrumentation, and the construction will be adjusted accordingly if necessary.

ANALYZED CASES

Both Cross-Sections A-A and B-B were analyzed for conditions without the final cover and with the final cover for the four potential slip modes mentioned earlier. A more detailed discussion of the analyzed cases is presented below.

Geo-tube Slip Mode

The block slip of geo-tubes represents potential sliding within the interfaces between individual geo-tubes, resulting in multiple geo-tubes sliding off of the mass of geo-tubes. Computations were performed using short-term strength parameters, including the initial S_u profile (Figure 9) to represent the undrained shear strength of the underlying SOLW layer. Since the slip surfaces do not pass through the existing SOLW, the S_u values of SOLW do not affect the calculated FS. This mode was analyzed for 12 different cases for Cross-Section A-A and five different cases for Cross-Section B-B, as summarized on Tables 2 and 3, respectively. More cases were considered for Cross-Section A-A because of the higher number of vertical interfaces to be considered in that cross section, as compared to Cross-Section B-B, due to tube orientation/geometry. The number of stacks indicated in the tables represents the tiers, counting from the top downwards, involved in the potential slip. The number of columns represents the number of geo-tubes per stack involved in the potential slip. A conceptual illustration of "stacks" and "columns" is shown in Figure 14.

As indicated previously, establishing a range in friction angles that would be considered acceptable for the geo-tube/geo-tube interface is also a goal of the stability analyses presented herein. Therefore, based on the initial analyses using the friction angles established through laboratory testing, which yielded acceptable FS values, the most critical case for geo-tube slip

Page

consultants

212

Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bed	ech Date	e: 12/8/2	2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

was identified (i.e., Top 4 stacks; 1 column, as indicated on Table 2). This critical case is illustrated in Figure 15 without a final cover and in Figure 16 with a final cover.

In addition, this critical case was used to back-calculate the required effective stress friction angle of the horizontal geo-tube/geo-tube interface to achieve the target FS for both peak and residual conditions. This procedure was followed for Cross-Section A-A without the final cover (target peak FS=1.3, target residual FS=1.1) and for Cross-Section A-A with the final cover (target peak FS=1.5, target residual FS=1.3). Since the geo-tube slip mode is more critical for Cross-Section A-A due to the geometry involved (see results on Table 2 as compared to 3), the back-calculated values from Cross-Section A-A are also considered acceptable for Cross-Section B-B. This is discussed in more detail in Attachment 4.

Liner Stability

Block slip of the liner represents sliding along the proposed liner. Computations using this mode were performed using short-term strength parameters and the initial S_u profile (Figure 9) to represent the undrained shear strength of the SOLW layer. Since the slip surfaces do not pass through the existing SOLW, these S_u values do not affect the calculated FS.

Similar to the geo-tube slip mode analysis, first the most critical case for liner stability was identified using the minimum friction angle established during laboratory testing. For liner stability, the critical case involves the liner failing underneath the first column of geo-tubes, as illustrated in Figures 17 and 18 without and with final cover, respectively. Once the critical case was identified, the analysis was also performed using the maximum laboratory measured liner friction angle. Table 2 provides the results using the minimum liner friction angle established in the laboratory testing, and Attachment 3 provides the results (critical case only) using the maximum liner friction angle established in the laboratory testing.

As indicated previously, establishing a range in friction angles that would be considered acceptable for the liner system is also a goal of the stability analyses. Using the critical case identified above, the required effective stress friction angle of the proposed liner system to achieve the target FS could be back-calculated. To establish a range in friction angle values, the sensitivity of the liner friction angle to changes in the geo-tube/geo-tube horizontal interface friction angle was also evaluated. The geo-tube/geo-tube horizontal interface friction angle was changed, and the required liner friction angle to achieve the target FS against liner slip was back-calculated using SLIDE. Based on the results presented in Tables 2 and 3, the Cross-Section A-A geometry is considered to be more critical than the Cross-Section B-B geometry; therefore, the additional analyses were performed on Cross-Section A-A. The results of these calculations before and after placement of the final cover are shown and discussed further in Attachment 4.

consultants

						1 agc		12	01	212
Written by:	Joseph S	Joseph Sura		12/4/2009	Reviewed by:	R. Kulasingam/Jay Bo	eech	Date:	12	/8/2009
Client:	Honeywell	Project:	Onon	ıdaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	299	Task No	o.: 18

Global Stability (Circular slip surfaces)

Global stability of the proposed SCA was evaluated with circular potential slip surfaces. The global stability through the foundation material prior to placement of the final cover was evaluated using undrained strength parameters (the initial S_u profile shown in Figure 9) to represent the undrained shear strength of the SOLW layer. The global stability after placement of the final cover was evaluated for three cases: (i) Interim stability with the initial S_u profile; (ii) Interim stability with U_{avg} =75%; and (iii) Long-term stability.

The interim global stability case immediately after placement of the final cover was evaluated using the initial S_u profile to represent the undrained shear strength of the SOLW layer. The interim global stability case immediately after placement of the final cover was also evaluated using the S_u profile after consolidation to U_{avg} =75% to represent the undrained shear strength of the SOLW layer.

The long-term global stability after cover placement was evaluated using drained strength parameters. This long-term global stability evaluation was performed by assuming that the geotextile support of the geo-tubes will be degraded and therefore have no shear strength. The long-term evaluation was performed by also assuming the effective stress friction angle of the dredge material will increase to 30 degrees due to consolidation of the material (i.e., the long-term value provided in Table 1).

Global Stability of WB-13 Perimeter Dikes (Circular slip surfaces)

Potential global stability for slip surfaces through the SCA and existing WB-13 perimeter dike was evaluated for Cross-Sections A-A and B-B. This slip mode was analyzed for three cases: (i) Interim stability before final cover placement; (ii) Interim stability after final cover placement; and (iii) Long-term global stability.

In addition, global stability of the WB-13 perimeter dike was considered by focusing on potential slip surfaces through the dike. For these analyses, the WB-13 perimeter dike was modeled with a 2-ft thick crusty surficial layer with a cohesion intercept of 50 psf and a friction angle of 37 degrees to represent the effects of desiccation and roots. The inner portion of the WB-13 perimeter dike was modeled only with a friction angle of 37 degrees, consistent with the other cases analyzed. Two cases were considered to model the groundwater table within the WB-13 perimeter dike. The first case considered a water table that varies from the conservatively assumed 15 feet below ground level at the dike-SOLW interface to the ground surface level at the toe of the dike. The second case considered a water table that varies from 15 feet below ground level at the dike-SOLW interface to a level at the outside dike face that is 10 feet above the ground surface level at the toe of the dike.

Page

consultants

						1 age		13	01		12
Written by:	Joseph S	bura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:	1	12/8/20	09
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task ?	No.:	18

RESULTS AND DISCUSSION

Slope Stability Analysis

The results of the slope stability analyses for Cross-Sections A-A and B-B are summarized in Tables 2, 3, and 4. The results of the analyses for the most important cases are also shown graphically in Figures 19 through 43. The associated SLIDE runs are presented in Attachment 5 of this package.

The calculation results for Cross-Section A-A are summarized in Table 2 and indicate that the calculated FS values for cases without and with the final cover satisfy the target FS of 1.3 and 1.5, respectively, for the geo-tube slip mode, liner stability, and global stability. Since the global stability case using the initial S_u profile achieved the interim FS=1.3 criterion, a check of global stability using the $U_{avg} = 75\%$ profile was not performed for Cross-Section A-A.

The calculation results for Cross-Section B-B are summarized in Table 3 and indicate that the calculated FS values for cases without and with the final cover satisfy the target FS of 1.3 and 1.5, respectively, for the slip modes evaluated (i.e., geo-tubes slip mode, liner stability, and global stability). Slope stability analyses performed to evaluate a potential global slip mechanism resulted in a calculated FS satisfying the interim target FS of 1.3 using the initial S_u profile. It is noted that the actual S_u profile will be greater than the initial due to consolidation of the foundation soils under the loading from the geo-tubes. When the $U_{avg} = 75\% S_u$ profile is used, the calculated FS is greater than when the initial S_u profile is used. The calculated FS for long-term global stability satisfies the target FS of 1.5.

Slope stability analyses performed to evaluate the potential global slip mechanisms through the SCA and existing WB-13 perimeter dikes resulted in FS values much greater than the target FS. Cross-Section A-A, as expected, has a lower factor of safety than for Cross-Section B-B with regards to global slip of existing WB-13 perimeter dikes, however, the calculated FS for Cross-Section A-A still greatly exceeds the target FS for both interim and long-term conditions.

Slope stability analyses were also performed for slip surfaces through the WB-13 perimeter dike that do not extend to the SCA (i.e., analyses focused on the dike only). For the case with the water table at the toe of the dike, minimum FS values of 3.0 for the critical global slip surface extending to the top of the WB-13 perimeter dike and 1.8 for the critical shallow slip surface within the slope were calculated, as shown in Figure 30. For the case with the water table at 10 feet above the toe of the dike, minimum FS values of 1.8 for the critical global slip surface extending to the top of the WB-13 perimeter dike and 1.1 for the critical shallow slip surface within the slope were calculated, as shown in Figure 31. This shallow slip surface is located near the toe under the estimated water table level within the WB-13 perimeter dike. A FS of 1.1 for

consultants

Page

		1 450						17	01	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech		Date:	12/	8/2009
Client:	Honeywell	Project:	Onon	ıdaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	1299	Task No	o.: 18

shallow slip surfaces is indicative of the potential for surficial sloughing. Since dike stability is directly related to water level (i.e., pore water pressure) within the dike, it is recommended that instrumentation and monitoring be performed during operations, and remedial measures be implemented if appropriate.

FS values were also calculated using residual shear strengths for the geosynthetic components. For Cross-Section A-A, the critical geo-tube slip case of one column of four stacks of geo-tubes and the critical liner slip case of one column of geotubes before and after final cover placement were evaluated. The calculated FS values using residual shear strengths satisfy the target residual FS values for both interim and long-term conditions.

Additionally, the back-calculation presented in Attachment 4 indicates that the required values for the peak laboratory friction angles for the horizontal geo-tube/geo-tube interface and liner system are 13.8 degrees and 18.3 degrees, respectively (or alternative combinations as shown in Figure 44), to meet the target FS values. The required values for the residual laboratory friction angles for the horizontal geo-tube/geo-tube interface and liner system are 11.6 degrees and 16.1 degrees, respectively (or alternative combinations as shown in Figure 45), to meet the target FS values. The minimum required values of peak and residual effective stress friction angle to meet the target FS values are shown in Figures 44 and 45. It is recommended that site-specific testing be performed on the selected liner system to verify the strength parameters meet or exceed these back-calculated values.

SUMMARY AND CONCLUSIONS

This package evaluates the static slope stability of the proposed SCA. Four potential slip modes were evaluated using the computer computation program SLIDE: (i) block slip mode along geo-tube interfaces; (ii) block slip mode along the liner system, (iii) circular slip surfaces through dredge material contained in geo-tubes and WB-13 foundation materials; and (iv) circular slip surfaces through existing WB-13 perimeter dikes.

Analyses of two critical cross-sections indicate that the calculated FSs for the four potential slip modes meet the target FS for interim and long-term conditions. However, placement of five layers of geo-tubes and the final cover system within the same season results in a calculated FS that only slightly exceeds the target value, a limitation that should be considered during design of the phasing plan for geo-tube construction. Instrumentation to monitor the field consolidation is recommended to verify adequate strength gain occurs before placement of the final cover. In addition, piezometers to monitor the water levels in the dikes, and inclinometers near the SCA berms to monitor stability in the field are recommended. Details regarding this instrumentation

Page

consultants

						1 age		1.3	01		12
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bed	ech	Date:		12/8/20	09
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ42	299	Task	No.:	18

are provided in Appendix N of the SCA Final Design, "Geotechnical Instrumentation and Monitoring Plan."

Minimum required parameters for the interface between geo-tubes and the liner system have been back-calculated. In order to meet the target factor of safety values against block slip, the peak effective stress friction angle for the interface between geo-tubes should be at least 13.8 degrees and the peak effective stress friction angle for the liner system should be at least 18.1 degrees. In order to meet the target factor of safety values against block slip, the residual effective stress friction angle for the interface between geo-tubes should be at least 11.6 degrees and the peak effective stress friction angle for the liner system should be at least 16.1 degrees. Alternative combinations of geo-tube friction angle and liner friction angle may also be acceptable, as shown in Figures 44 and 45. Laboratory testing indicates that these values are achievable with a variety of common commercially available geosynthetics. Testing of material delivered to the project during construction will be performed to verify components meet the specified strength.

consultants

Page

of

						1 ugc		10	01	212
Written by:	Joseph Sura	Joseph Sura Date: 12/4/2009 Rev		Reviewed by:	R. Kulasingam/Jay Beech		Date:	12/8/2	2009	
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task No.:	18

REFERENCES

- Bishop, A., "The Use of the Slip Circle in the Stability Analysis of Slopes," Geotechnique, Volume 5, No. 1, Jan 1955, pp. 7-17.
- Das, B.M., Fundamentals of Geotechnical Engineering, Second Edition, Thomson, 2005.
- Geosynthetic Research Institute (GRI), "Determination of the Long-Term Design Strength of Geotextiles", Folsom, PA, 1992.
- Hammer, D.P., and Blackburn, E.D., "Design and Construction of Retaining Dikes for Containment of Dredged Material", Technical Report D-77-9, U.S. Army Engineer Water Experiment Station, Vicksburg, Mississippi, August 1977, pp. 93.
- Janbu, N., "Slope Stability Computations," Embankment Dam Engineering, Casagrande Memorial Volume, R. C. Hirschfield and S. J. Poulos, Eds., John Wiley, New York, 1973, pp. 47-86.
- Koerner, R.M., Design with Geosynthetics, Third Edition, Prentice Hall, Upper Saddle River, N.J. 1994.
- Ladd, C. C. and DeGroot, D. J., "Recommended Practices for Soft Ground Site Characterization: Arthur Casagrande Lecture," Proceedings of the 12th Pan American Conference on Soil Mechanics and Geotechnical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, June 2003.
- Ladd, C. C and Foott, R., "New Design Procedure for Stability of Soft Clays." Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, Vol. 100, No. GT7, July 1974.
- Lambe, T.W. and Whitman, R.V., Soil Mechanics, John Wiley & Sons, New York, 1969.
- Petersen, M.D. et. al., "Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2008–1128", U.S. Geological Survey, Reston, VA, 2008.

consultants

						Page	17	of	212
Written by:	Joseph Su	ıra	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12	/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task N	o.: 18

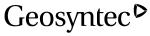
Rocscience, "SLIDE – 2-D Limit Equilibrium Slope Stability for Soil and Rock Slopes," User's Guide, Rocscience Software, Inc., Toronto, Ontario, Canada, 2009.

Spencer, E., "The Thrust Line Criterion in Embankment Stability Analysis," *Géotechnique*, Vol. 23, No. 1, pp. 85-100, March 1973.

U.S. Army Corps of Engineers (USACE), "Engineering and Design – Slope Stability", Engineering Manual EM 1110-2-1902, October 2003, pp. 3-2.

Geosyntec consultants

						Page	18		of 2	212
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch D	ate:	12/8/2	009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Γ (Гask No.:	18


Tables

consultants

						Page	19	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	Date:	12	/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No	o.: 18

Table 1. Summary of Material Properties for Slope Stability Analysis

		i wateriai i roperties for Stop	
Material	Unit Weight	Undrained Shear Strength	Drained Shear Strength
iviaciiai	(pcf)	(psf)	Effective Stress Friction Angle (degree)
SOLW	82	See Figures 7 through 12	34
SCA Perimeter Dike Soil	120		35
Foundation Soil			
(including WB-13	120		37
perimeter dike)			
Liner	100		19 ^[1]
Gravel Drainage	120		38
Geo-tube/Gravel	86		24 ^[2]
Interface	80		24
Geo-tube		Design Tens	sile Strength = $1600 \text{ lb/ft}^{[3]}$
Dredge Material (Short	86		15 ^[4]
Term)	80		13
Dredge Material (Long-	86		30
Term)	80		30
Geo-tube/Geo-tube	43 ^[5]		$0.1^{[6]}$
Interface (Vertical)	43		V. I
Geo-tube/Geo-tube	86		15 ^[1]
Interface (Horizontal)	80		13
Final Cover Soil	120		30

consultants

Written by:	Joseph Sura		eph Sura Date: 12/4/2009 Reviewed by:		R. Kulasingam/Jay Beech	20 h Date:		009	
Client:	Client: Honeywell Projec		Onon	daga Lake SC	'A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

Table 1. Summary of Material Properties for Slope Stability Analysis (Continued)

- 1. The values presented in this table (i.e., 15 degrees and 19 degrees) are the measured peak effective friction angles for geo-tube/geo-tube interface and liner, respectively (see Attachment 2).
- 2. Taken from Koerner [1994]. A typical value of interface effective friction angle between woven geotextile and sand was assumed.
- 3. The design tensile strength was modeled using a two-end anchored geotextile sheet. Based on commercially available products, the ultimate tensile strength of geo-tubes was assumed to be 4800 lb/ft and a strength reduction factor of 3.0 was applied to calculate the design tensile strength, taking into account creep deformation, chemical degradation, and strength loss within seams, connections, and joints [GRI, 1992].
- 4. Under short-term conditions, the dredge material was assumed to have half of the friction angle of the material under long-term conditions.
- 5. The vertical interface was assumed to have a unit weight equal to half of the unit weight of the dredge material. This was based on the geometry of the geotubes after deformation. The volume of material in the vertical interface after deformation was assumed to be approximately half the total volume available if the geotubes could be placed in direct contact with each other along the entire interface.
- 6. The geo-tube/geo-tube vertical interface has insignificant side friction, but a small value of friction angle was necessary for numerical stability of the SLIDE calculation program.

consultants

						Page	21	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	eh Date	12/8/2	2009
Client:	Honeywell	Project:	Onor	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

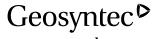
Table 2. Summary of Slope Stability Analysis: Cross-Section A-A

	Case		Without	Final Cover			With Final Co	ver	
		Calcula	ted FS ^[1]	- Figure	Target	Calculate	ed FS ^[1]	- Figure	Target
		Spencer's Method ^[2]	Janbu's Method ^[2]	Number	F.S.	Spencer's Method ^[2]	Janbu's Method ^[2]	Number	F.S.
	Top 1 stack; 1 column		8.53		1.30		8.68		1.50
	Top 1 stack; 2 columns		26.71		1.30		^[5]		
	Top 2 stacks; 1 column	1	2.44		1.30		3.37		1.50
	Top 2 stacks; 2 columns	1	5.40		1.30		^[5]		
	Top 3 stacks; 1 column	1	1.73		1.30		2.02		1.50
Slip of Geo-tubes	Top 3 stacks; 2 columns	1	3.50		1.30		3.81		1.50
(Block Mode)	Top 4 stacks; 1 column	1	1.52	19	1.30		1.62	24	1.50
,	Top 4 stacks; 2 columns		2.44		1.30		2.79		1.50
	Top 4 stacks; 3 columns	1	3.89		1.30		^[5]		
	5 stacks; 1 column	-	1.72	20	1.30		1.73		1.50
	5 stacks; 2 columns	1	2.69		1.30		2.89	-	1.50
	5 stacks; 3 columns		4.47		1.30		^[5]		
Liner Stability	One column of geo-tubes		1.57	21	1.30		1.59	25	1.50
(Block Mode)	Two columns of geo-tubes		2.24		1.30		2.48		1.50
	Through Foundation Material (U _{avg} =0%) – Interim	1.66 ^[3]		22	1.30	1.45 [3]		26	1.30
Global Stability (Circular Mode)	Through Foundation Material (U _{avg} =75%) – Interim					[6]	[6]		
	Through Foundation Material – Long-Term					1.83 ^[7]		27	1.50
Global Stability	Through SCA and Existing WB-13 Perimeter Dike – Interim	3.46 ^[4]		23	1.30	2.84 ^[4]		28	1.30
(Circular Mode)	Through SCA and Existing WB-13 Perimeter Dike – Long Term	1				5.65		29	1.50

Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/8/2	2009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

Table 2. Summary of Slope Stability Analysis: Cross-Section A-A (Continued)

- 1. These values are calculated using the laboratory values of peak effective stress friction angle for the geo-tube/geo-tube horizontal interface (15 degrees) and the liner (19 degrees). The laboratory test data are shown in Figures 2-4 and 2-5 of Attachment 2.
- 2. Spencer's method is considered more rigorous than Janbu's method because Spencer's method satisfies both force and moment equilibrium. However, Spencer's method often encounters numerical convergence difficulty when complicated block slip surfaces are considered, as in this analysis. Therefore, Spencer's method was used for the circular mode analysis, while Janbu's method was used for the block mode analysis
- 3. This calculation uses the initial S_u profile for the undrained shear strength of the existing SOLW.
- 4. This was modeled by forcing the slip circle to pass through the existing WB-13 perimeter dike.
- 5. This case was not analyzed due to the acceptable FS values found for similar cases.
- 6. The U_{avg} =75% case was not analyzed for Cross-Section A-A because the interim FS was acceptable using the initial S_u profile.
- 7. For long-term, the geotextile of the geo-tubes was assumed to be degraded and therefore have no shear strength. The dredge material was modeled with the long-term friction angle of 30 degrees.
- 8. Figures are only included for the most important cases.


consultants

						Page	23	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/	/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No	o.: 18

Table 3. Summary of Slope Stability Analysis: Cross-Section B-B

			Without Final Co	over			With Final Cove	r	
	Case	Calculate	ed FS ^[1]	- Figure	Target	Calculat	ed FS ^[1]	Figure	Target
		Spencer's Method ^[2]	Janbu's Method ^[2]	Number	F.S.	Spencer's Method ^[2]	Janbu's Method ^[2]	Number	F.S.
	Top 1 stack; 1 column		46.93		1.30		21.73		1.50
Slip of	Top 2 stacks; 1 column		13.47		1.30		10.66		1.50
Geo-tubes ^[3]	Top 3 stacks; 1 column		10.73		1.30		9.04		1.50
(Block Mode)	Top 4 stacks; 1 column		6.60	32	1.30		6.00	37	1.50
	5 stacks; 1 column		9.81	33	1.30		9.30		1.50
Liner Stability ^[3] (Block Mode)	One column of geo-tubes		1.86	34	1.30		1.81	38	1.50
Global	Through Foundation Material (U _{avg} =0%) – Interim	1.36 ^[3]		35	1.30	1.40 ^[3]		39	1.30
Stability (Circular	Through Foundation Material (U _{avg} =75%) – Interim					1.42 ^[4]		40	1.30
Mode)	Through Foundation Material – Long-Term ^[5]					1.91		41	1.50
Global Stability	Through SCA and Existing WB-13 Perimeter Dike – Interim	8.39		36	1.30	7.07		42	1.30
(Circular Mode)	Through SCA and Existing WB-13 Perimeter Dike – Long-Term					11.96		43	1.50

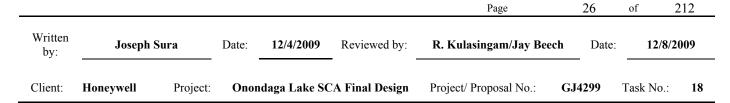
- 1. These values are calculated using the laboratory values of peak effective stress friction angle for the geo-tube/geo-tube horizontal interface (15 degrees) and the liner (19 degrees). The laboratory test data are shown in Figures 2-4 and 2-5 of Attachment 2.
- 2. Spencer's method is considered more rigorous than Janbu's method because Spencer's method satisfies both force and moment equilibrium. However, Spencer's method often encounters numerical convergence difficulty when complicated block slip surfaces are considered, as in this analysis. Therefore, Spencer's method was used for the block mode analysis.
- 3. This calculation uses the initial S_u profile for the undrained shear strength of the existing SOLW.
- 4. This calculation uses the U_{avg} =75% profile for the undrained shear strength of the existing SOLW under the gravel, liner system, and three layers of geo-tubes.
- 5. For long-term, the geotextile of the geo-tubes was assumed to be degraded and therefore have no shear strength. The dredge material uses the long-term friction angle of 30 degrees.
- 6. Figures are only included for the most important cases.

consultants

Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/8/2	009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

Table 4. Summary of Slope Stability Analysis: Residual Conditions for Cross-Section A-A

		Without Final Cover (Interim)	With Final Cover (Long-Term)		
Ca	ase	Calculated FS ^[1]	Torget EC	Calculated FS ^[1]	Torget EC	
		Janbu's Method ^[2]	Target FS	Janbu's Method ^[2]	Target FS	
Slip of Geotubes (Block Mode)	Top 4 stacks; 1 column	1.21	1.10	1.34	1.30	
Liner Stability (Block Mode)	One column of geo-tubes	1.33	1.10	1.36	1.30	


- 1. These values are calculated using the laboratory values of residual effective stress friction angle for the geo-tube/geo-tube horizontal interface (12 degrees) and the liner (17 degrees). The laboratory test data are shown in Figures 2-2 and 2-5 of Attachment 2.
- 2. The Janbu method was used for the block mode analyses presented here because Spencer's method often encounters numerical convergence difficulty with these types of analyses.
- 3. The target residual FS is 1.1 for the interim condition and 1.3 for long-term conditions.

Geosyntec consultants

						Page		25	of	212	
Written by:	Joseph S	ura ———	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay B	Beech	Date:	1	2/8/2009	1
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	G.	J4299	Task N	No.: 1	18

Figures

consultants

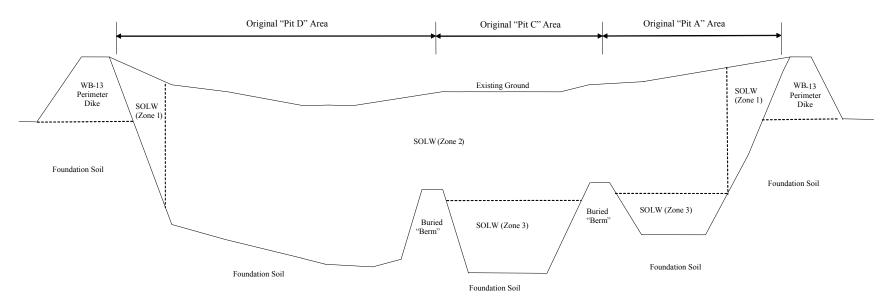
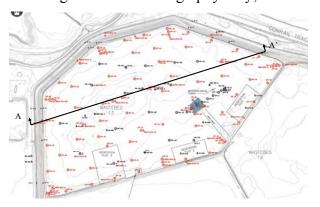
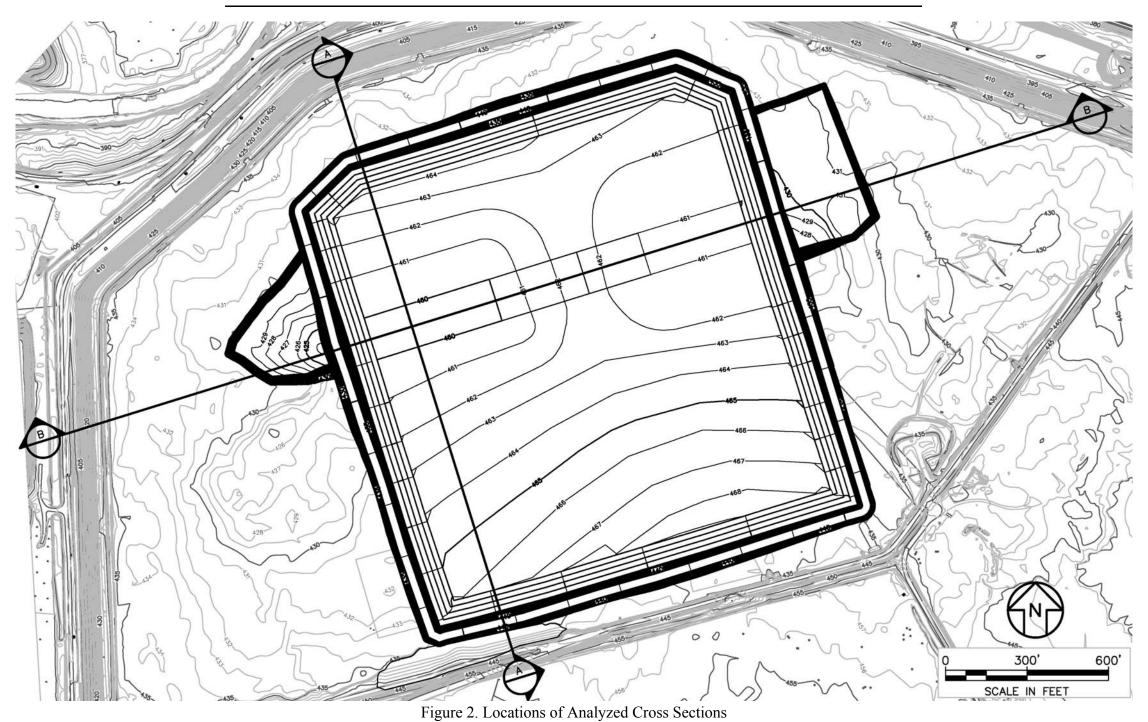




Figure 1. Schematic of Subsurface Profile [not to scale; for purpose of showing subsurface stratigraphy only; location of the section is shown below]

Geosyntec consultants

						Page	27	of	212
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	eh Date:	12/8/2	2009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

Note: This grading plan was prepared for the purpose of calculating the slope stability of the SCA and therefore settlement has not been accounted for in this figure.

Geosyntec consultants

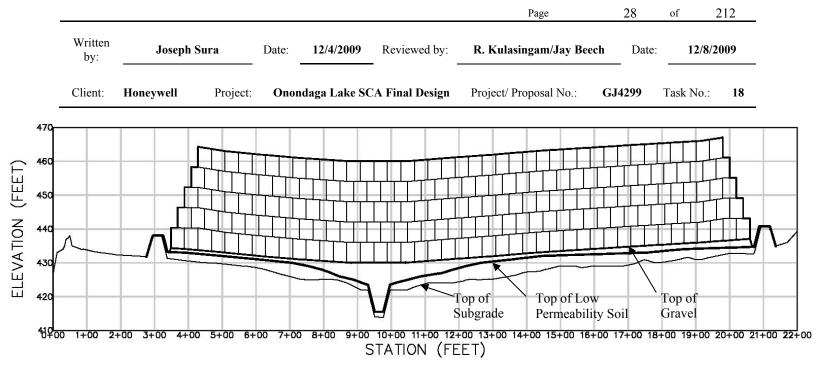


Figure 3. Layout of Cross-Section A-A

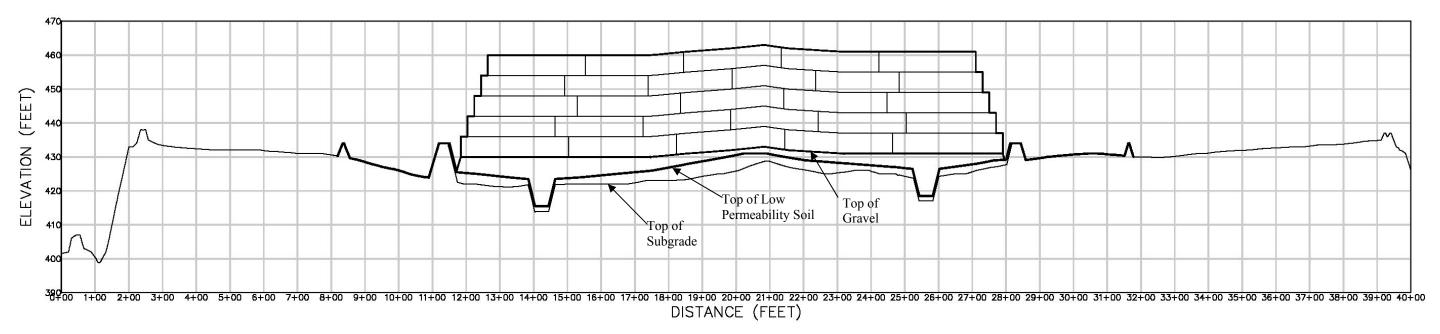


Figure 4. Layout of Cross-Section B-B

Note: Figures 3 and 4 have an exaggerated scale of 10x in the vertical direction (i.e., 100 ft horizontal=10 ft vertical)

consultants

					Page	29	of	212
Written by:	Joseph Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	Date:	12	2/8/2009
Client:	Honeywell Projec	t: Ono	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task N	o.: 18

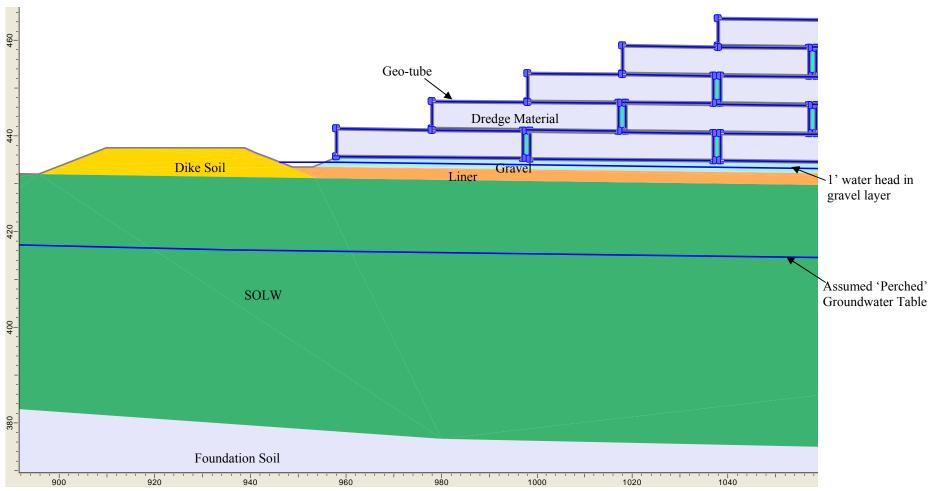


Figure 5. Layers included within the SLIDE Model

consultants

						Page	30	of	212
Written by:	Joseph St	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	Date:	12/8	8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.	.: 18

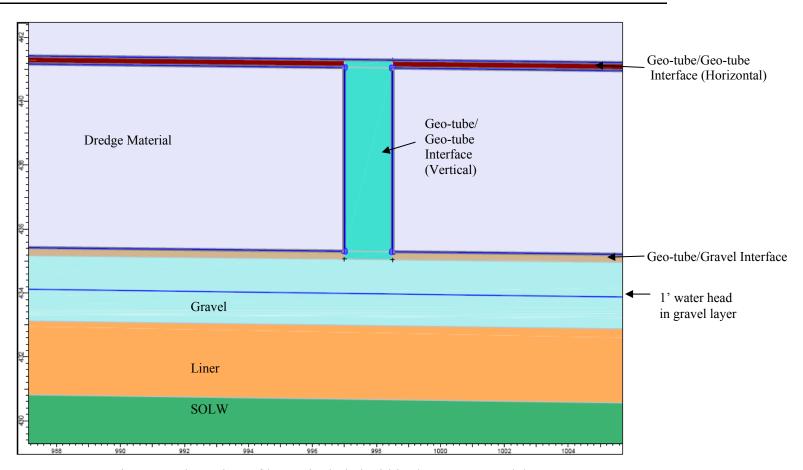


Figure 6. Close view of layers included within the SLIDE Model

consultants

						Page	31	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date	: 12/	8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No	.: 18

Preconsolidation Pressure (Pc') (psf)

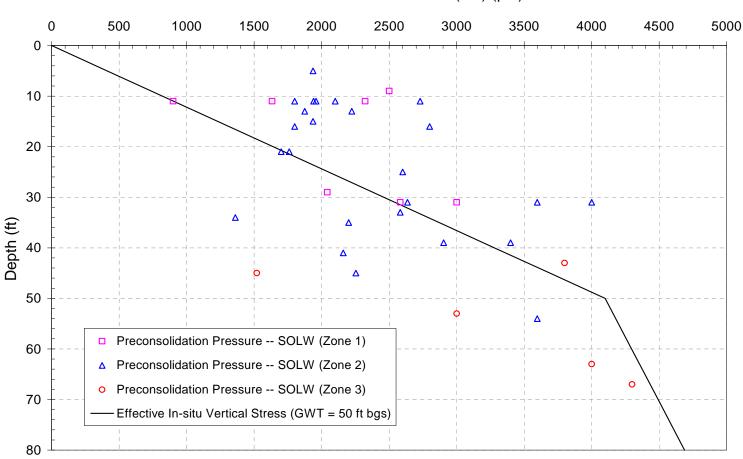


Figure 7. Preconsolidation Pressure of SOLW from Consolidation Tests

consultants

						Page	32	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date	: 12/8	3/2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.	: 18

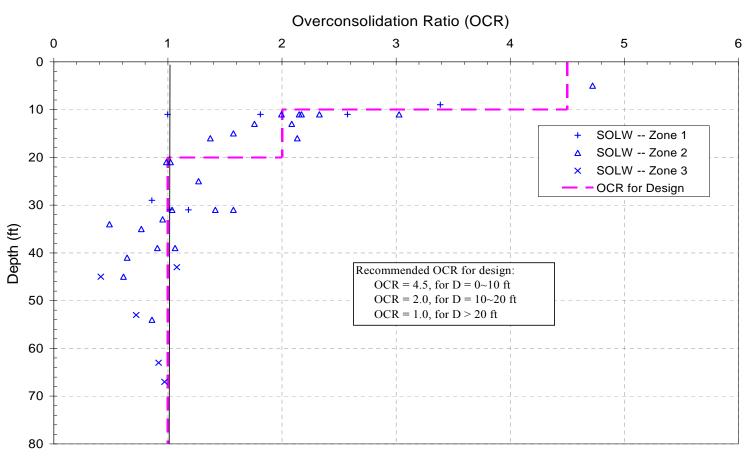


Figure 8. Overconsolidation Ratio of SOLW before Construction

consultants

						Page	33	of	212
Written by:	Joseph Sur	a I	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/8	3/2009
Client:	Honeywell	Project:	Onond	aga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.	: 18

Undrained Shear Strength (psf)

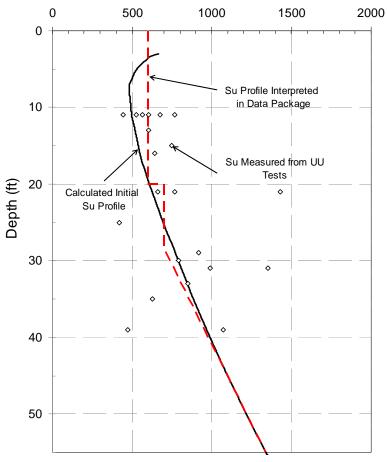


Figure 9. Initial S_U Profile of SOLW

consultants

						Page	34	of	212
Written by:	Joseph Sura		Date:	Date: 12/4/2009 Review		R. Kulasingam/Jay Beech		12/8/2009	
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

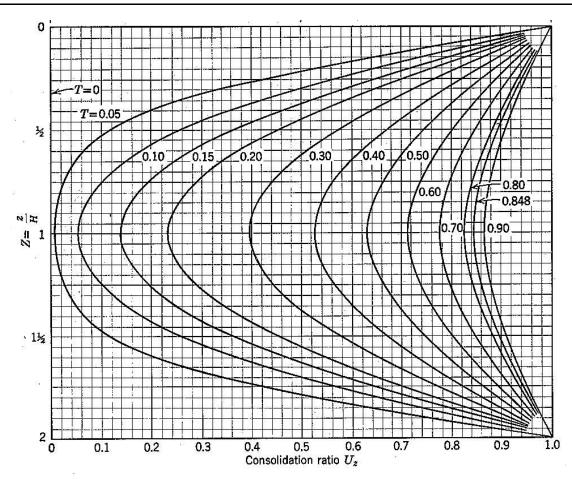


Figure 10. Consolidation Ratio as a Function of Depth [Lambe and Whitman, 1969] Note: The thickness of the layer was assumed to be 50 ft based on the average depth of the existing SOLW.

consultants

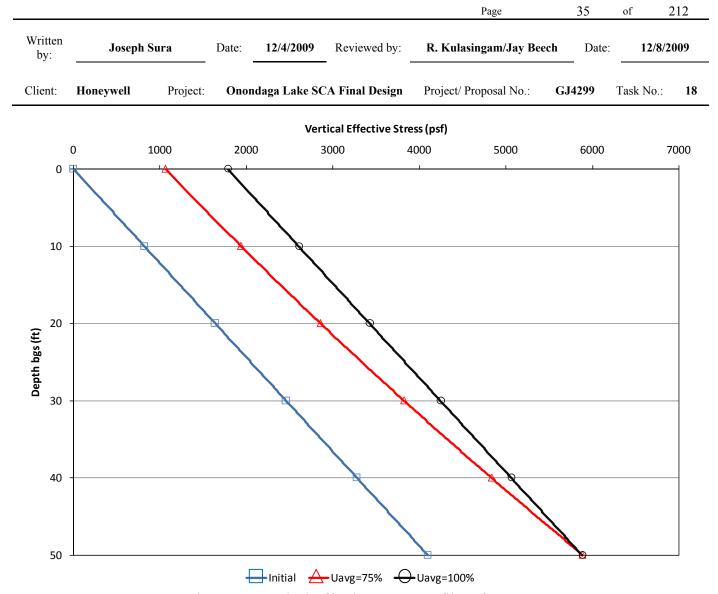
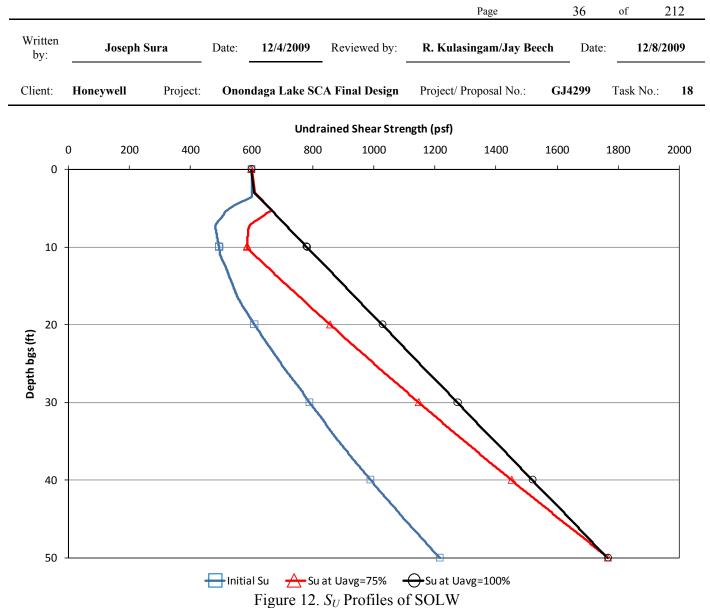



Figure 11. Vertical Effective Stress Profiles of SOLW

Note: Additional vertical effective stress is due to the loading from the liner system and three layers of geo-tubes.

consultants

						Page	3/	01	212
Written by:	Joseph Sura		Date: 12/4/2009		Reviewed by:	R. Kulasingam/Jay Beec	ch Date	12/8	8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	'A Final Design	Project/ Proposal No :	GJ4299	Task No	. 18

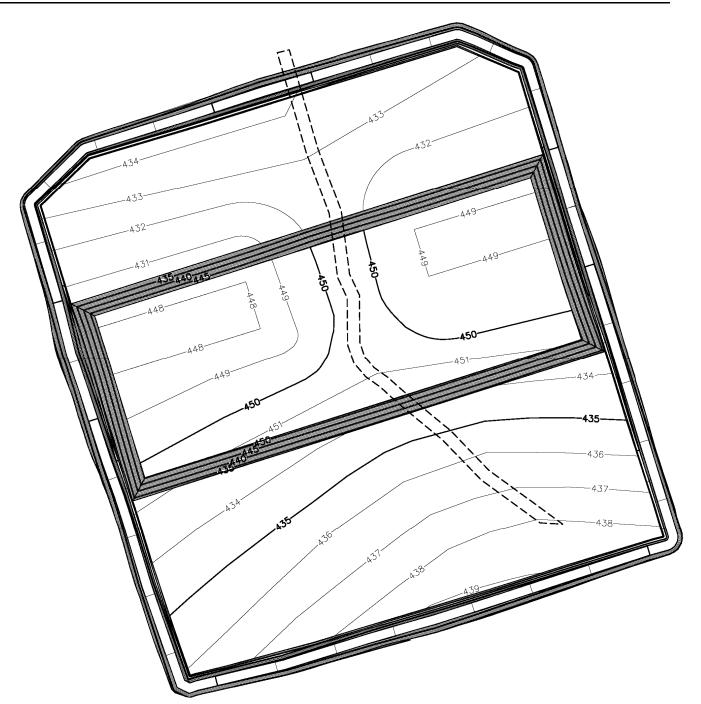


Figure 13: Potential First Year Geo-tube Phasing Plan

Note: This grading plan was prepared for the purpose of calculating the slope stability of the SCA and therefore settlement has not been accounted for in this figure.

Written by:	Joseph Sura		Date:	Date: 12/4/2009 Reviewed by:		R. Kulasingam/Jay Beech		12/8/20	009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

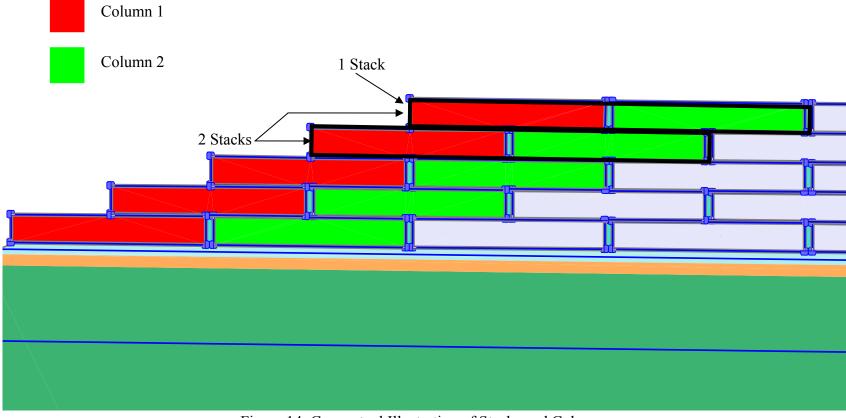


Figure 14: Conceptual Illustration of Stacks and Columns

						Page	39	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch Date	: 12/	8/2009
Client:	Honeywell	Project: Onondaga Lake SC		A Final Design	Project/ Proposal No.:	GJ4299	Task No	.: 18	

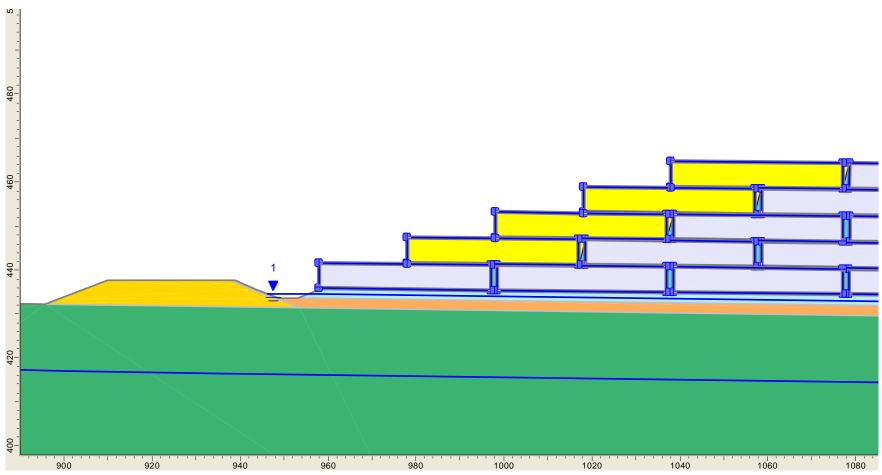


Figure 15. SLIDE Diagram of Critical Surface for Geo-tube Slip (4 stacks, 1 column) before Final Cover

Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beed	ch Date:	12/8/2	2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

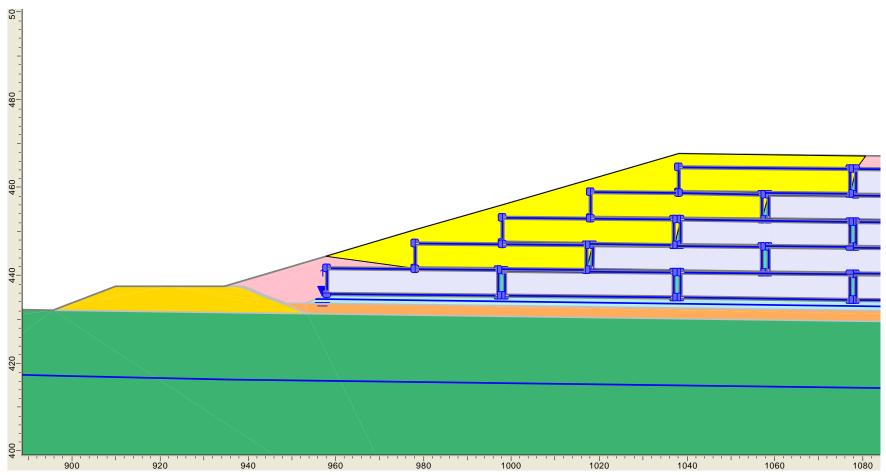


Figure 16. SLIDE Diagram of Critical Surface for Geo-tube Slip (4 stacks, 1 column) after Final Cover

						Page	41	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	1	2/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task I	No.: 18

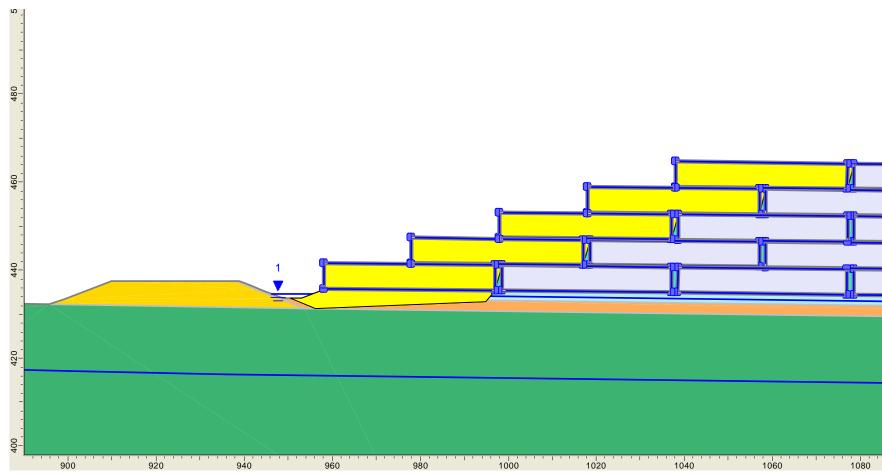


Figure 17. SLIDE Diagram of Critical Surface for Liner Stability (1 column) before Final Cover

						Page	42	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch Date	: 12/	/8/2009
Client:	Honeywell Project: Onondaga Lake SC		A Final Design	Project/ Proposal No.:	GJ4299	Task No	o.: 18		

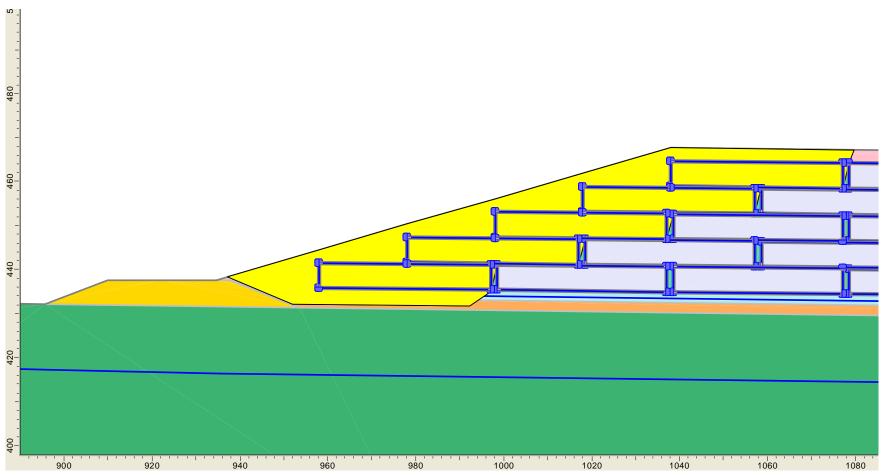


Figure 18. SLIDE Diagram of Critical Surface for Liner Stability (1 column) after Final Cover

						Page	43	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12	2/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task N	No.: 18

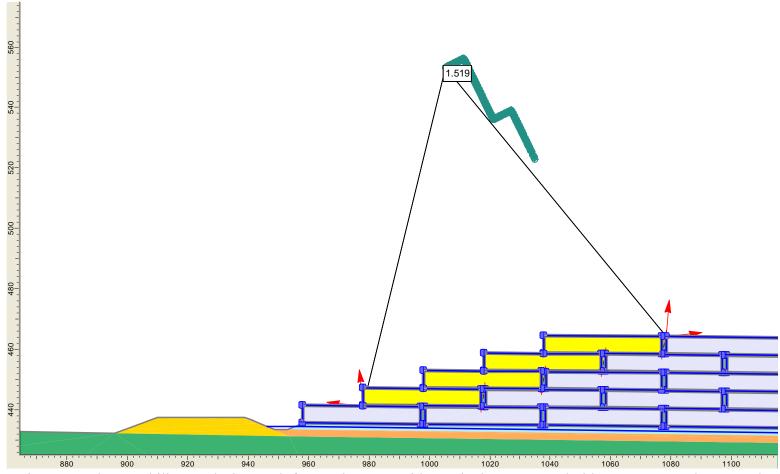
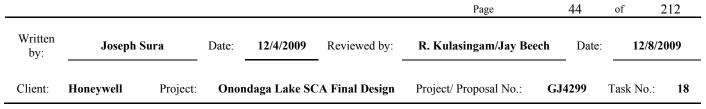



Figure 19. Slope Stability Analysis Result for Section A-A without Final Cover: NorthSide_NoCover_Tube_07_Lab

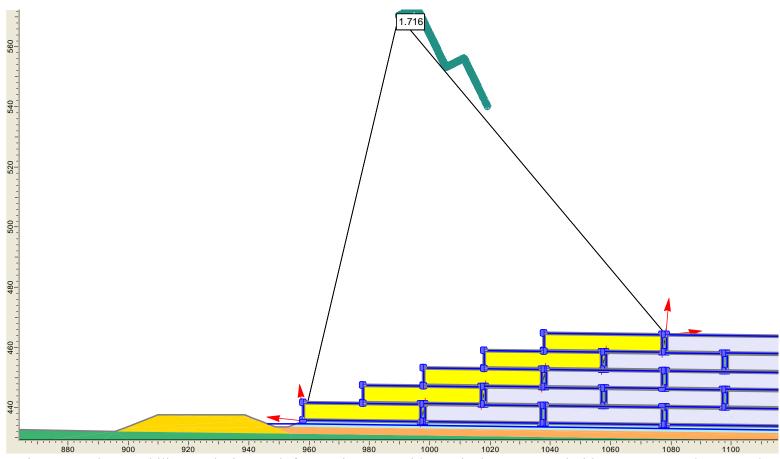


Figure 20. Slope Stability Analysis Result for Section A-A without Final Cover: NorthSide NoCover Tube 10 Lab

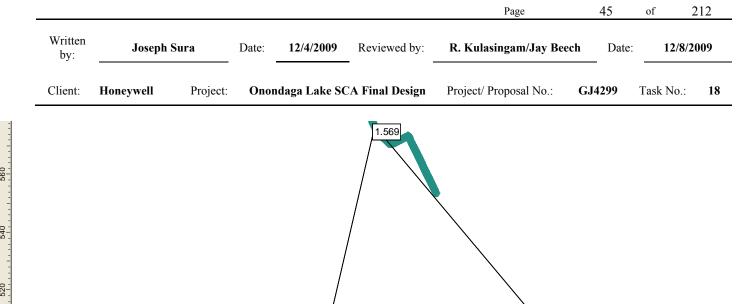


Figure 21. Slope Stability Analysis Result for Section A-A without Final Cover: NorthSide_NoCover_Liner_I_Lab

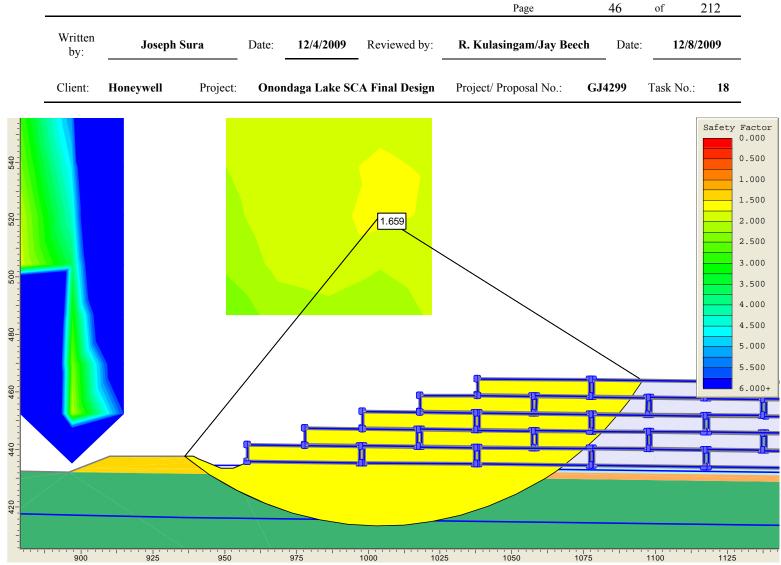


Figure 22. Slope Stability Analysis Result for Section A-A without Final Cover: NorthSide_NoCover_Global_Su_Lab Note: This Figure shows the FS calculated using Spencer's Method.

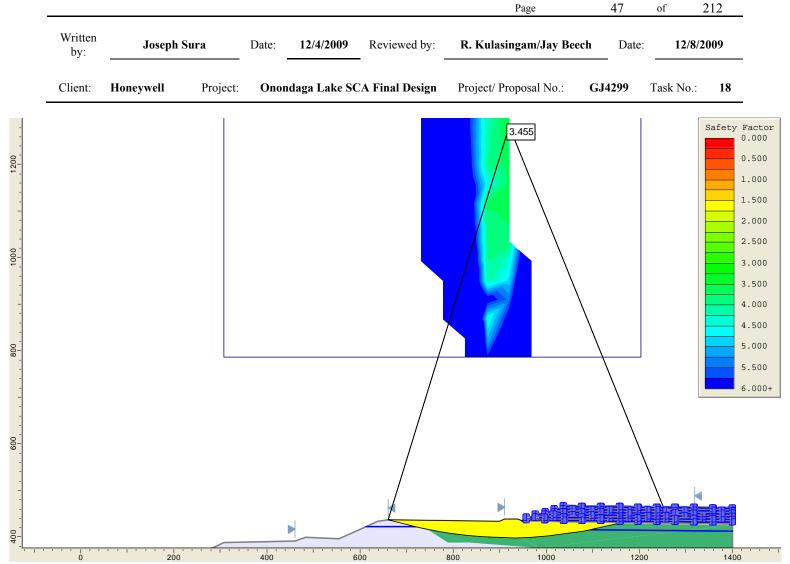


Figure 23. Slope Stability Analysis Result for Section A-A without Final Cover: NorthSide_NoCover_External_Lab Note: This Figure shows the FS calculated using Spencer's Method.

1025

1050

consultants

						consultants			212
						Page	48	of	212
Written by:	Joseph	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch Date:	12/8/2	2009
Client:	Honeywell	Project:	Ono	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18
					1.617				

						*			
					/				

Figure 24. Slope Stability Analysis Result for Section A-A after Final Cover: NorthSide_Cover_Tube_07_Lab

900 925 950 975 1000

						Page	49	of	212	
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	ch Date:	1	2/8/2009	_
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task l	No.: 18	

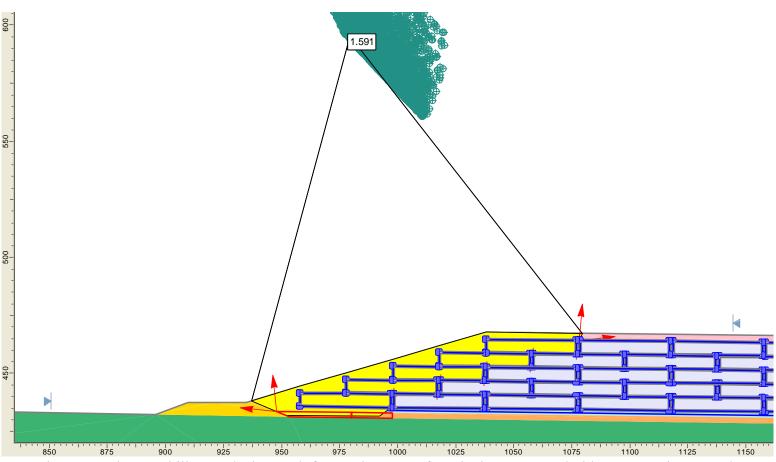


Figure 25. Slope Stability Analysis Result for Section A-A after Final Cover: NorthSide_Cover_Liner_I_Lab

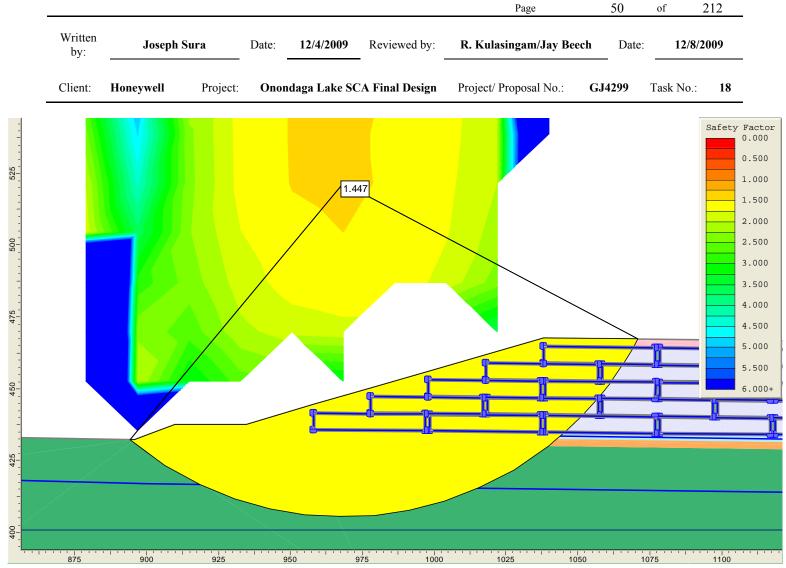


Figure 26. Slope Stability Analysis Result for Section A-A after Final Cover: NorthSide_Cover_Global_Su_Lab Note: This Figure shows the FS calculated using Spencer's Method.

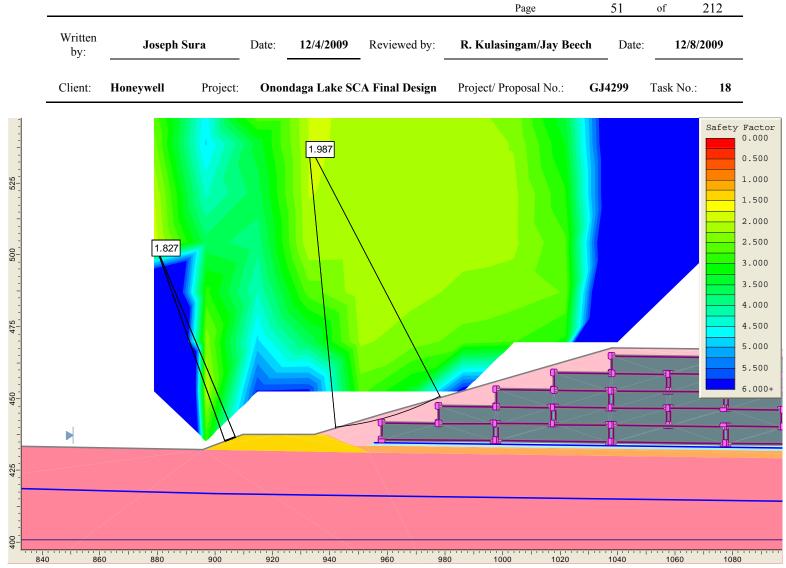


Figure 27. Slope Stability Analysis Result for Section A-A after Final Cover: NorthSide_Cover_LongTerm_Lab Note: This Figure shows the FS calculated using Spencer's Method.

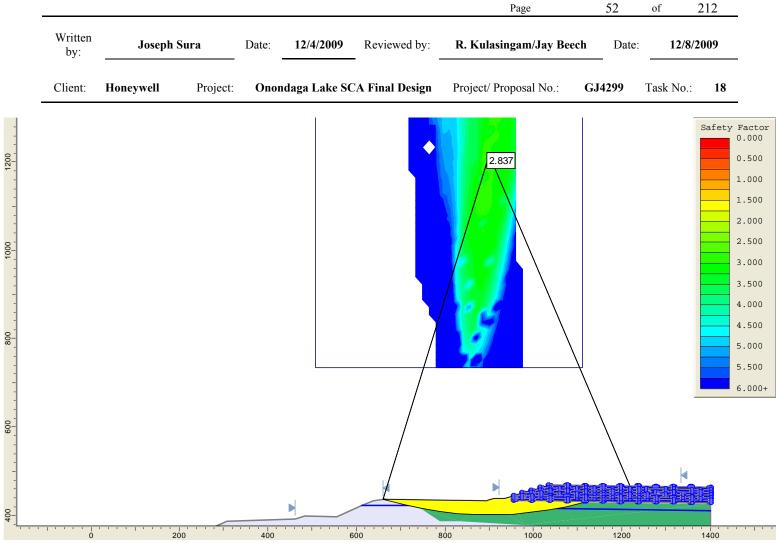


Figure 28. Slope Stability Analysis Result for Section A-A after Final Cover: NorthSide_Cover_Global_External_Lab Note: This Figure shows the FS calculated using Spencer's Method.

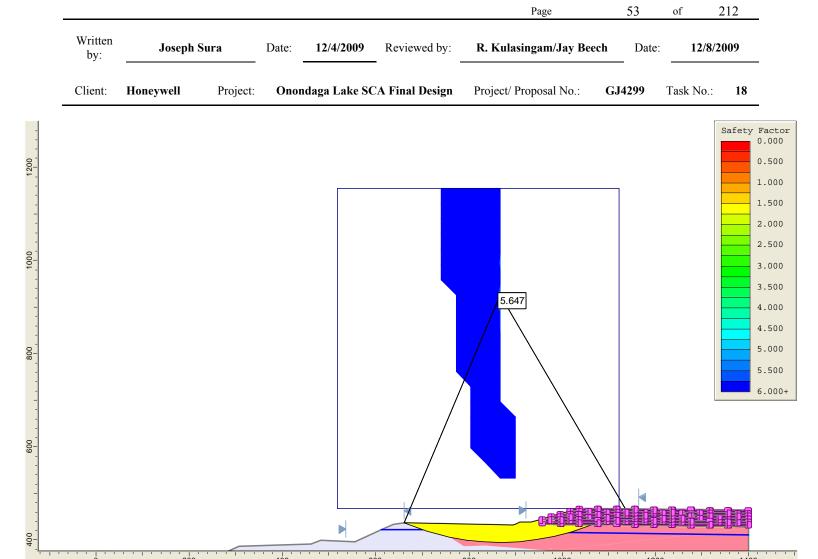


Figure 29. Slope Stability Analysis Result for Section A-A after Final Cover: NorthSide_Cover_Global_External_LongTerm_Lab Note: This Figure shows the FS calculated using Spencer's Method.

						Page	54	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date	12/	/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No	o.: 18

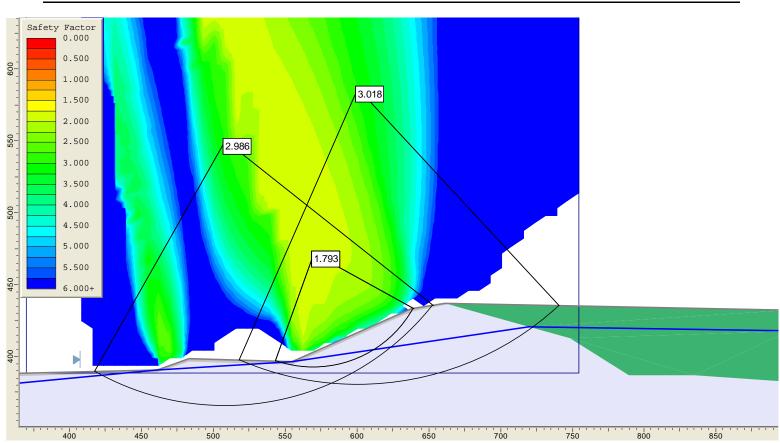


Figure 30. Slope Stability Analysis Result for WB-13 Perimeter Berm at Section A-A: NorthSide_Cover_External_Lab_GWT_15ft_Exit_at_Toe of Berm Note: This Figure shows the FS calculated using Spencer's Method.

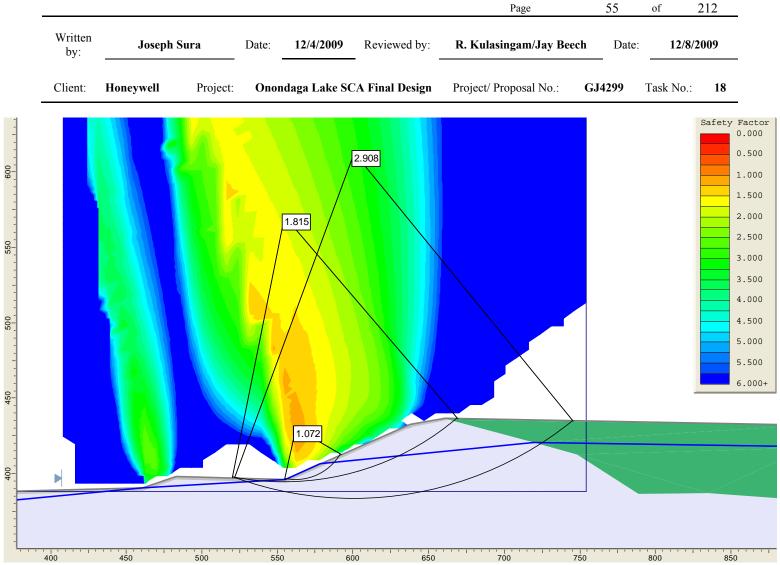


Figure 31. Slope Stability Analysis Result for WB-13 Perimeter Berm at Section A-A: NorthSide_Cover_External_Lab_GWT_15ft_Exit_10 ft_up_from Toe of Berm Note: This Figure shows the FS calculated using Spencer's Method.

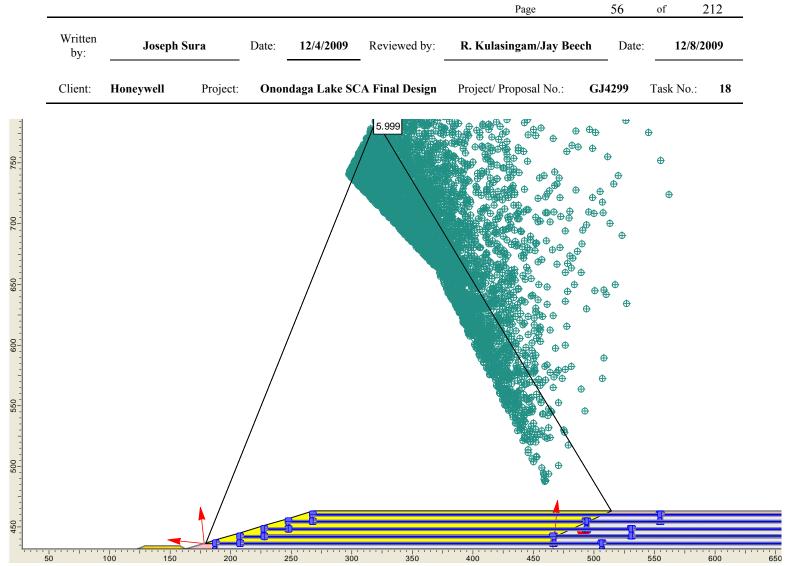


Figure 32. Slope Stability Analysis Result for Section B-B before Final Cover: EastWest_NoCover_Tube_04_Lab

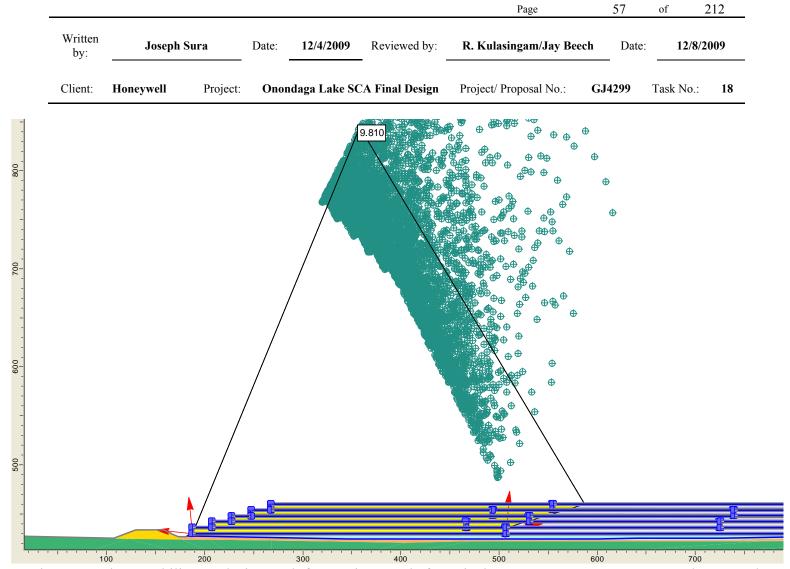


Figure 33. Slope Stability Analysis Result for Section B-B before Final Cover: EastWest_NoCover_Tube_05_Lab

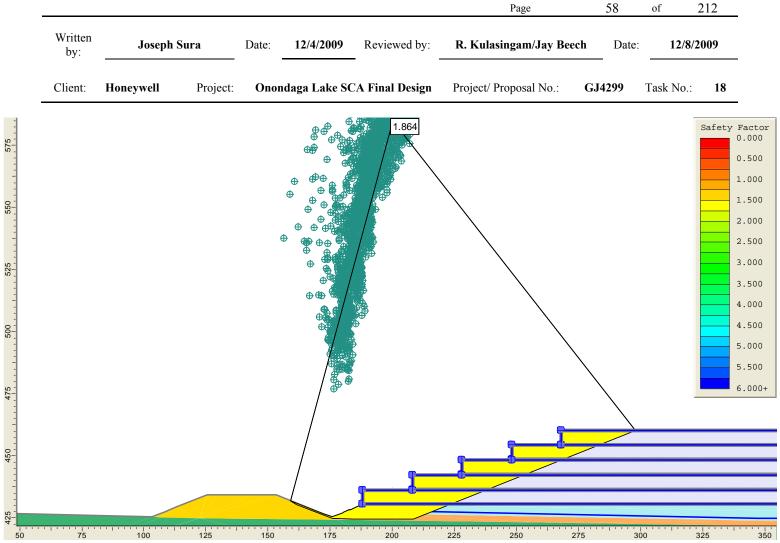


Figure 34. Slope Stability Analysis Result for Section B-B before Final Cover: EastWest_NoCover_Liner_Lab

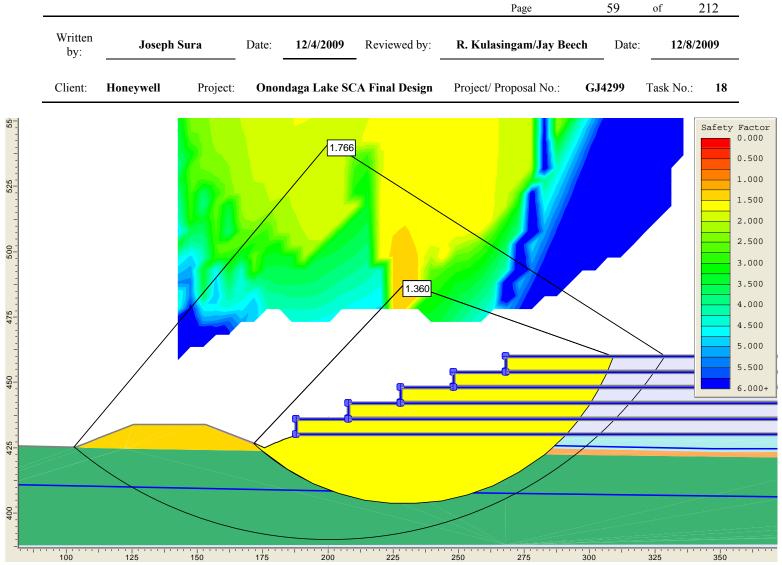


Figure 35. Slope Stability Analysis Result for Section B-B before Final Cover: EastWest_NoCover_Global_Su_Lab Note: This Figure shows the FS calculated using Spencer's Method.

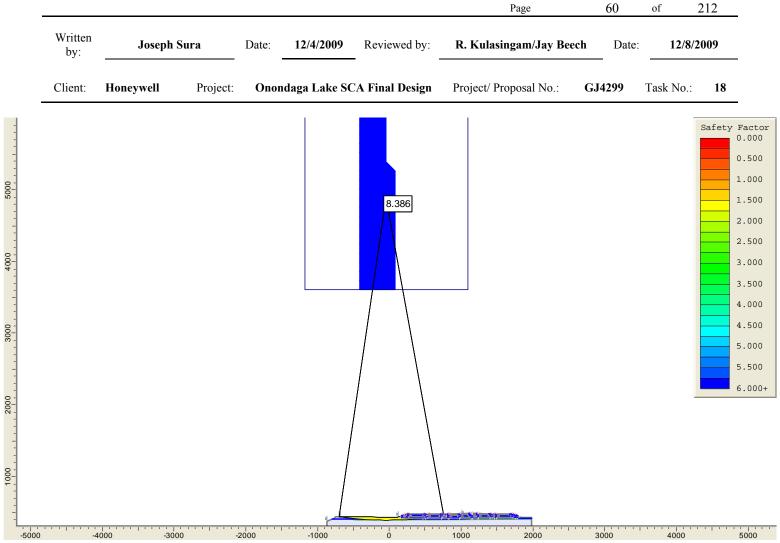


Figure 36. Slope Stability Analysis Result for Section B-B before Final Cover: EastWest_NoCover_External_Lab Note: This Figure shows the FS calculated using Spencer's Method.

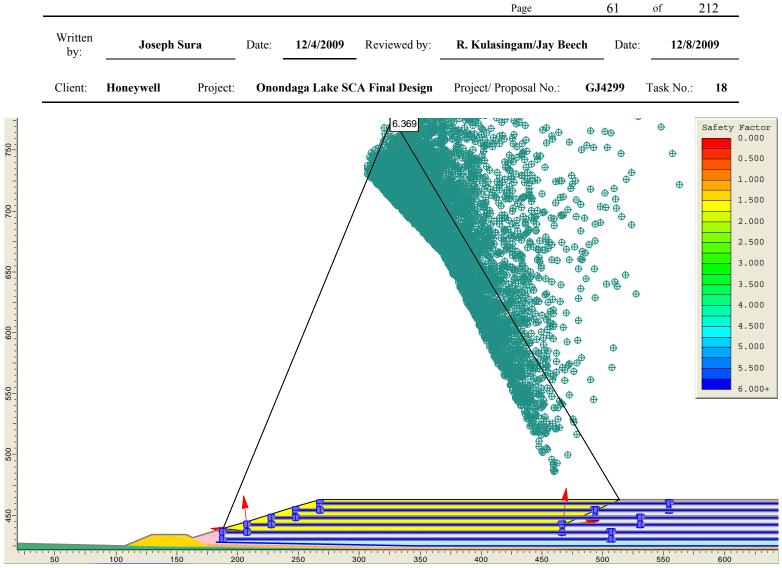


Figure 37. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_Tube_04_Lab

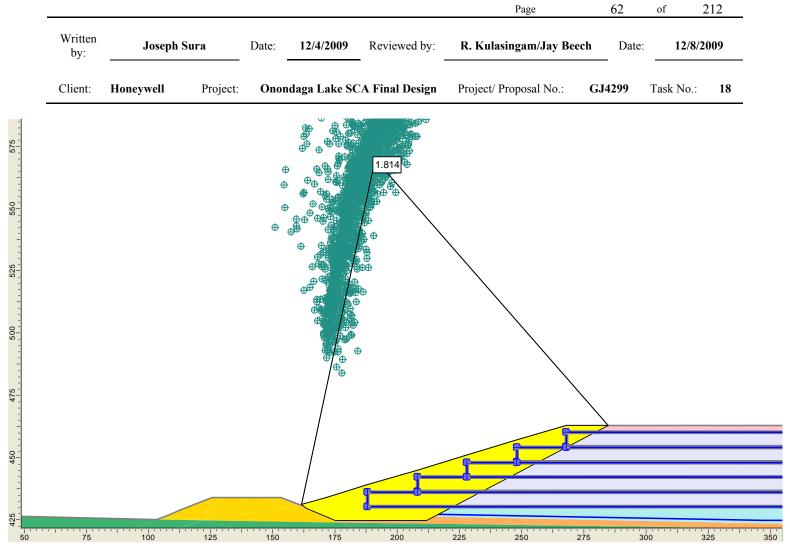


Figure 38. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_Liner_Lab

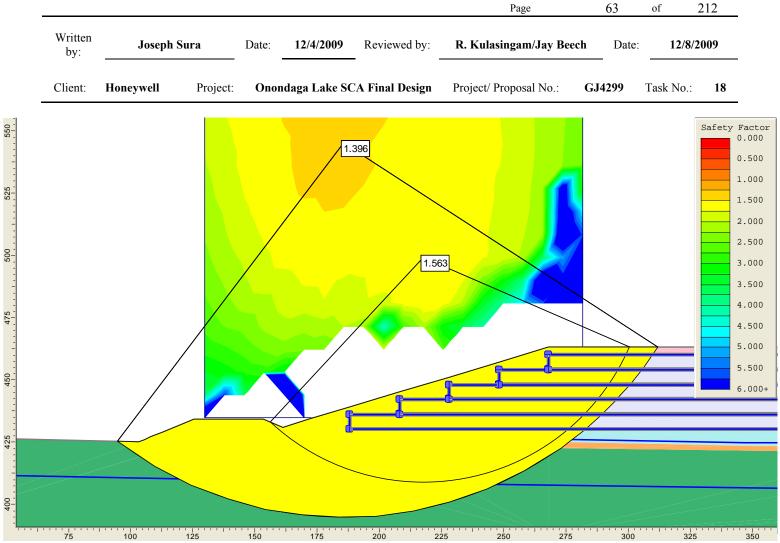


Figure 39. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_Global_Su_Lab Note: This Figure shows the FS calculated using Spencer's Method.

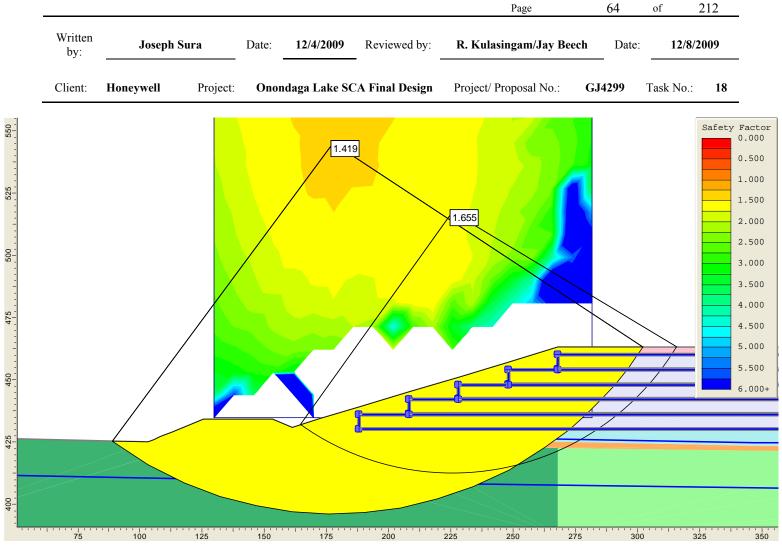


Figure 40. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_Global_U75_Lab Note: This Figure shows the FS calculated using Spencer's Method.

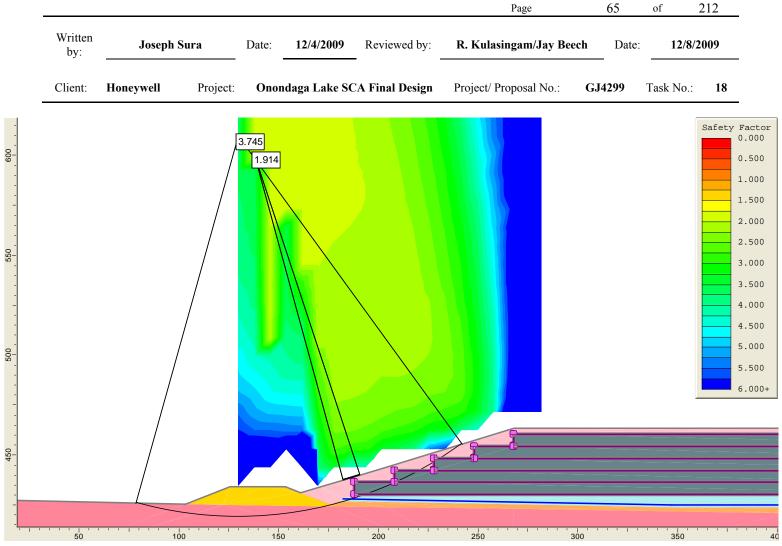


Figure 41. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_LongTerm_Lab Note: This Figure shows the FS calculated using Spencer's Method.

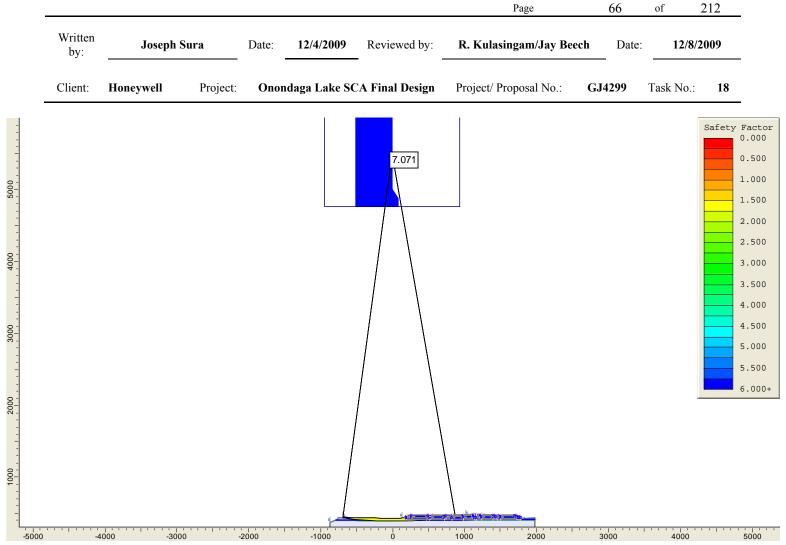


Figure 42. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_External_Lab Note: This Figure shows the FS calculated using Spencer's Method

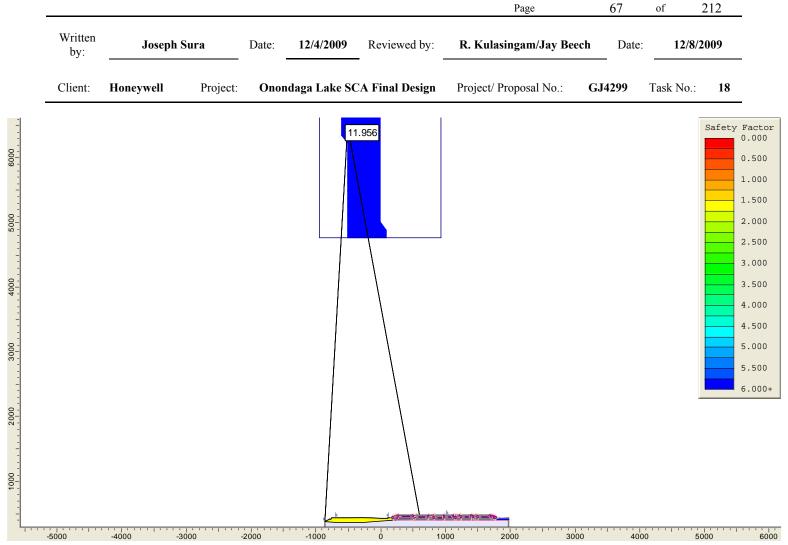


Figure 43. Slope Stability Analysis Result for Section B-B after Final Cover: EastWest_Cover_External_LongTerm_Lab Note: This Figure shows the FS calculated using Spencer's Method

						Page	68	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date	: 12	/8/2009
Client:	Honeywell Project:		Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task N	o.: 18

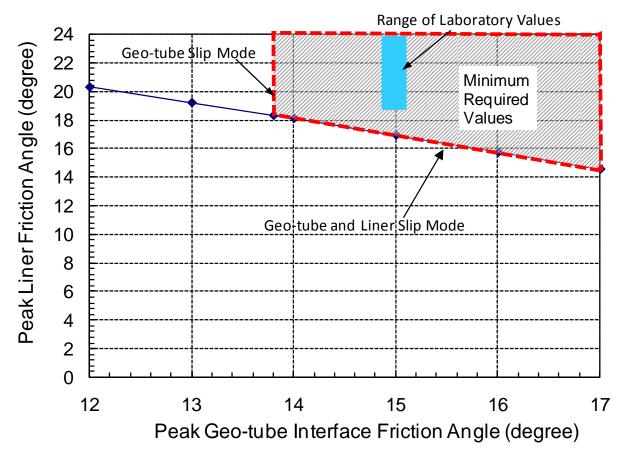


Figure 44. Sensitivity Analysis of Peak Liner Friction Angle: Minimum required values

						Page	69	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beecl	n Date	: 12/	/8/2009
Client:	Honeywell Project:		Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No	o.: 18

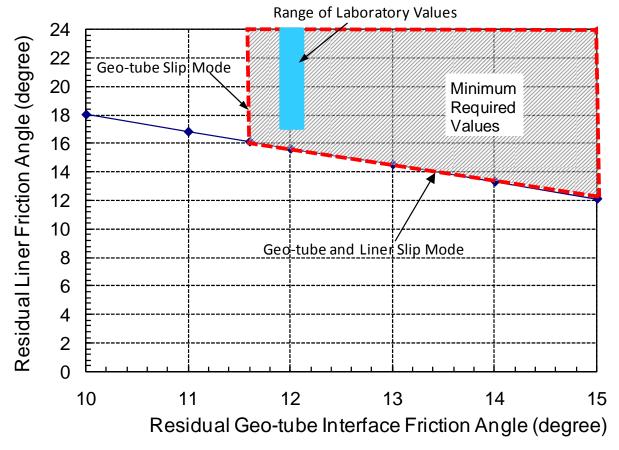
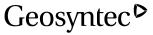


Figure 45. Sensitivity Analysis of Residual Liner Friction Angle: Minimum required values

consultants

						Page		70	of	212
Written by:	Joseph Sura		Date:	Date: 12/4/2009 Review		R. Kulasingam/Jay Beech		Date:	Date: 12/8/2009	
Client:	Honeywell	Project:	Onon	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ42	299	Task No	o.: 18

Attachment 1 Seismic Impact Zone


consultants

					1 agc	/ 1	01 _	212
Written by:	Joseph Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	h Date:	12/8/2	.009
Client:	Honeywell Pro	ject: On	ondaga Lake So	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

NYSDEC Regulations Section 360-2.7(b)(7) states that a seismic analysis is required "for new landfills, lateral expansions of existing landfills, and subsequent development of any landfill permitted pursuant to these provisions located in a seismic impact zone." The seismic impact zone is defined as "an area with a 10 percent or greater probability that the maximum horizontal acceleration in lithified earth material, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10g in 250 years."

According to the 2008 USGS National Seismic Hazard Map [Petersen et al, 2008], the SCA site falls within an area characterized by a peak ground acceleration (i.e., maximum horizontal acceleration in lithified earth material) of 0.0784g with 2 percent probability of exceedance in 50 years, which is approximately equivalent to 10 percent of exceedance in 250 years. The USGS Seismic Hazard Curves and Uniform Response Spectra computer analysis program was also used to calculate the peak ground acceleration with 10 percent of exceedance in 250 years directly, resulting in an estimated peak ground acceleration of 0.0765g. Table 1-1 presents the peak ground accelerations based on the site location, as calculated by the software, and Figure 1-1 shows the location of the SCA on the USGS National Seismic Hazard Map.

Therefore, based on the maximum horizontal acceleration, the SCA is not located in a seismic impact zone as defined by NYSDEC Regulations. As a result, a seismic slope stability analysis is not required.

consultants

						Page	/.	2	10	212
Written by:	Joseph Sura		Date: 12/4/2009 Review		Reviewed by:	y: R. Kulasingam/Jay Beech		Date:	12/8	/2009
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ429	99	Task No.:	18

Table 1-1. Peak Ground Accelerations Based on SCA Site Location

Hazard Curve for PGA, Latitude = 43.0600, Longitude = -76.2500

PGA (%g)	%PE	Time
7.84	2%	50 years
7.65	10%	250 years

Seismic Hazard Curves and Uniform Response Spectra. USGS, October 2008.

						Page 73			212
Written by:	Joseph St	seph Sura Date: 12/4/2009 F		Reviewed by:	R. Kulasingam/Jay Beed	ch Date:	12	2/8/2009	
Client:	Honeywell	oneywell Project: Onondaga Lake SO		A Final Design	Project/ Proposal No.:	GJ4299	Task N	o.: 18	

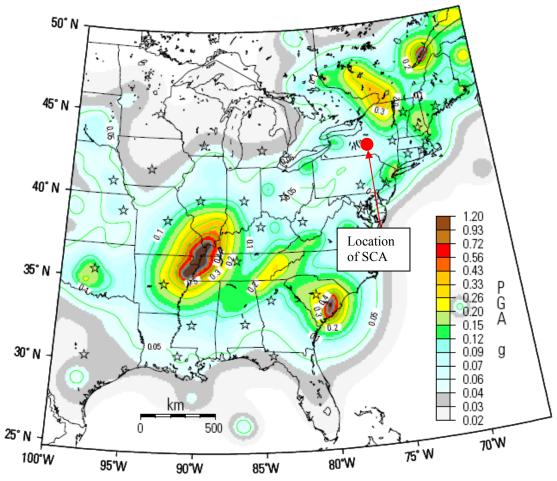


Figure 1-1. Location of the SCA on the USGS National Seismic Hazard Map

consultants

						Page	74	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beed	ch Date	e: <u>1</u>	12/8/2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task 1	No.: 18

Attachment 2 Interface Direct Shear Testing (Results provided to Geosyntec by Parsons)

Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/8/20	009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.:	18

Attachment 2 Notes:

This attachment contains a summary of interface direct shear tests performed by SGI Testing Services at the request of Parsons. These tests focus on measuring shear strengths for several possible slip interfaces.

Test	Figure	Upper Shear Box	Top Liner	Bottom Liner	Lower Shear Box	Φ' _{PEAK} (°) ^[1]	c' _{PEAK} (psf) ^[2]	Φ' _{RESIDUAL} (°) ^[1]	c' _{RESIDUAL} (psf) ^[2]	Figure Number
C-1	2-1	Concrete Sand	Non-Woven	Smooth HDPE	Compacted Clay	13 ^[3]	30 ^[3]	9	25	2-1
			Geotextile	Geomembrane	1 5					
C-2	2-2	Concrete Sand	Non-Woven	Textured HDPE	Compacted Clay	27	225	17	130	2-2
C 2	Z Z Concrete Sund		Geotextile	Geomembrane	Compacted City	27	223	1,	150	2 2
C-3	2-3	Concrete Sand	Non-Woven	EPDM	Compacted Clay	22	5	18	10	2-3
C-3	2-3	Concrete Sand	Geotextile	Geomembrane	Compacted Clay	22	3	10	10	2-3
C 4	2.4	C + C 1	Non-Woven	DD C 1	0 4 1 01	19 ^[4]	5	1.0	5	2.4
C-4	2-4	Concrete Sand	Geotextile	PP Geomembrane	Compacted Clay	19. 1	5	18	3	2-4
C 5	2.5	Digid Cubatrata	Geo-tube	Geo-tube Geotextile	Canarata Sand	15 ^[5]	-5 ^[6]	12	5	2-5
C-3	C-5 2-5	Rigid Substrate	Geotextile	Geo-tube Geotexine	Concrete Sand	13'	-3 ¹ **	12	3	2-3

- 1. This is the friction angle. The laboratory designated the friction angle as δ , however in this table, it has been labeled Φ ' for consistency with the rest of this package.
- 2. This is the cohesion intercept. The laboratory designated the cohesion intercept as α, however in this table, it has been labeled c' for consistency with the rest of this package. In stability calculations, this value was conservatively modeled to be zero.
- 3. Smooth HDPE Geomembrane is not considered for use in this project.
- 4. This peak effective stress friction angle between the geomembrane and compacted clay layer was used in the analyses presented herein because it had the lowest value of the three geomembrane types under consideration for this project. This liner friction angle value was input into SLIDE. Final selection of geomembrane will be made based on the results of ongoing chemical compatibility testing.
- 5. This peak effective stress friction angle for the geo-tube/geo-tube interface was input into SLIDE for calculation of FS values.
- 6. This negative value is due to the linear interpolation method used to interpret strength parameters.

			ragt						01	212	<u>: </u>
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ech	Date:	12	2/8/2009	9
Client:	Honeywell	Proiect:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task N	[o.:	18

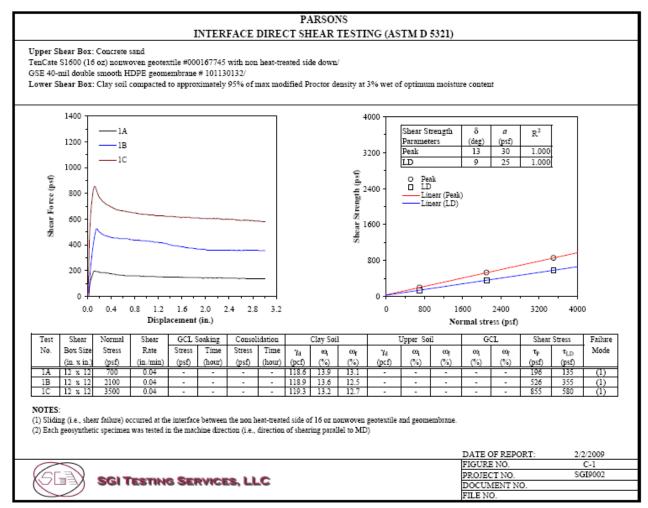


Figure 2-1: Direct Shear Testing of Geotextile/Smooth HDPE Geomembrane Interface

77

Page

consultants of

212

Written by:	Joseph Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	Date:	12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

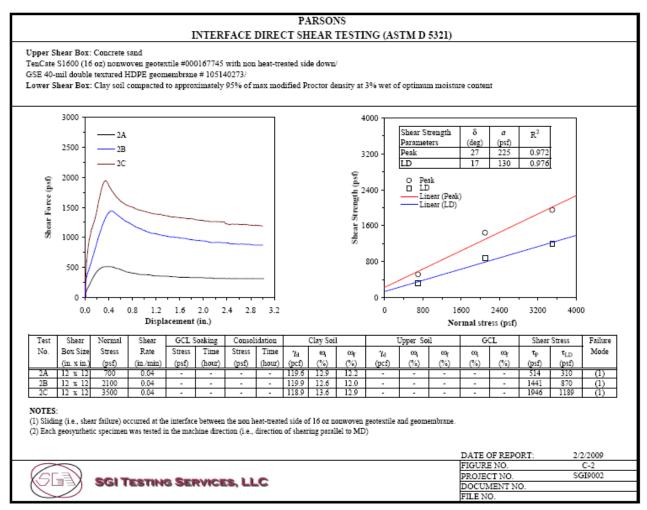


Figure 2-2: Direct Shear Testing of Geotextile/Textured HDPE Geomembrane Interface

consultants

Page 78 of 212 Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by: Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18

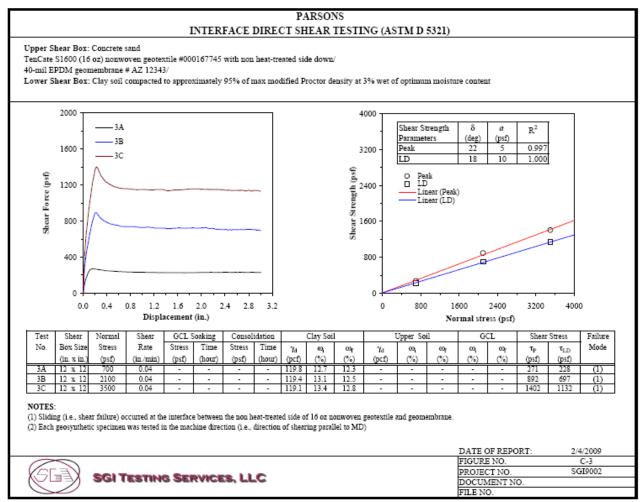


Figure 2-3: Direct Shear Testing of Geotextile/EPDM Geomembrane Interface

						rage		19	01	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:	12/8	/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	4299	Task No.:	: 18

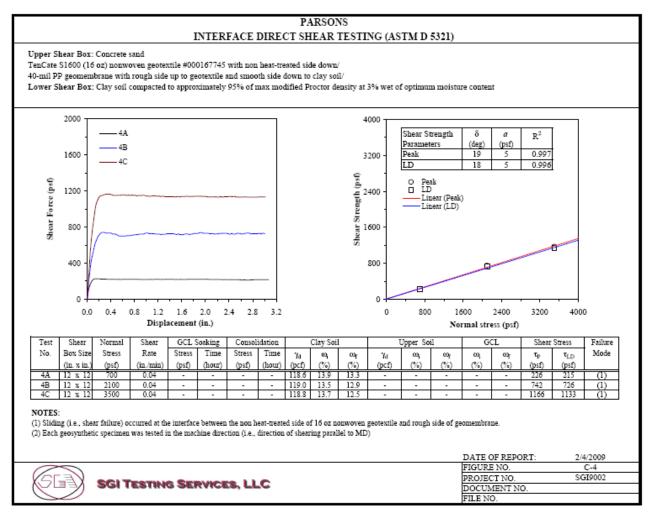


Figure 2-4: Direct Shear Testing of Geotextile/PP Geomembrane Interface

						rage	80	01	Δ.	12
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ech Date:	1	2/8/20	09
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task N	No.:	18

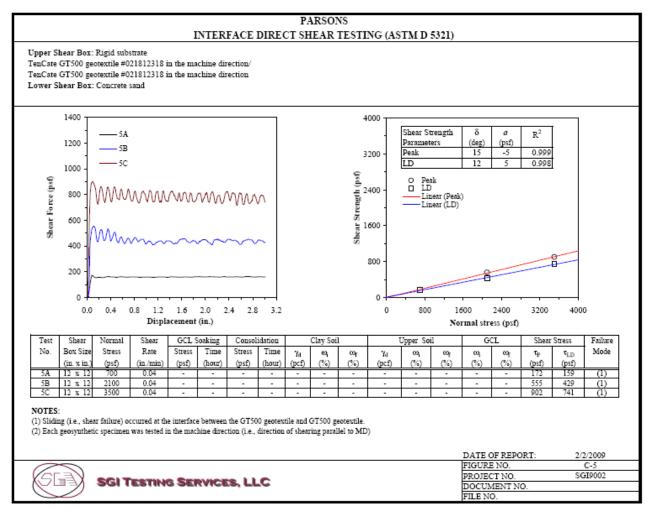


Figure 2-5: Direct Shear Testing of Geo-tube/Geo-tube Interface

consultants

						Page		81	of	212
Written by:	Joseph Sura		Joseph Sura Date: 12/4/2009 Reviewed by		Reviewed by:	R. Kulasingam/Jay Beech		Date:	12	2/8/2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task N	To.: 18

Attachment 3 Slope Stability Analyses Using the Maximum Laboratory Measured Liner Friction Angles

consultants

						Page	8.	2	OI	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech		Date:	12/8/	2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ42	99	Task No.:	18

Slope stability analyses were performed for the critical cases of Cross-Section A-A using the maximum friction angles found from laboratory testing of possible liner system materials. This is intended to show an expected range of calculated FS values based on the laboratory variability in effective stress friction angle. The maximum liner effective stress peak and residual friction angles found in laboratory testing are 27 degrees and 18 degrees, respectively.

It is noted that the horizontal geo-tube/geo-tube interface has been modeled with peak and residual effective stress friction angles of 15 degrees and 12 degrees, respectively, in the following analyses, and other material properties are modeled as discussed in the main text.

Table 3-1 on the following page shows the FS for the critical liner case of one column of the liner slipping under one column geo-tubes. This case was evaluated using Janbu's method for peak and residual shear strengths before and after construction of the final cover. These cases can be compared with the equivalent Cross-Section A-A case from Table 2 for the minimum measured peak friction angle.

consultants

						Page		83	10	2.	12
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ech	Date:		12/8/20	09
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task	No.:	18

Table 3-1: Critical Liner Case for Cross-Section A-A using the Maximum Laboratory Effective Stress Friction Angle

Case	Calculated FS	Target FS
Peak Friction Angle, without Final Cover ^[1]	1.88	1.3
Residual Friction Angle, without Final Cover ^[2]	1.36	1.1
Peak Friction Angle, with Final Cover ^[1]	1.94	1.5
Residual Friction Angle, with Final Cover ^[2]	1.40	1.3

- 1. These FS values are calculated using the laboratory values of peak effective stress friction angle for the geo-tube/geo-tube horizontal interface (15 degrees) and maximum peak effective stress friction angle for the liner system (27 degrees). The laboratory test data are shown in Figures 2-2 and 2-5 of Attachment 2.
- 2. These FS values are calculated using the laboratory values of residual effective stress friction angle for the geo-tube/geo-tube horizontal interface (12 degrees) and maximum residual effective stress friction angle for the liner system (18 degrees). The laboratory test data are shown in Figures 2-4 and 2-5 of Attachment 2.
- 3. This table calculates the FS for the critical liner case of one column of geo-tubes.

consultants

						Page	84	1	of	212
Written by:	Joseph Sura		Joseph Sura Date: 12/4/2009 Reviewed by:		Reviewed by:	R. Kulasingam/Jay Be	ech]	Date:	12/	8/2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ429	9	Task No	o.: 18

Attachment 4 Back-Calculation of Required Geo-tube\Geo-tube and Liner System Interface Shear Strengths

consultants

					1 agc	0.5	01	212	
Written by:	Joseph Sura		Date: 12/4/2009		Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/8	8/2009
Client:	Honeywell Pr	roject:	Onone	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task No.	.: 18

Notes:

The stability analyses discussed in the Results and Discussion section of this package were performed using friction angles from laboratory testing on materials that will likely be used for the geo-tubes and liner. Since the required FS values were met, the ability to achieve adequate stability using typical construction materials has been established. However, the use of different materials may be preferred; therefore, development of a range of acceptable parameters is required.

As described in the Analyzed Cases section, once the critical cases were identified for geotube and liner stability slip modes, peak and residual effective stress friction angles for the geotube interface and the proposed liner could be back-calculated. Since Cross-Section A-A was the more critical cross section of the two, the back-calculations were only performed on that cross section. These back-calculations indicated the following:

- For the interim condition before final cover placement, peak effective stress friction angles of 13 degrees for the horizontal geo-tube interface and 14.8 degrees for the proposed liner are required. In addition, residual effective stress friction angles of 11.0 degrees for the horizontal geo-tube interface and 12.4 degrees for the proposed liner are required.
- For the final condition after final cover placement, peak effective stress friction angles of 13.8 degrees for the horizontal geo-tube interface and 18.3 degrees for the proposed liner are required. In addition, residual effective stress friction angles of 11.6 degrees for the horizontal geo-tube interface and 16.1 degrees for the proposed liner are required.
- Therefore, the minimum required peak effective stress friction angles to meet the target FS values for both interim and final conditions are 13.8 degrees for the horizontal geo-tube interface and 18.3 degrees for the proposed liner system. The minimum required residual effective stress friction angles to meet the target FS values for both the interim and final conditions are 11.6 degrees for the horizontal geo-tube interface and 16.1 degrees for the proposed liner. Alternative combinations of horizontal geo-tube interface and liner interface strengths may be acceptable as shown in Figures 4-5 and 4-6.

These back-calculated friction angles for interim and final conditions are plotted in Figures 4-1 through 4-6. The blue boxes indicate the friction angles found from the laboratory testing of commercially available products, as shown in Attachment 2. The combinations of horizontal

consultants

						Page	8	6	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech		Date:	12/	/8/2009
Client:	Honeywell	Project:	Onor	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ42	99	Task No	o.: 18

geo-tube and liner interface friction angles required to reach the target FS are shown in Tables 4-1 through 4-4.

						Page	8	/	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech		Date:	12/8	/2009
Client:	Honeywell	Project:	Onor	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ429	99	Task No.:	18

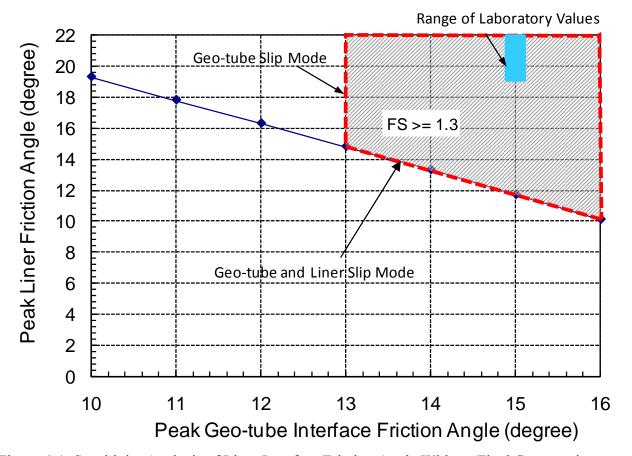


Figure 4-1: Sensitivity Analysis of Liner Interface Friction Angle Without Final Cover, using Peak Strengths

						Page	88	of	21	2
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch Date:	1	12/8/200)9
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task	No.:	18

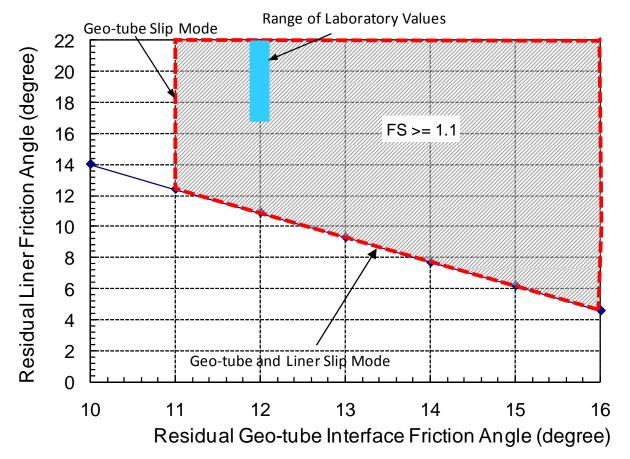


Figure 4-2: Sensitivity Analysis of Liner Interface Friction Angle Without Final Cover, using Residual Strengths

-						Page		89	OI	21	. 2
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay B	eech	Date:	1	12/8/200	09
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	14299	Task :	No.:	18

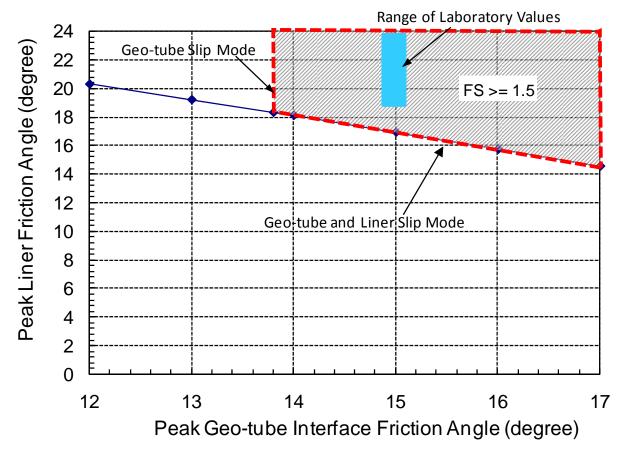


Figure 4-3: Sensitivity Analysis of Liner Interface Friction Angle after Final Cover Placement, using Peak Strengths

						Page	90	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ch Date:	12	2/8/2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task N	o.: 18

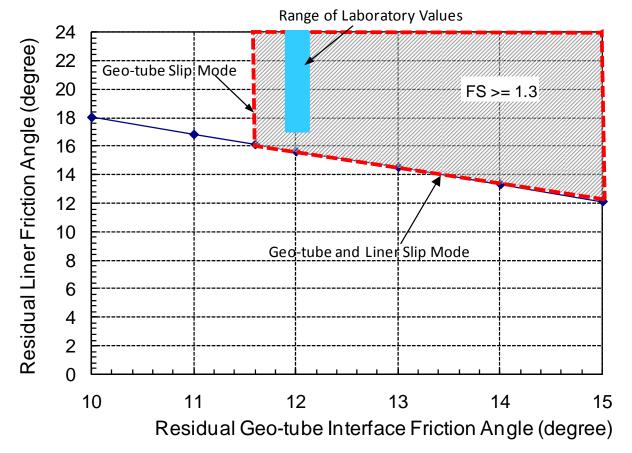


Figure 4-4: Sensitivity Analysis of Liner Interface Friction Angle after Final Cover Placement, using Residual Strengths

						Page		91	OI	21	
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay l	Beech	Date:	1	12/8/200	D9
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	G	J 42 99	Task l	No.:	18

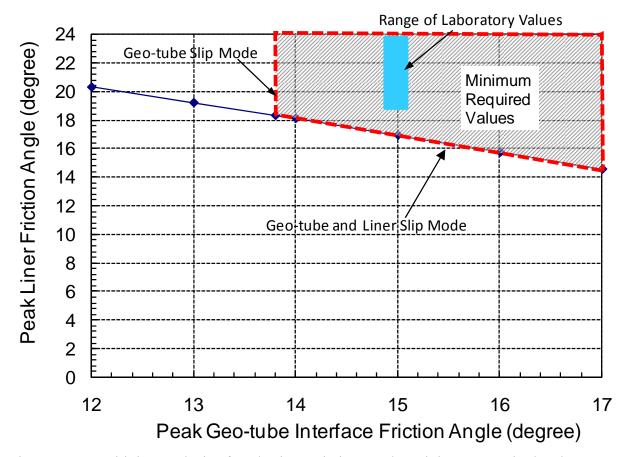


Figure 4-5: Sensitivity Analysis of Peak Liner Friction Angle: Minimum Required Values

						Page		92	10	2	12
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:	·	12/8/20	09
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	J 42 99	Task	No.:	18

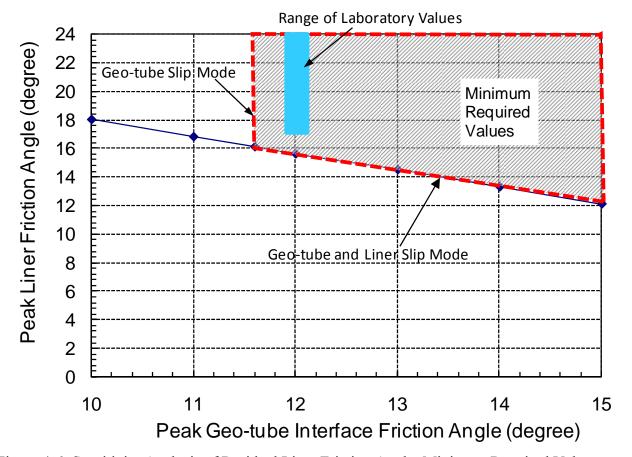


Figure 4-6: Sensitivity Analysis of Residual Liner Friction Angle: Minimum Required Values

consultants

						Page		93	OI	21	12
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay B	Beech	Date:		12/8/200	09
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	J4299	Task	No.:	18

Table 4-1. Sensitivity Analysis of Liner Interface Friction Angle Without Final Cover, using Peak Strengths

Geotube interface	Liner friction angle
friction angle (degree)	(degree)
10	19.3
11	17.8
12	16.3
13	14.8
14	13.3
15	11.7
16	10.1

- 1. For peak shear strengths, this table presents the minimum required liner friction angles and corresponding geo-tube/geo-tube interface friction angles to achieve the target FS of 1.3 for the liner slip mode.
- 2. These values were calculated using Cross-Section A-A without cover for the most critical liner slip case involving one column of geo-tubes.
- 3. These values are plotted graphically in Figure 4-1.
- 4. For peak shear strengths, in order to achieve the target FS of 1.3 for the geo-tube slip mode, the minimum required geo-tube/geo-tube horizontal interface friction angle was back-calculated to be 13.0 degrees, which corresponds to a minimum liner friction angle of 14.8 degrees.

consultants

						Page		94	OI	21	. 2
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay B	eech	Date:	1	12/8/200	09
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	J 42 99	Task :	No.:	18

Table 4-2. Sensitivity Analysis of Liner Interface Friction Angle Without Final Cover, using Residual Strengths

Geotube interface friction angle (degree)	Liner friction angle (degree)
10	14
11	12.4
12	10.9
13	9.3
14	7.7
15	6.2
16	4.6

- 1. For residual strengths, this table presents the minimum required liner friction angles and corresponding geo-tube/geo-tube interface friction angles to achieve the target FS of 1.1 for the liner slip mode.
- 2. These values were calculated using Cross-Section A-A without cover for the most critical liner slip case involving one column of geo-tubes.
- 3. These values are plotted graphically in Figure 4-2.
- 4. For residual strengths, in order to achieve the target FS of 1.1 for the geo-tube slip mode, the minimum required geo-tube/geo-tube horizontal interface friction angle was back-calculated to be 11.0 degrees, which corresponds to a minimum liner friction angle of 12.4 degrees.

consultants

						rage		93	01		12
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bo	eech	Date:		12/8/20	09
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task	No.:	18

Table 4-3. Sensitivity Analysis of Liner Interface Friction Angle after Final Cover Placement, using Peak Strengths

Geotube interface	Liner friction angle
friction angle (degree)	(degree)
12	20.3
13	19.2
13.8	18.3
14	18.1
15	16.9
16	15.7
17	14.5

- 1. For peak shear strengths, this table presents the minimum required liner friction angles and corresponding geo-tube/geo-tube interface friction angles to achieve the target FS of 1.5 for the liner slip mode.
- 2. These values were calculated using Cross-Section A-A without cover for the most critical liner slip case involving one column of geo-tubes.
- 3. These values are plotted graphically in Figure 4-3.
- 4. For peak shear strengths, in order to achieve the target FS of 1.5 for the geo-tube slip mode, the minimum required geo-tube/geo-tube horizontal interface friction angle was back-calculated to be 13.8 degrees, which corresponds to a minimum liner friction angle of 18.3 degrees.

consultants

						Page		96	10	212	<u></u>
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bed	ech	Date:	1	2/8/2009	9
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	299	Task N	No.:	18

Table 4-4. Sensitivity Analysis of Liner Interface Friction Angle after Final Cover Placement, using Residual Strengths

Geotube interface	Liner friction angle
friction angle (degree)	(degree)
10	18
11	16.8
11.6	16.1
12	15.6
13	14.5
14	13.3
15	12.1

- 1. For residual strengths, this table presents the minimum required liner friction angles and corresponding geo-tube/geo-tube interface friction angles to achieve the target FS of 1.3 for the liner slip mode.
- 2. These values were calculated using Cross-Section A-A without cover for the most critical liner slip case involving one column of geo-tubes.
- 3. These values are plotted graphically in Figure 4-4.
- 4. For residual strengths, in order to achieve the target FS of 1.3 for the geo-tube slip mode, the minimum required geo-tube/geo-tube horizontal interface friction angle was back-calculated to be 11.6 degrees, which corresponds to a minimum liner friction angle of 16.1 degrees.

consultants

						Page		97	of	212
Written by:	Joseph Sura		Date: 12/4/2009		Reviewed by:	R. Kulasingam/Jay Beech		Date:	12	2/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ	4299	Task N	Io.: 18

Attachment 5
SLIDE Output Files

consultants

						rage	98		01 2	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bed	ech Da	ite:	12/8/20	009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	7	Гask No.:	18

- 1.) The error messages in the output files are a result of invalid slip surfaces generated by the SLIDE program during the automatic search for the most critical slip surface. The invalid slip surfaces included surfaces that are beyond the defined model boundaries, surfaces that are kinematically not feasible, and surfaces that mathematically do not converge to a solution. The invalid slip surfaces do not affect the valid slip surfaces from which the critical slip surface is identified. A list of error codes identifying the meaning of each message is included immediately after this notes page.
- 2.) In the SLIDE output files, the model boundaries and definitions are only included twice for each Cross-Section: once before placement of cover and once after the final cover placement, to avoid redundancy.

consultants

					Page	99	of	212
Written by:	Joseph Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	Date:	12.	/8/2009
Client:	Honeywell Proje	ect: Ono	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No	o.: 18

List of Error Codes

- -101 = Only one (or zero) surface/slope interactions.
- -102 = Two surface / slope intersections, but resulting arc is actually outside soil region.
- -103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.
- -105 = More than two surface / slope intersections with no valid slip surface.
- -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.
- -107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.
- -108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).
- -110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.
- -111 = safety factor equation did not converge
- -112 = The coefficient M-Alpha = $\cos(\text{alpha})(1+\tan(\text{alpha})\tan(\text{phi})/F) < 0.2$ for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.
- -113 = Surface intersects outside slope limits.
- -116 = Not enough slices to analyze the surface. Increase the number of slices in the job control in the modeler.
- -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

consultants

						Page	100	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Bee	ech Date	»:	12/8/2009
Client:	Honeywell	Project:	Onon	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task	No.: 18

Cross-Section A-A: Before Placement of Final Cover

101

consultants

212

Written

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside_nocover_tube_07_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Page

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

consultants of

102 212 Page

Written 12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.554920

Axis Location: 1005.384, 553.134

Left Slip Surface Endpoint: 978.000, 441.320 Right Slip Surface Endpoint: 1078.405,

464.138

Left Slope Intercept: 978.000 447.274 Right Slope Intercept: 1078.405 464.138 Resisting Moment=2.14281e+006 lb-ft Driving Moment=1.37809e+006 lb-ft

Method: janbu simplified

FS: 1.518670

Axis Location: 1005.384, 553.134

Left Slip Surface Endpoint: 978.000, 441.320

Right Slip Surface Endpoint: 1078.405,

464.138

Left Slope Intercept: 978.000 447.274 Right Slope Intercept: 1078.405 464.138 Resisting Horizontal Force=20290 lb Driving Horizontal Force=13360.4 lb

Method: spencer FS: 2.310560

Axis Location: 1005.597, 553.240

Left Slip Surface Endpoint: 978.000, 441.533

Right Slip Surface Endpoint: 1078.405,

464.138

Left Slope Intercept: 978.000 447.274 Right Slope Intercept: 1078.405 464.138 Resisting Moment=2.56687e+006 lb-ft Driving Moment=1.11093e+006 lb-ft Resisting Horizontal Force=23758.7 lb Driving Horizontal Force=10282.7 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4164 Number of Invalid Surfaces: 836

Error Codes:

Error Code -108 reported for 834 surfaces Error Code -112 reported for 2 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4147 Number of Invalid Surfaces: 853

Error Codes:

Error Code -108 reported for 851 surfaces Error Code -112 reported for 2 surfaces

Method: spencer

Number of Valid Surfaces: 3193 Number of Invalid Surfaces: 1807

Error Codes:

Error Code -108 reported for 1754 surfaces Error Code -111 reported for 51 surfaces Error Code -112 reported for 2 surfaces

List of All Coordinates

Block Search Polyline

consultants 103 of 212

							Page	103	of	2	12
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ch Date	: 12	2/8/20	009
Client:	Honeywell	Project:	Onoi	ondaga Lake SC	CA Final Design	Project/ F	roject/ Proposal No.:		Task N	lo.:	18
	978.000	441.318				1400.000	436.750				
	1017.040	441.054									
_		_			<u>N</u>	<u> laterial Bou</u>					
<u>N</u>	<u> laterial Bou</u>					998.000	447.048				
	953.000	433.500				1017.014	446.832				
	958.000	433.500				1018.514	446.815				
	1400.000	427.700				1037.015	446.606				
	Anto-del De					1038.521	446.589				
<u>IV</u>	<u>laterial Bour</u>					1057.021	446.380				
	978.000	441.524				1058.520	446.363				
	997.000	441.309				1077.016	446.154				
	998.500	441.292				1078.515	446.137				
	1017.009	441.083				1097.005	445.928				
	1018.508	441.066				1098.523	445.910				
	1037.000	440.856				1117.022	445.701				
	1038.500	440.839				1118.509	445.684				
	1057.015	440.630				1137.023	445.475				
	1058.509	440.613				1138.511	445.458				
	1096.999	440.178				1157.009	445.249				
	1098.506	440.161				1158.509	445.232				
	1117.012	439.951				1177.011	445.023				
	1118.512	439.934				1178.494	445.006				
	1137.006	439.725				1197.022	444.796				
	1138.505	439.708				1198.509	444.779				
	1157.006	439.499				1217.011	444.570				
	1158.500	439.482				1218.511	444.553				
	1176.999 1178.492	439.273 439.256				1237.016 1238.509	444.344 444.327				
	1170.492	439.236				1257.015	444.32 <i>1</i> 444.117				
	1197.013	439.029				1257.015	444.117				
	1217.005	438.820				1277.009	443.891				
	1217.003	438.803				1277.009	443.874				
	1237.000	438.594				1296.975	443.665				
	1237.000	438.577				1298.475	443.648				
	1257.010	438.368				1317.016	443.439				
	1258.509	438.351				1318.515	443.422				
	1277.013	438.141				1336.981	443.213				
	1278.513	438.124				1338.481	443.196				
	1296.975	437.915				1357.016	442.986				
	1298.469	437.899				1358.516	442.969				
	1317.013	437.689				1376.981	442.760				
	1317.013	437.672				1378.481	442.743				
	1336.969	437.463				1400.000	442.500				
	1338.469	437.446					1 12.000				
	1357.000	437.236			N.	Material Bou	ındarv				
	1358.510	437.219			<u>1V</u>	998.000	447.298				
	1376.969	437.011				1017.014	447.082				
	1378.475	436.993				1017.014	447.066				
	1370.473	-1 00.330				1010.514	TT1.000				

								isuitairis	
						Page	104	of	212
Written by:	Josep	h Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beo	ech Date:	12/8/2	2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1037.016	446.856			1117.028	451.701			
	1038.521	446.839			1118.527	451.684			
	1057.021	446.630			1137.001	451.475			
	1058.521	446.613			1138.501	451.458			
	1077.016	446.404			1157.027	451.249			
	1078.516	446.387			1158.521	451.232			
	1097.005	446.178			1176.995	451.023			
	1098.524	446.160			1178.495	451.006			
	1117.022	445.951			1197.028	450.796			
	1118.510	445.934			1198.521	450.779			
	1137.024	445.725			1217.001	450.570			
	1138.511	445.708			1218.501	450.553			
	1157.010	445.499			1237.022	450.344			
	1158.510	445.482			1238.515	450.327			
	1177.011	445.273			1257.007	450.118			
	1178.494	445.256			1257.007	450.110			
	1176.494	445.236			1277.021	449.891			
	1197.022	445.029			1277.021	449.874			
	1217.011	444.820			1297.001	449.665			
	1218.511	444.803			1298.501	449.648			
	1237.016	444.594			1317.028	449.439			
	1238.509	444.577			1318.521	449.422			
	1257.016	444.368			1337.008	449.213			
	1258.515	444.351			1338.501	449.196			
	1277.010	444.141			1357.022	448.986			
	1278.516	444.124			1358.521	448.969			
	1296.975	443.915			1377.008	448.760			
	1298.475	443.898			1378.508	448.743			
	1317.016	443.689			1400.000	448.500			
	1318.516	443.672							
	1336.981	443.463		<u>IV</u>	<u>laterial Bou</u>				
	1338.481	443.446			1018.000	453.071			
	1357.016	443.236			1037.022	452.856			
	1358.516	443.219			1038.521	452.839			
	1376.981	443.010			1057.007	452.630			
	1378.481	442.993			1058.501	452.613			
	1400.000	442.750			1077.022	452.404			
					1078.528	452.387			
	aterial Bour				1096.996	452.178			
	1018.000	452.821			1098.501	452.161			
	1037.021	452.606			1117.028	451.951			
	1038.521	452.589			1118.528	451.934			
	1057.007	452.380			1137.002	451.725			
	1058.501	452.363			1138.501	451.708			
	1077.021	452.154			1157.028	451.499			
	1078.527	452.137			1158.522	451.482			
	1096.995	451.928			1176.996	451.273			

							Daga		of	212
							Page	105	of	212
Written by: Client:	Joseph Sura		Date: 12/4/2009		Reviewed by:	R. Kulasingam/Jay Beech		ech Date:	12/8/2009	
	Honeywell	Project:	Onoi	ndaga Lake SC	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1197.028	451.046				1297.013	455.665			
	1198.522	451.029				1298.513	455.648			
	1217.001	450.820				1317.005	455.439			
	1218.501	450.803				1318.505	455.422			
	1237.022	450.594				1337.014	455.213			
	1238.515	450.577				1338.507	455.196			
	1257.007	450.368				1357.006	454.986			
	1257.007	450.351				1358.511	454.969			
	1277.022	450.331				1377.021	454.760			
	1278.522	450.124				1378.513	454.743			
	1297.002	449.915				1400.000	454.500			
	1298.502	449.898								
	1317.028	449.689			<u>IV</u>	<u> 1aterial Bou</u>				
	1318.522	449.672				1038.000	458.845			
	1337.008	449.463				1057.013	458.630			
	1338.502	449.446				1058.513	458.613			
	1357.022	449.236				1077.006	458.404			
	1358.522	449.219				1078.505	458.387			
	1377.008	449.010				1097.013	458.178			
	1378.508	448.993				1098.513	458.161			
	1400.000	448.750				1117.011	457.951			
						1118.499	457.934			
M	laterial Bou	ndary				1137.020	457.725			
_	1038.000	458.595				1138.507	457.708			
	1057.013	458.380				1157.005	457.499			
	1058.512	458.363				1158.499	457.482			
	1077.005	458.154				1177.013	457.273			
	1078.505	458.137				1178.519	457.255			
	1097.013	457.928				1197.006	457.046			
	1098.513	457.911				1198.499	457.029			
	1117.011	457.701				1217.007	456.820			
	1118.498	457.685				1217.507	456.803			
	1137.019	457.475				1237.006	456.594			
	1138.507	457.458				1238.511	456.577			
	1157.005	457.249				1257.007	456.368			
	1158.498	457.232				1258.507	456.351			
	1177.013	457.023				1277.005	456.141			
	1178.518	457.006				1278.505	456.124			
	1197.005	456.796				1297.014	455.915			
	1198.498	456.779				1298.514	455.898			
	1217.007	456.570				1317.005	455.689			
	1218.501	456.553				1318.505	455.672			
	1237.005	456.344				1337.014	455.463			
	1238.511	456.327				1338.507	455.446			
	1257.007	456.118				1357.006	455.236			
	1258.507	456.101				1358.511	455.219			
	1277.005	455.891				1377.021	455.010			
	1278.505	455.874				1378.514	454.993			
	. 2 / 0.000	-00.07 -				10.0.014	707.000			

									sunams	,
							Page	106	of	212
Written by:	Josep	h Sura	Date: 12/4/	2009	Reviewed by:	R. Kulas	singam/Jay Be	ech Date:	12/8/	2009
Client:	Honeywell	Project:	Onondaga L	ake SC	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1400.000	454.750				1197.012	438.796			
						1198.512	438.779			
M	laterial Bour	<u>ndary</u>				1217.005	438.570			
	958.000	435.500				1218.499	438.553			
	997.000	435.059				1237.000	438.344			
	998.500	435.042				1238.506	438.327			
	1037.000	434.606				1257.009	438.118			
	1038.494	434.589				1258.509	438.101			
	1077.000	434.154				1277.013	437.891			
	1078.500	434.137				1278.512	437.874			
	1117.000	433.701				1296.975	437.665			
	1118.494	433.684				1298.469	437.649			
	1156.994	433.249				1317.013	437.439			
	1158.494	433.232				1318.507	437.422			
	1197.006	432.796				1336.969	437.213			
	1198.500	432.779				1338.469	437.196			
	1236.994	432.344				1357.000	436.986			
	1238.494	432.327				1358.510	436.969			
	1277.007	431.891				1376.969	436.761			
	1278.507	431.874				1378.475	436.743			
	1317.007	431.439				1400.000	436.500			
	1318.507	431.422								
	1357.000	430.986			<u>N</u>	<u>laterial Bou</u>				
	1358.499	430.969				958.000	435.750			
	1400.000	430.500				997.000	435.309			
						998.500	435.292			
	<u>laterial Bour</u>					1037.000	434.856			
	978.000	441.274				1038.494	434.839			
	997.000	441.059				1077.000	434.404			
	998.500	441.042				1078.500	434.387			
	1017.008	440.832				1117.001	433.951			
	1018.508	440.816				1118.494	433.934			
	1037.000	440.606				1156.994	433.499			
	1038.500	440.589				1158.494	433.482			
	1057.015	440.380				1197.007	433.046			
	1058.508	440.363				1198.500	433.029			
	1077.006	440.154				1236.994	432.594			
	1078.494	440.137				1238.494	432.577			
	1096.999	439.928				1277.007	432.141			
	1098.505	439.911				1278.507	432.124			
	1117.012	439.701				1317.007	431.689			
	1118.511	439.684				1318.507	431.672			
	1137.005	439.475				1357.000	431.236			
	1138.505	439.458				1358.500	431.219			
	1157.006	439.249				1400.000	430.750			
	1158.500	439.232				=				
	1176.999	439.023			<u>N</u>	laterial Bou				
	1178.492	439.006				895.681	432.081			

consultants 107 of 212

						Page	107	of	212
Written by:	Joseph Sura		Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beed	ch Date:	12/	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No	.: 18
	953.504	431.272			1318.507	431.672			
	1400.000	425.200			1318.507	437.422			
					1318.507	437.672			
<u>M</u>	<u> laterial Bou</u>	<u>ndary</u>							
	661.000	436.500			<u>aterial Bou</u>				
	748.000	412.600			1077.000	434.154			
	789.000	386.700			1077.000	434.404			
	835.000	386.800		•	1077.006	440.154			
	980.000	376.600							
	1400.000	367.800			aterial Bou				
N /	Actorial Daw				1078.494	440.137			
	<u>laterial Boul</u>				1078.500	434.387			
	942.667 947.793	435.500 433.500			1078.500	434.137			
	953.504	433.300		N.//-	aterial Bou	ndory			
	955.504	431.272			1117.000	433.701			
M	laterial Bou	ndarv			1117.000	433.951			
	1357.000	430.986			1117.012	439.701			
	1357.000	431.236			1117.012	439.951			
	1357.000	436.986			1117.012	100.001			
	1357.000	437.236		Ma	aterial Bou	ndarv			
					1118.494	433.684			
M	laterial Bou	ndary			1118.494	433.934			
	1358.499	430.969			1118.511	439.684			
	1358.500	431.219		•	1118.512	439.934			
	1358.510	436.969							
	1358.510	437.219		Ma	aterial Bou	<u>ndary</u>			
					1156.994	433.249			
M	<u> 1aterial Bou</u>				1156.994	433.499			
	1277.007	431.891			1157.006	439.249			
	1277.007	432.141		•	1157.006	439.499			
	1277.013	437.891							
	1277.013	438.141			aterial Bou				
N /	Actorial Day				1158.494	433.232			
	<u>1aterial Boul</u> 1278.507				1158.494	433.482			
	1278.507	431.874 432.124			1158.500 1158.500	439.232 439.482			
	1278.507	432.124			1136.300	439.402			
	1278.512	438.124		M	aterial Bou	ndary			
	1270.515	450.124			1197.006	432.796			
M	laterial Bou	ndary			1197.007	433.046			
	1317.007	431.439			1197.007	438.796			
	1317.007	431.689			1197.012	439.046			
	1317.007	437.439				100.040			
		437.689		M	aterial Bou	ndary			
	1317 013	437.009							
	1317.013	437.009							
M	1317.013 Naterial Bou				1198.500 1198.500	432.779 433.029			

consultants 108 of 212

						Page	108	of	212
Written by:	Joseph Sura		Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ch Date:	12/8	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No	.: 18
	1198.512	439.029			1298.475	443.898			
M	aterial Bour	<u>ndary</u>		<u>M</u>	aterial Bou	ndary			
	1236.994	432.344			1336.969	437.213			
	1236.994	432.594			1336.969	437.463			
	1237.000	438.344			1336.981	443.213			
	1237.000	438.594			1336.981	443.463			
M	aterial Bour	ndary		М	aterial Bou	ndary			
	1238.494	432.327			1338.469	437.196			
	1238.494	432.577			1338.469	437.446			
	1238.506	438.327			1338.481	443.196			
	1238.506	438.577			1338.481	443.446			
M	aterial Bour	<u>ndary</u>		<u>M</u>	aterial Bou	ndary			
	997.000	435.059		_	1376.969	436.761			
	997.000	435.309			1376.969	437.011			
	997.000	441.059			1376.981	442.760			
!	997.000	441.309			1376.981	443.010			
M	aterial Bour	ndary		M	aterial Bou	ndary			
	998.500	435.042			1378.475	436.743			
!	998.500	435.292			1378.475	436.993			
!	998.500	441.042			1378.481	442.743			
!	998.500	441.292			1378.481	442.993			
M	aterial Bour	<u>ndary</u>		<u>M</u>	aterial Bou	ndary			
	1037.000	434.606			1257.009	438.118			
	1037.000	434.856			1257.010	438.368			
	1037.000	440.606			1257.015	444.117			
	1037.000	440.856			1257.016	444.368			
	aterial Bour	<u>ndary</u>		<u>M</u>	aterial Bou	ndar <u>y</u>			
	1038.494	434.589			1258.509	438.101			
	1038.494	434.839			1258.509	438.351			
	1038.500	440.589			1258.515	444.101			
	1038.500	440.839			1258.515	444.351			
<u>M</u>	aterial Bour	<u>ndary</u>		М	aterial Bou	ndary			
	1296.975	437.665			1096.999	439.928			
	1296.975	437.915			1096.999	440.178			
	1296.975	443.665			1097.005	445.928			
	1296.975	443.915			1097.005	446.178			
<u>M</u>	aterial Bour	<u>ndary</u>		М	aterial Bou	ndary			
	1298.469	437.649			1098.505	439.911			
	1298.469	437.899			1098.506	440.161			
	1298.475	443.648			1098.523	445.910			

consultants 109 of 212

						Page	109	of	212
Written by:	Joseph Sura		Date: 12/4/2009	12/4/2009 Reviewed by: R. Kulasingam/Jay Beec		ech Date	12/	8/2009	
Client:	Honeywell	Project:	Onondaga Lake So	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No	.: 18
	1098.524	446.160			1018.514	447.066			
M	laterial Bou	ndary		М	aterial Bou	ndary			
	1137.005	439.475			1057.015	440.380			
	1137.006	439.725			1057.015	440.630			
	1137.023	445.475			1057.021	446.380			
	1137.024	445.725			1057.021	446.630			
M	laterial Bou	ndary		М	aterial Bou	ndary			
_	1138.505	439.458			1058.508	440.363			
	1138.505	439.708			1058.509	440.613			
	1138.511	445.458			1058.520	446.363			
	1138.511	445.708			1058.521	446.613			
M	laterial Bou	ndarv		М	aterial Bou	ndary			
<u>1V</u>	1176.999	439.023			1037.015	446.606			
	1176.999	439.273			1037.016	446.856			
	1177.011	445.023			1037.021	452.606			
	1177.011	445.273			1037.022	452.856			
N/	laterial Bou	ndarv		M	aterial Bou	ndary			
<u>1V</u>	1178.492	439.006			1038.521	446.589			
	1178.492	439.256			1038.521	446.839			
	1178.494	445.006			1038.521	452.589			
	1178.494	445.256			1038.521	452.839			
N	laterial Bou	ndarv		M	aterial Bou	ındarv			
<u>1V</u>	1217.005	438.570			1077.016	446.154			
	1217.005	438.820			1077.016	446.404			
	1217.011	444.570			1077.021	452.154			
	1217.011	444.820			1077.022	452.404			
N/	laterial Bou	ndarv		M	aterial Bou	ndarv			
<u>1V</u>	1218.499	438.553			1078.515	446.137			
	1218.499	438.803			1078.516	446.387			
	1218.511	444.553			1078.527	452.137			
	1218.511	444.803			1078.528	452.387			
N /	laterial Bou	ndary		N.A	aterial Bou	ndary			
<u>IV</u>	1017.008	440.832			1117.022	445.701			
	1017.000	441.083			1117.022	445.951			
	1017.009	446.832			1117.022	451.701			
	1017.014	447.082			1117.028	451.951			
Ν.	laterial Row	ndary		N A	atorial Bou	ndary			
<u>IV</u>	<u>1aterial Boul</u> 1018.508	<u>10ary</u> 440.816			<u>aterial Bou</u> 1118.509	<u>ndary</u> 445.684			
	1018.508	440.616			1118.510	445.064 445.934			
	1018.514	446.815			1118.527	445.934 451.684			
	1010.514	440.013			1110.321	451.004			

consultants 110 of 212

						Page	110	of	212
Written by:	Joseph Sura		<u> </u>		R. Kulas	singam/Jay Bee	ch Date:	12/	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	Proposal No.:	GJ4299	Task No	.: 18
	1118.528	451.934			1278.522	450.124			
M	laterial Bou	ndary		<u>M</u>	aterial Bou	ındary			
	1157.009	445.249			1317.016	443.439			
	1157.010	445.499			1317.016	443.689			
	1157.027	451.249			1317.028	449.439			
	1157.028	451.499			1317.028	449.689			
M	laterial Bou	ndary		М	aterial Bou	ındary			
_	1158.509	445.232			1318.515	443.422			
	1158.510	445.482			1318.516	443.672			
	1158.521	451.232			1318.521	449.422			
	1158.522	451.482			1318.522	449.672			
M	laterial Bou	ndarv		М	aterial Bou	ındarv			
<u></u>	1197.022	444.796			1357.016	442.986			
	1197.022	445.046			1357.016	443.236			
	1197.028	450.796			1357.022	448.986			
	1197.028	451.046			1357.022	449.236			
N/	laterial Bou	ndary		M	aterial Bou	ındarı			
<u>1V</u>	1198.509	444.779			1358.516	442.969			
	1198.510	445.029			1358.516	443.219			
	1198.521	450.779			1358.521	448.969			
	1198.522	451.029			1358.522	449.219			
N/	laterial Bou	ndany		N/I	aterial Bou	ındarı			
<u>IV</u>	1237.016	444.344			1057.007	452.380			
	1237.016	444.594			1057.007	452.630			
	1237.010	450.344			1057.007	458.380			
	1237.022	450.594			1057.013	458.630			
N/	laterial Bou	ndon		N/I	otorial Pau	ındanı			
IV	1238.509	444.327			<u>aterial Bou</u> 1058.501	452.363			
	1238.509	444.577			1058.501	452.613			
	1238.515	450.327			1058.512	452.613			
	1238.515	450.527 450.577			1058.512	458.613			
R.	lotorial Da	n don.		R A	otorial Day	un dom r			
<u>IV</u>	laterial Bou				aterial Bou				
	1277.009	443.891			1098.501	451.911 452.461			
	1277.010	444.141			1098.501	452.161 457.011			
	1277.021 1277.022	449.891 450.141			1098.513 1098.513	457.911 458.161			
					-1-d-15				
<u>N</u>	laterial Bou				aterial Bou				
	1278.515	443.874			1096.995	451.928			
	1278.516	444.124			1096.996	452.178			
	1278.521	449.874			1097.013	457.928			

								COL	isuitai	its	
							Page	111	of	2	12
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ch Date	12	2/8/20)09
Client:	Honeywell	Project:	Onoi	ndaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task N	o.:	18
	1097.013	458.178				1258.507	456.351				
N	laterial Bou	ndarv			M	laterial Bou	ndarv				
_	1137.001	451.475				1297.001	449.665				
	1137.002	451.725				1297.002	449.915				
	1137.019	457.475				1297.013	455.665				
	1137.020	457.725				1297.014	455.915				
N	laterial Bou	ndarv			M	laterial Bou	ndary				
<u></u>	1138.501	451.458			<u>:-</u>	1298.501	449.648				
	1138.501	451.708				1298.502	449.898				
	1138.507	457.458				1298.513	455.648				
	1138.507	457.708				1298.514	455.898				
N	1aterial Bou	ndarv			N	laterial Bou	ndary				
10	1176.995	451.023			<u>1V</u>	1337.008	449.213				
	1176.996	451.273				1337.008	449.463				
	1177.013	457.023				1337.014	455.213				
	1177.013	457.273				1337.014	455.463				
N.	Actorial Pau	ndon			N/	lotorial Pau	ndor.				
IV	<u>1aterial Boul</u> 1178.495	451.006			<u>IV</u>	<u>1aterial Bou</u> 1338.501	449.196				
	1178.495	451.000				1338.502	449.196				
	1178.518	457.006				1338.507	455.196				
	1178.519	457.255				1338.507	455.446				
_											
<u>N</u>	<u> laterial Bou</u>				<u>N</u>	laterial Bou					
	1217.001	450.570				1377.008	448.760				
	1217.001	450.820				1377.008	449.010				
	1217.007	456.570				1377.021	454.760				
	1217.007	456.820				1377.021	455.010				
<u>N</u>	laterial Bou	<u>ndary</u>			<u>N</u>	laterial Bou					
	1218.501	450.553				1378.508	448.743				
	1218.501	450.803				1378.508	448.993				
	1218.501	456.553				1378.513	454.743				
	1218.501	456.803				1378.514	454.993				
N	1aterial Bou	ndary			N	laterial Bou	ndary				
_	1257.007	450.118			_	1077.005	458.154				
	1257.007	450.368				1077.006	458.404				
	1257.007	456.118				1077.017	464.154				
	1257.007	456.368			_						
	Antorial Da				<u>N</u>	laterial Bou					
<u>N</u>	<u> 1250 501</u>					1078.505	458.137				
	1258.501	450.101				1078.505	458.387				
	1258.501	450.351				1078.517	464.137				
	1258.507	456.101									

consultants 112 of 212

							Page	112	of	212
Written by:	locanh Sura		Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Be	ech Date:	12/8	8/2009
Client:	Honeywell	Project:	Ono	ndaga Lake SO	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.	: 18
N	Material Bou	ndarv				1278.505	461.874			
	1117.011	457.701				0.000				
	1117.011	457.951			N	Material Bou	ndarv			
	1117.011	463.701			=	1317.005	455.439			
						1317.005	455.689			
N	/laterial Bou	ndarv				1317.011	461.439			
	1118.498	457.685								
	1118.499	457.934			N	Material Bou	ndarv			
	1118.511	463.684				1318.505	455.422			
		.00.00				1318.505	455.672			
N	Material Bour	ndarv				1318.517	461.422			
	1157.005	457.249				.0.0.0	.011122			
	1157.005	457.499			N	Material Bou	ndary			
	1157.011	463.249			<u></u>	1357.006	454.986			
	1107.011	100.2 10				1357.006	455.236			
N.	Material Bou	ndarv				1357.000	460.986			
<u>1V</u>	1158.498	457.232				1337.017	400.900			
	1158.499	457.482			N	Material Bou	ndary			
	1158.511	463.232			<u>IV</u>	1358.511	454.969			
	1130.311	403.232				1358.511	455.219			
N.	/laterial Bou	ndary				1358.511	460.969			
<u>1V</u>	1197.005	456.796				1000.011	400.909			
	1197.005	457.046			N	/laterial Bou	ndary			
	1197.000	462.796			<u>11</u>	937.818	437.500			
	1137.017	402.730				940.000	436.600			
N.	Material Bou	ndary				942.667	435.500			
<u>1V</u>	1198.498	456.779				0-12.00 <i>1</i>	400.000			
	1198.499	457.029			F	external Bou	ındarv			
	1198.517	462.779			<u> </u>	909.818	437.500			
	1130.517	402.773				899.186	433.425			
N.	/laterial Bou	ndarv				895.681	432.081			
<u>1V</u>	1237.005					661.000	436.500			
	1237.005	456.594				638.000	432.900			
	1237.000	462.344				555.000	396.200			
	1237.024	402.044				483.000	398.300			
Λ.	Material Bou	ndary				461.000	390.500			
<u>IV</u>	1238.511	456.327				307.000	386.700			
	1238.511	456.577				277.000	373.000			
	1238.517	462.327				1.726	374.590			
	1230.317	402.321				1.726				
Λ.	Actorial Day	ndom.					167.800			
IV	Material Bour					1400.000	167.800 367.800			
	1277.005	455.891 456.141				1400.000	425.200			
	1277.005	456.141				1400.000				
	1277.011	461.891				1400.000	427.700			
	Actorial Da					1400.000	430.500			
<u>IV</u>	Material Bou					1400.000	430.750			
	1278.505	455.874				1400.000	436.500			
	1278.505	456.124				1400.000	436.750			

consultants 113 of 212

						Page	113	of	212
Written by:	Joseph Sura		Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beec	h Date:	12/8	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.	.: 18
	1400.000	442.500			958.000	434.500			
	1400.000	442.750			1400.000	428.700			
	1400.000	448.500				0 00			
	1400.000	448.750		V	Vater Table				
	1400.000	454.500		-	715.262	421.594			
	1400.000	454.750			900.000	417.000			
	1400.000	460.500			935.504	416.272			
	1358.511	460.969			1400.000	410.200			
	1357.017	460.986							
	1318.517	461.422		F	ocus/Block	Search Point			
	1317.011	461.439			1017.040	441.054			
	1278.505	461.874							
	1277.011	461.891		F	ocus/Block	Search Point			
	1238.517	462.327			1018.472	446.848			
	1237.024	462.344							
	1198.517	462.779		F	ocus/Block	Search Point			
	1197.017	462.796		<u>-</u>	1037.037	446.830			
	1158.511	463.232							
	1157.011	463.249		F	ocus/Block	Search Point			
	1118.511	463.684		<u>-</u>	1038.507	452.594			
	1117.011	463.701							
	1078.517	464.137		F	ocus/Block	Search Point			
	1077.017	464.154		-	1057.020	452.618			
	1038.000	464.595							
	1038.000	458.845		F	ocus/Block	Search Point			
	1038.000	458.595			1058.459	458.411			
	1018.000	458.821							
	1018.000	453.071		F	ocus/Block	Search Point			
	1018.000	452.821			1077.037	458.372			
	998.000	453.048							
	998.000	447.298		F	ocus/Block	Search Point			
	998.000	447.048		_	1078.405	464.138			
	978.000	447.274							
	978.000	441.524		5	Support				
	978.000	441.274			1358.511	460.969			
	958.000	441.500			1400.000	460.500			
	958.000	435.750							
	958.000	435.500		5	Support				
	953.000	433.500		_	1400.000	454.750			
	948.793	433.500			1400.000	460.500			
	943.667	435.500							
	941.000	436.600		S	Support				
	938.818	437.500		_	1400.000	454.750			
	937.818	437.500			1358.511	455.219			
<u>P</u>	iezo Line			<u>s</u>	Support .				
	946.230	434.500			1358.511	455.219			
	948.793	434.500			1358.511	460.969			

						Page	114	of	212
Written by:	Josep	h Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Bee	ch Date:	12/	/8/2009
Client:	Honeywell	Project:	Onondaga Lake S	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No	o.: 18
<u>s</u>	<u>upport</u>				upport				
	1378.513 1378.508	454.743 448.993			1400.000 1400.000	430.750 436.500			
<u>s</u>	<u>upport</u>				upport				
	1378.508 1400.000	448.993 448.750			1400.000 1358.510	436.500 436.969			
<u>s</u>	<u>upport</u> 1400.000	448.750			<u>upport</u> 1358.510	436.969			
	1400.000	454.500			1358.500	431.219			
<u>s</u>	<u>upport</u> 1400.000 1378.513	454.500 454.743			<u>upport</u> 1358.500 1400.000	431.219 430.750			
<u>s</u>	<u>upport</u> 1400.000 1400.000	448.500 442.750			<u>upport</u> 1376.969 1376.981	437.011 442.760			
<u>S</u>	<u>upport</u> 1400.000 1358.516	442.750 443.219			<u>upport</u> 1377.021 1377.008	454.760 449.010			
<u>S</u>	<u>upport</u> 1358.516 1358.521	443.219 448.969			<u>upport</u> 1338.481 1376.981	443.196 442.760			
<u>s</u>	<u>upport</u> 1358.521 1400.000	448.969 448.500			upport 1376.969 1338.469	437.011 437.446			
<u>s</u>	<u>upport</u> 1400.000 1400.000	442.500 436.750							
<u>s</u>	<u>upport</u> 1400.000 1378.475	436.750 436.993							
<u>s</u>	<u>upport</u> 1378.475 1378.481	436.993 442.743							
	<u>upport</u> 1378.481 1400.000	442.743 442.500							

115

consultants of

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside nocover tube 10 lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Page

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strongth Type: Discrete function

Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface

Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3

Cohesion: 0 psf

116

consultants

212

Written
Joseph Sura
Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech
Date: 12/8/2009

by: Successive Survey Survey Successive Succ

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Friction Angle: 24 degrees Water Surface: Water Table Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.773320

Axis Location: 989.581, 570.232

Left Slip Surface Endpoint: 958.000, 435.516

Right Slip Surface Endpoint: 1078.405,

464.138

Left Slope Intercept: 958.000 441.500 Right Slope Intercept: 1078.405 464.138 Resisting Moment=3.93512e+006 lb-ft Driving Moment=2.21906e+006 lb-ft

Method: janbu simplified

FS: 1.715770

Axis Location: 989.581, 570.232

Page

Left Slip Surface Endpoint: 958.000, 435.516

Right Slip Surface Endpoint: 1078.405,

464.138

Left Slope Intercept: 958.000 441.500 Right Slope Intercept: 1078.405 464.138 Resisting Horizontal Force=30889.6 lb Driving Horizontal Force=18003.3 lb

Method: spencer FS: 2.703180

Axis Location: 989.861, 570.372

Left Slip Surface Endpoint: 958.000, 435.797

Right Slip Surface Endpoint: 1078.405,

464.138

Left Slope Intercept: 958.000 441.500 Right Slope Intercept: 1078.405 464.138 Resisting Moment=4.47741e+006 lb-ft Driving Moment=1.65635e+006 lb-ft Resisting Horizontal Force=34692.6 lb Driving Horizontal Force=12834 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4384

Number of Invalid Surfaces: 616

Error Codes:

Error Code -108 reported for 285 surfaces Error Code -112 reported for 331 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4364 Number of Invalid Surfaces: 636

Error Codes:

Error Code -108 reported for 287 surfaces Error Code -111 reported for 2 surfaces Error Code -112 reported for 347 surfaces

Method: spencer

Number of Valid Surfaces: 3072 Number of Invalid Surfaces: 1928

Error Codes:

Error Code -108 reported for 1465 surfaces Error Code -111 reported for 26 surfaces Error Code -112 reported for 437 surfaces

117

consultants of

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside nocover liner i lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Page

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees
Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

118

consultants of

212

Written

12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by:

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.615880

Axis Location: 983.826, 576.701

Left Slip Surface Endpoint: 950.523, 433.500 Right Slip Surface Endpoint: 1078.405,

464.138

Resisting Moment=4.57396e+006 lb-ft Driving Moment=2.83064e+006 lb-ft

Method: janbu simplified

FS: 1.568780

Axis Location: 983.826, 576.701

Left Slip Surface Endpoint: 950.523, 433.500

Right Slip Surface Endpoint: 1078.405,

Page

464.138

Resisting Horizontal Force=33517.9 lb Driving Horizontal Force=21365.6 lb

Method: spencer FS: 2.582370

Axis Location: 984.608, 575.137

Left Slip Surface Endpoint: 952.087, 433.500 Right Slip Surface Endpoint: 1078.405,

464.138

Resisting Moment=4.88485e+006 lb-ft Driving Moment=1.89161e+006 lb-ft Resisting Horizontal Force=36073.5 lb Driving Horizontal Force=13969.1 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 3709

Number of Invalid Surfaces: 1291

Error Codes:

Error Code -108 reported for 21 surfaces Error Code -111 reported for 18 surfaces Error Code -112 reported for 1252 surfaces

Method: janbu simplified

Number of Valid Surfaces: 3658 Number of Invalid Surfaces: 1342

Error Codes:

Error Code -108 reported for 15 surfaces Error Code -111 reported for 30 surfaces Error Code -112 reported for 1297 surfaces

Method: spencer

Number of Valid Surfaces: 1495 Number of Invalid Surfaces: 3505

Error Codes:

Error Code -108 reported for 1070 surfaces Error Code -111 reported for 1080 surfaces Error Code -112 reported for 1355 surfaces

119

consultants

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside nocover global su lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search

Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)

Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

120

consultants

212

Written by:

Joseph Sura

Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech
Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.625930

Center: 1004.086, 486.952

Radius: 76.891

Left Slip Surface Endpoint: 948.812, 433.500

Right Slip Surface Endpoint: 1077.518,

464.148

Resisting Moment=7.29026e+006 lb-ft Driving Moment=4.48376e+006 lb-ft

Method: janbu simplified

FS: 1.677300

Center: 1004.086, 521.413

Radius: 108.025

Left Slip Surface Endpoint: 936.056, 437.500

Right Slip Surface Endpoint: 1095.556,

Page

463.944

Resisting Horizontal Force=91023.7 lb Driving Horizontal Force=54268.1 lb

Method: spencer FS: 1.659310

Center: 1004.086, 521.413

Radius: 108.025

Left Slip Surface Endpoint: 936.056, 437.500 Right Slip Surface Endpoint: 1095.556,

463.944

Resisting Moment=1.13708e+007 lb-ft Driving Moment=6.85275e+006 lb-ft Resisting Horizontal Force=91045 lb Driving Horizontal Force=54869.3 lb

Valid / Invalid Surfaces

Method: bishop simplified
Number of Valid Surfaces: 2115
Number of Invalid Surfaces: 2725

Error Codes:

Error Code -101 reported for 2 surfaces
Error Code -102 reported for 27 surfaces
Error Code -106 reported for 250 surfaces
Error Code -107 reported for 946 surfaces
Error Code -112 reported for 417 surfaces
Error Code -113 reported for 166 surfaces
Error Code -116 reported for 4 surfaces
Error Code -1000 reported for 913 surfaces

Method: janbu simplified

Number of Valid Surfaces: 1823 Number of Invalid Surfaces: 3017

Error Codes:

Error Code -101 reported for 2 surfaces
Error Code -102 reported for 27 surfaces
Error Code -106 reported for 250 surfaces
Error Code -107 reported for 946 surfaces
Error Code -108 reported for 287 surfaces
Error Code -111 reported for 3 surfaces
Error Code -112 reported for 419 surfaces
Error Code -113 reported for 166 surfaces
Error Code -116 reported for 4 surfaces
Error Code -1000 reported for 913 surfaces

Method: spencer

consultants

						Page	121	of	212
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	12/8	8/2009
Client:	Honeywell	Project:	Onor	ıdaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No.	.: 18

Number of Valid Surfaces: 627 Number of Invalid Surfaces: 4213

Error Codes:

Error Code -101 reported for 2 surfaces
Error Code -102 reported for 27 surfaces
Error Code -106 reported for 250 surfaces
Error Code -107 reported for 946 surfaces
Error Code -108 reported for 317 surfaces
Error Code -111 reported for 1164 surfaces
Error Code -112 reported for 424 surfaces
Error Code -113 reported for 166 surfaces
Error Code -116 reported for 4 surfaces
Error Code -1000 reported for 913 surfaces

consultants

Page 122 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside_nocover_external_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees

Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)

Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3

Cohesion: 0 psf Friction Angle: 24 degrees

Water Surface: Water Table

Custom Hu value: 1

123

consultants of

212

Written by:

Joseph Sura

Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech
Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 3.454470

Center: 920.639, 1281.335

Radius: 883.832

Left Slip Surface Endpoint: 661.000, 436.500

Right Slip Surface Endpoint: 1252.489,

462,169

Resisting Moment=3.50544e+008 lb-ft Driving Moment=1.01475e+008 lb-ft

Method: janbu simplified

FS: 3.448700

Center: 920.639, 1281.335

Radius: 883.832

Left Slip Surface Endpoint: 661.000, 436.500

Right Slip Surface Endpoint: 1252.489,

Page

462.169

Resisting Horizontal Force=389737 lb Driving Horizontal Force=113010 lb

Method: spencer FS: 3.454580

Center: 920.639, 1281.335

Radius: 883.832

Left Slip Surface Endpoint: 661.000, 436.500 Right Slip Surface Endpoint: 1252.489,

462.169

Resisting Moment=3.50554e+008 lb-ft Driving Moment=1.01475e+008 lb-ft Resisting Horizontal Force=389751 lb Driving Horizontal Force=112822 lb

Valid / Invalid Surfaces

Method: bishop simplified
Number of Valid Surfaces: 668
Number of Invalid Surfaces: 4172

Error Codes:

Error Code -101 reported for 48 surfaces
Error Code -107 reported for 17 surfaces
Error Code -110 reported for 875 surfaces
Error Code -113 reported for 207 surfaces
Error Code -1000 reported for 3025 surfaces

Method: janbu simplified

Number of Valid Surfaces: 668 Number of Invalid Surfaces: 4172

Error Codes:

Error Code -101 reported for 48 surfaces Error Code -107 reported for 17 surfaces Error Code -110 reported for 875 surfaces Error Code -113 reported for 207 surfaces Error Code -1000 reported for 3025 surfaces

Method: spencer

Number of Valid Surfaces: 602 Number of Invalid Surfaces: 4238

Error Codes:

Error Code -101 reported for 48 surfaces Error Code -107 reported for 17 surfaces Error Code -108 reported for 1 surface Error Code -110 reported for 875 surfaces Error Code -111 reported for 65 surfaces

consultants

						Page	124	10		12
Written by:	Joseph Sura		Joseph Sura Date: 12/4/2009		Reviewed by:	R. Kulasingam/Jay Beed	ch Date:		12/8/20	09
Client:	Honeywell	Project:	Onor	ndaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task	No.:	18

Error Code -113 reported for 207 surfaces Error Code -1000 reported for 3025 surfaces

consultants

			Page					125	of		2
Written by:	Joseph S	Sura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:	1	2/8/200	9
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	299	Task N	No.:	18

Cross-Section A-A: After Placement of Final Cover

126

consultants of

212

Written

by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside cover tube 07 lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil

Strength Type: Mohr-Coulomb

Page

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3

127

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.673550

Axis Location: 994.617, 580.470

Left Slip Surface Endpoint: 955.538, 443.647

Right Slip Surface Endpoint: 1080.628,

Page

467.113

Resisting Moment=5.65391e+006 lb-ft Driving Moment=3.3784e+006 lb-ft

Method: janbu simplified

FS: 1.616810

Axis Location: 996.469, 578.457

Left Slip Surface Endpoint: 957.879, 444.337 Right Slip Surface Endpoint: 1080.610,

467.113

Resisting Horizontal Force=41178.9 lb Driving Horizontal Force=25469.3 lb

Method: spencer

FS: 2.508240

Axis Location: 1016.759, 590.998

Left Slip Surface Endpoint: 969.101, 447.648 Right Slip Surface Endpoint: 1102.844,

466.861

Resisting Moment=6.28706e+006 lb-ft Driving Moment=2.50656e+006 lb-ft Resisting Horizontal Force=42923.8 lb Driving Horizontal Force=17113.1 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4114 Number of Invalid Surfaces: 886

Error Codes:

Error Code -107 reported for 59 surfaces Error Code -108 reported for 226 surfaces Error Code -111 reported for 21 surfaces Error Code -112 reported for 580 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4036 Number of Invalid Surfaces: 964

Error Codes:

Error Code -107 reported for 59 surfaces Error Code -108 reported for 241 surfaces Error Code -111 reported for 49 surfaces Error Code -112 reported for 615 surfaces

Method: spencer

Number of Valid Surfaces: 2849 Number of Invalid Surfaces: 2151

								COL	isuitants	•
							Page	128	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Bee	ech Date:	12/8/	2009
Client:	Honeywell	Project:	Ono	ndaga Lake SC	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
_	rror Codes:					1298.469	437.899			
		107 reported	for EO	ourfooo		1317.013	437.689			
		•				1317.013	437.672			
		108 reported 111 reported				1336.969	437.463			
		112 reported				1338.469	437.446			
_	iioi code -	i iz iepoiteu	101 03	Suriaces		1357.000	437.440			
	iot of All	Coordinat	.			1358.510	437.230			
		Coordinat	<u>ies</u>			1376.969	437.219			
<u>B</u>	lock Search					1378.475	436.993			
	978.000	441.278				1400.000	436.750			
	1017.040	441.054				1400.000	430.730			
N/	laterial Bour	odary			N	1aterial Bou	ndarv			
<u>IV</u>	953.000	433.500			<u></u>	998.000	447.048			
	958.000	433.500				1017.014	446.832			
	1400.000	433.300				1018.514	446.815			
	1400.000	427.700				1037.015	446.606			
N/	laterial Bour	odany				1038.521	446.589			
<u>IV</u>	978.000	441.524				1057.021	446.380			
	997.000	441.309				1058.520	446.363			
	998.500	441.292				1077.016	446.154			
	1017.009	441.292				1078.515	446.137			
	1017.009	441.066				1097.005	445.928			
	1010.300	440.856				1098.523	445.910			
	1037.000	440.839				1117.022	445.701			
	1057.015	440.630				1118.509	445.684			
	1057.013	440.613				1137.023	445.475			
	1096.999	440.178				1138.511	445.458			
	1098.506	440.161				1157.009	445.249			
	1117.012	439.951				1158.509	445.232			
	1118.512	439.934				1177.011	445.023			
	1137.006	439.725				1178.494	445.006			
	1137.000	439.708				1197.022	444.796			
	1157.006	439.499				1198.509	444.779			
	1158.500	439.482				1217.011	444.570			
	1176.999	439.273				1218.511	444.553			
	1178.492	439.256				1237.016	444.344			
	1197.013	439.046				1238.509	444.327			
	1198.512	439.029				1257.015	444.117			
	1217.005	438.820				1258.515	444.101			
	1218.499	438.803				1277.009	443.891			
	1237.000	438.594				1278.515	443.874			
	1238.506	438.577				1296.975	443.665			
	1257.010	438.368				1298.475	443.648			
	1258.509	438.351				1317.016	443.439			
	1277.013	438.141				1318.515	443.422			
	1277.013	438.124				1336.981	443.213			
	1276.313	437.915				1338.481	443.196			
	.200.070	107.010				1357.016	442.986			

								COL	isuitant	S
							Page	129	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ch Date	12/8	3/2009
Client:	Honeywell	Project:	Ono	ndaga Lake SO	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.	: 18
	1358.516	442.969				1018.000	452.821			
	1376.981	442.760				1010.000	452.606			
	1378.481	442.743				1037.021	452.589			
	1400.000	442.500				1050.021	452.380			
	1400.000	442.500				1057.507	452.363			
Ι.	Material Bour	ndarv				1077.021	452.154			
<u>1V</u>	998.000	447.298				1077.021	452.137			
	1017.014	447.082				1076.327	451.928			
	1017.514	447.066				1098.501	451.911			
	1037.016	446.856				1117.028	451.701			
	1037.010	446.839				1117.020	451.684			
	1057.021	446.630				1137.001	451.475			
	1058.521	446.613				1138.501	451.458			
	1077.016	446.404				1157.027	451.249			
	1078.516	446.387				1158.521	451.232			
	1097.005	446.178				1176.995	451.023			
	1097.003	446.160				1178.495	451.025			
	1117.022	445.951				1197.028	450.796			
	1118.510	445.934				1198.521	450.779			
	1137.024	445.725				1217.001	450.570			
	1138.511	445.708				1217.501	450.553			
	1157.010	445.499				1237.022	450.344			
	1158.510	445.482				1237.022	450.327			
	1177.011	445.273				1257.007	450.118			
	1178.494	445.256				1258.501	450.110			
	1197.022	445.046				1277.021	449.891			
	1198.510	445.029				1277.021	449.874			
	1217.011	444.820				1297.001	449.665			
	1218.511	444.803				1298.501	449.648			
	1237.016	444.594				1317.028	449.439			
	1238.509	444.577				1318.521	449.422			
	1257.016	444.368				1337.008	449.213			
	1258.515	444.351				1338.501	449.196			
	1277.010	444.141				1357.022	448.986			
	1278.516	444.124				1358.521	448.969			
	1296.975	443.915				1377.008	448.760			
	1298.475	443.898				1377.008	448.743			
	1317.016	443.689				1400.000	448.500			
	1317.010	443.672				1700.000	0.000			
	1336.981	443.463			N.	laterial Bou	ndary			
	1338.481	443.446			<u>IV</u>	1018.000	453.071			
	1357.016	443.446				1018.000	452.856			
	1358.516	443.219				1037.022	452.839			
	1376.981	443.219				1050.521	452.639			
	1378.481	442.993				1057.007	452.613			
	1400.000	442.993 442.750				1056.501	452.613 452.404			
	1400.000	742.750				1077.022	452.404			
N	Natorial Bou	ndarv					452.367 452.178			
<u>IV</u>	<u> laterial Bour</u>	<u>iiuai y</u>				1096.996	402.170			

							Page	130	of 2	212
							rage	130	01 /	212
Written by:	Josep	h Sura	Date: 12/4/	2009	Reviewed by:	R. Kulas	singam/Jay Be	ech Date	12/8/2	009
Client:	Honeywell	Project:	Onondaga L	ake SC	A Final Design	Project/ F	roposal No.:	GJ4299	Task No.:	18
	1098.501	452.161				1198.498	456.779			
	1117.028	451.951				1217.007	456.570			
	1118.528	451.934				1218.501	456.553			
	1137.002	451.725				1237.005	456.344			
	1138.501	451.708				1238.511	456.327			
	1157.028	451.499				1257.007	456.118			
	1158.522	451.482				1258.507	456.101			
	1176.996	451.273				1277.005	455.891			
	1178.496	451.256				1278.505	455.874			
	1197.028	451.046				1297.013	455.665			
	1198.522	451.029				1298.513	455.648			
	1217.001	450.820				1317.005	455.439			
	1218.501	450.803				1318.505	455.422			
	1237.022	450.594				1337.014	455.213			
	1238.515	450.577				1338.507	455.196			
	1257.007	450.368				1357.006	454.986			
	1258.501	450.351				1358.511	454.969			
	1277.022	450.141				1377.021	454.760			
	1278.522	450.124				1378.513	454.743			
	1297.002	449.915				1400.000	454.500			
	1298.502	449.898								
	1317.028	449.689			M	laterial Bou	ndary			
	1318.522	449.672				1038.000	458.845			
	1337.008	449.463				1057.013	458.630			
	1338.502	449.446				1058.513	458.613			
	1357.022	449.236				1077.006	458.404			
	1358.522	449.219				1078.505	458.387			
	1377.008	449.010				1097.013	458.178			
	1378.508	448.993				1098.513	458.161			
	1400.000	448.750				1117.011	457.951			
						1118.499	457.934			
	<u> laterial Bou</u>	<u>ndary</u>				1137.020	457.725			
	1038.000	458.595				1138.507	457.708			
	1057.013	458.380				1157.005	457.499			
	1058.512	458.363				1158.499	457.482			
	1077.005	458.154				1177.013	457.273			
	1078.505	458.137				1178.519	457.255			
	1097.013	457.928				1197.006	457.046			
	1098.513	457.911				1198.499	457.029			
	1117.011	457.701				1217.007	456.820			
	1118.498	457.685				1218.501	456.803			
	1137.019	457.475				1237.006	456.594			
	1138.507	457.458				1238.511	456.577			
	1157.005	457.249				1257.007	456.368			
	1158.498	457.232				1258.507	456.351			
	1177.013	457.023				1277.005	456.141			
	1178.518	457.006				1278.505	456.124			
	1197.005	1011000				1276.505	455.915			

							D		Sultailts	212
							Page	131	of 2	212
Written by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ech Date:	12/8/2	009
Client:	Honeywell	Project:	Onond	laga Lake SC	CA Final Design	Project/ F	Proposal No.:	GJ4299	Task No.:	18
	1298.514	455.898				1098.505	439.911			
	1317.005	455.689				1117.012	439.701			
	1318.505	455.672				1118.511	439.684			
	1337.014	455.463				1137.005	439.475			
	1338.507	455.446				1138.505	439.458			
	1357.006	455.236				1157.006	439.249			
	1358.511	455.219				1158.500	439.232			
	1377.021	455.010				1176.999	439.023			
	1378.514	454.993				1178.492	439.006			
	1400.000	454.750				1197.012	438.796			
	1400.000	454.750				1197.012	438.779			
N /	latarial Day									
	laterial Bour					1217.005	438.570			
	958.000	435.500				1218.499	438.553			
	997.000	435.059				1237.000	438.344			
	998.500	435.042				1238.506	438.327			
	1037.000	434.606				1257.009	438.118			
	1038.494	434.589				1258.509	438.101			
	1077.000	434.154				1277.013	437.891			
	1078.500	434.137				1278.512	437.874			
	1117.000	433.701				1296.975	437.665			
	1118.494	433.684				1298.469	437.649			
	1156.994	433.249				1317.013	437.439			
	1158.494	433.232				1318.507	437.422			
	1197.006	432.796				1336.969	437.213			
	1198.500	432.779				1338.469	437.196			
	1236.994	432.344				1357.000	436.986			
	1238.494	432.327				1358.510	436.969			
	1277.007	431.891				1376.969	436.761			
	1277.507	431.874				1378.475	436.743			
	1317.007					1400.000				
		431.439				1400.000	436.500			
	1318.507	431.422				Antonial Day				
	1357.000	430.986			<u>IV</u>	<u> 1aterial Bou</u>				
	1358.499	430.969				958.000	435.750			
	1400.000	430.500				997.000	435.309			
		_				998.500	435.292			
	<u>laterial Bour</u>					1037.000	434.856			
	978.000	441.274				1038.494	434.839			
	997.000	441.059				1077.000	434.404			
	998.500	441.042				1078.500	434.387			
	1017.008	440.832				1117.001	433.951			
	1018.508	440.816				1118.494	433.934			
	1037.000	440.606				1156.994	433.499			
	1038.500	440.589				1158.494	433.482			
	1057.015	440.380				1197.007	433.046			
	1058.508	440.363				1198.500	433.029			
	1077.006	440.154				1236.994	432.594			
	1077.000	440.134				1238.494	432.577			
	1096.999	439.928				1277.007	432.141			

								COL	isuitani	LS
							Page	132	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ech Date	12/3	8/2009
Client:	Honeywell	Project:	Ono	ndaga Lake SO	CA Final Design	Project/ I	Proposal No.:	GJ4299	Task No	.: 18
	1278.507	432.124								
	1317.007	431.689			N	laterial Bou	ındarv			
	1318.507	431.672			<u>1V</u>	1317.007	431.439			
	1357.000	431.236				1317.007	431.689			
	1358.500	431.219				1317.007	437.439			
	1400.000	430.750				1317.013	437.439			
	1400.000	430.730				1317.013	437.009			
<u>N</u>	laterial Bou	<u>ndary</u>			<u>N</u>	laterial Bou				
	895.681	432.081				1318.507	431.422			
	953.504	431.272				1318.507	431.672			
	1400.000	425.200				1318.507	437.422			
						1318.507	437.672			
<u>N</u>	laterial Bour				N.	Actorial Day	un dom (
	661.000	436.500			<u>IV</u>	<u>laterial Bou</u>				
	748.000	412.600				1077.000	434.154			
	789.000	386.700				1077.000	434.404			
	835.000	386.800				1077.006	440.154			
	980.000	376.600								
	1400.000	367.800			<u>N</u>	<u>laterial Bou</u>				
						1078.494	440.137			
<u>IV</u>	laterial Bou					1078.500	434.387			
	942.667	435.500				1078.500	434.137			
	947.793	433.500								
	953.504	431.272			<u>IV</u>	<u>laterial Bou</u>				
						1117.000	433.701			
<u>IV</u>	laterial Bou					1117.001	433.951			
	1357.000	430.986				1117.012	439.701			
	1357.000	431.236				1117.012	439.951			
	1357.000	436.986								
	1357.000	437.236			<u>N</u>	<u>laterial Bou</u>				
						1118.494	433.684			
<u>N</u>	<u>laterial Bou</u>					1118.494	433.934			
	1358.499	430.969				1118.511	439.684			
	1358.500	431.219				1118.512	439.934			
	1358.510	436.969								
	1358.510	437.219			<u>N</u>	<u>laterial Bou</u>	<u>ındary</u>			
						1156.994	433.249			
M	<u>laterial Bou</u>	ndar <u>y</u>				1156.994	433.499			
	1277.007	431.891				1157.006	439.249			
	1277.007	432.141				1157.006	439.499			
	1277.013	437.891								
	1277.013	438.141			N	laterial Bou	ındary			
					<u></u>	1158.494	433.232			
N/	laterial Bou	ndarv				1158.494	433.482			
<u></u>	1278.507	431.874				1158.500	439.232			
	1278.507	432.124				1158.500	439.482			
	1278.512	437.874					100.102			
	1278.512	438.124			N.	laterial Bou	ındarv			
	1210.010	700.124			<u>IV</u>	iatoriai DUL	ii iuui y			

						Page	133	of	212
Written by:	Josep	oh Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beed	ch Date:	12/8	3/2009
Client:	Honeywell	Project:	Onondaga Lake SC	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.	: 18
	1197.006	432.796			1296.975	437.665			
	1197.007	433.046			1296.975	437.915			
	1197.012	438.796			1296.975	443.665			
	1197.013	439.046			1296.975	443.915			
М	aterial Bour	ndary		Ma	aterial Bou	ndary			
	1198.500	432.779			1298.469	437.649			
	1198.500	433.029		•	1298.469	437.899			
	1198.512	438.779		•	1298.475	443.648			
	1198.512	439.029			1298.475	443.898			
	aterial Bour	<u>ndary</u>		Ma	aterial Bou	<u>ndary</u>			
	1236.994	432.344			1336.969	437.213			
	1236.994	432.594			1336.969	437.463			
	1237.000	438.344			1336.981	443.213			
	1237.000	438.594		•	1336.981	443.463			
	aterial Bou	<u>ndary</u>		Ma	aterial Bou	<u>ndary</u>			
	1238.494	432.327		•	1338.469	437.196			
	1238.494	432.577			1338.469	437.446			
	1238.506	438.327			1338.481	443.196			
	1238.506	438.577		•	1338.481	443.446			
	aterial Bou				aterial Bou				
	997.000	435.059			1376.969	436.761			
	997.000	435.309			1376.969	437.011			
	997.000	441.059			1376.981	442.760			
•	997.000	441.309			1376.981	443.010			
	aterial Bou				aterial Bou				
	998.500	435.042			1378.475	436.743			
	998.500	435.292			1378.475	436.993			
	998.500	441.042			1378.481	442.743			
	998.500	441.292		•	1378.481	442.993			
	aterial Bour				aterial Bou				
	1037.000	434.606			1257.009	438.118			
	1037.000	434.856			1257.010	438.368			
	1037.000	440.606			1257.015	444.117			
	1037.000	440.856		•	1257.016	444.368			
	aterial Bour				aterial Bou				
	1038.494	434.589			1258.509	438.101			
	1038.494	434.839			1258.509	438.351			
	1038.500	440.589			1258.515	444.101			
	1038.500	440.839		•	1258.515	444.351			
<u>M</u>	aterial Bour	<u>ndary</u>		Ma	aterial Bou	<u>ndary</u>			

						Page	134	of	212
Written by:	Josep	oh Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ch Date:	12/8	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.	: 18
	1096.999	439.928			1017.008	440.832			
	1096.999	440.178			1017.009	441.083			
	1097.005	445.928			1017.014	446.832			
	1097.005	446.178			1017.014	447.082			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1098.505	439.911			1018.508	440.816			
	1098.506	440.161			1018.508	441.066			
	1098.523	445.910			1018.514	446.815			
	1098.524	446.160			1018.514	447.066			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1137.005	439.475			1057.015	440.380			
	1137.006	439.725			1057.015	440.630			
	1137.023	445.475			1057.021	446.380			
	1137.024	445.725			1057.021	446.630			
М	aterial Bou	ndarv		M	aterial Bou	ndarv			
	1138.505	439.458			1058.508	440.363			
	1138.505	439.708			1058.509	440.613			
	1138.511	445.458			1058.520	446.363			
	1138.511	445.708			1058.521	446.613			
М	aterial Bou	ndarv		M	aterial Bou	ndarv			
	1176.999	439.023			1037.015	446.606			
	1176.999	439.273			1037.016	446.856			
	1177.011	445.023			1037.021	452.606			
	1177.011	445.273			1037.022	452.856			
М	aterial Bou	ndarv		M	aterial Bou	ndarv			
	1178.492	439.006			1038.521	446.589			
	1178.492	439.256			1038.521	446.839			
	1178.494	445.006			1038.521	452.589			
	1178.494	445.256			1038.521	452.839			
М	aterial Bou	ndarv		M	aterial Bou	ndarv			
	1217.005	438.570			1077.016	446.154			
	1217.005	438.820			1077.016	446.404			
	1217.011	444.570			1077.021	452.154			
	1217.011	444.820			1077.022	452.404			
М	aterial Bou	ndarv		M	aterial Bou	ndarv			
	1218.499	438.553			1078.515	446.137			
	1218.499	438.803			1078.516	446.387			
	1218.511	444.553			1078.527	452.137			
	1218.511	444.803			1078.528	452.387			
M	aterial Bou	<u>ndary</u>		<u>M</u> :	aterial Bou	<u>ndary</u>			

						Page	135	of	212
Written by:	Joseph Sura		Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beed	ch Date:	12/8	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.	.: 18
	1117.022	445.701			1277.009	443.891			
	1117.022	445.951			1277.010	444.141			
	1117.028	451.701			1277.021	449.891			
	1117.028	451.951			1277.022	450.141			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1118.509	445.684			1278.515	443.874			
	1118.510	445.934			1278.516	444.124			
	1118.527	451.684			1278.521	449.874			
	1118.528	451.934			1278.522	450.124			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1157.009	445.249			1317.016	443.439			
	1157.010	445.499			1317.016	443.689			
	1157.027	451.249			1317.028	449.439			
	1157.028	451.499			1317.028	449.689			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1158.509	445.232			1318.515	443.422			
	1158.510	445.482			1318.516	443.672			
	1158.521	451.232			1318.521	449.422			
	1158.522	451.482			1318.522	449.672			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1197.022	444.796			1357.016	442.986			
	1197.022	445.046			1357.016	443.236			
	1197.028	450.796			1357.022	448.986			
	1197.028	451.046			1357.022	449.236			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1198.509	444.779			1358.516	442.969			
	1198.510	445.029			1358.516	443.219			
	1198.521	450.779			1358.521	448.969			
	1198.522	451.029			1358.522	449.219			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1237.016	444.344			1057.007	452.380			
	1237.016	444.594			1057.007	452.630			
	1237.022	450.344			1057.013	458.380			
	1237.022	450.594			1057.013	458.630			
М	aterial Bou	ndary		M	aterial Bou	ndary			
	1238.509	444.327			1058.501	452.363			
	1238.509	444.577			1058.501	452.613			
	1238.515	450.327			1058.512	458.363			
	1238.515	450.577			1058.513	458.613			
<u>M</u>	aterial Bou	<u>ndary</u>		<u>M</u>	aterial Bou	<u>ndary</u>			

							Page	136	of	2	12
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beecl	Date:	12	/8/20	09
Client:	Honeywell	Project:	Onoi	ıdaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task N	0.:	18
	1098.501	451.911				1257.007	450.118				
	1098.501	452.161				1257.007	450.368				
	1098.513	457.911				1257.007	456.118				
	1098.513	458.161				1257.007	456.368				
М	aterial Bour	ndary			Ma	aterial Bou	ndary				
	1096.995	451.928				1258.501	450.101				
	1096.996	452.178				1258.501	450.351				
	1097.013	457.928				1258.507	456.101				
	1097.013	458.178				1258.507	456.351				
М	aterial Bou	ndarv			Ma	aterial Bou	ndarv				
	1137.001	451.475				1297.001	449.665				
	1137.002	451.725				1297.002	449.915				
	1137.019	457.475				1297.013	455.665				
	1137.020	457.725				1297.014	455.915				
М	aterial Bour	ndarv			Ma	aterial Bou	ndarv				
	1138.501	451.458				1298.501	449.648				
	1138.501	451.708				1298.502	449.898				
	1138.507	457.458				1298.513	455.648				
	1138.507	457.708				1298.514	455.898				
М	aterial Bour	ndary			M	aterial Bou	ndary				
	1176.995	451.023				1337.008	449.213				
	1176.996	451.273				1337.008	449.463				
	1177.013	457.023				1337.014	455.213				
	1177.013	457.273				1337.014	455.463				
M	aterial Bour	ndary			M	aterial Bou	ndary				
	1178.495	451.006				1338.501	449.196				
	1178.496	451.256				1338.502	449.446				
	1178.518	457.006				1338.507	455.196				
	1178.519	457.255				1338.507	455.446				
М	aterial Bour	ndary			M	aterial Bou	ndary				
	1217.001	450.570				1377.008	448.760				
	1217.001	450.820				1377.008	449.010				
	1217.001	456.570				1377.000	454.760				
	1217.007	456.820				1377.021	455.010				
M	aterial Bour	ndary			NA:	aterial Bou	ndary				
	1218.501	450.553				1378.508	448.743				
	1218.501	450.803				1378.508	448.993				
	1218.501	456.553				1378.513	454.743				
	1218.501	456.803				1378.514	454.993				
<u>M</u>	aterial Bour	<u>ndary</u>			<u>M</u> a	aterial Bou	<u>ndary</u>				

consultants 137 of 212

						Page	137	of	212
Written by:	Josep	oh Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beecl	n Date:	12/	8/2009
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No	.: 18
	1077.005	458.154							
	1077.006	458.404		M	aterial Bou	ndary			
	1077.017	464.154			1277.005	455.891			
					1277.005	456.141			
M	laterial Bou	<u>ndary</u>			1277.011	461.891			
	1078.505	458.137							
	1078.505	458.387			<u>aterial Bou</u>				
	1078.517	464.137			1278.505	455.874			
					1278.505	456.124			
M	<u>laterial Bou</u>				1278.505	461.874			
	1117.011	457.701							
	1117.011	457.951			aterial Bou				
	1117.011	463.701			1317.005	455.439			
					1317.005	455.689			
<u>M</u>	laterial Bou				1317.011	461.439			
	1118.498	457.685							
	1118.499	457.934			aterial Bou				
	1118.511	463.684			1318.505	455.422			
	latarial Davi				1318.505	455.672			
IV	laterial Bou				1318.517	461.422			
	1157.005 1157.005	457.249 457.499		N 4.	otorial Bau	un dom (
	1157.005	463.249			<u>aterial Bou</u> 1357.006	454.986			
	1137.011	403.249			1357.006	455.236			
N	laterial Bou	ndarv			1357.000	460.986			
10	1158.498	457.232			1007.017	100.000			
	1158.499	457.482		M	aterial Bou	ndary			
	1158.511	463.232			1358.511	454.969			
					1358.511	455.219			
M	laterial Bou	ndarv			1358.511	460.969			
_	1197.005	456.796							
	1197.006	457.046		M	aterial Bou	ndary			
	1197.017	462.796			937.818	437.500			
				!	940.000	436.600			
M	laterial Bou	<u>ndary</u>		!	942.667	435.500			
	1198.498	456.779							
	1198.499	457.029		<u>M</u> :	aterial Bou				
	1198.517	462.779		!	934.712	437.500			
					937.818	437.500			
M	laterial Bou				938.818	437.500			
	1237.005	456.344			941.000	436.600			
	1237.006	456.594			943.667	435.500			
	1237.024	462.344			948.793	433.500			
					953.000	433.500			
M	laterial Bou				955.504	434.501			
	1238.511	456.327			958.000	435.500			
	1238.511	456.577			958.000	435.750			
	1238.517	462.327		!	958.000	441.500			

						Page	138	of	212
****							150		
Written by:	Josep	h Sura	Date: 12/4/20	Reviewed by:	R. Kulas	ingam/Jay Bee	ch Date:	12/8/2	2009
Client:	Honeywell	Project:	Onondaga Lak	se SCA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	978.000	441.274			1400.000	427.700			
	978.000	441.524			1400.000	430.500			
	978.000	447.274			1400.000	430.750			
	998.000	447.048			1400.000	436.500			
	998.000	447.298			1400.000	436.750			
	998.000	453.048			1400.000	442.500			
	1018.000	452.821			1400.000	442.750			
	1018.000	453.071			1400.000	448.500			
	1018.000	458.821			1400.000	448.750			
						454.500			
	1038.000	458.595			1400.000				
	1038.000	458.845			1400.000	454.750			
	1038.000	464.595			1400.000	460.500			
	1077.017	464.154			1400.000	463.500			
	1078.517	464.137			1038.000	467.595			
	1117.011	463.701			1018.000	461.821			
	1118.511	463.684			998.000	456.048			
	1157.011	463.249			978.000	450.274			
	1158.511	463.232			958.430	444.500			
	1197.017	462.796							
	1198.517	462.779		<u> </u>	<u>iezo Line</u>				
	1237.024	462.344		_	955.504	434.501			
	1238.517	462.327			958.000	434.500			
	1277.011	461.891			1400.000	428.700			
	1278.505	461.874							
	1317.011	461.439		V	Vater Table				
	1318.517	461.422		<u>•</u>	715.262	421.594			
	1357.017	460.986			900.000	417.000			
	1358.511	460.969			935.504	416.272			
	1400.000	460.500			1400.000	410.200			
Е	xternal Bou	ndary		F	ocus/Block	Search Point			
	934.712	437.500		_	1017.040	441.054			
	921.920	437.500							
	909.818	437.500		F	ocus/Block	Search Point			
	899.186	433.425		<u>-</u>	1018.472	446.848			
	895.681	432.081			1010.472	440.040			
	661.000	436.500		F	ocus/Block	Search Point			
	638.000	432.900		<u></u>	1037.037	446.830			
	555.000	396.200			1037.037	440.000			
				F	oous/Dlook	Coorah Daint			
	483.000	398.300				Search Point			
	461.000	390.500			1038.507	452.594			
	307.000	386.700		_		0			
	277.000	373.000		<u>F</u>		Search Point			
	1.726	374.590			1057.020	452.618			
	1.726	167.800				_			
	1400.000	167.800		<u>F</u>		Search Point			
	1400.000	367.800			1058.459	458.411			
	1400.000	425.200							

							Page	139	of	212
Written by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Beech	Date:	12/8/2	009
Client:	Honeywell	Project:	Onor	ndaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	ocus/Block (1077.037	Search Point 458.372				1358.521	448.969			
	ocus/Block : 1078.405	Search Point 464.138				<u>ipport</u> 1358.521 1400.000	448.969 448.500			
	upport 1358.511 1400.000	460.969 460.500				<u>upport</u> 1400.000 1400.000	442.500 436.750			
	upport 1400.000 1400.000	454.750 460.500				upport 1400.000 1378.475	436.750 436.993			
	<u>upport</u> 1400.000 1358.511	454.750 455.219								
	<u>upport</u> 1358.511 1358.511	455.219 460.969								
	upport 1378.513 1378.508	454.743 448.993								
	upport 1378.508 1400.000	448.993 448.750								
	upport 1400.000 1400.000	448.750 454.500								
	upport 1400.000 1378.513	454.500 454.743								
	upport 1400.000 1400.000	448.500 442.750								
	upport 1400.000 1358.516	442.750 443.219								
	<u>upport</u> 1358.516	443.219								

consultants

Page 140 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside_cover_liner_i_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined

Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

141

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.661010

Axis Location: 979,417, 595,121

Left Slip Surface Endpoint: 937.107, 438.207

Right Slip Surface Endpoint: 1079.562,

Page

467.125

Resisting Moment=9.57242e+006 lb-ft Driving Moment=5.76303e+006 lb-ft

Method: janbu simplified

FS: 1.590890

Axis Location: 979.417, 595.121

Left Slip Surface Endpoint: 937.107, 438.207 Right Slip Surface Endpoint: 1079.562,

467.125

Resisting Horizontal Force=60808.1 lb Driving Horizontal Force=38222.6 lb

Method: spencer

FS: 2.775020

Axis Location: 971.117, 609.951

Left Slip Surface Endpoint: 921.922, 437.500 Right Slip Surface Endpoint: 1079.561,

467.125

Resisting Moment=1.14748e+007 lb-ft Driving Moment=4.13504e+006 lb-ft Resisting Horizontal Force=66582.4 lb Driving Horizontal Force=23993.5 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 3201 Number of Invalid Surfaces: 1799

Error Codes:

Error Code -108 reported for 3 surfaces Error Code -110 reported for 467 surfaces Error Code -111 reported for 39 surfaces Error Code -112 reported for 1290 surfaces

Method: janbu simplified

Number of Valid Surfaces: 3137 Number of Invalid Surfaces: 1863

Error Codes:

Error Code -108 reported for 3 surfaces Error Code -110 reported for 467 surfaces Error Code -111 reported for 66 surfaces Error Code -112 reported for 1327 surfaces

Method: spencer

Number of Valid Surfaces: 2041 Number of Invalid Surfaces: 2959

consultants

-				Page		142	OÎ.	212		
Written by:	Joseph Sura		Date: 12/4/2009 R		Reviewed by:	R. Kulasingam/Jay Beech		Date:	12/	8/2009
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	G	J4299	Task No	o.: 18

Error Codes:

Error Code -108 reported for 443 surfaces

Error Code -110 reported for 467 surfaces

Error Code -111 reported for 408 surfaces Error Code -112 reported for 1641 surfaces

143

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18

Slide Analysis Information

Document Name

File Name: northside cover global su lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)

Strength Type: Discrete function

Unit Weight: 82 lb/ft3 Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3

Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

144

consultants of

212

Written 12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.452590

Center: 968.333, 521.413

Radius: 115.992

Left Slip Surface Endpoint: 894.314, 432.107

Right Slip Surface Endpoint: 1070.888,

467.223

Resisting Moment=1.51229e+007 lb-ft

Driving Moment=1.0411e+007 lb-ft

Page

Method: janbu simplified

FS: 1.378860

Center: 968.333, 521.413

Radius: 122.851

Left Slip Surface Endpoint: 883.761, 432.306

Right Slip Surface Endpoint: 1078.544,

467.136

Resisting Horizontal Force=133358 lb Driving Horizontal Force=96715.9 lb

Method: spencer

FS: 1.447420

Center: 968.333, 521.413

Radius: 115.992

Left Slip Surface Endpoint: 894.314, 432.107

Right Slip Surface Endpoint: 1070.888,

467.223

Resisting Moment=1.50691e+007 lb-ft Driving Moment=1.0411e+007 lb-ft Resisting Horizontal Force=111172 lb

Driving Horizontal Force=76807 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2232 Number of Invalid Surfaces: 2608

Error Codes:

Error Code -102 reported for 22 surfaces Error Code -106 reported for 75 surfaces

Error Code -107 reported for 973 surfaces

Error Code -110 reported for 8 surfaces

Error Code -112 reported for 409 surfaces Error Code -113 reported for 183 surfaces

Error Code -116 reported for 14 surfaces

Error Code -1000 reported for 924 surfaces

Method: janbu simplified

Number of Valid Surfaces: 2153 Number of Invalid Surfaces: 2687

Error Codes:

Error Code -102 reported for 22 surfaces

Error Code -106 reported for 75 surfaces

Error Code -107 reported for 973 surfaces

Error Code -108 reported for 75 surfaces

Error Code -110 reported for 8 surfaces

145

GJ4299

Page

Project/ Proposal No.:

consultants of

Task No.:

212

18

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Onondaga Lake SCA Final Design

Error Code -111 reported for 9 surfaces Error Code -112 reported for 404 surfaces Error Code -113 reported for 183 surfaces

Project:

Error Code -116 reported for 14 surfaces Error Code -1000 reported for 924 surfaces

Method: spencer

Honeywell

Number of Valid Surfaces: 1214 Number of Invalid Surfaces: 3626

Error Codes:

Client:

Error Code -102 reported for 22 surfaces Error Code -106 reported for 75 surfaces Error Code -107 reported for 973 surfaces

Error Code -108 reported for 103 surfaces Error Code -110 reported for 8 surfaces

Error Code -111 reported for 906 surfaces

Error Code -112 reported for 418 surfaces

Error Code -113 reported for 183 surfaces

Error Code -116 reported for 14 surfaces

Error Code -1000 reported for 924 surfaces

146

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18

Slide Analysis Information

Document Name

File Name: northside cover longterm lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off

Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (Drained)

Strength Type: Mohr-Coulomb

Unit Weight: 82 lb/ft3 Cohesion: 0 psf

Friction Anale: 34 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material (Long)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees

consultants

Page 147 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3

Cohesion: 0 psf Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube (Long Term)

Geotube (Long Term)
Support Type: GeoTextile
Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 0.1 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.826860

Center: 878.950, 504.182

Radius: 73.340

Left Slip Surface Endpoint: 903.345, 435.019 Right Slip Surface Endpoint: 907.036, 436.434 Resisting Moment=403.398 lb-ft Driving Moment=220.815 lb-ft

Method: janbu simplified

FS: 1.826960

Center: 878.950, 504.182

Radius: 73.340

Left Slip Surface Endpoint: 903.345, 435.019 Right Slip Surface Endpoint: 907.036, 436.434

Resisting Horizontal Force=5.13684 lb Driving Horizontal Force=2.81169 lb

Method: spencer

FS: 1.827030

Center: 878.950, 504.182

Radius: 73.340

Left Slip Surface Endpoint: 903.345, 435.019 Right Slip Surface Endpoint: 907.036, 436.434

Resisting Moment=403.436 lb-ft Driving Moment=220.815 lb-ft

Resisting Horizontal Force=5.13679 lb Driving Horizontal Force=2.81155 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 2202 Number of Invalid Surfaces: 2638

Error Codes:

Error Code -102 reported for 22 surfaces
Error Code -106 reported for 75 surfaces
Error Code -107 reported for 973 surfaces
Error Code -110 reported for 8 surfaces
Error Code -112 reported for 439 surfaces
Error Code -113 reported for 183 surfaces
Error Code -116 reported for 14 surfaces
Error Code -1000 reported for 924 surfaces

Method: janbu simplified

Number of Valid Surfaces: 2209 Number of Invalid Surfaces: 2631

Error Codes:

Error Code -102 reported for 22 surfaces Error Code -106 reported for 75 surfaces Error Code -107 reported for 973 surfaces Error Code -108 reported for 4 surfaces Error Code -110 reported for 8 surfaces Error Code -111 reported for 2 surfaces

148

Page

consultants of

212

Written 12/8/2009 Joseph Sura 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: Date: by: Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Error Code -112 reported for 426 surfaces Error Code -113 reported for 183 surfaces Error Code -116 reported for 14 surfaces Error Code -1000 reported for 924 surfaces

Method: spencer

Number of Valid Surfaces: 2190 Number of Invalid Surfaces: 2650

Error Codes:

Error Code -102 reported for 22 surfaces
Error Code -106 reported for 75 surfaces
Error Code -107 reported for 973 surfaces
Error Code -108 reported for 6 surfaces
Error Code -110 reported for 8 surfaces
Error Code -111 reported for 3 surfaces
Error Code -112 reported for 442 surfaces
Error Code -113 reported for 183 surfaces
Error Code -116 reported for 14 surfaces
Error Code -1000 reported for 924 surfaces

149

consultants of

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: northside_cover_external_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search

Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil
Strength Type: Mohr-Coulomb
Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)

Strength Type: Discrete function Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

consultants

150 of 212 Page

Written 12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 2.836910

Center: 900.517, 1215.482

Radius: 814.973

Left Slip Surface Endpoint: 661.000, 436.500 Right Slip Surface Endpoint: 1219.532,

465.541

Resisting Moment=2.96961e+008 lb-ft

Driving Moment=1.04678e+008 lb-ft

Method: janbu simplified

FS: 2.825190

Center: 900.517, 1215.482

Radius: 814.973

Left Slip Surface Endpoint: 661.000, 436.500 Right Slip Surface Endpoint: 1219.532,

465.541

Resisting Horizontal Force=357282 lb

Driving Horizontal Force=126463 lb

Method: spencer

FS: 2.836810

Center: 900.517, 1215.482

Radius: 814.973

Left Slip Surface Endpoint: 661.000, 436.500

Right Slip Surface Endpoint: 1219.532,

465.541

Resisting Moment=2.96952e+008 lb-ft Driving Moment=1.04678e+008 lb-ft Resisting Horizontal Force=357290 lb

Driving Horizontal Force=125948 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4101 Number of Invalid Surfaces: 14390

Error Codes:

Error Code -101 reported for 229 surfaces Error Code -107 reported for 114 surfaces Error Code -110 reported for 5896 surfaces Error Code -113 reported for 51 surfaces Error Code -116 reported for 4 surfaces Error Code -1000 reported for 8096 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4101 Number of Invalid Surfaces: 14390

Error Codes:

Error Code -101 reported for 229 surfaces Error Code -107 reported for 114 surfaces Error Code -110 reported for 5896 surfaces Error Code -113 reported for 51 surfaces Error Code -116 reported for 4 surfaces Error Code -1000 reported for 8096 surfaces

151

Page

consultants of

212

Written

12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by: Client: Project: Project/ Proposal No.: GJ4299 Honeywell Onondaga Lake SCA Final Design Task No.: 18

Method: spencer

Number of Valid Surfaces: 3925 Number of Invalid Surfaces: 14566

Error Codes:

Error Code -101 reported for 229 surfaces Error Code -107 reported for 114 surfaces Error Code -108 reported for 1 surface Error Code -110 reported for 5896 surfaces Error Code -111 reported for 175 surfaces Error Code -113 reported for 51 surfaces Error Code -116 reported for 4 surfaces Error Code -1000 reported for 8096 surfaces

consultants

Page 152 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name:

northside_cover_external_longterm_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil
Strength Type: Mohr-Coulomb
Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Conesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (Drained)
Strength Type: Mohr-Coulomb

Unit Weight: 82 lb/ft3 Cohesion: 0 psf

Friction Angle: 34 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material (Long)
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

consultants

Page 153 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube (Long Term)

Geotube (Long Term)
Support Type: GeoTextile
Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 0.1 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 5.637060

Center: 867.880, 925.386

Radius: 530.856

Left Slip Surface Endpoint: 661.000, 436.500

Right Slip Surface Endpoint: 1134.774,

466,500

Resisting Moment=3.56667e+008 lb-ft Driving Moment=6.32717e+007 lb-ft

Method: janbu simplified

FS: 5.443350

Center: 867.880, 892.619

Radius: 500.843

Left Slip Surface Endpoint: 661.000, 436.500 Right Slip Surface Endpoint: 1131.132,

466.541

Resisting Horizontal Force=663124 lb Driving Horizontal Force=121823 lb

Method: spencer

FS: 5.646630

Center: 867.880, 925.386

Radius: 530.856

Left Slip Surface Endpoint: 661.000, 436.500

Right Slip Surface Endpoint: 1134.774,

466.500

Resisting Moment=3.57272e+008 lb-ft Driving Moment=6.32717e+007 lb-ft Resisting Horizontal Force=650912 lb Driving Horizontal Force=115274 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 634 Number of Invalid Surfaces: 4206

Error Codes:

Error Code -101 reported for 9 surfaces
Error Code -103 reported for 1 surface
Error Code -107 reported for 137 surfaces
Error Code -110 reported for 734 surfaces

Error Code -112 reported for 47 surfaces Error Code -1000 reported for 3278 surfaces

Method: janbu simplified

Number of Valid Surfaces: 635 Number of Invalid Surfaces: 4205

Error Codes:

Error Code -101 reported for 9 surfaces Error Code -103 reported for 1 surface Error Code -107 reported for 137 surfaces

Error Code -110 reported for 734 surfaces

154

Page

consultants of

212

Written 12/8/2009 Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: by: Client: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Honeywell Project: Task No.: 18

Error Code -112 reported for 46 surfaces Error Code -1000 reported for 3278 surfaces

Method: spencer

Number of Valid Surfaces: 622 Number of Invalid Surfaces: 4218

Error Codes:

Error Code -101 reported for 9 surfaces
Error Code -103 reported for 1 surface
Error Code -107 reported for 137 surfaces
Error Code -108 reported for 12 surfaces
Error Code -110 reported for 734 surfaces
Error Code -112 reported for 47 surfaces
Error Code -1000 reported for 3278 surfaces

consultants

						Page	155	of	212
Written by:	Joseph S	ura	Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	1	12/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task l	No.: 18

Cross-Section B-B: Before Placement of Final Cover

consultants

Page 156 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest nocover tube 04 lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil
Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

157

consultants of

212 Page

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Friction Angle: 0.1 degrees Water Surface: Water Table Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 6.159960

Axis Location: 330,455, 740,615

Left Slip Surface Endpoint: 208.000, 436.197 Right Slip Surface Endpoint: 500.516, 460.000 Left Slope Intercept: 208.000 442.000 Right Slope Intercept: 500.516 460.000 Resisting Moment=4.34696e+007 lb-ft Driving Moment=7.0568e+006 lb-ft

Method: janbu simplified

FS: 6.595000

Axis Location: 343.773, 767.305

Left Slip Surface Endpoint: 208.000, 436.161 Right Slip Surface Endpoint: 527.224, 460.000

Left Slope Intercept: 208.000 442.000 Right Slope Intercept: 527.224 460.000 Resisting Horizontal Force=148715 lb Driving Horizontal Force=22549.7 lb

Method: spencer

Resisting Moment=0 lb-ft Driving Moment=0 lb-ft

Resisting Horizontal Force=0 lb Driving Horizontal Force=0 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1528 Number of Invalid Surfaces: 3472

Error Codes:

Error Code -107 reported for 1664 surfaces Error Code -108 reported for 1772 surfaces Error Code -112 reported for 36 surfaces

Method: janbu simplified

Number of Valid Surfaces: 1256 Number of Invalid Surfaces: 3744

Error Codes:

Error Code -107 reported for 1664 surfaces Error Code -108 reported for 2054 surfaces Error Code -112 reported for 26 surfaces

Method: spencer

Number of Valid Surfaces: 0 Number of Invalid Surfaces: 5000

Error Codes:

Error Code -107 reported for 1664 surfaces Error Code -108 reported for 2299 surfaces Error Code -111 reported for 1001 surfaces Error Code -112 reported for 36 surfaces

consultants

158 of 212 Page Written 12/8/2009 Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: by: Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18 **List of All Coordinates** Material Boundary 188.000 430.000 Block Search Polyline 824.000 430.000 208.000 436.003 1161.000 433.000 466.201 436.248 1236.000 432.000 1400.000 431.000 Material Boundary 1778.100 431.000 0.000 427.500 122.000 424.650 Material Boundary 122.359 424.645 188.000 430.250 177.171 423.910 506.200 430.250 204.000 423.550 507.700 430.250 267.961 422.659 824.000 430.250 405.000 420.750 824.200 430.252 472.000 422.050 825.700 430.265 768,000 422,250 1142.148 433.082 805.000 423.150 1143.812 433.097 925.000 423.250 1161.000 433.250 1165.000 428.350 1236.000 432.250 1347.000 425.150 1400.000 431.250 1436.000 426.150 1460.199 431.250 1642.000 424.450 1461.784 431.250 1786.163 426.261 1778.100 431.250 1841.000 426.950 1841.123 426.953 **Material Boundary** 208.000 436.000 Material Boundary 506.200 436.000 122,000 424.500 507.700 436.000 122.359 424.645 824.000 436.000 824.200 436.002 Material Boundary 825.700 436.015 180.062 426.825 1142.148 438.832 347.000 423.600 1143.812 438.847 600,000 423.600 1161.000 439.000 424.000 640.000 1236.000 438.000 728.000 424.000 1400.000 437.000 431.000 1102.000 1460.199 437.000 1176.000 431.000 1461.784 437.000 1356.000 428.000 1758.000 437.000 1474.000 427,500 1619.000 426.500 **Material Boundary** 1689.000 426.500 208,000 436.250 1785.758 427.937 466,200 436.250 467.700 436.250 Material Boundary 724.201 436.250 1827.000 432.300 725.697 436.250 1841.123 426.953 824.000 436.250

982.197

437.658

									isuitali	เร	
							Page	159	of	21	2
Written by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Bee	ech Date	: 12/	8/200	9
Client:	Honeywell	Project:	Ono	ndaga Lake SO	CA Final Design	Project/ P	Additional No.: GJ4299 Task	Task No).:	18	
	983.718	437.672				824.000	448 000				
	1161.000	439.250				832.191					
	1236.000	438.250				833.715					
	1240.193	438.224				1134.188					
	1241.724	438.215				1135.719					
	1400.000	437.250				1161.000					
	1498.182	437.250				1236.000					
	1499.766	437.250				1400.000					
	1758.000	437.250				1436.205					
	1700.000	407.200				1437.780					
N	aterial Bou	ndarv				1718.000					
<u>IV</u>	228.000	442.000				17 10.000	443.000				
	466.200	442.000			N	Astorial Bou	ndary				
	467.700	442.000			<u>IX</u>	248.000					
	724.201	442.000				493.200					
	725.697	442.000				493.200					
						738.195					
	824.000	442.000									
	982.197	443.408				739.701					
	983.718	443.422				824.000					
	1161.000	445.000				983.182					
	1236.000	444.000				984.724					
	1240.193	443.974				1161.000					
	1241.724	443.965				1228.192					
	1400.000	443.000				1229.723					
	1498.182	443.000				1236.000					
	1499.766	443.000				1400.000					
	1738.000	443.000				1473.204					
						1474.788					
<u>N</u>	<u> 1aterial Bou</u>					1718.000	449.250				
	228.000	442.250									
	530.200	442.250			<u>N</u>	<u> 1aterial Bou</u>					
	531.700	442.250				268.000					
	824.000	442.250				493.200					
	832.191	442.323				494.700	454.000				
	833.715	442.336				738.195	454.000				
	1134.188	445.011				739.701	454.000				
	1135.719	445.025				824.000	454.000				
	1161.000	445.250				983.182	455.417				
	1236.000	444.250				984.724	455.431				
	1400.000	443.250				1161.000	457.000				
	1436.205	443.250				1228.192					
	1437.780	443.250				1229.723	456.084				
	1738.000	443.250				1236.000	456.000				
						1400.000	455.000				
M	aterial Bou	ndarv				1473.204	455.000				
<u></u>	248.000	448.000				1474.788	455.000				
	530.200	448.000				1698.000	455.000				
	531.700	448.000									
	33 30	5.550									

							Page	160	of	212
Written							-			
by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kula	asingam/Jay Bee	ch Date:	12/8/2	2009
Client:	Honeywell	Project:	Ono	ndaga Lake SC	CA Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18
М	aterial Bou	ndary			N	/laterial Bo	undary			
	268.000	454.250			_	554.200	454.250			
	554.200	454.250				554.200	460.000			
	555.700	454.250								
	824.000	454.250			<u>N</u>	/laterial Bo	<u>undary</u>			
	840.193	454.394				555.700	454.250			
	841.706	454.408				555.700	460.000			
	1126.178	456.940								
	1127.707	456.954			N	/laterial Bo	undary			
	1161.000	457.250			_	824.200	430.252			
	1236.000	456.250				824.200	436.002			
	1400.000	455.250								
	1412.195	455.250			N	/laterial Bo	undary			
	1413.743	455.250			_	825.700	430.265			
	1698.000	455.250				825.700	436.015			
М	aterial Bou	ndary			N	/laterial Bo	undary			
	506.200	430.250			_	724.201	436.250			
	506.200	436.000				724.201	442.000			
М	aterial Bou	ndary			N	/laterial Bo	undary			
	507.700	430.250			_	725.697	436.250			
	507.700	436.000				725.697	442.000			
M	aterial Bou	ndary			<u>N</u>	/laterial Bo	undary			
	466.200	436.250				738.195	448.250			
	466.200	442.000				738.195	454.000			
M	aterial Bou	ndary			<u>N</u>	/laterial Bo	undary			
	467.700	436.250				739.701	448.250			
	467.700	442.000				739.701	454.000			
M	aterial Bou	<u>ndary</u>			<u>N</u>	/laterial Bo				
	530.200	442.250				840.193	454.394			
	530.200	448.000				840.193	460.144			
<u>M</u>	aterial Bou				<u>N</u>	/laterial Bo				
	531.700	442.250				841.706	454.408			
	531.700	448.000				841.706	460.158			
<u>M</u>	aterial Bou				<u>N</u>	/laterial Bo	<u>undary</u>			
	493.200	448.250				832.191	442.323			
	493.200	454.000				832.191	448.073			
	aterial Bou				<u>N</u>	/laterial Bo				
	494.700	448.250				833.715	442.336			
	494.700	454.000				833.715	448.086			

Geosyntec consultants

							Page	161	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Bee	ech Date:	12/8/	2009
Client:	Honeywell	Project:	Onoi	ndaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
N	Material Bou	ndarv			Ma	aterial Bou	ndarv			
<u>-</u>	982.197	437.658				1228.192	450.354			
	982.197	443.408				1228.192	456.104			
<u>N</u>	Material Bou	<u>ndary</u>			Ma	aterial Bou	<u>ndary</u>			
	983.182	449.667				1229.723	450.334			
	983.182	455.417			,	1229.723	456.084			
<u>N</u>	Material Bou	<u>ndary</u>				aterial Bou	<u>ndary</u>			
	983.718	437.672				1240.193	438.224			
	983.718	443.422			,	1240.193	443.974			
<u>N</u>	Material Bou	<u>ndary</u>			Ma	aterial Bou	<u>ndary</u>			
	984.724	449.681				1241.724	438.215			
	984.724	455.431				1241.724	443.965			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
_	1134.188	445.011				1412.195	455.250			
	1134.188	450.761				1412.195	461.000			
٨	Material Bou	ndary			Ma	aterial Bou	ndary			
_	1135.719	445.025				1413.743	455.250			
	1135.719	450.775				1413.743	461.000			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
_	1436.205	443.250				1460.199	431.250			
	1436.205	449.000			,	1460.199	437.000			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
_	1437.780	443.250				1461.784	431.250			
	1437.780	449.000			,	1461.784	437.000			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
_	1126.178	456.940				1498.182	437.250			
	1126.178	462.690				1498.182	443.000			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
_	1127.707	456.954				1499.766	437.250			
	1127.707	462.704				1499.766	443.000			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
=	1142.148	433.082				1473.204	449.250			
	1142.148	438.832				1473.204	455.000			
N	Material Bou	ndary			Ma	aterial Bou	ndary			
<u></u>	1143.812	433.097				1474.788	449.250			
	1143.812	438.847				1474.788	455.000			

									isuitairi	
							Page	162	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beo	ech Date:	12/8	3/2009
Client:	Honeywell	Project:	Onone	daga Lake SC	CA Final Design	Project/ P	Proposal No.:	GJ4299	Task No.	: 18
М	aterial Bou	ndarv				1792.668	429.000			
	165.176	430.000				1790.000	428.000			
	177.171	423.910				1785.758	427.937			
						1785.600	428.000			
М	aterial Bou	ndary				1783.100	429.000			
	0.000	387.500				1780.600	430.000			
	268.000	387.845				1778.100	431.000			
	1979.000	390.050				1778.100	431.250			
						1778.100	437.000			
М	aterial Bou	ndarv				1758.000	437.000			
	1786.163	426.261				1758.000	437.250			
	1799.372	431.000				1758.000	443.000			
						1738.000	443.000			
М	aterial Bou	ndarv				1738.000	443.250			
	164.400	430.400				1738.000	449.000			
	165.176	430.000				1718.000	449.000			
						1718.000	449.250			
М	aterial Bou	ndarv				1718.000	455.000			
	1799.372	431.000				1698.000	455.000			
	1803.000	432.300				1698.000	455.250			
	1000.000	102.000				1698.000	461.000			
М	aterial Bou	ndarv				1413.743	461.000			
	164.400	430.400				1412.195	461.000			
	165.257	430.401				1400.000	461.000			
	100.201	400.401				1236.000	462.000			
М	aterial Bou	ndarv				1161.000	463.000			
	267.961	422.659				1127.707	462.704			
	268.000	387.845				1126.178	462.690			
	200.000	007.10.10				841.706	460.158			
М	aterial Bou	ndarv				840.193	460.144			
	157.414	434.000				824.000	460.000			
	162.619	431.318				555.700	460.000			
	164.400	430.400				554.200	460.000			
	10 1. 100	100.100				268.000	460.000			
E	xternal Bou	ndarv				268.000	454.250			
	107.318	424.996				268.000	454.000			
	0.000	427.500				248.000	454.000			
	0.000	387.500				248.000	448.250			
	0.000	347.500				248.000	448.000			
	1979.000	350.000				228.000	448.000			
	1979.000	390.050				228.000	442.250			
	1979.000	430.050				228.000	442.000			
	1841.123	426.953				208.000	442.000			
	1841.000	427.000				208.000	436.250			
	1827.000	432.300				208.000	436.000			
	1803.000	432.300				188.000	436.000			
	1801.461	432.300				188.000	430.250			
	1798.000	431.000				188.000	430.230			
	. , 55.550	-01.000				100.000	-100.000			

163

Page

consultants of

212

							Page	103	01	212
Written by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ch Date	: 12/8/	2009
Client:	Honeywell	Project:	Ono	ndaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	185.500	429.000			F	ocus/Block	Search Point	ŀ		
	183.000	428.000			<u>-</u>	467.696	442.004	3		
	182.450	427.779				.0				
	180.500	427.000			F	ocus/Block	Search Point	!		
	180.062	426.825			<u>-</u>	466.201	436.248	<u> </u>		
	173.133	426.959								
	166.176	430.000			S	<u>Support</u>				
	165.257	430.401			_	554.200	454.250			
	164.289	430.900				554.200	460.000			
	163.062	431.533					.00.000			
	162.619	431.761			S	Support				
	158.274	434.000			<u>-</u>	554.200	460.000			
	157.414	434.000				268.000	460.000			
	142.619	434.000				200.000	100.000			
	129.614	434.000			S	Support				
	120.011	10 1.000			<u>~</u>	268.000	454.000			
Р	iezo Line					248.000	454.000			
<u>-</u>	182.450	427.779				210.000	10 1.000			
	347.000	424.600				Support				
	600.000	424.600			<u></u>	248.000	454.000			
	640.000	425.000				248.000	448.250			
	728.000	425.000				240.000	440.200			
	1102.000	432.000			S	Support				
	1176.000	432.000			<u>~</u>	248.000	448.250			
	1356.000	429.000				493.200	448.250			
	1474.000	428.500				100.200	1 10.200			
	1619.000	427.500			S	Support .				
	1689.000	427.500			<u></u>	493.200	454.000			
	1790.000	429.000				493.200	448.250			
	1792.668	429.000				433.200	440.200			
	1732.000	423.000			S	Support .				
V	Vater Table				<u>_</u>	268.000	460.000			
<u>.</u>	0.000	412.500				268.000	454.250			
	204.000	408.550				200.000	404.200			
	405.000	405.750			S	Support .				
	472.000	407.050			<u> </u>	268.000	454.250			
	557.156	407.108				554.200	454.250			
	768.000	407.250				004.200	404.200			
	805.000	408.150				Support				
	925.000	408.250			<u></u>	555.700	454.250			
	1165.000	413.350				555.700	460.000			
	1347.000	410.150				300.700	400.000			
	1436.000	411.150			S	Support				
	1642.000	409.450			<u> </u>	555.700	460.000			
	1768.160	411.260				824.000	460.000			
	1841.123	411.260				JZ7.UUU	7 00.000			
	1979.000	415.050				Support				
	1313.000	- 10.000			<u> </u>	824.000	460.000			
						024.000	+00.000			

							Page	164	of	212
Written	Jagan	h Cumo	Data	12/4/2009	Daviawad by	D V.·l			12/8/2	
by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	K. Kui	asingam/Jay Bee	ch Date:	12/8/2	2009
Client:	Honeywell	Project:	Onon	daga Lake SC.	A Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18
	840.193	460.144				724.201	442.000			
S	<u>upport</u>				S	upport				
	840.193	460.144			_	228.000	448.000			
	840.193	454.394				228.000	442.250			
	<u>upport</u>				<u>s</u>	<u>upport</u>				
	840.193	454.394				248.000	448.000			
	824.000	454.250				530.200	448.000			
	<u>upport</u>	4=40=0			<u>s</u>	upport	440.000			
	824.000	454.250				530.200	448.000			
	555.700	454.250				530.200	442.250			
S	<u>upport</u>				S	upport				
	738.195	454.000			_	531.700	442.250			
	738.195	448.250				531.700	448.000			
<u>S</u>	<u>upport</u>				<u>S</u>	upport				
	739.701	454.000				530.200	442.250			
	739.701	448.250				228.000	442.250			
<u>s</u>	<u>upport</u>				<u>s</u>	upport				
	738.195	454.000				228.000	448.000			
	494.700	454.000				248.000	448.000			
	<u>upport</u>				<u>s</u>	upport				
	494.700	454.000				208.000	436.250			
	494.700	448.250				208.000	442.000			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	494.700	448.250				208.000	442.000			
	738.195	448.250				228.000	442.000			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	724.201	442.000				228.000	442.000			
	724.201	436.250				466.200	442.000			
<u>s</u>	<u>upport</u>				<u>s</u>	upport				
	724.201	436.250				466.200	442.000			
	467.700	436.250				466.200	436.250			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	467.700	436.250				466.200	436.250			
	467.700	442.000				208.000	436.250			
	<u>upport</u>				<u>s</u>	upport				
	467.700	442.000				188.000	430.250			

							Page	165	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kul	asingam/Jay Beec			
Client:	Honeywell	Project:	Onor	ıdaga Lake SC	A Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18
	188.000	436.000				531.700	448.000			
S	<u>upport</u>				S	upport				
_	188.000	436.000			_	531.700	442.250			
	208.000	436.000				824.000	442.250			
<u>s</u>	<u>upport</u>	100.000			<u>s</u>	upport	440.000			
	208.000	436.000				824.000	442.250			
	506.200	436.000				832.191	442.323			
<u>S</u>	upport	420,000			<u>S</u>	upport	400.450			
	507.700 507.700	436.000 430.250				841.706 841.706	460.158 454.408			
	507.700	430.230				041.700	404.406			
<u>S</u>	<u>upport</u>				<u>S</u>	upport				
	506.200	436.000				825.700	436.015			
	506.200	430.250				825.700	430.265			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	506.200	430.250				725.697	442.000			
	188.000	430.250				725.697	436.250			
S	<u>upport</u>				S	upport				
	507.700	430.250			_	725.697	436.250			
	824.200	430.252				824.000	436.250			
<u>s</u>	<u>upport</u>				<u>s</u>	upport				
	824.200	430.252				824.000	436.250			
	824.200	436.002				982.197	437.658			
<u>s</u>	<u>upport</u>				<u>s</u>	upport				
	824.200	436.002				982.197	437.658			
	507.700	436.000				982.197	443.408			
<u>s</u>	upport				<u>s</u>	upport				
	832.191	442.323				982.197	443.408			
	832.191	448.073				824.000	442.000			
	<u>upport</u>				<u>S</u>	upport				
	833.715	442.336				824.000	442.000			
	833.715	448.086				725.697	442.000			
	upport				<u>S</u>	upport				
	832.191	448.073				739.701	448.250			
	824.000	448.000				824.000	448.250			
<u>s</u>	upport				<u>s</u>	upport				
	824.000	448.000				824.000	448.250			

							Page	166	of	212
Written										
by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ech Date:	12/8/2	009
Client:	Honeywell	Project:	Onor	ıdaga Lake SC	'A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	983.182	449.667				825.700	430.265			
S	upport				5	Support				
	983.182	449.667				984.724	455.431			
	983.182	455.417				984.724	449.681			
<u>S</u>	<u>upport</u>				<u>s</u>	Support				
	983.182	455.417				983.718	443.422			
	824.000	454.000				983.718	437.672			
	<u>upport</u>	454.000			<u>s</u>	Support	407.070			
	824.000	454.000				983.718	437.672			
	739.701	454.000				1161.000	439.250			
<u>s</u>	<u>upport</u>				9	Support .				
	841.706	454.408				1161.000	439.250			
	1126.178	456.940				1236.000	438.250			
<u>s</u>	<u>upport</u>				<u>S</u>	Support .				
	1126.178	456.940				1236.000	438.250			
	1126.178	462.690				1240.193	438.224			
<u>s</u>	<u>upport</u>				<u>S</u>	Support				
	1126.178	462.690				1240.193	438.224			
	841.706	460.158				1240.193	443.974			
	<u>upport</u>				<u>s</u>	Support .				
	833.715	448.086				1240.193	443.974			
	1134.188	450.761				1236.000	444.000			
<u>s</u>	<u>upport</u>				<u>S</u>	Support .				
	1134.188	450.761				1236.000	444.000			
	1134.188	445.011				1161.000	445.000			
<u>S</u>	<u>upport</u>				<u>S</u>	Support .				
	1134.188	445.011				1161.000	445.000			
	833.715	442.336				983.718	443.422			
	<u>upport</u>				<u>s</u>	Support				
	825.700	436.015				984.724	455.431			
	1142.148	438.832				1161.000	457.000			
<u>s</u>	<u>upport</u>				<u>S</u>	Support .				
	1142.148	438.832				1161.000	457.000			
	1142.148	433.082				1228.192	456.104			
<u>S</u>	<u>upport</u>				<u>s</u>	Support .				
	1142.148	433.082				1228.192	456.104			

						Page	167	of 2	212
Written by:	Josep	h Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Be			
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1228.192	450.354			1161.000	457.250			
S	upport			Sı	upport				
	1228.192	450.354			1161.000	457.250			
	1161.000	451.250			1127.707	456.954			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1161.000	451.250			1135.719	450.775			
	984.724	449.681			1135.719	445.025			
	upport	454.000			upport	450 775			
	268.000	454.000			1135.719	450.775			
	493.200	454.000			1161.000	451.000			
	<u>upport</u>			Sı	upport_				
	1127.707	462.704			1161.000	445.250			
	1127.707	456.954			1135.719	445.025			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1127.707	462.704			1161.000	445.250			
	1161.000	463.000			1236.000	444.250			
S	<u>upport</u>			Sı	<u>ipport</u>				
	1161.000	463.000			1236.000	444.250			
	1236.000	462.000			1400.000	443.250			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1236.000	462.000			1400.000	443.250			
	1400.000	461.000			1436.205	443.250			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1400.000	461.000			1436.205	443.250			
	1412.195	461.000			1436.205	449.000			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1412.195	461.000			1437.780	449.000			
	1412.195	455.250			1437.780	443.250			
<u>s</u>	upport				upport_				
	1412.195	455.250			1436.205	449.000			
	1400.000	455.250			1400.000	449.000			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1400.000	455.250			1400.000	449.000			
	1236.000	456.250			1236.000	450.000			
<u>s</u>	<u>upport</u>			<u>Sı</u>	<u>upport</u>				
	1236.000	456.250			1236.000	450.000			

								isuitarits	
						Page	168	of	212
Written by:	Josep	oh Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Beo	ech Date:	12/8/2	2009
Client:	Honeywell	Project:	Onondaga Lake S	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1161.000	451.000			1161.000	433.250			
<u>S</u>	upport 1229.723	456.084			upport 1161.000	439.000			
	1229.723	450.334			1143.812	438.847			
<u>s</u>	upport 1229.723	450.334			<u>upport</u> 1161.000	439.000			
	1236.000	450.250			1236.000	438.000			
S	upport			Sı	upport				
	1236.000	456.000			1236.000	438.000			
	1229.723	456.084			1400.000	437.000			
<u>S</u>	<u>upport</u> 1236.000	450,000			upport	427.000			
	1400.000	456.000 455.000			1400.000 1460.199	437.000 437.000			
ç	<u>upport</u>			S.	<u>upport</u>				
<u>5</u>	1400.000	455.000			1460.199	437.000			
	1473.204	455.000			1460.199	431.250			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1473.204	455.000			1461.784	431.250			
	1473.204	449.250			1461.784	437.000			
<u>S</u>	<u>upport</u> 1474.788	449.250			upport 1460.199	431.250			
	1474.788	455.000			1400.199	431.250			
ç	upport			S ₁	upport				
<u>5</u>	аррон 1473.204	449.250			1400.000	431.250			
	1400.000	449.250			1236.000	432.250			
<u>S</u>	<u>upport</u>			Sı	<u>upport</u>				
	1400.000	449.250			1236.000	432.250			
	1236.000	450.250			1161.000	433.250			
<u>S</u>	upport	400 045			upport	420 245			
	1241.724 1241.724	438.215 443.965			1241.724 1400.000	438.215 437.250			
9	upport			Q ₁	ıpport				
<u> </u>	<u>upport</u> 1143.812	438.847			<u>upport</u> 1400.000	437.250			
	1143.812	433.097			1498.182	437.250			
S	upport			Sı	upport				
	1143.812	433.097			1498.182	443.000			

									isuitanti	8
							Page	169	of	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Bee	ech Date	: 12/8	3/2009
Client:	Honeywell	Project:	Ono	ndaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.	: 18
	1498.182	437.250				1778.100	437.000			
S	upport				S	Support				
	1499.766	437.250			_	1758.000	437.000			
	1499.766	443.000				1461.784	437.000			
S	<u>upport</u>				<u>S</u>	Support				
	1498.182	443.000				1437.780	443.250			
	1400.000	443.000				1738.000	443.250			
	<u>upport</u>				<u>s</u>	Support .				
	1400.000	443.000				1738.000	443.250			
	1241.724	443.965				1738.000	449.000			
	<u>upport</u>				<u>s</u>	Support .				
	1413.743	461.000				1718.000	449.000			
	1413.743	455.250				1437.780	449.000			
<u>S</u>	<u>upport</u>				<u>S</u>	Support				
	1413.743	461.000				1499.766	437.250			
	1698.000	461.000				1758.000	437.250			
S	<u>upport</u>				<u>S</u>	Support				
	1698.000	461.000				1758.000	437.250			
	1698.000	455.250				1758.000	443.000			
S	<u>upport</u>				<u>S</u>	Support				
	1698.000	455.250				1738.000	443.000			
	1413.743	455.250				1499.766	443.000			
S	<u>upport</u>				<u>S</u>	<u>Support</u>				
	1474.788	449.250				1718.000	455.000			
	1718.000	449.250				1698.000	455.000			
	<u>upport</u>				<u>s</u>	Support .				
	1718.000	449.250				1718.000	449.000			
	1718.000	455.000				1738.000	449.000			
S	<u>upport</u>				<u>s</u>	Support .				
	1698.000	455.000				1738.000	443.000			
	1474.788	455.000				1758.000	443.000			
	<u>upport</u>				<u>s</u>	Support .				
	1461.784	431.250				1758.000	437.000			
	1778.100	431.250				1778.100	437.000			
	<u>upport</u>									
	1778.100	431.250								

consultants

Page 170 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_nocover_tube_05_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil
Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

171

consultants

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Friction Angle: 0.1 degrees Water Surface: Water Table Custom Hu value: 1

Material T. L. O. alle

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends
Shear Strength Model: Linear
Strip Coverage: 100 percent
Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 9.403780

Axis Location: 339,979, 808,592

Left Slip Surface Endpoint: 188.000, 430.244 Right Slip Surface Endpoint: 551.470, 460.000 Left Slope Intercept: 188.000 436.000 Right Slope Intercept: 551.470 460.000 Resisting Moment=1.30382e+008 lb-ft Driving Moment=1.38649e+007 lb-ft

Method: janbu simplified

FS: 9.809610

Axis Location: 357.745, 844.189

Page

Left Slip Surface Endpoint: 188.000, 430.200 Right Slip Surface Endpoint: 587.089, 460.000

Left Slope Intercept: 188.000 436.000 Right Slope Intercept: 587.089 460.000 Resisting Horizontal Force=353073 lb Driving Horizontal Force=35992.6 lb

Method: spencer

Resisting Moment=0 lb-ft Driving Moment=0 lb-ft

Resisting Horizontal Force=0 lb Driving Horizontal Force=0 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1648 Number of Invalid Surfaces: 3352

Error Codes:

Error Code -107 reported for 1640 surfaces Error Code -108 reported for 1654 surfaces Error Code -112 reported for 58 surfaces

Method: janbu simplified

Number of Valid Surfaces: 1420 Number of Invalid Surfaces: 3580

Error Codes:

Error Code -107 reported for 1640 surfaces Error Code -108 reported for 1906 surfaces Error Code -112 reported for 34 surfaces

Method: spencer

Number of Valid Surfaces: 0
Number of Invalid Surfaces: 5000

Error Codes:

Error Code -107 reported for 1640 surfaces Error Code -108 reported for 2152 surfaces Error Code -111 reported for 1149 surfaces Error Code -112 reported for 59 surfaces

172

consultants 72 of

212

Written

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_nocover_liner_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined

Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil
Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Strength Type: Discrete function Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material

Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

173

consultants of

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Friction Angle: 0.1 degrees Water Surface: Water Table Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.808920

Axis Location: 200.120, 584.614

Left Slip Surface Endpoint: 159.018, 431.727 Right Slip Surface Endpoint: 297.768, 460.000 Resisting Moment=7.93133e+006 lb-ft Driving Moment=4.38456e+006 lb-ft

Method: janbu simplified

FS: 1.863770

Axis Location: 200.120, 584.614

Page

Left Slip Surface Endpoint: 159.018, 431.727 Right Slip Surface Endpoint: 297.768, 460.000

Resisting Horizontal Force=48680.7 lb Driving Horizontal Force=26119.5 lb

Method: spencer

FS: 1.909240

Axis Location: 214.140, 607.141

Left Slip Surface Endpoint: 162.955, 430.152 Right Slip Surface Endpoint: 325.020, 460.000

Resisting Moment=1.42301e+007 lb-ft Driving Moment=7.4533e+006 lb-ft Resisting Horizontal Force=75987 lb Driving Horizontal Force=39799.6 lb

Valid / Invalid Surfaces

Method: bishop simplified
Number of Valid Surfaces: 798
Number of Invalid Surfaces: 4202

Error Codes:

Error Code -105 reported for 3904 surfaces Error Code -107 reported for 27 surfaces Error Code -108 reported for 128 surfaces Error Code -112 reported for 143 surfaces

Method: janbu simplified

Number of Valid Surfaces: 762 Number of Invalid Surfaces: 4238

Error Codes:

Error Code -105 reported for 3904 surfaces Error Code -107 reported for 27 surfaces Error Code -108 reported for 172 surfaces Error Code -112 reported for 135 surfaces

Method: spencer

Number of Valid Surfaces: 246 Number of Invalid Surfaces: 4754

Error Codes:

Error Code -105 reported for 3904 surfaces Error Code -107 reported for 27 surfaces Error Code -108 reported for 171 surfaces

consultants

						Page	17/4	of	212
Written by:	Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Beec	h Date:	Date: 12/8/2009	
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task l	No.: 18

Error Code -111 reported for 508 surfaces Error Code -112 reported for 144 surfaces

175

consultants of

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_nocover_global_su_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strongth Type: Discrete function

Strength Type: Discrete function Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

176

consultants of

212 Page

Written 12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees

Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.360620

Center: 229.669, 488.062

Radius: 84.414

Left Slip Surface Endpoint: 171.784, 426.621 Right Slip Surface Endpoint: 309.282, 460.000

Resisting Moment=8.19054e+006 lb-ft Driving Moment=6.01973e+006 lb-ft

Method: janbu simplified

FS: 1.339970

Center: 229.669, 488.062

Radius: 84.414

Left Slip Surface Endpoint: 171.784, 426.621 Right Slip Surface Endpoint: 309.282, 460.000

Resisting Horizontal Force=77760.4 lb Driving Horizontal Force=58031.5 lb

Method: spencer

FS: 1.359710

Center: 229.669, 488.062

Radius: 84.414

Left Slip Surface Endpoint: 171.784, 426.621 Right Slip Surface Endpoint: 309.282, 460.000

Resisting Moment=8.18509e+006 lb-ft Driving Moment=6.01973e+006 lb-ft Resisting Horizontal Force=77704.5 lb Driving Horizontal Force=57147.8 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 9250 Number of Invalid Surfaces: 9241

Error Codes:

Error Code -103 reported for 7193 surfaces Error Code -105 reported for 1 surface Error Code -106 reported for 551 surfaces Error Code -107 reported for 239 surfaces Error Code -108 reported for 136 surfaces Error Code -110 reported for 79 surfaces Error Code -112 reported for 1042 surfaces

Method: janbu simplified

Number of Valid Surfaces: 8601 Number of Invalid Surfaces: 9890

Error Codes:

Error Code -103 reported for 7193 surfaces Error Code -105 reported for 1 surface Error Code -106 reported for 551 surfaces Error Code -107 reported for 239 surfaces Error Code -108 reported for 743 surfaces Error Code -110 reported for 79 surfaces Error Code -112 reported for 1084 surfaces

Method: spencer

consultants

177 Page of212 Written 12/4/2009 12/8/2009 Joseph Sura Date: Reviewed by: R. Kulasingam/Jay Beech Date: by: Client: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Honeywell Project: Task No.: 18

Number of Valid Surfaces: 5324 Number of Invalid Surfaces: 13167

Error Codes:

Error Code -103 reported for 7193 surfaces
Error Code -105 reported for 1 surface
Error Code -106 reported for 551 surfaces
Error Code -107 reported for 239 surfaces
Error Code -108 reported for 876 surfaces
Error Code -110 reported for 79 surfaces
Error Code -111 reported for 3126 surfaces
Error Code -112 reported for 1102 surfaces

178

consultants of

212 Page

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18

Slide Analysis Information

Document Name

File Name: eastwest nocover external lab

Project Settings

Proiect Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)

Strength Type: Discrete function Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

consultants

Page 179 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 8.385650

Center: -41.981, 4880.403

Radius: 4492.873

Left Slip Surface Endpoint: -698.188, 435.710 Right Slip Surface Endpoint: 761.724, 460.000

Resisting Moment=4.66372e+009 lb-ft Driving Moment=5.56154e+008 lb-ft

Method: janbu simplified

FS: 8.383790

Center: -41.981, 4880.403

Radius: 4492.873

Left Slip Surface Endpoint: -698.188, 435.710 Right Slip Surface Endpoint: 761.724, 460.000 Resisting Horizontal Force=1.0337e+006 lb

Driving Horizontal Force=123298 lb

Method: spencer

FS: 8.385530

Center: -41.981, 4880.403

Radius: 4492.873

Left Slip Surface Endpoint: -698.188, 435.710 Right Slip Surface Endpoint: 761.724, 460.000

Resisting Moment=4.66365e+009 lb-ft Driving Moment=5.56154e+008 lb-ft

Resisting Horizontal Force=1.03369e+006 lb

Driving Horizontal Force=123271 lb

Valid / Invalid Surfaces

Method: bishop simplified
Number of Valid Surfaces: 944
Number of Invalid Surfaces: 3863

Error Codes:

Error Code -101 reported for 38 surfaces Error Code -110 reported for 247 surfaces Error Code -113 reported for 212 surfaces Error Code -1000 reported for 3366 surfaces

Method: janbu simplified

Number of Valid Surfaces: 944 Number of Invalid Surfaces: 3863

Error Codes:

Error Code -101 reported for 38 surfaces Error Code -110 reported for 247 surfaces Error Code -113 reported for 212 surfaces Error Code -1000 reported for 3366 surfaces

Method: spencer

Number of Valid Surfaces: 939 Number of Invalid Surfaces: 3868

Error Codes:

Error Code -101 reported for 38 surfaces Error Code -110 reported for 247 surfaces Error Code -111 reported for 5 surfaces

consultants

							180	of	212
Written by:	Joseph Sura		Joseph Sura Date: 12/4/2009 Reviewe		Reviewed by:	ewed by: R. Kulasingam/Jay Beech		12/3	8/2009
Client:	nt: Honeywell Project		Onor	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4299	Task No	.: 18

Error Code -113 reported for 212 surfaces Error Code -1000 reported for 3366 surfaces

consultants

						Page		181	of	212
Written by:	. Joseph Sura		Date:	12/4/2009	Reviewed by:	R. Kulasingam/Jay Be	ech	Date:		2/8/2009
Client:	Honeywell	Project:	Onon	idaga Lake SC	CA Final Design	Project/ Proposal No.:	GJ4	299	Task N	To.: 18

Cross-Section B-B: After Placement of Final Cover

consultants

Page 182 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest cover tube 04 lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000
Pseudo-Random Surfaces: Enabled
Convex Surfaces Only: Disabled
Left Projection Angle (Start Angle): 95
Left Projection Angle (End Angle): 175
Right Projection Angle (Start Angle): 5
Right Projection Angle (End Angle): 85
Minimum Elevation: Not Defined

Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

183

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Friction Angle: 0.1 degrees Water Surface: Water Table Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 5.823670

Axis Location: 320,318, 784,965

Left Slip Surface Endpoint: 179.292, 436.392 Right Slip Surface Endpoint: 514.560, 463.000 Resisting Moment=6.58126e+007 lb-ft Driving Moment=1.13009e+007 lb-ft

Method: janbu simplified

FS: 5.999280

Axis Location: 320.318, 784.965

Page

Left Slip Surface Endpoint: 179.292, 436.392 Right Slip Surface Endpoint: 514.560, 463.000

Resisting Horizontal Force=185215 lb Driving Horizontal Force=30872.8 lb

Method: spencer

FS: 6.014270

Axis Location: 343.614, 829.987

Left Slip Surface Endpoint: 179.933, 436.584 Right Slip Surface Endpoint: 560.127, 463.000

Resisting Moment=7.91383e+007 lb-ft Driving Moment=1.31584e+007 lb-ft Resisting Horizontal Force=198854 lb Driving Horizontal Force=33063.8 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1873 Number of Invalid Surfaces: 3127

Error Codes:

Error Code -107 reported for 1503 surfaces Error Code -108 reported for 1466 surfaces Error Code -112 reported for 158 surfaces

Method: janbu simplified

Number of Valid Surfaces: 1695 Number of Invalid Surfaces: 3305

Error Codes:

Error Code -107 reported for 1503 surfaces Error Code -108 reported for 1665 surfaces Error Code -112 reported for 137 surfaces

Method: spencer

Number of Valid Surfaces: 14 Number of Invalid Surfaces: 4986

Error Codes:

Error Code -107 reported for 1503 surfaces Error Code -108 reported for 1922 surfaces Error Code -111 reported for 1394 surfaces Error Code -112 reported for 167 surfaces

consultants

184 212 Page ofWritten Joseph Sura 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009 Date: by: Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

List of All			
Block Search		Material Bou	
178.169	436.056	1827.000	432.300
466.208	436.240	1841.123	426.953
Material Bou	ndarv	Material Bou	<u>ındary</u>
0.000	427.500	188.000	430.000
122.000	424.650	824.000	430.000
122.359	424.645	1161.000	433.000
177.171	423.910	1236.000	432.000
204.000	423.550	1400.000	431.000
267.961	422.659	1778.100	431.000
405.000	420.750		
472.000	422.050	Material Bou	
768.000	422.250	188.000	430.250
805.000	423.150	506.200	430.250
925.000	423.250	507.700	430.250
1165.000	428.350	824.000	430.250
1347.000	425.150	824.200	430.252
1436.000	426.150	825.700	430.265
1642.000	424.450	1142.148	433.082
1786.163	426.261	1143.812	433.097
1841.000	426.950	1161.000	433.250
1841.123	426.953	1236.000	432.250
		1400.000	431.250
Material Bou	<u>ndary</u>	1460.199	431.250
122.000	424.500	1461.784	431.250
122.359	424.645	1778.100	431.250
Material Bou	ndarv	Material Bou	<u>ındary</u>
166.176	430.000	208.000	436.000
173.133	426.959	506.200	436.000
180.062	426.825	507.700	436.000
182.423	426.779	824.000	436.000
347.000	423.600	824.200	436.002
600.000	423.600	825.700	436.015
640.000	424.000	1142.148	438.832
728.000	424.000	1143.812	438.847
1102.000	431.000	1161.000	439.000
1176.000	431.000	1236.000	438.000
1356.000	428.000	1400.000	437.000
1474.000	427.500	1460.199	437.000
1619.000	426.500	1461.784	437.000
1689.000	426.500	1758.000	437.000
1785.758	427.937		
1790.000	428.000	Material Bou	
1798.000	431.000	208.000	436.250
		466.200	436.250

							Daga		ef	212
							Page	185	of	212
Written by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Be	ech Date:	12/8/2	2009
Client:	Honeywell	Project:	Onor	idaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	467.700	436.250								
	724.201	436.250			N	laterial Bou	ndarv			
	725.697	436.250			_	248.000	448.000			
	824.000	436.250				530.200	448.000			
	982.197	437.658				531.700	448.000			
	983.718	437.672				824.000	448.000			
	1161.000	439.250				832.191	448.073			
	1236.000	438.250				833.715	448.086			
	1240.193	438.224				1134.188	450.761			
	1241.724	438.215				1135.719	450.775			
	1400.000	437.250				1161.000	451.000			
	1498.182	437.250				1236.000	450.000			
	1499.766	437.250				1400.000	449.000			
	1758.000	437.250				1436.205	449.000			
	1730.000	437.230				1437.780	449.000			
N/	laterial Bour	odon/				1718.000	449.000			
IV	228.000	442.000				17 10.000	449.000			
	466.200				N.	Actorial Pau	ndon			
		442.000			<u>IV</u>	<u>laterial Bou</u>				
	467.700	442.000				248.000	448.250			
	724.201	442.000				493.200	448.250			
	725.697	442.000				494.700	448.250			
	824.000	442.000				738.195	448.250			
	982.197	443.408				739.701	448.250			
	983.718	443.422				824.000	448.250			
	1161.000	445.000				983.182	449.667			
	1236.000	444.000				984.724	449.681			
	1240.193	443.974				1161.000	451.250			
	1241.724	443.965				1228.192	450.354			
	1400.000	443.000				1229.723	450.334			
	1498.182	443.000				1236.000	450.250			
	1499.766	443.000				1400.000	449.250			
	1738.000	443.000				1473.204	449.250			
						1474.788	449.250			
	laterial Bour					1718.000	449.250			
	228.000	442.250								
	530.200	442.250			<u>IV</u>	<u> laterial Bou</u>				
	531.700	442.250				268.000	454.000			
	824.000	442.250				493.200	454.000			
	832.191	442.323				494.700	454.000			
	833.715	442.336				738.195	454.000			
	1134.188	445.011				739.701	454.000			
	1135.719	445.025				824.000	454.000			
	1161.000	445.250				983.182	455.417			
	1236.000	444.250				984.724	455.431			
	1400.000	443.250				1161.000	457.000			
	1436.205	443.250				1228.192	456.104			
	1437.780	443.250				1229.723	456.084			

consultants 186 of 212

						Page	186	of	212
Written by:	Josep	oh Sura	Date: 12/4/2009	Reviewed by:	R. Kula	singam/Jay Bee	ech Date:	12/8/2009	
Client:	Honeywell	Project:	Onondaga Lake SC	CA Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18
	1400.000	455.000							
	1473.204	455.000		M	aterial Bou	undary			
	1474.788	455.000			494.700	448.250			
	1698.000	455.000			494.700	454.000			
M	laterial Bou	ndarv		M	aterial Bou	ındarv			
<u></u>	268.000	454.250			554.200	454.250			
	554.200	454.250			554.200	460.000			
	555.700	454.250				.00.000			
	824.000	454.250		M	aterial Bou	ındarv			
	840.193	454.394			555.700	454.250			
	841.706	454.408			555.700	460.000			
	1126.178	456.940		·	000.700	100.000			
	1127.707	456.954		M	aterial Bou	ındarv			
	1161.000	457.250			824.200	430.252			
	1236.000	456.250			824.200	436.002			
	1400.000	455.250		•	024.200	430.002			
	1412.195	455.250		N/I	atorial Ba	ındanı			
					<u>aterial Boı</u> 825.700				
	1413.743 1698.000	455.250 455.250			825.700 825.700	430.265 436.015			
<u>IV</u>	<u> faterial Bou</u>				<u>aterial Bou</u>				
	506.200	430.250			724.201	436.250			
	506.200	436.000			724.201	442.000			
M	laterial Bou				aterial Bou				
	507.700	430.250			725.697	436.250			
	507.700	436.000			725.697	442.000			
M	<u> laterial Bou</u>	<u>ndary</u>		M	aterial Bou				
	466.200	436.250		•	738.195	448.250			
	466.200	442.000			738.195	454.000			
M	laterial Bou	ndary		M	aterial Bou	undary			
<u>-</u>	467.700	436.250			739.701	448.250			
	467.700	442.000			739.701	454.000			
M	laterial Bou	ndary		M	aterial Bou	undary			
<u></u>	530.200	442.250			840.193	454.394			
	530.200	448.000			840.193	460.144			
M	laterial Bou	ndarv		M	aterial Bou	undarv			
<u></u>	531.700	442.250			841.706	454.408			
	531.700	448.000			841.706	460.158			
N/	laterial Bou	ndarv		M	aterial Bou	ındarv			
<u>IV</u>	493.200	448.250			832.191	442.323			
	493.200	454.000			832.191	448.073			
	433.200	454.000		•	032.191	440.073			

consultants

187 of 212 Page Written 12/8/2009 Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: by: Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18 Material Boundary Material Boundary 442.336 833.715 1143.812 433.097 833.715 448.086 1143.812 438.847 **Material Boundary Material Boundary** 982.197 437.658 1228.192 450.354 982.197 443.408 1228.192 456.104 Material Boundary Material Boundary 983.182 449.667 1229.723 450.334 1229.723 983.182 455.417 456.084 Material Boundary Material Boundary 983.718 437.672 1240.193 438.224 1240.193 983.718 443.422 443.974 Material Boundary Material Boundary 984.724 449.681 1241.724 438.215 984.724 455.431 1241.724 443.965 Material Boundary Material Boundary 1134.188 445.011 1412.195 455.250 1134.188 450.761 1412.195 461.000 Material Boundary Material Boundary 1135.719 445.025 1413.743 455.250 1135.719 450.775 1413.743 461.000 Material Boundary Material Boundary 1460.199 1436.205 443.250 431.250 1436.205 449.000 1460.199 437.000 Material Boundary Material Boundary 1437.780 443.250 1461.784 431.250 1437.780 449.000 1461.784 437.000 Material Boundary Material Boundary 1126.178 456.940 1498.182 437.250 1126.178 462.690 1498.182 443.000 Material Boundary Material Boundary 437.250 1127.707 456.954 1499.766 1127.707 462.704 1499.766 443.000 Material Boundary Material Boundary 1142.148 433.082 1473.204 449.250 1142.148 1473.204 438.832 455.000

Geosyntec consultants

							Page	188	of	21	12
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Beed	h Date:	12	2/8/20	09
Client:	Honeywell	Project:	Onoi	ndaga Lake SC	CA Final Design	Project/ P	roposal No.:	GJ4299	Task N	o.:	18
						268.000	460.000				
M	laterial Bou	ndary				554.200	460.000				
<u></u>	1474.788	449.250				555.700	460.000				
	1474.788	455.000				824.000	460.000				
		.00.000				840.193	460.144				
M	laterial Bou	ndary				841.706	460.158				
	165.176	430.000				1126.178	462.690				
	177.171	423.910				1127.707	462.704				
						1161.000	463.000				
M	laterial Bou	ndary				1236.000	462.000				
	0.000	387.500				1400.000	461.000				
	268.000	387.845				1412.195	461.000				
	1979.000	390.050				1413.743	461.000				
						1698.000	461.000				
M	laterial Bou	<u>ndary</u>									
	1786.163	426.261			<u>N</u>	<u>/laterial Bou</u>	<u>ndary</u>				
	1799.372	431.000				1698.000	463.000				
						1698.000	461.000				
<u>M</u>	laterial Bou	<u>ndary</u>				1698.000	455.250				
	164.400	430.400				1698.000	455.000				
	165.176	430.000				1718.000	455.000				
						1718.000	449.250				
M	<u>laterial Bou</u>					1718.000	449.000				
	1799.372	431.000				1738.000	449.000				
	1803.000	432.300				1738.000	443.250				
						1738.000	443.000				
<u>M</u>	laterial Bou					1758.000	443.000				
	164.400	430.400				1758.000	437.250				
	165.257	430.401				1758.000	437.000				
	166.176	430.000				1778.100	437.000				
	188.000	430.000				1778.100	431.250				
	188.000	430.250				1778.100	431.000				
	188.000 208.000	436.000 436.000				1798.000 1801.461	431.000 432.301				
	208.000	436.250				1001.401	432.301				
	208.000	442.000			N	/laterial Bou	ndany				
	228.000	442.000			<u>IN</u>	180.062	426.825				
	228.000	442.250				180.500	427.000				
	228.000	448.000				182.423	427.769				
	248.000	448.000				183.000	428.000				
	248.000	448.250				185.500	429.000				
	248.000	454.000				188.000	430.000				
	268.000	454.000				.00.000	100.000				
	268.000	454.250			N	/laterial Bou	ndarv				
	268.000	460.000			<u>11</u>	1778.100	431.000				
	_00.000	100.000				1780.600	430.000				
M	laterial Bou	ndarv				1783.100	429.000				
	268.000	462.000				1785.600	428.000				
							5.000				

								Sunamo	
						Page	189	of	212
Written by:	Josep	h Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	ingam/Jay Beec	h Date:	12/8/	2009
Client:	Honeywell	Project:	Onondaga Lake SC	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1785.758	427.937			157.414	434.000			
					142.619	434.000			
	aterial Bour				129.614	434.000			
	267.961	422.659							
	268.000	387.845		<u>P</u>	<u>iezo Line</u> 182.423	407 770			
N /	aterial Bour	odon.			347.000	427.779 424.600			
	<u>ateriai 60ur</u> 157.414	434.000			600.000	424.600			
	162.619	434.000			640.000	425.000			
	164.400	430.400			728.000	425.000			
	104.400	430.400			1102.000	432.000			
M	aterial Bour	ndary			1176.000	432.000			
	163.062	431.533			1356.000	429.000			
	164.289	430.900			1474.000	428.500			
	165.257	430.401			1619.000	427.500			
	100.201	450.401			1689.000	427.500			
F	xternal Bou	ndary			1790.000	429.000			
	107.318	424.996			1792.668	429.000			
	0.000	427.500			1702.000	420.000			
	0.000	387.500		W	/ater Table				
	0.000	347.500			0.000	412.500			
	1979.000	350.000			204.000	408.550			
	1979.000	390.050			405.000	405.750			
	1979.000	430.050			472.000	407.050			
	1841.123	426.953			557.156	407.108			
	1841.000	427.000			768.000	407.250			
	1827.000	432.300			805.000	408.150			
	1803.000	432.300			925.000	408.250			
	1801.461	432.301			1165.000	413.350			
	1801.461	433.301			1347.000	410.150			
	1778.100	440.000			1436.000	411.150			
	1758.000	446.000			1642.000	409.450			
	1738.000	452.000			1768.160	411.260			
	1718.000	458.000			1841.123	411.953			
	1698.000	464.000			1979.000	415.050			
	1400.000	464.000							
	1236.000	465.000		<u>F</u>	ocus/Block	Search Point			
	1161.000	466.000			467.689	442.010			
	824.000	463.000							
	268.000	463.000		<u>F</u>	ocus/Block	Search Point			
	248.000	457.000			466.208	436.240			
	228.000	451.000							
	208.000	445.000		<u>S</u>	<u>upport</u>				
	188.000	439.000			554.200	454.250			
	167.871	432.972			554.200	460.000			
	163.062	431.533							
	162.619	431.761		<u>S</u>	<u>upport</u>				
	158.274	434.000			554.200	460.000			

									isuitairis	
							Page	190	of	212
Written by:	Josep	oh Sura	Date: 12/4	/2009	Reviewed by:	R. Kula	asingam/Jay Bee	ech Date	12/8/2	2009
Client:	Honeywell	Project:	Onondaga I	Lake SC	A Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18
	268.000	460.000				555.700	454.250			
S	<u>upport</u>				S	upport				
	268.000	454.000			_	738.195	454.000			
	248.000	454.000				738.195	448.250			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	248.000	454.000				739.701	454.000			
	248.000	448.250				739.701	448.250			
<u>S</u>	<u>upport</u>				S	<u>upport</u>				
	248.000	448.250				738.195	454.000			
	493.200	448.250				494.700	454.000			
<u>s</u>	<u>upport</u>				S	<u>upport</u>				
	493.200	454.000			· <u> </u>	494.700	454.000			
	493.200	448.250				494.700	448.250			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	268.000	460.000				494.700	448.250			
	268.000	454.250				738.195	448.250			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	268.000	454.250				724.201	442.000			
	554.200	454.250				724.201	436.250			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	555.700	454.250				724.201	436.250			
	555.700	460.000				467.700	436.250			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	555.700	460.000				467.700	436.250			
	824.000	460.000				467.700	442.000			
	<u>upport</u>				<u>S</u>	<u>upport</u>				
	824.000	460.000				467.700	442.000			
	840.193	460.144				724.201	442.000			
	<u>upport</u>				<u>s</u>	<u>upport</u>				
	840.193	460.144				228.000	448.000			
	840.193	454.394				228.000	442.250			
	<u>upport</u>				<u>s</u>	<u>upport</u>				
	840.193	454.394				248.000	448.000			
	824.000	454.250				530.200	448.000			
	<u>upport</u>				<u>S</u>	<u>upport</u>				
	824.000	454.250				530.200	448.000			

							Page	191	of 2	212
Written	I	h C	Data	12/4/2000	Daniana dhaa	D 1/1				
by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	K. Kul	asingam/Jay Bee	ch Date:	12/8/2	009
Client:	Honeywell	Project:	Ono	ndaga Lake SC	CA Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18
	530.200	442.250				507.700	430.250			
S	upport				5	Support				
	531.700	442.250			_	506.200	436.000			
	531.700	448.000				506.200	430.250			
<u>s</u>	upport				<u>s</u>	Support				
	530.200	442.250				506.200	430.250			
	228.000	442.250				188.000	430.250			
<u>S</u>	upport	440.000			<u>s</u>	Support	400.050			
	228.000	448.000				507.700	430.250			
	248.000	448.000				824.200	430.252			
<u>S</u>	upport				<u>S</u>	Support				
	208.000	436.250				824.200	430.252			
	208.000	442.000				824.200	436.002			
<u>s</u>	upport				<u>S</u>	Support				
	208.000	442.000				824.200	436.002			
	228.000	442.000				507.700	436.000			
S	upport				5	Support				
	228.000	442.000			_	832.191	442.323			
	466.200	442.000				832.191	448.073			
<u>s</u>	upport				<u>S</u>	Support				
	466.200	442.000				833.715	442.336			
	466.200	436.250				833.715	448.086			
<u>s</u>	upport				<u>s</u>	Support .				
	466.200	436.250				832.191	448.073			
	208.000	436.250				824.000	448.000			
<u>s</u>	upport				<u>s</u>	Support .				
	188.000	430.250				824.000	448.000			
	188.000	436.000				531.700	448.000			
<u>s</u>	upport				<u>s</u>	Support .				
	188.000	436.000				531.700	442.250			
	208.000	436.000				824.000	442.250			
<u>S</u>	upport				<u>s</u>	Support .				
	208.000	436.000				824.000	442.250			
	506.200	436.000				832.191	442.323			
<u>S</u>	upport				<u>s</u>	Support .				
	507.700	436.000				841.706	460.158			

							Page	192	of 2	212
Written by:	Josep	oh Sura	Date: 12/4/2009		Reviewed by:	R. Kulasingam/Jay Beech				
Client:	Honeywell	Project:	Ono	ndaga Lake SC	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	841.706	454.408				739.701	454.000			
S	Support				5	Support				
_	825.700	436.015			_	841.706	454.408			
	825.700	430.265				1126.178	456.940			
<u>s</u>	<u>Support</u>				<u>s</u>	Support .				
	725.697	442.000				1126.178	456.940			
	725.697	436.250				1126.178	462.690			
<u>S</u>	Support	100.050			<u>S</u>	Support 470	400.000			
	725.697	436.250				1126.178	462.690			
	824.000	436.250				841.706	460.158			
<u>S</u>	<u>support</u>				<u>S</u>	Support				
	824.000	436.250				833.715	448.086			
	982.197	437.658				1134.188	450.761			
<u>s</u>	<u>Support</u>				<u>s</u>	Support				
	982.197	437.658				1134.188	450.761			
	982.197	443.408				1134.188	445.011			
<u>s</u>	Support .				<u>S</u>	Support				
	982.197	443.408				1134.188	445.011			
	824.000	442.000				833.715	442.336			
<u>s</u>	Support				<u>S</u>	Support				
	824.000	442.000				825.700	436.015			
	725.697	442.000				1142.148	438.832			
<u>s</u>	Support				<u>s</u>	Support .				
	739.701	448.250				1142.148	438.832			
	824.000	448.250				1142.148	433.082			
<u>s</u>	Support				<u>s</u>	Support .				
	824.000	448.250				1142.148	433.082			
	983.182	449.667				825.700	430.265			
<u>s</u>	Support				<u>s</u>	Support				
	983.182	449.667				984.724	455.431			
	983.182	455.417				984.724	449.681			
<u>s</u>	Support				<u>s</u>	Support .				
	983.182	455.417				983.718	443.422			
	824.000	454.000				983.718	437.672			
<u>s</u>	Support				<u>s</u>	Support				
	824.000	454.000				983.718	437.672			

							Page	193	of 2	212
Written by:	Josep	oh Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee			
Client:	Honeywell	Project:	Ono	ndaga Lake SC	CA Final Design	Project/ P	Proposal No.:	GJ4299	Task No.:	18
	1161.000	439.250				493.200	454.000			
S	<u>upport</u>				S	upport				
	1161.000	439.250			_	1127.707	462.704			
	1236.000	438.250				1127.707	456.954			
<u>s</u>	upport	400.050			<u>s</u>	upport	100 = 0.1			
	1236.000	438.250				1127.707	462.704			
	1240.193	438.224				1161.000	463.000			
<u>S</u>	upport	400 004			<u>s</u>	upport	402.000			
	1240.193	438.224				1161.000	463.000			
	1240.193	443.974				1236.000	462.000			
<u>S</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	1240.193	443.974				1236.000	462.000			
	1236.000	444.000				1400.000	461.000			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1236.000	444.000				1400.000	461.000			
	1161.000	445.000				1412.195	461.000			
S	<u>upport</u>				S	upport				
	1161.000	445.000				1412.195	461.000			
	983.718	443.422				1412.195	455.250			
	<u>upport</u>				<u>s</u>	upport				
	984.724	455.431				1412.195	455.250			
	1161.000	457.000				1400.000	455.250			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1161.000	457.000				1400.000	455.250			
	1228.192	456.104				1236.000	456.250			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1228.192	456.104				1236.000	456.250			
	1228.192	450.354				1161.000	457.250			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	1228.192	450.354				1161.000	457.250			
	1161.000	451.250				1127.707	456.954			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1161.000	451.250				1135.719	450.775			
	984.724	449.681				1135.719	445.025			
<u>s</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	268.000	454.000				1135.719	450.775			

							Page	194	of 2	212
Written by:	Josep	h Sura	Date:	12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee			
Client:	Honeywell	Project:	Ononda	aga Lake SC.	A Final Design	Project/ P	roposal No.:	GJ4299	Task No.:	18
	1161.000	451.000				1229.723	456.084			
S	<u>upport</u>				S	upport				
_	1161.000	445.250			<u>-</u>	1236.000	456.000			
	1135.719	445.025				1400.000	455.000			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1161.000	445.250				1400.000	455.000			
	1236.000	444.250				1473.204	455.000			
<u>S</u>	upport	444.050			<u>s</u>	upport	455.000			
	1236.000	444.250				1473.204	455.000			
	1400.000	443.250				1473.204	449.250			
<u>S</u>	<u>upport</u>				<u>S</u>	<u>upport</u>				
	1400.000	443.250				1474.788	449.250			
	1436.205	443.250				1474.788	455.000			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1436.205	443.250				1473.204	449.250			
	1436.205	449.000				1400.000	449.250			
S	upport				S	upport				
	1437.780	449.000			_	1400.000	449.250			
	1437.780	443.250				1236.000	450.250			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1436.205	449.000				1241.724	438.215			
	1400.000	449.000				1241.724	443.965			
<u>S</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1400.000	449.000				1143.812	438.847			
	1236.000	450.000				1143.812	433.097			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1236.000	450.000				1143.812	433.097			
	1161.000	451.000				1161.000	433.250			
<u>S</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1229.723	456.084				1161.000	439.000			
	1229.723	450.334				1143.812	438.847			
<u>s</u>	<u>upport</u>				<u>s</u>	<u>upport</u>				
	1229.723	450.334				1161.000	439.000			
	1236.000	450.250				1236.000	438.000			
S	<u>upport</u>				S	<u>upport</u>				
_	1236.000	456.000			_	1236.000	438.000			

								isuitairis	
						Page	195	of	212
Written by:	Josep	oh Sura	Date: 12/4/2009	Reviewed by:	R. Kulas	singam/Jay Bee	ech Date:	12/8/2	2009
Client:	Honeywell	Project:	Onondaga Lake	SCA Final Design	Project/ P	Proposal No.:	GJ4299	Task No.:	18
	1400.000	437.000			1241.724	443.965			
S	<u>upport</u>			S	upport				
	1400.000	437.000			1413.743	461.000			
	1460.199	437.000			1413.743	455.250			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1460.199	437.000			1413.743	461.000			
	1460.199	431.250			1698.000	461.000			
<u>s</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1461.784	431.250			1698.000	461.000			
	1461.784	437.000			1698.000	455.250			
<u>s</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1460.199	431.250			1698.000	455.250			
	1400.000	431.250			1413.743	455.250			
<u>s</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1400.000	431.250			1474.788	449.250			
	1236.000	432.250			1718.000	449.250			
<u>S</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1236.000	432.250			1718.000	449.250			
	1161.000	433.250			1718.000	455.000			
<u>s</u>	<u>upport</u>				<u>upport</u>				
	1241.724	438.215			1698.000	455.000			
	1400.000	437.250			1474.788	455.000			
<u>S</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1400.000	437.250			1461.784	431.250			
	1498.182	437.250			1778.100	431.250			
<u>s</u>	<u>upport</u>			<u>s</u>	upport				
	1498.182	443.000			1778.100	431.250			
	1498.182	437.250			1778.100	437.000			
<u>s</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1499.766	437.250			1758.000	437.000			
	1499.766	443.000			1461.784	437.000			
<u>s</u>	<u>upport</u>			<u>s</u>	upport				
	1498.182	443.000			1437.780	443.250			
	1400.000	443.000			1738.000	443.250			
<u>s</u>	<u>upport</u>			<u>s</u>	<u>upport</u>				
	1400.000	443.000			1738.000	443.250			

							Page		of	212	
Written by:	Joseph Sura		Date: 12/4/2009		Reviewed by:	R. Kula	asingam/Jay Bed	e ch Date:	12/8/	12/8/2009	
Client:	Honeywell	Project:	Onor	ıdaga Lake SC	CA Final Design	Project/	Proposal No.:	GJ4299	Task No.:	18	
	1738.000	449.000									
<u>s</u>	<u>upport</u> 1718.000 1437.780	449.000 449.000									
<u>s</u>	<u>upport</u> 1499.766 1758.000	437.250 437.250									
<u>s</u>	<u>upport</u> 1758.000 1758.000	437.250 443.000									
	<u>upport</u> 1738.000 1499.766	443.000 443.000									
<u>s</u>	<u>upport</u> 1718.000 1698.000	455.000 455.000									
	<u>upport</u> 1718.000 1738.000	449.000 449.000									
<u>S</u>	<u>upport</u> 1738.000 1758.000	443.000 443.000									
<u>S</u>	<u>upport</u> 1758.000 1778.100	437.000 437.000									

197

consultants

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_cover_liner_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search

Number of Surfaces: 5000

Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 95 Left Projection Angle (End Angle): 175 Right Projection Angle (Start Angle): 5 Right Projection Angle (End Angle): 85 Minimum Elevation: Not Defined

Material Properties

Minimum Depth: Not Defined

Material: Final Cover Soil

Strength Type: Mohr-Coulomb

Page

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3

Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3

198

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No.: 18

Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.819170

Axis Location: 191.041, 570.041

Left Slip Surface Endpoint: 161.508, 431.016

Right Slip Surface Endpoint: 284.542, 463.000

Resisting Moment=1.01275e+007 lb-ft Driving Moment=5.56707e+006 lb-ft

Page

Method: janbu simplified

FS: 1.813810

Axis Location: 191.041, 570.041

Left Slip Surface Endpoint: 161.508, 431.016 Right Slip Surface Endpoint: 284.542, 463.000

Resisting Horizontal Force=66479.5 lb Driving Horizontal Force=36651.9 lb

Method: spencer

FS: 1.511940

Axis Location: 180.031, 558.609

Left Slip Surface Endpoint: 152.083, 434.000 Right Slip Surface Endpoint: 262.949, 461.485

Resisting Moment=3.88774e+007 lb-ft Driving Moment=2.57136e+007 lb-ft Resisting Horizontal Force=176559 lb Driving Horizontal Force=116776 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 3139 Number of Invalid Surfaces: 1861

Error Codes:

Error Code -105 reported for 357 surfaces Error Code -107 reported for 186 surfaces Error Code -108 reported for 379 surfaces Error Code -110 reported for 285 surfaces Error Code -112 reported for 654 surfaces

Method: janbu simplified

Number of Valid Surfaces: 3045 Number of Invalid Surfaces: 1955

Error Codes:

Error Code -105 reported for 357 surfaces Error Code -107 reported for 186 surfaces Error Code -108 reported for 507 surfaces Error Code -110 reported for 285 surfaces Error Code -112 reported for 620 surfaces

Method: spencer

Number of Valid Surfaces: 1412 Number of Invalid Surfaces: 3588

Error Codes:

consultants

						Page	199	of	212
Written by:	Joseph Su	Joseph Sura		12/4/2009	Reviewed by:	R. Kulasingam/Jay Beecl	Date:	12	2/8/2009
Client:	Honeywell	Project:	Onon	daga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task N	No.: 18

Error Code -105 reported for 357 surfaces Error Code -107 reported for 186 surfaces

Error Code -108 reported for 521 surfaces

Error Code -110 reported for 285 surfaces

Error Code -111 reported for 1573 surfaces

Error Code -112 reported for 666 surfaces

consultants

Page 200 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_cover_global_su_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

201

consultants

212

Written

by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.401700

Center: 185.620, 545.117

Radius: 150.468

Left Slip Surface Endpoint: 94.610, 425.293 Right Slip Surface Endpoint: 311.705, 463.000

Resisting Moment=2.36525e+007 lb-ft Driving Moment=1.68741e+007 lb-ft

Method: janbu simplified

Page

FS: 1.322780

Center: 185.620, 545.117

Radius: 150.468

Left Slip Surface Endpoint: 94.610, 425.293 Right Slip Surface Endpoint: 311.705, 463.000

Resisting Horizontal Force=137554 lb Driving Horizontal Force=103988 lb

Method: spencer

FS: 1.396240

Center: 185.620, 545.117

Radius: 150.468

Left Slip Surface Endpoint: 94.610, 425.293 Right Slip Surface Endpoint: 311.705, 463.000

Resisting Moment=2.35602e+007 lb-ft Driving Moment=1.68741e+007 lb-ft Resisting Horizontal Force=137283 lb Driving Horizontal Force=98323.7 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 3054 Number of Invalid Surfaces: 1786

Error Codes:

Error Code -103 reported for 1443 surfaces Error Code -107 reported for 17 surfaces Error Code -108 reported for 1 surface Error Code -110 reported for 23 surfaces Error Code -112 reported for 302 surfaces

Method: janbu simplified

Number of Valid Surfaces: 3031 Number of Invalid Surfaces: 1809

Error Codes:

Error Code -103 reported for 1443 surfaces Error Code -107 reported for 17 surfaces Error Code -108 reported for 17 surfaces Error Code -110 reported for 23 surfaces Error Code -111 reported for 1 surface Error Code -112 reported for 308 surfaces

Method: spencer

Number of Valid Surfaces: 2417 Number of Invalid Surfaces: 2423

Error Codes:

consultants

						Page	202	of	212
Written by:	Joseph St	Joseph Sura		12/4/2009	Reviewed by:	R. Kulasingam/Jay Beech	Date:	12/8/2009	
Client:	Honeywell	Project:	Onon	ndaga Lake SC	A Final Design	Project/ Proposal No.:	GJ4299	Task N	No.: 18

Error Code -103 reported for 1443 surfaces Error Code -107 reported for 17 surfaces

Error Code -108 reported for 23 surfaces

Error Code -110 reported for 23 surfaces

Error Code -111 reported for 596 surfaces

Error Code -112 reported for 321 surfaces

consultants

Page 203 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_cover_global_u75_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3

Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

consultants

Page 204 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Material: SOLW U=75%

Strength Type: Discrete function

Unit Weight: 82 lb/ft3 Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.425720

Center: 177.623, 545.117

Radius: 149.072

Left Slip Surface Endpoint: 88.756, 425.429 Right Slip Surface Endpoint: 302.039, 463.000

Resisting Moment=2.27764e+007 lb-ft Driving Moment=1.59753e+007 lb-ft

Method: janbu simplified

FS: 1.340700

Center: 177.623, 535.909

Radius: 141.842

Left Slip Surface Endpoint: 88.663, 425.431 Right Slip Surface Endpoint: 299.292, 463.000

Resisting Horizontal Force=134615 lb Driving Horizontal Force=100407 lb

Method: spencer

FS: 1.419040

Center: 177.623, 545.117

Radius: 149.072

Left Slip Surface Endpoint: 88.756, 425.429 Right Slip Surface Endpoint: 302.039, 463.000

Resisting Moment=2.26697e+007 lb-ft Driving Moment=1.59753e+007 lb-ft Resisting Horizontal Force=133379 lb Driving Horizontal Force=93992.7 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 3053 Number of Invalid Surfaces: 1787

Error Codes:

Error Code -103 reported for 1443 surfaces
Error Code -107 reported for 17 surfaces
Error Code -108 reported for 1 surface
Error Code -110 reported for 23 surfaces
Error Code -112 reported for 303 surfaces

Method: janbu simplified

Number of Valid Surfaces: 3029 Number of Invalid Surfaces: 1811

Error Codes:

Error Code -103 reported for 1443 surfaces Error Code -107 reported for 17 surfaces Error Code -108 reported for 17 surfaces Error Code -110 reported for 23 surfaces Error Code -111 reported for 1 surface

consultants

Page 205 of 212

Written by:

Joseph Sura

Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech
Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Error Code -112 reported for 310 surfaces

Method: spencer

Number of Valid Surfaces: 2416 Number of Invalid Surfaces: 2424

Error Codes:

Error Code -103 reported for 1443 surfaces
Error Code -107 reported for 17 surfaces
Error Code -108 reported for 23 surfaces
Error Code -110 reported for 23 surfaces
Error Code -111 reported for 597 surfaces
Error Code -112 reported for 321 surfaces

206

consultants of

212

Written 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by:

Client: Honevwell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: **GJ4299** Task No .: 18

Slide Analysis Information

Document Name

File Name: eastwest cover longterm lab

Project Settings

Proiect Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (Drained)

Strength Type: Mohr-Coulomb

Unit Weight: 82 lb/ft3 Cohesion: 0 psf

Friction Anale: 34 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material (Long)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees

207

consultants

212

Written

Joseph Sura

Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech

Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Water Surface: Water Table

Custom Hu value: 1

by:

<u>Material: Tube-Gravel Interface</u> Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3

Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube (Long Term)

Geotube (Long Term)
Support Type: GeoTextile
Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 0.1 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.914240

Center: 137.637, 600.367

Radius: 169.097

Left Slip Surface Endpoint: 182.213, 437.251 Right Slip Surface Endpoint: 190.658, 439.797 Resisting Moment=3978.07 lb-ft Driving Moment=2078.14 lb-ft

Page

Method: janbu simplified

FS: 1.914040

Center: 137.637, 600.367

Radius: 169.097

Left Slip Surface Endpoint: 182.213, 437.251 Right Slip Surface Endpoint: 190.658, 439.797

Resisting Horizontal Force=22.5224 lb Driving Horizontal Force=11.7669 lb

Method: spencer FS: 1.914150

Center: 137.637, 600.367

Radius: 169.097

Left Slip Surface Endpoint: 182.213, 437.251 Right Slip Surface Endpoint: 190.658, 439.797

Resisting Moment=3977.88 lb-ft Driving Moment=2078.14 lb-ft

Resisting Horizontal Force=22.5223 lb Driving Horizontal Force=11.7662 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 3024
Number of Invalid Surfaces: 1816

Error Codes:

Error Code -103 reported for 1443 surfaces Error Code -107 reported for 17 surfaces Error Code -108 reported for 1 surface Error Code -110 reported for 23 surfaces Error Code -112 reported for 332 surfaces

Method: janbu simplified

Number of Valid Surfaces: 3064 Number of Invalid Surfaces: 1776

Error Codes:

Error Code -103 reported for 1443 surfaces Error Code -107 reported for 17 surfaces Error Code -108 reported for 2 surfaces Error Code -110 reported for 23 surfaces Error Code -112 reported for 291 surfaces

Method: spencer

Number of Valid Surfaces: 3017 Number of Invalid Surfaces: 1823

consultants

208 212 Page ofWritten 12/4/2009 R. Kulasingam/Jay Beech 12/8/2009 Joseph Sura Date: Reviewed by: Date: by: Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Error Codes:

Error Code -103 reported for 1443 surfaces

Error Code -107 reported for 17 surfaces

Error Code -108 reported for 6 surfaces

Error Code -110 reported for 23 surfaces

Error Code -111 reported for 2 surfaces

Error Code -112 reported for 332 surfaces

consultants

Page 209 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name: eastwest_cover_external_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (undrained)
Strength Type: Discrete function

Unit Weight: 82 lb/ft3
Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material
Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees Water Surface: Water Table

Custom Hu value: 1

consultants

Page 210 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube

Geotube

Support Type: GeoTextile Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 1600 lb/ft Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 7.070290

Center: -4.256, 5490.384 Radius: 5102.085

Left Slip Surface Endpoint: -698.188, 435.710

Right Slip Surface Endpoint: 867.871, 463.391 Resisting Moment=5.67039e+009 lb-ft Driving Moment=8.02003e+008 lb-ft Method: janbu simplified

FS: 7.073590

Center: -4.256, 5490.384

Radius: 5102.085

Left Slip Surface Endpoint: -698.188, 435.710 Right Slip Surface Endpoint: 867.871, 463.391 Resisting Horizontal Force=1.1071e+006 lb

Driving Horizontal Force=156511 lb

Method: spencer

FS: 7.070600

Center: -4.256, 5490.384

Radius: 5102.085

Left Slip Surface Endpoint: -698.188, 435.710 Right Slip Surface Endpoint: 867.871, 463.391

Resisting Moment=5.67065e+009 lb-ft Driving Moment=8.02003e+008 lb-ft

Resisting Horizontal Force=1.10715e+006 lb

Driving Horizontal Force=156585 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1229 Number of Invalid Surfaces: 3578

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -110 reported for 463 surfaces Error Code -1000 reported for 3069 surfaces

Method: janbu simplified

Number of Valid Surfaces: 1229 Number of Invalid Surfaces: 3578

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -110 reported for 463 surfaces Error Code -1000 reported for 3069 surfaces

Method: spencer

Number of Valid Surfaces: 1228 Number of Invalid Surfaces: 3579

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -110 reported for 463 surfaces Error Code -111 reported for 1 surface Error Code -1000 reported for 3069 surfaces

211

consultants

212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Slide Analysis Information

Document Name

File Name:

eastwest_cover_external_longterm_lab

Project Settings

Project Title: SLIDE - An Interactive Slope

Stability Program

Failure Direction: Right to Left

Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces

Data Output: Standard

Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed

Random Number Seed: 10116

Random Number Generation Method: Park

and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10

Composite Surfaces: Disabled

Reverse Curvature: Create Tension Crack

Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Final Cover Soil
Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees

Water Surface: Water Table

Page

Custom Hu value: 1

Material: Dike Soil

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 35 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Gravel

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3

Cohesion: 0 psf

Friction Angle: 38 degrees

Water Surface: Piezometric Line 1

Custom Hu value: 1

Material: SOLW (Drained)

Strength Type: Mohr-Coulomb

Unit Weight: 82 lb/ft3 Cohesion: 0 psf

Friction Angle: 34 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Dredge Material (Long)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 30 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Tube Interface (Horizontal)

Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 15 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Tub-Tube Interface (Vertical)

Strength Type: Mohr-Coulomb

Unit Weight: 43 lb/ft3 Cohesion: 0 psf

Friction Angle: 0.1 degrees

consultants

Page 212 of 212

Written by: Joseph Sura Date: 12/4/2009 Reviewed by: R. Kulasingam/Jay Beech Date: 12/8/2009

Client: Honeywell Project: Onondaga Lake SCA Final Design Project/ Proposal No.: GJ4299 Task No.: 18

Water Surface: Water Table

Custom Hu value: 1

Material: Tube-Gravel Interface Strength Type: Mohr-Coulomb

Unit Weight: 86 lb/ft3 Cohesion: 0 psf

Friction Angle: 24 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Liner

Strength Type: Mohr-Coulomb

Unit Weight: 100 lb/ft3 Cohesion: 0 psf

Friction Angle: 19 degrees Water Surface: Water Table

Custom Hu value: 1

Material: Foundation

Strength Type: Mohr-Coulomb

Unit Weight: 120 lb/ft3 Cohesion: 0 psf

Friction Angle: 37 degrees Water Surface: Water Table

Custom Hu value: 1

Support Properties

Support: Geotube (Long Term)

Geotube (Long Term)
Support Type: GeoTextile
Force Application: Passive

Force Orientation: Tangent to Slip Surface

Anchorage: Both Ends Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 0.1 lb/ft

Pullout Strength Adhesion: 5 lb/ft2

Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 11.956800

Center: -516.970, 6468.046

Radius: 6107.435

Left Slip Surface Endpoint: -867.917, 370.702 Right Slip Surface Endpoint: 596.668, 463.000 Resisting Moment=2.0544e+010 lb-ft Driving Moment=1.71819e+009 lb-ft

Method: janbu simplified

FS: 11.903600

Center: -516.970, 6468.046

Radius: 6107.435

Left Slip Surface Endpoint: -867.917, 370.702 Right Slip Surface Endpoint: 596.668, 463.000 Resisting Horizontal Force=3.35325e+006 lb

Driving Horizontal Force=281702 lb

Method: spencer

FS: 11.955500

Center: -516.970, 6468.046

Radius: 6107.435

Left Slip Surface Endpoint: -867.917, 370.702 Right Slip Surface Endpoint: 596.668, 463.000

Resisting Moment=2.05419e+010 lb-ft Driving Moment=1.71819e+009 lb-ft

Resisting Horizontal Force=3.35407e+006 lb

Driving Horizontal Force=280545 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1229
Number of Invalid Surfaces: 3578

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -110 reported for 463 surfaces Error Code -1000 reported for 3069 surfaces

Method: janbu simplified

Number of Valid Surfaces: 1229 Number of Invalid Surfaces: 3578

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -110 reported for 463 surfaces Error Code -1000 reported for 3069 surfaces

Method: spencer

Number of Valid Surfaces: 1229 Number of Invalid Surfaces: 3578

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -110 reported for 463 surfaces Error Code -1000 reported for 3069 surfaces