# ONONDAGA LAKE PRE-DESIGN INVESTIGATION: PHASE VI WORK PLAN

**Onondaga County, New York** 



01 Plainfield Road, Suite 33 Syracuse, NY 13212

Prepared By:

# PARSONS

301 Plainfield Road, Suite 350 Syracuse, New York 13212 Phone: (315) 451-9560 Fax: (315) 451-9570

**MAY 2010** 

# TABLE OF CONTENTS

#### Page

| LIST OF ACRONYMS                                 | iii |
|--------------------------------------------------|-----|
| 1.0 INTRODUCTION                                 | 1   |
| 2.0 PROJECT OBJECTIVES                           | 1   |
| 3.0 MOBILIZATION AND LOGISTICS                   | 2   |
| <ul> <li>4.0 SEDIMENT INVESTIGATION</li></ul>    | 3   |
| <ul> <li>5.0 GROUNDWATER INVESTIGATION</li></ul> | 4   |
| <ul> <li>5.0 POREWATER INVESTIGATION</li></ul>   | 6   |
| 7.0 DATA MANAGEMENT AND REPORTING                | 7   |
| 8.0 REFERENCES                                   | 8   |

### TABLE OF CONTENTS (CONTINUED)

### LIST OF TABLES

- Table 1
   Proposed Vibracore Sediment Sample Locations and Analyses
- Table 2
   Proposed Bulk Sediment and Molybdenum Sample Locations
- Table 3
   Proposed Groundwater Vibracore Sample Locations and Analyses
- Table 4
   Proposed Porewater Sample Locations and Analyses

#### **LIST OF FIGURES**

- Figure 1 Remediation Areas and SMUs
- Figure 2 Remediation Area A Proposed Sediment Sample Locations
- Figure 3 Remediation Area B Proposed Sediment Sample Locations
- Figure 4 Remediation Area C Proposed Sediment Sample Locations
- Figure 5 Remediation Area E Proposed Sediment Sample Locations
- Figure 6 Remediation Area D Proposed Bulk Sediment Sample Locations
- Figure 7 Remediation Area A Proposed Groundwater Sample Locations
- Figure 8 Remediation Area C Proposed Groundwater Sample Locations
- Figure 9 Remediation Area E Proposed Groundwater Sample Locations
- Figure 10 Remediation Area A Proposed Porewater Sample Locations
- Figure 11 Remediation Area B Proposed Porewater Sample Locations
- Figure 12 Remediation Area C Proposed Porewater Sample Locations
- Figure 13 Remediation Area D Proposed Porewater Sample Locations
- Figure 14 Remediation Area E Proposed Porewater Sample Locations

### LIST OF APPENDICES

#### APPENDIX A QUALITY ASSURANCE PROJECT PLAN MODIFICATION

# LIST OF ACRONYMS

| CDOI   |                                                            |
|--------|------------------------------------------------------------|
| CPOIs  | chemical parameters of interest                            |
| DOT    | Department of Transportation                               |
| FS     | feasibility study                                          |
| GAC    | granular activated carbon                                  |
| JSA    | job safety analysis                                        |
| NYSDEC | New York State Department of Environmental Conservation    |
| OCDWEP | Onondaga County Department of Water Environment Protection |
| PDI    | pre-design investigation                                   |
| PECQ   | probable effect concentration quotient                     |
| PCB    | polychlorinated biphenyls                                  |
| PSP    | Project Safety Plan                                        |
| QA/QC  | quality assurance / quality control                        |
| QAPP   | Quality Assurance Project Plan                             |
| RI     | remedial investigation                                     |
| ROD    | Record of Decision                                         |
| SAP    | Sampling and Analysis Plan                                 |
| SCA    | sediment consolidation area                                |
| SMU    | sediment management unit                                   |
| SOP    | standard operating procedure                               |
| SSP    | Subcontractor's Safety Plan                                |
| SVOC   | semivolatile organic compounds                             |
| TCLP   | toxicity characterization leaching procedure               |
| TOC    | total organic carbon                                       |
| USEPA  | United States Environmental Protection Agency              |
| VOA    | volatile organic analysis                                  |
| VOC    | volatile organic compounds                                 |
|        |                                                            |

# PHASE VI PRE-DESIGN INVESTIGATION WORK PLAN

#### **1.0 INTRODUCTION**

Honeywell continues to make great strides towards the Onondaga Lake remedy with the publication of this work plan. This work plan describes Phase VI of data collection and how field crews will collect new data related to the lake bottom. Sediment, groundwater, and porewater sampling will be conducted to support the Onondaga Lake design and to supplement existing data. The Phase VI Pre-Design Investigation (PDI) is structured similar to the Phase V effort conducted in 2009. Unless otherwise noted, all Phase VI field activities will be conducted in accordance with the procedures outlined in the Phase I-V PDI Work Plans and associated appendices (Parsons, 2005- 2009).

Onondaga Lake is a 4.6-mi<sup>2</sup> (2900-acre) lake located northwest of the City of Syracuse in central New York state. The lake, its tributaries, and the upland hazardous waste sites related to the lake have been identified as a federal Superfund site on the United States Environmental Protection Agency's (USEPA) National Priorities List (CERCLIS NYD986913580). The Remedial Investigation (RI) for the Onondaga Lake bottom subsite was completed in December 2002, the Feasibility Study (FS) was completed in November 2004, the Phase I PDI was completed in 2005, the Phase II PDI was completed in 2006, the Phase III PDI was completed in 2007, the Phase IV PDI was completed in 2008, and the Phase V PDI was completed in 2009. Additional information on the site can be found in the FS (Parsons, 2004) and the Record of Decision (ROD) issued by the New York State Department of Environmental Conservation (NYSDEC) and the USEPA on July 1, 2005 (NYSDEC and USEPA, 2005).

#### 2.0 PROJECT OBJECTIVES

Additional information is required to complete and implement the in-lake remedial design. Since many of the details around the design have not been finalized, this work plan is intended to supplement the existing data set for cap and dredge extents, groundwater upwelling velocities, and porewater characterization. Activity-specific objectives covered by this work plan include the following:

- 1. Sediment Cores Locations and depths selected to further assess proposed cap and dredge boundaries and dredge depth requirements
- Groundwater Investigation Locations selected to further assess upwelling rates along proposed cap boundaries, assess whether near-shore dredge to cleanup criteria areas can be capped instead, and to resample locations with upwelling rate uncertainty based on previous data
- 3. Porewater Investigation Locations selected to increase porewater data density for use in chemical isolation layer modeling and within dredge areas

Any additional PDI required in 2010 beyond the scope of this work plan will be submitted to NYSDEC as addenda to this work plan. Phase VI work plan addenda currently in development or submitted after the initial preparation of this document include:

| Work Plan                                                       | Anticipated Submittal | Field Activities |
|-----------------------------------------------------------------|-----------------------|------------------|
| Granular Activated Carbon (GAC) Isotherm Evaluation             | March 2010            | May 2010         |
| Siderite pH Column Studies                                      | March 2010            | May 2010         |
| SMU 8 Probable Effect Concentration Quotient (PECQ)<br>Sampling | April 2010            | May 2010         |
| Geotechnical Investigations                                     | May 2010              | May 2010         |

Phase IV field activities that may be conducted this year include collection of additional samples for total organic carbon (TOC) analysis from the wading pools installed during 2008 under the Addendum 1 Habitat Work Plan.

#### 3.0 MOBILIZATION AND LOGISTICS

#### Health and Safety

Parsons ranks health and safety as its highest priority. Parsons Project Safety Plan (PSP) and our subcontractors' safety plans (SSP) prepared for previous PDI activities will be reviewed and updated as needed for use during this investigation and will be strictly followed by all personnel. Any task outside of the current scope defined in the PSP will have a new job safety analysis (JSA) completed before the task begins. Copies of the PSP and SSPs will be maintained at the support zone and on each vessel.

#### Site Facilities, Decontamination, and Waste Handling

The support zone and facilities established during the Phase V PDI will be used for the Phase VI investigation. All decontamination and waste management activities will be conducted in accordance with Phase I PDI Work Plan (Parsons, 2005).

#### 4.0 SEDIMENT INVESTIGATION

The sediment sample locations proposed in this work plan will address the need for refining the boundary of capping and dredging areas as well as defining dredge depth requirements. Areas requiring remediation based on sediment criteria stated in the ROD include those where the mercury PEC exceeds 2.2 mg/kg or the mean PECQ is greater than 1. The proposed remediation areas were defined by drawing a line along "clean" sample locations where the mercury PEC is less than 2.2 mg/kg and the mean PECQ is less than 1. Remediation areas and associated sediment units (SMUs) are shown on Figure 1. With the exception of

several shallow RI sample locations (i.e., 2 cm or less), exceedances at any sampled depth from previous PDIs and the RI investigations were considered for this boundary delineation approach.

#### 4.1 Vibracores and Bulk Sediment

#### **Sediment Cores**

Sediment cores will be advanced in Remediation Areas A, B, C, and E (Figures 2 through 5) from a pontoon boat using a vibracore in accordance with the procedures outlined in the Phase I PDI Sampling and Analysis Plan (SAP) (Parsons, 2005b). Locations not accessible by barge will be sampled using a tripod vibracore setup in accordance with Standard Operating Procedure (SOP) 27 established during the Phase V PDI. The sampling intervals for these cores provide a higher resolution of contaminant concentrations for the initial design. The higher resolution is intended to better define depth of sediment requiring dredging due to exceedances of cleanup criteria and the need for capping. Proposed sample depths are based on collection of at least two intervals below criteria exceedance depths from previous sample locations in the vicinity of the proposed locations.

Sediment samples will be collected to depths ranging from 3 to 12 ft. using a vibracore. Cores will be sectioned into 1-ft. intervals and will be capped and sealed on the sampling vessel. The cores will be brought to the on-shore support zone where they will be processed for lithology. Sediment samples from these cores will be collected and shipped to the lab for chemical analysis. Sample intervals and analyses are presented on Table 1. A summary of the proposed sampling strategy is as follows:

Remediation Area A (refer to Figure 2)

- Near-shore locations were selected to further assess dredge depth requirements.
- Remaining sample locations were selected to refine the northern and eastern end of the proposed cap boundary.

#### Remediation Area B (refer to Figure 3)

• Locations have been selected to potentially refine the cap boundary.

#### Remediation Area C (refer to Figure 4)

• Locations were selected to further assess benzene concentrations in OL-VC-20169.

Remediation Area E (refer to Figure 5)

- SMU 5 sample locations were selected to further assess the north end of the proposed cap boundary.
- SMU 6 sample locations are near-shore points selected to assess dredge depth requirements north of Onondaga Creek.

#### **Bulk Sediment**

Bulk sediment will be collected for O'Brien & Gere for dewatering and analysis of water samples for molybdenum. Bulk sediment will be co-located with four proposed sediment, groundwater, or porewater sample locations within dredge areas for Remediation Areas A, B, C, and E. Because there are no sampling activities currently scheduled for Remediation Area D, two locations that have been sampled during previous PDIs (OL-STA-10115 and OL-STA-10117) have been selected for bulk sediment collection and are shown on Figure 6. All sediment will be collected to a depth of 6 ft. as indicated on Table 2 using vibracore equipment and placed in sealed 5-gallon buckets. Bulk samples will be provided to O'Brien & Gere for processing and molybdenum analysis. Table 2 also indicates the work plan figure illustrating the sediment, groundwater, or porewater locations where each bulk sample will be collected.

#### 4.2 Sampling and Analysis

Sample processing and analysis will be conducted in accordance with the Phase I SAP and Quality Assurance Project Plan (QAPP) (Parsons, 2005a). Sediment vibracores analyses are listed on Table 1. Specific methods for sediment analysis are as follows:

- Mercury SW846 7471A
- Volatile organic compounds (VOCs) chemical parameters of interest (CPOIs) SW846 8260B
- Semivolatile organic compounds (SVOCs) CPOIs SW846 8270C
- Polychlorinated biphenyls (PCBs) SW846 8082
- pH SW846 9054C
- Phenol SW846 8270C
- TOC Lloyd Kahn

Molybdenum analysis for sediment will be included for select sample locations within dredge areas as indicated on Table 2. Because sediment cores will not be collected from all remediation areas, some molybdenum samples will be collocated with a groundwater or porewater sample as indicated on Table 2. Analysis for molybdenum is being performed to facilitate assessment of Onondaga County Department of Water Environment Protection (OCDWEP) Metro Plant biosolids disposal options during lake dredging operations, since wastewater from the sediment consolidation area (SCA) water treatment plant will be discharged to the Metro plant. These data will be included with the submittal of PDI data as described in Section 7.

#### 5.0 GROUNDWATER INVESTIGATION

#### 5.1 Sediment Cores - Groundwater

Sediment cores will be advanced to a depth of 10 ft. in Remediation Areas A, C, and E as shown on Figures 7 through 9. The cores will be cut into 1-foot sections, capped, and brought to

shore for logging and processing. Duplicate cores will be collected from approximately 15 percent of the locations for reproducibility of groundwater upwelling velocity results. Specific objectives in Remediation Areas A, C, and E are given below:

#### Remediation Area A (refer to Figure 7)

- The near-shore sample locations were selected to evaluate whether this area could be capped rather than dredged to cleanup criteria.
- The SMU 5 sample location was selected to assess upwelling velocities within the western extent of the capping area.
- Remaining sample locations were selected to increase sample density in an area with slightly higher upwelling velocities. Note that no additional near-shore locations have been included since near-shore shallow and intermediate groundwater upwelling rates will be reduced by hydraulic controls associated with the Wastebeds 1-8 IRM. Additional information on this IRM and the magnitude of the anticipated reduction will be presented in the Caps and Dredge Intermediate Design.

#### Remediation Area C (refer to Figure 8)

- The near-shore sample locations were selected to assess upwelling rates around the Department of Transportation (DOT) turnaround area.
- The remaining locations were selected to revisit former Geoprobe locations with results that were in question due to uncertainty with the model fits as well as the presence of Solvay waste in the area. Note the presence of Solvay waste in these locations may result in the chloride profile results being biased high and may limit the usability of these data for estimating upwelling rates in this area.

#### Remediation Area E (refer to Figure 9)

- The near-shore sample locations were selected to evaluate whether this area could be capped rather than dredged to cleanup criteria.
- The remaining locations were selected as revisits for locations with higher than normal upwelling rate uncertainty based on historic data.

#### 5.2 Sampling and Analysis

Sediment will be extruded vertically on-shore into the sample intervals described in Table 3. Due to limited sample volume with the fine intervals, major cations and anions will be analyzed only on the deeper samples to calculate the ion balance in these cores. The intervals specified on Table 3 were selected to focus data collection near the sediment-water interface, which is used to interpret the chloride profiles. Sample processing and analysis will be conducted in accordance with the Phase I QAPP (Parsons, 2005a). Samples will be analyzed for the following parameters:

- Specific Conductance (E120.1)
- Chloride (E300)
- pH (SW-846, 9040C)
- Cations/Anions (SW-6010B/E300)

#### 6.0 POREWATER INVESTIGATION

#### 6.1 Sediment Cores - Porewater

Fifty-six porewater cores will be advanced in Remediation Areas A through E using vibracore techniques in accordance with the procedures outlined in the Phase I PDI SAP (Parsons, 2005b). Following extraction, each core will be cut into 2-ft. intervals, capped, sealed, and shipped to the lab for processing. Samples will be collected to depths of between 10 and 12 ft. in Remediation Area A, 10 ft. in Remediation Areas B and C, 12 ft. in Remediation Area D, and 10 ft. in Remediation area E. The total sample depth in Remediation Area D (12 ft) is based on having at least two 2 ft. intervals below the anticipated dredge depths along the wall up to 2 meters or about 7 ft. Proposed sample depths are based on collection of at least two intervals below criteria exceedance depths from previous sample locations in the vicinity of the proposed locations. Specific objectives in Remediation Areas A, B, and C are given below:

#### Remediation Area A (refer to Figure 10):

- Near-shore sample locations were selected to evaluate whether this area could be capped rather than dredged to cleanup criteria.
- Remaining locations were selected to increase porewater density within cap areas and to evaluate VOC concentrations in the area.

#### Remediation Area B (refer to Figure 11):

• Sample locations were selected to increase porewater data density within the cap area.

#### Remediation Area C (refer to Figure 12):

- Sample locations were selected to increase porewater data density within the cap area.
- Sample locations near-shore to the DOT turnaround area were selected to assess extending the cap to shore.

#### Remediation Area D (refer to Figure 13):

• Sample locations were selected to facilitate cap design post barrier wall construction.

#### Remediation Area E (refer to Figure 14):

• Sample locations were selected to assess naphthalene concentrations.

#### 6.2 Processing and Analysis

The collected cores will be processed and analyzed according to the Phase V PDI Work Plan and SOPs (Parsons, 2009):

- The cores will be maintained upright until the sections are measured, cut, capped, and labeled in the field before shipment to the lab. The cores will be cut, capped, and labeled on the sampling vessel.
- Lake water on top of the cores will be decanted before the core is capped. Any fluid that separates from the sediment within the core during sample shipment will be considered porewater and included in the analysis. Due to this modification, samples do not need to be kept vertical prior to processing.
- Centrifugation will be conducted in a refrigerated environment to minimize volatilization.
- The dissolved fraction of the porewater generated from these cores will be analyzed. For the dissolved porewater fraction, the non-volatile parameters (Hg, TOC, and pH) will be pressure filtered through 0.7 µm toxicity characteristic leaching procedure (TCLP) filtration paper. The volatiles will be centrifuged for 10 minutes and decanted into pre-preserved volatile organic analysis (VOA) vials.

#### 7.0 DATA MANAGEMENT AND REPORTING

#### **Field Database**

An electronic database will be developed for the Phase VI PDI to ensure consistency in field sample ID assignment and compatibility with the Locus Focus data management system. The data collection program prepared for the Phase VI field program will be similar to the one used during previous phases of the PDI program. The database will be operated by trained Anchor/QEA or Parsons personnel.

#### **Quality Assurance/Quality Control (QA/QC)**

Field QA/QC will consist of the collection and analysis of field duplicates, and matrix spike/matrix spike duplicate samples in accordance with the Phase I PDI Work Plan (Parsons, 2005). All field QA/QC samples will be identified using standard sample identifiers and collected in accordance with the Phase I PDI Work Plan (Parsons, 2005).

#### Sample Holding, Collection, and Recordkeeping

Samples will be collected and handled according to the procedures outlined in the Phase I PDI Work Plan and associated appendices. Samples will be managed by the field database as described above. All sample recordkeeping and database entry (Locus Focus) will be conducted in accordance with the Phase I PDI Work Plan (Parsons, 2005).

#### **Data Validation and Reporting**

Analytical data generated during this investigation will be reviewed and validated in accordance with the Phase I PDI Work Plan (Parsons, 2005). The results will be incorporated into the LocusFocus database following validation.

Upon completion of the Phase VI PDI field activities and laboratory analyses, Parsons will submit unvalidated and validated data to NYSDEC in accordance with the Consent Decree for the lake. Once the Phase VI investigation and evaluation has been completed, a data summary report will be prepared and submitted to NYSDEC.

#### **8.0 REFERENCES**

- NYSDEC and USEPA. 2005. Onondaga Lake Bottom Subsite of the Onondaga Lake Superfund Site Syracuse, New York Record of Decision. Albany, New York.
- Parsons. 2004. Onondaga Lake Feasibility Study Report, Onondaga County, New York. Prepared for Honeywell, Morristown, New Jersey. Syracuse, New York.
- Parsons. 2005. Onondaga Lake Pre-Design Investigation: Phase I Work Plan and Appendices. Prepared for Honeywell, Morristown, New Jersey. Syracuse, New York.
- Parsons. 2005a. Onondaga Lake Pre-Design Investigation: Quality Assurance Project Plan. Prepared for Honeywell, Morristown, New Jersey. Syracuse, New York.
- Parsons. 2005b. Onondaga Lake Phase I Pre-Design Investigation: Sampling and Analysis Plan. Prepared for Honeywell, Morristown, New Jersey and Syracuse, New York.
- Parsons. 2006. Onondaga Lake Pre-Design Investigation: Phase II Work Plan and Addenda. Prepared for Honeywell, Morristown, New Jersey. Syracuse, New York.
- Parsons. 2007. Onondaga Lake Pre-Design Investigation: Phase III Work Plan and Addenda. Prepared for Honeywell, Morristown, New Jersey. Syracuse, New York.
- Parsons. 2008. Onondaga Lake Pre-Design Investigation: Phase IV Work Plan and Addenda. Prepared for Honeywell, Morristown, New Jersey. Syracuse, New York.
- Parsons. 2009. Onondaga Lake Pre-Design Investigation: Phase V Work Plan. Prepared for Honeywell, Morristown, New Jersey and Syracuse, New York.

TABLES

|                       |       |                                      | -             |                        |                        | -                                  |                                            |                         |         |                                                  | Chem          | ical Analy | sis     |                 |        |           |                                                                                                                                                                                    |
|-----------------------|-------|--------------------------------------|---------------|------------------------|------------------------|------------------------------------|--------------------------------------------|-------------------------|---------|--------------------------------------------------|---------------|------------|---------|-----------------|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Descr | iption                               | Map<br>Symbol | Number of<br>Locations | Number of<br>Intervals | Sampling<br>Intervals (ft)         | Location                                   | Target<br>Depth<br>(ft) | Mercury | VOCs (CPOIs) +<br>Benzene & Toluene <sup>1</sup> | SVOCs (CPOIs) | Total PCBs | Hď      | TOC (Loyd Kahn) | Phenol | Lithology | Basis for Sample                                                                                                                                                                   |
|                       |       |                                      |               |                        |                        |                                    |                                            |                         |         |                                                  | N             | umber of S | Samples |                 |        |           |                                                                                                                                                                                    |
|                       | SMU 3 | Vibracore                            | •             | 1                      | 3                      | 1-ft intervals from<br>top of core | OL-VC-30173                                | 3                       | 3       | 3                                                | 3             | 3          | 3       | 3               | 3      | 1         | Locations selected to confirm proposed cap boundary.                                                                                                                               |
| on Area A             | U 4   | Vibracore                            | •             | 1                      | 3                      | 1-ft intervals from<br>top of core | OL-VC-40304                                | 10                      | 3       | 3                                                | 3             | 3          | 3       | 3               | 3      | 1         | Locations selected to confirm proposed cap boundary.                                                                                                                               |
| Remedition Area       | SMU 4 | Near-shore <sup>2</sup><br>Vibracore | •             | 3                      | 10                     | 1-ft intervals from<br>top of core | OL-VC-40269, 40270,<br>40271               | 10                      | 30      | 30                                               | 30            | 30         | 30      | 30              | 30     | 3         | Locations selected along shoreline extent of proposed dredge area<br>to assess dredge depth requirements. Depth is based on criteria<br>exceedance to 8 ft in this area.           |
|                       | SMU 5 | Vibracore                            | •             | 3                      | 3                      | 1-ft intervals from top of core    | OL-VC-50080, 50081,<br>50082               | 3                       | 9       | 9                                                | 9             | 9          | 9       | 9               | 9      | 3         | Locations selected to confirm northern and eastern end of<br>proposed cap boundary.                                                                                                |
| Remediation<br>Area B |       | Vibracore                            | •             | 4                      | 3                      | 1-ft intervals from<br>top of core | OL-VC-30157, 30158,<br>30174, 30175        | 3                       | 12      | 12                                               | 12            | 12         | 12      | 12              | 12     | 4         | 30158 selected to assess SE extent of proposed cap area. 30157 selected to potentially refine south edge of proposed cap boundary.                                                 |
| Remediation<br>Area C | SMU 2 | Vibracore                            | •             | 4                      | 10                     | 1-ft intervals from top of core    | OL-VC-20206, 20207,<br>20208, 20209        | 10                      | 40      | 40                                               | 40            | 40         | 40      | 40              |        | 4         | Locations selected to assess benzene at bottom (6 ft) of OL-VC-20169.                                                                                                              |
|                       | SMU 5 | Vibracore                            | •             | 5                      | 3                      | 1-ft intervals from top of core    | OL-VC-50083, 50084,<br>50085, 50086, 50091 | 3                       | 15      | 15                                               | 15            | 15         | 15      | 15              |        | 5         | Locations selected to confirm north end of proposed cap boundary.                                                                                                                  |
| Area E                |       | Near-shore <sup>2</sup><br>Vibracore | 0             | 4                      | 10                     | 1-ft intervals from top of core    | OL-VC-60264, 60265,<br>60266, 60271        | 10                      | 40      | 40                                               | 40            | 40         | 40      | 40              |        | 4         | Locations selected to assess nearshore dredge depth<br>requirements. Depth is based on criteria exceedance at previous<br>nearshore locations of 6.6 ft or less.                   |
| Remediation           | 9 NMS | Vibracore                            | •             | 2                      | 12                     | 1-ft intervals from<br>top of core | OL-VC-60272, 60273                         | 12                      | 24      | 24                                               | 24            | 24         | 24      | 24              |        |           | Locations selected to assess nearshore dredge depth<br>requirements. Depth is based on criteria exceedance (individual<br>PECs) at previous nearshore locations of 9.9 ft or less. |
|                       |       | Near-shore <sup>2</sup><br>Vibracore | 0             | 4                      | 12                     | 1-ft intervals from<br>top of core | OL-VC-60267, 60268,<br>60269, 60270        | 12                      | 48      | 48                                               | 48            | 48         | 48      | 48              |        | 4         | Locations selected to assess nearshore dredge depth<br>requirements. Depth is based on criteria exceedance (individual<br>PECs) at previous nearshore locations of 9.9 ft or less. |

Note: Null fields indicate that parameter was not sampled for. 1. CPOI list for VOCs and SVOCs are the same compounds as the Phase I PDI ( Parsons, 2005)

#### FINAL PHASE VI PDI WORK PLAN



# Table 2Bulk Sediment and Molybdenum Locations

| Description                        | Map Symbol | Number of<br>Intervals | Sampling Intervals (ft) | Location     | Associated Work<br>Plan Figure | Target Depth<br>(ft) | Bulk<br>Sediment (5<br>gallons) | Molybdenum<br>SW6010B |
|------------------------------------|------------|------------------------|-------------------------|--------------|--------------------------------|----------------------|---------------------------------|-----------------------|
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-40269  | Figure 2                       | 6                    |                                 | J                     |
| Remediation Area A<br>(SMU 4)      | •          | 1                      | Composite of 0-6 ft     | OL-VC-40270  | Figure 2                       | 6                    | J                               |                       |
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-40271  | Figure 2                       | 6                    |                                 | J                     |
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-40277  | Figure 10                      | 6                    |                                 | J                     |
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-30159  | Figure 11                      | 6                    | J                               |                       |
| Remediation Area B<br>(SMU 3)      |            | 1                      | Composite of 0-6 ft     | OL-VC-30160  | Figure 11                      | 6                    |                                 | J                     |
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-30163  | Figure 11                      | 6                    |                                 | J                     |
|                                    | •          | 1                      | Composite of 0-6 ft     | OL-VC-20198  | Figure 8                       | 6                    | J                               |                       |
| Remediation Area C<br>(SMUs 2 & 3) |            | 1                      | Composite of 0-6 ft     | OL-VC-20203  | Figure 8                       | 6                    |                                 | J                     |
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-30166  | Figure 12                      | 6                    |                                 | J                     |
| Remediation Area D                 |            | 1                      | Composite of 0-6 ft     | OL-STA-10115 | Figure 6                       | 6                    | J                               | J                     |
| (SMU 1)                            |            | 1                      | Composite of 0-6 ft     | OL-STA-10117 | Figure 6                       | 6                    | J                               | J                     |
|                                    | 0          | 1                      | Composite of 0-6 ft     | OL-VC-60266  | Figure 5                       | 6                    | J                               |                       |
|                                    | 0          | 1                      | Composite of 0-6 ft     | OL-VC-60270  | Figure 5                       | 6                    |                                 | J                     |
| Remediation Area E                 |            | 1                      | Composite of 0-6 ft     | OL-VC-60273  | Figure 5                       | 6                    |                                 | J                     |
| (SMUs 6 & 7)                       | •          | 1                      | Composite of 0-6 ft     | OL-VC-60276  | Figure 9                       | 6                    |                                 | J                     |
|                                    | 7          | 1                      | Composite of 0-6 ft     | OL-VC-60278  | Figure 9                       | 6                    |                                 | J                     |
|                                    |            | 1                      | Composite of 0-6 ft     | OL-VC-70146  | Figure 9                       | 6                    |                                 | J                     |

Note:

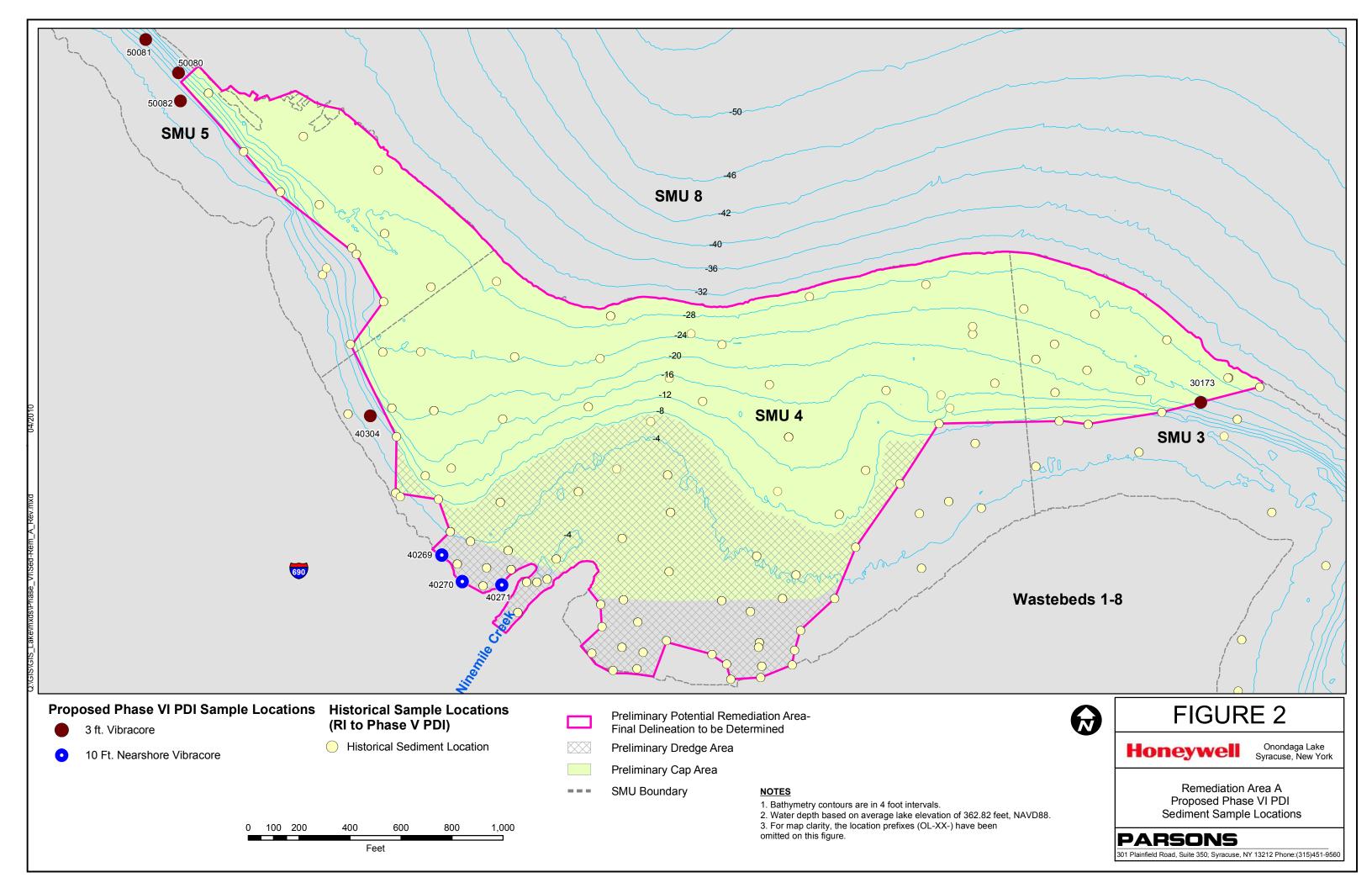
Null fields indicate that parameter was not sampled for.

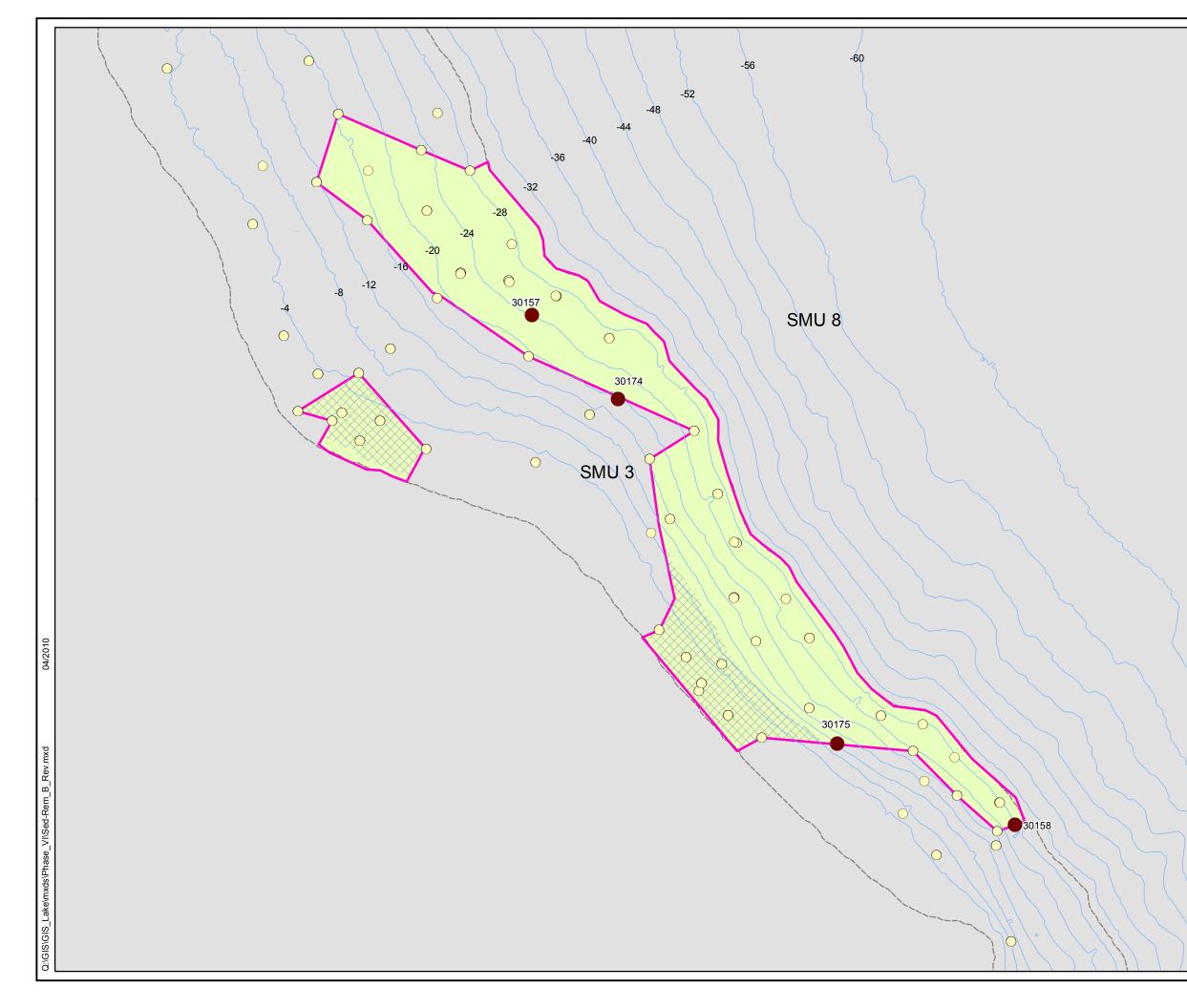
#### Table 3 Groundwater Vibracore Sample Locations and Analyses

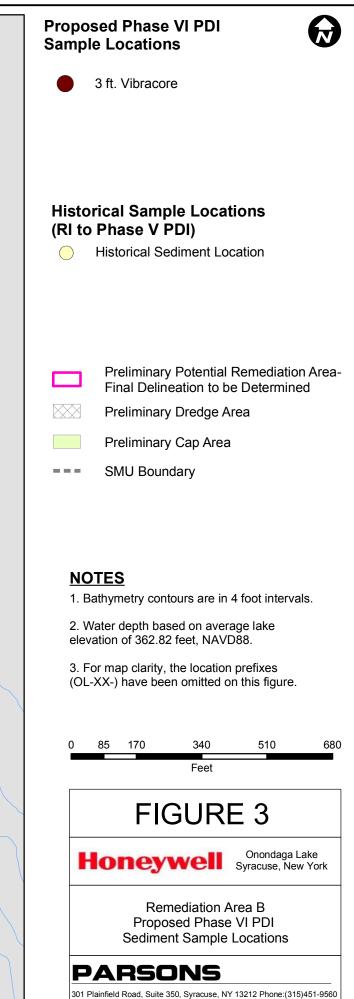
| Descripti                 | ption                                | Map Symbol          | Number of                                                                                                      |                                                                     |                                                                          |                                                                          |                            | d)                 |           |                                        |     | 1                                             |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
|---------------------------|--------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|--------------------|-----------|----------------------------------------|-----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------|-----------|------------------|
|                           |                                      |                     | Locations                                                                                                      | Number of Intervals                                                 | Sampling Intervals (ft)                                                  | S (T) Location ' (1                                                      |                            | 5-0.75,<br>25-1.5, |           | Location <sup>1</sup> Target D<br>(ft) |     | Specific Conductance<br>(Salinity Calculated) | Hď                                                                                                                                                                                                                         | Chloride                                                                                                 | Cations/Anions | Lithology | Basis for Sample |
|                           |                                      |                     |                                                                                                                |                                                                     |                                                                          |                                                                          |                            |                    | Number of | Samples                                |     |                                               |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
|                           | Near-shore <sup>2</sup><br>Vibracore |                     | 8                                                                                                              | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-40287, 40288, 40289, 40289A,                                       | 10                         | 56                 | 56        | 56                                     |     | 8                                             | Locations selected to evaluate whether this area can be capped rather<br>than dredged to cleanup critiera.                                                                                                                 |                                                                                                          |                |           |                  |
| U 4                       | Near-<br>Vibr                        | •                   | 7         2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5         40290, 40291, 40292, 40293 | 40290, 40291, 40292, 40293                                          | 10                                                                       | 56                                                                       | 56                         |                    | 56        | 0                                      |     |                                               |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
| Remediation Area A<br>SMU | Vibracore                            |                     | 11                                                                                                             | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-40294, 40294A, 40295, 40296, 40297, 40297A, 40298, 40299, 40305,   | 10                         | 77                 | 77        | 77                                     |     | 11                                            | Locations selected to increase sample density in an area with slightly<br>higher upwelling velocities.                                                                                                                     |                                                                                                          |                |           |                  |
| emediati                  | Vibra                                |                     | 11                                                                                                             | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | 40297, 40297, 40299, 40303,<br>40306, 40307                              | 10                         | 77                 | 77        |                                        | 77  | 11                                            |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
|                           | acore                                |                     | 1                                                                                                              | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | 01 VG 50097                                                              | 10                         | 7                  | 7         | 7                                      |     |                                               | Locations selected to assess upwelling rate in northern wing of<br>remediation cap area.                                                                                                                                   |                                                                                                          |                |           |                  |
| SMU 5                     | Vibracore                            |                     | I                                                                                                              | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | OL-VC-50087                                                              | 10                         | 7                  | 7         |                                        | 7   | 1                                             |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
|                           | shore <sup>2</sup><br>acore          |                     | 6                                                                                                              | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-20198, 20199, 20200, 20201,                                        | 10                         | 42                 | 42        | 42                                     |     | 6                                             | Locations around "DOT Turnaround" selected to assess nearshore<br>upwelling rates.                                                                                                                                         |                                                                                                          |                |           |                  |
| C C                       | Near-shore <sup>2</sup><br>Vibracore |                     | 0                                                                                                              | 7 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5 | 20202, 20203                                                             | 10                                                                       | 42                         | 42                 |           | 42                                     | 0   |                                               |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
| on Area C<br>SMU          | Vibracore                            |                     | 3                                                                                                              | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-20204, 20204A, 20205                                               | 10                         | 21                 | 21        | 21                                     |     | 3                                             | Locations selected to re-sample locations with higher than normal<br>estimated upwelling uncertainty.                                                                                                                      |                                                                                                          |                |           |                  |
| Remediation Area          | Vibr                                 |                     |                                                                                                                | 5                                                                   | 7                                                                        | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | OL-VC-20204, 20204A, 20203 | 10                 | 21        | 21                                     |     | 21                                            | 5                                                                                                                                                                                                                          |                                                                                                          |                |           |                  |
| R<br>SMU 3                | Vibracore                            |                     | 5                                                                                                              | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-30176, 30177, 30178, 30179,                                        | 10                         | 35                 | 35        | 35                                     |     | 5                                             | Locations selected to re-sample locations with higher than normal<br>estimated upwelling uncertainty.                                                                                                                      |                                                                                                          |                |           |                  |
| SM                        | Vibra                                |                     | 5                                                                                                              | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | 30180                                                                    | 10                         | 10                 | 35        | 35                                     |     | 35                                            | 3                                                                                                                                                                                                                          |                                                                                                          |                |           |                  |
| U S                       | Vibracore                            |                     | 3                                                                                                              | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-50088, 50088A, 50089                                               | 10                         | 21                 | 21        | 21                                     |     | 3                                             | Locations selected to address a general lack of upwelling data for this<br>recently expanded cap area.                                                                                                                     |                                                                                                          |                |           |                  |
| SMU                       | Vibr                                 |                     | 5                                                                                                              | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | OL-VC-30086, 30088A, 30089                                               | 10                         | 21                 | 21        |                                        | 21  | 5                                             |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
| 2                         | Near-shore <sup>2</sup><br>Vibracore | $\mathbf{\diamond}$ | 15                                                                                                             | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-60274, 60275, 60276, 60277,<br>60278, 60278A, 60279, 60280, 60281, | 10                         | 105                | 105       | 105                                    |     | 15                                            | Locations selected to evaluate whether this area can be capped rather<br>than dredged to cleanup critiera.                                                                                                                 |                                                                                                          |                |           |                  |
| ion Area<br>IU 6          | Near-<br>Vibr.                       | _                   | 15                                                                                                             | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | 60282, 60283, 60284, 60285, 60286,<br>60287                              | 10                         | 105                | 105       |                                        | 105 | 15                                            |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
| Remediati                 | Vibracore                            |                     | 12                                                                                                             | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-60288, 60289, 60290, 60290A, 60291, 60292, 60293, 60294, 60294A,   | 10                         | 84                 | 84        | 84                                     |     | 12                                            | Locations selected to re-sample locations with higher than normal<br>estimated upwelling uncertainty.                                                                                                                      |                                                                                                          |                |           |                  |
|                           | Vibr                                 |                     |                                                                                                                | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | 60295, 60296, 60297                                                      |                            | 84                 | 84        |                                        | 84  |                                               |                                                                                                                                                                                                                            |                                                                                                          |                |           |                  |
| U 7                       | acore                                |                     | 12                                                                                                             | 7                                                                   | 0-0.25, 0.25-0.5, 0.5-0.75,<br>0.75-1.0, 1.0-1.25, 1.25-1.5,<br>1.5-1.75 | OL-VC-70144, 70145, 70146, 70147, 70147A, 70148, 70149, 70150, 70151,    | 10                         | 84                 | 84        | 84                                     |     | 12                                            | <u>OL-VC-70144</u> , 70145, 70146, 70147, 70147A, 70148, 70149, 70150 -<br>Locations selected to re-sample locations with higher than normal<br>estimated upwelling uncertainty. <u>OL-VC-70151, 70152, 70153, 70154</u> - |                                                                                                          |                |           |                  |
| WS                        | SMU 7<br>Vibracore                   |                     | 12                                                                                                             | 7                                                                   | 2.0-2.5, 3.0-3.5, 4.0-4.5, 5.0-<br>5.5, 6.0-6.5, 7.5-8.0, 9.0-9.5        | 70152, 70153, 70154                                                      |                            | 10                 | 84        | 84                                     |     | 84                                            | 12                                                                                                                                                                                                                         | Locations selected to evaluate whether this area can be capped rath<br>than dredged to cleanup critiera. |                |           |                  |

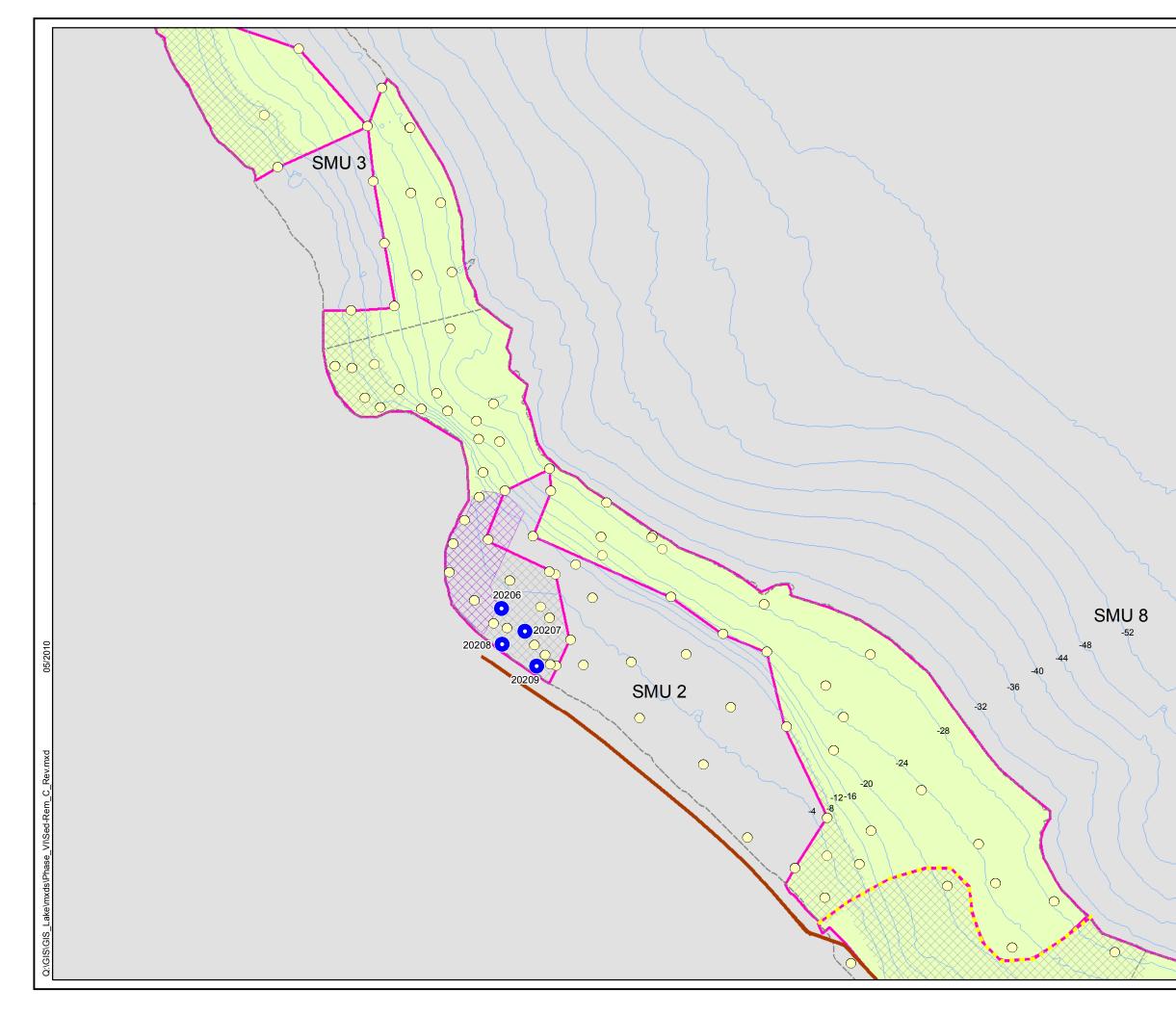
Null fields indicate that parameter was not sampled for.
 Co-located vibracores for field duplicate indicated with an "A".
 Near-shore samples are defined as within 10 ft. of the shoreline

PARSONS

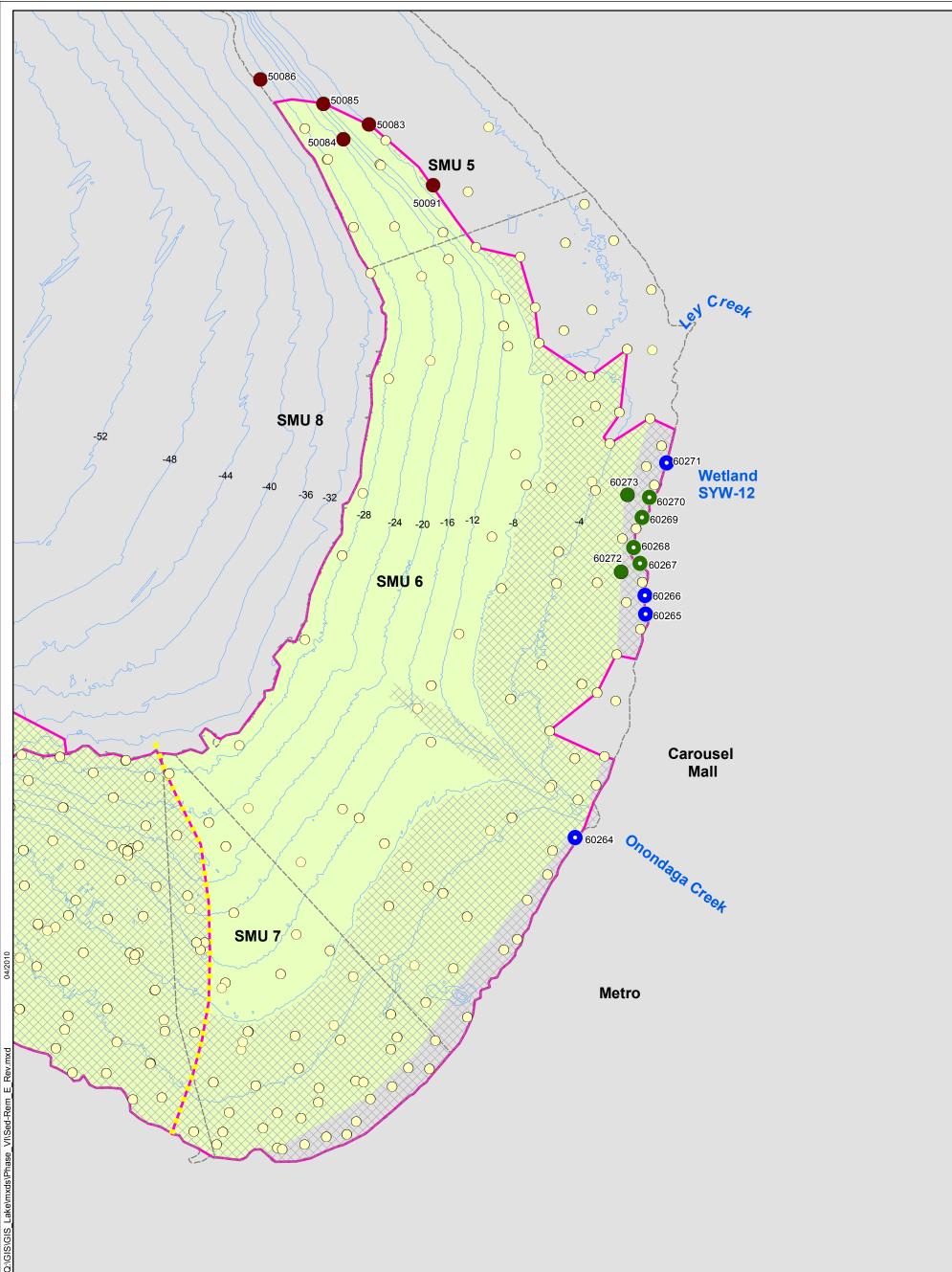

|                       |                   |                                      |            |                        |                        |                                 |                                                                                                                    |                         |         | Water Chen                | ical Analyses |                                           |         | Raw Sedin                 | ment Cher | mical Anal | lyses               |                  |                                                                                                                          |
|-----------------------|-------------------|--------------------------------------|------------|------------------------|------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------|---------|---------------------------|---------------|-------------------------------------------|---------|---------------------------|-----------|------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Des                   | ription           |                                      | Map Symbol | Number of<br>Locations | Number of<br>Intervals | Sampling Intervals (ft)         | Location                                                                                                           | Target<br>Depth<br>(ft) | Mercury | VOCs (CPOIs) <sup>1</sup> | Hq            | DOC                                       | Mercury | VOCs (CPOIs) <sup>1</sup> | Hq        | TOC        | Percent<br>Moisture | Specific Gravity | Basis for Sample                                                                                                         |
|                       | Number of Samples |                                      |            |                        |                        |                                 |                                                                                                                    |                         |         |                           |               | Sample locations selected to evaluate VOC |         |                           |           |            |                     |                  |                                                                                                                          |
| Remediation Area A    | U 4               | Vibracore                            |            | 12                     | 5                      | 2 ft intervals from top of core | OL-VC-40272, 40273,<br>40274, 40725, 40276,<br>40277, 40278, 40308,<br>40309, 40310, 40311, 40312                  | 10                      | 60      | 60                        | 60            | 60                                        | 60      | 60                        | 60        | 60         | 60                  | 60               | concentrations in the area.                                                                                              |
| Remediati             | SMU               | Vibr                                 |            | 8                      | 6                      | 2 ft intervals from top of core | OL-VC-40279, 40280,<br>40281, 40282, 40283,<br>40284, 40285, 40286                                                 | 12                      | 48      | 48                        | 48            | 48                                        | 48      | 48                        | 48        | 48         | 48                  | 48               | Sample locations selected to address<br>nearshore data gaps west of NMC.                                                 |
| n Area B              | J <b>3</b>        | Vibracore                            |            | 3                      | 5                      | 2 ft intervals from top of core | OL-VC-30159, 30162,<br>30164                                                                                       | 10                      | 15      | 15                        | 15            | 15                                        | 15      | 15                        | 15        | 15         | 15                  | 15               | Sample locations selected to increase sample density.                                                                    |
| Remediation Area B    | SMU 3             | Near-shore <sup>2</sup><br>Vibracore | ۵          | 3                      | 5                      | 2 ft intervals from top of core | OL-VC-30160, 30161,<br>30163                                                                                       | 10                      | 15      | 15                        | 15            | 15                                        | 15      | 15                        | 15        | 15         | 15                  | 15               |                                                                                                                          |
| on Area C             | SMU 2             | Near-shore <sup>2</sup><br>Vibracore | ۵          | 4                      | 5                      | 2 ft intervals from top of core | OL-VC-20212, 20213,<br>20214, 20215                                                                                | 10                      | 20      | 20                        | 20            | 20                                        | 20      | 20                        | 20        | 20         | 20                  | 20               | Locations nearshore off DOT turnaround<br>to assess extending cap to shore.                                              |
| Remediation Area C    | SMU 3             | Vibracore                            |            | 5                      | 5                      | 2 ft intervals from top of core | OL-VC-30165, 30166,<br>30167, 30168, 30169                                                                         | 10                      | 25      | 25                        | 25            | 25                                        | 25      | 25                        | 25        | 25         | 25                  | 25               | Sample locations selected to increase<br>sample density.                                                                 |
| Remediation<br>Area D | SMU 1             | Vibracore                            |            | 2                      | 6                      | 2 ft intervals from top of core | OL-VC-10192, 10193                                                                                                 | 12                      | 12      | 12                        | 12            | 12                                        | 12      | 12                        | 12        | 12         | 12                  | 12               | Sample locations selected to facilitate cap design post barrier wall construction.                                       |
| Reme                  | SMU 2             | Vibr                                 |            | 2                      | 6                      | 2 ft intervals from top of core | OL-VC-20216, 20217                                                                                                 | 12                      | 12      | 12                        | 12            | 12                                        | 12      | 12                        | 12        | 12         | 12                  | 12               |                                                                                                                          |
| n Area E              |                   | Vibracore                            |            | 14                     | 5                      | 2 ft intervals from top of core | OL-VC-60314, 60315,<br>60316, 60317, 60318,<br>60319, 60320, 60321,<br>60322, 60323, 60324,<br>60325, 60326, 60327 | 10                      | 70      | 70                        | 70            | 70                                        | 70      | 70                        | 70        | 70         | 70                  | 70               | Sample locations selected to assess<br>napthalene concentrations.                                                        |
| Remediation Area E    | SMU 6             | Near-shore <sup>2</sup><br>Vibracore | ۵          | 2                      | 5                      | 2 ft intervals from top of core | OL-VC-60312, 60313                                                                                                 | 10                      | 10      | 10                        | 10            | 10                                        | 10      | 10                        | 10        | 10         | 10                  | 10               | sample locations selected to assess<br>napthalene concentrations assciated with<br>historical locations 60269 and 60270. |


Note:


1. CPOI list for VOCs are the same compounds as the Phase I PDI (Parsons, 2005)


FIGURES














# **Proposed Phase VI PDI** Sample Locations

- 3 ft. Vibracore
- 10 ft. Nearshore Vibracore O
- 12 ft. Vibracore
- 12 ft. Nearshore Vibracore 0

#### **Historical Sample Locations** (RI to Phase V PDI)

Historical Sediment Location







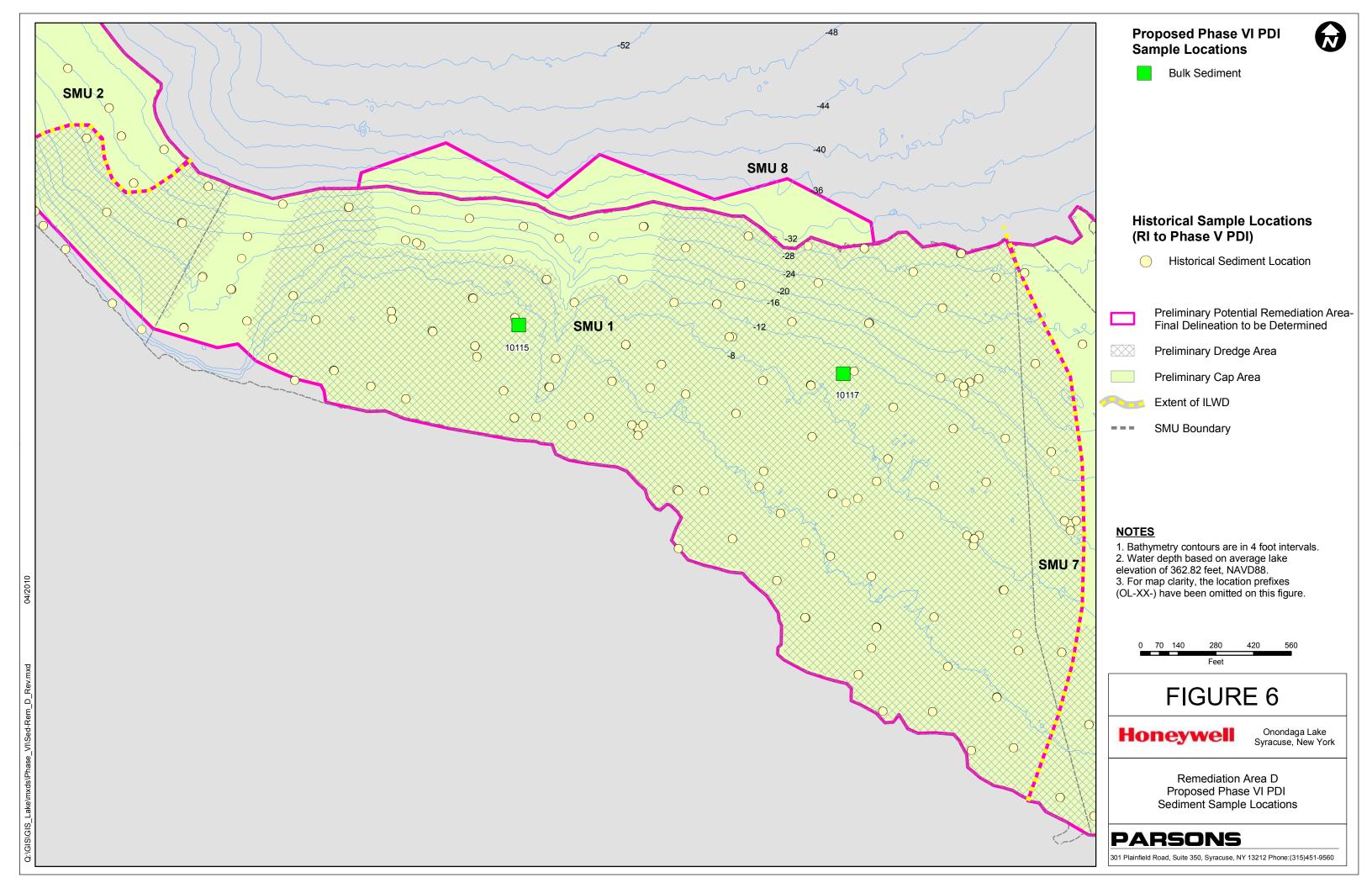
Extent of ILWD

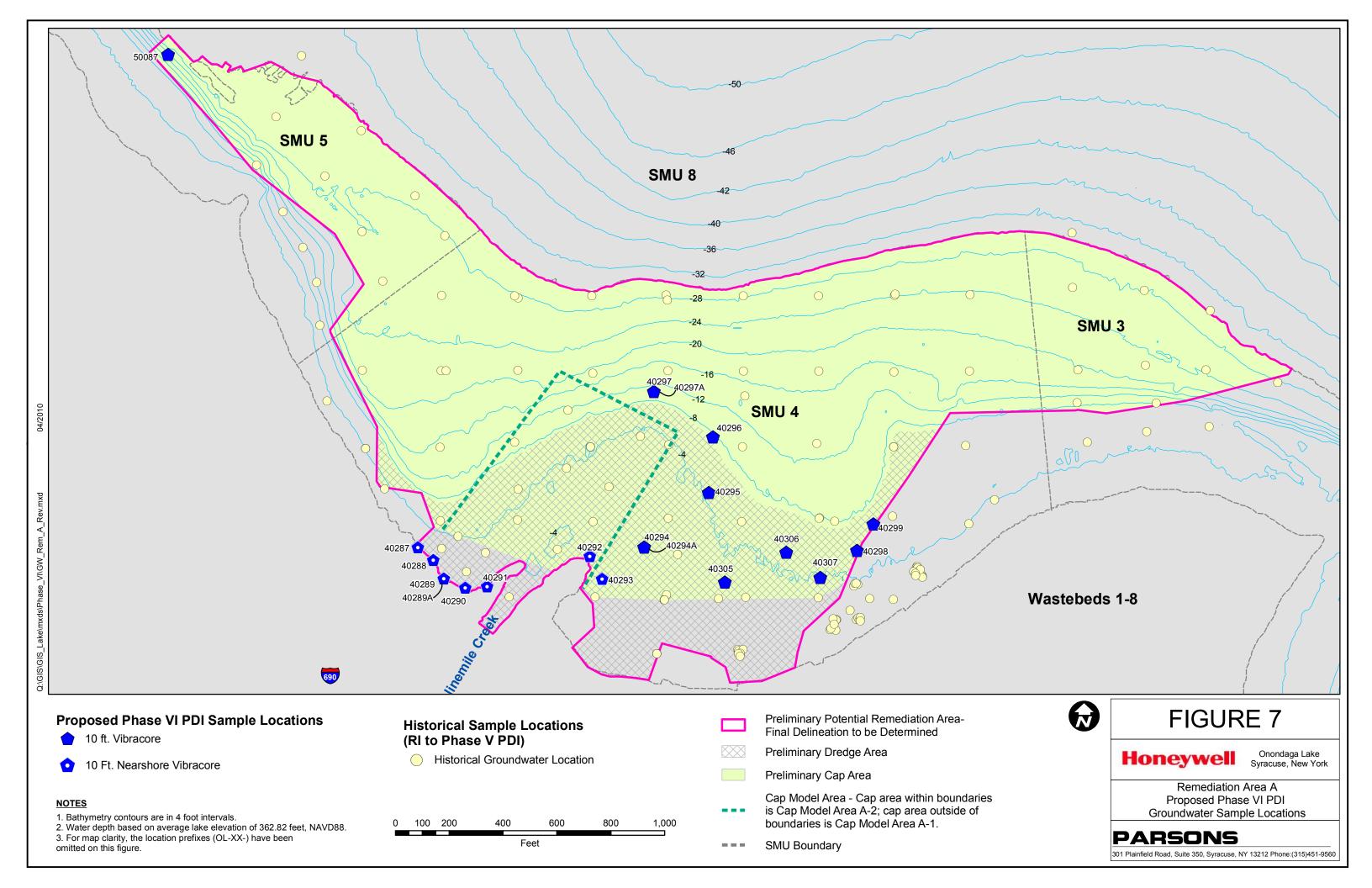
Preliminary Potential Remediation Area-

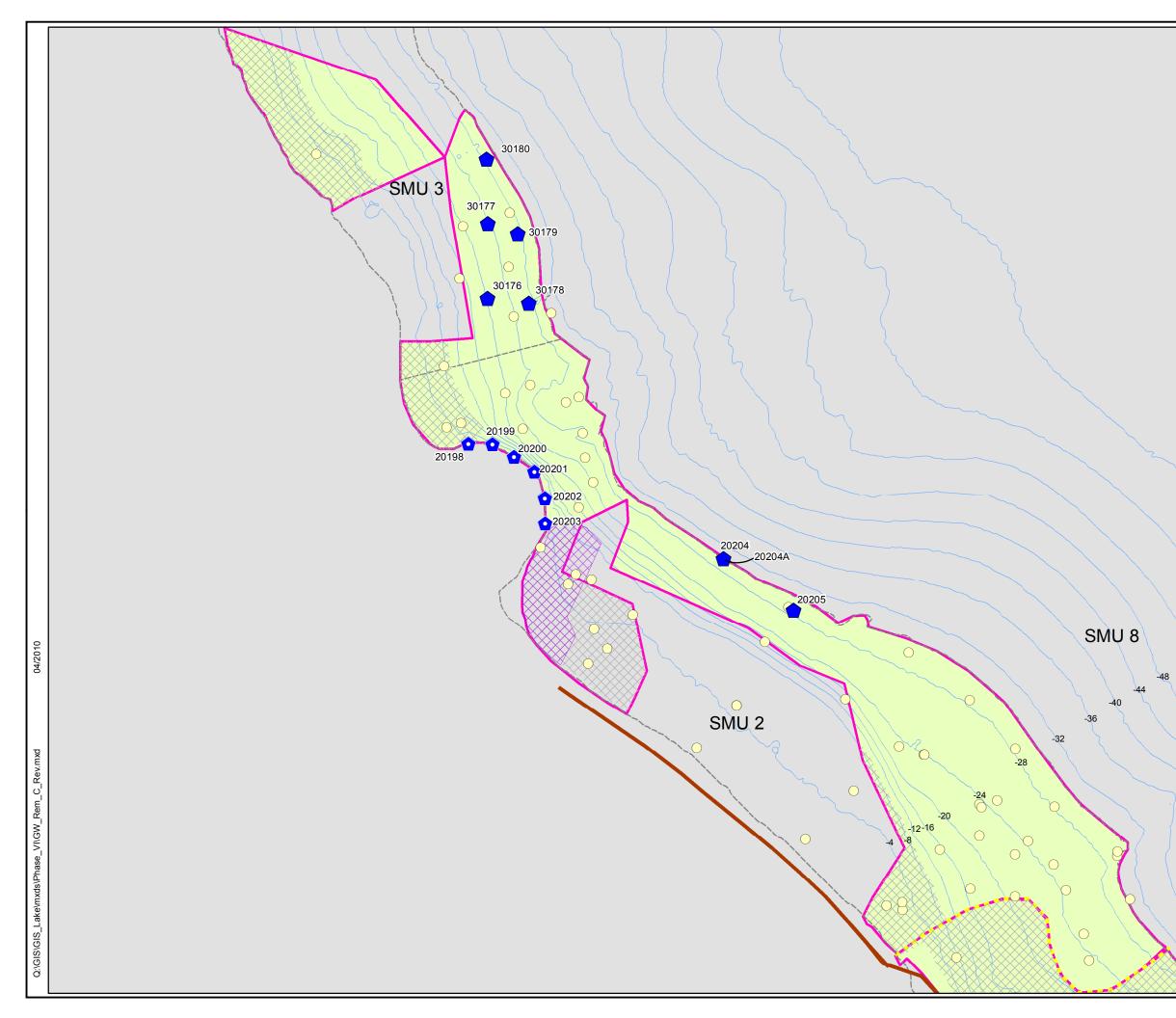
Final Delineation to be Determined

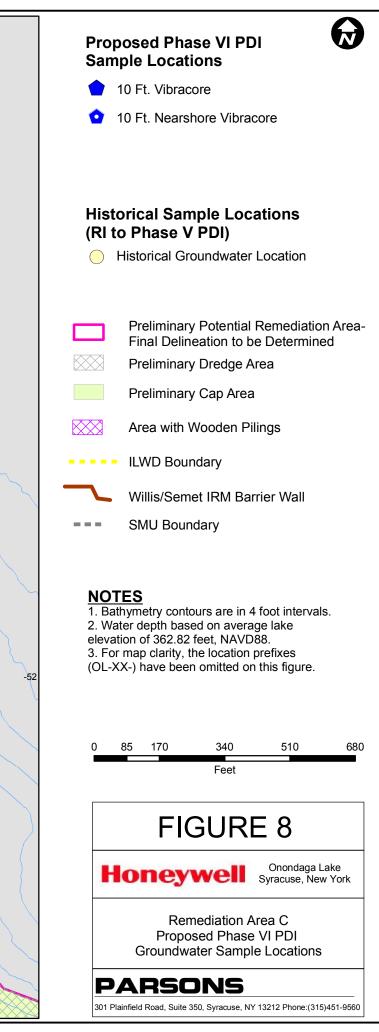
Preliminary Dredge Area

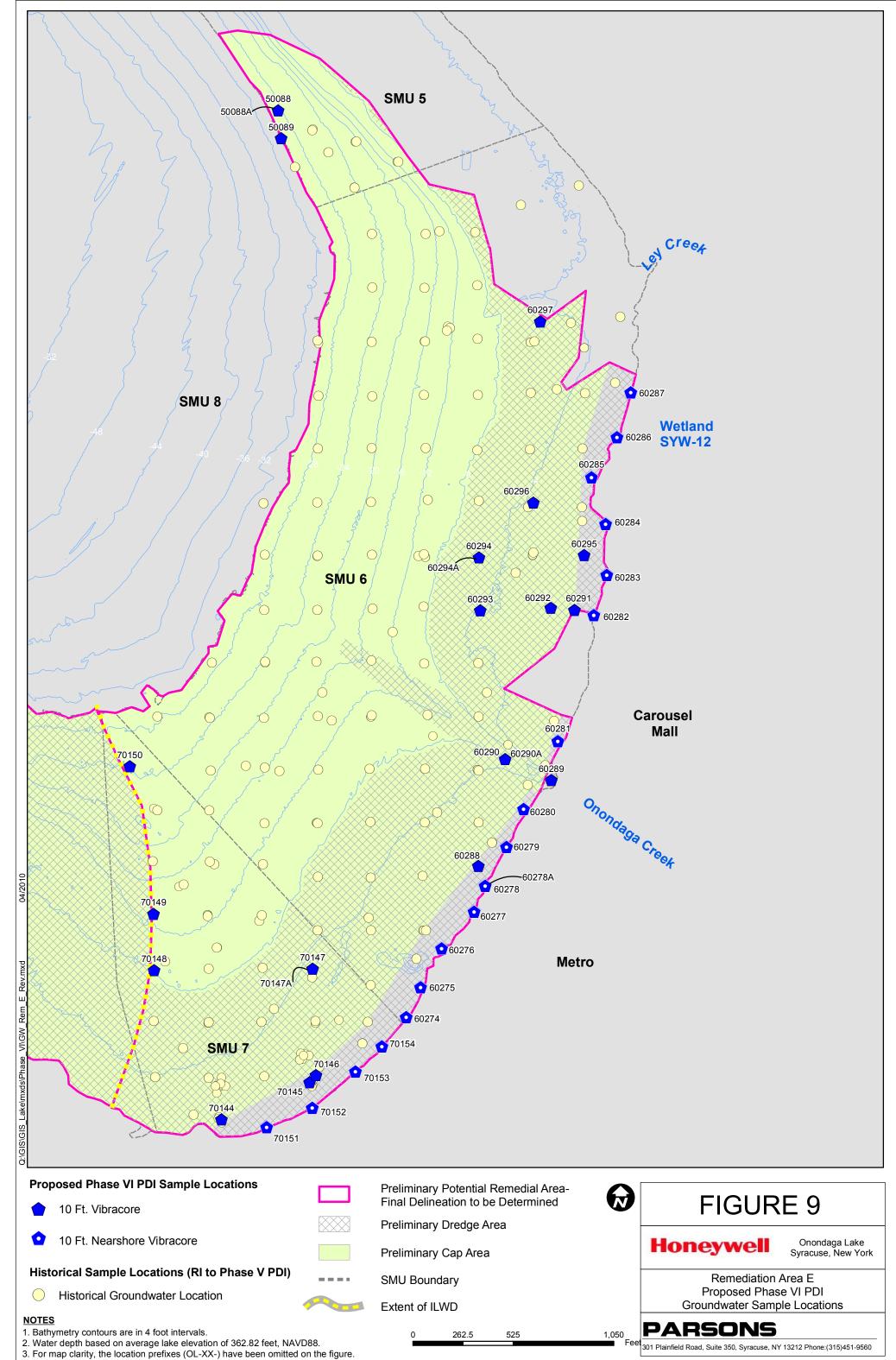
Preliminary Cap Area

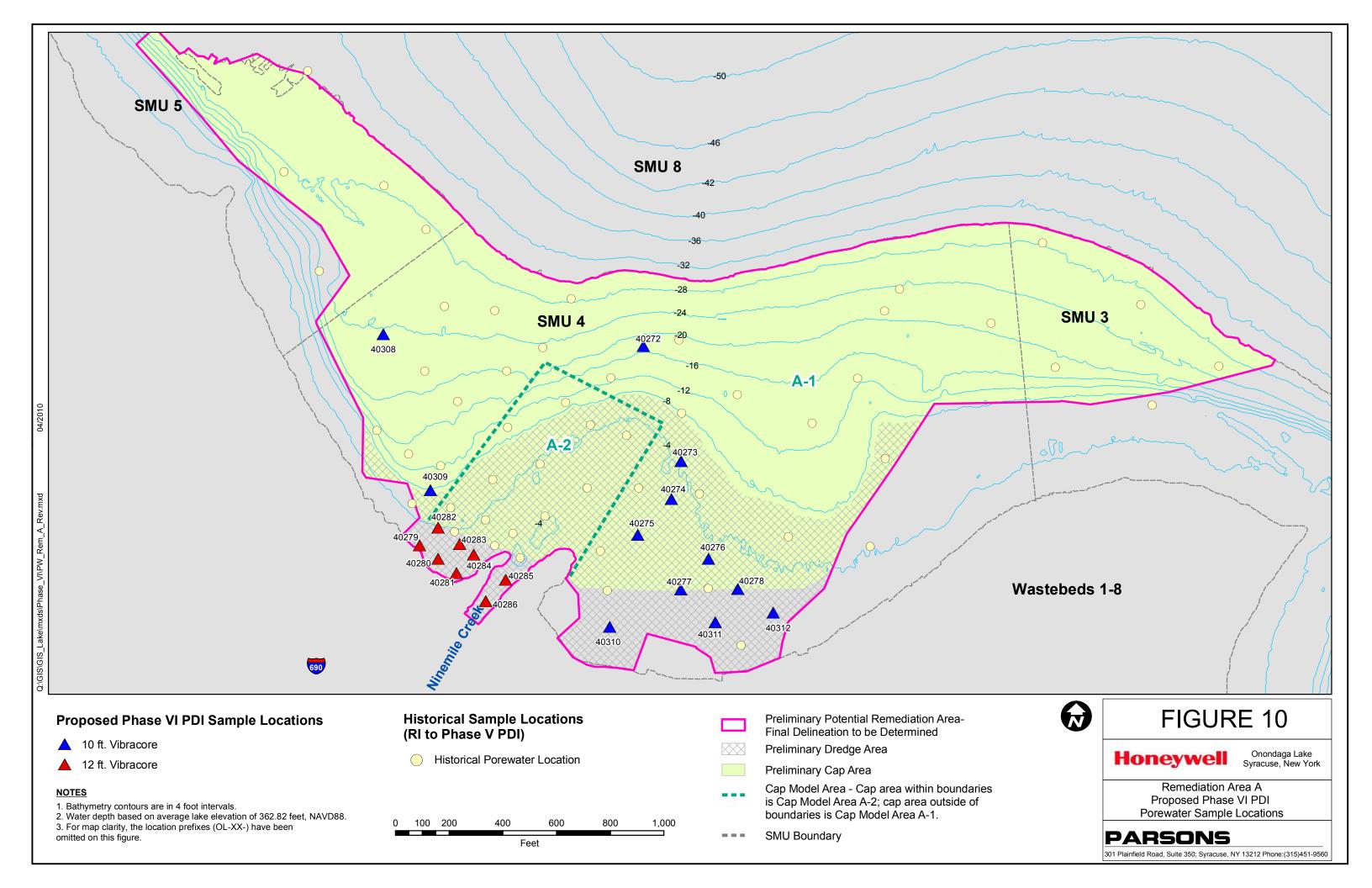

SMU Boundary . . . .

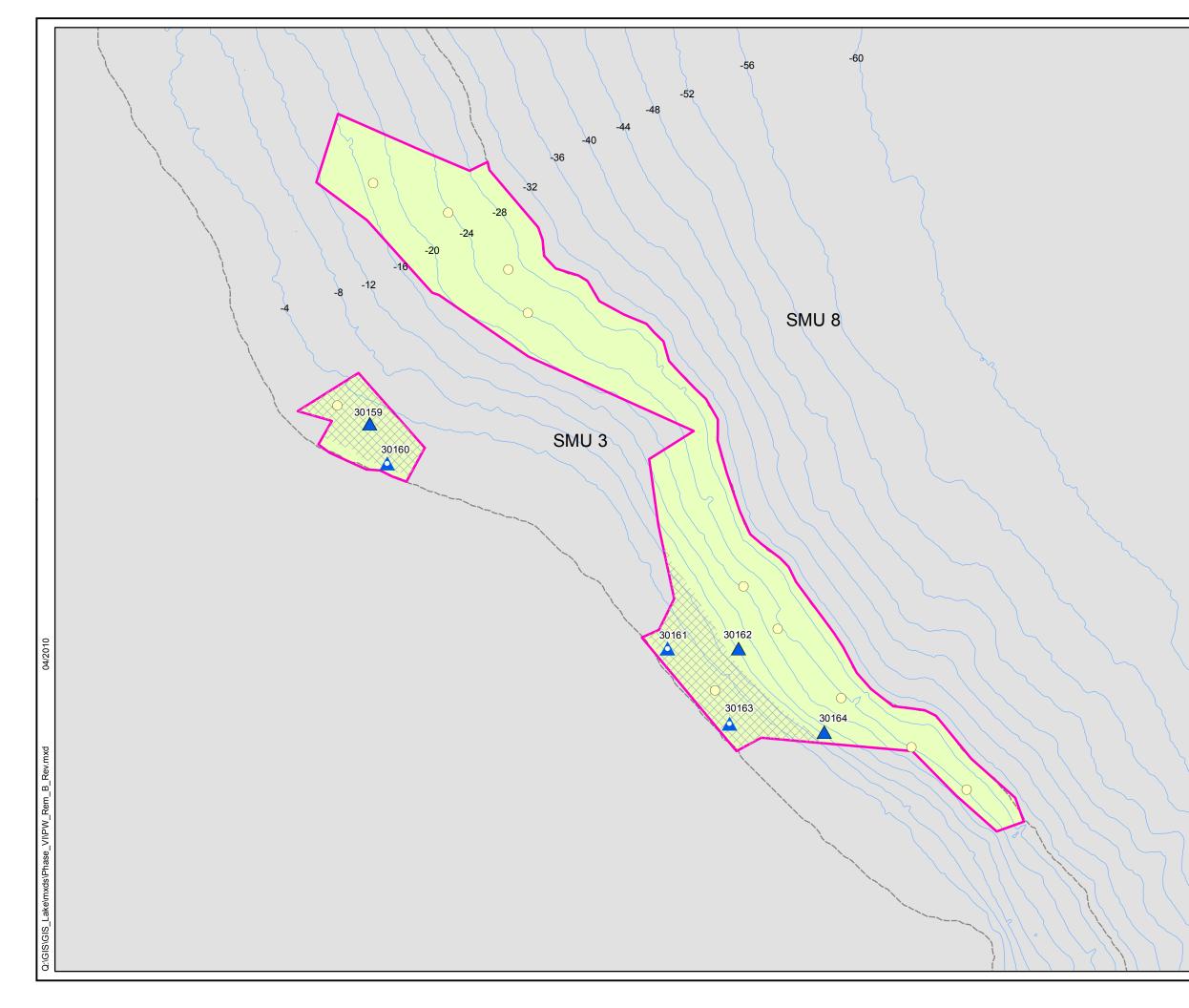

#### NOTES

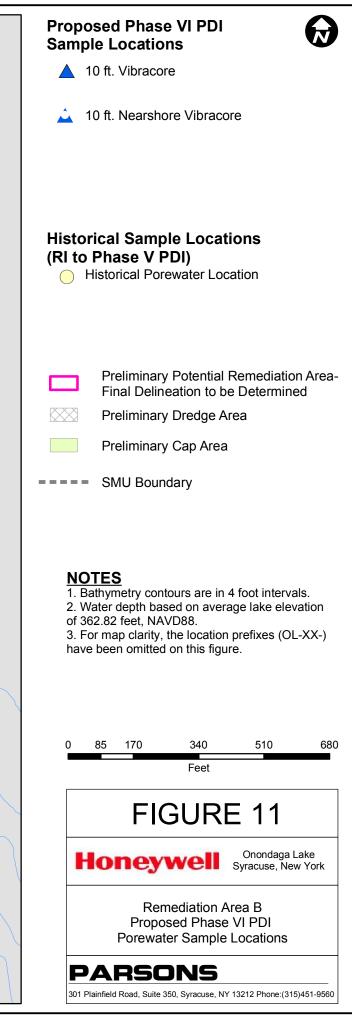

 Bathymetry contours are in 4 foot intervals.
 Water depth based on average lake elevation of 362.82 feet, NAVD88.
 For map clarity, the location prefixes (OL-XX-) have been omitted on this figure.

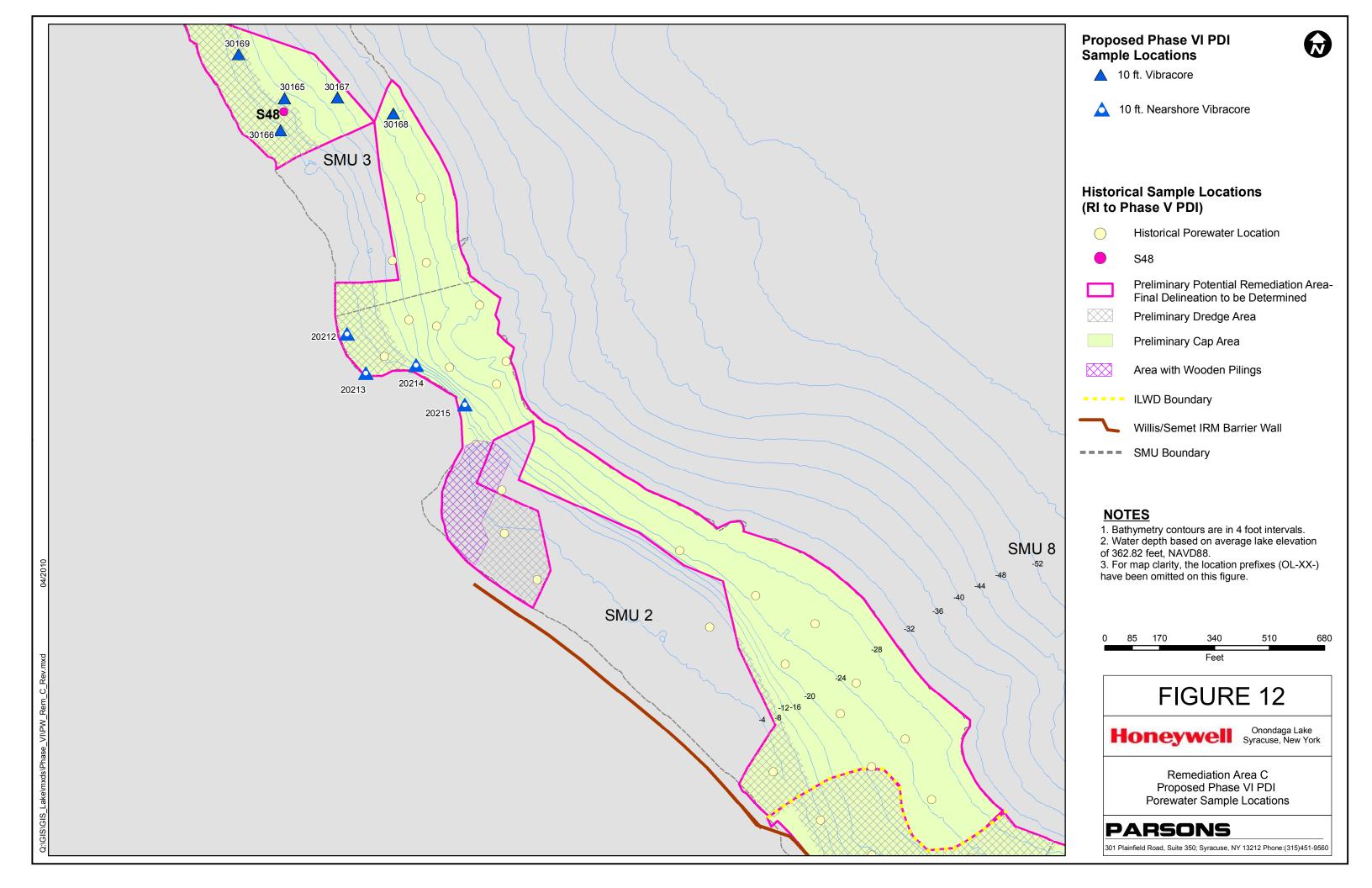

| 0 100 200 | 400 600                                  | 800 1    | ,000<br><b>_</b> Feet     |
|-----------|------------------------------------------|----------|---------------------------|
| F         | FIGUF                                    | RE 5     |                           |
| Hone      | ywell                                    |          | daga Lake<br>se, New York |
| Pro       | Remediation<br>oposed Phas<br>ment Sampl | se VI PD |                           |
| PARS      | 50NS                                     |          |                           |

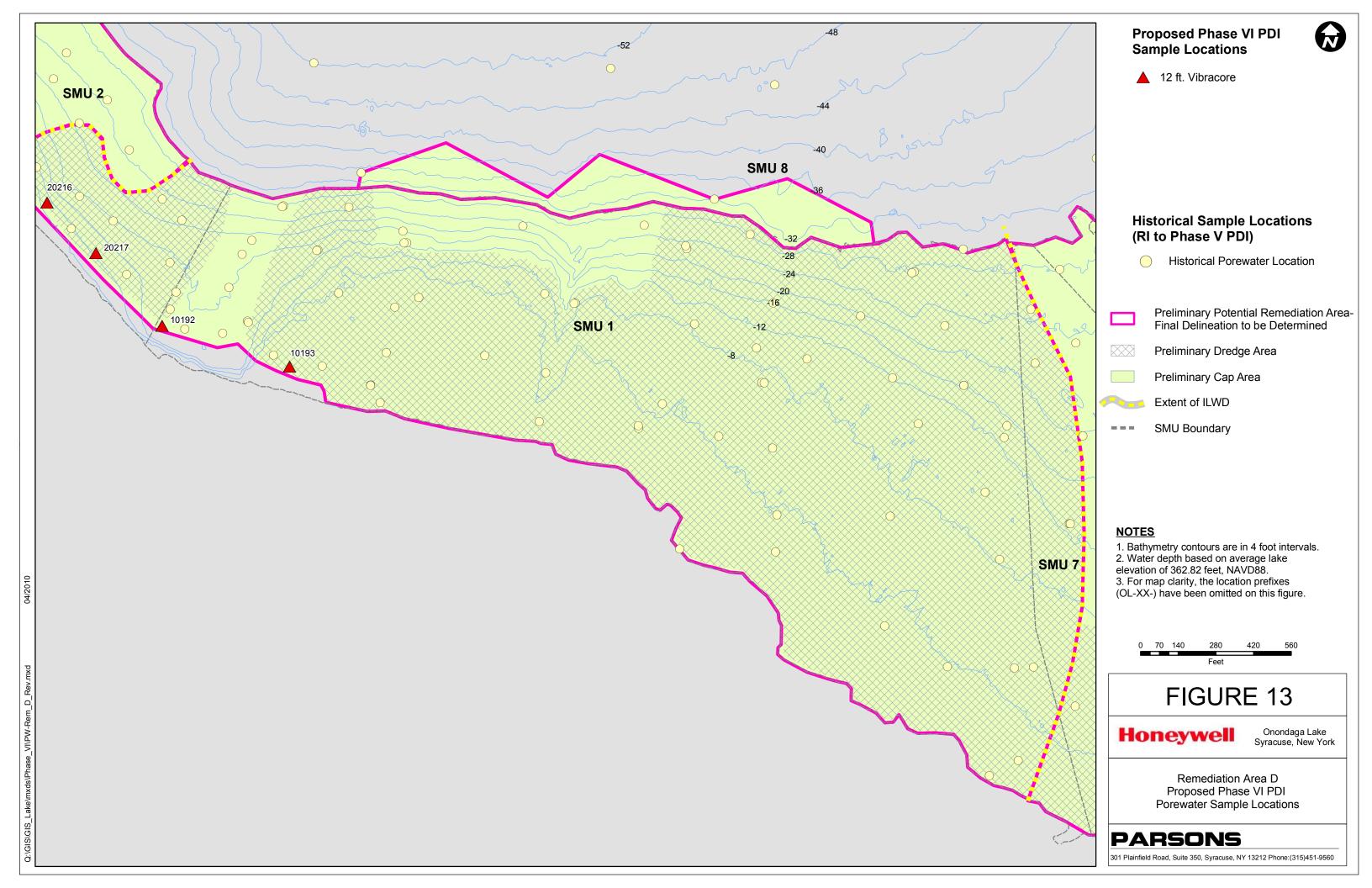

301 Plainfield Road, Suite 350, Syracuse, NY 13212 Phone:(315)451-9560

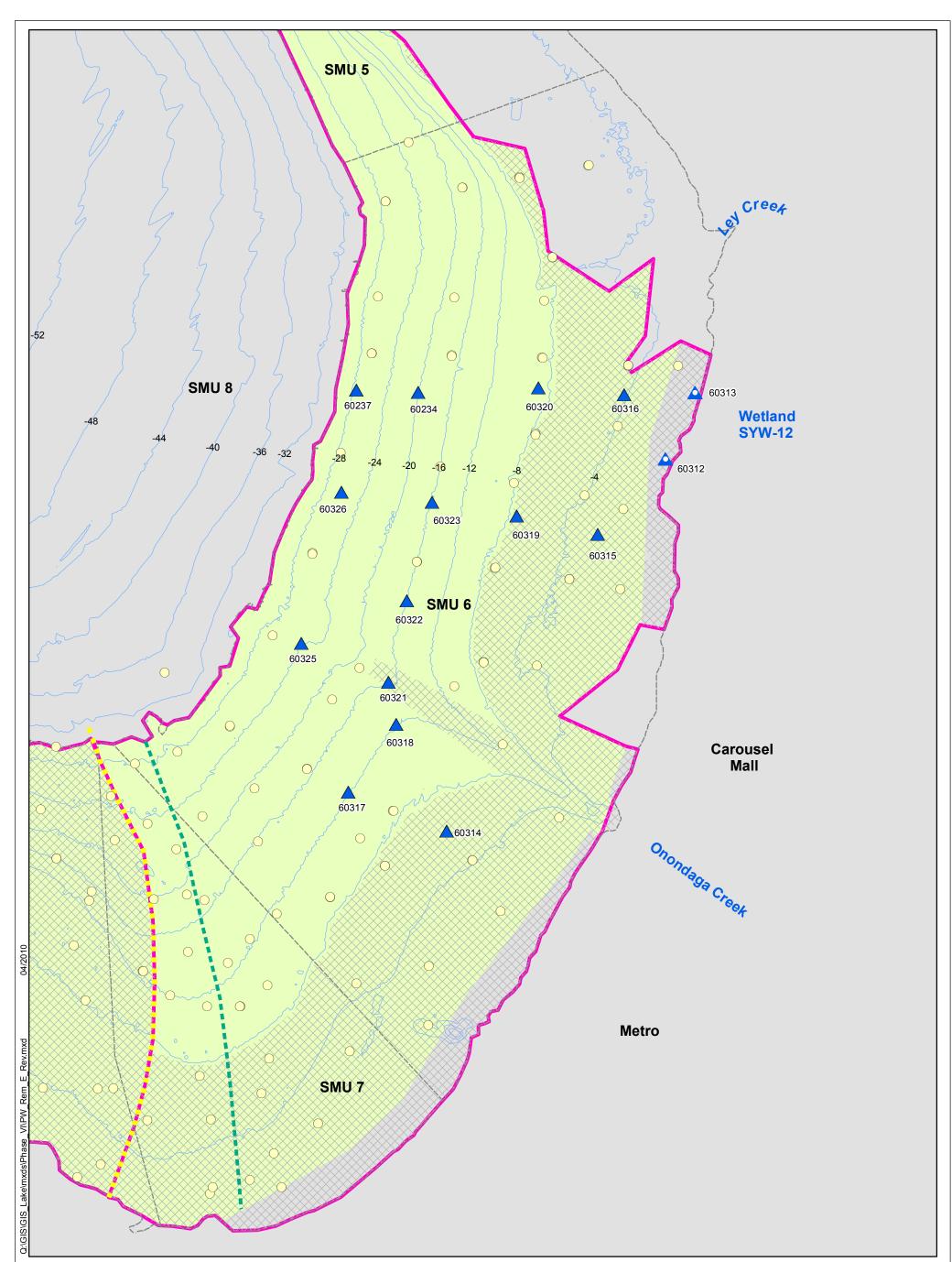








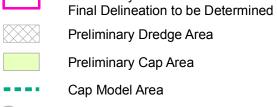





## **Phase VI PDI Proposed Sample Locations**

- 10 ft. Vibracore
- 10 ft. Nearshore Vibracore

### **Historical Sample Locations** (RI to Phase V PDI)

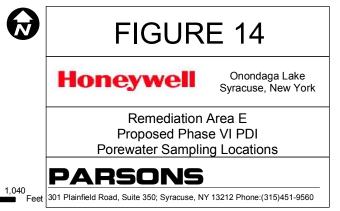



Historical Porewater Location

#### NOTES

1. Bathymetry contours are in 4 foot intervals.

2. Water depth based on average lake elevation of 362.82 feet, NAVD88.






SMU Boundary



Preliminary Potential Remediation Area-



# **APPENDIX** A

# **QUALITY ASSURANCE PROJECT PLAN MODIFICATION**

#### **MEMORANDUM**

May 12, 2010

To:Tom AbramsFrom:Maryanne KosciewiczSubject:Updates/Modifications to the Onondaga Lake Quality Assurance Project Plan for<br/>the upcoming 2010 field work.

Modifications to the Parsons Appendix B Onondaga Lake Pre-Design Investigation (PDI) Quality Assurance Project Plan (QAPP), September 2005 have been made to reflect current PDI activities at the Onondaga Lake Site. The following modifications are presented:

#### Subsection B2.1.3: Parsons

Parsons is providing the management, technical staff, and subcontractor support to execute this project. Mr. Edward Glaza, PE, is the technical manager for this project. Mr. Glaza is responsible for technical review, identifying design data needs and technical management of specialty subcontractors conducting studies and design subcontractors.

Mr. Tom Abrams is the project manager and assists Mr. Glaza. He is responsible to Honeywell and Parsons' management to see that the project objectives are met. He will maintain the project schedule, keep the project within budget, and monitor the technical adequacy of the work performed. He will also be the primary point of contact for Honeywell on technical, schedule, and contractual issues.

Ms. Maryanne Kosciewicz is the quality assurance officer (QAO) and will review data quality objectives, set assessment criteria, and conduct audits to evaluate compliance. She is responsible to see that data comply with this QAPP and to oversee data verification and validation. She will routinely monitor the laboratory's progress and maintain the QAPP.

Ms. Lorraine Weber is the database manager (DBM) and will be the point of contact for laboratory and project personnel with regard to database issues and data outputs. She will be responsible for establishing and maintaining the project database, as well as for performing quality assurance/quality control (QA/QC) procedures and ensuring the integrity of the project database.

Ms. Laura Drachenberg is the technical specialist and is responsible for establishing and maintaining the project database as well as ensuring the integrity of the project database.

#### Subsection B2.1.4 Analytical Services

Honeywell-approved analytical laboratory (or laboratories) will analyze environmental samples collected at the Onondaga Lake Site. Laboratory operations will be conducted under the supervision of a general manager or laboratory director and a quality assurance manager (QAM). A project manager and alternate will be assigned to each project. The project manager will be the primary point of contact and will be responsible for coordination and quality of all laboratory activities associated with the project. The laboratory's project manager will manage project sample receipt, analysis scheduling, and data reporting. In case of temporary absence, the direct supervisor will assume the responsibilities of the absent employee or delegate the responsibility to qualified personnel. Sample management staff is responsible for receiving, logging, and maintaining internal custody of samples during the sample's residence in the laboratory. In addition, the laboratory will ensure that project analytical requirements are met; monitor project analytical compliance and notify Parsons immediately if conflict or discrepancies arise; initiate and implement appropriate corrective actions; ensure adequate quality review of deliverables prior to release; and participate in weekly coordination meetings with Parsons.

#### FIGURE A1 – PROJECT ORGANIZATION

Figure A1 Project Organization (attached) supersedes Figure B2.1.

#### FIGURE A2 – LABORATORY ORGANIZATION

Figure A2 Laboratory Organization (attached) supersedes Figure B2.2.

#### KEY PROJECT CONTACTS

Key Project Contacts presented below supersedes Tables B2.1 and B2.2.

| Name                | Project Role              | Affiliation | Telephone<br>Number | Fax Number     | E-mail Address                  |
|---------------------|---------------------------|-------------|---------------------|----------------|---------------------------------|
| Ed Glaza            | Technical Manager         | Parsons     | (315) 451-9560      | (315) 451-9570 | Edward.Glaza@parsons.com        |
| Tom Abrams          | Project Manager           | Parsons     | (315) 451-9560      | (315) 451-9570 | Tom.Abrams@parsons.com          |
| Maryanne Kosciewicz | Quality Assurance Officer | Parsons     | (315) 451-9560      | (315) 451-9570 | Maryanne.Kosciewicz@parsons.com |
| Lorraine Weber      | Database Manager          | Parsons     | (315) 451-9560      | (315) 451-9570 | Lorraine.Weber@parsons.com      |
| Laura Drachenberg   | Technical Specialist      | Parsons     | (315) 451-9560      | (315) 451-9570 | Laura.Drachenberg@parsons.com   |
| Sara Weishaupt      | Field Team Leader         | Parsons     | (315) 451-9560      | (315) 451-9570 | Sara.Weishaupt@parsons.com      |

#### **KEY PROJECT CONTACTS**

#### Accutest Laboratories Personnel for Lake Onondaga Projects

| Name          | Title                        | Project Role                  | Phone Number         | Fax Number     | E-Mail               |
|---------------|------------------------------|-------------------------------|----------------------|----------------|----------------------|
| Stephen Grant | VP, National Accounts        | Overall Account Management    | (732) 329-2491       | (732) 329-3499 | steveg@accutest.com  |
| Diane Komar   | Project Manager              | Daily Project Coordination    | (732) 329-2617       | (732) 329-3499 | dianek@accutest.com  |
| David Speis   | VP, Laboratory Director      | Overall Laboratory Management | (732) 329-0200, x242 | (732) 329-3499 | davids@accutest.com  |
| Phil Worby    | Quality Assurance Director   | Laboratory Quality Assurance  | (732) 329-0200, x210 | (732) 329-3499 | philw@accutest.com   |
| Nancy Cole    | Inorganics Manager           | Inorganics Department         | (732) 329-0200, x301 | (732) 329-3499 | nancyc@accutest.com  |
| Wen-Wen Chi   | Organics Manager             | Organics Department           | (732) 329-0200, x321 | (732) 329-3499 | wenwenc@accutest.com |
| James Murphy  | Syracuse Service Center Mgr. | Courier Service               | (315) 329-4763       | TBD            | jamesm@accutest.com  |

## TABLE A1

• Table A1 'Summary of DQOs for Analytical and Testing Parameters for Sediment, Porewater, Groundwater and Other Water Samples' supersedes Table B3.1

## TABLES A2A, A2B, A2C, and A2D

- Table A2A Quality Control Criteria and Reporting Limits for Sediment Samples
- Table A2B Quality Control Criteria and Reporting Limits for Porewater Samples
- Table A2C Quality Control Criteria and Reporting Limits for Groundwater Samples
- Table A2D Quality Control Criteria and Reporting Limits for Other Water Samples supersede Tables B3.2, B3.3A, B3.3B, B7.1A, B7.4, and B7.5

## **TABLES A3A and A3B**

- Table A3A Containerization, Preservation, and Holding Times for Sediment samples
- Table A3B Containerization, Preservation, and Holding Times for Water samples supersede Table B4.1

TABLES

## TABLE A1

| PARAMETER                  | LEVEL I | LEVEL II | LEVEL III | LEVEL IV |
|----------------------------|---------|----------|-----------|----------|
| Total Mercury              |         |          |           | Х        |
| CPOI VOCs                  |         |          |           | Х        |
| Benzene                    |         |          |           |          |
| Toluene                    |         |          |           |          |
| Chlorobenzene              |         |          |           |          |
| Ethylbenzene               |         |          |           |          |
| m,p-xylene                 |         |          |           |          |
| o-xylene                   |         |          |           |          |
| Total Xylenes              |         |          |           |          |
| 1,2-Dichlorobenzene        |         |          |           |          |
| 1,3-Dichlorobenzene        |         |          |           |          |
| 1,4-Dichlorobenzene        |         |          |           |          |
| 1,2,3-Trichlorobenzene     |         |          |           |          |
| 1,2,4-Trichlorobenzene     |         |          |           |          |
| 1,3,5-Trichlorobenzene     |         |          |           |          |
| Naphthalene                |         |          |           |          |
| CPOI SVOCs (Phenol + PAHs) |         |          |           | Х        |
| Phenol                     |         |          |           |          |
| Acenaphthene               |         |          |           |          |
| Acenaphthylene             |         |          |           |          |
| Anthracene                 |         |          |           |          |
| Benzo(a)anthracene         |         |          |           |          |
| Benzo(a)pyrene             |         |          |           |          |
| Benzo(b)fluoranthene       |         |          |           |          |
| Benzo(g,h,i)perylene       |         |          |           |          |
| Benzo(k)fluoranthene       |         |          |           |          |
| Chrysene                   |         |          |           |          |
| Dibenz(a,h)anthracene      |         |          |           |          |
| Fluoranthene               |         |          |           |          |
| Fluorene                   |         |          |           |          |
| Indeno(1,2,3-cd)pyrene     |         |          |           |          |
| Phenanthrene               |         |          |           |          |
| Pyrene                     |         |          |           |          |
| PCBs                       |         |          |           | Х        |
| Aroclor-1016               |         |          |           |          |
| Aroclor-1221               |         |          |           |          |
| Aroclor-1232               |         |          |           |          |
| Aroclor-1242               |         |          |           |          |
| Aroclor-1248               |         |          |           |          |
| Aroclor-1254               |         |          |           |          |
| Aroclor-1260               |         |          |           |          |
| Aroclor-1268               |         |          |           |          |
| Total PCBs                 |         |          |           |          |

## SUMMARY OF DQOs FOR ANALYTICAL AND TESTING PARAMETERS FOR SEDIMENT, POREWATER, GROUNDWATER, AND OTHER WATER SAMPLES

## TABLE A1

| PARAMETER                                     | LEVEL I | LEVEL II | LEVEL III | LEVEL IV |
|-----------------------------------------------|---------|----------|-----------|----------|
| Total Organic Carbon (TOC)                    |         |          |           | Х        |
| Dissolved Organic Carbon (DOC)                |         |          |           | Х        |
| pH                                            |         |          | Х         |          |
| Molybdenum                                    |         |          |           | Х        |
| Cations                                       |         |          |           | Х        |
| Calcium                                       |         |          |           |          |
| Iron                                          |         |          |           |          |
| Magnesium                                     |         |          |           |          |
| Manganese                                     |         |          |           |          |
| Potassium                                     |         |          |           |          |
| Sodium                                        |         |          |           |          |
| Anions                                        |         |          |           | Х        |
| Chloride                                      |         |          |           |          |
| Nitrate                                       |         |          |           |          |
| o-Phosphate                                   |         |          |           |          |
| Sulfate                                       |         |          |           |          |
| Specific Conductance                          |         |          | Х         |          |
| Salinity                                      |         | Х        |           |          |
| Ammonia Nitrogen                              |         |          |           | Х        |
| Alkalinity                                    |         |          |           | Х        |
| Sulfide                                       |         |          |           | Х        |
| Fluoride                                      |         |          |           | Х        |
| Nitrite                                       |         |          |           | Х        |
| Nitrate-Nitrite                               |         |          |           | Х        |
| Hardness                                      |         |          |           | Х        |
| Chemical Oxygen Demand (COD)                  |         |          |           | Х        |
| Biochemical Oxygen Demand (BOD <sub>5</sub> ) |         |          |           | Х        |
| Total Suspended Solids (TSS)                  |         |          | Х         |          |
| Total Dissolved Solids (TDS)                  |         |          | Х         |          |
| Grain Size                                    |         |          | Х         |          |
| Atterberg Limits                              |         |          | Х         |          |
| Specific Gravity                              |         |          | Х         |          |
| Moisture Content                              |         |          |           | Х        |
| Carbonate Content                             |         |          | Х         |          |
| Bulk Density                                  |         |          | Х         |          |
| UU Triaxial Strength                          |         |          | Х         |          |
| CU Triaxial Strength                          |         |          | Х         |          |
| Consolidation                                 |         |          | Х         |          |

## SUMMARY OF DQOs FOR ANALYTICAL AND TESTING PARAMETERS FOR SEDIMENT, POREWATER, GROUNDWATER, AND OTHER WATER SAMPLES

NOTE: Suite of analytical parameters will vary by sample type and sample location.

#### TABLE A2A

| ANALYTICAL METHOD         | PARAMETER                  | PRECISION (RPD) | LCS ACCURACY (%R) | MS/MSD ACCURACY (%R) | RL    | UNITS | MDL   |
|---------------------------|----------------------------|-----------------|-------------------|----------------------|-------|-------|-------|
| SW-846 7471A              | Total Mercury              | 20              | 80-120            | 75-125               | 0.033 | mg/kg | 0.012 |
| SW-846 8260B              | CPOI VOCs                  |                 |                   |                      |       |       |       |
|                           | Benzene                    | 24              | 78-120            | 41-136               | 1     | µg/kg | 0.34  |
|                           | Toluene                    | 26              | 79-122            | 32-145               | 1     | µg/kg | 0.29  |
|                           | Chlorobenzene              | 26              | 80-117            | 33-140               | 5     | µg/kg | 0.34  |
|                           | Ethylbenzene               | 27              | 81-121            | 28-147               | 1     | µg/kg | 0.37  |
|                           | m,p-xylene                 | 29              | 79-121            | 22-150               | 2     | µg/kg | 0.47  |
|                           | o-xylene                   | 27              | 79-122            | 26-151               | 1     | µg/kg | 0.47  |
|                           | Total Xylenes              | 28              | 80-121            | 24-150               | 2     | µg/kg | 0.47  |
|                           | 1,2-Dichlorobenzene        | 29              | 77-117            | 20-146               | 5     | µg/kg | 0.27  |
|                           | 1,3-Dichlorobenzene        | 30              | 77-116            | 19-147               | 5     | µg/kg | 0.28  |
|                           | 1,4-Dichlorobenzene        | 30              | 76-113            | 19-143               | 5     | µg/kg | 0.34  |
|                           | 1,2,3-Trichlorobenzene     | 35              | 54-133            | 9-150                | 5     | µg/kg | 1.6   |
|                           | 1,2,4-Trichlorobenzene     | 34              | 67-127            | 10-155               | 5     | µg/kg | 0.35  |
|                           | 1,3,5-Trichlorobenzene     | 30              | 70-130            | 60-140               | 5     | µg/kg | N/A   |
|                           | Naphthalene                | 36              | 59-131            | 10-157               | 5     | µg/kg | 0.74  |
| SW-846 8270C or 8270C SIM | CPOI SVOCs (Phenol + PAHs) |                 |                   |                      |       |       |       |
|                           | Phenol                     | 24              | 27-107            | 27-107               | 33    | µg/kg | 3.4   |
|                           | Acenaphthene               | 28              | 43-109            | 39-116               | 3.3   | µg/kg | 0.45  |
|                           | Acenaphthylene             | 28              | 36-102            | 9-134                | 3.3   | µg/kg | 0.97  |
|                           | Anthracene                 | 24              | 38-120            | 36-122               | 3.3   | µg/kg | 0.34  |
|                           | Benzo(a)anthracene         | 34              | 29-125            | 30-133               | 3.3   | µg/kg | 0.44  |
|                           | Benzo(a)pyrene             | 31              | 32-120            | 33-116               | 3.3   | µg/kg | 0.5   |
|                           | Benzo(b)fluoranthene       | 32              | 31-138            | 17-153               | 3.3   | µg/kg | 1.6   |
|                           | Benzo(g,h,i)perylene       | 36              | 32-115            | 33-125               | 3.3   | µg/kg | 1.3   |
|                           | Benzo(k)fluoranthene       | 34              | 38-132            | 37-120               | 3.3   | µg/kg | 0.8   |
|                           | Chrysene                   | 25              | 50-112            | 32-128               | 3.3   | µg/kg | 0.45  |
|                           | Dibenz(a,h)anthracene      | 36              | 38-119            | 34-131               | 3.3   | µg/kg | 0.96  |
|                           | Fluoranthene               | 27              | 45-105            | 32-122               | 3.3   | µg/kg | 0.33  |
|                           | Fluorene                   | 26              | 45-104            | 28-124               | 3.3   | µg/kg | 0.41  |
|                           | Indeno(1,2,3-cd)pyrene     | 36              | 37-116            | 29-132               | 3.3   | µg/kg | 1.3   |
|                           | Phenanthrene               | 30              | 37-113            | 21-142               | 3.3   | µg/kg | 0.52  |
|                           | Pyrene                     | 27              | 42-114            | 28-134               | 3.3   | µg/kg | 0.38  |

#### QUALITY CONTROL CRITERIA AND REPORTING LIMITS FOR SEDIMENT SAMPLES

#### TABLE A2A

| ANALYTICAL METHOD       | PARAMETER                         | PRECISION (RPD) | LCS ACCURACY (%R) | MS/MSD ACCURACY (%R) | RL  | UNITS | MDL  |
|-------------------------|-----------------------------------|-----------------|-------------------|----------------------|-----|-------|------|
| SW-846 8082             | PCBs                              |                 |                   |                      |     |       |      |
|                         | Aroclor-1016                      | 42              | 80-158            | 43-173               | 34  | µg/kg | 12   |
|                         | Aroclor-1221                      | 30              | 70-130            | 70-130               | 34  | µg/kg | 22   |
|                         | Aroclor-1232                      | 30              | 70-130            | 70-130               | 34  | µg/kg | 11   |
|                         | Aroclor-1242                      | 30              | 70-130            | 70-130               | 34  | µg/kg | 12   |
|                         | Aroclor-1248                      | 30              | 70-130            | 70-130               | 34  | µg/kg | 6.6  |
|                         | Aroclor-1254                      | 24              | 70-130            | 70-130               | 34  | µg/kg | 8.4  |
|                         | Aroclor-1260                      | 41              | 70-145            | 34-164               | 34  | µg/kg | 13   |
|                         | Aroclor-1268                      | 30              | 70-130            | 70-130               | 34  | µg/kg | 7.6  |
|                         | Total PCBs                        | N/A             | N/A               | N/A                  | 34  | µg/kg | N/A  |
| EPA Approved Lloyd Kahn | <b>Total Organic Carbon (TOC)</b> | 32              | 80-120            | 51-132               | 500 | mg/kg | 363  |
| SW-846 9045C            | рН                                | 10              | N/A               | N/A                  | N/A | units | N/A  |
| SW-846 6010B            | Molybdenum                        | 20              | 80-120            | 75-125               | 2   | mg/kg | 0.24 |
| ASTM 1429               | Specific Gravity                  | 11              | N/A               | N/A                  | N/A | N/A   | N/A  |
| SM 2540G                | Moisture Content as % Solids      | N/A             | N/A               | N/A                  | N/A | %     | N/A  |

#### QUALITY CONTROL CRITERIA AND REPORTING LIMITS FOR SEDIMENT SAMPLES

NOTES: RPD - Relative Percent Difference.

%R - Percent Recovery.

RL - Reporting Limit. RLs are less than applicable PECs and are wet weight basis.

Individual sample RLs will be adjusted accordingly based on moisture and aliquots used for analysis.

MDL - Method Detection Limit. The laboratory will report nondetects at the MDLs for metals (mercury and molybdenum). MS/MSD - Matrix Spike/Matrix Spike Duplicate.

LCS - Laboratory Control Sample.

#### TABLE A2B

#### QUALITY CONTROL CRITERIA AND REPORTING LIMITS FOR POREWATER SAMPLES

| ANALYTICAL METHOD | PARAMETER                      | PRECISION (RPD) | LCS ACCURACY (%R) | MS/MSD ACCURACY (%R) | RL  | UNITS | MDL   |
|-------------------|--------------------------------|-----------------|-------------------|----------------------|-----|-------|-------|
| SW-846 7470A      | Total Mercury                  | 20              | 80-120            | 75-125               | 0.2 | μg/L  | 0.082 |
| SW-846 8260B      | CPOI VOCs                      |                 |                   |                      |     |       |       |
|                   | Benzene                        | 13              | 75-122            | 38-139               | 1   | μg/L  | 0.23  |
|                   | Toluene                        | 14              | 76-126            | 44-141               | 1   | μg/L  | 0.3   |
|                   | Chlorobenzene                  | 12              | 76-124            | 65-128               | 1   | μg/L  | 0.39  |
|                   | Ethylbenzene                   | 13              | 77-124            | 37-143               | 1   | μg/L  | 0.27  |
|                   | m,p-xylene                     | 13              | 77-125            | 32-146               | 1   | μg/L  | 0.25  |
|                   | o-xylene                       | 12              | 76-126            | 46-141               | 1   | μg/L  | 0.25  |
|                   | Total Xylenes                  | 13              | 77-125            | 36-144               | 1   | μg/L  | 0.25  |
|                   | 1,2-Dichlorobenzene            | 23              | 74-125            | 65-128               | 1   | μg/L  | 0.26  |
|                   | 1,3-Dichlorobenzene            | 13              | 73-124            | 63-128               | 1   | μg/L  | 0.25  |
|                   | 1,4-Dichlorobenzene            | 13              | 71-123            | 63-126               | 1   | μg/L  | 0.28  |
|                   | 1,2,3-Trichlorobenzene         | 14              | 62-132            | 54-137               | 5   | μg/L  | 0.47  |
|                   | 1,2,4-Trichlorobenzene         | 13              | 67-132            | 59-135               | 5   | μg/L  | 0.56  |
|                   | 1,3,5-Trichlorobenzene         | 30              | 70-130            | 60-140               | 5   | μg/L  | N/A   |
|                   | Naphthalene                    | 15              | 37-146            | 34-156               | 5   | μg/L  | 0.97  |
| SM 5310B          | Dissolved Organic Carbon (DOC) | 31              | 90-110            | 78-120               | 1   | mg/L  | 0.47  |
| SM20 4500H B      | pH                             | 5               | N/A               | N/A                  | N/A | units | N/A   |

**NOTES:** RPD - Relative Percent Difference.

%R - Percent Recovery.

RL - Reporting Limit.

MDL - Method Detection Limit. The laboratory will report nondetects at the MDLs for metals (mercury).

MS/MSD - Matrix Spike/Matrix Spike Duplicate.

LCS - Laboratory Control Sample.

## TABLE A2C

## QUALITY CONTROL CRITERIA AND REPORTING LIMITS FOR GROUNDWATER SAMPLES

| ANALYTICAL METHOD   | PARAMETER                   | PRECISION (RPD) | ACCURACY (%R)                  | RL    | UNITS    | MDL     |
|---------------------|-----------------------------|-----------------|--------------------------------|-------|----------|---------|
| SW-846 6010B        | Cations                     |                 |                                |       |          |         |
|                     | Calcium                     | 20              | 80-120 (LCS), 75-125 (MS, MSD) | 5     | mg/L     | 0.0436  |
|                     | Iron                        | 20              | 80-120 (LCS), 75-125 (MS, MSD) | 0.1   | mg/L     | 0.0176  |
|                     | Magnesium                   | 20              | 80-120 (LCS), 75-125 (MS, MSD) | 5     | mg/L     | 0.0147  |
|                     | Manganese                   | 20              | 80-120 (LCS), 75-125 (MS, MSD) | 0.015 | mg/L     | 0.00046 |
|                     | Potassium                   | 20              | 80-120 (LCS), 75-125 (MS, MSD) | 10    | mg/L     | 0.0747  |
|                     | Sodium                      | 20              | 80-120 (LCS), 75-125 (MS, MSD) | 10    | mg/L     | 0.0137  |
|                     | Anions                      |                 |                                |       |          |         |
| EPA 300.0           | Chloride                    | 20              | 90-110 (LCS), 80-120 (MS)      | 2     | mg/L     | 0.0087  |
| EPA353.2/SM4500NO2B | Nitrate only by calculation | N/A             | N/A                            | 0.11  | mg/L     | 0.009   |
| EPA 353.2           | Nitrate + Nitrite           | 19              | 90-110 (LCS), 58-134 (MS)      | 0.1   | mg/L     | 0.008   |
| SM19 4500NO2B       | Nitrite                     | 25              | 90-110 (LCS), 60-120 (MS)      | 0.01  | mg/L     | 0.001   |
| SM 4500 PE          | o-Phosphate                 | 21              | 80-120 (LCS), 71-120 (MS)      | 0.5   | mg/L     | 0.005   |
| EPA 300.0           | Sulfate                     | 20              | 90-110 (LCS), 80-120 (MS)      | 10    | mg/L     | 0.449   |
| SM 2510B            | Specific Conductance        | N/A             | N/A                            | 0.5   | µmhos/cm | N/A     |
| SM 2520B            | Salinity                    | N/A             | N/A                            | 0.1   | psu      | N/A     |

**<u>NOTES</u>**: RPD - Relative Percent Difference.

%R - Percent Recovery.

RL - Reporting Limit.

MDL - Method Detection Limit. The laboratory will report nondetects at the MDLs for metals (cations).

MS/MSD - Matrix Spike/Matrix Spike Duplicate.

LCS - Laboratory Control Sample.

#### TABLE A2D

## QUALITY CONTROL CRITERIA AND REPORTING LIMITS FOR OTHER WATER SAMPLES

| ANALYTICAL METHOD    | PARAMETER                                     | PRECISION (RPD) | ACCURACY (%R)                 | RL   | UNITS | MDL    |
|----------------------|-----------------------------------------------|-----------------|-------------------------------|------|-------|--------|
| EPA 1631E            | Mercury                                       | 24              | 71-125 (MS/MSD); 75-125 (LCS) | 0.5  | ng/L  | 0.2    |
| SM20 5310B, 9060 M   | Total Organic Carbon (TOC)                    | 32              | 90-110 (LCS), 77-133 (MS)     | 1    | mg/L  | 0.47   |
| SM20 4500NH3G,LACHAT | Ammonia Nitrogen                              | 27              | 80-120 (LCS), 44-153 (MS)     | 0.2  | mg/L  | 0.169  |
| SM 2320B             | Alkalinity                                    | 10              | 80-120 (LCS), 75-125 (MS)     | 5    | mg/L  | 0.7    |
| SM20 4500S2 F        | Sulfide                                       | 16              | 80-120 (LCS), 55-131 (MS)     | 2    | mg/L  | 0.314  |
| EPA 300.0            | Fluoride                                      | 20              | 90-110 (LCS), 80-120 (MS)     | 0.2  | mg/L  | 0.0022 |
| SM19 4500NO2B        | Nitrite                                       | 25              | 90-110 (LCS), 60-120 (MS)     | 0.01 | mg/L  | 0.001  |
| EPA 353.2            | Nitrate + Nitrite                             | 19              | 90-110 (LCS), 58-134 (MS)     | 0.1  | mg/L  | 0.008  |
| SM19 2340C           | Hardness                                      | 10              | 80-120 (LCS), 80-122 (MS)     | 4    | mg/L  | 3.2    |
| SM20 5220C,HACH 8000 | Chemical Oxygen Demand (COD)                  | 38              | 90-110 (LCS), 57-134 (MS)     | 20   | mg/L  | 7.4    |
| SM20 5210B           | Biochemical Oxygen Demand (BOD <sub>5</sub> ) | 43              | 85-115 (LCS)                  | 2    | mg/L  | 0.4    |
| SM20 2540D           | Total Suspended Solids (TSS)                  | 10              | N/A                           | 4    | mg/L  | 1.7    |
| SM20 2540C           | Total Dissolved Solids (TDS)                  | 12              | N/A                           | 10   | mg/L  | 1.6    |

**NOTES:** RPD - Relative Percent Difference.

%R - Percent Recovery.

RL - Reporting Limit.

MDL - Method Detection Limit. The laboratory will report nondetects at the MDLs for metals (mercury).

TBD - To Be Determined. MDLs and QC accuracy limits will be determined by the Honeywell approved laboratory.

MS/MSD - Matrix Spike/Matrix Spike Duplicate.

LCS - Laboratory Control Sample.

#### TABLE A3A

#### CONTAINERIZATION, PRESERVATION, AND HOLDING TIMES FOR SEDIMENT SAMPLES

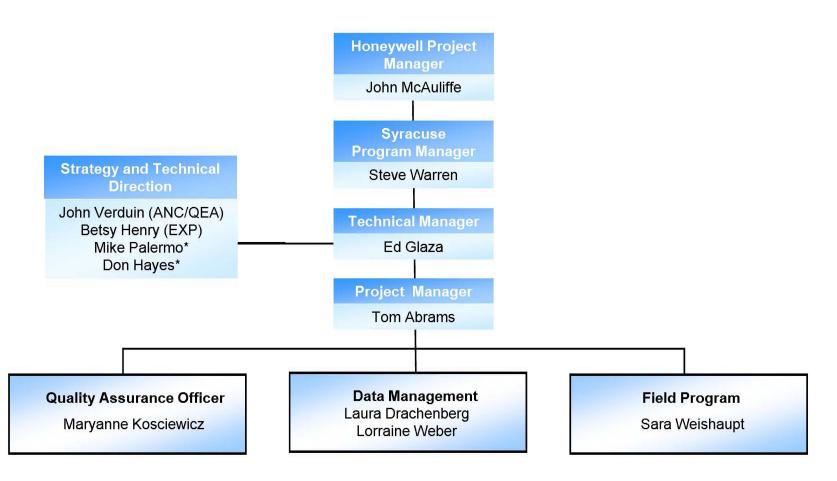
| ANALYTICAL METHOD        | PARAMETER                    | CONTAINER <sup>1</sup> | PRESERVATION <sup>2</sup> | HOLDING TIME                            |
|--------------------------|------------------------------|------------------------|---------------------------|-----------------------------------------|
| SW-846 7471A             | Total Mercury                | 4 oz. jar              |                           | 28 days                                 |
| SW-846 8260B             | CPOI VOCs                    | 2-4 oz. jars           |                           | 14 days                                 |
|                          | Benzene                      |                        |                           |                                         |
|                          | Toluene                      |                        |                           |                                         |
|                          | Chlorobenzene                |                        |                           |                                         |
|                          | Ethylbenzene                 |                        |                           |                                         |
|                          | m,p-xylene                   |                        |                           |                                         |
|                          | o-xylene                     |                        |                           |                                         |
|                          | Total Xylenes                |                        |                           |                                         |
|                          | 1,2-Dichlorobenzene          |                        |                           |                                         |
|                          | 1,3-Dichlorobenzene          |                        |                           |                                         |
|                          | 1,4-Dichlorobenzene          |                        |                           |                                         |
|                          | 1,2,3-Trichlorobenzene       |                        |                           |                                         |
|                          | 1.2,4-Trichlorobenzene       |                        |                           |                                         |
|                          | 1,3,5-Trichlorobenzene       |                        |                           |                                         |
|                          | Naphthalene                  |                        |                           |                                         |
| W-846 8270C or 8270C SIM | CPOI SVOCs (Phenol + PAHs)   | 8 oz. jar              |                           | 14 days to extract                      |
|                          | Phenol                       | 5                      |                           | 40 days to analyze                      |
|                          | Acenaphthene                 |                        |                           |                                         |
|                          | Acenaphthylene               |                        |                           |                                         |
|                          | Anthracene                   |                        |                           |                                         |
|                          | Benzo(a)anthracene           |                        |                           |                                         |
|                          | Benzo(a)pyrene               |                        |                           |                                         |
|                          | Benzo(b)fluoranthene         |                        |                           |                                         |
|                          | Benzo(g,h,i)perylene         |                        |                           |                                         |
|                          | Benzo(k)fluoranthene         |                        |                           |                                         |
|                          | Chrysene                     |                        |                           |                                         |
|                          | Dibenz(a,h)anthracene        |                        |                           |                                         |
|                          | Fluoranthene                 |                        |                           |                                         |
|                          | Fluorene                     |                        |                           |                                         |
|                          | Indeno(1,2,3-cd)pyrene       |                        |                           |                                         |
|                          | Phenanthrene                 |                        |                           |                                         |
|                          | Pyrene                       |                        |                           |                                         |
| SW-846 8082              | PCBs                         | 8 oz. jar              |                           | 14 days to extract                      |
|                          | Aroclor-1016                 |                        |                           | 40 days to analyze                      |
|                          | Aroclor-1221                 |                        |                           | ••••••••••••••••••••••••••••••••••••••• |
|                          | Aroclor-1232                 |                        |                           |                                         |
|                          | Aroclor-1242                 |                        |                           |                                         |
|                          | Aroclor-1248                 |                        |                           |                                         |
|                          | Aroclor-1254                 |                        |                           |                                         |
|                          | Aroclor-1260                 |                        |                           |                                         |
|                          | Aroclor-1268                 |                        |                           |                                         |
|                          | Total PCBs                   |                        |                           |                                         |
| EPA Approved Lloyd Kahn  | Total Organic Carbon (TOC)   | 8 oz. jar              |                           | 14 days                                 |
| SW-846 9045C             | pH                           | 4 oz. jar              |                           | immediately                             |
| SW-846 6010B             | Molybdenum                   | 8 oz. jar              |                           | 6 months                                |
| ASTM D854                | Specific Gravity             | 8 oz. jar              |                           | N/A                                     |
| SM 2540G                 | Moisture Content as % Solids | 4 oz. jar              |                           | N/A                                     |

NOTES: 1 - Sample volumes may vary per laboratory requirements.

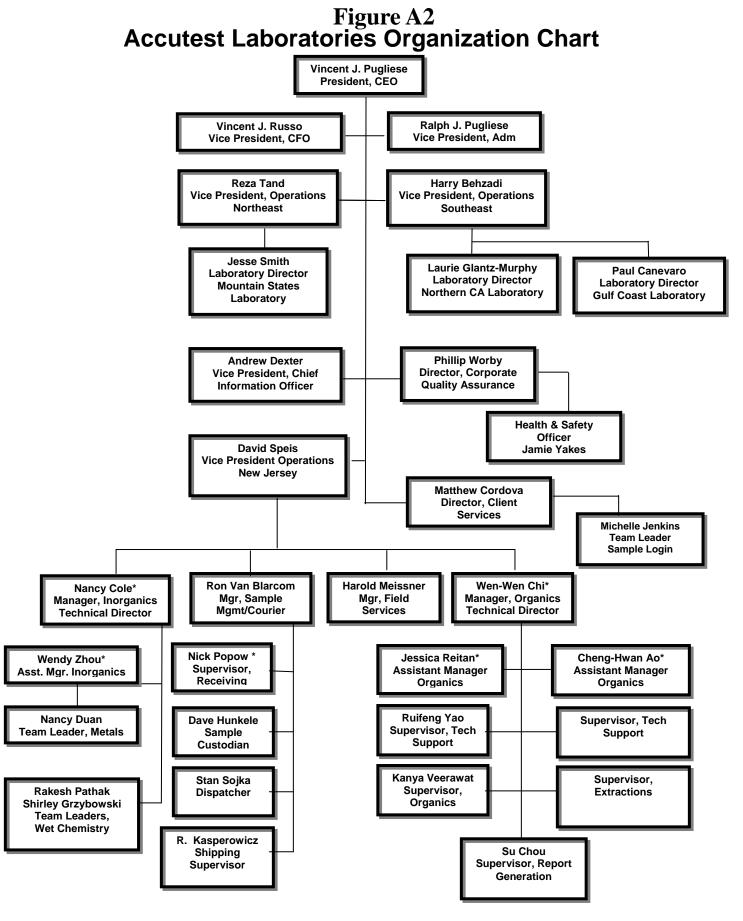
 All sample volume may tay for housing requirements.
 All samples will be iced, preserved at 4<sup>C</sup>, and shipped to Accutest Laboratories laboratory within 24-48 hours from sample collection.
 Holding time is calculated from the day of sample collection or from the day the vibracore sample is processed.

#### TABLE A3B

#### CONTAINERIZATION, PRESERVATION, AND HOLDING TIMES FOR WATER SAMPLES


| ANALYTICAL<br>METHOD | PARAMETER                                | CONTAINER                   | PRESERVATION <sup>2</sup>                                          | HOLDING TIME <sup>3</sup> |
|----------------------|------------------------------------------|-----------------------------|--------------------------------------------------------------------|---------------------------|
| SW-846 7470A         | Total Mercury                            | 500 mL P, G                 | HNO3 to pH<2                                                       | 28 days                   |
| SW-846 8260B         | CPOI VOCs                                | 3-40 mL G, PTFE lined septa | HCl to pH<2                                                        | 14 days                   |
|                      | Benzene                                  |                             |                                                                    | (7 days unpreserved       |
|                      | Toluene                                  |                             |                                                                    |                           |
|                      | Chlorobenzene                            |                             |                                                                    |                           |
|                      | Ethylbenzene                             |                             |                                                                    |                           |
|                      | m,p-xylene                               |                             |                                                                    |                           |
|                      | o-xylene                                 |                             |                                                                    |                           |
|                      | Total Xylenes                            |                             |                                                                    |                           |
|                      | 1,2-Dichlorobenzene                      |                             |                                                                    |                           |
|                      | 1,3-Dichlorobenzene                      |                             |                                                                    |                           |
|                      | 1,4-Dichlorobenzene                      |                             |                                                                    |                           |
|                      | 1,2,3-Trichlorobenzene                   |                             |                                                                    |                           |
|                      | 1,2,4-Trichlorobenzene                   |                             |                                                                    |                           |
|                      | 1,3,5-Trichlorobenzene                   |                             |                                                                    |                           |
|                      | Naphthalene                              |                             |                                                                    |                           |
| SM 5310B             | Dissolved Organic Carbon (DOC)           | 2-40 mL P, G                | HCl to pH<2                                                        | 28 days                   |
| SM20 4500H B         | pH                                       | 100 mL P, G                 |                                                                    | immediately               |
| SW-846 6010B         | Cations                                  | 500 mL P, G                 | HNO <sub>3</sub> to pH<2                                           | 6 months                  |
|                      | Calcium                                  |                             |                                                                    |                           |
|                      | Iron                                     |                             |                                                                    |                           |
|                      | Magnesium                                |                             |                                                                    |                           |
|                      | Manganese                                |                             |                                                                    |                           |
|                      | Potassium                                |                             |                                                                    |                           |
|                      | Sodium                                   | 500 mL P, G                 |                                                                    |                           |
| EPA 300.0            | Chloride                                 | 500 IIIL P, G               |                                                                    | 28 days                   |
| EPA 353.2            | Nitrate                                  |                             |                                                                    | 48 hours                  |
| SM 4500 PE           | o-Phosphate                              |                             |                                                                    | 48 hours                  |
| EPA 300.0            | Sulfate                                  |                             |                                                                    | 28 days                   |
| SM 2510B             | Specific Conductance                     | 100 mL P, G                 |                                                                    | 28 days                   |
| SM 2520B             | Salinity                                 | 100 mL P, G                 |                                                                    | 28 days                   |
| EPA 1631E            | Mercury                                  | 500 mL PTFE                 | HNO3 to pH<2                                                       | 28 days                   |
| SM 5310C             | Total Organic Carbon (TOC)               | 2-40 mL P, G                | HCL to pH<2                                                        | 28 days                   |
| EPA 350.1            | Ammonia Nitrogen                         | 500 mL P, G                 | H <sub>2</sub> SO <sub>4</sub> to pH<2                             | 28 days                   |
| SM 2320B             | Alkalinity                               | 100 mL P, G                 |                                                                    | 14 days                   |
| SM 4500              | Sulfide                                  | 500 mL P, G                 | NaOH to pH>9, Zinc Acetate                                         | 7 days                    |
| EPA 300.0<br>SM 4500 | Fluoride                                 | 500 mL P                    |                                                                    | 28 days<br>48 hours       |
| SM 4500<br>SM 4500   | Nitrite<br>Nitrate-Nitrite               | 100 mL P, G<br>200 mL P, G  | H <sub>2</sub> SO <sub>4</sub> to pH<2                             | 48 hours<br>28 days       |
|                      | Hardness                                 |                             | HNO <sub>3</sub> to pH<2                                           |                           |
| SM 2340B<br>SM 5220C | Hardness<br>Chemical Oxygen Demand (COD) | 100 mL P, G<br>100 mL P, G  | HNO <sub>3</sub> to pH<2<br>H <sub>2</sub> SO <sub>4</sub> to pH<2 | 6 months<br>28 days       |
| SM 5220C<br>SM 5210B | Biochemical Oxygen Demand (COD)          | 100 mL P, G                 | H <sub>2</sub> 5U <sub>4</sub> to pH<2                             | 48 hours                  |
| SM 5210B<br>SM 2540D | Total Suspended Solids (TSS)             | 500 mL P, G                 |                                                                    | 48 nours<br>7 days        |
| SM 2540D<br>SM 2540C | Total Dissolved Solids (TDS)             | 100 mL P, G                 |                                                                    | 7 days<br>7 days          |
| SIM 2540C            | Total Dissolved Solids (1D5)             | 100 mL P, G                 |                                                                    | / days                    |

NOTES: 1 - Polyethylene (P); Glass (G); Fluoropolymer/Teflo<sup>®</sup> (PTFE); Sample volumes may vary per laboratory requirements.
 2 - All samples will be iced, preserved at <sup>4</sup>C, and shipped to Accutest Laboratories within 24-48 hours from sample collection. Porewater samples are generated by the laboratory.
 3 - Holding time is calculated from the day of sample collection or from the day the vibracore sample is processed.


FIGURES

## FIGURE A1

# **Project Organization**





