E.2

CAP SETTLEMENT RA D AND OUTBOARD

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: Honeywell Project: One	ondaga Lake ILWD IDS Project/Proposal #:	GJ4741 Task #: 1
TITLE OF COMPUTATIONS	CAP-INDUCED SETTLEMENT EVALUA REMEDIATION AREA D AND THE AD	
COMPUTATIONS BY:	Signature Tau 2hu	1 / 13/201) DATE
	Printed NameFan Zhuand TitleSenior Staff Engineer	DITTE
ASSUMPTIONS AND PROCEDURE CHECKED BY:	ES R. Kulangan / Might	01/13/2011
(Peer Reviewer)	Printed Name R. Kulasingam/Ming Zhu and Title Senior Engineer/Project	DATE
COMPUTATIONS CHECKED BY:	Signature	Jan. 13, 2011
	Printed Name Joseph Sura and Title Senior Staff Engineer	DATE
COMPUTATIONS BACKCHECKED BY: (Originator)	Signature Fan. Zhun	1/13/2011 DATE
(Onghiator)	Printed NameFan Zhuand TitleSenior Staff Engineer	
APPROVED BY: (PM or Designate)	Signature T. Back	01/13/2011 DATE
	Printed NameJay Beechand TitlePrincipal	
APPROVAL NOTES:		
REVISIONS (Number and initial all re	evisions)	
NO. SHEET DA	TE BY CHECKED BY	APPROVAL

Prepared for

Parsons 301 Plainfield Road, Suite 350 Syracuse, New York 13212

CAP-INDUCED SETTLEMENT EVALUATION FOR REMEDIATION AREA D

ONONDAGA LAKE SYRACUSE, NEW YORK

engineers | scientists | innovators 1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number: GJ4741

January 2011

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	SUBSURFACE CONDITIONS	1
3.	MATERIAL PROPERTIES	2
4.	SETTLEMENT ANALYSIS	
	4.2 Dredge Cut Depths and Cap Thicknesses Considere	d 10
	4.3 Settlement Calculations	
	4.4 Cumulative Upward Consolidation Water Flow	
5.	CONCLUSIONS	
REF	ERENCES	

LIST OF TABLES

Table 1.	$C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for SOLW
Table 2.	$C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for Marl
Table 3.	$C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for Silt and Clay in SMU 1
Table 4.	$C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for Silt and Clay in SMU 2
Table 5.	Summary of the Material Properties used in Analysis
Table 6.	Selected Reasonable Upper and Lower Bound Values for Consolidation Parameters

LIST OF FIGURES

- Figure 1. Remediation Area D
- Figure 2. Areas and Subsurface Layer Thicknesses
- Figure 3. Comparison of Results from Conventional Oedometer Tests and SIC Tests

Geosyntec consultants

TABLE OF CONTENTS (Continued)

- Figure 4. Interpretation of Modified Secondary Compression Index for SOLW
- Figure 5. Interpretation of Modified Secondary Compression Index for Marl
- Figure 6. Interpretation of Modified Secondary Compression Index for Silt and Clay in SMU 1
- Figure 7. Interpretation of Modified Secondary Compression Index for Silt and Clay in SMU 2
- Figure 8. Interpretation of Coefficient of Consolidation Index for SOLW
- Figure 9. Interpretation of Coefficient of Consolidation Index for Marl
- Figure 10. Interpretation of Coefficient of Consolidation Index for Silt and Clay in SMU 1
- Figure 11. Interpretation of Coefficient of Consolidation Index for Silt and Clay in SMU 2
- Figure 12. Finite difference method based numerical solution for the 1-D consolidation equation
- Figure 13. Settlement Analysis Results for Areas 1 to 12 for 30-Year Period
- Figure 14. Settlement Analysis Results for Area 3 for 2-Year Period
- Figure 15. Calculated Cumulative Consolidation Water Flow

LIST OF ATTACHMENTS

- Attachment A. Subsurface Layer Thickness Contours
- Attachment B. Conventional Oedometer Test Results Summary
- Attachment C. Examples of Calculations
- Attachment D. Calculated Excess Pore Water Pressure Isochrones

Geosyntec consultants

1. INTRODUCTION

This report presents calculations of the amount and rate of consolidation settlement anticipated after dredging and placement of a subaqueous cap in Remediation Area D of the Onondaga Lake Bottom Site. Specifically, this report presents: (i) the total settlement (including primary settlement and secondary settlement) at the end of 30 years after placement of the cap and at the end of two years for the area with the highest estimated settlement; and (ii) the upward flow rate of consolidation water.

Remediation Area D, which is also referred to as the In-Lake Waste Deposit (ILWD), is shown in Figure 1. Remediation Area D consists predominantly of Sediment Management Unit (SMU) 1 with limited portions of SMUs 2 and 7. The dredging plan and the maximum and minimum cap thicknesses in Remediation Area D are documented in the main text of the Capping, Dredging, and Habitat Design Report.

The remainder of this report presents: (i) subsurface conditions; (ii) material properties; (iii) settlement analysis; and (iv) conclusions.

2. SUBSURFACE CONDITIONS

Extensive pre-design investigations (PDIs) were conducted in the ILWD from 2005 to 2007 to characterize the subsurface conditions. Detailed information regarding the subsurface stratigraphy is presented in a calculation package titled "Summary of Subsurface Stratigraphy and Material Properties" (referred to as the ILWD Data Package) for the Stability Evaluation of the ILWD [appendix of the Capping, Dredging, and Habitat Design Report]. In summary, the subsurface stratigraphy primarily consists of the following materials: Solvay waste (SOLW), Marl, Silt and Clay, Silt and Sand, Sand and Gravel, Till, and Shale. In isolated areas of the ILWD, thin silt layers are present over the SOLW.

The subsurface profile of the ILWD was developed based on the elevations of each layer from the boring logs. As explained in the ILWD Data Package, elevations for the deeper surfaces (e.g., bottom of Silt and Clay, bottom of Silt and Sand) that are below the depth of the shallow borings were estimated based on a limited number of deeper borings in the ILWD area. The deeper layers (i.e., Silt and Sand, Sand and Gravel, Till, and Shale) were considered as incompressible layers in the settlement analysis.

For the purpose of the settlement analysis presented herein, Remediation Area D was divided into 12 areas based on the thickness of the SOLW, Marl, and Silt and Clay layers. Representative values of SOLW, Marl, and Silt and Clay thicknesses were selected for settlement analysis in each area. The thin isolated silt layers were assumed to be part of the SOLW because their impact on settlement is expected to be insignificant. The divided areas and selected layer thicknesses for the settlement analyses are presented in Figure 2. The subsurface layer thickness contours are presented in Attachment A of this report. It is noted that the selected subsurface thickness of each layer in a particular area. The actual subsurface layer thickness at any point within an area may be higher or lower than the selected value.

3. MATERIAL PROPERTIES

The material properties required for settlement analysis include: (i) unit weight of cap and subsurface materials (i.e., SOLW, Marl, and Silt and Clay); and (ii) consolidation parameters of subsurface materials. For the calculation of upward flow rate of consolidation water, the hydraulic conductivities of the subsurface materials were also needed.

Unit Weight

The unit weight of Cap material was assumed to be 120 pcf in the analysis. The unit weight of SOLW, Marl, and Silt and Clay were assumed to be 81 pcf, 98 pcf and 108 pcf, respectively, as presented in the ILWD Data Package.

Consolidation Parameters

The consolidation parameters needed for settlement analysis are: modified compression index ($C_{c\epsilon}$), modified recompression index ($C_{r\epsilon}$), modified secondary compression index ($C_{\alpha\epsilon}$), and coefficient of consolidation (c_v). These parameters were interpreted from consolidation test data.

Two types of consolidation tests were performed, as follows:

(i) Conventional oedometer test: The conventional oedometer test data can be used to determine all the consolidation parameters needed for settlement analyses. Tests were performed on samples of SOLW, Marl, and Silt and Clay. The test reports are included in Attachment B of this report.

(ii) Seepage-induced consolidation (SIC) test: The SIC tests were completed in general accordance with the method presented by Znidarcic, et al. (1992). The test is run on a disturbed sample that has been slurried. A load is then applied by creating a constant flow rate in the sample. Load is then increased to the maximum desired level after constant flow is reached. The change in void ratio and permeability is measured as the loads are applied. Only the compression index can be calculated based on SIC test data. For Remediation Area D, SIC tests were performed primarily on samples of SOLW. The test results are presented in Phase I and Phase II Pre-Design Investigation Data Summary Report [Parsons 2007 and 2009].

As indicated previously, both tests were performed on samples of SOLW. The rationale for interpreting the $C_{c\epsilon}$ value of SOLW from only the conventional oedometer test results is as follows:

- (i) consolidation curves from conventional oedometer tests indicate an "apparent" pre-consolidation pressure between 1,000 to 3,000 psf, as shown by the solid lines in Figure 3. The slope of the consolidation curve is flatter when the vertical effective stress is less than the "apparent" pre-consolidation pressure as compared to when the vertical effective stress is greater than the "apparent" pre-consolidation pressure. It indicates that the compressibility of SOLW under a small stress condition (i.e., less than 1,000 psf) is less than the compressibility under a higher stress condition (i.e., greater than 1,000 psf). As presented in the ILWD Data Package, the consolidated undrained triaxial tests performed for SOLW during the PDI showed higher undrained shear strength ratios under a small stress condition (i.e., less than 1,000 psf) than under higher stress conditions (i.e., greater than 1,000 psf). This is likely due to the overconsolidated condition of the samples in the lab from the presence of an "apparent" pre-consolidation pressure;
- (ii) SIC tests were performed on disturbed samples, and as expected, did not indicate any "apparent" pre-consolidation pressure, as indicated by the dashed lines in Figure 3. It is believed that the disturbance of the sample in the SIC

tests changed the structure of the sample, and therefore, the SIC tests did not show the "apparent" pre-consolidation pressure; and

(iii) the vertical effective stress of SOLW in the field before and after capping is less than the "apparent" pre-consolidation pressure. Therefore, the $C_{c\epsilon}$ value of SOLW should be interpreted from the conventional oedometer test, using the portion of the consolidation curve corresponding to the potential stress condition of SOLW in the field before and after capping (i.e., from 100 to 1,000 psf).

The values interpreted from oedometer tests for $C_{c\epsilon}$ and $C_{r\epsilon}$ of SOLW, Marl, and Silt and Clay are presented in Tables 1 through 4. The mean values of $C_{c\epsilon}$ and $C_{r\epsilon}$ were used for the settlement analysis in all areas. The interpretation of $C_{\alpha\epsilon}$ and c_v for SOLW, Marl, and Silt and Clay are presented in Figures 4 through 11. The representative values were used for the settlement analysis.

For sensitivity analyses to evaluate the impact of consolidation parameter uncertainty on calculated settlement, reasonable upper and lower bound values were selected for $C_{c\epsilon}$, $C_{r\epsilon}$, $C_{a\epsilon}$, and c_v . For $C_{c\epsilon}$ and $C_{r\epsilon}$, the reasonable upper bound values were selected as the smaller of the calculated "mean plus standard deviation" and the maximum value, and the reasonable lower bound values were selected as the larger of the calculated "mean minus standard deviation" and the minimum value (see Tables 1 through 4). For $C_{a\epsilon}$ and c_v , reasonable upper and lower bound values were selected based on the variability within the stress range of interest (see Figures 4 through 11).

As presented in the ILWD Data Package, comparison of calculated in-situ vertical effective stresses and the "apparent" pre-consolidation pressures interpreted from oedometer tests indicates that Marl has an OCR of about 1.2, and Silt and Clay is normally consolidated. The analyses presented herein assumed that both Marl and Silt and Clay are normally consolidated. This assumption will lead to slightly higher total settlement estimates.

Hydraulic Conductivity

According to the calculation package titled "Summary of Subsurface Stratigraphy and Material Properties" (referred to as the West Wall Data Package) for the Onondaga Lake West Wall Final Design [Geosyntec 2009], the measured hydraulic conductivity of SOLW varies from 4.95×10^{-6} cm/s to 2.78×10^{-5} cm/s. The measured hydraulic conductivity of Silt and Clay varies from 4.9×10^{-8} cm/s to 4.41×10^{-7} cm/s. These values are based on hydraulic conductivity tests performed on samples of SOLW and Silt and Clay from the Wastebed B/Harbor Book (WB-B/HB) area. For the purposes of analysis presented herein, the hydraulic conductivities of SOLW and Silt and Clay were assumed as 1×10^{-5} cm/s and 1×10^{-7} cm/s, respectively. These values are also reasonably consistent (i.e., same order of magnitude) as the values being used in the groundwater upwelling evaluations for the ILWD. The hydraulic conductivity of Marl was assumed the same as for Silt and Clay. Hydraulic conductivities were only used for the calculation of excess pore water pressures at layer interfaces as part of the upward flow of consolidation water calculations. Hydraulic conductivity values ranging from 1×10^{-7} cm/sec to 5×10^{-5} cm/sec have minimum impact on the calculated amount of consolidation water because the hydraulic conductivities only affect the calculation of pore water pressure at the interface between soil layers (refer to Equation 11B presented below). The coefficient of consolidation c_v has significant impact on the calculated amount of consolidation water flow at any given time. The c_v is related to the hydraulic conductivity and compressibility, but was calculated directly based on consolidation tests on ILWD samples.

A summary of the material properties used in the analyses is provided in Table 5. The reasonable upper and lower bound consolidation parameters used in the sensitivity analysis are summarized in Table 6.

Geosyntec consultants

4. SETTLEMENT ANALYSIS

4.1 <u>Methodology</u>

Consolidation Settlement

Settlement of the SOLW, Marl, and Silt and Clay was calculated using equations for conventional one-dimensional (1-D) consolidation theory used in geotechnical engineering [Holtz and Kovacs, 1981]. Settlement is caused by the following mechanisms:

- primary compression of the SOLW, Marl, and Silt and Clay due to overburden loading imposed by the cap; and
- secondary compression resulting from the plastic realignment of the fabric (i.e., creep) of SOLW, Marl, and Silt and Clay under the sustained loading.

The general forms of the settlement equations are given below:

Primary Settlement

$$S_{p} = C_{r\varepsilon} \operatorname{H} \log \left(\frac{\sigma_{vo}' + \Delta \sigma_{v}'}{\sigma_{vo}'} \right) \text{ for } \sigma_{vo}' + \Delta \sigma_{v}' \leq \sigma_{p}'$$
(1)

$$S_{p} = C_{r\varepsilon} \operatorname{H} \log \left(\frac{\sigma'_{p}}{\sigma'_{vo}} \right) + C_{c\varepsilon} \operatorname{H} \log \left(\frac{\sigma'_{vo} + \Delta \sigma'_{v}}{\sigma'_{p}} \right) \text{ for } \sigma'_{vo} \leq \sigma'_{p} \text{ and } \sigma'_{vo} + \Delta \sigma'_{v} > \sigma'_{p} \quad (2A)$$

$$S_{p} = C_{c\varepsilon} \operatorname{H} \log \left(\frac{\sigma_{vo}' + \Delta \sigma_{v}'}{\sigma_{vo}'} \right) \text{ for } \sigma_{vo}' \ge \sigma_{p}'$$
(2B)

Secondary Settlement

$$S_{s} = C_{\alpha\varepsilon} \operatorname{H} \log\left(\frac{t_{2}}{t_{1}}\right)$$
(3)

Total Settlement

$$S = S_p + S_s \tag{4}$$

Geosyntec Consultants

Where,

 S_p = primary settlement;

- S_s = secondary settlement;
- S = total settlement;
- $C_{c\varepsilon}$ = modified compression index;
- $C_{r\varepsilon}$ = modified recompression index;
- $C_{\alpha\varepsilon}$ = modified secondary compression index;
- H = initial thickness of compressible layer;
- σ'_{vo} = initial effective overburden stress;
- σ'_{p} = preconsolidation pressure;

 $\Delta \sigma_{v}$ = increase in effective stress due to the loading;

- t_1 = time for completion of primary compression; and
- t_2 = time when settlement due to secondary compression is computed (i.e., unless stated otherwise, assumed to be 30 years for this analysis).

The following equations related to the time rate of consolidation were used to calculate t_1 :

$$T = \frac{\mathbf{c}_{v} \mathbf{t}}{\mathbf{H}_{dv}^{2}} \tag{5}$$

$$T = \frac{\pi}{4} \left(\frac{U\%}{100}\right)^2 \text{ for } U < 60\%$$
 (6A)

$$T = 1.781 - 0.933\log(100 - U\%)$$
 for $U > 60\%$ (6B)

The completion of primary compression was considered as U = 90%, in accordance with common engineering practice. Based on Equation 6B, T = 0.848 when U = 90%. Therefore, t₁ can be calculated using the following equation:

$$t_1 = 0.848 \frac{H_{dr}^2}{c_v}$$
(7)

Where,

Geosyntec consultants

- T = time factor;
- c_v = coefficient of consolidation;
- H_{dr} = longest drainage path; and
- U = average degree of consolidation.

Upward Flow of Consolidation Water

Cumulative upward flow volume of consolidation water from SOLW, Marl, and Silt and Clay at any time can be calculated as follows for use in cap design:

$$V_t = \sum \left(\left(\frac{\mathbf{P}_i \%}{100} \right) \left(\frac{\mathbf{U}_{i,t} \%}{100} \right) \mathbf{S}_{pi} + \left(\frac{\mathbf{P}_i \%}{100} \right) \mathbf{S}_{si,t} \right)$$
(8)

Where,

- V_t = cumulative upward flow volume of consolidation water at time t;
- P_i = percentage of thickness of layer i contributing to upward flow of consolidation water;
- $U_{i,t}$ = average degree of consolidation for layer i at time t;
- S_{pi} = ultimate primary settlement of layer i; and
- $S_{si,t}$ = secondary settlement of layer i at time t. For simplicity of calculation, secondary settlement was assumed to start when U = 93% (T \approx 1), even though in the settlement calculation presented above, U=90% was considered as the completion of primary settlement

Both P and U can be calculated from contours of excess pore water pressure variation with depth for different times (i.e., isochrones). Simpson's rule is used to calculate relative areas from contours of excess pore water pressure, which are used to estimate U at different times. The following governing equation for one-dimensional consolidation can be solved using the finite difference method (FDM) to develop isochrones.

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \frac{\mathbf{k}}{\gamma_{\rm w} m_{\rm v}} \frac{\partial^2 u}{\partial z^2} = \mathbf{c}_{\rm v} \frac{\partial^2 u}{\partial z^2} \tag{9}$$

Geosyntec[▷]

Where,

- u = excess pore water pressure;
- t = time;
- k = hydraulic conductivity;
- $\gamma_{\rm w}$ = unit weight of water; and
- m_v = coefficient of volume change.

The FDM solution is expressed in terms of the following dimensionless (relative) parameters:

$$\overline{u} = \frac{u}{u_R}$$
(10A)

$$\bar{t} = \frac{t}{t_R} \tag{10B}$$

$$\overline{z} = \frac{z}{z_R}$$
(10C)

Where,

\overline{u}	=	dimensionless (relative) excess pore water pressure;
u_R	=	maximum excess pore water pressure induced by the loading;
\overline{t}	=	dimensionless (relative) time;
t_R	=	time for 93% consolidation, calculated as $t_{\rm R} = \frac{Z_{\rm R}^2}{c_{\rm v}}$;
$\frac{-}{z}$	=	relative depth; and
Z_R	=	maximum depth of all layers modeled.

The finite difference nodes are presented in Figure 12. The FDM equations for a node in a homogeneous layer and at a layer interface are presented in Equations 11A and 11B, respectively.

$$\overline{u}_{0,\overline{t}+\Delta \overline{t}} = \frac{\Delta \overline{t}}{\left(\Delta \overline{z}\right)^2} \left(\overline{u}_{1,\overline{t}} + \overline{u}_{3,\overline{t}} - 2\overline{u}_{0,\overline{t}} \right) + \overline{u}_{0,\overline{t}}$$
(11A)

$$\bar{u}_{0,\bar{t}+\Delta\bar{t}} = A \frac{\Delta \bar{t}}{(\Delta \bar{z})^2} \left(B \bar{u}_{1,\bar{t}} + C \bar{u}_{3,\bar{t}} - 2 \bar{u}_{0,\bar{t}} \right) + \bar{u}_{0,\bar{t}}$$
(11B)

The parameters referred to as A, B, and C can be calculated using the following equations (where k_1 and k_2 are hydraulic conductivities of the top and bottom layers, respectively, and c_{v1} and c_{v2} are coefficients of consolidation of the top and bottom layers, respectively):

$$A = \frac{1 + \frac{k_2}{k_1}}{1 + \left(\frac{k_2}{k_1}\right)\left(\frac{c_{\nu_1}}{c_{\nu_2}}\right)}$$
(12A)

$$B = \frac{2k_1}{k_1 + k_2}$$
(12B)

$$C = \frac{2k_2}{k_1 + k_2} \tag{12C}$$

For numerical stability of the FDM implementation, the following should be satisfied:

$$\frac{\Delta t}{\left(\Delta \bar{z}\right)^2} < 0.5 \tag{13}$$

4.2 Dredge Cut Depths and Cap Thicknesses Considered

As documented in the main text of the Capping, Dredging, and Habitat Design Report, the proposed dredging depth in Remediation Area D, excluding hot spot removal, is between 0 m and 3 m (or 10 ft). The proposed cap has a thickness of approximately 3 to 4.5 ft assuming average overplacement and a maximum thickness of 5.5 ft for maximum overplacement. In the settlement analysis performed herein, dredging depths of 0 ft, 3 ft, 6 ft, and 10 ft, and cap thicknesses of 3 ft, 4 ft, and 5.5 ft were considered for each of the 12 areas identified in Figure 2.

4.3 <u>Settlement Calculations</u>

Settlement Analysis

Cap-induced settlement analyses were performed for each of the 12 areas for all combinations of the considered dredging depths and cap thicknesses. The calculated settlement includes the primary settlement and secondary settlement that will occur within 30 years of cap placement. The following assumptions were made for the purposes of the analyses presented herein:

- Both Marl and Silt and Clay were considered as one layer in the consolidation rate calculation (i.e., the average degree of consolidation at the end of 30 years and the time needed to reach 90% primary consolidation) because their c_v values are comparable. The c_v value of Silt and Clay was applied to this combined layer due to the relatively larger thickness of Silt and Clay compared to Marl.
- The SOLW layer was considered to be a singly drained layer. The combined Marl and Silt and Clay layer was assumed to be a doubly drained layer. The c_v value of SOLW is much larger than that for the combined layer and, therefore, the excess pore water pressure in the SOLW dissipates (in the upward direction) much faster than the excess pore water pressure in the combined layer. The combined layer behaves similar to a doubly drained layer after most of the excess pore water pressure in the SOLW has dissipated. This assumption will be validated in Section 4.4.
- Secondary compression starts when 90% of the primary consolidation is reached.

The settlement calculations were performed using EXCEL[®] spreadsheets. An example calculation is shown in Attachment C. Analysis results are presented in Figure 13. For each area, the cap-induced settlement can be read or interpolated from the charts for a given proposed dredging depth and cap thickness that is within the range of the values evaluated.

Geosyntec[▷]

An additional cap-induced settlement analysis was performed to evaluate the settlement that will occur within two years after cap placement. Area 3 was selected for this analysis because it is the area with the largest calculated settlement for the different combinations of dredging depth and cap thickness. The settlement analysis results for Area 3 for a 2-year period are presented in Figure 14.

Sensitivity Analysis

Sensitivity analyses were performed to evaluate the impact of variability in consolidation parameters on the calculated settlement. Analyses were performed for the condition with a 2-m (6.6 ft) dredge and 4-ft cap thickness, which represents the average dredge depth and cap thickness for Remediation Area D. The reasonable upper and lower bound values presented in Table 6 were used to calculate the potential upper bound and lower bound settlement magnitude. In the calculation of potential upper bound of settlement magnitude, Marl and Silt and Clay were considered as one layer in the consolidation rate calculation and the c_v value of Silt and Clay was applied to this layer. In the calculation of potential lower bound of settlement magnitude, all of the SOLW, Marl, and Silt and Clay were assumed as one doubly drained layer for the consolidation rate calculation because the reasonable lower bound c_v values of the three materials are comparable. The c_v value of Silt and Clay was applied to this combined layer.

Based on settlement calculations presented in Figure 13 for a 2-m dredge and 4-ft cap thickness condition, the settlement ranges from 0.5 ft to 0.7 ft. The sensitivity analysis results indicated that the settlement in Remediation Area D may range from 0.2 ft to 1.0 ft for a 2-m dredge and 4-ft cap thickness condition.

4.4 <u>Cumulative Upward Consolidation Water Flow</u>

After cap placement, water stored in the voids of the subsurface soil will be squeezed out due to the consolidation of the subsurface soil. Part of the water will flow upward. For the purpose of the analyses presented herein, the upward flow rate of consolidation water was evaluated for the condition with a 2-m (6.6 ft) dredge and 4-ft cap thickness, which represents the average dredge depth and cap thickness for Remediation Area D. These analyses were performed using average/representative parameters. The following assumption was made for this analysis:

Geosyntec[▷]

• Since Marl and Silt and Clay have comparable c_v values, they were modeled as one layer. The c_v value of Silt and Clay was applied to this combined layer. The SOLW layer was modeled separately because its c_v value is much higher than the value for the Marl and Silt and Clay.

Based on this assumption, the analysis of upward flow rate of consolidation water was performed as follows:

- (i) calculate the variation of excess pore water pressure with depth and time, according to the subsurface conditions and material properties; and plot the isochrones of excess pore water pressure;
- (ii) based on calculated excess pore water pressures, determine the average degree of consolidation (U) of SOLW and the combined layer at different times;
- (iii) based on calculated excess pore water pressures, determine the percentage of consolidation water flowing upward (P) for the SOLW and the combined layer (results indicated P is 100% for SOLW and 50% for the combined layer);
- (iv) calculate the ultimate primary settlement of SOLW and upper half of the combined layer; and
- (v) calculate the primary and secondary settlement of SOLW and upper half of the combined layer at selected times. The total settlement is the cumulative upward consolidation water flow at the selected times.

The calculations were performed using EXCEL[®] spreadsheets. An example of the calculation is shown in Attachment C. The calculated cumulative consolidation water variations with time for Areas 1 and 7 are presented in Figure 15. These two areas were selected because they have the smallest and largest calculated settlement corresponding to the condition with a 2-m dredge and 4-ft cap thickness and hence, likely to have the largest and smallest cumulative consolidation water flow, respectively. The calculated excess pore water pressure isochrones for Areas 1 and 7 are provided in Attachment D of this report. These isochrones indicated that the excess pore water pressure in SOLW dissipates much faster than in the combined layer. After most of the excess pore water

pressure in the SOLW has dissipated, the combined layer behaves similar to a doubly drained layer.

Geosyntec consultants

5. CONCLUSIONS

This report presents analyses performed to calculate the amount of consolidation settlement and the upward flow rate of consolidation water that may be expected following dredging and placement of a subaqueous cap in Remediation Area D. Based on the results of the analysis, the following conclusions can be made:

- The subsurface soils are expected to undergo consolidation settlement following placement of the cap. The magnitude of settlement largely depends on the dredging depth and cap thickness. The settlement increases when dredging depth decreases or cap thickness increases.
- The subsurface profiles have limited influence on the calculated settlement. The calculated settlements in all areas are in the range of 0 to 1.5 ft for a 30year period using average or representative consolidation/compressibility parameters. The calculated settlements are in the range of 0 to 0.7 ft for a 2year period in the area that has the largest calculated settlement for a 30-year period (i.e., Area 3).
- The calculated consolidation settlement is not very sensitive to the consolidation or compressibility parameters. A sensitivity analysis indicates that using reasonable upper bound values for consolidation/compressibility parameters increases the maximum settlement from 0.7 ft to 1.0 ft for the case with 2-m dredging and a 4-ft cap thickness over a 30-year period.
- Upward flow of consolidation water is expected after placement of the cap. The flow rate will be highest when the cap is placed and will decrease with time. For an average condition (i.e., 2-m dredge and 4-ft cap thickness) using average or representative consolidation/compressibility values, a total cumulative consolidation water of approximately 0.4 ft to 0.5 ft is expected within 30 years of cap material placement.

REFERENCES

- Das, Braja M. (2008). "Advanced Soil Mechanics". 3rd Edition. Taylor & Francis, Inc.
- Holtz and Kovacs. (1981). "An Introduction to Geotechnical Engineering". Prentice-Hall, Inc., Englewood Cliffs, N. J., 733 p.
- Geosyntec Consultants. (2009). "Summary of Subsurface Stratigraphy and Material Properties". A report summarizing the subsurface condition and material properties in SMU 1 and WB-B/HB area.
- Parsons. (2007). "Onondaga Lake Pre-Design Investigation: Phase I Data Summary Report". May 2007.
- Parsons. (2009). "Onondaga Lake Pre-Design Investigation: Phase II Data Summary Report". August 2009.
- Znidarcic, D., Abu-Hejleh, A.N., Fairbanks, T. and Robertson A. (1992). "Seepage-Induced Consolidation Test; Equipment Description and Users Manual".
 Prepared for Florida Institute of Phosphate Research, University of Colorado, Boulder.

TABLES

Sample Location ID	Depth (ft)	Initial Void Ratio e ₀	Cc	Cr	$C_{c\epsilon}^{[1]}$	$C_{r\epsilon}^{[1]}$
OL-STA-10025	7-9	4.53	0.18	0.02	0.033	0.0038
OL-STA-10026	7-9	3.17	0.14	0.03	0.033	0.0065
OL-STA-10019	12.5-14.5	4.24	0.02	0.01	0.004	0.0023
OL-STA-10023	13-15	3.38	0.17	0.02	0.039	0.0054
OL-STA-10024	15-17	3.08	0.16	0.02	0.039	0.0047
OL-STA-10024	30-32	4.93	0.10	0.03	0.016	0.0054
OL-STA-10014	34.5-36.5	3.05	0.19	0.01	0.047	0.0036
	0.030	0.0045				
	mum Value	0.047	0.0065			
	mum Value	0.004	0.0023			
Standard Deviation						0.0014
Mean plus Standard Deviation						0.0031
	0.015	0.0059				

Table 1. $C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for SOLW.

- [1]. $C_{c\epsilon}$ and $C_{r\epsilon}$ are modified compression index and recompression index, respectively. They are calculated as follows: $C_{c\epsilon} = C_c / (1+e_0)$ and $C_{r\epsilon} = C_r / (1+e_0)$.
- [2]. C_c and $C_{c\epsilon}$ values correspond to low stress range only.

Sample Location ID	Depth (ft)	Initial Void Ratio e ₀	C _c	Cr	$C_{c\epsilon}^{[1]}$	$C_{r\epsilon}^{[1]}$
OL-STA-20001	20-22	1.87	0.37	0.02	0.127	0.0082
OL-STA-20007	23-25	1.89	0.41	0.03	0.142	0.0113
OL-STA-20004	36.6-38.6	0.90	0.16	0.02	0.083	0.0103
	0.117	0.0099				
	0.142	0.0110				
Minimum Value						0.0080
	0.031	0.0016				
Mean plus Standard Deviation						0.0115
Mean minus Standard Deviation						0.0083

Table 2. $C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for Marl.

[1]. $C_{c\epsilon}$ and $C_{r\epsilon}$ are modified compression index and recompression index, respectively. They are calculated as follows: $C_{c\epsilon} = C_c / (1+e_0)$ and $C_{r\epsilon} = C_r / (1+e_0)$.

Sample Location ID	Depth (ft)	Initial Void Ratio e ₀	Cc	Cr	$C_{c\epsilon}^{[1]}$	C _{rε} ^[1]	
OL-STA-10013	41-43	1.60	0.51	0.06	0.195	0.0228	
OL-STA-10018	48-50	1.06	0.36	0.03	0.175	0.0151	
OL-STA-10023	50-52	1.94	0.73	0.07	0.248	0.0255	
OL-STA-10026	50-52	1.99	0.69	0.09	0.229	0.0297	
OL-STA-10025	52-54	1.88	0.65	0.08	0.227	0.0295	
OL-STA-10022	64-66	1.85	0.70	0.06	0.246	0.0212	
OL-STA-10024	64-66	1.81	0.57	0.09	0.204	0.0330	
OL-STA-10017	28-30	2.74	0.94	0.13	0.252	0.0353	
OL-STA-10108	64-66	1.91	0.74	0.06	0.254	0.0206	
OL-STA-10108	68-70	1.86	0.58	0.05	0.203	0.0175	
			Ν	Mean Value	0.223	0.0250	
	Maximum Value						
	mum Value	0.175	0.0151				
	0.028	0.0067					
Mean plus Standard Deviation						0.0317	
	0.196	0.0183					

Table 3. $C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for Silt and Clay in SMU 1.

[1]. $C_{c\epsilon}$ and $C_{r\epsilon}$ are modified compression index and recompression index, respectively. They are calculated as follows: $C_{c\epsilon} = C_c / (1+e_0)$ and $C_{r\epsilon} = C_r / (1+e_0)$.

Sample Location ID	Depth (ft)	Initial Void Ratio e ₀	Cc	Cr	$C_{c\epsilon}^{[1]}$	$C_{r\epsilon}^{[1]}$
OL-STA-20007	38.6-40.6	1.33	0.49	0.05	0.210	0.0222
OL-STA-20001	44.9-46.9	0.95	0.26	0.04	0.134	0.0223
OL-STA-20018	47-49	0.91	0.23	0.02	0.119	0.0090
	0.154	0.0179				
	0.210	0.022				
Minimum Value						0.009
	0.049	0.0076				
	0.203	0.0255				
	0.106	0.0102				

Table 4. $C_{c\epsilon}$ and $C_{r\epsilon}$ from Oedometer Tests for Silt and Clay in SMU 2.

[1]. $C_{c\epsilon}$ and $C_{r\epsilon}$ are modified compression index and recompression index, respectively. They are calculated as follows: $C_{c\epsilon} = C_c / (1+e_0)$ and $C_{r\epsilon} = C_r / (1+e_0)$.

	Unit		Hydraulic			
Materials	Weight (pcf)	C _{ce}	C _{rε}	$C_{\alpha\epsilon}$	$c_v (ft^2/d)$	Conductivity (cm/s)
Сар	120	N/A	N/A	N/A	N/A	N/A
SOLW	81	0.030 ^[1]	0.0045	0.0011	3.500	1×10 ⁻⁵
Marl	98	0.117	0.0099	0.0050	0.090 (SMU 1) 0.100 (SMU 2) ^[2]	1×10 ⁻⁷
Silt and Clay (SMU 1)	108	0.223	0.0250	0.0100	0.090	1×10 ⁻⁷
Silt and Clay (SMU 2)	108	0.154	0.0179	0.0050	0.100	1×10 ⁻⁷

Table 5. Summary of the Material Properties used in Analysis.

- [1]. $C_{c\epsilon}$ value corresponds to low stress range only.
- [2]. The interpreted c_v of Marl is 0.135 ft²/d as presented in Figure 9. However, for the purpose of analysis, the c_v of Marl was assumed to be the same as Silt and Clay (i.e., 0.09 and 0.1 ft²/d in SMUs 1 and 2, respectively) in settlement calculations, as presented in Section 4.3.

Material	Cce	$C_{r\epsilon}$	$C_{\alpha\epsilon}$	$c_v (ft^2/d)$				
Selected Reasonable Upper Bound Values								
SOLW	0.045	0.0059	0.0030	7.000				
Marl	0.142	0.0110	0.0080	0.130 (SMU 1)				
Iviaii	0.142	0.0110	0.0000	0.230 (SMU 2) ^[1]				
Silt and Clay (SMU 1)	0.251	0.0317	0.0130	0.130				
Silt and Clay (SMU 2)	0.203	0.0220	0.0070	0.230				
Selected Reasonable Lowe	r Bound Valu	es						
SOLW	0.015	0.0031	0.0003	$0.050^{[2]}$				
Marl	0.087	0.0083	0.0025	$0.050^{[2]}$				
Silt and Clay (SMU 1)	0.196	0.0183	0.0070	0.050				
Silt and Clay (SMU 2)	0.119	0.0102	0.0040	0.050				

 Table 6. Selected Reasonable Upper and Lower Bound Values for Consolidation

 Parameters.

- [1]. The interpreted reasonable upper bound value of c_v of Marl is 0.15 ft²/d, as presented in Figure 9. However, for the purpose of analysis, the reasonable upper bound value of c_v of Marl was assumed the same as Silt and Clay (i.e., 0.13 and 0.23 ft²/d in SMUs 1 and 2, respectively) in the settlement calculations, as presented in Section 4.3.
- [2]. The interpreted reasonable lower bound values of c_v of SOLW and Marl are 0.1 and 0.12 ft^2/d , respectively, as presented in Figures 8 and 9. However, for the purpose of analysis, the reasonable lower bound values of c_v of SOLW and Marl were assumed the same as Silt and Clay (i.e., 0.05 ft^2/d) in the settlement calculations, as presented in Section 4.3.

FIGURES

Figure 1. Remediation Area D.

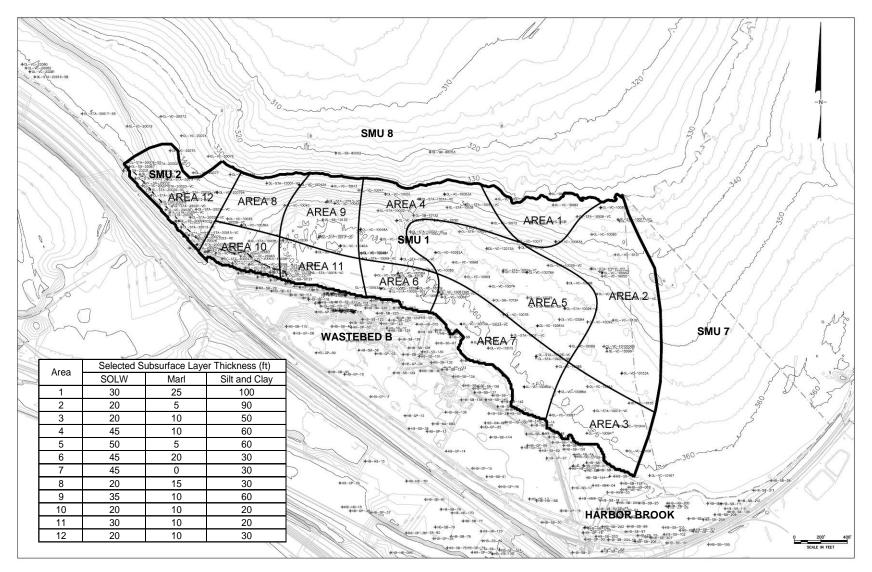


Figure 2. Areas and Subsurface Layer Thicknesses.

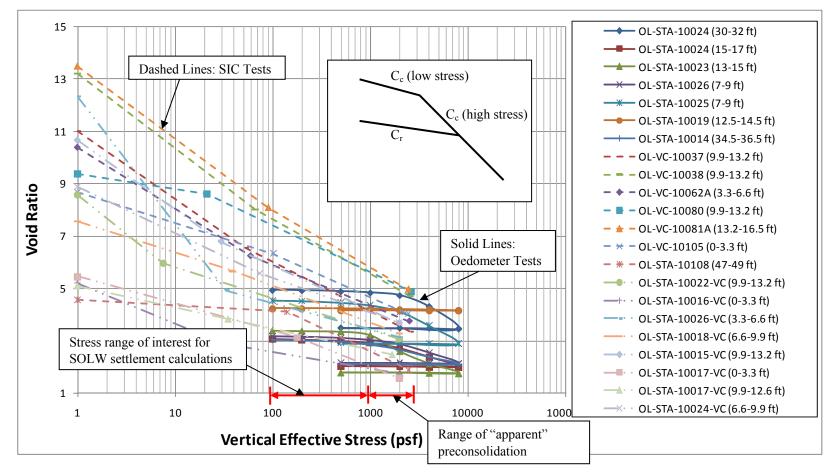


Figure 3. Comparison of Results from Conventional Oedometer Tests and SIC Tests.

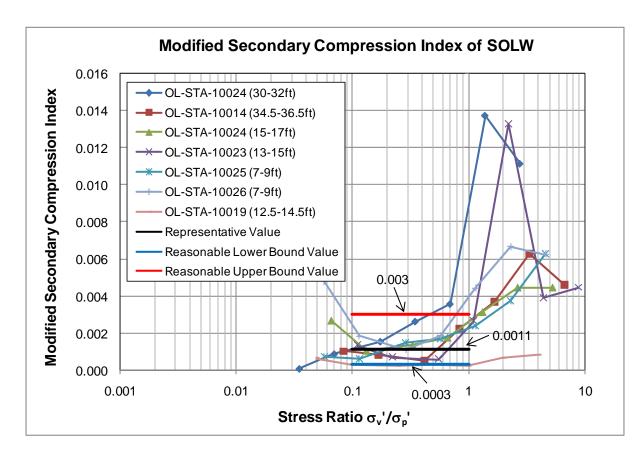


Figure 4. Interpretation of Modified Secondary Compression Index for SOLW.

The ratio of σ_v'/σ_p' of SOLW in the field before and after capping was estimated to be between 0.1 and 1 according to the assumed subsurface layer thicknesses.

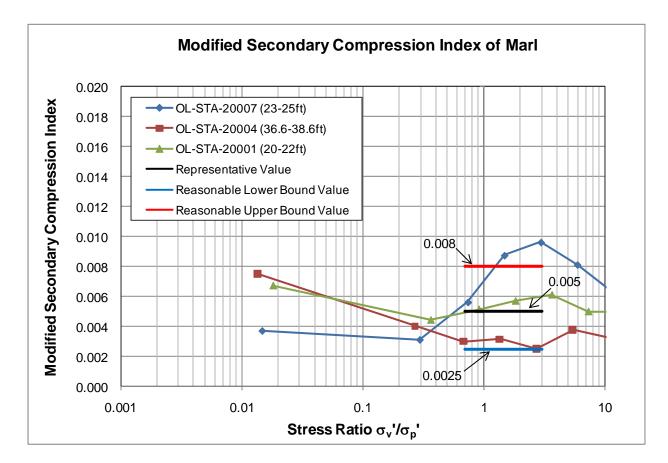
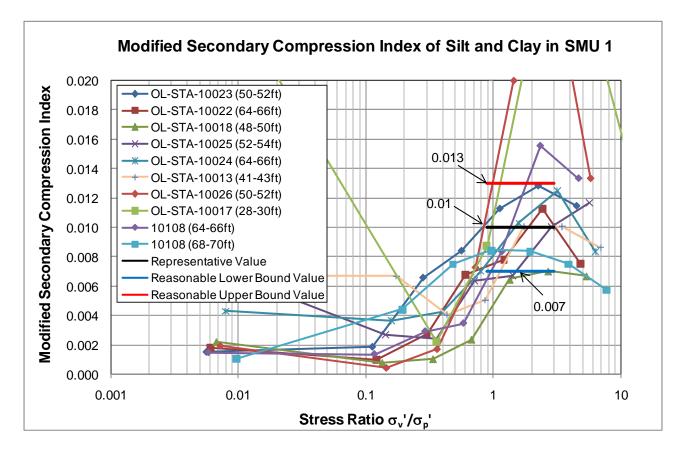
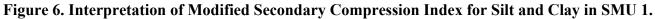




Figure 5. Interpretation of Modified Secondary Compression Index for Marl.

The ratio of σ_v'/σ_p' of Marl in the field before and after capping was estimated to be between 0.7 and 3 according to the assumed subsurface layer thicknesses.

The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.9 and 3 according to the assumed subsurface layer thicknesses.

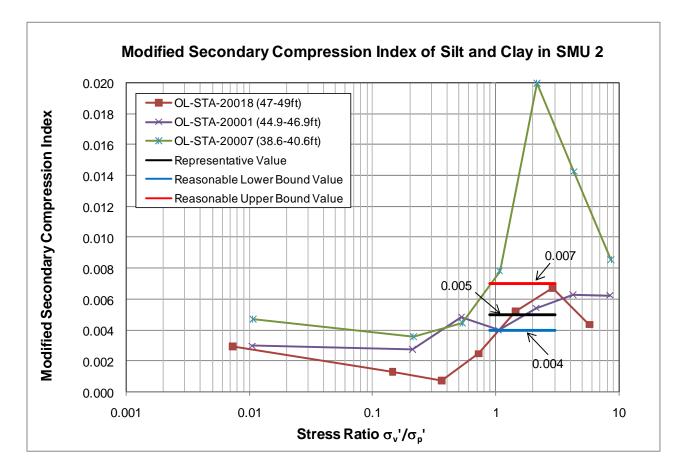


Figure 7. Interpretation of Modified Secondary Compression Index for Silt and Clay in SMU 2.

The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.9 and 3 according to the assumed subsurface layer thicknesses.

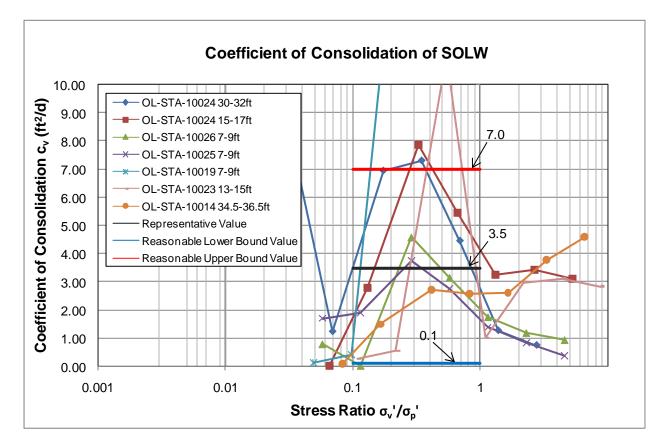


Figure 8. Interpretation of Coefficient of Consolidation Index for SOLW.

The ratio of σ_v'/σ_p' of SOLW in the field before and after capping was estimated to be between 0.1 and 1 according to the assumed subsurface layer thicknesses.

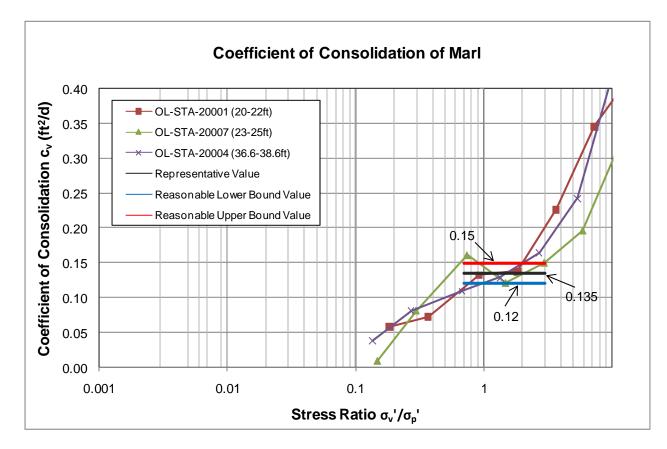


Figure 9. Interpretation of Coefficient of Consolidation Index for Marl.

The ratio of σ_v'/σ_p' of Marl in the field before and after capping was estimated to be between 0.7 and 3 according to the assumed subsurface layer thicknesses.

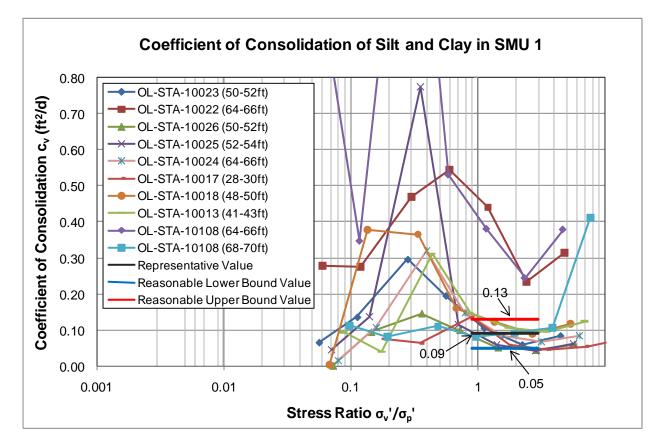
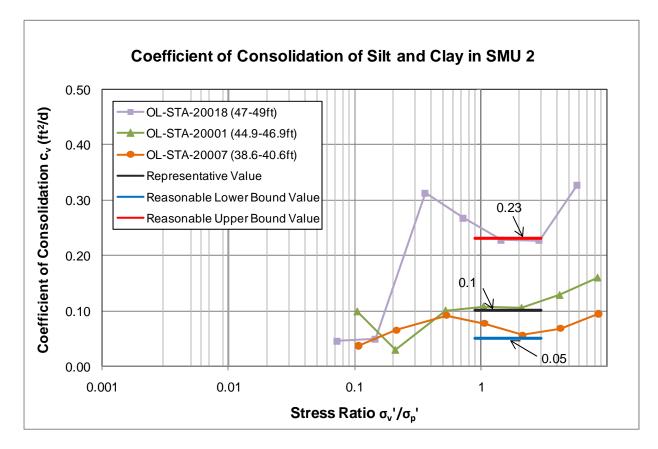



Figure 10. Interpretation of Coefficient of Consolidation Index for Silt and Clay in SMU 1.

Note:

The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.9 and 3 according to the assumed subsurface layer thicknesses.

The ratio of σ_v'/σ_p' of Silt and Clay in field before and after capping was estimated to be between 0.9 and 3 according to the assumed subsurface layer thicknesses.

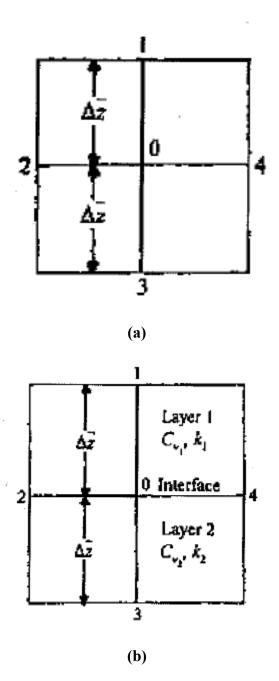


Figure 12. Finite difference method based numerical solution for the 1-D consolidation equation: (a) for nodes within homogeneous layers; and (b) for interface node between 2 layers. Note that the consolidation water flow direction is vertical. (source: Das, 2008)

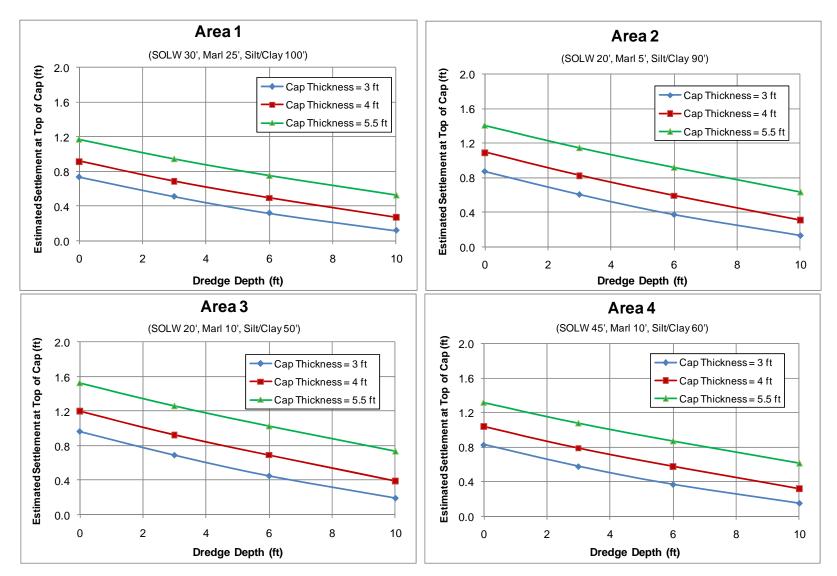


Figure 13. Settlement Analysis Results for Areas 1 to 12 for 30-Year Period.

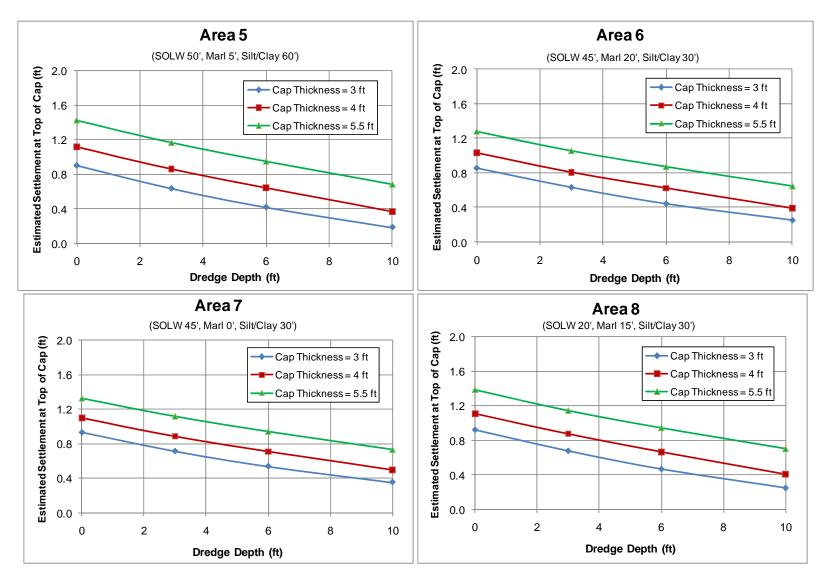


Figure 13. Settlement Analysis Results for Areas 1 to 12 for 30-Year Period (continued).

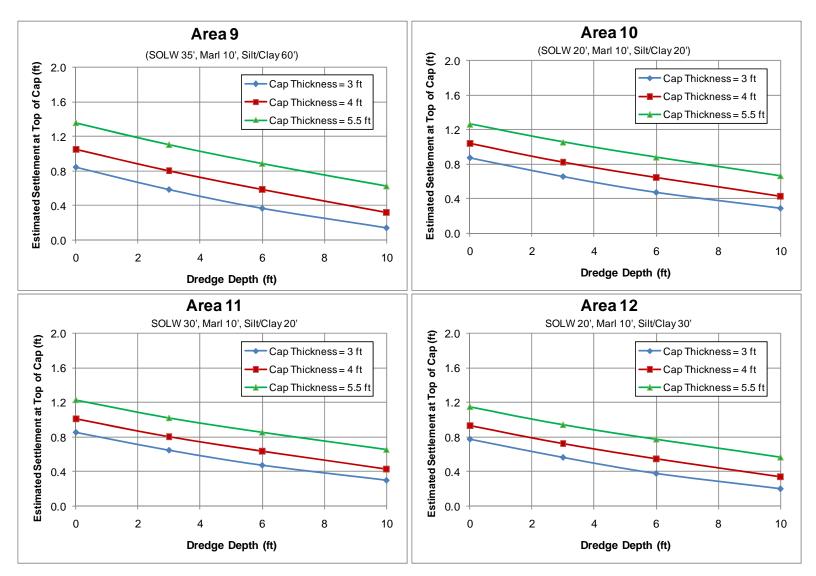


Figure 13. Settlement Analysis Results for Areas 1 to 12 for 30-Year Period (continued).

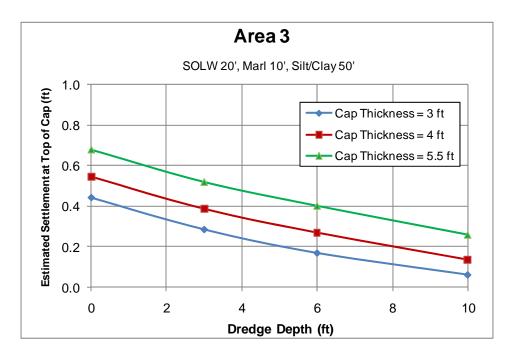


Figure 14. Settlement Analysis Results for Area 3 for 2-Year Period.

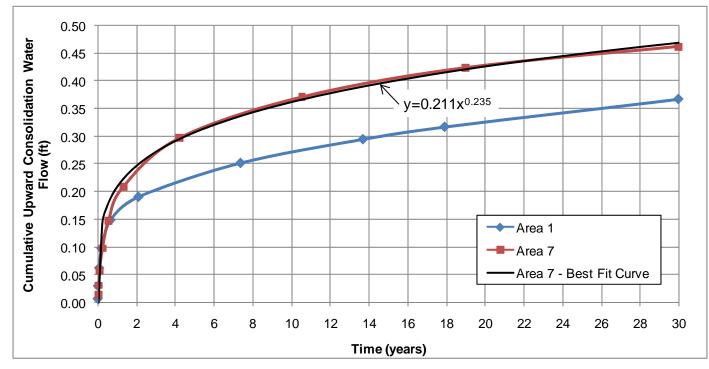


Figure 15. Calculated Cumulative Consolidation Water Flow.

Calculations were performed for 2 m dredge and 4 ft thick cap.

ATTACHMENT A

SUBSURFACE LAYER THICKNESS CONTOURS

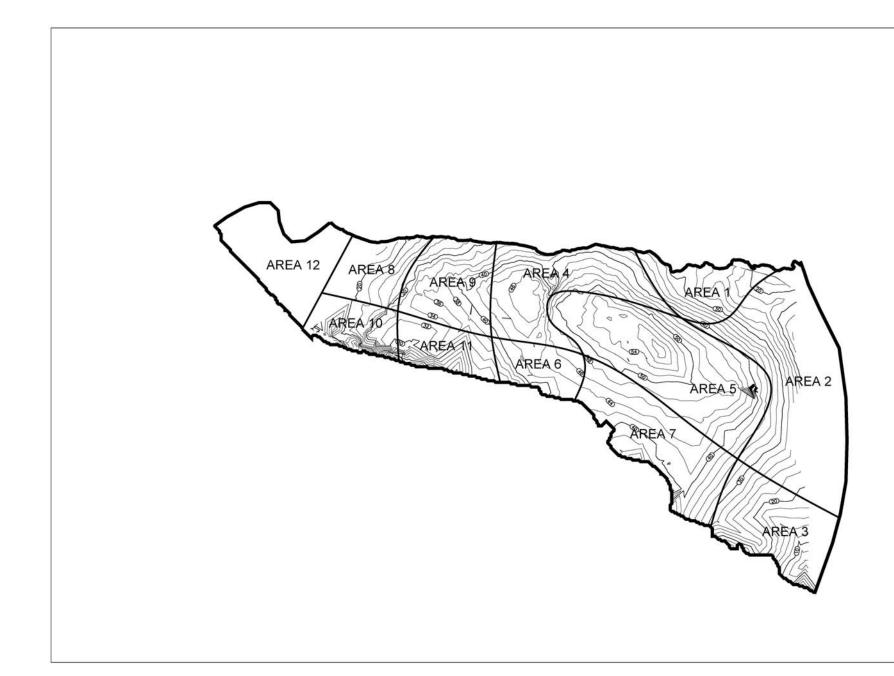


Figure A1. The Thickness of SOLW in Remediation Area D

The subsurface thickness contours were developed based on the elevations of each layer from the boring logs provided by Parsons, as presented in Section 2.
 The subsurface thickness in the area that is not covered by the contours presented in this figure was estimated based on boring logs provided by Parsons.

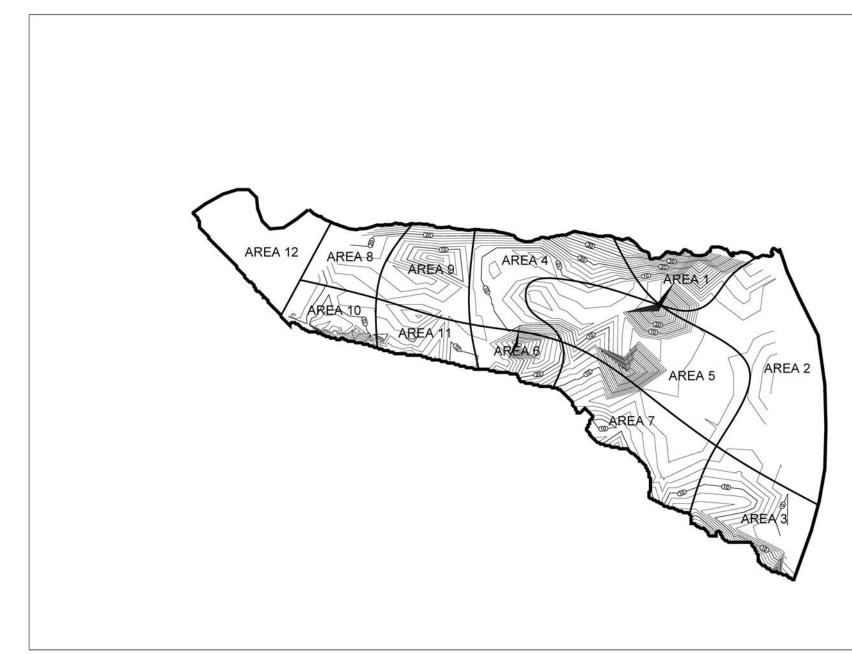


Figure A2. The Thickness of Marl in Remediation Area D

1. The subsurface thickness contours were developed based on the elevations of each layer from the boring logs provided by Parsons, as presented in Section 2.

2. The subsurface thickness in the area that is not covered by the contours presented in this figure was estimated based on boring logs provided by Parsons.

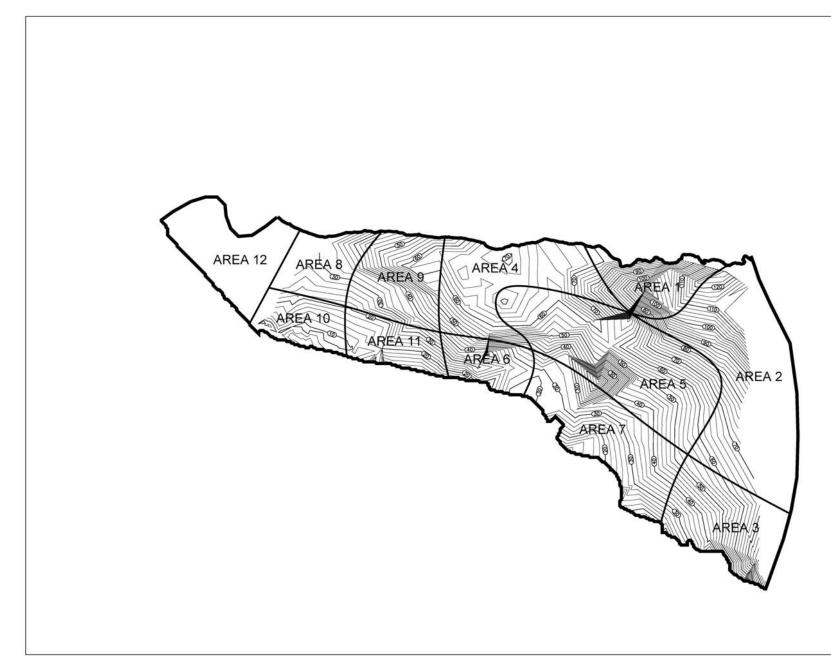
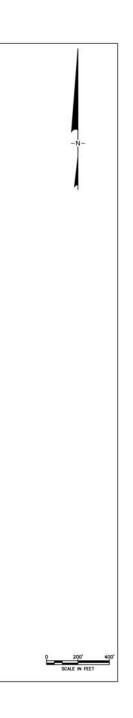



Figure A3. The Thickness of Silt and Clay in Remediation Area D

- 1. The subsurface thickness contours were developed based on the elevations of each layer from the boring logs provided by Parsons. The bottom of Silt and Clay was below the depth of the shallow borings and was developed based on a limited number of borings that went to deeper depths in the ILWD, as presented in Section 2.
- 2. The subsurface thickness in the area that is not covered by the contours presented in this figure was estimated based on boring logs provided by Parsons.

ATTACHMENT B

CONVENTIONAL OEDOMETER TEST RESULTS SUMMARY

	Field	Depth	Average	Compression	Recompression	Initial Void	Initial Water	Preconsolidation
Location ID	Sample ID		Depth	Index	Index	Ratio	Content	Pressure
	-	(ft)	(ft)	(Cc)	(Cr)	(e _o)	(%)	(tsf)
OL-STA-10013	OL-0110-05	41-43	42	0.51	0.06	1.60	57.6	0.6
OL-STA-10014	OL-0110-08	34.5-36.5	35.5	0.94	0.01	3.05	113.1	0.6
OL-STA-10017	OL-0110-20	28-30	29	0.94	0.13	2.74	103.7	0.3
OL-STA-10018	OL-0110-27	48-50	49	0.36	0.03	1.06	36.5	0.7
OL-STA-10019	OL-0110-30	12.5-14.5	13.5	0.08	0.01	4.24	148.7	1.0
OL-STA-10022	OL-0110-49	64-66	65	0.70	0.06	1.85	67.2	0.8
OL-STA-10023	OL-0052-06	13-15	14	1.59	0.02	3.38	142.2	0.5
OL-STA-10023	OL-0052-04	50-52	51	0.73	0.07	1.94	72.5	0.9
OL-STA-10024	OL-0052-07	15-17	16	1.18	0.02	3.08	120.9	0.8
OL-STA-10024	OL-0052-09	30-32	31	2.84	0.03	4.93	180.0	1.4
OL-STA-10024	OL-0052-12	64-66	65	0.57	0.09	1.81	63.4	0.6
OL-STA-10025	OL-0052-13	7-9	8	2.04	0.02	4.53	183.6	0.9
OL-STA-10025	OL-0052-16	52-54	53	0.65	0.08	1.88	70.3	0.7
OL-STA-10026	OL-0052-19	7-9	8	1.22	0.03	3.17	105.7	0.9
OL-STA-10026	OL-0052-22	50-52	51	0.69	0.09	1.99	76.5	0.7
OL-STA-20001	OL-0072-07	20-22	21	0.37	0.02	1.87	64.2	0.3
OL-STA-20001	OL-0072-09	44.9-46.9	45.9	0.26	0.04	0.95	32.7	0.5
OL-STA-20004	OL-0072-01	12-14	13	0.72	0.01	2.91	102.3	0.3
OL-STA-20004	OL-0072-02	36.6-38.6	37.6	0.16	0.02	0.90	31.4	0.4
OL-STA-20007	OL-0072-04	23-25	24	0.41	0.03	1.89	65.8	0.3
OL-STA-20007	OL-0072-05	38.6-40.6	39.6	0.49	0.05	1.33	48.6	0.5
OL-STA-20016	OL-0110-52	27-29	28	0.19	0.04	0.89	30.9	0.4
OL-STA-20017	OL-0110-57	10-12	11	0.51	0.01	1.42	37.2	0.4
OL-STA-20017	OL-0110-59	42-44	43	0.22	0.03	0.87	31.1	0.6
OL-STA-20018	OL-0110-55	47-49	48	0.23	0.02	0.91	32.7	0.7

Summary of Consolidation Test Data – Phase I PDI

Summary of Consolidation Test Data - Phase II PDI

Location ID	Field Sample ID	Depth (ft)	Average Depth (ft)	Compression Index (C _c)	Recompression Index (C _r)	Modified Compression Index (C₅)	Modified Recompression Index (C _{re})	Initial Void Ratio (e₀)	Initial Water Content (%)	Preconsolidation Pressure (psf)
OL-STA-10108	OL-0267-01	64-66	65	0.74	0.06	0.25	0.02	1.91	70.8	1702
OL-STA-10108	OL-0267-02	68-70	69	0.58	0.05	0.20	0.02	1.86	65.3	1032 (disturbed sample)

- 1. The Cc values of SOLW in this table correspond to high stress (i.e., >1000 psf) range and were not used in analysis. 2. The modified compression index $C_{c\epsilon}$ and recompression index $C_{r\epsilon}$ are calculated as follows: $C_{c\epsilon} = C_c / (1+e_0)$ and $C_{r\epsilon} = C_r / (1+e_0)$.
- 3. These summary tables were provided to Geosyntec by Parsons.

ATTACHMENT C EXAMPLES OF CALCULATIONS

(For Area 7 with 2 m dredge and 4 ft thick cap)

An Example of Settlement Calculations

Input:										
Dredging Depth	6.6	ft	_							
Consider Total Se	ettlement in	30	years	_						
Soil Layers	Thickness (ft)	Unit Weight (pcf)	OCR	$C_{c\epsilon}$	$C_{r\epsilon}$	C_{α}	Coef. of Con. $c_v (ft^2/d)$	Time of 90% primary con. (years)	t2/t1 for Secondary Con.	# of Sublayers
Cap	4	120								
SOLW	45	81	1	0.030	0.0045	0.0011	3.500	1.3	22.3	18
Marl	0	98	1	0.117	0.0099	0.0050	0.090	5.8	5.2	0
Silt/Clay	30	108	1	0.223	0.0250	0.0100	0.090	5.8	5.2	6
Water		62.4								

Calculated Settlement (ft):

	Primary	Secondary	Total
	Settlement	Settlement	Settlement
SOLW	0.158	0.057	0.215
Marl	0.000	0.000	0.000
Silt/Clay	0.242	0.215	0.457
Total	0.40	0.27	<u>0.67</u>

Calculation for SOLW			
Layer No.		Layer No.	5
Layer Thickness, m / ft		Layer Thickness, m / ft	2.1333333
Midpoint Depth from Dredge Bot, m/ft		Midpoint Depth from Dredge Bot, m/ft	9.6
Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	301.32
Initial Effective Stress, KPa/psf		Initial Effective Stress, KPa/psf	178.56
Final Effective Stress, KPa/psf OCR		Final Effective Stress, KPa/psf OCR	408.96 1
Preconsolidation Pressure, KPa/psf		Preconsolidation Pressure, KPa/psf	301.32
Modified Primary Compression Index, $C_{c\epsilon}$		Modified Primary Compression Index, C_{cc}	0.03
		Modified Recompression Index, C_{cc}	
Modified Recompression Index, C _{re} Modified Secondary Compression Index, C _{re}		Modified Recompression Index, C_{re} Modified Secondary Compression Index, C_{are}	0.0045
			0.0011
ratio of t2 / t1 Settlements	22.3	ratio of t2 / t1 Settlements	22.3
Primary Settlement, (m / ft)	0.024	Primary Settlement, (m / ft)	0.011
Secondary Settlement (m / ft)		Secondary Settlement (m / ft)	0.003
Total Settlement (m / ft)		Total Settlement (m / ft)	0.014
× ,			
Layer No.	2	Layer No.	6
Layer Thickness, m / ft		Layer Thickness, m / ft	2.1333333
Midpoint Depth from Dredge Bot, m/ft		Midpoint Depth from Dredge Bot, m/ft	11.733333
Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	341
Initial Effective Stress, KPa/psf		Initial Effective Stress, KPa/psf	218.24
Final Effective Stress, KPa/psf		Final Effective Stress, KPa/psf	448.64
OCR		OCR	1
Preconsolidation Pressure, KPa/psf		Preconsolidation Pressure, KPa/psf	341
Modified Primary Compression Index, $C_{c\epsilon}$		Modified Primary Compression Index, $\mathrm{C}_{\mathrm{c}\epsilon}$	0.03
Modified Recompression Index, $C_{r\epsilon}$		Modified Recompression Index, $C_{r\epsilon}$	0.0045
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0011	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0011
ratio of t2 / t1	22.3	ratio of t2 / t1	22.3
Settlements	0.040	Settlements	
Primary Settlement, (m / ft)		Primary Settlement, (m / ft)	0.009
Secondary Settlement (m / ft)		Secondary Settlement (m / ft) Total Settlement (m / ft)	0.003 0.013
Total Settlement (m / ft)	0.021	Total Settlement (m / h)	0.015
Layer No.	3	Layer No.	7
Layer Thickness, m / ft	2.1333333	Layer Thickness, m / ft	2.1333333
	5 2222222	Midpoint Depth from Dredge Bot, m/ft	13.866667
Midpoint Depth from Dredge Bot, m/ft	5.5555555		200 60
Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	380.68
	221.96	Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf	257.92
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf	221.96 99.2 329.6	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf	
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR	221.96 99.2 329.6 1	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR	257.92 488.32 1
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf	221.96 99.2 329.6 1 221.96	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf	257.92 488.32 1 380.68
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{cc}	221.96 99.2 329.6 1 221.96 0.03	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{cc}	257.92 488.32 1 380.68 0.03
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{re} Modified Recompression Index, C _{re}	221.96 99.2 329.6 1 221.96 0.03 0.0045	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{cc} Modified Recompression Index, C _{re}	257.92 488.32 1 380.68 0.03 0.0045
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{cε} Modified Recompression Index, C _{rε} Modified Secondary Compression Index, C _{αε}	221.96 99.2 329.6 1 221.96 0.03 0.0045	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{cc}	257.92 488.32 1 380.68 0.03 0.0045 0.0011
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{a\epsilon}$ ratio of t2 / t1	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1	257.92 488.32 1 380.68 0.03 0.0045
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{a\epsilon}$ ratio of t2 / t1 Settlements	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft)	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft)	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft)	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft)	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft)	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft)	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft)	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.014	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft)	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft)	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.014	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft)	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No.	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{ce} Modified Recompression Index, C_{re} Modified Secondary Compression Index, C_{ae} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No.	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{a\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.46666667	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, $C_{\alpha c}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{ce} Modified Recompression Index, C_{re} Modified Secondary Compression Index, C_{ae} ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, $C_{\alpha c}$ ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64 0.03	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1 420.36
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{a\epsilon}$ ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64 0.03 0.0045	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc}	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1 420.36 0.03
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{a\epsilon}$ ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Cayer No. Layer No. Layer Nickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{r\epsilon}$	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64 0.03 0.0045 0.0011	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc}	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1 420.36 0.03 0.0045
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{r\epsilon}$ Modified Secondary Compression Index, $C_{a\epsilon}$ ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Cayer No. Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, $C_{c\epsilon}$ Modified Recompression Index, $C_{a\epsilon}$	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64 0.03 0.0045 0.0011	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{cc}	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1 420.36 0.03 0.0045 0.0011
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of $t2/t1$ Settlements Primary Settlement (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Total Settlement (m / ft) Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{cc} Modified Recompression Index, C_{ac} ratio of $t2/t1$	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64 0.03 0.0045 0.0011 22.3	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of t2 / t1	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1 420.36 0.03 0.0045 0.0011
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{rc} Modified Secondary Compression Index, C_{ac} ratio of $t2 / t1$ Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Total Settlement (m / ft) Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{cc} Modified Recompression Index, C_{cc} Modified Recompression Index, C_{cc} atio of $t2 / t1$	221.96 99.2 329.6 1 221.96 0.03 0.0045 0.0011 22.3 0.014 0.003 0.018 4 2.1333333 7.4666667 261.64 138.88 369.28 1 261.64 0.03 0.0045 0.001 22.3	Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf OCR Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C_{ce} Modified Recompression Index, C_{re} Modified Secondary Compression Index, C_{ce} ratio of t2 / t1 Settlements Primary Settlement, (m / ft) Secondary Settlement (m / ft) Total Settlement (m / ft) Layer No. Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf Final Effective Stress, KPa/psf Modified Primary Compression Index, C_{ce} Modified Primary Compression Index, C_{ce} Modified Recompression Index, C_{re} Modified Recompression Index, C_{re} atio of t2 / t1 Settlements	257.92 488.32 1 380.68 0.03 0.0045 0.0011 22.3 0.009 0.003 0.012 8 2.1333333 16 420.36 297.6 528 1 420.36 0.03 0.0045 0.0011 22.3

r Xr	0	7 XY	14
Layer No. Layer Thickness, m / ft		Layer No. Layer Thickness, m / ft	2.1333333
Midpoint Depth from Dredge Bot, m/ft		Midpoint Depth from Dredge Bot, m/ft	28.8
Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	658.44
Initial Effective Stress, KPa/psf		Initial Effective Stress, KPa/psf	535.68 766.08
Final Effective Stress, KPa/psf OCR		Final Effective Stress, KPa/psf OCR	700.08
Preconsolidation Pressure, KPa/psf	460.04	Preconsolidation Pressure, KPa/psf	658.44
Modified Primary Compression Index, $C_{\ensuremath{c\epsilon}\xspace}$	0.03	Modified Primary Compression Index, $C_{c\epsilon}$	0.03
Modified Recompression Index, $C_{r\epsilon}$		Modified Recompression Index, C _{re}	0.0045
Modified Secondary Compression Index, $C_{\alpha\epsilon}$		Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0011
ratio of t2 / t1 Settlements	22.3	ratio of t2 / t1 Settlements	22.3
Primary Settlement, (m / ft)	0.007	Primary Settlement, (m / ft)	0.005
Secondary Settlement (m / ft)		Secondary Settlement (m / ft)	0.003
Total Settlement (m / ft)	0.010	Total Settlement (m / ft)	0.008
Layer No.	10	Layer No.	15
Layer Thickness, m / ft		Layer Thickness, m / ft	2.1333333
Midpoint Depth from Dredge Bot, m/ft		Midpoint Depth from Dredge Bot, m/ft	30.933333
Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	698.12
Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf		Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf	575.36 805.76
OCR		OCR	1
Preconsolidation Pressure, KPa/psf	499.72	Preconsolidation Pressure, KPa/psf	698.12
Modified Primary Compression Index, C _{cc}		Modified Primary Compression Index, C _{ce}	0.03
Modified Recompression Index, C _{re}		Modified Recompression Index, C _{re}	0.0045
Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1		Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1	0.0011 22.3
Settlements	22.3	Settlements	22.3
Primary Settlement, (m / ft)		Primary Settlement, (m / ft)	0.005
Secondary Settlement (m / ft)		Secondary Settlement (m / ft)	0.003
Total Settlement (m / ft)	0.010	Total Settlement (m / ft)	0.008
Layer No.	11	Layer No.	16
Layer Thickness, m / ft		Layer Thickness, m / ft	2.1333333
Midpoint Depth from Dredge Bot, m/ft		Midpoint Depth from Dredge Bot, m/ft	33.066667
Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	737.8
Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf		Initial Effective Stress, KPa/psf Final Effective Stress, KPa/psf	615.04 845.44
OCR		OCR	1
Preconsolidation Pressure, KPa/psf	539.4	Preconsolidation Pressure, KPa/psf	737.8
Modified Primary Compression Index, $C_{c\epsilon}$		Modified Primary Compression Index, $C_{c\epsilon}$	0.03
Modified Recompression Index, C _{re}		Modified Recompression Index, C _{re}	0.0045
Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1		Modified Secondary Compression Index, $C_{\alpha\epsilon}$ ratio of t2 / t1	0.0011 22.3
Settlements	22.3	Settlements	22.3
Primary Settlement, (m / ft)	0.006	Primary Settlement, (m / ft)	0.005
Secondary Settlement (m / ft)		Secondary Settlement (m / ft)	0.003
Total Settlement (m / ft)	0.009	Total Settlement (m / ft)	0.008
Layer No.	12	Layer No.	17
Layer Thickness, m / ft		Layer Thickness, m / ft	2.1333333
Midpoint Depth from Dredge Bot, m/ft		Midpoint Depth from Dredge Bot, m/ft	35.2
Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf		Effective Stress Before Dredging, KPa/psf Initial Effective Stress, KPa/psf	777.48 654.72
Final Effective Stress, KPa/psf		Final Effective Stress, KPa/psf	885.12
OCR		OCR	1
Preconsolidation Pressure, KPa/psf		Preconsolidation Pressure, KPa/psf	777.48
Modified Primary Compression Index, C _{cc}		Modified Primary Compression Index, C _{ce} Modified Recompression Index, C _{re}	0.03
Modified Recompression Index, C _{re} Modified Secondary Compression Index, C _{ae}		Modified Recompression Index, C_{re} Modified Secondary Compression Index, C_{ae}	0.0045 0.0011
ratio of t2 / t1		ratio of t2 / t1	22.3
Settlements		Settlements	
Primary Settlement, (m / ft)		Primary Settlement, (m / ft)	0.004
Secondary Settlement (m / ft) Total Settlement (m / ft)		Secondary Settlement (m / ft) Total Settlement (m / ft)	0.003 0.007
	0.007		0.007
Layer No.		Layer No.	18
Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft		Layer Thickness, m / ft Midpoint Depth from Dredge Bot, m/ft	2.1333333 37.333333
Effective Stress Before Dredging, KPa/psf		Effective Stress Before Dredging, KPa/psf	817.16
Initial Effective Stress, KPa/psf	496	Initial Effective Stress, KPa/psf	694.4
Final Effective Stress, KPa/psf		Final Effective Stress, KPa/psf	924.8
OCR Preconsolidation Pressure KPa/psf		OCR Preconsolidation Pressure KPa/psf	1 817.16
Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{ce}		Preconsolidation Pressure, KPa/psf Modified Primary Compression Index, C _{ce}	817.16 0.03
Modified Recompression Index, C_{re}		Modified Recompression Index, C_{re}	0.0045
Modified Secondary Compression Index, $C_{\alpha\epsilon}$		Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0011
ratio of t2 / t1		ratio of t2 / t1	22.3
Settlements		Settlements	
Primary Settlement, (m / ft) Secondary Settlement (m / ft)		Primary Settlement, (m / ft) Secondary Settlement (m / ft)	0.004 0.003
Total Settlement (m / ft)		Total Settlement (m / ft)	0.003

Calculation for Silt and Clay		
Layer No.	1 Layer No.	4
Layer Thickness, m / ft	5 Layer Thickness, m / ft	5
Midpoint Depth from Top of Silt/Clay, m/ft	2.5 Midpoint Depth from Top of Silt/Clay, m/ft	17.5
Effective Stress Before Dredging, KPa/psf	951 Effective Stress Before Dredging, KPa/psf	1635
Initial Effective Stress, KPa/psf	828.24 Initial Effective Stress, KPa/psf	1512.24
Final Effective Stress, KPa/psf	1058.64 Final Effective Stress, KPa/psf	1742.64
OCR	1 OCR	1
Preconsolidation Pressure, KPa/psf	951 Preconsolidation Pressure, KPa/psf	1635
Modified Primary Compression Index, $C_{c\epsilon}$	0.223 Modified Primary Compression Index, $C_{c\epsilon}$	0.223
Modified Recompression Index, $C_{r\epsilon}$	0.025 Modified Recompression Index, $C_{r\epsilon}$	0.025
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.01 Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.01
ratio of t2 / t1	5.2 ratio of t2 / t1	5.2
Settlements	Settlements	
Primary Settlement, (m / ft)	0.059 Primary Settlement, (m / ft)	0.035
Secondary Settlement (m / ft)	0.036 Secondary Settlement (m / ft)	0.036
Total Settlement (m / ft)	0.095 Total Settlement (m / ft)	0.071
Layer No.	2 Layer No.	5
Layer Thickness, m / ft	5 Layer Thickness, m / ft	5
Midpoint Depth from Top of Silt/Clay, m/ft	7.5 Midpoint Depth from Top of Silt/Clay, m/ft	22.5
Effective Stress Before Dredging, KPa/psf	1179 Effective Stress Before Dredging, KPa/psf	1863
Initial Effective Stress, KPa/psf	1056.24 Initial Effective Stress, KPa/psf	1740.24
Final Effective Stress, KPa/psf	1286.64 Final Effective Stress, KPa/psf	1970.64
OCR	1 OCR	1

Preconsolidation Pressure, KPa/psf	1179	Preconsolidation Pressure, KPa/psf	1863
Modified Primary Compression Index, $C_{c\epsilon}$	0.223	Modified Primary Compression Index, $C_{c\epsilon}$	0.223
Modified Recompression Index, $C_{r\epsilon}$	0.025	Modified Recompression Index, $C_{r\epsilon}$	0.025
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.01	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.01
ratio of t2 / t1	5.2	ratio of t2 / t1	5.2
Settlements		Settlements	
Primary Settlement, (m / ft)	0.048	Primary Settlement, (m / ft)	0.031
Secondary Settlement (m / ft)	0.036	Secondary Settlement (m / ft)	0.036
Total Settlement (m / ft)	0.084	Total Settlement (m / ft)	0.067

Layer No.	3	Layer N
Layer Thickness, m / ft	5	Layer 7
Midpoint Depth from Top of Silt/Clay, m/ft	12.5	Midpoi
Effective Stress Before Dredging, KPa/psf	1407	Effectiv
Initial Effective Stress, KPa/psf	1284.24	Initial H
Final Effective Stress, KPa/psf	1514.64	Final E
OCR	1	OCR
Preconsolidation Pressure, KPa/psf	1407	Precons
Modified Primary Compression Index, $C_{c\epsilon}$	0.223	Modifie
Modified Recompression Index, $C_{r\epsilon}$	0.025	Modifie
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.01	Modifie
ratio of t2 / t1	5.2	ratio of
Settlements		Settlem
Primary Settlement, (m / ft)	0.041	Primary
Secondary Settlement (m / ft)	0.036	Second
Total Settlement (m / ft)	0.076	Total S

3 Layer No.

3	Layer No.	6
5	Layer Thickness, m / ft	5
12.5	Midpoint Depth from Top of Silt/Clay, m/ft	27.5
1407	Effective Stress Before Dredging, KPa/psf	2091
1284.24	Initial Effective Stress, KPa/psf	1968.24
1514.64	Final Effective Stress, KPa/psf	2198.64
1	OCR	1
1407	Preconsolidation Pressure, KPa/psf	2091
0.223	Modified Primary Compression Index, $C_{c\epsilon}$	0.223
0.025	Modified Recompression Index, $C_{r\epsilon}$	0.025
0.01	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.01
5.2	ratio of t2 / t1	5.2
	Settlements	
0.041	Primary Settlement, (m / ft)	0.028
0.036	Secondary Settlement (m / ft)	0.036
0.076	Total Settlement (m / ft)	0.063

An Example Calculation of Upward Cumulative Consolidation Water Flow

Loading						
	Cap thickness =	4 f	t			
	Cap unit weight =	120 p	osf			
	Load =	230.4 p	osf			
Properties						
		Top Layer	Bottom Layer			
	Туре	SOLW	Silt and Clay			
	k =	1.0E-05	1.0E-07	cm/s	A =	0.7272
		1.8E-01	1.8E-03	ft/d	B =	2.0E+00
	Cv =	3.50	0.09	ft2/d	C =	2.0E-02
	H =	39	30	ft		
	C αε =	0.0011	0.0100			
	t90 =	435	2500	days		
		1.2	6.8	years		
Reference Values						
	zR =	69.0	69.0	ft		
	uR =	2.30	2.30	psf		
	tR =	1360	52900	days		
		4	145	years		
Time Step						
	Select δt to e	ensure convergend	e of solution			
	δt =	0.0030	0.0030	years		
		1	1	days		
	δt -bar =	8.05E-04	2.07E-05			
	δz =	3	3	ft		
	δz-bar =	0.04	0.04			
bar	$\delta t_1 / (\delta z)^2 =$	0.43	0.01	should be less than 0.5		

		U-b;	ar values																
	t (ye		0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05
	t (da	-	0	1	2	3	4	5	7	8	9	10	11	12	13	14	15	16	18
	t-bar		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Z (ft)	z-bar	r s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s10	s10	s10	s10	s10	s10	s10	
	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0.0	100	57	51	42	39	35	33	30	29	27	26	25	24	23	22	22	21
	6	0.1	100	100	82	76	69	65	60	57	54	52	49	48	46	44	43	42	41
	9	0.1	100	100	100	92	89	84	80	77	74	71	68	66	64	62	61	59	58
	12	0.2	100	100	100	100	97	95	92	89	87	84	82	80	78	76	75	73	71
	15	0.2	100	100	100	100	100	99	98	96	94	93	91	89	88	86	85	83	82
	18	0.3	100	100	100	100	100	100	99	99	98	97	96	95	94	93	92	90	89
	21	0.3	100	100	100	100	100	100	100	100	99	99	99	98	97	96	96	95	94
	24	0.3	100	100	100	100	100	100	100	100	100	100	100	99	99	98	98	98	97
	27	0.4	100	100	100	100	100	100	100	100	100	100	100	100	100	99	99	99	99
	30	0.4	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99
	33	0.5	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	36	0.5	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	39	0.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	42	0.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	45	0.7	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	48	0.7	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	51	0.7	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	54	0.8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	57	0.8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	60	0.9	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	63	0.9	100	100	100	100	100	100	100	100	100	100	100	99	99	99	99	99	99
	66	1.0	100	99	98	97	96	95	94	93	92	91	90	89	88	87	87	86	85
	69	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Top Layer																			
Top Layer	Initial	Area =	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900	3900
	Current		3700	3530	3468	3392	3342	3288	3244	3201	3162	3124	3090	3056	3024	2993	2963	2935	2907
		U-ave=	5%	9%	11%	13%	14%	16%	17%	18%	19%	20%	21%	22%	22%	23%	24%	2555	25%
Final prima	ary settleme		0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Current prima	•		0.01	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04
Current seconda			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	tal settleme		0.01	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04
Dettern Lever																			
Bottom Layer	1		2000	2000	2000	2000	2000	2000	2000	2000	2000	3000	2000	2000	3000	2000	2000	2000	2000
		Area =	3000	3000	3000	3000	3000 2883	3000	3000 2875	3000 2871	3000		3000	3000 2855	2852	3000	3000	3000	3000 2837
	Current		2900	2896	2891	2887		2879			2867	2863	2859			2848	2845	2841	
Final action	ary settleme	U-ave=	3% 0.15	3% 0.15	4%	4% 0.15	4% 0.15	4% 0.15	4% 0.15	4% 0.15	4% 0.15	5% 0.15	5% 0.15	5% 0.15	5% 0.15	5% 0.15	5% 0.15	5% 0.15	5% 0.15
Final prima Current prima	•		0.15	0.15	0.15 0.01	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Current prima Current seconda		. ,	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	ital settleme		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
current to	iui settiente		0.00	0.01	0.01	5.01	0.01	5.01	0.01	5.01	0.01	0.01	0.01	5.01	0.01	0.01	0.01	0.01	0.01
Total																			
Total curre	ent settleme	nt (ft) =	0.01	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05

Note: Due to the limited paper size, only part of the calculation sheet is shown here.


Uave top		5%	16%	30%	51%	73%	93%	99%	100%	100%	100%
Uave bot		3%	4%	6%	12%	22%	41%	79%	98%	100%	100%
t (years)		0.00	0.02	0.07	0.23	0.54	1.29	4.21	10.54	18.97	30.00
t (days)		0.00	5.48	25.19	82.13	196.01	469.75	1536.29	3845.64	6924.78	10950.00
Z (ft)	t = 0, Ut=5%, Ub=t = 5 days, Ut=16%, Ub t = 25 days, Ut=30%, Ub=ét = 82 days, Ut=t = 196 days, L t = 1.3 years, Ut = 4.2 years, Ut = 10.5 years, L t = 19.0 years, L t = 30.								t = 30 years, Ut=1		
	0	0	0	0	0	0	0	0	0	0	0
	3	100	35	18	10	5	1	0	0	0	0
	6	100	65	34	20	10	3	0	0	0	0
	9	100	84	50	29	15	4	0	0	0	0
	12	100	95	63	38	20	5	1	0	0	0
	15	100	99	74	46	25	7	1	0	0	0
	18	100	100	82	54	29	8	1	0	0	0
	21	100	100	88	60	33	9	1	0	0	0
	24	100	100	93	66	36	10	1	0	0	0
	27	100	100	96	71	39	11	1	0	0	0
	30	100	100	98	75	41	12	1	0	0	0
	33	100	100	99	78	43	12	1	0	0	0
	36	100	100	99	80	45	13	1	0	0	0
	39	100	100	100	81	45	13	2	0	0	0
	42	100	100	100	96	77	43	12	1	0	0
	45	100	100	100	99	92	66	20	2	0	0
	48	100	100	100	100	98	79	27	3	0	0
	51	100	100	100	100	99	86	32	3	0	0
	54	100	100	100	100	98	85	33	4	0	0
	57	100	100	100	99	95	79	31	3	0	0
	60	100	100	100	97	86	67	26	3	0	0
	63	100	100	98	87	69	48	19	2	0	0
	66	100	95	80	57	39	26	10	1	0	0
	69	0	0	0	0	0	0	0	0	0	0
Cumulative Upwa	ard Consc	0.01	0.03	0.06	0.10	0.15	0.21	0.30	0.37	0.42	0.46

ATTACHMENT D

CALCULATED EXCESS PORE WATER PRESSURE ISOCHRONES

Note:

In the charts presented herein, Ut = the average degree of consolidation of top layer (i.e., SOLW); Ub = the average degree of consolidation of bottom layer (i.e., Marl + Silt and Clay).

Prepared for

Parsons 301 Plainfield Road, Suite 350 Syracuse, New York 13212

ONONDAGA LAKE WB-B/HB IRM OUTBOARD AREA CAP-INDUCED SETTLEMENT EVALUATION AN ADDENDUM TO THE REPORT TITLED "CAP-INDUCED SETTLEMENT EVALUATION FOR REMEDIATION AREA D"

SYRACUSE AND GEDDES, NEW YORK

Prepared by Geosyntec consultants

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number: GJ4741

January 2011

TABLE OF CONTENTS

1.	INTRODUCTION	. 1
2.	SUBSURFACE CONDITIONS	. 1
3.	MATERIAL PROPERTIES	. 2
4.	SETTLEMENT CALCULATIONS	
	4.2 Removal Depth and Cap Thickness	
	4.3 Settlement Calculations and Results	. 2

LIST OF TABLES

Table 1. Summary of the Material Properties used in Settlement Calculations

LIST OF FIGURES

- Figure 1. WB-B/HB Outboard Area Plan
- Figure 2. Settlement Calculation Results for the 30-Year Period
- Figure 3. Settlement Calculation Results for the 2-Year Period (Subarea 7 Only)

LIST OF ATTACHMENTS

- Attachment A. Subsurface Layer Thickness Contours
- Attachment B. Interpretation of Consolidation Parameters of Subsurface Materials
- Attachment C. Example Settlement Calculation

Geosyntec Consultants

1. INTRODUCTION

This report was prepared as an addendum to the report titled "*Cap-Induced Settlement Evaluation for Remediation Area D*" (referred to as the RA-D Cap Settlement Report) dated January 2011. It presents the evaluation of the consolidation settlement anticipated after removal and capping in the Wastebed B/Harbor Brook (WB-B/HB) Outboard Area. Specifically, this report presents the total settlement (including the primary and the secondary settlement) at the end of 30 years after capping for the entire Outboard Area and at the end of two years after capping for the subarea with the highest estimated settlement.

The Outboard Area is a 16-acre strip of land that lies between Onondaga Lake and the Wastebed B barrier wall alignment, and includes the mouth of Harbor Brook and areas of wetlands along the lake shoreline, as shown in Figure 1. The Outboard Area is part of the WB-B/HB Site, which is a subsite of the Onondaga Lake Superfund site. Based on the wetland restoration concepts advanced as part of the *Draft Habitat Plan* (Parsons, 2009), it is anticipated that the remedy for this area will include removal of material above and below the water table, construction of an isolation cap, and habitat restoration. The assumptions used for the analyses presented herein are based on the minimum required sediment removal to allow cap construction and habitat restoration, as developed and documented in the main text of the *Capping, Dredging, and Habitat Design*.

The remainder of this report presents: (i) subsurface conditions; (ii) material properties; and (iii) settlement calculations and results for the Outboard Area.

2. SUBSURFACE CONDITIONS

Information regarding the subsurface stratigraphy in the Outboard Area was presented in two calculation packages prepared previously by Geosyntec: "Summary of Subsurface Stratigraphy and Material Properties" for the West Wall design (referred to as the West Wall Data Package) and "Summary of Subsurface Stratigraphy and Material Properties" for the East Wall design (referred to as the East Wall Data Package). For the purpose of the settlement calculations presented herein, the Outboard Area was divided into 8 subareas based on the thicknesses of the Fill, SOLW, Marl, and Silt and Clay layers. Subareas 1 through 6 are located in the outboard area near the West Wall; while Subareas 7 and 8 are located in the outboard area near the East Wall.

These subareas and the selected representative thicknesses of the subsurface layers are presented in Figure 1. The thickness contours for each of the subsurface layers in the outboard area are presented in Attachment A of this report.

3. MATERIAL PROPERTIES

Information regarding the unit weights of the subsurface materials in the Outboard Area was presented in the West Wall Data Package and the East Wall Data Package. The consolidation parameters were interpreted from the laboratory test data and presented in Attachment B of this report. The material properties used for the settlement calculations are summarized in Table 1.

4. SETTLEMENT CALCULATIONS

4.1 <u>Methodology</u>

The same methodology presented in the RA-D Cap Settlement Report was used in the settlement calculations presented herein.

4.2 <u>Removal Depth and Cap Thickness</u>

The range in removal depths and cap thicknesses assumed for this analysis are based on the design presented in the main text of the *Capping*, *Dredging*, *and Habitat Design*.

4.3 <u>Settlement Calculations and Results</u>

The settlement calculation results for the 30-year period are presented in Figure 2. For each subarea, calculations were performed for a combination of five removal depths (i.e., 0 ft, 3 ft, 6 ft, 9 ft, and 12 ft) and three cap thicknesses (i.e., 2 ft, 4 ft, and 6 ft). Additional settlement calculations were performed for the 2-year period after capping. Subarea 7 was selected because it has the largest calculated settlement for the 30-year period. The results for Subarea 7 for the 2-year period are presented in Figure 3.

An example calculation using an Excel[®] spreadsheet is included in Attachment C of this report. The Excel[®] spreadsheets for all the settlement calculations presented in this report are included in the attached CD.

Geosyntec[>]

It should be noted that the following assumptions were made in the settlement calculations:

- The SOLW, Marl, and Silt and Clay layers were assumed as one layer for the purpose of calculating the time needed to reach 90% primary consolidation because the c_v values for these three layers are similar and much smaller than that of the Fill layer.
- The Fill layer was assumed to have single drainage due to the relatively low permeability layer underneath. The combined SOLW, Marl, and Silt and Clay layer was assumed to have double drainage due to the relatively high permeability materials above (i.e., Fill) and underneath (i.e., Silt and Sand).

The settlement calculation results indicate that generally the calculated settlement increases as the removal depth decreases or the cap thickness increases. However, the calculated settlement becomes less sensitive to either the removal depth or the cap thickness when the removal depth is greater than approximately 6 ft.

TABLES

A roo	Material	Unit Weight	Recommended Consolidation Parameters				
Area	Iviaterial	(pcf)	Cce	Cre	$C_{\alpha\epsilon}$	$c_v (ft^2/d)$	
	Fill ^[1]	105	0.061	0.006	0.0003	4.50	
Outboard Area near West Wall	SOLW	80	$0.042^{[2]}$	0.003	0.0006	$0.60^{[3]}$	
(Subareas 1 through 6)	Marl	101	0.152	0.010	0.0008	0.50	
	Silt and Clay	118	0.117	0.013	0.0015	0.15	
Outboard Area near East Wall	Fill	92	0.061	0.006	0.0003	4.50	
(Subareas 7 and 8)	Marl	97	0.176	0.010	0.0030	0.25 ^[3]	
(Subarcas / alid 8)	Silt and Clay	111	0.129	0.013	0.0015	0.15	

Table 1. Summary of Material Properties used in Settlement Calculations

- [1]. The consolidation parameters of Fill in the Outboard Area near the West Wall were assumed to be the same as the those near the East Wall.
- [2]. The $C_{c\epsilon}$ value of SOLW corresponds to the low stress range and takes into account the effect of overconsolidation. This was discussed in the RA-D Cap Settlement Report.
- [3]. As mentioned in this report, the SOLW, Marl, and Silt and Clay layers were assumed as one layer for the purpose of calculating the time needed to reach 90% primary consolidation because the c_v values for these three layers are similar and much smaller than that of the Fill layer. In the Outboard Area near the West Wall, the c_v value of SOLW was applied to the combined layer. In the Outboard Area near the East Wall, the c_v value of Marl was applied to the combined layer.

FIGURES

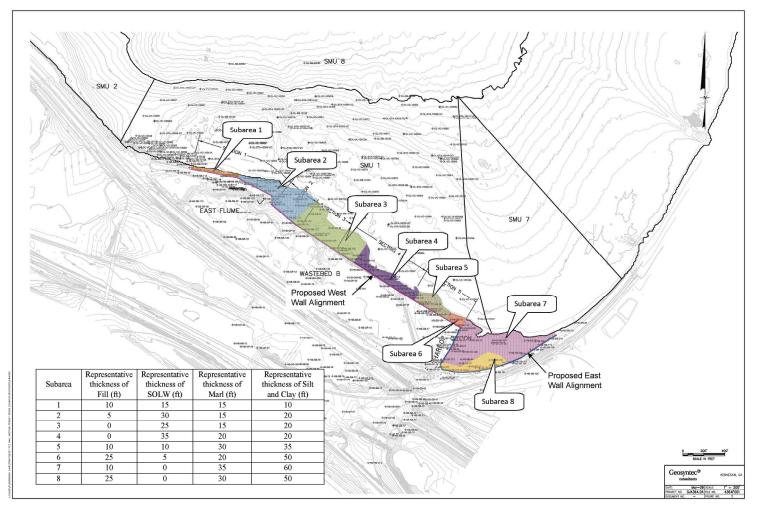


Figure 1. WB-B/HB Outboard Area Plan

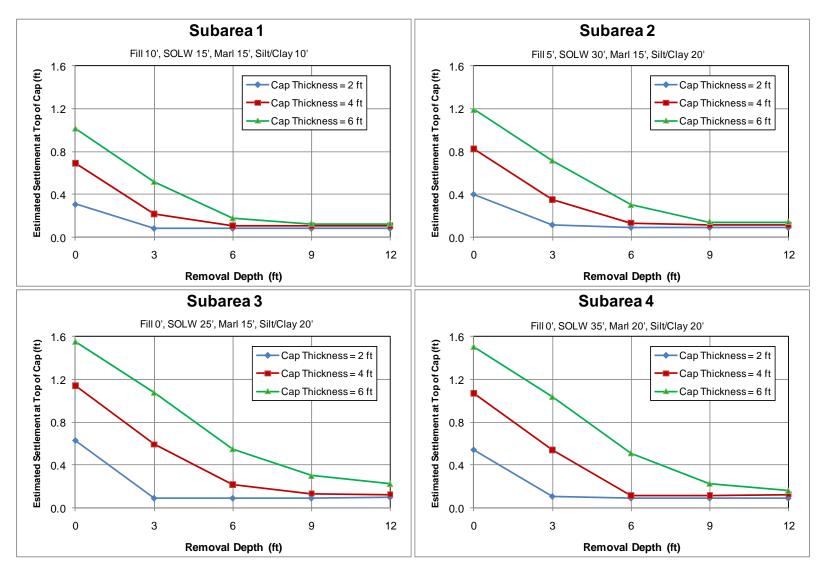


Figure 2. Settlement Calculation Results for the 30-Year Period

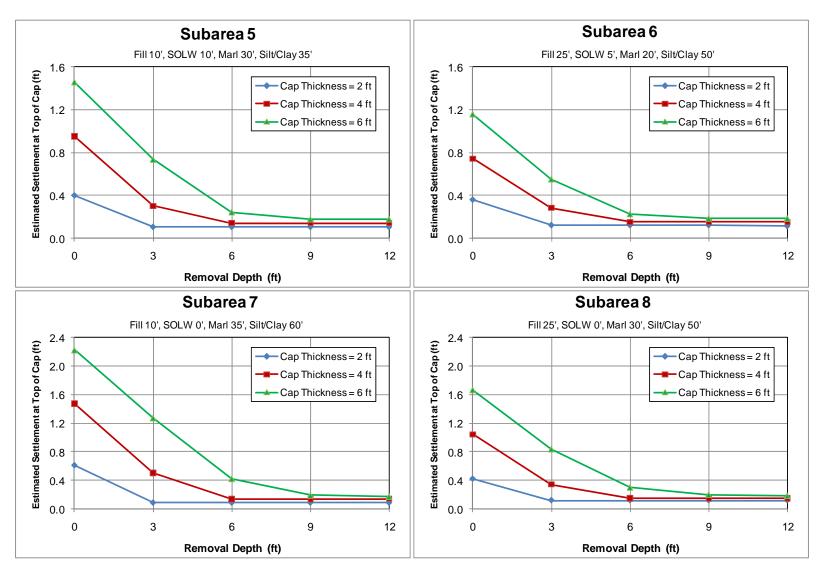


Figure 2. Settlement Calculation Results for the 30-Year Period (continued)

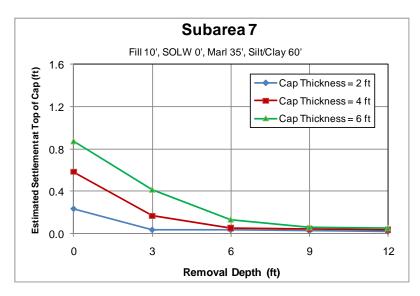


Figure 3. Settlement Calculation Results for the 2-Year Period (Subarea 7 Only)

ATTACHMENT A

SUBSURFACE LAYER THICKNESS CONTOURS (WB-B/HB OUTBOARD AREA)

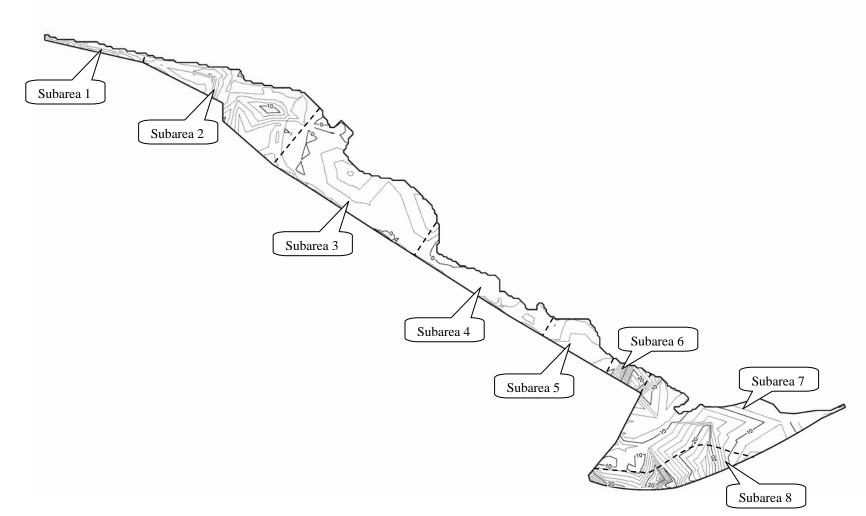


Figure A-1. Thickness of Fill in WB-B/HB Outboard Area

1. The subsurface thickness contours were developed based on the elevations of each layer interpreted from the available boring logs. This note applies to all the other figures included in this attachment.

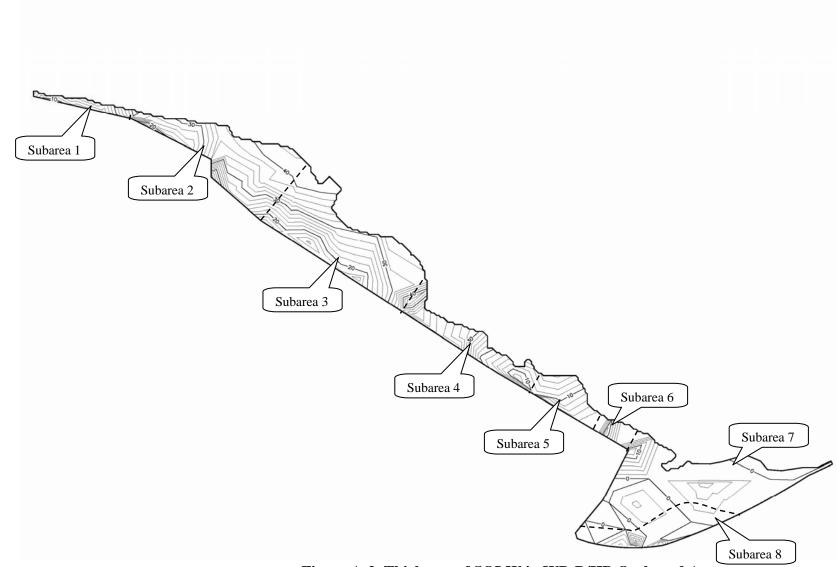
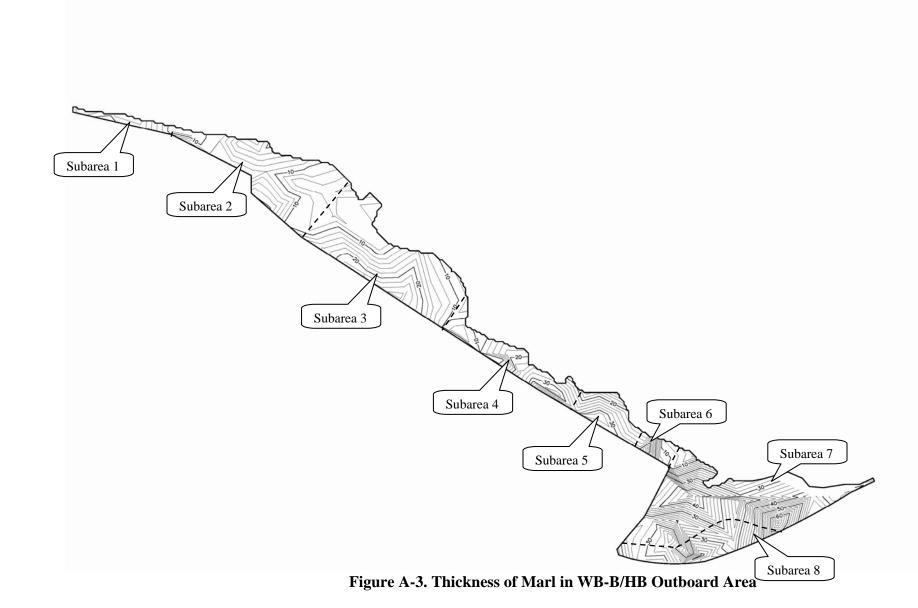
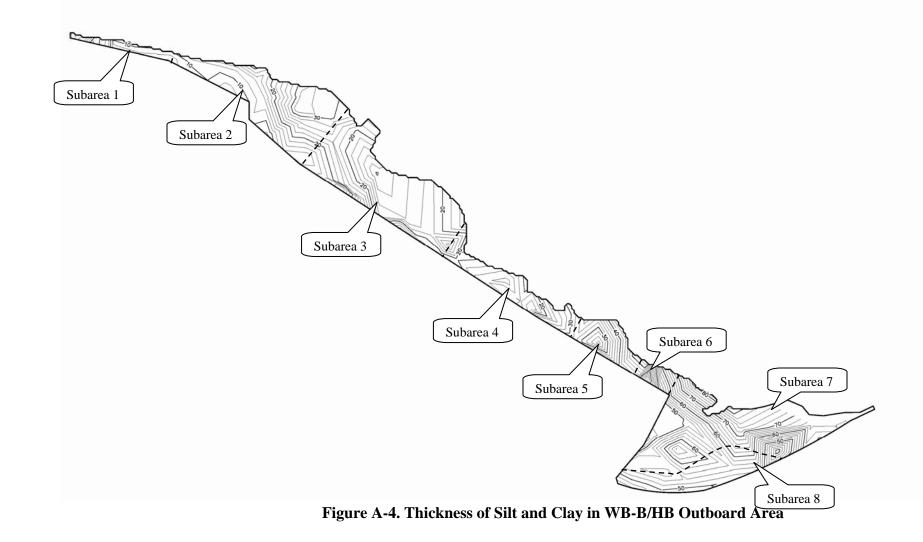




Figure A-2. Thickness of SOLW in WB-B/HB Outboard Area

1. Thickness of Silt and Clay was estimated based on a limited number of deep borings that penetrated the Silt and Clay layer.

ATTACHMENT B

INTERPRETATION OF CONSOLIDATION PARAMETERS OF SUBSURFACE MATERIALS (WB-B/HB OUTBOARD AREA)

This attachment presents the interpretation of the consolidation parameters that were used for the cap-induced settlement calculations for the WB-B/HB outboard area near the West and East Walls. The consolidation parameters include the modified compression index ($C_{c\epsilon}$), modified recompression index ($C_{r\epsilon}$), modified secondary compression index ($C_{\alpha\epsilon}$), and coefficient of consolidation (C_v). These parameters were interpreted from the available laboratory consolidation test data.

The interpreted values for $C_{c\epsilon}$ and $C_{r\epsilon}$ of SOLW, Marl, and Silt and Clay are presented in Tables B-1 through B-6. The recommended consolidation parameters (i.e., mean values) are summarized in Table B-7. The interpretation of $C_{\alpha\epsilon}$ and C_v for SOLW, Marl, and Silt and Clay are presented in Figures B-1 through B-12. The selected representative values shown on these figures were used for the settlement calculations.

Sample Location ID	Depth (ft)	Initial Void	C _c ^[2]	Cr	C _{ce} ^[1,2]	$C_{r\epsilon}^{[1]}$	
		Ratio e ₀					
HB-SB-02	10-12	3.16	0.04	0.01	0.010	0.002	
HB-SB-18	10-12	1.72	0.18	0.01	0.065	0.004	
HB-SB-126	5-7	3.07	0.21	0.02	0.051	0.004	
HB-SB-143	22-24	3.73	0.20	0.01	0.043	0.002	
			Me	an Value	0.042	0.003	
			Maximu	um Value	0.065	0.004	
			Minim	um Value	0.010	0.002	
			Standard I	Deviation	0.023	0.001	
	Mean plus Standard Deviation						
		Mean minus	s Standard I	Deviation	0.019	0.002	

Table B-1. $C_{c\epsilon}$ and $C_{r\epsilon}$ for SOLW in Outboard Area near West Wall

- [1]. $C_{c\epsilon}$ and $C_{r\epsilon}$ are modified compression index and recompression index, respectively. They are calculated as follows: $C_{c\epsilon} = C_c / (1+e_0)$ and $C_{r\epsilon} = C_r / (1+e_0)$. This note also applies to Tables B-2 through B-6.
- [2]. C_c and $C_{c\epsilon}$ values of SOLW correspond to the low stress range, as discussed in the RA-D Cap Settlement Report.

		Initial					
Sample Location ID	Depth (ft)	Void	Cc	Cr	$C_{c\epsilon}$	$C_{r\epsilon}$	
		Ratio e ₀					
HB-SB-01	20-22	1.62	0.31	0.01	0.118	0.004	
HB-SB-15	24-26	1.57	0.33	0.04	0.129	0.016	
HB-SB-126	36-38	2.56	0.83	0.02	0.233	0.006	
HB-SB-143	42-44	1.08	0.27	0.03	0.129	0.015	
			Me	an Value	0.152	0.010	
			Maxim	um Value	0.233	0.016	
			Minim	um Value	0.118	0.004	
			Standard I	Deviation	0.054	0.006	
	Mean plus Standard Deviation						
		Mean minus	s Standard I	Deviation	0.098	0.004	

Table B-2. $C_{c\epsilon}$ and $C_{r\epsilon}$ for Marl in Outboard Area near West Wall

		Initial						
Sample Location ID	Depth (ft)	Void	Cc	Cr	$C_{c\epsilon}$	Cre		
		Ratio e ₀						
HB-SB-09	38-40	0.58	0.07	0.01	0.044	0.006		
HB-SB-15	40-42	0.87	0.15	0.01	0.080	0.005		
HB-SB-01	44-46	0.89	0.28	0.03	0.148	0.016		
HB-SB-27	54-56	1.29	0.26	0.02	0.114	0.009		
HB-SB-25	62-64	1.20	0.47	0.03	0.214	0.014		
HB-SB-126	48-50	0.84	0.18	0.04	0.101	0.019		
HB-SB-143	64-66	0.92	0.22	0.05	0.116	0.024		
			Me	an Value	0.117	0.013		
			Maxim	um Value	0.214	0.024		
			Minim	um Value	0.044	0.005		
	Standard Deviation							
	Mean plus Standard Deviation 0.170							
		Mean minus	s Standard I	Deviation	0.063	0.006		

Table B-3. $C_{c\epsilon}$ and $C_{r\epsilon}$ for Silt and Clay in Outboard Area near West Wall

Sample Location ID	Depth (ft)	Initial Void Ratio e_0	Cc	Cr	Cce	C _{re}
HB-SB-202	5-7	0.86	0.11	0.01	0.061	0.006
			Me	an Value	0.061	0.006

Table B-4. $C_{c\epsilon}$ and $C_{r\epsilon}$ for Fill in Outboard Area near East Wall

		Initial						
Sample Location ID	Depth (ft)	Void	Cc	Cr	$C_{c\epsilon}$	Cre		
		Ratio e ₀						
HB-SB-209	34-36	1.61	0.51	0.05	0.194	0.020		
HB-SB-97	24-26	2.38	0.76	0.04	0.224	0.013		
HB-SB-102	40-42	1.56	0.38	0.03	0.150	0.011		
HB-SB-107	14-16	2.56	0.71	0.01	0.199	0.004		
HB-SB-20	22-24	1.54	0.29	0.01	0.114	0.004		
			Me	an Value	0.176	0.010		
			Maxim	um Value	0.224	0.020		
			Minim	um Value	0.114	0.004		
	Standard Deviation 0.044 0.00							
	Mean plus Standard Deviation							
		Mean minus	s Standard I	Deviation	0.132	0.004		

Table B-5. $C_{c\epsilon}$ and $C_{r\epsilon}$ for Marl in Outboard Area near East Wall

		Initial						
Sample Location ID	Depth (ft)	Void	Cc	Cr	$C_{c\epsilon}$	Cre		
		Ratio e ₀						
HB-SB-97	60-62	0.74	0.11	0.01	0.066	0.008		
HB-SB-102	54-56	2.14	0.57	0.05	0.183	0.017		
HB-SB-104	76-78	0.94	0.27	0.03	0.138	0.015		
			Me	an Value	0.129	0.013		
			Maxim	um Value	0.183	0.017		
			Minim	um Value	0.066	0.008		
			Standard I	Deviation	0.059	0.004		
	Mean plus Standard Deviation							
		Mean minus	s Standard I	Deviation	0.070	0.009		

Table B-6. $C_{c\epsilon}$ and $C_{r\epsilon}$ for Silt and Clay in Outboard Area near East Wall

A #200	Material	Recon	Recommended Consolidation Parameters						
Area	Iviaterial	Cce	Cre	$C_{\alpha\epsilon}$	$c_v (ft^2/d)$				
	SOLW	$0.042^{[1]}$	0.003	0.0006	0.60				
Outboard Area near West Wall	Marl	0.152	0.010	0.0008	0.50				
iicai west waii	Silt and Clay	0.117	0.013	0.0015	0.15				
	Fill	0.061	0.006	0.0003	4.50				
Outboard Area near East Wall	Marl	0.176	0.010	0.0030	0.25				
	Silt and Clay	0.129	0.013	0.0015	0.15				

Table B-7. Summary of Recommended Consolidation Parameters for Settlement Calculations

1. The $C_{c\epsilon}$ value of SOLW corresponds to the low stress range, as discussed in the RA-D Cap Settlement Report.

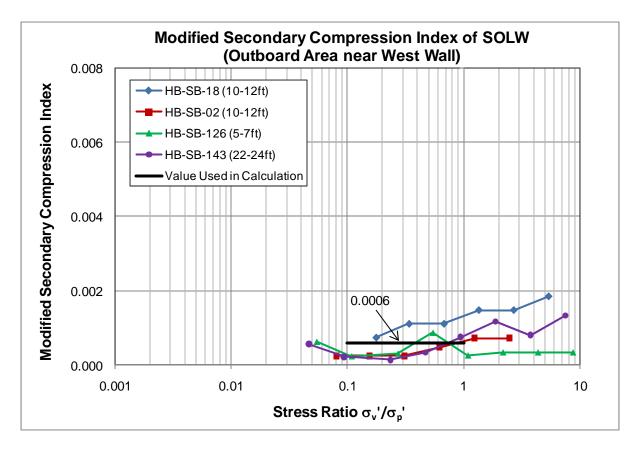
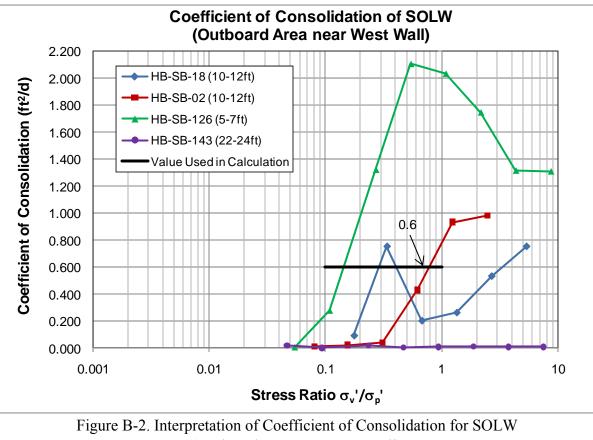
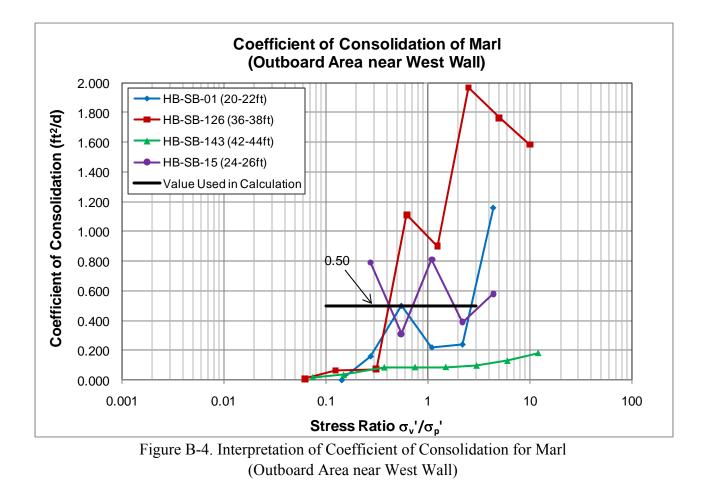
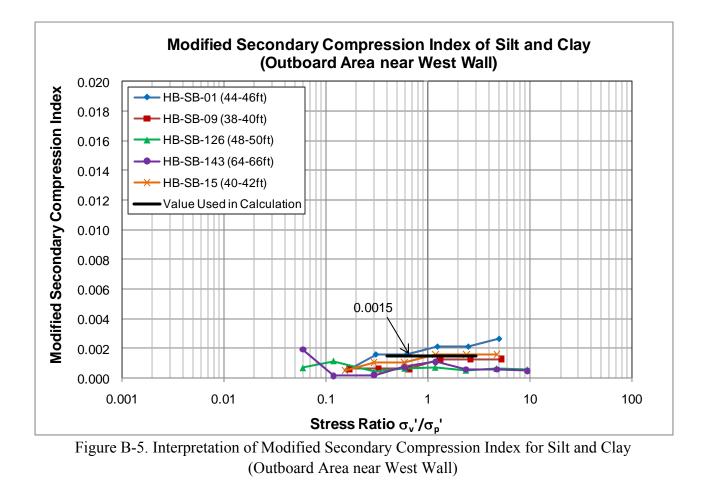



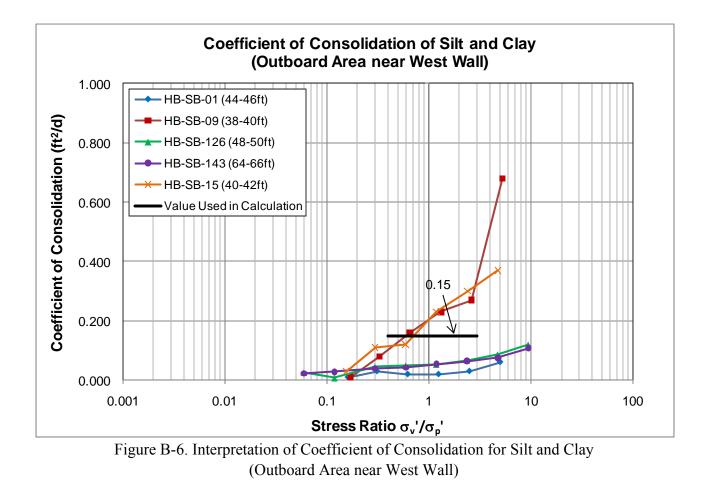
Figure B-1. Interpretation of Modified Secondary Compression Index for SOLW (Outboard Area near West Wall)

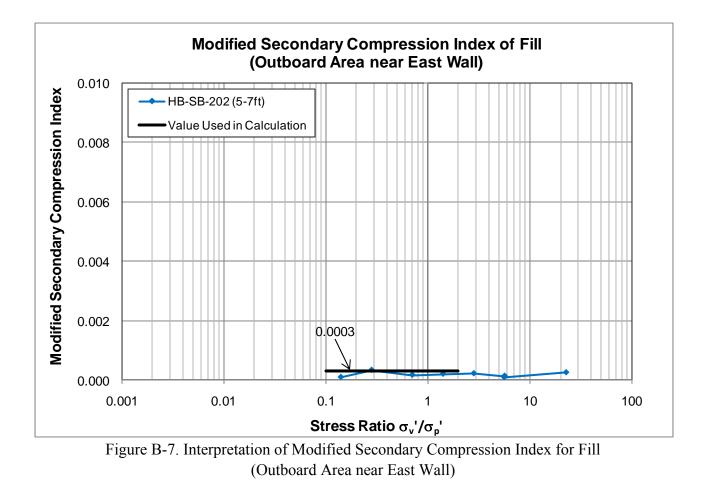

The ratio of σ_v / σ_p of SOLW in the field before and after capping was estimated to be between 0.1 and 1 according to the assumed subsurface layer thicknesses.

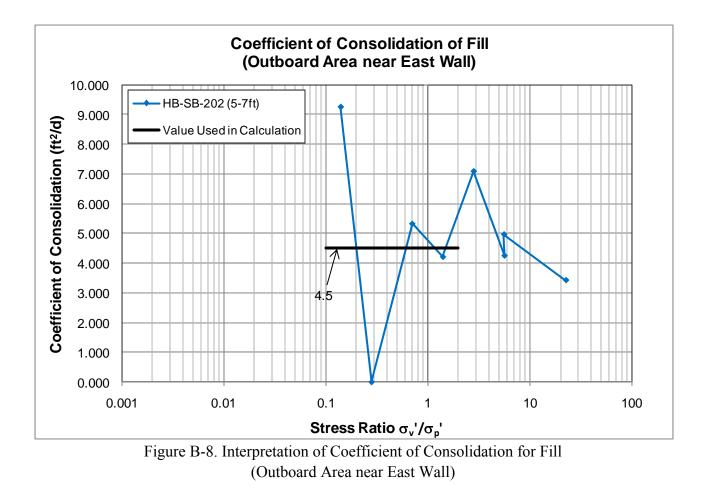

(Outboard Area near West Wall)

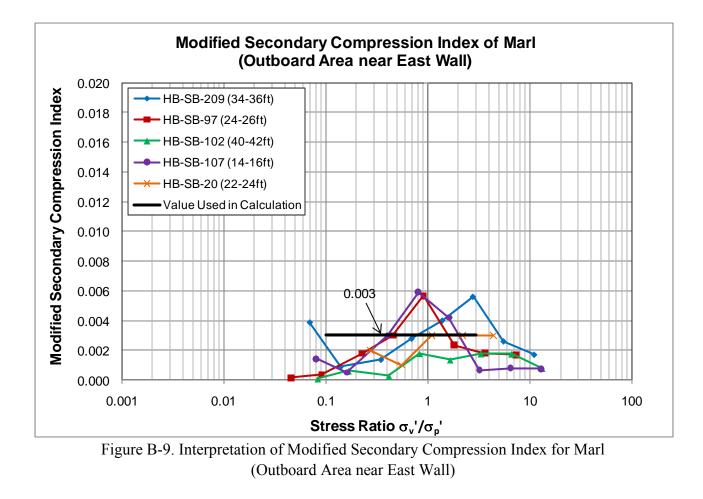
Note:

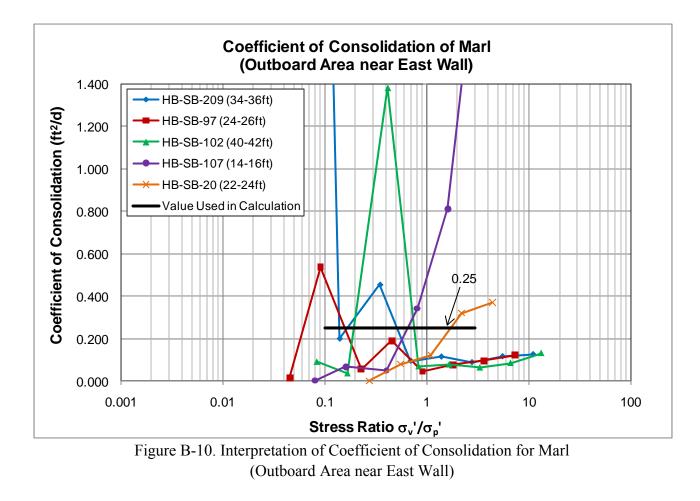

The ratio of σ_v'/σ_p' of SOLW in the field before and after capping was estimated to be between 0.1 and 1 according to the assumed subsurface layer thicknesses.

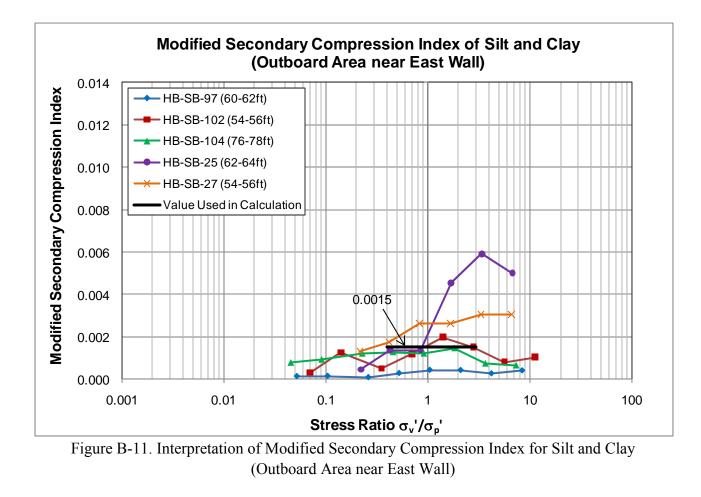

The ratio of σ_v'/σ_p' of Marl in the field before and after capping was estimated to be between 0.1 and 3 according to the assumed subsurface layer thicknesses.

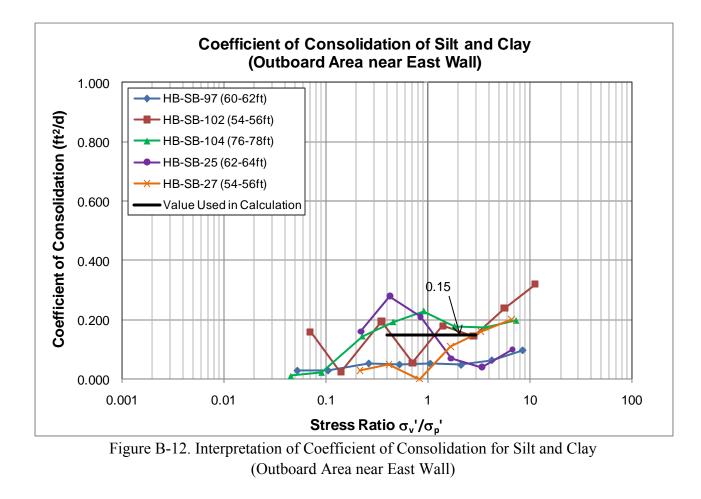

The ratio of σ_v'/σ_p' of Marl in the field before and after capping was estimated to be between 0.1 and 3 according to the assumed subsurface layer thicknesses.


The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.4 and 2 according to the assumed subsurface layer thicknesses.


The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.4 and 2 according to the assumed subsurface layer thicknesses.


The ratio of σ_v'/σ_p' of Fill in the field before and after capping was estimated to be between 0.1 and 2 according to the assumed subsurface layer thicknesses.


The ratio of σ_v'/σ_p' of Fill in the field before and after capping was estimated to be between 0.1 and 2 according to the assumed subsurface layer thicknesses.


The ratio of σ_v'/σ_p' of Marl in the field before and after capping was estimated to be between 0.1 and 3 according to the assumed subsurface layer thicknesses.

The ratio of σ_v'/σ_p' of Marl in the field before and after capping was estimated to be between 0.1 and 3 according to the assumed subsurface layer thicknesses.

The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.4 and 3 according to the assumed subsurface layer thicknesses.

The ratio of σ_v'/σ_p' of Silt and Clay in the field before and after capping was estimated to be between 0.4 and 3 according to the assumed subsurface layer thicknesses.

ATTACHMENT C EXAMPLE SETTLEMENT CALCULATION

(For Subarea 7 with 3 ft removal and 4 ft thick cap)

An Example of Settlement Calculation

Input:										
Removal De	pth	3	ft							
Consider Tot	tal Settlement	30	years							
Groundwater	r Table	1	ft, bgs							
Soil Layers	Thickness (ft)	Unit Weight (pcf)	OCR	C _{ce}	$C_{r\epsilon}$	C_{α}	Coef. of Con. $c_v (ft^2/d)$	Time of 90% primary con. (years)	t2/t1 for Secondary Con.	# of Sublayers
Cap	4	120								
Fill	10	92	2	0.061	0.0060	0.0003	4.500	0.1	1185.9	4
SOLW	0	88	1	0.042	0.0030	0.0006	0.250	21.0	1.4	0
Marl	35	97	1.2	0.176	0.0100	0.0030	0.250	21.0	1.4	14
Silt/Clay	60	111	1	0.129	0.0130	0.0015	0.250	21.0	1.4	12
Water		62.4								
		condary consol	idation starts at	the time who	en 90% of pri	mary consol	idation have oc	curred.		
Calculated S	ettlement (ft):	a 1	- 1							
	Primary	Secondary	Total							
x-111	Settlement	Settlement	Settlement							
Fill	0.016	0.006	0.023							
SOLW	0.000	0.000	0.000							
Marl	0.194	0.015	0.210							
Silt/Clay	0.256	0.013	0.270							
Total	0.47	0.03	<u>0.50</u>	=	6.0	in				

Total Primary	0.016	Total Primary	0.000
Total Secondary	0.006	Total Secondary	0.000
Total	0.023	Total	0.000
Calculation for Fill		Calculation for SOLW	
Layer No.	1	Layer No.	1
Layer Thickness, m / ft	1.75	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	0.875	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	5E-11
Midpoint Depth from Ori Ground Surface, m/ft	3.875	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	177.1	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	25.9	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	131.5	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	354.2	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, Cce	0.061	Modified Primary Compression Index, C _{cc}	0.042
Modified Recompression Index, Cre	0.006	Modified Recompression Index, C _{re}	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements	1105.7	Settlements	1.7
Primary Settlement, (m / ft)	0.007	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.007	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.002	Total Settlement (m / ft)	0.000
	0.007		0.000
Layer No.	2	Layer No.	2
Layer Thickness, m / ft	1.75	Layer Thickness, m / ft	- 1E-10
Midpoint Depth from Removal Bot, m/ft	2.625	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	1.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	5.625	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	228.9	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	77.7	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	183.3	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	457.8	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, C _{cc}	0.061	Modified Primary Compression Index, C _{cc}	0.042
Modified Recompression Index, $C_{r_{E}}$	0.006	Modified Recompression Index, $C_{r_{E}}$	0.003
Modified Secondary Compression Index, C_{re}	0.0003	Modified Secondary Compression Index, C_{re}	0.0005
ratio of t2 / t1			
Settlements	1185.9	ratio of t2 / t1 Settlements	1.4
	0.004		0.000
Primary Settlement, (m / ft) Secondary Settlement (m / ft)	0.004	Primary Settlement, (m / ft)	0.000
•		Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.006	Total Settlement (m / ft)	0.000
Layer No.	3	Layer No.	3
Layer Thickness, m / ft	1.75	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	4.375	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	2.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	7.375	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	280.7	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	129.5	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	235.1	Final Effective Stress, KPa/psf	562.4
OCR	235.1	OCR	1
Preconsolidation Pressure, KPa/psf	561.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, C_{ce}	0.061	Modified Primary Compression Index, C _{ce}	0.042
Modified Recompression Index, C_{re}	0.001	Modified Recompression Index, C_{re}	0.042
		· · · · · · · · · · · · · · · · · · ·	
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements	0.002	Settlements	0.000
Primary Settlement, (m / ft)	0.003	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.002	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.004	Total Settlement (m / ft)	0.000

Layer No.	4	Layer No.	4
Layer Thickness, m / ft	1.75	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	6.125	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	3.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	9.125	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	332.5	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	181.3	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	286.9	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	665	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, C _{cc}	0.061	Modified Primary Compression Index, C _{ce}	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, C_{r_E}	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements	1185.9	Settlements	1.4
	0.002		0.000
Primary Settlement, (m / ft)	0.002	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)		Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.004	Total Settlement (m / ft)	0.000
Layer No.	5	Layer No.	5
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	4.5E-10	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	4.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	4.5E-10 3	Midpoint Depth from Ori Ground Surface, m/ft	4.5E-10
	151.2		358.4
Effective Stress Before Removal, KPa/psf	1.332E-08	Effective Stress Before Removal, KPa/psf	207.2
Initial Effective Stress, KPa/psf		Initial Effective Stress, KPa/psf	
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	259.4
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.061	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, $C_{r_{\epsilon}}$	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
Layer No.	6	Layer No.	6
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	5.5E-10	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	5.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	1.628E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.061	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, $C_{r_{\!$	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000

Layer No.	7	Layer No.	7
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	6.5E-10	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	6.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	1.924E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, C _{cc}	0.061	Modified Primary Compression Index, C _{ce}	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, C _{re}	0.003
Modified Secondary Compression Index, C_{re}	0.0003	Modified Secondary Compression Index, C_{re}	0.0006
		ratio of t2 / t1	
ratio of t2 / t1	1185.9		1.4
Settlements	0.000	Settlements	0.000
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
r N	0	T AT	0
Layer No.	8 1E 10	Layer No.	8 1E 10
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	7.5E-10	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	7.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	2.22E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c\epsilon}$	0.061	Modified Primary Compression Index, $C_{c\epsilon}$	0.042
Modified Recompression Index, $C_{r\epsilon}$	0.006	Modified Recompression Index, $C_{r_{\epsilon}}$	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, Cae	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
Layer No.	9	Layer No.	9
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	8.5E-10	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	8.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	2.516E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c\epsilon}$	0.061	Modified Primary Compression Index, C _{cc}	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.001	Modified Recompression Index, $C_{r_{\epsilon}}$	0.042
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	0.055
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000

Layer No.	10	Layer No.	10
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	9.5E-10	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	9.5E-10
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	1(
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	2.812E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c_{E}}$	0.061	Modified Primary Compression Index, $C_{c_{E}}$	0.042
Modified Recompression Index, $C_{r_{E}}$	0.001	Modified Recompression Index, $C_{r_{E}}$	0.003
· · · ·			
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.000
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
Layer No.	11	Layer No.	11
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	1.05E-09	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	1.05E-09
	1.05E-09	Midpoint Depth from Ori Ground Surface, m/ft	
Midpoint Depth from Ori Ground Surface, m/ft			1(
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	3.108E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	0.50
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.061	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, $C_{r_{\epsilon}}$	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.000
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
Layer No.	12	Layer No.	12
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	1.15E-09	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	1.15E-09
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	3.404E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	-
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, C _{ce}	0.061	Modified Primary Compression Index, C _{cc}	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, C_{r_E}	0.003
Modified Secondary Compression Index, C_{ac}	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.000
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements	0.000	Settlements	0.000
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.00
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.00
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000

Layer No.	13	Layer No.	13
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	1.25E-09	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	1.25E-09
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	3.7E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c_{E}}$	0.061	Modified Primary Compression Index, $C_{c_{E}}$	0.042
Modified Recompression Index, C_{r_E}	0.001	Modified Recompression Index, $C_{r_{E}}$	0.042
•		-	
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
Layer No.	14	Layer No.	14
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from Removal Bot, m/ft	1.35E-09	Midpoint Depth from T. of SLOW/Removal Bot, m/ft	1.35E-09
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	1.551-02
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	3.996E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	-	562.4
OCR	2	Final Effective Stress, KPa/psf OCR	302.4
	302.4		358.4
Preconsolidation Pressure, KPa/psf		Preconsolidation Pressure, KPa/psf	
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.061	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, $C_{r_{\epsilon}}$	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000
I NI-	15	I N-	14
Layer No. Layer Thickness, m / ft	15 1E-10	Layer No. Layer Thickness, m / ft	15 1E-10
-	1.45E-09		
Midpoint Depth from Removal Bot, m/ft		Midpoint Depth from T. of SLOW/Removal Bot, m/ft	1.45E-09
Midpoint Depth from Ori Ground Surface, m/ft	3	Midpoint Depth from Ori Ground Surface, m/ft	10
Effective Stress Before Removal, KPa/psf	151.2	Effective Stress Before Removal, KPa/psf	358.4
Initial Effective Stress, KPa/psf	4.292E-08	Initial Effective Stress, KPa/psf	207.2
Final Effective Stress, KPa/psf	105.6	Final Effective Stress, KPa/psf	562.4
OCR	2	OCR	1
Preconsolidation Pressure, KPa/psf	302.4	Preconsolidation Pressure, KPa/psf	358.4
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.061	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.042
Modified Recompression Index, $C_{r_{\epsilon}}$	0.006	Modified Recompression Index, $C_{r_{\epsilon}}$	0.003
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0006
ratio of t2 / t1	1185.9	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.000	Total Settlement (m / ft)	0.000

Total Primary	0.194	Total Primary	0.256
Total Secondary	0.015	Total Secondary	0.013
Total	0.210	Total	0.270
Calculation for Marl		Calculation for Silt and Clay	-
Layer No.	1	Layer No.	1
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	1.25	Midpoint Depth from T. of Silt/Clay, m/ft	2.5
Midpoint Depth from Ori Ground Surface, m/ft	11.25	Midpoint Depth from Ori Ground Surface, m/ft	47.5
Effective Stress Before Removal, KPa/psf	401.65	Effective Stress Before Removal, KPa/psf	1690.9
Initial Effective Stress, KPa/psf	250.45	Initial Effective Stress, KPa/psf	1539.7
Final Effective Stress, KPa/psf	605.65	Final Effective Stress, KPa/psf	1894.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	481.98	Preconsolidation Pressure, KPa/psf	1690.9
Modified Primary Compression Index, C _{cc}	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, C _{re}	0.01	Modified Recompression Index, C _{re}	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of $t2/t1$	1.4	ratio of t2 / t1	1.4
Settlements	1.4	Settlements	1.4
Primary Settlement, (m / ft)	0.051	Primary Settlement, (m / ft)	0.035
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.001	Total Settlement (m / ft)	0.001
	0.052		0.050
Layer No.	2	Layer No.	2
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	3.75	Midpoint Depth from T. of Silt/Clay, m/ft	7.5
Midpoint Depth from Ori Ground Surface, m/ft	13.75	Midpoint Depth from Ori Ground Surface, m/ft	52.5
Effective Stress Before Removal, KPa/psf	488.15	Effective Stress Before Removal, KPa/psf	1933.9
Initial Effective Stress, KPa/psf	336.95	Initial Effective Stress, KPa/psf	1782.7
Final Effective Stress, KPa/psf	692.15	Final Effective Stress, KPa/psf	2137.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	585.78	Preconsolidation Pressure, KPa/psf	1933.9
Modified Primary Compression Index, C _{ce}	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, $C_{r\epsilon}$	0.01	Modified Recompression Index, $C_{r_{\epsilon}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements	1.4	Settlements	1.4
Primary Settlement, (m / ft)	0.038	Primary Settlement, (m / ft)	0.030
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.001	Total Settlement (m / ft)	0.001
	0.057		0.031
Layer No.	3	Layer No.	3
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	6.25	Midpoint Depth from T. of Silt/Clay, m/ft	12.5
Midpoint Depth from Ori Ground Surface, m/ft	16.25	Midpoint Depth from Ori Ground Surface, m/ft	57.5
Effective Stress Before Removal, KPa/psf	574.65	Effective Stress Before Removal, KPa/psf	2176.9
Initial Effective Stress, KPa/psf	423.45	Initial Effective Stress, KPa/psf	2025.7
Final Effective Stress, KPa/psf	778.65	Final Effective Stress, KPa/psf	2380.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	689.58	Preconsolidation Pressure, KPa/psf	2176.9
Modified Primary Compression Index, $C_{c_{E}}$	0.176	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.129
Modified Recompression Index, $C_{r_{E}}$	0.01	Modified Recompression Index, $C_{r_{E}}$	0.013
Modified Secondary Compression Index, C_{re}	0.003	Modified Secondary Compression Index, $C_{r_{\mathcal{E}}}$	
ratio of t2 / t1	1.4	ratio of t2 / t1	0.0015
Settlements	1.4	Settlements	1.4
Settientents			0.027
Drimary Sattlement (m / ft)	() () ()		
Primary Settlement, (m / ft) Secondary Settlement (m / ft)	0.0290.001	Primary Settlement, (m / ft) Secondary Settlement (m / ft)	0.027

Layer No.	4	Layer No.	4
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	8.75	Midpoint Depth from T. of Silt/Clay, m/ft	17.5
Midpoint Depth from Ori Ground Surface, m/ft	18.75	Midpoint Depth from Ori Ground Surface, m/ft	62.5
Effective Stress Before Removal, KPa/psf	661.15	Effective Stress Before Removal, KPa/psf	2419.9
Initial Effective Stress, KPa/psf	509.95	Initial Effective Stress, KPa/psf	2268.7
Final Effective Stress, KPa/psf	865.15	Final Effective Stress, KPa/psf	2623.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	793.38	Preconsolidation Pressure, KPa/psf	2419.9
Modified Primary Compression Index, C _{cc}	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, $C_{r_{\epsilon}}$	0.01	Modified Recompression Index, $C_{r_{E}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements	0.001	Settlements	0.004
Primary Settlement, (m / ft)	0.021	Primary Settlement, (m / ft)	0.024
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.022	Total Settlement (m / ft)	0.026
T XT	~	T N	~
Layer No.	5	Layer No.	5
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	11.25	Midpoint Depth from T. of Silt/Clay, m/ft	22.5
Midpoint Depth from Ori Ground Surface, m/ft	21.25	Midpoint Depth from Ori Ground Surface, m/ft	67.5
Effective Stress Before Removal, KPa/psf	747.65	Effective Stress Before Removal, KPa/psf	2662.9
Initial Effective Stress, KPa/psf	596.45	Initial Effective Stress, KPa/psf	2511.7
Final Effective Stress, KPa/psf	951.65	Final Effective Stress, KPa/psf	2866.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	897.18	Preconsolidation Pressure, KPa/psf	2662.9
Modified Primary Compression Index, $C_{c\epsilon}$	0.176	Modified Primary Compression Index, $C_{c\epsilon}$	0.129
Modified Recompression Index, $C_{r\epsilon}$	0.01	Modified Recompression Index, $C_{r\epsilon}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.016	Primary Settlement, (m / ft)	0.022
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.017	Total Settlement (m / ft)	0.023
Layer No.	6	Layer No.	6
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	13.75	Midpoint Depth from T. of Silt/Clay, m/ft	27.5
Midpoint Depth from Ori Ground Surface, m/ft	23.75	Midpoint Depth from Ori Ground Surface, m/ft	72.5
Effective Stress Before Removal, KPa/psf	834.15	Effective Stress Before Removal, KPa/psf	2905.9
Initial Effective Stress, KPa/psf	682.95	Initial Effective Stress, KPa/psf	2754.7
Final Effective Stress, KPa/psf	1038.15	Final Effective Stress, KPa/psf	3109.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1000.98	Preconsolidation Pressure, KPa/psf	2905.9
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.176	Modified Primary Compression Index, C_{cc}	0.129
Modified Recompression Index, C_{r_E}	0.170	Modified Recompression Index, $C_{r_{E}}$	0.013
		-	
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements	0.011	Settlements	0.051
Primary Settlement, (m / ft)	0.011	Primary Settlement, (m / ft)	0.021
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.012	Total Settlement (m / ft)	0.022

Layer No.	7	Layer No.	7
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	16.25	Midpoint Depth from T. of Silt/Clay, m/ft	32.5
Midpoint Depth from Ori Ground Surface, m/ft	26.25	Midpoint Depth from Ori Ground Surface, m/ft	77.5
Effective Stress Before Removal, KPa/psf	920.65	Effective Stress Before Removal, KPa/psf	3148.9
Initial Effective Stress, KPa/psf	769.45	Initial Effective Stress, KPa/psf	2997.7
Final Effective Stress, KPa/psf	1124.65	Final Effective Stress, KPa/psf	3352.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1104.78	Preconsolidation Pressure, KPa/psf	3148.9
Modified Primary Compression Index, C _{cc}	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, $C_{r_{\epsilon}}$	0.01	Modified Recompression Index, $C_{r_{\epsilon}}$	0.013
Modified Secondary Compression Index, C_{re}	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements	0.007	Settlements	0.010
Primary Settlement, (m / ft)	0.007	Primary Settlement, (m / ft)	0.019
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.008	Total Settlement (m / ft)	0.020
I NI-	0	T Ma	0
Layer No.	8	Layer No.	8
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	18.75	Midpoint Depth from T. of Silt/Clay, m/ft	37.5
Midpoint Depth from Ori Ground Surface, m/ft	28.75	Midpoint Depth from Ori Ground Surface, m/ft	82.5
Effective Stress Before Removal, KPa/psf	1007.15	Effective Stress Before Removal, KPa/psf	3391.9
Initial Effective Stress, KPa/psf	855.95	Initial Effective Stress, KPa/psf	3240.7
Final Effective Stress, KPa/psf	1211.15	Final Effective Stress, KPa/psf	3595.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1208.58	Preconsolidation Pressure, KPa/psf	3391.9
Modified Primary Compression Index, $C_{c\epsilon}$	0.176	Modified Primary Compression Index, $C_{c\epsilon}$	0.129
Modified Recompression Index, $C_{r_{\epsilon}}$	0.01	Modified Recompression Index, $C_{r_{\epsilon}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.004	Primary Settlement, (m / ft)	0.018
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.005	Total Settlement (m / ft)	0.019
Layer No.	9	Layer No.	9
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	21.25	Midpoint Depth from T. of Silt/Clay, m/ft	42.5
Midpoint Depth from Ori Ground Surface, m/ft	31.25	Midpoint Depth from Ori Ground Surface, m/ft	87.5
Effective Stress Before Removal, KPa/psf	1093.65	Effective Stress Before Removal, KPa/psf	3634.9
Initial Effective Stress, KPa/psf	942.45	Initial Effective Stress, KPa/psf	3483.7
Final Effective Stress, KPa/psf	1297.65	Final Effective Stress, KPa/psf	3838.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1312.38	Preconsolidation Pressure, KPa/psf	3634.9
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, C_{r_E}	0.01	Modified Recompression Index, $C_{r_{\epsilon}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
	1.4		1.4
Settlements	0.002	Settlements Brimary Settlement (m / ft)	0.010
Primary Settlement, (m / ft)	0.003	Primary Settlement, (m / ft)	0.016
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.005	Total Settlement (m / ft)	0.018

Layer No.	10	Layer No.	10
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	23.75	Midpoint Depth from T. of Silt/Clay, m/ft	47.5
Midpoint Depth from Ori Ground Surface, m/ft	33.75	Midpoint Depth from Ori Ground Surface, m/ft	92.5
Effective Stress Before Removal, KPa/psf	1180.15	Effective Stress Before Removal, KPa/psf	3877.9
Initial Effective Stress, KPa/psf	1028.95	Initial Effective Stress, KPa/psf	3726.7
Final Effective Stress, KPa/psf	1384.15	Final Effective Stress, KPa/psf	4081.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1416.18	Preconsolidation Pressure, KPa/psf	3877.9
Modified Primary Compression Index, C _{cc}	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, $C_{r_{E}}$	0.01	Modified Recompression Index, $C_{r_{\epsilon}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements	0.000	Settlements	0.015
Primary Settlement, (m / ft)	0.003	Primary Settlement, (m / ft)	0.015
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.004	Total Settlement (m / ft)	0.017
· · · · ·		· · · · · · · · · · · · · · · · · · ·	
Layer No.	11	Layer No.	11
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	26.25	Midpoint Depth from T. of Silt/Clay, m/ft	52.5
Midpoint Depth from Ori Ground Surface, m/ft	36.25	Midpoint Depth from Ori Ground Surface, m/ft	97.5
Effective Stress Before Removal, KPa/psf	1266.65	Effective Stress Before Removal, KPa/psf	4120.9
Initial Effective Stress, KPa/psf	1115.45	Initial Effective Stress, KPa/psf	3969.7
Final Effective Stress, KPa/psf	1470.65	Final Effective Stress, KPa/psf	4324.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1519.98	Preconsolidation Pressure, KPa/psf	4120.9
Modified Primary Compression Index, C _{cc}	0.176	Modified Primary Compression Index, Cce	0.129
Modified Recompression Index, Cre	0.01	Modified Recompression Index, C _{re}	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of $t2 / t1$	1.4	ratio of $t2/t1$	1.4
Settlements	1.7	Settlements	1
Primary Settlement, (m / ft)	0.003	Primary Settlement, (m / ft)	0.015
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.013
Total Settlement (m / ft)	0.001	Total Settlement (m / ft)	0.001
Total Settlement (III / It)	0.004		0.010
Lavar No	12	Lavar No	10
Layer No.		Layer No.	12
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	5
Midpoint Depth from T. of Marl/Removal Bot, m/f	28.75	Midpoint Depth from T. of Silt/Clay, m/ft	57.5
Midpoint Depth from Ori Ground Surface, m/ft	38.75	Midpoint Depth from Ori Ground Surface, m/ft	102.5
Effective Stress Before Removal, KPa/psf	1353.15	Effective Stress Before Removal, KPa/psf	4363.9
Initial Effective Stress, KPa/psf	1201.95	Initial Effective Stress, KPa/psf	4212.7
Final Effective Stress, KPa/psf	1557.15	Final Effective Stress, KPa/psf	4567.9
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1623.78	Preconsolidation Pressure, KPa/psf	4363.9
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.176	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.129
Modified Recompression Index, $C_{r\epsilon}$	0.01	Modified Recompression Index, $C_{r_{\epsilon}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.003	Primary Settlement, (m / ft)	0.014
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.001
Total Settlement (m / ft)	0.004	Total Settlement (m / ft)	0.001

Layer No.	13	Layer No.	13
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	1E-10
Midpoint Depth from T. of Marl/Removal Bot, m/f	31.25	Midpoint Depth from T. of Silt/Clay, m/ft	1.25E-09
Midpoint Depth from Ori Ground Surface, m/ft	41.25	Midpoint Depth from Ori Ground Surface, m/ft	45
Effective Stress Before Removal, KPa/psf	1439.65	Effective Stress Before Removal, KPa/psf	1569.4
Initial Effective Stress, KPa/psf	1288.45	Initial Effective Stress, KPa/psf	1418.2
Final Effective Stress, KPa/psf	1643.65	Final Effective Stress, KPa/psf	1773.4
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1727.58	Preconsolidation Pressure, KPa/psf	1569.4
Modified Primary Compression Index, $C_{c\epsilon}$	0.176	Modified Primary Compression Index, C_{ce}	0.129
Modified Recompression Index, $C_{r_{E}}$	0.170	Modified Recompression Index, $C_{r_{E}}$	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.003	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.004	Total Settlement (m / ft)	0.000
Layer No.	14	Layer No.	14
Layer Thickness, m / ft	2.5	Layer Thickness, m / ft	1E-10
Midpoint Depth from T. of Marl/Removal Bot, m/f	33.75	Midpoint Depth from T. of Silt/Clay, m/ft	1.35E-09
Midpoint Depth from Ori Ground Surface, m/ft	43.75	Midpoint Depth from Ori Ground Surface, m/ft	45
Effective Stress Before Removal, KPa/psf	1526.15	Effective Stress Before Removal, KPa/psf	1569.4
Initial Effective Stress, KPa/psf	1374.95	Initial Effective Stress, KPa/psf	1418.2
Final Effective Stress, KPa/psf	1730.15	Final Effective Stress, KPa/psf	1773.4
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	1831.38	Preconsolidation Pressure, KPa/psf	1569.4
Modified Primary Compression Index, C _{cc}	0.176	Modified Primary Compression Index, C _{cc}	0.129
Modified Recompression Index, $C_{r_{\epsilon}}$	0.01	Modified Recompression Index, C _{re}	0.013
Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements	1.4	Settlements	1.4
Primary Settlement, (m / ft)	0.002	Primary Settlement, (m / ft)	0.000
•		· · · · · · ·	
Secondary Settlement (m / ft)	0.001	Secondary Settlement (m / ft) Total Settlement (m / ft)	0.000
Total Settlement (m / ft)	0.004	1 otal Settlement (m / lt)	0.000
I N-	15	L N.	15
Layer No.	15 1E 10	Layer No.	15
Layer Thickness, m / ft	1E-10	Layer Thickness, m / ft	1E-10
Midpoint Depth from T. of Marl/Removal Bot, m/f	1.45E-09	Midpoint Depth from T. of Silt/Clay, m/ft	1.45E-09
Midpoint Depth from Ori Ground Surface, m/ft	10	Midpoint Depth from Ori Ground Surface, m/ft	45
Effective Stress Before Removal, KPa/psf	358.4	Effective Stress Before Removal, KPa/psf	1569.4
Initial Effective Stress, KPa/psf	207.2	Initial Effective Stress, KPa/psf	1418.2
Final Effective Stress, KPa/psf	562.4	Final Effective Stress, KPa/psf	1773.4
OCR	1.2	OCR	1
Preconsolidation Pressure, KPa/psf	430.08	Preconsolidation Pressure, KPa/psf	1569.4
Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.176	Modified Primary Compression Index, $C_{c_{\epsilon}}$	0.129
Modified Recompression Index, $C_{r\epsilon}$	0.01	Modified Recompression Index, $C_{r\epsilon}$	0.013
Modified Secondary Compression Index, Cae	0.003	Modified Secondary Compression Index, $C_{\alpha\epsilon}$	0.0015
ratio of t2 / t1	1.4	ratio of t2 / t1	1.4
Settlements		Settlements	
Primary Settlement, (m / ft)	0.000	Primary Settlement, (m / ft)	0.000
Secondary Settlement (m / ft)	0.000	Secondary Settlement (m / ft)	0.000