Prepared for

Parsons 301 Plainfield Road, Suite 350 Syracuse, New York 13212

STABILITY EVALUATION OF REMEDIATION AREA D ONONDAGA LAKE BOTTOM SUBSITE

ONONDAGA LAKE SYRACUSE, NEW YORK

Prepared by

Geosyntec Consultants

engineers | scientists | innovators 1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number: GD4014/GJ4204

AUGUST 2011

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	GUIDELINES FOR STABILITY EVALUATION	1
3.	SUBSURFACE GEOTECHNICAL CONDITIONS	2
4.	LIQUEFACTION POTENTIAL ANALYSES	2
5.	STATIC SLOPE STABILITY ANALYSES	2
6.	SEISMIC SLOPE STABILITY ANALYSES	3
7.	CONCLUSIONS	3
REFEI	RENCES	3

1. INTRODUCTION

This appendix provides the methods and results of a stability evaluation for Remediation Area D, which was performed as part of the *Capping, Dredging, and Habitat Design*. Remediation Area D, which is also referred to as the In Lake Waste Deposit (ILWD), is shown in Figure 1 and consists predominantly of Sediment Management Unit (SMU) 1 with limited portions of SMUs 2 and 7. Consistent with the Statement of Work (SOW) in the Consent Decree for Onondaga Lake [United States District Court, Northern District of New York, 2007] [89-CV-815], this evaluation includes a stability analysis under both static and seismic conditions.

Guidelines for the stability evaluations are provided below, along with a summary of the following analyses: (i) subsurface geotechnical conditions (Appendix H.1); (ii) liquefaction potential (Appendix H.2); (iii) static slope stability after dredging, during capping, and after capping (Appendix H.3); and (iv) seismic slope stability after capping (Appendix H.4). Lastly, conclusions based on the results of the evaluations are provided.

2. GUIDELINES FOR STABILITY EVALUATION

The SOW provided guidelines for evaluating the stability of the ILWD as follows:

"The determination of geotechnical stability shall consider both static and seismic stability of the ILWD. The determination of seismic stability shall be based on an analysis of cap stability during an operating level event (i.e., a seismic event with a 50 percent chance of exceedance in 50 years) and a contingency level event (i.e., a seismic event with a 10 percent chance of exceedance in 50 years). If analysis of geotechnical stability demonstrates that the remediated slope would have an operating and/or contingency seismic slope stability factor of less than 1.1, Honeywell shall evaluate deformation of the cap and the ILWD under the seismic event. If the analysis of the geotechnical stability demonstrates that the remediated slope would have a static slope stability factor of less than 1.5 or if the predicted operating and/or contingency seismic deformation would compromise the performance of the isolation cap, Honeywell shall dredge sufficient material from the ILWD to ensure the geotechnical stability of the Isolation Cap, provided, however, that Honeywell may propose alternative engineering measures to ensure the ILWD is not exposed."

An evaluation approach, consistent with the SOW, was developed and is presented as a flowchart in Figure 2. Since a contingency level event is more severe than an operating level event, the analysis was only performed for the contingency level event. If the calculated factor of safety (FS) for the contingency level event is greater than 1.1, the calculated FS for an operating level event would also be greater than 1.1. In addition, as part of this evaluation, the potential for sensitivity and flow-type behavior in the ILWD was analyzed and is presented herein.

3. SUBSURFACE GEOTECHNICAL CONDITIONS

A detailed description of the development of the subsurface model and geotechnical parameters used in the analyses is presented in Appendix H.1 titled "Summary of Subsurface Stratigraphy and Material Properties". As indicated in this appendix, it has been established that the subsurface soils in Remediation Area D consist primarily of seven strata (from top to bottom): (i) Solvay waste (SOLW); (ii) Marl; (iii) Silt and Clay; (iv) Silt and Sand; (v) Sand and Gravel; (vi) Till; and (vii) Shale. In addition, thin silt layers (up to 10-ft thick) are present on top of the SOLW in isolated areas. Geotechnical parameters of these subsurface soils were selected based on laboratory performance test data or empirical correlations using in situ and/or index test data.

4. LIQUEFACTION POTENTIAL ANALYSES

Liquefaction potential analyses are presented in Appendix H.2 in a calculation package titled "Liquefaction Potential Analyses". These analyses include an evaluation of the potential for flow (or true) liquefaction, cyclic mobility (or cyclic liquefaction), and flow-type behavior due to sensitivity. As shown on Figure 2, the result of this evaluation is the basis for whether or not strength parameters need to be reduced for the seismic stability analyses.

The liquefaction analyses indicate that the SOLW and underlying soil layers in Remediation Area D are not considered susceptible to potential liquefaction or cyclic softening during a contingency level seismic event. In addition, the materials are not considered susceptible to sensitive behavior or loss of shear strength. Therefore, the original strength parameters developed in Appendix H.1 can be used for the seismic slope stability analyses. Liquefaction potential of the cap material and the impact of the cap on the liquefaction potential of underlying materials are addressed in an addendum to Appendix H.2. Since the site is not in a seismic impact zone, monitoring and maintenance will be performed, as necessary, to address the potential for cap liquefaction during a seismic event.

5. STATIC SLOPE STABILITY ANALYSES

Static slope stability analyses are presented in Appendix H.3 in a calculation package titled "Static Slope Stability Analyses". The purpose of these analyses is to establish stability of Remediation Area D after dredging, during capping, and after capping. Static stability was evaluated for five overall general slopes (i.e., Cross Sections 1 through 5) and three localized steep slopes (i.e., Cross Sections A through C), as shown on Figure 3. These analyses were performed using Spencer's [1973] method, which is a generally accepted slope stability analysis method in engineering practice. The results indicate that the selected cross sections have acceptable calculated FSs for static slope stability after dredging, during capping, and after capping.

6. SEISMIC SLOPE STABILITY ANALYSES

Seismic slope stability analyses are presented in Appendix H.4 in a calculation package titled "Seismic Slope Stability Analyses". As indicated in Figure 2, the results of the liquefaction potential evaluation may impact the seismic stability evaluation. Specifically, because it was established that the SOLW, Marl, Silt and Clay, Silt and Sand, and Sand and Gravel are not susceptible to liquefaction, the original material strengths (as opposed to reduced strengths) can be used in the seismic stability evaluation.

The seismic slope stability of Remediation Area D after capping was evaluated for five overall general slope cross sections (i.e., Cross Sections 1 through 5) and three localized steep slope cross sections (i.e., Cross Sections A through C), as shown on Figure 3. As with the static stability analyses, Spencer's [1973] method was used. The results indicate that the selected cross sections have acceptable calculated FSs after capping for the case of a contingency level seismic event.

The seismic slope stability analysis results are based on representative shear strength parameters selected by the geotechnical engineers for this project. A sensitivity analysis with lower shear strength parameters is included as Attachment 1 to this appendix; however, this sensitivity analysis does not change the main conclusions described herein, which are based on the representative parameters selected for this project.

7. CONCLUSIONS

Geotechnical stability of Remediation Area D under static conditions (after dredging, during capping, and after capping) and during a contingency level earthquake (after capping) was evaluated. Based on the analyses, the SOLW and underlying soils do not have the potential for liquefaction or cyclic softening during an operating or contingency level seismic event. The materials in Remediation Area D also do not appear to have the potential for sensitive behavior or loss of shear strength. Since the site is not in a seismic impact zone, the potential for cap liquefaction during a seismic event will be addressed through a monitoring and maintenance program, as needed. In addition, calculated static and seismic FSs for the five overall general slope cross sections (i.e., Cross Sections 1 through 5) and three localized steep slope cross sections (i.e., Cross Sections A through C) in Remediation Area D have adequate FSs.

REFERENCES

Spencer, E., "The Thrust Line Criterion in Embankment Stability Analysis," Géotechnique, Vol. 23, No. 1, pp. 85-100, March 1973.

United States District Court, Northern District of New York. 2006. State of New York and Denise M. Sheehan against Honeywell International, Inc. Consent Decree Between the State of New York and Honeywell International, Inc. Senior Judge Scullin. Dated October 11, 2006. Filed January 4, 2007.

FIGURES

Figure 1. ILWD layout.

Figure 2. Flow chart of geotechnical stability evaluation strategy (note that this approach is applicable for soils underlying the Solvay waste as well).

Figure 3. Locations of borings and selected cross sections.

APPENDIX H.1

SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: Honeywell Project: (Onondaga Lake	ILWD Stabili	ty_ Project/Proposal #:	GJ4204 Task #: _01
TITLE OF COMPUTATIONS	SUMMARY	OF SUBSUI	RFACE STRATIGRAP	HY AND MATERIAL
COMPUTATIONS BY:	Signature	Math	Ы	12-2-2009
	Printed Name and Title	Ming Zhu/ Engineer/S	Raja Madhyannapu Senior Staff Engineer	DATE
ASSUMPTIONS AND PROCEDU, CHECKED BY:	RES Signature	Riald	ingen	12-2-2009
(Peer Reviewer)	Printed Name	R. Kulasing	zineer	DATE
COMPUTATIONS CHECKED BY:	Signature	Mg	K	12-2-2009
	Printed Name and Title	Ming Zhu Engineer		DATE
COMPUTATIONS BACKCHECKED BY:	Signature	Mig	B	12-2-2009
(Originator)	Printed Name	Ming Zhu/R Engineer/Ser	aja Madhyannapu nior Staff Engineer	DATE
APPROVED BY:	Signature	fE	But	2 Par 20 0g
	and Title	Jay Beech Principal		DAIL
APPROVAL NOTES:	AAAAA			
REVISIONS (Number and initial all	revisions)			
NO. SHEET D.	ATE	BY	CHECKED BY	APPROVAL
· · · · · · · · · · · · · · · · · · ·				
		-		

11/30/2009

consultants

					Page		1	of	101
Written b	y: <u>M</u> i	ing Zhu	Date: 08/20/2008	Reviewed by	: R. Kulasingam/J	. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD S	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES

1. INTRODUCTION

This "Summary of Subsurface Stratigraphy and Material Properties" package (referred to as the Data Package) was prepared in support of the stability evaluation of the In-Lake Waste Deposit (ILWD). Specifically, the purpose of the package is to provide:

- a summary of the site investigation activities conducted in the ILWD area to date;
- interpretation of subsurface stratigraphy in the ILWD area;
- interpretation of material properties (i.e., index properties, shear strength, and compressibility); and
- recommendation on material properties to be used for the stability evaluation of the ILWD area.

2. SITE INVESTIGATIONS

The ILWD area, which is adjacent to Wastebed B (WB-B), consists mainly of the area identified as Sediment Management Unit 1 (SMU 1) with limited portions of SMU 2, SMU 7, and SMU 8 (Figure 1). Extensive pre-design investigations (PDIs) were conducted in the ILWD area to characterize the subsurface conditions. These investigations included the Phase I PDI in 2005, the Phase II PDI in 2006, the Phase III PDI in 2007, and the DNAPL investigation in 2006 and 2007. Figure 2 shows the locations of soil borings drilled during the investigations. Details of the investigations were presented in the data summary reports prepared by Parsons [Parsons, 2007a, 2007b, 2009a, and 2009b].

3. SUBSURFACE STRATIGRAPHY

The subsurface stratigraphy in the ILWD area was developed based on the geotechnical information interpreted from the boring logs. Subsurface profiles at eight selected cross sections (Figure 2) are shown in Figures 3 through 10. Sections 1 through 5 represent the overall general cross sections with average slopes of about 3 to 5 degrees (i.e., 19 horizontal to 1 vertical [19H:1V] to 11H:1V) and Sections 6 through 8 represent the steeper localized cross sections with average slopes of

consultants

					Page		2	of	101
Written b	y: <u>M</u> i	ing Zhu	Date: 08/20/2008	Reviewed by	R. Kulasingam/J	. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

about 20 to 27 degrees (i.e., 2.7H:1V to 2H:1V). Attachment 1 of this package provides a detailed description of how the subsurface profiles were developed.

As shown in the above cross sections, the subsurface soil in the ILWD area consists primarily of seven strata:

- Stratum I Solvay Waste (SOLW): SOLW encountered in the ILWD area was described in the boring logs as wet, very soft, gray to dark gray, silt-like grains with mothball odor. The reported standard penetration test (SPT) N value of SOLW in the ILWD area ranges mainly from 0 to 7 (with most of the values being 0). The thickness of SOLW ranges between approximately 15 ft and 55 ft in the ILWD area.
- Stratum II Marl: Marl encountered in the ILWD area was described in the boring logs as wet, very soft, dark gray or brown silt with shells. The reported SPT N value of Marl in the ILWD area ranges mainly from 0 to 4 (with most of the values being 0). The thickness of Marl varies from 0 ft to approximately 50 ft in the ILWD area.
- Stratum III Silt and Clay: Silt and Clay encountered in the ILWD area was described in the boring logs as wet, very soft, dark gray or brown mixture of silt and clay. The reported SPT N value of Silt and Clay in the ILWD area is mainly 0. Only a limited number of deep borings in the ILWD area penetrated the bottom of Silt and Clay layer and the thickness of Silt and Clay was reported to be about 20 ft to 80 ft. Based on available information from the deep borings and the other relatively shallow borings, it was estimated that the thickness of Silt and Clay in the ILWD area is at least 15 ft.
- Stratum IV Silt and Sand: Silt and Sand were encountered in several deep borings in the ILWD area. The SPT N value of Silt and Sand ranges typically from approximately 20 to 80 as reported in the boring logs.
- Stratum V Sand and Gravel: Sand and Gravel were encountered in several deep borings in the ILWD area. The typical SPT N value for Sand and Gravel ranges from approximately 20 to greater than 100 as reported in the boring logs.
- Stratum VI Till: Till was encountered in several deep borings in the ILWD area. The SPT N value for Till is typically greater than 100.
- Stratum VII Shale: Shale was encountered in several deep borings in the ILWD area. The SPT N value for Shale is typically greater than 100.

In addition to the above seven strata, isolated pockets of thin layers of silt were also noticed on top of SOLW in the ILWD area.

consultants

						Page		3	of	101
Written by: Ming Zhu		Date:	08/20/2008	Reviewed by	: R. Kulasingam/J	. Beech	Date:	08/2	0/2008	
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

Figure 11 shows the historic lake water level. The lake water level was estimated to be at Elevation 363 ft above mean sea level for the purpose of the ILWD stability evaluation.

4. MATERIAL PROPERTIES

Properties of the subsurface soils were selected based on laboratory data or empirical correlations using in-situ test data when laboratory data were not available. Samples of SOLW, Marl, and Silt and Clay were collected during the investigations for laboratory testing, which included:

- Index property tests (i.e., water content, grain size, organic content, carbonate content, Atterberg limits, specific gravity, and density); and
- Performance tests (i.e., unconsolidated undrained (UU) triaxial compression tests, consolidated undrained (CU) triaxial compression tests with porewater pressure measurement, and one-dimensional consolidation tests).

Summary tables of the laboratory test results for Phase I, Phase II, Phase III, and DNAPL investigations were provided to Geosyntec by Parsons and are presented in Attachment 2 of this package. It is noted that the summary tables include data from SMU 1, SMU 2, and SMU 8. However, only the data from SMU 1 (unless specified otherwise) were considered for the ILWD stability evaluation because: (i) the ILWD area consists of only a small portion of SMU 2; and (ii) the stability evaluation is mainly focused on SMU 1 where the lake bottom slope is steeper than in SMU 8.

4.1 INDEX PROPERTIES

The fines (including clay and silt) content was measured in the laboratory index property tests during all four investigations. The carbonate and organic contents were also measured in the laboratory index property tests except during the Phase II investigation. The fines, carbonate, and organic contents were plotted together as a function of depth in Figure 12. Hydrometer tests were performed during the Phase I, Phase II, Phase III, and DNAPL investigations to further measure the clay content (particle size less than 0.002 mm). Based on the lab results, the clay content typically ranges from 5% to 30% for SOLW, from 20% to 43% for Marl, and from 14% to 50% for Silt and Clay. The average clay content was calculated to be 14%, 30%, and 30% for SOLW, Marl, and Silt and Clay, respectively.

The water content and Atterberg limits (i.e., plastic limit and liquid limit) were measured in the laboratory index property tests and were plotted together as a function of depth in Figure 13. Based on the measured water content and Atterberg limits, the plasticity index and liquidity index were

consultants

						Page		4	of	101
Written by: Ming Zhu		Date:	8/20/2008	Reviewed by	7: <u>R. Kulasingam/J</u>	Beech	Date:	08/2	0/2008	
Client:	Honeywell	Project:	Onondaga La	ike ILWD S	tability F	roject/ Proposal No.:	GJ4204	Task	No.:	01

calculated and plotted with respect to depth in Figures 14 and 15, respectively. The laboratory data were also plotted in Casagrande's plasticity chart shown in Figure 16.

The unit weights of SOLW, Marl, and Silt and Clay were measured in the laboratory index property tests except during the Phase II investigation when only disturbed sampling was performed. The results are summarized in Table 1 and also plotted in Figure 17 as a function of depth. The calculated average total unit weights recommended for the ILWD stability analysis are 81 pcf, 98 pcf, and 108 pcf for SOLW, Marl, and Silt and Clay, respectively. The unit weight of the isolated silt pockets was assumed to be the same as Marl. The unit weights of the other subsurface soils (i.e., Silt and Sand, Sand and Gravel, Till, and Shale) were assumed to be 120 pcf.

4.2 <u>CONSOLIDATION PARAMETERS</u>

One-dimensional consolidation tests were performed during Phase I and Phase II investigations. The results of the preconsolidation pressures (p'_c) of SOLW, Marl, and Silt and Clay were plotted with respect to depth in Figure 18. As a comparison, data from adjacent SMU 2 were also plotted in the figure. The profile of the in-situ vertical effective stress was calculated and plotted in the same figure. The assumed representative subsurface profile in the ILWD area shown in Figure 19 was used in the calculation of the in-situ vertical effective stress. It was assumed in the representative subsurface profile that the thickness of SOLW, Marl, and Silt and Clay is 30 ft, 10 ft, and 30 ft, respectively.

The overconsolidation ratio (*OCR*), which is the ratio of p'_c to the in-situ vertical effective stress, was calculated and plotted in Figure 20 as a function of depth. Figure 20 includes both SMU 1 and SMU 2 data. Based on the plot, material above 30 ft, which consists mainly of SOLW, was considered to be overconsolidated and material below 30 ft, which consists mainly of Marl and Silt and Clay, was considered to be normally consolidated. The *OCR* of SOLW was observed to vary from 1.6 to 8.2, with an average of about 4.7. An OCR value of 2.0 was selected, which is slightly higher than the lower bound of 1.6 but well below the average value of 4.7, to conservatively estimate undrained shear strengths from CU test results, as presented in the next section.

4.3 UNDRAINED SHEAR STRENGTH

Undrained shear strength (S_u) properties of SOLW, Marl, and Silt and Clay were interpreted from UU and CU tests performed as part of the Phase I, Phase III, and DNAPL investigations.

consultants

						Page		5	of	101
Written b	y: <u>Mi</u>	ing Zhu	Date:	08/20/2008	Reviewed b	y: R. Kulasingam /.	J. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga La	ake ILWD S	tability	Project/ Proposal No.:	GJ4204	Task	No.:	01

4.3.1 Interpretation of Undrained Shear Strength from UU Tests

The S_u values of SOLW, Marl, and Silt and Clay measured from the UU tests were plotted with respect to depth in Figure 21. The mean and standard deviation of the S_u were calculated and summarized in Table 2 for SOLW, Marl, and Silt and Clay. As presented in the table, the calculated average S_u of SOLW, Marl, and Silt and Clay is 247 psf, 354 psf, and 350 psf, respectively.

4.3.2 Interpretation of Undrained Shear Strength from CU Tests

During CU tests, a soil sample is usually trimmed into three specimens, and each specimen is tested under a different initial confining stress. The initial effective confining stress applied in each test should be greater than the effective overburden stress in the ground where the sample was collected to compensate for the effect of any disturbance. The S_u measured in each CU test corresponds to the initial effective confining stress applied to the specimens rather than the in-situ effective overburden stress the specimens were subjected to in the field. Therefore, the measured S_u from each CU test can not be used directly in analysis. However, a relationship between the S_u in the field and the S_u established from the CU test results can be used to calculate the "in-situ" S_u as explained below:

- Approach 1 The undrained shear strength ratio defined as s_u / σ_{ci} can be calculated from CU test results, where S_u is the undrained shear strength measured in the laboratory and is equal to one half of the peak deviator stress, and σ_{ci} is the initial effective confining stress applied in the CU test. The calculated s_u / σ_{ci} is then corrected for the overconsolidation effect by multiplying by a factor of OCR^{0.8}, if the sample is overconsolidated [Kulhawy and Mayne, 1990]. The s_u / σ_{ci}, or the corrected s_u / σ_{ci} if soil is overconsolidated, can be applied directly to a slope stability analysis program. The program will calculate the effective stress for each slice and then assign appropriate S_u based on the undrained shear strength ratio.
- Approach 2 A best-fit straight line that passes through the origin can be developed to represent the relationship between S_u and σ'_{ci} for each specimen based on the CU tests, as illustrated in Figure 22. In this example using this best-fit line, the "in-situ" S_u for the sample can be established as the strength that corresponds to the in-situ overburden effective stress, $\sigma'_{v,in-situ}$ (see Figure 22), which is calculated according to the subsurface profile where the sample was collected. The calculated S_u is then corrected for the overconsolidation effect by multiplying by a factor of $OCR^{0.8}$, if the sample is overconsolidated [Kulhawy and Mayne, 1990].

The undrained shear strengths were interpreted from the CU test results using both approaches:

							Page		6	of	101
Written by	y: <u>Mi</u>	ng Zhu	Date:	08/20/2008	Reviewed	by:]	R. Kulasingam/J.	Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga I	Lake ILWD S	tability	Project	/ Proposal No.:	GJ4204	Task	No.:	01

Approach 1 -- Undrained Shear Strength Ratio

The undrained shear strength ratio was calculated for each test based on the summary tables of the CU test results provided by Parsons. Figures 23, 24, and 25 present the plots of the undrained shear strength ratio versus the effective confining stress for SOLW, Marl, and Silt and Clay, respectively. The undrained shear strength ratios of SOLW presented in Figure 23 were not corrected for the overconsolidation effect (i.e., the factor of $OCR^{0.8}$ was not applied). The undrained shear strength ratio ranges mainly from 0.2 to 1.2 for SOLW, 0.25 to 0.65 for Marl, and 0.25 to 0.6 for Silt and Clay.

It should be noted that specimens that were tested in an overconsolidated stress state (i.e., the initial effective confining stress in the laboratory is less than the in-situ effective overburden stress) and specimens with abnormal results (i.e., laboratory test report shows abnormal behavior of the stress-strain relation) were removed from the plots for SOLW, Marl, and Silt and Clay. The intent of removing data for specimens that were tested in an overconsolidated stress state is to remove data for which overconsolidation was artificially created in the lab, rather than limiting the data to normally consolidated samples. An example of this situation is shown in Figure 26 for the Silt and Clay samples, where the test results removed from the data set are circled. The in-situ effective overburden stresses were calculated based on the assumed representative subsurface profiles in the ILWD area illustrated in Figure 19. The calculated in-situ effective stress was compared to the initial effective confining stress in the laboratory to identify the overconsolidated samples.

Approach 2 -- Undrained Shear Strength as a Function of Depth

Using Approach 2 described before and illustrated in Figure 22, the in-situ effective overburden stress calculated using the assumed representative subsurface profile in Figure 19 was used to establish the "in-situ" S_u for each sample. The resulting S_u is plotted with respect to the sample depth in Figure 27. The mean and standard deviation of the interpreted S_u from the CU tests are summarized in Table 2. As presented in the table, the calculated average S_u is 140 psf, 492 psf, and 612 psf for SOLW, Marl, and Silt and Clay, respectively. Because SOLW is overconsolidated, the average S_u of SOLW was adjusted by a factor of $OCR^{0.8}$ with OCR being 2.0 as discussed before. The adjusted S_u for SOLW was calculated to be approximately 240 psf. It is noticed that the S_u of Marl and Silt and Clay increases with depth. A line with $s_u / \sigma'_v = 0.35$ was found to fit the S_u data well for Marl and Silt and Clay.

4.3.3 Recommended Undrained Shear Strength for Design

Comparison of S_u interpreted from UU and CU test results is shown in Figure 28. In general, S_u from CU tests are close to S_u from UU tests for SOLW and Marl at shallow depths, and S_u from CU

						Page		7	of	101
Written b	y: <u>Mi</u>	ng Zhu	Date:	08/20/2008	Reviewed by	R. Kulasingam/J	. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

tests are greater than S_u from UU tests for Marl and Silt and Clay at deep depths. This observation is consistent with the evidence found in literature [e.g., Sabatini et al., 2002], where UU tests tend to underestimate the actual shear strength for samples collected at depths greater than 6 m (or 18 ft) for normally consolidated samples and greater than 12 m (or 36 ft) for overconsolidated soils.

Based on the interpretation results, it is recommended that the adjusted average S_u of SOLW from the CU tests, which was calculated to be 240 psf, be used for the ILWD stability analysis. It is also recommended that the undrained shear strength ratio of 0.35 be used for Marl and Silt and Clay because their S_u appears to increase with depth. For the liquefaction analysis, an undrained shear strength ratio of 0.35 is recommended for the SOLW and this value will be adjusted to account for overconsolidation as needed.

4.4 DRAINED SHEAR STRENGTH

The effective stress friction angles (ϕ') of SOLW, Marl, and Silt and Clay were estimated based on the CU test results. The ϕ' was calculated using the effective stress Mohr circle at failure for each CU test as illustrated in Figure 29. The calculated ϕ' is plotted in Figure 30 as a function of the effective normal stress for SOLW, Marl, and Silt and Clay. The mean value and the standard deviation of the ϕ' for SOLW, Marl, and Silt and Clay are summarized in Table 3. As shown in Figure 30, there is considerable scatter in the data for the near surface material (i.e., at low effective normal stress). It is unknown if the scatter is due to material variability or difficulty in testing at low normal stresses. For this reason, it is recommended that the "Mean minus one standard deviation or slightly lower" values of the ϕ' be used at low effective normal stresses for SOLW in the ILWD stability analysis, which was calculated to be 37 degrees. It is noted that the standard deviation for the deeper materials, primarily Marl and Silt and Clay layers, indicates less scatter than for the near surface materials. While it may be appropriate to use the mean value, the mean minus standard deviation was used for consistency, which was calculated to be 32 degrees and 30 degrees for Marl and Silt and Clay, respectively.

Initial slope stability analyses were performed using mean and standard deviation values calculated from the initial data that was available. When more data (i.e., Phase III data) became available, the values were recalculated. Since the recalculated mean values were greater than or equal to the initial values and the standard deviations were less than or equal to the initial values, the slope stability analyses were not updated because the original strength values were considered to be conservative. This is the rationale behind the term "*Mean minus one standard deviation or slightly lower*".

consultants

					Page		8	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 08/20/2008	Reviewed by:	R. Kulasingam/J. B	Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proj	ect/ Proposal No.:	G J420 4	Task 1	No.:	01

An empirical relation between ϕ' and SPT N value, as shown in Table 4 [Kulhawy and Mayne, 1990], was used to estimate ϕ' of Silt and Sand, Sand and Gravel, Till, and Shale. Using an estimated average SPT N value of 30 for Silt and Sand and Sand and Gravel, their ϕ' was conservatively estimated to be 32 degrees. The ϕ' of Till and Shale was estimated to be 40 degrees as their SPT N values are typically greater than 100.

4.5 <u>SUMMARY OF RECOMMENDED MATERIAL PROPERTIES</u>

The material properties (i.e., unit weight and undrained and drained shear strengths) recommended for the ILWD stability analysis are summarized in Table 5.

consultants

							Page		9	of	101
Written b	y: <u>Mi</u>	ng Zhu	Date:	08/20/2008	Reviewed b	oy: <u>R</u>	. Kulasingam/J.	Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project/	Proposal No.:	GJ4204	Task	No.:	01

5. **REFERENCES**

- Kulhawy, F.H. and Mayne, P.W. (1990). "Manual on Estimating Soil Properties for Foundation Design", EPRI EL-6800, Project 1493-6, August 1990.
- Parsons (2007a). "Onondaga Lake Pre-Design Investigation Phase I Data Summary Report", March 2007.
- Parsons (2007b). "Draft Willis-Semet Interim Remedial Measure Causeway DNAPL Investigation", December 2007.
- Parsons (2009a). "Draft Onondaga Lake Pre-Design Investigation Phase II Data Summary Report", 2009.
- Parsons (2009b). "Draft Onondaga Lake Pre-Design Investigation Phase III Data Summary Report", 2009.
- Sabatini P.J., Bachus, R.C., Mayne, P.W., Schneider, J.A., and Zettler, T.E. (2002). " Geotechnical Engineering Circular No. 5: Evaluation of Soil and Rock Properties", FHWA-IF-02-034, Federal Highway Administration, Washington, DC, April 2002.

consultants

					Page		10	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 08/20/2008	Reviewed b	7: R. Kulasingam/J	I. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability I	project/ Proposal No.:	GJ4204	Task	No.:	01

TABLES

consultants

						Page		11	of	101
Written b	y: <u>M</u> i	ing Zhu	Date:	08/20/2008	Reviewed b	y: R. Kulasingan	J. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project/ Proposal No.:	GJ4204	Task	No.:	01

|--|

	Average	Standard
Material	value	Deviation
	(pcf)	(pcf)
SOLW	81	6
Marl	98	9
Silt and Clay	108	9

Note:

See Table 5 for the final recommended material properties to be used for the ILWD stability analysis.

consultants

					Page		12	of	101
Written b	oy: <u>M</u>	ing Zhu	Date: 08/20/2008	Reviewed b	oy: R. Kulasingam/J	. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability	Project/ Proposal No.:	GJ4204	Task	No.:	01

Table 2. Summary of measured/interpreted undrained shear strength

Materia 1	Base	d on UU tests	Based on CU tests					
	Mean	Standard Deviatio	Mean	Standard Deviatio	Mean adjusted for overconsolidation			
		n		n				
SOLW	247	149	140	44	244			
Marl	354	127	492	166	$S_u / \sigma_v' = 0.35$			
Silt and Clay	350	136	612	183	S_u/σ_v ' = 0.35			

Note:

See Table 5 for the final recommended material properties to be used for the ILWD stability analysis.

consultants

						Page		13	of	101
Written b	oy: <u>M</u>	ing Zhu	Date:	08/20/2008	Reviewed b	y: R. Kulasingam /	J. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability]	Project/ Proposal No.:	GJ4204	Task	No.:	01

Table 3. Summary of interpreted effective friction angle from CU tests

Material	Mean (degrees)	Standard deviation (degrees)	Mean – Standard deviation (degrees)
SOLW	48	8	40
Marl	39	6	33
Silt & Clay	36	6	30

Note:

See Table 5 for the final recommended material properties to be used for the ILWD stability analysis.

consultants

						Pag	ge	14	of	101
Written b	y: <u>M</u> i	ing Zhu	Date:	08/20/2008	Reviewed b	oy: R. Kulasinga	m/J. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project/ Proposal No	GJ4204	Task	No.:	01

Table 4. Empirical relation between friction angle and SPT N value

N Value	Relative	Approximate $\bar{\phi}_{tc}$ (degrees)			
(blows/ft or 305 mm)	Density	(a)	(b)		
0 to 4	very loose	< 28	< 30		
4 to 10	loose	28 to 30	30 to 35		
10 to 30	medium	30 to 36	35 to 40		
30 to 50	dense	36 to 41	40 to 45		
> 50	very dense	> 41	> 45		

a - Source: Peck, Hanson, and Thornburn (<u>12</u>), p. 310. b - Source: Meyerhof (<u>13</u>), p. 17.

consultants

					Page		15	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 08/20/2008	Reviewed	by: R. Kulasingam /J	I. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability	Project/ Proposal No.:	GJ4204	Task	No.:	01

Table 5. Material properties recommended for the ILWD slope stability analysis

Material	Total Unit Weight	Drained Shear Strength		Undrained Shear Strength ^[1] (psf)		
	(pcf)	c'	φ'	From UU	From CU	
Silt ^[2]	98	0	32	N/A ^[3]	N/A	
SOLW	81	0	37 ^[4]	245	240 ^[5]	
Marl	98	0	32 ^[6]	350	$S_u / \sigma'_v = 0.35^{[7]}$	
Silt and Clay	108	0	30	350	$S_u / \sigma'_v = 0.35^{[7]}$	
Silt and Sand	120	0	32	N/A	N/A	
Sand and Gravel	120	0	32	N/A	N/A	
Till	120	0	40	N/A	N/A	
Shale	120	0	40	N/A	N/A	

Notes:

- 1. Undrained shear strength obtained from CU tests is recommended to be used for the ILWD stability analysis for undrained loading conditions. Values of the undrained shear strength were rounded down to the nearest 5 or 10.
- 2. Properties of Marl were used for the isolated Silt on top of SOLW.
- 3. N/A = Not Applicable
- 4. As presented in Table 3, the "mean minus one standard deviation" value for SOLW is 40 degrees. However, based on initially available data, a value of 37 degrees was calculated and used in slope stability analyses. Because it is conservative, the recommended shear strength value was not changed to 40 degrees after the new data became available.
- 5. Undrained shear strength of SOLW from CU tests has been adjusted by multiplying a factor of $OCR^{0.8}$ (with OCR being 2.0) to account for the overconsolidation effect.
- 6. As presented in Table 3, the "mean minus one standard deviation" value for Marl is 33 degrees. However, based on initially available data, a value of 32 degrees was calculated and used in slope stability analyses. Because it is conservative, the recommended shear strength value was not changed to 33 degrees after the new data became available.
- 7. The laboratory undrained shear strength data of Marl and Silt and Clay shows a trend of increase with depth. An undrained shear strength ratio of 0.35 was found to fit the data well.

consultants

					Page		16	of	101
Written by: Ming Zhu		Date: 08/20/2008 Reviewed by:		R. Kulasingam/J. Beech		Date:	Date: 08/20/2		
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

FIGURES

consultants

 Page
 17
 of
 101

 Written by:
 Ming Zhu
 Date:
 08/20/2008
 Reviewed by:
 R. Kulasingam/J. Beech
 Date:
 08/20/2008

 Client:
 Honeywell
 Project:
 Onondaga Lake ILWD Stability
 Project/ Proposal No.:
 GJ4204
 Task No.:
 01

Figure 1. ILWD site layout

consultants

 Page
 18
 of
 101

 Written by:
 Ming Zhu
 Date:
 08/20/2008
 Reviewed by:
 R. Kulasingam/J. Beech
 Date:
 08/20/2008

 Client:
 Honeywell
 Project:
 Onondaga Lake ILWD Stability
 Project/ Proposal No.:
 GJ4204
 Task No.:
 01

Figure 2. Locations of borings and selected cross sections

consultants

Figure 3. Geometry of cross section 1

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. Borings HB-SB-04 and OL-STA-10013 are offset from the cross section line. Therefore, the end of the boring shown in the figure does not match the line of end of boring for these two borings.
- 3. Subsurface layer elevations above the end of boring at the boring locations shown in the figure were checked and found to match well with the available elevations reported in the boring logs.

Figure 4. Geometry of cross section 2

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. Borings OL-SB-10131 and OL-STA-10022 are offset from the cross section line. Therefore, the end of the boring shown in the figure does not match the line of end of boring for these two borings.
- 3. Subsurface layer elevations above the end of boring at the boring locations shown in the figure were checked and found to match well with the available elevations reported in the boring logs.

consultants

					Page		21	of	101
Written by: Ming Zhu		Date:08/20/2008 Reviewed by:		R. Kulasingam/J. Beech		Date:	08/2	0/2008	
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Pro	oject/ Proposal No.:	GJ4204	Task	No.:	01

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. Boring OL-STA-10023 is offset from the cross section line. Therefore, the end of the boring shown in the figure does not match the line of end of boring for this boring.
- 3. Subsurface layer elevations above the end of boring at the boring locations shown in the figure were checked and found to match well with the available elevations reported in the boring logs.

consultants

Figure 6. Geometry of cross section 4

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. Subsurface layer elevations above the end of boring at the boring locations shown in the figure were checked and found to match well with the available elevations reported in the boring logs.

consultants

Figure 7. Geometry of cross section 5

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. Borings OL-SB-10117 and OL-STA-10038 are offset from the cross section line. Therefore, the end of the boring shown in the figure does not match the line of end of boring for these two borings.
- 3. Subsurface layer elevations above the end of boring at the boring locations shown in the figure were checked and found to match well with the available elevations reported in the boring logs.

Figure 8. Geometry of cross section 6

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. The average slope is about 27 degrees and the maximum slope is about 32 degrees.
consultants

Figure 9. Geometry of cross section 7

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. The average slope is about 24 degrees and the maximum slope is about 28 degrees.

Figure 10. Geometry of cross section 8

Notes:

- 1. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings and may not represent the true field stratigraphy. See Attachment 1 for details.
- 2. The average slope is about 25 degrees and the maximum slope is about 28 degrees for the steeper left-side slope.

Figure 11. Onondaga Lake water level (Figure provided to Geosyntec by Parsons)

Geosyntec[▷] consultants 28 101 Page of Written by: Ming Zhu Date: 08/20/2008 Reviewed by: R. Kulasingam/J. Beech Date: 08/20/2008 Project: **Onondaga Lake ILWD Stability** Project/ Proposal No.: Task No.: Client: Honeywell GJ4204 01 Fines, Carbonate, and Organic Contents (%) 20 30 40 50 60 0 10 70 80 90 100 0 Ċ Ċ ۵ ۵۹۳ ΔΔ ď B Q 15 Δ Δ Δ □ △ Δ Δ 30 M Depth (ft) Δ Λ ₿ Δ 45 п Λ 60 Δ Δ Δ Δ • Fines Content 75 Δ Δ Δ Carbonate Content ΔΔ △ Organic Content

Figure 12. Plot of fines, carbonate, and organic contents versus depth

GA080480 Appendix A_Data Package_Final.doc

90

consultants

Figure 13. Plot of water content and Atterberg limits versus depth

consultants

					Page		30	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 08/20/2008	Reviewed by:	R. Kulasingam/J	Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Pro	ject/ Proposal No.:	GJ4204	Task	No.:	01

Figure 14. Plot of plasticity index versus depth

consultants

						Page		31	of	101
Written by:	Mi	ing Zhu	Date:	08/20/2008	Reviewed by	R. Kulasingam/J	I. Beech	Date:	08/2	0/2008
Client [.] 1	Honevwell	Project.	Onondaga	Lake ILWD S	Stability P	roject/ Proposal No ·	GJ4204	Task	No ·	01

Figure 15. Plot of liquidity index versus depth

GA080480 Appendix A_Data Package_Final.doc

					Page		33	of	101
Written by: Ming Zhu		Date: 08/20/2008	Reviewed by	R. Kulasingam/J	I. Beech	Date:	08/2	0/2008	
Client:	Honeywell	Project:	Onondaga Lake ILWD S	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

Total Unit Weight (pcf)

					Page		34	of	101
Written b	oy: <u>M</u>	ing Zhu	Date: 08/20/2008	Reviewed by	R. Kulasingam/J	. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD S	Stability Pr	oject/ Proposal No.:	GJ4204	Task	No.:	01

Figure 18. Profile of preconsolidation pressure (Note: data from SMU 2 were included for comparison)

					Page		35	of	101
Written b	ру: <u>М</u> і	ing Zhu	Date: 08/20/2008	Reviewed by	7: R. Kulasingam/J	. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD S	Stability P	project/ Proposal No.:	GJ4204	Task	No.:	01

							Page		36	of	101
Written by:	Mi	ng Zhu	Date:	08/20/2008	Reviewed	l by:	R. Kulasingam/J	l. Beech	Date:	08/2	20/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD	Stability	Proje	ect/ Proposal No.:	GJ4204	Task	No.:	01
					OCF	R					
		Depth (ft)	0.0 0 10 20 30 40 50 60 70 4 10 50 4 50 4 50 4 50 50 4 50 50 4 50 50 50 50 50 50 50 50 50 50		5.0		L0.	0			
			80 🖾		1						

Figure 20. Profile of overconsolidation ratio (Note: data from SMU 2 were included for comparison)

					Page		37	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 08/20/2008	Reviewed by:	R. Kulasingam/J.	Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD S	tability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

Undrained Shear Strength S_u (psf)

Figure 22. Obtaining S_u corresponding to the in-situ vertical stress from CU tests (Approach 2).

Effective Confining Stress

consultants

consultants

Figure 25. Undrained shear strength ratio for Silt and Clay from CU tests

GA080480 Appendix A_Data Package_Final.doc

consultants

					Page		42	of	101
Written b	by: <u>M</u>	ing Zhu	Date: 08/20/2008 F	Reviewed by:	R. Kulasingam/J	Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD Sta	bility Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

Figure 26. Example of removed samples from CU tests

Notes:

- 1. Data obtained from a confining stress lower than the in-situ vertical stress were removed.
- 2. Two data points showing erroneous behavior were removed based on the observation of stress-strain curves.

consultants

						Page		43	of	101
Written b	y: <u>M</u>	ing Zhu	Date:	08/20/2008	Reviewed	oy: R. Kulasingam /	J. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project/ Proposal No.:	GJ4204	Task	No.:	01

Figure 27. Interpreted undrained shear strength from CU tests

GA080480 Appendix A_Data Package_Final.doc

consultants

					Page		44	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 08/20/2008	Reviewed by	R. Kulasingam/J	. Beech	Date:	08/2	0/2008
Client:	Honeywell	Project:	Onondaga Lake ILWI) Stability Pi	oject/ Proposal No.:	GJ4204	Task	No.:	01

Figure 28. Comparison of undrained shear strength from UU and CU tests

consultants

					Page		45	of	101
Written b	ру: <u>М</u>	ling Zhu	Date:08/20/2008	Reviewed by:	R. Kulasingam/J	Beech	Date:	08/2	0/2008
Client:	Honevwell	Project:	Onondaga Lake ILWD	Stability Pro	ject/ Proposal No.:	GJ4204	Task	No.:	01

Effective Normal Stress (psf)

Figure 29. Obtaining effective stress friction angle using effective stress Mohr circles from CU tests

GA080480 Appendix A_Data Package_Final.doc

consultants

					Page		47	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proj	ject/ Proposal No.:	GJ4204	Task 1	No.:	01

ATTACHMENT 1

Development of Subsurface Profiles in the ILWD area

consultants

							Page		48	of	101
Written by	y: <u>Mi</u>	ng Zhu	Date:	06/18/2008	Reviewed b	y:	Raja Madhyanı	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project/	Proposal No.:	GJ4204	Task	No.:	01

Subsurface profiles were developed for the ILWD area and the Wastebed B (WB-B) and Harbor Brook (HB) areas using the geotechnical information interpreted from borings conducted during the site investigations. Table 1-1 summarizes the coordinates (i.e., northing and easting), the elevation of existing ground or lake bottom, and the elevations of the bottoms of subsurface layers at each boring location. A 3-D surface was created for each subsurface soil layer using the information provided in the table.

The procedure of creating the surfaces included the following steps (using the surface of bottom of Silt and Clay as an example):

- Step 1: divide the borings into two groups: one group included the relatively deep borings where the elevations of the bottom of Silt and Clay are known; the other group included the relatively shallow borings where the borings ended above the bottom of Silt and Clay and therefore, the elevations were unknown but were expected to be lower than or equal to the end of boring.
- Step 2: create the 3-D surface of bottom of Silt and Clay using the known elevations: a 3-D surface (i.e., Triangular Irregular Network (TIN) surface) was created using the Kriging method imbedded in the program Autodesk Land Desktop 2007. The input data were the known elevations of bottom of Silt and Clay and corresponding coordinates of the borings.
- Step 3: extract the elevations from the 3-D surface at locations where the elevations were originally unknown: The extracted elevations must meet two criteria: first, they can not be higher than the end of boring; second, they can not be higher than the bottom of the overlying layer, which is Marl for this example. If both of the criteria were satisfied, the extracted elevation was considered acceptable, although the true elevation was unknown at this location. However, if either of the two criteria was not satisfied, the extracted elevation was then manually adjusted to be 5 ft below the end of boring or the bottom of Marl, whichever was lower. The 5 ft was selected arbitrarily to provide an estimate of the elevation, since the true elevation is unknown.
- Step 4: re-create the 3-D surface in Step 2 using the known elevations and the adjusted elevations at locations where the elevations were originally unknown.
- Step 5: repeat Steps 1 to 4 for other subsurface layers.

The contours of the existing ground/lake bottom and the bottoms of seven subsurface layers (i.e., Fill (in land)/Silt (in lake), SOLW, Marl, Silt and Clay, Silt and Sand, Sand and Gravel, and Till) are shown in Figures 1-1 through 1-8. The surface of bottom of Shale was not created because of insufficient data. The limit of the 3-D surfaces is shown in Figure 1-1. 3-D surfaces for subsurface layers beyond this limit are currently not available and may be developed later, if needed. In addition, the contours of the surface of the end of boring were also created and are shown in Figure 1-9. The

consultants

					Page		49	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyanı	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proje	ect/ Proposal No.:	GJ4204	Task	No.:	01

surface of the end of the borings was used to identify the areas where the created 3-D surfaces for subsurface layers were below the surface of the end of boring, which are shown in Figures 1-3 through 1-8 as the shaded areas.

It is noted that: (i) the Kriging method used the known elevations from boring logs to interpolate or extrapolate the surface elevations between or outside the boring locations; and (ii) because of the uncertainty associated with the shallow borings, Step 3 in the above-mentioned procedure only provides an estimated elevation. As a result, surfaces that are below the end of boring may not represent the true in-situ stratigraphy.

Based on the created 3-D surfaces, subsurface profiles of eight selected cross sections in the ILWD area were developed and are shown in Figures 3 through 10 in the main text of this package. It is recommended that engineering judgment be applied in the ILWD stability analysis if the most critical slip surface goes below the line of the end of boring shown in these cross sections.

					Page		50	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	inapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Pr	oject/ Proposal No.:	GJ4204	Task	No.:	01

Table 1-1. Summary of subsurface layer elevations from boring logs

Boring ID	Northing	Easting	Mudline Elevation (ft)	Bottom of Silt Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Silt (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
PHASE I																					
OL-STA-10001-VC	1118517.76	923452.28	336.22	326.22	<323.02	<323.02	<323.02	<323.02	<323.02	<323.02	<323.02	323.02	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10002-VC	1118311.97	924291.63	353.54	353.54	<340.34	<340.34	<340.34	<340.34	<340.34	<340.34	<340.34	340.34	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10003-VC	1118153.61	924907.56	351.23	351.23	<338.03	<338.03	<338.03	<338.03	<338.03	<338.03	<338.03	338.03	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10004-VC	1118356.41	924950.90	340.87	340.87	<327.67	<327.67	<327.67	<327.67	<327.67	<327.67	<327.67	327.67	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10005-VC	1117898.15	925576.04	352.85	352.85	<339.65	<339.65	<339.65	<339.65	<339.65	<339.65	<339.65	339.65	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10006-VC	1118267.11	925796.04	336.89	324.39	<323.69	<323.69	<323.69	<323.69	<323.69	<323.69	<323.69	323.69	12.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10007-VC	1117646.82	926138.49	349.12	349.12	<335.92	<335.92	<335.92	<335.92	<335.92	<335.92	<335.92	335.92	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10008-VC	1118082.96	923319.57	349.76	349.76	<330.36	<330.36	<330.36	<330.36	<330.36	<330.36	<330.36	330.36	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.4
OL-STA-10009-VC	1117950.72	924174.44	361.40	361.40	<342.7	<342.7	<342.7	<342.7	<342.7	<342.7	<342.7	342.70	0	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	18.7
OL STA 10010-VC	1117260.00	924773.09	359.70	359.70	<340.2	<340.2	<340.2	<340.2	<340.2	<340.2	<340.2	340.20	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.5
OL-STA-10012-VC	1116800 55	925301.95	359.41	359.41	3/2 7/	<339.54	<340.11	<330.51	<330.51	<330.51	<340.11	330.57	0	16.5	N/A N/Δ	N/A N/Δ	N/A N/Δ	N/A	N/A N/Δ	N/A	19.5
OL-STA-10012-VO	1118375 53	923900 19	349 52	349 52	315.02	312 52	<304.52	<304 52	<304 52	<304 52	<304 52	304 52	0	34.5	37	N/A	N/A	N/A	Ν/Δ	N/A	45
OL-STA-10013-VC	1118383.60	923909 42	349 19	349 19	<335.99	<335.99	<335.99	<335.99	<335.99	<335.99	<335.99	335.99	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10014-SB	1118398.91	924596.38	336.85	336.85	295.35	290.85	<282.85	<282.85	<282.85	<282.85	<282.85	282.85	0	41.5	46	N/A	N/A	N/A	N/A	N/A	54
OL-STA-10014-VC	1118398.61	924609.04	337.62	337.62	<324.42	<324.42	<324.42	<324.42	<324.42	<324.42	<324.42	324.42	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10015-SB	1118228.76	925464.84	337.90	329.90	311.90	311.90	<295.4	<295.4	<295.4	<295.4	<295.4	295.40	8	26	26	N/A	N/A	N/A	N/A	N/A	42.5
OL-STA-10015-VC	1118225.72	925443.60	340.11	335.11	<326.91	<326.91	<326.91	<326.91	<326.91	<326.91	<326.91	326.91	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10016-SB	1117874.32	925905.77	344.22	342.22	314.22	314.22	<303.22	<303.22	<303.22	<303.22	<303.22	303.22	2	30	30	N/A	N/A	N/A	N/A	N/A	41
OL-STA-10016-VC	1117871.97	925898.56	346.58	337.58	<333.38	<333.38	<333.38	<333.38	<333.38	<333.38	<333.38	333.38	9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13.2
OL-STA-10017-SB	1118233.61	926113.93	335.91	323.91	314.91	314.91	<299.91	<299.91	<299.91	<299.91	<299.91	299.91	12	21	21	N/A	N/A	N/A	N/A	N/A	36
OL-STA-10017-VC	1118245.60	926104.00	336.78	330.28	<324.18	<324.18	<324.18	<324.18	<324.18	<324.18	<324.18	324.18	6.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12.6
OL-STA-10018-SB	1117844.21	923783.99	359.30	359.30	327.80	318.30	<303.3	<303.3	<303.3	<303.3	<303.3	303.30	0	31.5	41	N/A	N/A	N/A	N/A	N/A	56
OL-STA-10018-VC	1117842.07	923779.99	360.82	360.82	<341.62	<341.62	<341.62	<341.62	<341.62	<341.62	<341.62	341.62	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.2
OL-STA-10019-SB	1118111.61	923847.96	360.16	360.16	324.66	312.66	<294.66	<294.66	<294.66	<294.66	<294.66	294.66	0	35.5	47.5	N/A	N/A	N/A	N/A	N/A	65.5
OL-STA-10019-VC	1118120.13	923856.72	360.58	360.58	<341.48	<341.48	<341.48	<341.48	<341.48	<341.48	<341.48	341.48	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.1
OL-STA-10020-SB	1117703.29	924383.28	358.44	355.44	318.44	308.44	<292.44	<292.44	<292.44	<292.44	<292.44	292.44	3	40	50 N/A	N/A	N/A	N/A	N/A	N/A	10.0
OL STA 10020-VC	1117049 41	924394.20	359.69	355.69	<340.09	<340.09	<340.09	<340.09	<340.09	<340.09	<340.09	340.09	4	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	19.0
OL-STA-10021-3B	1117940.41	924409.00	356.41	356.41	-314.00 -337.11	-337 11	<202.15	<202.10	<202.10	<202.10	<202.10	202.10	0.5	4 I	50 N/A	N/A	IN/A NI/A	N/A	N/A	N/A	10.3
OL-STA-10021-VC	1118138.66	924560.00	351 72	351 22	306.22	306.22	<281.72	<281.72	<281 72	<281 72	<281.72	281 72	0.5	45.5	45.5	N/A	N/A	N/A	N/Δ	N/A	70
OL-STA-10022-0D	1118152.34	924536.07	352 49	352.49	<332.79	<332.79	<332.79	<332.79	<332.79	<332.79	<332.79	332.79	0.5	N/A		N/A	N/A	N/A	N/A	N/A	19.7
OL-STA-10023-SB	1117456.65	925020.02	359.62	359.62	317.62	317.62	<303.62	<303.62	<303.62	<303.62	<303.62	303.62	0	42	42	N/A	N/A	N/A	N/A	N/A	56
OL-STA-10023-VC	1117452.38	925019.68	359.78	359.78	<340.08	<340.08	<340.08	<340.08	<340.08	<340.08	<340.08	340.08	0 0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7
OL-STA-10024-SB	1117848.61	925237.17	356.19	356.19	296.19	296.19	<288.19	<288.19	<288.19	<288.19	<288.19	288.19	0	60	60	N/A	N/A	N/A	N/A	N/A	68
OL-STA-10024-VC	1117861.90	925237.66	355.70	355.70	<335.9	<335.9	<335.9	<335.9	<335.9	<335.9	<335.9	335.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-STA-10025-SB	1117210.54	925484.56	358.33	358.33	315.33	315.33	<286.33	<286.33	<286.33	<286.33	<286.33	286.33	0	43	43	N/A	N/A	N/A	N/A	N/A	72
OL-STA-10025-VC	1117211.28	925488.14	359.05	359.05	<340.55	<340.55	<340.55	<340.55	<340.55	<340.55	<340.55	340.55	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.5
OL-STA-10026-SB	1117575.40	925701.69	354.85	354.85	307.85	307.85	<296.85	<296.85	<296.85	<296.85	<296.85	296.85	0	47	47	N/A	N/A	N/A	N/A	N/A	58
OL-STA-10026-VC	1117571.58	925702.21	355.08	355.08	<335.38	<335.38	<335.38	<335.38	<335.38	<335.38	<335.38	335.38	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7

						Page		51	of	101
Written by	/: <u>M</u>	ing Zhu	Date:	06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	19/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD	Stability Pro	ject/ Proposal No.:	GJ4204	Task	No.:	01

Boring ID	Northing	Easting	Mudline Elevation (ft)	Bottom of Silt Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Silt (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
PHASE II																					
OL-VC-10034	1118059.79	923085.68	347.90	347.90	329.90	<328.2	<328.2	<328.2	<328.2	<328.2	<328.2	328.20	0	18	N/A	N/A	N/A	N/A	N/A	N/A	19.7
OL-VC-10035	1118249.10	923155.90	347.00	347.00	327.50	<327.2	<327.2	<327.2	<327.2	<327.2	<327.2	327.20	0	19.5	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10036	1118201.60	923262.90	347.40	347.40	327.90	<327.6	<327.6	<327.6	<327.6	<327.6	<327.6	327.60	0	19.5	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10036A	1118202.50	923260.40	347.40	347.40	327.90	<327.6	<327.6	<327.6	<327.6	<327.6	<327.6	327.60	0	19.5	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10037	1118398.60	923321.20	344.30	338.80	326.30	<324.5	<324.5	<324.5	<324.5	<324.5	<324.5	324.50	5.5	18	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10038	1117947.64	923415.06	361.90	361.90	<343	<343	<343	<343	<343	<343	<343	343.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.9
OL-VC-10039	1118088.40	923575.40	351.00	351.00	<333	<333	<333	<333	<333	<333	<333	333.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18
OL-VC-10040	1118351.90	923587.30	349.70	347.70	<329.9	<329.9	<329.9	<329.9	<329.9	<329.9	<329.9	329.90	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10041	1117900.70	923642.10	361.30	361.30	<341.6	<341.6	<341.6	<341.6	<341.6	<341.6	<341.6	341.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7
OL-VC-10041A	1117900.00	923643.90	361.30	361.30	<341.5	<341.5	<341.5	<341.5	<341.5	<341.5	<341.5	341.50	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10042	1118505.00	923697.10	338.70	338.70	<318.9	<318.9	<318.9	<318.9	<318.9	<318.9	<318.9	318.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10042A	1118507.20	923698.10	338.20	335.20	<318.4	<318.4	<318.4	<318.4	<318.4	<318.4	<318.4	318.40	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10043	1118496.60	923946.70	338.60	338.60	<318.8	<318.8	<318.8	<318.8	<318.8	<318.8	<318.8	318.80	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10044	1118365.50	923964.80	349.80	349.80	<330.8	<330.8	<330.8	<330.8	<330.8	<330.8	<330.8	330.80	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19
OL-VC-10046	1118047.30	924008.60	359.60	359.60	<340.4	<340.4	<340.4	<340.4	<340.4	<340.4	<340.4	340.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.2
OL-VC-10046A	1118045.00	924010.70	360.00	360.00	<341.9	<341.9	<341.9	<341.9	<341.9	<341.9	<341.9	341.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.1
OL-VC-10047	1118465.20	924146.40	339.70	339.70	<319.9	<319.9	<319.9	<319.9	<319.9	<319.9	<319.9	319.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10048	1118168.80	924158.40	360.00	360.00	<340.3	<340.3	<340.3	<340.3	<340.3	<340.3	<340.3	340.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7
OL-VC-10048A	1118168.30	924160.50	360.00	360.00	<342.1	<342.1	<342.1	<342.1	<342.1	<342.1	<342.1	342.10	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17.9
OL-VC-10049	1117989.70	924167.40	360.70	360.70	<340.9	<340.9	<340.9	<340.9	<340.9	<340.9	<340.9	340.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10049A	1117991.00	924167.80	360.70	360.70	<340.9	<340.9	<340.9	<340.9	<340.9	<340.9	<340.9	340.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10050	1117816.40	925985.10	346.60	343.60	<327.2	<327.2	<327.2	<327.2	<327.2	<327.2	<327.2	327.20	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.4
OL-VC-10051	1117854.70	926006.90	346.20	339.70	<326.4	<326.4	<326.4	<326.4	<326.4	<326.4	<326.4	326.40	6.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10052	1117852.60	925963.80	346.60	341.60	<326.8	<326.8	<326.8	<326.8	<326.8	<326.8	<326.8	326.80	5	N/A	<u>N/A</u>	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10053	1117722.00	924313.00	361.00	361.00	<341.8	<341.8	<341.8	<341.8	<341.8	<341.8	<341.8	341.80	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.2
OL-VC-10053A	1117723.80	924313.30	361.00	361.00	<341.2	<341.2	<341.2	<341.2	<341.2	<341.2	<341.2	341.20	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10054	1117823.80	924273.20	361.20	361.20	<342.4	<342.4	<342.4	<342.4	<342.4	<342.4	<342.4	342.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.8
OL-VC-10055	1118435.40	924347.90	341.40	341.40	<322.5	<322.5	<322.5	<322.5	<322.5	<322.5	<322.5	322.50	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.9
OL-VC-10056	1110090.00	924313.60	359.00	359.60	<340.4	<340.4	<340.4	<340.4	<340.4	<340.4	<340.4	340.40	0	IN/A	N/A	IN/A	IN/A	N/A	N/A	N/A	19.2
	1110230.30	924432.40	353.90	353.90	<334.4	<334.4	<334.4	<334.4	<334.4	<334.4	<334.4	334.40	0	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	19.5
OL-VC-10057A	1110237.00	924433.90	353.90	353.90	<334.2	<334.2	<334.2	<334.2	<334.2	<334.2	<334.2	334.20	0	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7
	1117030.00	924442.60	358.30	356.30	<330.3	<330.0	<330.5	<330.5	<330.0	<330.0	<330.5	330.50	0	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	19.0
	1117726 60	924444.00	350.30	350.30	<340.9	<340.9	<340.9	<340.9	<340.9	<340.9	<340.9	340.90	2							N/A	17.4
OL-VC-10059	1117861.40	924530.40	359.00	358.00	<340.5	<340.5	<340.3	<340.5	<340.5	<340.5	<340.3	340.30	1	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	19.5
OL-VC-10060	1118238.80	924717 30	350.70	350.70	<341.9	<331	<331	<331	<331	<331	<331	331.00	0							N/A	10 7
OL-VC-10062	1117993 70	924727 10	358.00	358.00	<338.8	<338.8	<338.8	<338.8	<338.8	<338.8	<338.8	338.80	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7
OL -VC-10062A	1117996 10	924727.20	358 10	358 10	<339.1	<339.1	<339.1	<339.1	<339.1	<339.1	<339.1	339.10	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19
OL-VC-10063	1118434.80	924795.40	338.00	338.00	<318.2	<318.2	<318.2	<318.2	<318.2	<318.2	<318.2	318 20	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10063A	1118435.40	924793.40	338.00	338.00	<320.5	<320.5	<320.5	<320.5	<320.5	<320.5	<320.5	320.50	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17.5
OL-VC-10064	1117684.30	924771.70	359.80	359.80	<340	<340	<340	<340	<340	<340	<340	340.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10064A	1117684.70	924774.20	359.80	359.80	<340	<340	<340	<340	<340	<340	<340	340.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10065	1117697.10	924792.20	360.40	360.40	<340.6	<340.6	<340.6	<340.6	<340.6	<340.6	<340.6	340.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10066	1117659.00	924773.40	360.80	360.80	<341	<341	<341	<341	<341	<341	<341	341.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10067	1117697.50	924750.20	360.90	360.90	<341.8	<341.8	<341.8	<341.8	<341.8	<341.8	<341.8	341.80	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.1
OL-VC-10068	1117921.70	924860.70	356.90	356.90	<337.3	<337.3	<337.3	<337.3	<337.3	<337.3	<337.3	337.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.6
OL-VC-10069	1117812.20	924950.90	357.70	353.70	<337.9	<337.9	<337.9	<337.9	<337.9	<337.9	<337.9	337.90	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10070	1117455.20	924919.90	360.30	360.30	<341.2	<341.2	<341.2	<341.2	<341.2	<341.2	<341.2	341.20	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.1
OL-VC-10070A	1117457.00	924918.50	360.30	360.30	<341.1	<341.1	<341.1	<341.1	<341.1	<341.1	<341.1	341.10	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.2

-							Page		52	of	101
	Written b	ру: <u>М</u>	ing Zhu	Date: 06/2	18/2008 Rev	iewed by:	Raja Madhyar	mapu	Date:	06/1	9/2008
	Client:	Honeywell	Project:	Onondaga Lako	e ILWD Stabili	i ty Proje	ct/ Proposal No.:	GJ4204	Task	No.:	01
-				I							

CUC-C1071 111888080 001407 30.20 302.00 302.00 302.00 302.00 302.00 NA NA NA NA NA<	Boring ID	Northing	Easting	Mudline Elevation (ft)	Bottom of Silt Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	f End of Boring Elevation (ft)	Depth to Bottom of Silt (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
CUCVC 1007 1118/TU 00716410 344:10 -324:3 -324:4	OL-VC-10071	1118398.90	925183.70	335.20	332.20	<315.4	<315.4	<315.4	<315.4	<315.4	<315.4	<315.4	315.40	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OLVC-10071 111892.00 2012/44 208.20 303.20 333.4 -333.4	OL-VC-10072	1118217.60	925154.10	344.10	344.10	<324.3	<324.3	<324.3	<324.3	<324.3	<324.3	<324.3	324.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
CLCC-1007A 11180248 953172 953.20 953.24 933.4	OL-VC-10073	1118025.10	925124.40	353.20	353.20	<333.4	<333.4	<333.4	<333.4	<333.4	<333.4	<333.4	333.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
CLVC10074 11177400 293710 396.80 39	OL-VC-10073A	1118024.80	925112.80	353.20	353.20	<333.4	<333.4	<333.4	<333.4	<333.4	<333.4	<333.4	333.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
CLVC:0107 11727L00 25212410 369.30 369.30 361.4 -341.4 -	OL-VC-10074	1117740.60	925137.10	356.90	356.90	<337.1	<337.1	<337.1	<337.1	<337.1	<337.1	<337.1	337.10	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
CL-VC:1007 111784.01 05240.0.3 037.00 367.00 <	OL-VC-10075	1117274.00	925124.10	360.30	360.30	<341.4	<341.4	<341.4	<341.4	<341.4	<341.4	<341.4	341.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.9
0.1.VC:01077 1118880.00 928345.80 349.50 381.80 -331.6	OL-VC-10076	1117526.40	925240.30	357.80	357.80	<338	<338	<338	<338	<338	<338	<338	338.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC:10078 111784500 926415.00 334.4 c334.4 c334.6 c334.8 c334.6 c344.8 c334.6 c344.8 <	OL-VC-10077	1118080.00	925345.50	349.50	349.50	<331.6	<331.6	<331.6	<331.6	<331.6	<331.6	<331.6	331.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17.9
OLVC-1007A 1117642.0 292416.00 334.0 337 4338 4338<	OL-VC-10078	1117846.00	925415.90	354.20	351.20	<334.4	<334.4	<334.4	<334.4	<334.4	<334.4	<334.4	334.40	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC100P 1117642.0 024420.70 365.00 363.00 363.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.7 433.1 341.3 <td>OL-VC-10078A</td> <td>1117845.20</td> <td>925416.60</td> <td>354.30</td> <td>353.30</td> <td><334.5</td> <td><334.5</td> <td><334.5</td> <td><334.5</td> <td><334.5</td> <td><334.5</td> <td><334.5</td> <td>334.50</td> <td>1</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>19.8</td>	OL-VC-10078A	1117845.20	925416.60	354.30	353.30	<334.5	<334.5	<334.5	<334.5	<334.5	<334.5	<334.5	334.50	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10000 1116892.00 25386.20 060.00 360.00 -241.3 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4 -341.4	OL-VC-10079	1117654.20	925420.70	355.90	355.90	<337	<337	<337	<337	<337	<337	<337	337.00	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.9
OL-VC-10080A 111682-20 282894.00 364.00 -341.3	OL-VC-10080	1116980.60	925396.30	360.60	360.60	<341.3	<341.3	<341.3	<341.3	<341.3	<341.3	<341.3	341.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.3
OL-VC-10081 1117441:00 925486.00 337.60 337.80 C437.8	OL-VC-10080A	1116982.20	925394.20	360.60	354.60	<341.3	<341.3	<341.3	<341.3	<341.3	<341.3	<341.3	341.30	6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.3
OL-VC:10081 1117143:50 92548.00 357.70 357.70 438.1 <338.1 <338.1 <338.1 <338.1 <338.0 0 N/A N/A N/A	OL-VC-10081	1117441.00	925496.00	357.60	357.60	<337.8	<337.8	<337.8	<337.8	<337.8	<337.8	<337.8	337.80	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10082 11118324-30 925534.0 323.60 323.60 7 N/A	OL-VC-10081A	1117443.50	925496.80	357.70	357.70	<338.1	<338.1	<338.1	<338.1	<338.1	<338.1	<338.1	338.10	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.6
OL-VC:1008 1118077.40 2282.38 234.10 232.43 233.67 0 N/A	OL-VC-10082	1118354.30	925614.90	333.60	326.60	<313.8	<313.8	<313.8	<313.8	<313.8	<313.8	<313.8	313.80	7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-1008A 1118076-01 925660 334.10 324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <324.3 <334.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <336.6 <th< td=""><td>OL-VC-10083</td><td>1118077.40</td><td>925633.80</td><td>344.10</td><td>344.10</td><td><324.3</td><td><324.3</td><td><324.3</td><td><324.3</td><td><324.3</td><td><324.3</td><td><324.3</td><td>324.30</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>19.8</td></th<>	OL-VC-10083	1118077.40	925633.80	344.10	344.10	<324.3	<324.3	<324.3	<324.3	<324.3	<324.3	<324.3	324.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10084 11171480.50 9256400.70 385.60 333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6 <333.6	OL-VC-10083A	1118076.40	925631.90	344.10	342.10	<324.3	<324.3	<324.3	<324.3	<324.3	<324.3	<324.3	324.30	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
DL-VC-10085 1117135.00 925641.90 355.50 338.7 <338.7 <338.7 <338.7 <338.7 338.7 338.7 0 N/A N/A N/A	OL-VC-10084	1117489.50	925660.70	355.40	355.40	<335.6	<335.6	<335.6	<335.6	<335.6	<335.6	<335.6	335.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10066 1116945.80 925606.60 359.40 359.40 341.4 -341.4	OL-VC-10085	1117135.00	925641.90	358.50	358.50	<338.7	<338.7	<338.7	<338.7	<338.7	<338.7	<338.7	338.70	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-1008A 11116944.40 925659.40 359.40 359.40 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 <340.6 << << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <th< td=""><td>OL-VC-10086</td><td>1116945.80</td><td>925660.60</td><td>359.40</td><td>359.40</td><td><341.4</td><td><341.4</td><td><341.4</td><td><341.4</td><td><341.4</td><td><341.4</td><td><341.4</td><td>341.40</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>18</td></th<>	OL-VC-10086	1116945.80	925660.60	359.40	359.40	<341.4	<341.4	<341.4	<341.4	<341.4	<341.4	<341.4	341.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18
OL-VC-10087 111176769.10 25502.60 360.40	OL-VC-10086A	1116944.40	925659.40	359.40	359.40	<340.6	<340.6	<340.6	<340.6	<340.6	<340.6	<340.6	340.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18.8
OL-VC-1008 1117764.50 g25722.10 353.10 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <333.3 <3	OL-VC-10087	1116769.10	925592.60	360.40	360.40	<341.4	<341.4	<341.4	<341.4	<341.4	<341.4	<341.4	341.40	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19
OL-VC-10089 1117284.40 925742.90 356.60 >336.9 < 336.9 < 336.9 < 336.9 < 336.9 < 336.9 < 336.9 0 N/A	OL-VC-10088	1117764.50	925722.10	353.10	353.10	<333.3	<333.3	<333.3	<333.3	<333.3	<333.3	<333.3	333.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10090 11111432-30 925905-20 338.80 332.30 <319	OL-VC-10089	1117288.40	925742.90	356.60	356.60	<336.9	<336.9	<336.9	<336.9	<336.9	<336.9	<336.9	336.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.7
OL-VC-10091 1111/683.10 925945.20 352.90	OL-VC-10090	1118132.30	925905.20	338.80	332.30	<319	<319	<319	<319	<319	<319	<319	319.00	6.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10092 111/470.80 9258/47.0 384.60 335.6 <335.6 <335.6 <335.6 <335.6 <335.6 <335.6 <335.6 <335.6 <335.6 <335.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <<	OL-VC-10091	111/683.10	925945.20	352.90	352.90	<333.3	<333.3	<333.3	<333.3	<333.3	<333.3	<333.3	333.30	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.6
OL-VC-10094 1116983_50 92587.50 358.50 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 <338.7 < <338.7 < < N/A N/A N/A N/A <	OL-VC-10092	111/4/0.80	925874.70	354.60	354.60	<335.6	<335.6	<335.6	<335.6	<335.6	<335.6	<335.6	335.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19
OL-VC-10095 1115632.30 925868.40 300.40 c340.6	OL-VC-10093	1116983.50	925873.50	358.50	358.50	<338.7	<338.7	<338.7	<338.7	<338.7	<338.7	<338.7	338.70	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10095A 1118335.50 92597.270 334.10 325.10 317.60 314.5 <314.5	OL-VC-10094	1116632.30	925868.40	360.40	360.40	<340.6	<340.6	<340.6	<340.6	<340.6	<340.6	<340.6	340.60	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10095A 1118335.0 925974.70 334.10 325.80 321.10 2315 2315 2315 2315 2315 2315.00 8.5 13 N/A	OL-VC-10095	1118333.90	925972.70	334.10	325.10	317.60	317.60	<314.5	<314.5	<314.5	<314.5	<314.5	314.50	9	16.5	16.5	N/A	N/A	N/A	N/A	N/A	19.6
OL-VC-10096 1117842.40 925994.70 344.00 <227.2	OL-VC-10095A	1118335.50	925974.70	334.10	325.60	321.10	321.10	<315	<315	<315	<315	<315	315.00	8.5	13	13	N/A	N/A	N/A	N/A	N/A	19.1
OL-VC-10097A 1117440.70 925983.60 347.00 344.00 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <329.6 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7	OL-VC-10096	1117842.40	925984.70	347.00	344.00	<327.2	<327.2	<327.2	<327.2	<327.2	<327.2	<327.2	327.20	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10097 IIIT275-00 350.20 353.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <330.20 <<330.20 <330.20 <<330.20 <330.20 <<330.20 <330.20 <<330.20 <<330.20 <<330.20 <<<330.20 <<<<>>< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <<	OL VC 10096A	1117070 40.70	920903.00	347.00	344.00	<329.0	<329.0	<329.0	<329.0	<329.0	<329.0	<329.0	329.00	3	N/A	N/A	N/A	N/A	IN/A	N/A	IN/A	17.4
0L-VC-1009R 111727.0 920019.30 335.20 335.20 <335.7		1117275.40	920020.40	355.20	355.20	<330.0	<330.0	<330.0	<330.0	<330.0	<330.0	<330.0	330.00	0	N/A	N/A	N/A	N/A	N/A		N/A	10.4
OL-VC-10099 1117251.00 3200+1.70 335.30 4335.1 4336.1 4336.1 4336.1 4336.1 4336.1 4336.1 4		1117287.00	920019.30	354.90	354.90	<335.1	<330.7	<335.1	<330.7	<335.1	<330.7	<330.7	335.10	0	N/A	N/A	N/A		N/A			10.5
OEVC-1009 In1720.30 92002.02 033.0 033.03 <th0< td=""><td>OL-VC-10098</td><td>1117250.50</td><td>920041.70</td><td>355 30</td><td>355 30</td><td><335.5</td><td><335.1</td><td><335.5</td><td><335.1</td><td><335.5</td><td><335.1</td><td><335.5</td><td>335.10</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td><td>N/A</td><td></td><td></td><td>19.0</td></th0<>	OL-VC-10098	1117250.50	920041.70	355 30	355 30	<335.5	<335.1	<335.5	<335.1	<335.5	<335.1	<335.5	335.10	0	N/A	N/A	N/A		N/A			19.0
OL VC-10100 1117207.00 926082.60 333.10 335.90 326.9 336.7 <336.7 <336.7 <336.7 <336.7 336.70 0 N/A	OL-VC-10099	1117287 30	925096 80	355.00	355.10	<336	<336	<336	<336	<336	<336	<336	336.00	0	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	19.0
OL-VC-10102 1117/48.00 926062.00 354.90 326.30 326.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <336.7 <3	OL-VC-10101	1117979.00	926082.60	341.40	335.90	325.90	325.90	<321.6	<321.6	<321.6	<321.6	<321.6	321.60	5.5	15.5	15.5	N/A	Ν/Α	N/A		N/A	10.1
OL-VC-10103 1117084.30 926131.80 354.90 336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <3	OL-VC-10102	1117485.00	926067.60	353.90	353.90	<336.7	<336.7	<336.7	<336.7	<336.7	<336.7	<336.7	336.70	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17.2
OL-VC-10103A 1117084.40 926133.50 354.90 336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <336.9 <	OL-VC-10102	1117084 30	926131.80	354.90	354.90	<336.0	<336.9	<336.9	<336.9	<336.9	<336.0	<336.0	336.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18
OL-VC-10104 1116687.10 926107.60 359.10 346.10 346.10 346.10 <339.3 <339.3 <339.3 <339.3 <339.3 <339.3 0 13 13 N/A	OI -VC-10103A	1117084 40	926133 50	354.90	354.90	<336.9	<336.9	<336.9	<336.9	<336.9	<336.9	<336.9	336.90	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18
OL-VC-10104A 1116685.60 926107.10 359.10 347.60 347.60 340.9 <340.9 <340.9 <340.9 0 11.5 11.5 N/A <	OL-VC-10104	1116687.10	926107.60	359.10	359.10	346.10	346.10	<339.3	<339.3	<339.3	<339.3	<339.3	339.30	Ő	13	13	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10105 1116859.40 926187.20 356.80 338.80 338.80 337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337 <337	OL-VC-10104A	1116685.60	926107.10	359.10	359.10	347.60	347.60	<340.9	<340.9	<340.9	<340.9	<340.9	340.90	Ő	11.5	11.5	N/A	N/A	N/A	N/A	N/A	18.2
OL-VC-10106 1116498.40 926169.90 359.80 357.80 354.80 354.80 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <342.3 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <343.2 <	OL-VC-10105	1116859.40	926187.20	356.80	356.80	338.80	338.80	<337	<337	<337	<337	<337	337.00	0	18	18	N/A	N/A	N/A	N/A	N/A	19.8
OL-VC-10107 1116313.70 926342.70 360.70 360.70 360.70 360.70 360.70 <343.2 <343.2 <343.2 <343.2 343.2 0 0 0 0 N/A N/A N/A N/A N/A N/A 17.5	OL-VC-10106	1116498.40	926169.90	359.80	357.80	354.80	354.80	<342.3	<342.3	<342.3	<342.3	<342.3	342.30	2	5	5	N/A	N/A	N/A	N/A	N/A	17.5
	OL-VC-10107	1116313.70	926342.70	360.70	360.70	360.70	360.70	<343.2	<343.2	<343.2	<343.2	<343.2	343.20	0	0	0	N/A	N/A	N/A	N/A	N/A	17.5
	OL-STA-10108	1118335.70	924813.40	342.81	342.81	295.81	280.81	218.31	202.81	194.31	173.81	<163.81	163.81	0	47	62	124.5	<u>1</u> 40	148.5	169	N/A	179

													Page	53	of	101					
					•		71	D.	0.614.010					P		0.000					
				Wr	itten by:	Mii	ng Zhu	Date	: 06/18/2	008 Revi	ewed by:	Raja M	adhyannaj	<u>pu</u> Da	ate: $06/1$	19/2008					
				Clie	ent: Ho	neywell	Project:	Ononda	ga Lake IL	WD Stabilit	t y Proje	ect/ Proposa	1 No.: G	J4204 7	Task No.:	01					
		1	1	I	1	I	1	1	1	1	I	1		I	I	I	1	1	1	1	1
				Bottom o	f Bottom o	f Bottom o	, Bottom o	f Bottom of	of Bottom o	f Bottom of	Bottom of	End of				Denth to	Depth to	Depth to			Denth to
			Mudline	Silt		Marl	" Silt and	Silt and	Sand and		Shalo	Boring	Depth to	Depth to	Depth to	Bottom of	Bottom of	f Bottom of	Depth to	Depth to	End of
Boring ID	Northing	Easting	Elevation	Elovation	Elovation	Floyation	Clay	Sand	Gravel	Elovatioin	Elovation	Elovation	Bottom of	Bottom of	Bottom of	Silt and	Silt and	Sand and	Bottom of	Bottom of	Boring
			(ft)			(f+)	Elevation	Elevation	n Elevation		(f+)	(ft)	Silt (ft)	SOLW (ft)	Marl (ft)	Clay (ft)	Sand (ft)	Gravel (ft)	Till (ft)	Shale (ft)	/ft)
				(19	(11)	(11)	(ft)	(ft)	(ft)	(11)	(14)	(11)					Sanu (it)	Graver (it)	/		(11)
2007 DNAPL Ac	dendum (Mu	udline elevatio	ons in pink	not present	ed in boroin	g logs; estir	mated from	the boring	plan)			1	I		I						
OL-SB-10115	1118004.96	923135.01	347.24	347.24	336.54	324.94	<321.24	<321.24	<321.24	<321.24	<321.24	321.24	0	10.7	22.3	N/A	N/A	N/A	N/A	N/A	26
OL-SB-10116	1117858.77	923362.77	362.41	362.41	348.41	330.41	<328.41	<328.41	<328.41	<328.41	<328.41	328.41	0	14	32	N/A	N/A	N/A	N/A	N/A	34
OL-SB-10117	1117851.31	923409.20	362.44	362.44	<344.44	<344.44	<344.44	<344.44	<344.44	<344.44	<344.44	344.44	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18
OL-SB-10117A	1117852 93	923403.94	362.4				Incor	nplete borir	ng logs							Incor	nplete borir	ng logs			
OL-SB-10118	1117843.24	923476.58	362.26	362.26	348.26	<334.26	<334.26	<334.26	<334.26	<334.26	<334.26	334.26	0	14	N/A	N/A	N/A	N/A	N/A	N/A	28
OL-SB-10119	1117847.79	923504.34	361.99	361.99	341.99	<331.99	<331.99	<331.99	<331.99	<331.99	<331.99	331.99	0	20	N/A	N/A	N/A	N/A	N/A	N/A	30
OL-SB-10120	1117818.00	923573.00	362.32	362.32	342.32	328.32	<326.32	<326.32	<326.32	<326.32	<326.32	326.32	0	20	34	N/A	N/A	N/A	N/A	N/A	36
OL-SB-10121	1117794.13	923614.32	362.58	362.58	344.08	328.58	<320.58	<320.58	<320.58	<320.58	<320.58	320.58	0	18.5	34 N/A	N/A	N/A	N/A	N/A	N/A	42
OL-SB-10122	1117890 13	923514.97	361.97	361.97	342.97	<333.97	<333.97	<333.97	<333.97	<333.97	<333.97	333.97	0	29.5	1N/A 40	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	20 42
OL-SB-10123	1117850.92	923591.26	361.69	361.69	332.49	321.69	<319.69	<319.69	<319.69	<319.69	<319.69	319.69	0	29.2	40	N/A	N/A	N/A	N/A	N/A	42
OL-SB-10125	1117864.09	923592.56	361.45	361.45	331.45	323.15	<321.45	<321.45	<321.45	<321.45	<321.45	321.45	0	30	38.3	N/A	N/A	N/A	N/A	N/A	40
OL-SB-10126	1117884.17	923386.19	361.52	361.52	338.02	<335.52	<335.52	<335.52	<335.52	<335.52	<335.52	335.52	0	23.5	N/A	N/A	N/A	N/A	N/A	N/A	26
OL-SB-10127	1117868.23	923510.67	361.49	361.49	332.79	323.79	<321.49	<321.49	<321.49	<321.49	<321.49	321.49	0	28.7	37.7	N/A	N/A	N/A	N/A	N/A	40
OL-SB-10128	1117832.55	923602.76	361.99	361.99	338.09	327.29	<323.99	<323.99	<323.99	<323.99	<323.99	323.99	0	23.9	34.7	N/A	N/A	N/A	IN/A	N/A	38
OI -SB-10129	1117999.55	923826.20	360.95	360.95	327.95	309.45	<293.95	<293.95	<293.95	<293.95	<293.95	293.95	0	33	51.5	N/A	N/A	N/A	N/A	N/A	67
OL-SB-10130	1118242.42	923877.19	360.1	360.10	322.10	302.60	<289.1	<289.1	<289.1	<289.1	<289.1	289.10	0	38	57.5	N/A	N/A	N/A	N/A	N/A	71
OL-SB-10131	1117817.76	924455.93	357.39	357.39	315.39	273.39	255.89	245.89	<243.89	<243.89	<243.89	243.89	0	42	84	101.5	111.5	N/A	N/A	N/A	113.5
OL-SB-10132	1118276.19	924561.43	345.24	343.24	303.74	294.24	<269.24	<269.24	<269.24	<269.24	<269.24	269.24	2	41.5	51	N/A	N/A	N/A	N/A	N/A	76
OL-SB-10133	1117318.06	925001.70	362.49	362.49	322.99	311.49	<291.99	<291.99	<291.99	<291.99	<291.99	291.99	0	39.5	51 N/A	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	70.5
OL-SB-10134	1118032.66	925359.40	353.57	353.57	306.57	<275.07	<275.07	<275.07	<275.07	<275.07	<275.07	275.07	0	47	N/A	N/A	N/A	N/A	N/A	N/A	78.5
OL-SB-80052	1118745.12	923974.90	323.85	322.25	297.85	248.85	215.85	213.85	204.45	204.45	<203.85	203.85	1.6	26	75	108	110	119.4	119.4	N/A	120
OL-SB-80053	1118753.14	924685.38	322.03	318.03	290.03	237.53	172.03	165.03	165.03	165.03	<164.03	164.03	4	32	84.5	150	157	157	157	N/A	158
OL-SB-80054	1118437.57	925589.90	330.44	326.94	304.44	250.94	173.44	117.44	112.74	112.74	<112.44	112.44	3.5	26	79.5	157	213	217.7	217.7	N/A	218
2006 DNAPL (In	the overlapp	ing area of S	MU 1 and 5	SMU 2)	225.20	224.80	-217.2	-217.2	-217.2	-217.2	-217.2	217.20	4.4	16	26.5	ΝΙ/Δ	NI/A	NI/A	NI/A	NI/A	24
OL-VC-20024	1117999.12	922986.03	356.4	352.10	332.40	322.40	<321.4	<321.4	<321.4	<321.4	<321.4	321.40	4.4	24	34	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20043	1118001.70	923003.90	350.5	339.80	328.30	321.30	<317.9	<317.9	<317.9	<317.9	<317.9	317.90	10.7	22.2	29.2	N/A	N/A	N/A	N/A	N/A	32.6
OL-VC-20044	1117950.40	923134.10	349.3	347.00	329.70	323.20	<314.3	<314.3	<314.3	<314.3	<314.3	314.30	2.3	19.6	26.1	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20045	1118013.70	923017.50	348.8	346.50	329.10	324.20	<313.8	<313.8	<313.8	<313.8	<313.8	313.80	2.3	19.7	24.6	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20046	1117914.10	923194.50	348.8	344.80	329.00	323.80	<314	<314	<314	<314	<314	314.00	4	19.8	25	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	34.8
OL-VC-20047	1117880.20	923290.40	356.8	351.80	344.10	332.20	<327.9	<327.9	<327.9	<327.9	<327.9	327.90	<u> </u>	12.7	20.5	N/A	N/A	N/A	N/A	N/A	28.9
OL-VC-20049	1117931.70	923213.50	348.6	347.10	329.40	324.10	<313.6	<313.6	<313.6	<313.6	<313.6	313.60	1.5	19.2	24.5	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20050	1118038.50	923044.30	348	344.20	327.00	321.00	<313	<313	<313	<313	<313	313.00	3.8	21	27	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20052	1117989.90	923067.30	348.1	346.00	328.00	319.80	<313.1	<313.1	<313.1	<313.1	<313.1	313.10	2.1	20.1	28.3	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20054	111/943.40	923227.40	348.1	342.30	329.90	324.40	<313.1	<313.1	<313.1	<313.1	<313.1	313.10	5.8	18.2	23.7	N/A	N/A	N/A	N/A	N/A	35
OL-STA-20056	1117902.85	923425.95	550.5	JJ4.0U	JJ4.20	320.30	<324.3 This h	<324.3 orina seem	<324.3 is to be a co	<324.3	OL-VC-200	056 based o	n coordian	es: Soil pro	file here is o	combined in	to OL-VC-2	200056	N/A	IN/A	32
OL-VC-20056	1117905.90	923418.40	361.5	360.00	326.50	322.50	<316.5	<316.5	<316.5	<316.5	<316.5	316.50	1.5	35	39	N/A	N/A	N/A	N/A	N/A	45
OL-VC-20060	1117970.30	923256.90	347.8	345.50	326.80	320.80	<312.8	<312.8	<312.8	<312.8	<312.8	312.80	2.3	21	27	N/A	N/A	N/A	N/A	N/A	35
OL-STA-20061	4447000 00	000000 50	0.40.0	0.45.00		040.00	E	Boring log N	I/A		0.00			010		E	Boring log N	I/A	N1/A		
OL-VC-20062	1117999.20	923286.50	348.9	345.90	324.10	316.90	<313.9	<313.9	<313.9	<313.9	<313.9	313.90	3	24.8	32	N/A	N/A	N/A	N/A	N/A	35
OL-VC-20064	1117985.30	923211.00	347.9	345.80	327.10	320.00	<316.7	<316.7	<316.7	<316.7	<316.7	316.70	2.1	20.8	27.9	N/A	N/A	N/A	N/A	N/A	31.2
OL-VC-20065	1117968.50	923322.80	351.2	349.50	325.30	318.80	<317.3	<317.3	<317.3	<317.3	<317.3	317.30	1.7	25.9	32.4	N/A	N/A	N/A	N/A	N/A	33.9

consultants

 Written by:
 Ming Zhu
 Date:
 06/18/2008
 Reviewed by:
 Raja Madhyannapu
 Date:
 06/19/2008

54

Page

101

of

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

Boring ID	Northing	Easting	Ground Elevation (ft)	Bottom of Fill Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Fill (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
HB-SB-01	1117840.27	923237.44	368.14	357.14	351.94	326.34	<320.14	<320.14	<320.14	<320.14	<320.14	320.14	11	16.2	41.8	N/A	N/A	N/A	N/A	N/A	48
HB-SB-02	1117811.12	923383.93	368.48	360.98	354.48	334.68	<324.48	<324.48	<324.48	<324.48	<324.48	324.48	7.5	14	33.8	N/A	N/A	N/A	N/A	N/A	44
HB-SB-03	1117705.90	923488.10	369.7	362.70	355.70	340.20	<333.7	<333.7	<333.7	<333.7	<333.7	333.70	7	14	29.5	N/A	N/A	N/A	N/A	N/A	36
HB-SB-04	1117723.70	923772.70	368.5	364.50	352.50	330.50	317.50	304.90	304.90	298.50	<296.3	296.30	4	16	38	51	63.6	63.6	70	N/A	72.2
HB-SB-05	1117574.23	923914.63	370.04	364.54	356.04	342.54	<332.04	<332.04	<332.04	<332.04	<332.04	332.04	5.5	14	27.5	N/A	N/A	N/A	N/A	N/A	38
HB-SB-07	1117424.12	924360.13	369.17	364.17	349.17	328.67	<319.17	<319.17	<319.17	<319.17	<319.17	319.17	5	20	40.5	N/A	N/A	N/A	N/A	N/A	50
HB-SB-08	1117503.70	924603.38	366.14	361.14	321.14	311.64	<308.14	<308.14	<308.14	<308.14	<308.14	308.14	5	45	54.5	N/A	N/A	N/A	N/A	N/A	58
HB-SB-09	1117225.96	924481.57	376.47	369.47	353.77	342.97	<332.47	<332.47	<332.47	<332.47	<332.47	332.47	7	22.7	33.5	N/A	N/A	N/A	N/A	N/A	44
HB-SB-10	1117179.20	924921.40	363.7	357.70	328.20	321.70	311.90	288.20	260.20	253.70	<253.5	253.50	6	35.5	42	51.8	75.5	103.5	110	N/A	110.2
HB-SB-11	1116969.99	925013.38	365.49	364.49	349.49	327.49	<317.49	<317.49	<317.49	<317.49	<317.49	317.49	1	16	38	N/A	N/A	N/A	N/A	N/A	48
HB-SB-12	1116918.09	925157.85	363.51	363.51	333.51	317.51	<315.51	<315.51	<315.51	<315.51	<315.51	315.51	0	30	46	N/A	N/A	N/A	N/A	N/A	48
HB-SB-13	1116810.14	925264.09	364.94	364.94	332.94	318.94	<314.94	<314.94	<314.94	<314.94	<314.94	314.94	0	32	46	N/A	N/A	N/A	N/A	N/A	50
HB-SB-14	1116715.05	925479.87	365	363.00	331.10	<317	<317	<317	<317	<317	<317	317.00	2	33.9	N/A	N/A	N/A	N/A	N/A	N/A	48
HB-SB-15	1116604.07	925584.66	365.41	363.41	347.41	316.41	302.41	279.91	279.91	266.01	<265.71	265.71	2	18	49	63	85.5	85.5	99.4	N/A	99.7
HB-SB-16	1116450.95	925872.47	363.6	357.60	346.60	<317.6	<317.6	<317.6	<317.6	<317.6	<317.6	317.60	6	17	N/A	N/A	N/A	N/A	N/A	N/A	46
HB-SB-17	1116219.81	925761.67	364.88	363.18	354.88	<320.88	<320.88	<320.88	<320.88	<320.88	<320.88	320.88	1.7	10	N/A	N/A	N/A	N/A	N/A	N/A	44
HB-SB-18	1116307.90	926076.11	363.4	361.40	348.40	313.40	280.20	271.90	270.00	267.90	<265.4	265.40	2	15	50	83.2	91.5	93.4	95.5	N/A	98
HB-SB-19	1116127.48	925969.59	363.61	357.01	353.81	<317.61	<317.61	<317.61	<317.61	<317.61	<317.61	317.61	6.6	9.8	N/A	N/A	N/A	N/A	N/A	N/A	46
HB-SB-20	1115903.03	925902.66	368.12	351.12	351.12	334.37	<324.12	<324.12	<324.12	<324.12	<324.12	324.12	17	17	33.75	N/A	N/A	N/A	N/A	N/A	44
HB-SB-21	1115732.02	925758.87	373.38	363.38	356.88	331.38	300.38	284.58	284.58	282.68	<282.48	282.48	10	16.5	42	73	88.8	88.8	90.7	N/A	90.9
HB-SB-22	1115416.91	925636.34	374.83	370.03	359.73	339.03	<328.83	<328.83	<328.83	<328.83	<328.83	328.83	4.8	15.1	35.8	N/A	N/A	N/A	N/A	N/A	46
HB-SB-23	1115297.76	925536.59	370.03	361.23	361.23	342.03	<334.03	<334.03	<334.03	<334.03	<334.03	334.03	8.8	8.8	28	N/A	N/A	N/A	N/A	N/A	36
HB-SB-24	1115210.68	925502.23	371.03	360.53	360.53	347.63	335.03	335.03	335.03	331.53	<331.23	331.23	10.5	10.5	23.4	36	36	36	39.5	N/A	39.8
HB-SB-25	1116106.10	926261.77	363.78	357.08	357.08	310.28	<299.78	<299.78	<299.78	<299.78	<299.78	299.78	6.7	6.7	53.5	N/A	N/A	N/A	N/A	N/A	64
HB-SB-26	1116103.01	926781.14	363.64	355.94	355.94	312.44	<301.64	<301.64	<301.64	<301.64	<301.64	301.64	7.7	7.7	51.2	N/A	N/A	N/A	N/A	N/A	62
HB-SB-27	1115906.21	926677.66	363.42	353.92	353.92	<299.42	<299.42	<299.42	<299.42	<299.42	<299.42	299.42	9.5	9.5	N/A	N/A	N/A	N/A	N/A	N/A	64
HB-SB-28	1116276.11	927258.43	365.29	347.09	347.09	<303.29	<303.29	<303.29	<303.29	<303.29	<303.29	303.29	18.2	18.2	N/A	N/A	N/A	N/A	N/A	N/A	62
HB-SB-30	1115961.00	925528.80	379.19	377.19	356.19	339.19	<337.188	<337.188	<337.188	<337.188	<337.188	337.19	2	23	40	N/A	N/A	N/A	N/A	N/A	42
HB-SB-32	1116524.40	925378.40	380.07	378.07	348.67	326.07	300.07	269.57	<264.268	<264.268	<264.268	264.27	2	31.4	54	80	110.5	N/A	N/A	N/A	115.8
HB-SB-32A	1115751.05	925209.52	389.54	375.54	359.54	337.54	310.54	310.54	310.54	<305.54	<305.54	305.54	14	30	52	79	79	79	N/A	N/A	84
HB-SB-33	1116781.30	925128.50	379.98	377.98	346.28	<325.984	<325.984	<325.984	<325.984	<325.984	<325.984	325.98	2	33.7	N/A	N/A	N/A	N/A	N/A	N/A	54
HB-SB-35	1116667.00	924526.50	380.10	378.10	356.10	343.60	343.60	<340.097	<340.097	<340.097	<340.097	340.10	2	24	36.5	36.5	N/A	N/A	N/A	N/A	40
HB-SB-36	1117102.80	924612.20	380.17	378.17	352.17	338.17	<334.165	<334.165	<334.165	<334.165	<334.165	334.17	2	28	42	N/A	N/A	N/A	N/A	N/A	46
HB-SB-38	1117259.00	924148.50	380.53	378.53	349.53	334.53	<313.526	<313.526	<313.526	<313.526	<313.526	313.53	2	31	46	N/A	N/A	N/A	N/A	N/A	67
HB-SB-39	1117094.20	923923.20	380.79	378.79	352.79	340.79	<338.789	<338.789	<338.789	<338.789	<338.789	338.79	2	28	40	N/A	N/A	N/A	N/A	N/A	42
HB-SB-40	1117438.10	923944.30	383.25	381.25	351.25	344.25	<341.249	<341.249	<341.249	<341.249	<341.249	341.25	2	32	39	N/A	N/A	N/A	N/A	N/A	42
HB-SB-42	1115649.20	925728.20	379.99	373.29	363.29	340.99	<337.991	<337.991	<337.991	<337.991	<337.991	337.99	6.7	16.7	39	N/A	N/A	N/A	N/A	N/A	42
HB-SB-43	1115629.50	925596.80	394.72	374.02	370.92	<356.716	<356.716	<356.716	<356.716	<356.716	<356.716	356.72	20.7	23.8	N/A	N/A	N/A	N/A	N/A	N/A	38
HB-SB-44	1115632.10	925499.50	386.00	375.80	364.80	351.40	351.40	351.40	<346.004	<346.004	<346.004	346.00	10.2	21.2	34.6	34.6	34.6	N/A	N/A	N/A	40
HB-SB-45	1115522.30	925650.20	376.65	372.75	363.85	353.85	353.85	<348.651	<348.651	<348.651	<348.651	348.65	3.9	12.8	22.8	22.8	N/A	N/A	N/A	N/A	28
HB-SB-46	1115548.60	925720.70	379.49	374.49	365.49	354.49	354.49	<351.492	<351.492	<351.492	<351.492	351.49	5	14	25	25	N/A	N/A	N/A	N/A	28
HB-SB-47	1115544.10	925842.50	375.58	364.78	357.88	348.58	348.58	<345.576	<345.576	<345.576	<345.576	345.58	10.8	17.7	27	27	N/A	N/A	N/A	N/A	30
HB-SB-48	1115511.10	925889.20	378.51	373.71	360.31	349.81	349.81	<346.507	<346.507	<346.507	<346.507	346.51	4.8	18.2	28.7	28.7	N/A	N/A	N/A	N/A	32
HB-SB-49	1115506.00	925780.60	381.50	375.60	366.70	353.50	353.50	<349.497	<349.497	<349.497	<349.497	349.50	5.9	14.8	28	28	N/A	N/A	N/A	N/A	32
HB-SB-50	1115482.20	925714.10	379.38	358.98	358.98	348.58	348.58	<345.381	<345.381	<345.381	<345.381	345.38	20.4	20.4	30.8	30.8	N/A	N/A	N/A	N/A	34

consultants

Written by:Ming ZhuDate:06/18/2008Reviewed by:Raja MadhyannapuDate:06/19/2008

55 of 101

Page

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

Boring ID	Northing	Easting	Ground Elevation (ft)	Bottom of Fill Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Fill (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
HB-SB-61	1116304.87	925113.83	380.58	376.58	356.58	334.58	<328.58	<328.58	<328.58	<328.58	<328.58	328.58	4	24	46	N/A	N/A	N/A	N/A	N/A	52
HB-SB-62	1116501.67	925517.11	380.05	379.05	351.30	322.55	<318.05	<318.05	<318.05	<318.05	<318.05	318.05	1	28.75	57.5	N/A	N/A	N/A	N/A	N/A	62
HB-SB-63	1116540.82	925693.98	366.21	361.71	355.21	322.21	<318.212	<318.212	<318.212	<318.212	<318.212	318.21	4.5	11	44	N/A	N/A	N/A	N/A	N/A	48
HB-SB-64	1116471.45	925771.95	365.61	363.61	352.61	326.61	<319.608	<319.608	<319.608	<319.608	<319.608	319.61	2	13	39	N/A	N/A	N/A	N/A	N/A	46
HB-SB-65	1116351.48	925855.65	364.91	363.91	353.91	319.91	<316.909	<316.909	<316.909	<316.909	<316.909	316.91	1	11	45	N/A	N/A	N/A	N/A	N/A	48
HB-SB-66	1116066.72	926035.35	367.11	362.61	362.61	324.11	<321.108	<321.108	<321.108	<321.108	<321.108	321.11	4.5	4.5	43	N/A	N/A	N/A	N/A	N/A	46
HB-SB-67	1116052.25	926108.94	366.40	360.40	360.40	321.40	<318.395	<318.395	<318.395	<318.395	<318.395	318.40	6	6	45	N/A	N/A	N/A	N/A	N/A	48
HB-SB-68	1115755.21	926004.30	371.05	364.05	356.05	322.05	273.05	273.05	273.05	<272.448	<272.448	272.45	7	15	49	98	98	98	N/A	N/A	98.6
HB-SB-69	1115253.82	925648.84	382.00	360.00	360.00	348.00	<344	<344	<344	<344	<344	344.00	22	22	34	N/A	N/A	N/A	N/A	N/A	38
HB-SB-70	1115228.86	925618.42	381.43	357.43	357.43	343.43	<339.425	<339.425	<339.425	<339.425	<339.425	339.43	24	24	38	N/A	N/A	N/A	N/A	N/A	42
HB-SB-71	1115291.27	925532.57	373.06	365.06	365.06	353.06	353.06	<347.06	<347.06	<347.06	<347.06	347.06	8	8	20	20	N/A	N/A	N/A	N/A	26
HB-SB-72	1115653.88	925310.27	381.90	381.90	364.90	354.90	314.90	314.90	314.90	<309.901	<309.901	309.90	0	17	27	67	67	67	N/A	N/A	72
HB-SB-73	1115759.44	925067.40	390.35	377.35	361.35	351.35	317.35	317.35	317.35	<314.345	<314.345	314.35	13	29	39	73	73	73	N/A	N/A	76
HB-SB-74	1115769.22	924952.42	390.17	353.17	353.17	346.17	346.17	346.17	346.17	<339.365	<339.365	339.37	37	37	44	44	44	44	N/A	N/A	50.8
HB-SB-75	1115768.21	924814.40	390.23	370.23	358.23	353.23	353.23	353.23	353.23	<350.029	<350.029	350.03	20	32	37	37	37	37	N/A	N/A	40.2
HB-SB-76	1115854.33	924845.17	391.89	358.89	358.89	350.89	350.89	350.89	350.89	<345.786	<345.786	345.79	33	33	41	41	41	41	N/A	N/A	46.1
HB-SB-77	1115970.97	924934.51	390.88	384.88	357.88	343.88	313.88	313.88	313.88	<307.982	<307.982	307.98	6	33	47	77	77	77	N/A	N/A	82.9
HB-SB-78	1116058.98	924769.02	393.27	387.27	360.27	346.27	324.27	324.27	324.27	<321.267	<321.267	321.27	6	33	47	69	69	69	N/A	N/A	72
HB-SB-79	1115924.80	924724.58	393.52	359.52	359.52	351.52	<346.219	<346.219	<346.219	<346.219	<346.219	346.22	34	34	42	N/A	N/A	N/A	N/A	N/A	47.3
HB-SB-80	1115883.00	924613.65	390.90	371.90	360.90	352.90	352.90	352.90	352.90	<348.097	<348.097	348.10	19	30	38	38	38	38	N/A	N/A	42.8
HB-SB-81	1116132.67	924651.71	394.87	387.87	359.87	330.87	326.87	326.87	326.87	<319.668	<319.668	319.67	/	35	64	68	68	68	N/A	N/A	75.2
HB-SB-82	1115351.77	925637.20	369.97	362.97	362.97	355.97	<352.971	<352.971	<352.971	<352.971	<352.971	352.97	/	/	14	N/A	N/A	N/A	N/A	N/A	17
HB-SB-83	1115197.03	925530.50	370.32	364.32	364.32	356.32	<353.322	<353.322	<353.322	<353.322	<353.322	353.32	6	6	14	N/A	N/A	N/A	N/A	<u>N/A</u>	17
HB-SB-84	111//8/.26	923482.10	364.75	362.75	352.75	<330.751	<330.751	<330.751	<330.751	<330.751	<330.751	330.75	2	12	N/A	N/A	N/A	N/A	N/A	N/A	34
HB-SB-85	1117741.78	923661.10	364.27	360.27	352.27	334.27	<330.272	<330.272	<330.272	<330.272	<330.272	330.27	4	12	30	N/A	N/A	N/A	N/A	N/A	34
HB-SB-86	1117385.76	924748.55	364.93	364.93	323.43	<320.931	<320.931	<320.931	<320.931	<320.931	<320.931	320.93	0	41.5	N/A	N/A	N/A	N/A	N/A	N/A	44
HB-SB-87	1117311.43	924734.59	365.21	365.21	329.71	<327.209	<327.209	<327.209	<327.209	<327.209	<327.209	327.21	0	35.5	N/A	N/A	N/A	N/A	N/A	N/A	38
HB-SB-88	1117357.89	924837.61	363.14	363.14	322.14	<318.144	<318.144	<318.144	<318.144	<318.144	<318.144	318.14	0	41	N/A	N/A	N/A 79	N/A	N/A	N/A	45
HB-5B-69	1115020.44	925062.55	390.42	382.42	308.42	337.22	312.42	312.42	312.42	<302.418	<302.418	302.42	0	32	55.Z	7 O	7 O	7 O	N/A	IN/A	00
	1116101 12	9200000	262.90	262.90	251.00	221.90	-200.9	-200.9	-200.9	200 Q	-200.9	200.90	4	4	10	N/A	N/A	N/A	N/A	IN/A	64
	1116061 201	920131.30	262 174	362.80	351.80	321.80	<299.8	<299.8	<299.8	<299.8	<299.8	299.80	7	12	42	N/A	N/A	N/A	N/A	IN/A	60 60
	1116029 401	925947.590	363.174	330.17	300.17	323.17	<303.174	<303.174	<303.174	<303.174	<303.174	303.17	11	14	42	N/A		N/A N/A	N/A		62
	1116023 /18	920009.791	363 117	349.02	247.45	321.02	<301.024	<301.024	<301.024	<301.024	<301.024	202.45	14	14	42	N/A	N/A	N/A	N/A	N/A	70
HB-SB-94	1116002 604	920043.200	363 213	347.45	351 21	324.21	<293.447	<293.447	<293.447	<293.447	<293.447	293.45	10	10	30	N/A	N/Δ	N/A	N/A		66
HB-SB-96	1115815 69	926130.29	369.24	350.74	344.24	317.24	<285.24	<285.24	<285.24	<285.24	<285.24	285.24	18.5	25	52	N/A	N/A	N/A	N/A		84
HB-SB-97	1115881 17	926153.24	364.79	355 79	355 79	320.79	<278 79	<203.24	<203.24	<278 79	<278 79	278 79	0.0	9	14	N/A	N/A	N/A	N/A		86
HB-SB-98	1115020.83	926178 56	363.96	355.96	355.96	317.96	<207.96	<207.96	<207.96	<297.96	<207.96	207.96	8	8	46	N/A	N/A	N/A	N/A		66
HB-SB-99	1115862 329	926252 789	363 442	337.44	337.44	315.44	<287 442	<287 442	<287 442	<287 442	<287 442	287.44	26	26	48	N/A	N/A	N/A	N/A		76
HB-SB-100	1115634 97	926363 29	373.62	007.44	007.44	010.44	\$207.442	\$207.442	\$201.442	\$201.442	\$201.442	207.44		20		1.0// (14/7	11// (1.1/1		- 10
HB-SB-101	1115781.84	926461.01	370.43										1	1						[l
HB-SB-102	1115870.171	926452,403	362,891	337 89	337 89	309 89	<288 891	<288 891	<288 891	<288 891	<288 891	288 89	25	25	53	N/A	N/A	N/A	N/A	N/A	74
HB-SB-103	1115922.201	926445.291	363.215	336.72	336.72	311.22	<291.215	<291.215	<291.215	<291.215	<291.215	291.22	26.5	26.5	52	N/A	N/A	N/A	N/A	N/A	72
HB-SB-104	1115900.44	926572.74	364.00	357.00	357.00	308.00	<264	<264	<264	<264	<264	264.00	7	7	56	N/A	N/A	N/A	N/A	N/A	100
HB-SB-105	1115725.41	926774.37	372.00	001.00	001100	000.00		01	01	01	01	_01.00									
HB-SB-106	1115863.94	926692.41	370.62													1				·	
HB-SB-107	1115940.23	926668.13	364.00	352.00	352.00	304.00	<249	<249	<249	<249	<249	249.00	12	12	60	N/A	N/A	N/A	N/A	N/A	115
HB-SB-108	1115988.571	926637.101	362.816	356.82	356.82	287.82	<268.816	<268.816	<268.816	<268.816	<268.816	268.82	6	6	75	N/A	N/A	N/A	N/A	N/A	94

consultants

Written by:Ming ZhuDate:06/18/2008Reviewed by:Raja MadhyannapuDate:06/19/2008

56 of 101

Page

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

Boring ID	Northing	Easting	Ground Elevation (ft)	Bottom of Fill Elevation (ft)	f Bottom of SOLW Elevation (ft)	f Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Fill (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
HB-SB-109	1115996.13	926976.00	371.29																	· · · · · · · · · · · · · · · · · · ·	
HB-SB-110	1116064.121	926912.382	364.613	355.11	355.11	314.61	<294.613	<294.613	<294.613	<294.613	<294.613	294.61	9.5	9.5	50	N/A	N/A	N/A	N/A	N/A	70
HB-SB-111	1116099.924	926883.08	364.083	350.08	350.08	314.08	<294.083	<294.083	<294.083	<294.083	<294.083	294.08	14	14	50	N/A	N/A	N/A	N/A	N/A	70
HB-SB-112	1117756.71	923614.03	364.28	358.28	340.28	326.28	317.28	<312.278	<312.278	<312.278	<312.278	312.28	6	24	38	47	N/A	N/A	N/A	N/A	52
HB-SB-113	1117671.01	923630.99	369.99																		
HB-SB-114	1117646.40	923727.04	370.17																		
HB-SB-115	1117456.02	923586.02	380.06	378.06	346.06	334.06	334.06	319.56	319.56	<314.055	<314.055	314.06	2	34	46	46	60.5	60.5	N/A	N/A	66
HB-SB-116	1117621.96	923824.64	370.06																		
HB-SB-117	1117593.85	923920.16	370.00																		
HB-SB-118	1117567.69	924016.40	369.00																		
HB-SB-119	1117589.64	924127.64	367.32																		
HB-SB-120	1117492.80	924099.45	379.53																		
HB-SB-121	1117330.23	924055.77	383.33	382.33	345.83	341.33	341.33	321.33	319.33	<317.333	<317.333	317.33	1	37.5	42	42	62	64	N/A	N/A	66
HB-SB-122	1117508.37	924207.80	369.02																	<u> </u>	
HB-SB-123	1117482.28	924305.80	369.32																	L'	
HB-SB-124	1117500.43	924459.74	366.72	360.72	326.72	314.72	300.72	<294.724	<294.724	<294.724	<294.724	294.72	6	40	52	66	N/A	N/A	N/A	N/A	72
HB-SB-125	1117406.64	924375.62	369.95	359.95	347.95	327.95	316.95	<313.95	<313.95	<313.95	<313.95	313.95	10	22	42	53	N/A	N/A	N/A	N/A	56
HB-SB-126	1117341.67	924453.60	374.15	373.65	348.15	327.65	320.15	<306.145	<306.145	<306.145	<306.145	306.15	0.5	26	46.5	54	N/A	N/A	N/A	N/A	68
HB-SB-127	1117391.78	924613.12	368.34	366.84	329.34	320.34	<298.34	<298.34	<298.34	<298.34	<298.34	298.34	1.5	39	48	N/A	N/A	N/A	N/A	N/A	70
HB-SB-128	1117276.18	924524.86	373.65	371.65	346.65	337.65	<327.653	<327.653	<327.653	<327.653	<327.653	327.65	2	27	36	N/A	N/A	N/A	N/A	N/A	46
HB-SB-129	1117086.68	924413.11	384.51	382.51	358.51	342.51	336.51	329.51	326.51	<324.509	<324.509	324.51	2	26	42	48	55	58	N/A	N/A	60
HB-SB-130	1117245.71	924625.51	367.98																	<u> </u>	L
HB-SB-131	1117211.16	924604.00	370.12	368.62	354.62	341.12	<330.119	<330.119	<330.119	<330.119	<330.119	330.12	1.5	15.5	29	N/A	N/A	N/A	N/A	N/A	40
HB-SB-132	1117154.70	924688.15	372.03																	 '	l
HB-SB-133	111/141.46	924799.17	368.33	000.04	054.44	000.44	0.17.107	0.17.107	0.17.107	0.17.107	0.17.107				40	N1/A	N 1/A		N1/A		
HB-SB-134	1117101.12	924770.27	371.14	368.64	351.14	329.14	<317.137	<317.137	<317.137	<317.137	<317.137	317.14	2.5	20	42	N/A	N/A	N/A	N/A	N/A	54
HB-SB-135	1117049.96	924854.26	369.93	000.47	054.07	000.07	045.07	045.07	045.07	045.07	045.07	045.07	0.5	10	40	N1/A	NI/A	N1/A	NI/A	NI/A	E 4
	1116992.14	924937.08	369.67	369.17	351.07	320.07	<315.07	<315.07	<315.07	<315.07	<315.07	315.07	0.5	10	43	N/A	IN/A	IN/A	IN/A		54
	1116960.00	923022.02	309.77	275 10	255.60	228.60	<205 697	<205 697	<205 697	<205 697	<205 697	205 60	0.5	20	47	N/A	Ν/Δ	NI/A	NI/A	NI/A	70
HB-SB-130	1116700.85	924927.33	380.04	378.04	355.03	340.04	<310.037	<310.037	<310.037	<310.037	<310.037	310.04	2	24.5	40	N/A	N/A	N/A	N/A	N/A	70
HB-SB-140	1116884 92	925107.07	370.01	369.51	344.01	324.01	<314.005	<314.005	<314.005	<314.005	<314.005	314.01	0.5	24.0	46	N/A	N/A	N/A	N/A	N/A	56
HB-SB-141	1116830.68	925189.67	369.46	367.96	329.46	319.46	<309.46	<309.46	<309.46	<309.46	<309.46	309.46	1.5	40	50	N/A	N/A	N/A	N/A	N/A	60
HB-SB-142	1116809.91	925297.84	365.38	001.00	020.40	010.40	3000.40	<000.40	1000.40	<000.40	<000.40	000.40	1.0	10	00		14/14				
HB-SB-143	1116778.49	925274.31	369.96																	· · · · · ·	
HB-SB-144	1116603.18	925142.66	380.96	379.96	353.96	320.96	306.96	<288.961	<288.961	<288.961	<288.961	288.96	1	27	60	74	N/A	N/A	N/A	N/A	92
HB-SB-145	1116723.16	925359.88	370.61	369.61	330.61	320.61	<310.606	<310.606	<310.606	<310.606	<310.606	310.61	1	40	50	N/A	N/A	N/A	N/A	N/A	60
HB-SB-146	1116667.87	925440.24	369.60	367.10	330.60	321.60	<311.6	<311.6	<311.6	<311.6	<311.6	311.60	2.5	39	48	N/A	N/A	N/A	N/A	N/A	58
HB-SB-147	1116626.54	925413.21	374.72	373.72	326.72	312.72	302.72	<290.721	<290.721	<290.721	<290.721	290.72	1	48	62	72	N/A	N/A	N/A	N/A	84
HB-SB-148	1116612.43	925526.13	371.86	370.36	350.86	325.86	<315.863	<315.863	<315.863	<315.863	<315.863	315.86	1.5	21	46	N/A	N/A	N/A	N/A	N/A	56
HB-SB-149	1116563.94	925610.82	369.34																		
HB-SB-150	1116512.68	925695.44	367.41	367.41	349.41	326.41	<315.409	<315.409	<315.409	<315.409	<315.409	315.41	0	18	41	N/A	N/A	N/A	N/A	N/A	52
HB-SB-151	1116455.45	925782.99	365.91																		
HB-SB-152	1116409.78	925868.27	364.83																		
HB-SB-153	1116355.56	925954.03	364.04																		
HB-SB-154	1116308.54	926041.69	363.91																		
HB-SB-155	1116254.74	926128.18	364.10																		

consultants

Written by:	Ming Zhu	Date:	06/18/2008	Reviewed by:	Raja Madhyannapu	Date:	06/19/2008

57 of 101

Page

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

Boring ID	Northing	Easting	Ground Elevation (ft)	Bottom of Fill Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Fill (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
GP series bo	orings in WB-B	(coordinates a	and ground	elevations w	vere obtained	I from the top	oo shown or	the boring loca	ation plan)												
HB-GP-01	1117546.60	923825.10	371.94	361.94	355.94	<349.94	<349.94	<349.94	<349.94	<349.94	<349.94	349.94	10	16	N/A	N/A	N/A	N/A	N/A	N/A	22
HB-GP-02	1117431.50	924089.30	384.07	382.07	350.07	<348.07	<348.07	<348.07	<348.07	<348.07	<348.07	348.07	2	34	N/A	N/A	N/A	N/A	N/A	N/A	36
HB-GP-03	1117231.90	924275.20	385.27	383.27	357.27	<351.27	<351.27	<351.27	<351.27	<351.27	<351.27	351.27	2	28	N/A	N/A	N/A	N/A	N/A	N/A	34
HB-GP-04	1117154.80	924481.70	378.00	376.00	354.00	<350	<350	<350	<350	<350	<350	350.00	2	24	N/A	N/A	N/A	N/A	N/A	N/A	28
HB-GP-05	1116678.80	925073.00	379.97	377.97	352.17	<349.97	<349.97	<349.97	<349.97	<349.97	<349.97	349.97	2	27.8	N/A	N/A	N/A	N/A	N/A	N/A	30
HB-GP-06	1116540.30	925420.70	378.99	376.99	347.29	<344.99	<344.99	<344.99	<344.99	<344.99	<344.99	344.99	2	31.7	N/A	N/A	N/A	N/A	N/A	N/A	34
HB-GP-07	1116445.00	925566.60	378.00	376.00	350.00	<346	<346	<346	<346	<346	<346	346.00	2	28	N/A	N/A	N/A	N/A	N/A	N/A	32
HB-GP-08	1117386.40	923660.00	387.46	385.46	353.66	<349.46	<349.46	<349.46	<349.46	<349.46	<349.46	349.46	2	33.8	N/A	N/A	N/A	N/A	N/A	N/A	38
HB-GP-09	1117238.48	923824.48	387.53	387.53	357.53	<353.53	<353.53	<353.53	<353.53	<353.53	<353.53	353.53	0	30	N/A	N/A	N/A	N/A	N/A	N/A	34
HB-GP-10	1117076.40	924040.00	384.78	382.78	356.78	<350.78	<350.78	<350.78	<350.78	<350.78	<350.78	350.78	2	28	N/A	N/A	N/A	N/A	N/A	N/A	34
HB-GP-11	1116908.10	924236.30	382.64	380.64	356.64	<352.64	<352.64	<352.64	<352.64	<352.64	<352.64	352.64	2	26	N/A	N/A	N/A	N/A	N/A	N/A	30
HB-GP-11B	1116908.08	924236.28			Boring log r	not available															
HB-GP-12	1116763.90	924496.10	382.00	378.00	358.00	<356	<356	<356	<356	<356	<356	356.00	4	24	N/A	N/A	N/A	N/A	N/A	N/A	26
HB-GP-13	1116646.00	924662.40	380.37	378.37	360.37	<342.37	<342.37	<342.37	<342.37	<342.37	<342.37	342.37	2	20	N/A	N/A	N/A	N/A	N/A	N/A	38
HB-GP-14	1116497.70	924806.30	380.54	378.54	358.54	<352.54	<352.54	<352.54	<352.54	<352.54	<352.54	352.54	2	22	N/A	N/A	N/A	N/A	N/A	N/A	28
HB-GP-15	1116367.40	925005.80	380.00	376.00	356.00	<350	<350	<350	<350	<350	<350	350.00	4	24	N/A	N/A	N/A	N/A	N/A	N/A	30
HB-GP-16	1116230.20	925209.50	380.00	378.00	356.00	<352	<352	<352	<352	<352	<352	352.00	2	24	N/A	N/A	N/A	N/A	N/A	N/A	28
HB-GP-17	1116136.40	925435.30	379.11	377.11	351.11	<349.11	<349.11	<349.11	<349.11	<349.11	<349.11	349.11	2	28	N/A	N/A	N/A	N/A	N/A	N/A	30
HB-GP-18	1116047.90	925675.10	378.19	376.19	350.19	<346.19	<346.19	<346.19	<346.19	<346.19	<346.19	346.19	2	28	N/A	N/A	N/A	N/A	N/A	N/A	32
HB-GP-19	1115882.90	925841.30	369.91	361.91	357.91	<353.41	<353.41	<353.41	<353.41	<353.41	<353.41	353.41	8	12	N/A	N/A	N/A	N/A	N/A	N/A	16.5
HB-GP-20	1115832.20	925855.20	372.00	362.00	358.00	<342	<342	<342	<342	<342	<342	342.00	10	14	N/A	N/A	N/A	N/A	N/A	N/A	30
HB-GP-25	1115320.40	925345.70	372.00	362.50	362.50	357.00	<352	<352	<352	<352	<352	352.00	9.5	9.5	15	N/A	N/A	N/A	N/A	N/A	20
HB-GP-26	1115371.72	925430.32	372.20	363.20	363.20	344.70	<338.2	<338.2	<338.2	<338.2	<338.2	338.20	9	9	27.5	N/A	N/A	N/A	N/A	N/A	34
HB-GP-27	1115428.90	925052.50	376.96	374.96	365.06	362.96	362.96	362.96	362.96	<362.56	<362.56	362.56	2	11.9	14	14	14	14	N/A	N/A	14.4
HB-GP-28	1115531.88	924801.30	380.00	378.00	364.30	364.30	364.30	364.30	364.30	<363.7	<363.7	363.70	2	15.7	15.7	15.7	15.7	15.7	N/A	N/A	16.3
HB-GP-29	1115615.60	924558.80	378.94	373.34	364.44	364.44	364.44	364.44	364.44	<361.44	<361.44	361.44	5.6	14.5	14.5	14.5	14.5	14.5	N/A	N/A	17.5
HB-GP-30	1115365.70	924777.60	380.00	380.00	380.00	380.00	380.00	370.60	367.00	<365.6	<365.6	365.60	0	0	0	0	9.4	13	N/A	N/A	14.4
HB-GP-32	1115738.40	925235.80	390.00	372.00	363.00	344.00	<340	<340	<340	<340	<340	340.00	18	27	46	N/A	N/A	N/A	N/A	N/A	50
HB-GP-32A	1115751.05	925209.52	390.00	376.00	360.00	344.00	311.00	311.00	311.00	<306	<306	306.00	14	30	46	79	79	79	N/A	N/A	84
HB-GP-33	1115721.90	925156.00	390.00	371.40	362.10	347.00	306.90	306.90	304.90	<304	<304	304.00	18.6	27.9	43	83.1	83.1	85.1	N/A	N/A	86
HB-GP-34	1115/34.10	925002.70	390.00	3/2.00	372.00	346.10	<344	<344	<344	<344	<344	344.00	18	18	43.9	N/A	N/A	N/A	N/A	N/A	46
HB-GP-35	1115838.32	924712.28	391.14	373.54	365.54	356.04	356.04	352.14	352.14	<351.14	<351.14	351.14	17.6	25.6	35.1	35.1	39	39	N/A	N/A	40
HB-GP-36	1115880.70	924505.80	392.23	374.63	360.63	<354.23	<354.23	<354.23	<354.23	<354.23	<354.23	354.23	17.6	31.6	N/A	N/A	N/A	N/A	N/A	N/A	38
HB-GP-37	1116034.70	924237.80	391.85	367.85	361.85	<351.85	<351.85	<351.85	<351.85	<351.85	<351.85	351.85	24	30	N/A	N/A	N/A	N/A	N/A	N/A	40
HB-GP-38	1116047.18	924082.70	390.00	382.40	380.50	380.50	379.50	379.50	379.50	<378	<378	378.00	7.6	9.5	9.5	10.5	10.5	10.5	N/A	N/A	12
HB-GP-39	1116256.93	924005.15	390.00	388.00	366.10	366.10	366.10	366.10	366.10	<366	<366	366.00	2	23.9	23.9	23.9	23.9	23.9	N/A	N/A	24

consultants

Written by:Ming ZhuDate:06/18/2008Reviewed by:Raja MadhyannapuDate:06/19/2008

58

Page

101

of

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

118-168-1 Image: marked base of the second sec	Boring ID	Northing	Easting	Ground Elevation (ft)	Bottom of Fill Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Fill (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom of Silt and Sand (ft)	Depth to Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
H8-H82-1 H8-H83-	HB-RISB-1																					
Inferstand Normalization Normalination Normalization Normalizati	HB-RISB-2																					
HB-RB35- IB-RB37- IB-RB367- IB-RB367- IB-RB367- IB-RB367- IB-RB367- IB-RB367- IB-RB37- I	HB-RISB-4																					
International internatintered international international international inter	HB-RISB-5	0.																				
Inervise	HB-RISB-6	Co	ordinates NA	A																		
IHE-RESPENT Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolutions for CW series were provided by Parsonal Image: Conditional devolution for CW series were provided by Parsonal Image: Conditional devolution for CW series were provided by Parsonal Image: Conditional devolution for CW series were provided by Parsonal Image: Conditional devolution for CW series were provided by Parsonal Image: Condin devolution for CW series were provided by Parson	HB-RISB-7										1											
HB-RIS-16 Corr	HB-RISB-11																					
Coordinates and ground elevations for OW services were provided by Partsons) res BCOVS B11	HB-RISB-16									[
HB-OW-18 III 7890.143 2935.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.90 435.01 435.	(coordinates a	and around elev	vations for OV	V series wer	e provided l	v Parsons)																
HB-OW-28 ITIB287-483 202506.841 384.1 364.10 362.01 436	HB-OW-1S	1117590.143	923859.617	369.9	365.90	<355.9	<355.9	<355.9	<355.9	<355.9	<355.9	<355.9	355.90	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-OW-SS III 15918-468 9262 3552 3552 3552 355.00 9.5 N/A N/A <td>HB-OW-2S</td> <td>1116387.435</td> <td>925765.841</td> <td>364.1</td> <td>364.10</td> <td>352.60</td> <td><350.1</td> <td><350.1</td> <td><350.1</td> <td><350.1</td> <td><350.1</td> <td><350.1</td> <td>350.10</td> <td>0</td> <td>11.5</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>14</td>	HB-OW-2S	1116387.435	925765.841	364.1	364.10	352.60	<350.1	<350.1	<350.1	<350.1	<350.1	<350.1	350.10	0	11.5	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-0v-4S 11170122691 922818.011 370 366.00 -356 -356 -356 356.00 4 N/A N/A N/A N/A N/	HB-OW-3S	1115918.426	925849.318	369.2	359.70	<355.2	<355.2	<355.2	<355.2	<355.2	<355.2	<355.2	355.20	9.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-OW-6S 1116372-665 325784.786 365.90 362.20 349.90 349.90 2 11.7 N/A	HB-OW-4S	1117612.594	923818.011	370	366.00	<356	<356	<356	<356	<356	<356	<356	356.00	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-OW-65 11160714 125482.9 26347.1 2450.3 250.3 250.3 </td <td>HB-OW-5S</td> <td>1116372.665</td> <td>925784.796</td> <td>363.9</td> <td>361.90</td> <td>352.20</td> <td><349.9</td> <td><349.9</td> <td><349.9</td> <td><349.9</td> <td><349.9</td> <td><349.9</td> <td>349.90</td> <td>2</td> <td>11.7</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>14</td>	HB-OW-5S	1116372.665	925784.796	363.9	361.90	352.20	<349.9	<349.9	<349.9	<349.9	<349.9	<349.9	349.90	2	11.7	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-OW-75 1110033 926467.8 396.8 c346.8 c365.8 c355.8 c355.8 c355.8 c355.8 c35	HB-OW-6S	1116074.1	926482.9	363.1	348.20	<347.1	<347.1	<347.1	<347.1	<347.1	<347.1	<347.1	347.10	14.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16
HB_OW-8D 1116703 2951014 378.4 374.60 348.60 322.40 278.70 -274.4 274.40 3.8 28.8 66 80 99.2 99.7 N/A N/A </td <td>HB-OW-7S</td> <td>1116083.8</td> <td>926467.8</td> <td>362.8</td> <td><346.8</td> <td><346.8</td> <td><346.8</td> <td><346.8</td> <td><346.8</td> <td><346.8</td> <td><346.8</td> <td><346.8</td> <td>346.80</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>16</td>	HB-OW-7S	1116083.8	926467.8	362.8	<346.8	<346.8	<346.8	<346.8	<346.8	<346.8	<346.8	<346.8	346.80	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16
Coordinates and ground elevations for TW series were provided by Parson) Entry Los Los <thlos< th=""> Los Los <thl< td=""><td>HB-OW-8D</td><td>1116709.3</td><td>925101.4</td><td>378.4</td><td>374.60</td><td>348.60</td><td>322.40</td><td>289.40</td><td>279.20</td><td>278.70</td><td><274.4</td><td><274.4</td><td>274.40</td><td>3.8</td><td>29.8</td><td>56</td><td>89</td><td>99.2</td><td>99.7</td><td>N/A</td><td>N/A</td><td>104</td></thl<></thlos<>	HB-OW-8D	1116709.3	925101.4	378.4	374.60	348.60	322.40	289.40	279.20	278.70	<274.4	<274.4	274.40	3.8	29.8	56	89	99.2	99.7	N/A	N/A	104
HB-TW-1 111761221 923847.26 369.8 364.30 - 435.8 - 435.8 - 435.8 - 435.8 - 435.8 - 55.8 NA	(coordinates a	and around elev	vations for TW	/ series were	e provided h	v Parsons)	0															
HB-TW-2 111637930 22761.80 364.3 384.30 382.50 <380.3 <380.3 380.30 O 11.8 N/A N/A N/A N/A <t< td=""><td>HB-TW-1</td><td>1117618.28</td><td>923847.26</td><td>369.8</td><td>364.30</td><td><355.8</td><td><355.8</td><td><355.8</td><td><355.8</td><td><355.8</td><td><355.8</td><td><355.8</td><td>355.80</td><td>5.5</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>14</td></t<>	HB-TW-1	1117618.28	923847.26	369.8	364.30	<355.8	<355.8	<355.8	<355.8	<355.8	<355.8	<355.8	355.80	5.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-TW-3 111592.20 92588.25 369 381.00 335.00 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <355 <357 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 </td <td>HB-TW-2</td> <td>1116379.93</td> <td>925761.80</td> <td>364.3</td> <td>364.30</td> <td>352 50</td> <td><350.3</td> <td><350.3</td> <td><350.3</td> <td><350.3</td> <td><350.3</td> <td><350.3</td> <td>350.30</td> <td>0</td> <td>11.8</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>14</td>	HB-TW-2	1116379.93	925761.80	364.3	364.30	352 50	<350.3	<350.3	<350.3	<350.3	<350.3	<350.3	350.30	0	11.8	N/A	N/A	N/A	N/A	N/A	N/A	14
HB:TW-4 1116712.70 925208.53 378.6 Orror	HB-TW-3	1115922 90	925858 25	369	361.00	357.00	<355	<355	<355	<355	<355	<355	355.00	8	12	N/A	N/A	N/A	N/A	N/A	N/A	14
HB-TW-5 1116083.20 926486.80 363 349.30 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 <347 </td <td>HB-TW-4</td> <td>1116712.70</td> <td>925208.53</td> <td>378.6</td> <td>001.00</td> <td>001100</td> <td>1000</td> <td>1000</td> <td>1000</td> <td></td> <td>omplete Bor</td> <td>ing, data mi</td> <td>ssing for to</td> <td>p 80 ft. This</td> <td>boring loca</td> <td>tion is close</td> <td>to HB-OW-</td> <td>08D</td> <td></td> <td></td> <td></td> <td></td>	HB-TW-4	1116712.70	925208.53	378.6	001.00	001100	1000	1000	1000		omplete Bor	ing, data mi	ssing for to	p 80 ft. This	boring loca	tion is close	to HB-OW-	08D				
Initial of the set of	HB-TW-5	1116083 20	926486.80	363	349.30	<347	<347	<347	<347	<347	<347	<347	347.00	13 7		N/A		N/A	N/A	N/A	N/A	16
BFMW-010 BFMW-020 BFMW-020 BFMW-020 BFMW-020 BFMW-030 BFMW-030 BFMW-030 BFMW-040 BFMW-040 BFMW-040 BFMW-045 BFMW-045 BFMW-045 BFMW-045 BFMW-045 BFMW-045 BFMW-045 BFMW-055 BFMW-065 BFMW-065 BFMW-065 BFMW-065 BFMW-065 Coordinates NA/Borings are on OBG's Fig. 1 Image: Coordinates NA/Borings Image: Coordinates NA/Boring Image: Coordinates NA/Boring Image: Coordinates NA/		1110000.20	020100.00	000	0 10.00			3011			1011		011100	10.1								10
BFMW-010 BFMW-02B BFMW-02B BFMW-02B BFMW-03B BFMW-04B BFMW-05B BFMW-05B <td>BEMW-01S</td> <td></td>	BEMW-01S																					
BFMW-01D BFMW-03B BFMW-02B Image: Coordinates NA/Borings are on OBC's Fig. 1 Image: Coordinates NA/Boring NA/Boring Are on OBC's Fig. 1 Image: Coordinates NA/Boring Are on OBC's Fig. 1 Image: Coordinates NA/Boring Are on OBC's Fig. 1 Image: Coordinates NA/Boring Are on OBC's Fig. 1 Image: Coordi	BFMW-01																					
BFMW-02B BFMW-030 BFMW-030 BFMW-040 BFMW-040 BFMW-040 BFMW-040 BFMW-040 BFMW-060 BFMW-060 BFMW-060 BFMW-060 BFMW-060 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMW-061 BFMM-07 Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo show	BEMW-01D									1										1		
BFMW-035 BFMW-035 BFMW-045 BFMW-045 BFMW-045 BFMW-046 BFMW-046 Coordinates N/Borings are on OBG's Fig. 1 I </td <td>BFMW-02B</td> <td></td>	BFMW-02B																					
BFMW-03 BFMW-045 BFMW-040 BFMW-040 BFMW-040 BFMW-050 BFMW-050 BFMW-050 BFMW-050 BFMW-050 BFMW-060 BFMM-060 BFMM-070 AVA Image: Construction of the state	BFMW-03S																					
BFMW-03D BFMW-04D BFMW-04D BFMW-04D Coordinates NA/Borings are on OBG's Fig. 1 Image: Coordinates NA/Borings are	BEMW-03L																					
BFMW-04S BFMW-04I BFMW-05S Coordinates NA/Borings are on OBG's Fig. 1 Image: Coordinates NA/Boring NA/BORINA/BORING NA/BORING NA/BORING NA/BORING NA/BORING NA	BFMW-03D																					
BFMV-04D BFMV-04D BFMV-04D BFMV-05D BFMV-06D	BFMW-04S																					
are on OBG's Fig. 1	BFMW-04I	Coordi	nates NA/Bo	rings																		
BFMW-05S BFMW-05I BFMW-05D Image: Constraint of the state of the stat	BFMW-04D	are	on OBG's Fig	j. 1																		
BFMW-05I BFMW-05D BFMW-06S Image: Constraint of the state of the stat	BFMW-05S																			1		
BFMW-05D BFMW-063 BFMW-061 BFMW-060 Image: Construct of the construction of the constructin of the construction of the construction of the constru	BFMW-05I																					
BFMW-06S BFMW-06I BFMW-06D BFMW-07 BFMW-06I Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in cluded in the topo shown on the boring location plan) Image: Coordinates and ground elevation is included in the topo shown on the boring location plan) Image: Coordinates and ground elevation is included in	BFMW-05D																					
BFMW-061 BFMW-06D BFMW-07 March Ma	BFMW-06S					1													1			
BFMW-06D BFMW-06D BFMW-07 Image: Constraint of the state of	BFMW-06					1													1			
BFMW-07 BFMW-07 Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: Coordinates and ground elevations included in the topo shown on the boring location plan) Image: Coordinates and ground elevations included in the topo shown on the boring location plan) Image: Coordinates and ground elevations included in the topo shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) Image: Coordinates and ground elevation shown on the boring location plan) <td>BFMW-06D</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	BFMW-06D					1													1			
(coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevations in blue were obtained from the topo shown on the boring location plan) Image: coordinates and ground elevation is included in the topo shown on the boring location plan) Image: coordinates and ground elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevation is included in the topo shown on the boring elevatine topoint elevation is included in the topo sho	BFMW-07																		1			
HB-HB-01D 1117455.00 924585.12 368.00 356.00 320.00 316.00 282.00 277.00 277.00 <276.5 276.5 276.50 12 48 52 86 91 91 N/A N/A 91.5 HB-HB-01S 1117453.46 924589.21 368.00 368.00 316.00 282.00 277.00 277.00 <276.5	(coordinates a	and ground elev	vations in blue	e were obtair	ned from the	e topo show	n on the bor	ing location	plan)						1		1		1			
HB-HB-01S 1117453.46 924589.21 368.00 Image: Constraint of the state o	HB-HB-01D	1117455.00	924585.12	368.00	356.00	320.00	316.00	282.00	277.00	277.00	<276.5	<276.5	276.50	12	48	52	86	91	91	N/A	N/A	91.5
HB-HB-02D 1116367.30 925743.10 365.77 364.77 351.77 327.77 <293.77 <293.77 <293.77 <293.77 293.77 1 1 14 38 N/A N/A N/A N/A N/A 72	HB-HB-01S	1117453.46	924589.21	368.00										Borina	information	is included	in HB-HB-0	1D (a deep	boring at ap	proximately	the same lo	ocation)
	HB-HB-02D	1116367.30	925743.10	365.77	364.77	351.77	327.77	<293.77	<293.77	<293.77	<293.77	<293.77	293.77	1	14	38	N/A	N/A	N/A	N/A	N/A	72

consultants

Written by:Ming ZhuDate:06/18/2008Reviewed by:Raja MadhyannapuDate:06/19/2008

59

Page

of 101

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

Boring ID	Northing	Easting	Ground Elevation (ft)	Bottom of Fill Elevation (ft)	Bottom of SOLW Elevation (ft)	Bottom of Marl Elevation (ft)	Bottom of Silt and Clay Elevation (ft)	Bottom of Silt and Sand Elevation (ft)	Bottom of Sand and Gravel Elevation (ft)	Bottom of Till Elevatioin (ft)	Bottom of Shale Elevation (ft)	End of Boring Elevation (ft)	Depth to Bottom of Fill (ft)	Depth to Bottom of SOLW (ft)	Depth to Bottom of Marl (ft)	Depth to Bottom of Silt and Clay (ft)	Depth to Bottom o Silt and Sand (ft)	Depth to f Bottom of Sand and Gravel (ft)	Depth to Bottom of Till (ft)	Depth to Bottom of Shale (ft)	Depth to End of Boring (ft)
HB-HB-02I	1116367.30	925743.10	365.77										Boring	information	is included	in HB-HB-0	2D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-02S	1116363.20	925739.20	365.91										Boring	information	is included	in HB-HB-0	2D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-03S	1117620.07	923856.38	370.00	366.00	354.00	<352	<352	<352	<352	<352	<352	352.00	4	16	N/A	N/A	N/A	N/A	N/A	N/A	18
HB-HB-04D	1115915.01	925879.18	368.36	352.36	352.36	328.36	280.36	272.06	<270.86	<270.86	<270.86	270.86	16	16	40	88	96.3	N/A	N/A	N/A	97.5
HB-HB-04S	1115920.24	925886.19	368.09							Boring N/A	4			-	-						
HB-HB-05D	1116715.20	925256.30	378.00	378.00	327.00	314.00	278.00	274.00	274.00	<268	<268	268.00	0	51	64	100	104	104	N/A	N/A	110
HB-HB-05I	1116728.20	925256.10	378.00										Borina	information	is included	in HB-HB-0	5D (a deep	boring at an	proximately	the same l	ocation)
HB-HB-05S	1116724.20	925255.20	378.00	1		1	1	1					Boring	information	is included	in HB-HB-0	5D (a deep	boring at an	proximately	the same l	ocation)
HB-HB-06S	1116225.60	926185.00	363.90	351.90	337.90	<329.9	<329.9	<329.9	<329.9	<329.9	<329.9	329.90	12	26	N/A	N/A	N/A	N/A	N/A	N/A	34
HB-HB-07S	1114938.87	925295.14	377.66	377.66	377.66	377.66	377.66	372.76	372.76	<369.66	<369.66	369.66	0	0	0	0	4.9	4.9	N/A	N/A	8
HB-HB-08D	1115476.36	925459.35	373.23	367.33	359.73	351.63	309.23	308.63	308.63	306.23	<305.73	305.73	5.9	13.5	21.6	64	64.6	64.6	67	N/A	67.5
HB-HB-08I	1115476.52	925464.86	373.17										Borina	information	is included	in HB-HB-0	8D (a deep	boring at an	proximately	the same l	ocation)
HB-HB-08S	1115482.95	925460.32	373.28										Boring	information	is included	in HB-HB-0	8D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-09S	1115732.37	924388.96	382.92	373.92	369.42	369.42	369.42	364.92	363.42	<361.12	<361.12	361.12	9	13.5	13.5	13.5	18	19.5	N/A	N/A	21.8
HB-HB-10	1116421.43	924195.32	394.74	388.24	359.74	<348.74	<348.74	<348.74	<348.74	<348.74	<348.74	348.74	6.5	35	N/A	N/A	N/A	N/A	N/A	N/A	46
HB-HB-11I										Boring N/A	4									-	
HB-HB-11D	1116271.90	924507.40	392.12	386.12	356.52	347.12	331.02	331.02	328.12	<326.12	<326.12	326.12	6	35.6	45	61.1	61.1	64	N/A	N/A	66
HB-HB-11S										Boring N/A											
HB-HB-12D	1115893.40	925070.80	390.00	384.90	354.40	339.40	302.00	302.00	302.00	<300.2	<300.2	300.20	5.1	35.6	50.6	88	88	88	N/A	N/A	89.8
HB-HB-12I	1115893.40	925070.80	390.00										Boring	information	is included	in HB-HB-1	2D (a deep	boring at an	proximately	the same l	ocation)
HB-HB-12S	1115893.40	925070.80	390.00										Boring	information	is included	in HB-HB-1	2D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-13D	1115722.90	925156.00	390.00	371.40	362.10	347.00	306.90	306.90	304.90	<304	<304	304.00	18.6	27.9	43	83.1	83.1	85.1	N/A	N/A	86
HB-HB-14D	1115838.59	924711.95	391.15												•	This boring	is same as	s HB-GP-35			
HB-HB-14S	1115839.37	924712.73	391.18										Boring	information	is included	in HB-HB-1	4D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-15	1116076.70	924023.90	390.00	385.00	378.00	378.00	378.00	378.00	378.00	<376.6	<376.6	376.60	5	12	12	12	12	12	N/A	N/A	13.4
HB-HB-16D	1116123.40	925489.60	379.05	377.05	351.05	337.25	288.05	275.05	272.45	<271.05	<271.05	271.05	2	28	41.8	91	104	106.6	N/A	N/A	108
HB-HB-17D	1116031.40	924853.10	391.83	389.83	354.03	336.33	316.13	316.13	316.13	<314.33	<314.33	314.33	2	37.8	55.5	75.7	75.7	75.7	N/A	N/A	77.5
HB-HB-18S	1115851.02	926311.70	363.99	354.99	354.99	<325.99	<325.99	<325.99	<325.99	<325.99	<325.99	325.99	9	9	N/A	N/A	N/A	N/A	N/A	N/A	38
HB-HB-19S	1115997.80	926203.30	363.82	352.32	347.82	328.02	<327.82	<327.82	<327.82	<327.82	<327.82	327.82	11.5	16	35.8	N/A	N/A	N/A	N/A	N/A	36
HB-HB-20D	1116106.00	926478.30	363.28	347.78	347.78	317.28	241.28	237.78	229.78	<227.78	<227.78	227.78	15.5	15.5	46	122	125.5	133.5	N/A	N/A	135.5
HB-HB-20I	1116105.10	926483.40	363.33										Boring	information	is included	in HB-HB-2	0D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-20S	1116104.20	926488.40	363.37										Boring	information	is included	in HB-HB-2	0D (a deep	boring at ap	proximately	the same l	ocation)
HB-HB-21I	1115395.66	925711.82	376.61	357.61	357.61	341.11	<340.61	<340.61	<340.61	<340.61	<340.61	340.61	19	19	35.5	N/A	N/A	N/A	N/A	N/A	36
HB-WA-08S	1116716.90	924708.10	381.28										Boring	information	is included	in HB-WA-0	8D (a deep	boring at a	oproximately	the same l	ocation)
HB-WA-08D	1116702.90	924706.30	381.06	381.06	355.26	337.06	321.06	307.06	303.56	<301.06	<301.06	301.06	0	25.8	44	60	74	77.5	N/A	N/A	80
HB-WA-08I	1116705.10	924717.30	381.03										Boring	information	is included	in HB-WA-0)8D (a deep	boring at a	oproximately	/ the same I	ocation)
HB-WA-1D																					
HB-WA-3S	Coordinat	es NA/Boring	s are on																		
HB-WA-3D	(DBG's Fig. 1																			
HB-WA-3I																					
HB-HBW-01	1116387.01	925845.23	364.00	360.00	354.00	<334	<334	<334	<334	<334	<334	334.00	4	10	N/A	N/A	N/A	N/A	N/A	N/A	30
HB-HBW-02	1116140.61	925817.26	365.12	361.12	349.12	<333.12	<333.12	<333.12	<333.12	<333.12	<333.12	333.12	4	16	N/A	N/A	N/A	N/A	N/A	N/A	32
HB-HBW-03	1116186.50	926023.60	363.65	359.65	353.65	<331.65	<331.65	<331.65	<331.65	<331.65	<331.65	331.65	4	10	N/A	N/A	N/A	N/A	N/A	N/A	32
HB-HBW-04	1116238.97	925915.78	363.88	357.88	350.88	<331.88	<331.88	<331.88	<331.88	<331.88	<331.88	331.88	6	13	N/A	N/A	N/A	N/A	N/A	N/A	32
HB-HBW-06	1117410.13	924727.74	365.50	363.50	323.50	<319.5	<319.5	<319.5	<319.5	<319.5	<319.5	319.50	2	42	N/A	N/A	N/A	N/A	N/A	N/A	46
						-		-					I								-
WA-SB-29	1117727.41	923377.10	369.3	361.30	353.30	338.30	<336.3	<336.3	<336.3	<336.3	<336.3	336.30	8	16	31	N/A	N/A	N/A	N/A	N/A	33

0 200' SCALE IN FEET Geosyntec ^D consultants DATE: 13 MAY 2008 SCALE: PROJECT NO. GJ4194 PEEF NO. DOCUMENT NO. PROJEC NO.	400' KENNESAW, GA 1" = 200' GJ4194F0010 9

- N -	
0 200' SCALE IN FEET	400'
Consultants DATE: 13 MAY 2008 SCALE: PROJECT NO. GJ4194 FIF NO. DOCUMENT NO. FIGURE NO	KENNESAW, GA 1" = 200' GJ4194F0002 . 1

-N-	
©200' SCALE IN FEET Geosyntec♥	40°

KENNESAW, GA TE: 13 MAY 2008 SCALE: OJECT NO. GJ4194 FILE NO. 1" = 200' GJ4194F0004

-N-	
Consultants	400° KENNESAW, GA

0 200' 400' SCALE IN FEET Geosyntec ⁰ consultants KENNESAW, GA DATE: 13 MAY 2008 SCALE: 1" = 200' PROJECT NO. GJ4194 FILE NO. GJ4194F0006 DOCIMENT NO. DOCIMENT NO. FRGURE NO. 5

-	N-	
	Í	
	'	
0 20	0' 400'	
SCALE I	N FÉLI	
Geosyntec		
consultants	KENNESAW, GA	
DATE: 13 MAY 2008	SCALE: 1" = 200'	
PROJECT NO. GJ4194 DOCUMENT NO	FILE NO. GJ4194F0007 FIGURE NO. 6	
	~	

- N -	
Consultants DATE: 13 MAY 2008 SCALE: PROJECT NO. GJ4194 PILE NO. DOCUMENT NO. FIGURE NO	400° KENNESAW, GA 1° = 200° GJ4194F0008 2. 7

-	N-
0 20 SCALE	0' 400'
	KENNESAW, GA
DATE: 13 MAY 2008 PROJECT NO. GJ4194	SCALE: 1" = 200' FILE NO. GJ4194F0009
DOCUMENT NO.	

consultants

							Page		69	of	101
Written b	y: <u>M</u> i	ing Zhu	Date:	06/18/2008	Reviewed	by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project	/ Proposal No.:	GJ4204	Task	No.:	01

ATTACHMENT 2 Summary Tables of Lab Testing Results for ILWD

(Provided to Geosyntec by Parsons)

GA080480 Appendix A_Data Package_Final.doc

consultants

					Page		70	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

Phase I Investigation

consultants

				Page	71	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008 Revie	wed by: Raja Madhyannapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD Stability	y Project/ Proposal No.: GJ4204	Task	No.:	01

Onondaga Lake Pre-Design Investigation Phase I Geotechnical Data Summary - Table Index Syracuse, New York

Table Number	Content
Table 1	Index Test Results
Table 2	Bulk Density Results
Table 3	Consolidation Test Results
Table 4	Unconsolidated Undrained Test Results
Table 5	Consolidated Undrained Test Results

					Page		72	of	101
Written b	oy: <u>M</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD St	ability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

							Grain S	ize (ASTM D 422)		Atterberg	Limits (AS1	M D 4318)	Organic	Specific	Carbonate
Location ID	Field	Depth	Average	Water Content	Percent	Percent	Percent Fines	Clay-sized Particle	Clay-sized Particle	Liquid	Plastic	Plasticity	Content	Gravity	Content
	Sample ID	-	Depth	(ASTM D 2216)	Gravel	Sand	(clay & silt)	Content (0.005 mm)	Content (0.002 mm)	Limit	Limit	Index	(ASTM D 2974)	(ASTM D 854)	(ASTM D 4373)
	-	(ft)	(ft)	(%)	(%)	(%)	(%)	(%)	(%)				(%)	. ,	(%)
OL-STA-10001-VC	OL-0118-14	0-3.3 Ft	1.65	160	0.1	1.4	98.5	14	9	102	32	70	7	2.37	
OL-STA-10001-VC	OL-0118-15	6.6-9.9 Ft	8.25	133	0	3.9	96.1	24	17	82	28	54	9	2.72	
OL-STA-10002-VC	OL-0118-09	3.3-6.6 Ft	4.95	203	0	3.1	96.9	39	16	90	41	49	8.7	2.5	52
OL-STA-10003-VC	OL-0118-16	0-3.3 Ft	1.65	137	0	1.6	98.4	25	11	76	35	41	3.2	2.75	61
OL-STA-10003-VC	OL-0118-17	9.9-13.2 Ft	11.55	166	0	2	98	29	10	86	39	47	6.6	2.59	70
OL-STA-10004-VC	OL-0118-18	3.3-6.6 Ft	4.95	233	0.1	2.3	97.6	12	9	94	41	53	4.5	2.53	70
OL-STA-10004-VC	OL-0118-19	9.9-13.2 Ft	11.55		0.1	1.4	98.5	9	6						
OL-STA-10005-VC	OL-0118-20	0-3.3 Ft	1.65	178	0	2.4	97.6	17	11	114	53	61	2.9	2.38	52
OL-STA-10005-VC	OL-0118-21	9.9-13.2 Ft	11.55		0	0.2	99.8	38	16						
OL-STA-10006-VC	OL-0118-22	0-3.3 Ft	1.65	150	0	9.6	90.4	25	17	105	30	75	7.9	2.59	
OL-STA-10006-VC	OL-0118-23	6.6-9.9 Ft	8.25	160	0	3.2	96.8	19	10	100	36	64	7	2.71	
OL-STA-10007-VC	OL-0118-07	3.3-6.6 Ft	4.95	141	0	2.6	97.4	13	7	75	43	32	5.8	2.62	70
OL-STA-10007-VC	OL-0118-08	9.9-13.2 Ft	11.55	010	0	0.7	99.3	18	/	440	50		0.4	0.50	70
OL-STA-10008-VC	OL-0118-01	6.6-9.9 Ft	8.25	219	0.1	0.5	99.4	43	21	119	53	66	6.4	2.52	70
OL-STA-10008-VC	OL-0118-02	13.2-16.5 Ft	14.85	4.40	0	0.1	99.9	48	24	74	25	20	5.0	0.47	70
OL-STA-10009-VC	OL-0118-10	0.0-9.9 Ft	8.20 14.95	143	0	9.9	90.1	24	12	74	35	39	5.9	2.47	70
OL-STA-10009-VC	OL-0118-11	3266Et	14.05	80	0.2	22.0	97.2 65.0	16	0	59	42	16	6.0	2 /1	61
OL-STA-10010-VC	OL-0118-13	9.9-13.2 Ft	4.95	09	0.2	3.4	96.5	24	10	50	42	10	0.9	2.41	01
OL-STA-10010-VC	OL-0118-03	6.6-9.9 Ft	8.25	100	0.1	J. 4	96	24	10 Q	100	30	61	63	2 30	61
OL-STA-10011-VC	OL-0118-04	13 2-16 5 Ft	14.85	155	0	4.5	95.5	37	15	100		01	0.0	2.55	01
OL-STA-10012-VC	OL-0118-05	3 3-6 6 Ft	4 95	123	0	9.3	90.7	13	6	68	40	28	4.6	2 43	52
OL-STA-10012-VC	OL-0118-06	13.2-16.5 Ft	14.85	120	0.1	0.8	99.1	17	7	00		20		2.10	02
OL-STA-10013-SB	OL-0111-01	5-7 Ft	6	79											
OL-STA-10013-SB	OL-0110-01	7-9 Ft	8	165	0	1.6	98.4	36	17	89	47	42			91
OL-STA-10013-SB	OL-0111-02	10-12 Ft	11	67											
OL-STA-10013-SB	OL-0110-02	12-14 Ft	13	278	0	2.1	97.9	51	22		NP		7.2	2.58	83
OL-STA-10013-SB	OL-0111-03	15-17 Ft	16	142											
OL-STA-10013-SB	OL-0111-04	20-22 Ft	21	89											
OL-STA-10013-SB	OL-0111-05	25-27 Ft	26	158	0	2.6	97.4	21	12	92	42	50	10.6	2.57	96
OL-STA-10013-SB	OL-0111-06	30-32 Ft	31	40											
OL-STA-10013-SB	OL-0111-07	35-37 Ft	36	76											
OL-STA-10013-SB	OL-0110-04	37-39 Ft	38	95	0	0.5	99.5	60	41	81	34	47			52
OL-STA-10013-SB	OL-0110-05	41-43 Ft	42	79	0	0.3	99.7	55	35	83	35	48	3.1	2.61	
UL-STA-10013-SB	UL-0111-08	43-45 Ft	44	45											
OL-STA-10014-SB	OL-0111-09	0-2 Ft	1	87											
OL-STA-10014-SB	OL-0111-10	8-10 Ft	9 12 5	141											
OL-STA-10014-SB	OL-0111-11	12.5-14.5 Ft	13.5	123											
OL-STA-10014-SB	01.0110.07	10.5-19.0 Ft	20.5	100	0	1.6	08.4	20	15	121	45	76			06
OL-STA-10014-SB	01-0111-12	23-25 Ft	20.5	73	U	1.0	90.4	30	10	121	40	10			90
OL-STA-10014-3B	01-0111-14	23-23 Ft	24	73											
OL-STA-10014-SB	01-0111-15	32 5-34 5 Ft	33.5	48											
OL-STA-10014-SB	OL-0110-08	34 5-36 5 Ft	35.5	175	0	16	98.4	40	22		NP		5.8	2 65	91
OL-STA-10014-SB	OL-0111-16	40-42 Ft	41	99		1.0	00.4	VT	~~~				0.0	2.00	
OL-STA-10014-SB	OL-0111-17	44-46 Ft	45	38											

Table 1

consultants

											Page		73	of 101		
	W	/ritten by:		Ming Zhu	l	Date	06/18/20	08 Reviewed	l by:	Raja Ma	adhyanna	ւթս	Date:	06/19/2008	_	
	C	lient:	Honeywe	ell Proje	ct:	Onondaį	ga Lake ILV	VD Stability	Projec	ct/ Proposal	l No.:	G J420 4	Task	No.: 01	_	
OL STA 10014 SB C	0110.00	46 49 Et	47	175	0	0.1	00.0	40		20	77	21	46	2.7	2.7	50
OL STA 10014-3B	DL-0110-09	40-40 FL	47	72	0	0.1	99.9	52	-	40	95	34	40	3.7	2.1	52
OL STA 10014-SB C	0111118	50.52 Et	45	72	0	0.5	55.7	55	-	40		54	51		2.75	
OL-STA-10014-3B	01-0110-64	11 5-13 5 Ft	125	190	0.1	1	08.0	11		5	79	48	31		2.54	
OL-STA-10015-SB	DL-0110-65	15.5-17.5 Fi	t 16.5	259	0.1	3	97	28	-	15	138	51	87		2.54	
OL-STA-10015-SB	0110-68	36.5-38.5 Ft	10.5	83	0	0.3	99.7	/1		23	01	47	44		2.6	
OL-STA-10015-SB	DL-0110-69	38 5-40 5 Ft	t 39.5	86	0	0.5	99.6	47		30	97	37	60		2.0	
OL-STA-10016-SB)L-0111-20	0-2 Ft	1	124	0	1	99	27	_	10	60	38	22		2 34	
OL-STA-10016-SB)L-0111-21	5-7 Ft	6	61	Ŭ	· ·	00	21		10	00	00			2.04	
OL-STA-10016-SB)L-0111-22	10-12 Ft	11	75												
OL-STA-10016-SB	01-0110-12	12-14 Ft	13	143	0	14	98.6	19		11	101	47	54		2.56	100
OL-STA-10016-SB)L-0111-23	15-17 Ft	16	122	0	1.4	00.0	10			101	-17	04		2.00	100
OL-STA-10016-SB)L-0111-24	20-22 Ft	21	171		-							-			
OL-STA-10016-SB)L-0110-14	22-24 Ft	23	110	0	19	98.1	15		6	62	40	22			100
OL-STA-10016-SB)L-0111-25	25-27 Ft	26	84	Ŭ	1.0	50.1	10		0	02	40				100
OL-STA-10016-SB)L-0111-26	30-32 Ft	31	72												
OL-STA-10016-SB)L-0111-27	35-37 Ft	36	76		-								<u> </u>		
OL-STA-10016-SB	0110-15	37-39 Ft	38	87	0	12	08.8	47		31	111	12	69	8.8	2.6	13
OL-STA-10016-SB)L-0110-16	30-/11 Ft	40	7/	0	0.6	90.0	53		33	96	30	57	0.0	2.0	45
OL-STA-10017-SB)L-0111-28	0-2 Ft	1	229	0	1.3	98.7	30		23	100	37	63		2 38	
OL-STA-10017-SB	01111-20	6-8 Ft	7	00	0	1.0	50.7	00		20	100	01	00		2.00	
OL-STA-10017-SB)L-0111-30	11-13 Ft	12	148		-					-		-			
OL-STA-10017-SB	0110-17	13-15 Ft	14	106	0	1.6	98.4	32		12	58	40	18	3.4	2.54	96
OL-STA-10017-SB)L-0111-31	16-18 Ft	17	69	0	1.0	30.4	52		14	50	40	10	3.4	2.54	30
OL-STA-10017-SB	01111-32	21-23 Ft	22	87												
OL-STA-10017-SB	01111-32	26-28 Ft	27	110	0.4	2.8	96.8	45		20	107	41	66		2.64	
OL-STA-10017-SB	0L-0110-20	28-30 Ft	20	90	0.4	0.8	90.0	45	-	20	101	40	61	7	2.04	13
OL-STA-10017-SB)L-0110-21	20-30 Ft	23	90	0	1.5	98.5	51		32	89	36	53	· · ·	2.05	45
OL-STA-10017-SB	DL-0110-21	34-36 Ft	35	73	0	1.5	30.5	51	-	52	0.5					
OL-STA-10018-SB	01-0111-34	0-2 Ft	1	121	+	+			-		+		1	<u> </u>		
OL-STA-10018-SB	DL-0111-36	6-8 Ft	7	73		-			-		-		-			
OL-STA-10018-SB)L-0110-23	8-10 Ft	9	158	0	15.2	84.8	32	_	16	128	67	61	10.7		100
OL-STA-10018-SB)L-0111-37	11-13 Ft	12	124	v	10.2	04.0	02		10	120	01	01	10.7		100
OL-STA-10018-SB	01111-38	16-18 Ft	17	87												
OL-STA-10018-SB)L-0111-30	21-23 Ft	22	50												
OL-STA-10018-SB	0111-40	26-28 Ft	27	50												
OL-STA-10018-SB	DL-0111-40	31-33 Ft	32	83	0	43	95.7	35		24	86	32	54			70
OL-STA-10018-SB	0111-42	35-37 Ft	36	50	0	2.8	97.2	64		/3	67	30	37			96
OL-STA-10018-SB	01-0110-26	37-39 Ft	38	50	0	0.7	99.3	67		40	60	35	25	5.6	2.68	87
OL-STA-10018-SB	0118-26	41-43 Ft	42	46	0	0.2	99.8	59	-	39	48	19	29	0.0	2.00	07
OL-STA-10018-SB) -0110-27	48-50 Ft	49	34	0	0.2	99.5	51		32	33	18	15	0.6	2 79	9
OL-STA-10018-SB	0110-27	52-54 Ft	53	34	0	0.5	00.0	66	-	18	36	16	20	0.0	2.13	3
OL-STA-10010-3B	01.0111.45	0-2 Ft	1	71	0	0.1	33.3	00	-	- 1 0		10	20	├		
OL-STA-10019-SB	01-0111-46	5-7 Ft	6	151	+	+			-		+		1			
OL-STA-10019-SB	01-0110-20	75-95 Ft	85	124	0	27	97.3	31	-	14	73	35	38	5.4	2 4 2	87
OL-STA-10019-SB	01-0111-47	10.5-12.5 Fi	115	168		2.1	31.5	51	-	7	,,,			5.7	2.72	07
02 0TA-10010-00 C		10.0-12.01	11.5	100	1											

consultants

					Page		74	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honevwell	Project:	Onondaga Lake ILWD S	Stability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

OL-STA-10019-SB OL-0110-30 12.5-14.5 Ft 13.5 158 0.2 15.7 84.1 31 10 95 57 38 OL-STA-10019-SB OL-0111-48 15.5-17.5 Ft 16.5 121 OL-STA-10019-SB OL-0111-49 20.5-22.5 Ft 208 21.5 126 OL-STA-10019-SB OL-0111-50 25.5-27.5 Ft 26.5 OL-STA-10019-SB OL-0111-98 27.5-29.5 Ft 28.5 151 OL-STA-10019-SB OL-0111-51 35.5-37.5 Ft 36.5 62 0 1.3 98.7 52 33 78 32 46 61 OL-STA-10019-SB OL-0111-52 40.5-42 Ft 41.25 50 0 0.6 99.4 64 42 71 30 41 65 OL-STA-10019-SB OL-0111-53 45.5-47 Ft 46.25 34 0 0.3 99.7 56 26 67 32 35 65 OL-STA-10019-SB OL-0111-54 50.5-52.5 Ft 39 51.5 OL-STA-10019-SB OL-0111-55 55.5-57.5 Ft 28 56.5 OL-STA-10019-SB OL-0110-32 59.5-61.5 Ft 42 60.5 0 0.1 99.9 62 43 50 20 30 2.78 OL-STA-10019-SB OL-0110-33 61.5-63.5 Ft 62.5 27 0 0.1 99.9 54 40 47 18 29 OL-STA-10019-SB OL-0111-56 63.5-65.5 Ft 23 64.5 OL-STA-10020-SB OL-0111-57 19 0-2 Ft 1 OL-STA-10020-SB OL-0111-58 5-7 Ft 6 3 OL-STA-10020-SB OL-0111-59 10-12 Ft 11 111 OL-STA-10020-SB OL-0110-34 12-14 Ft 13 330 0 6.6 93.4 16 9 NP 7.4 2.64 OL-STA-10020-SB OL-0111-60 15-17 Ft 16 249 OL-STA-10020-SB OL-0110-35 17-19 Ft 18 247 0 1.4 98.6 36 13 106 75 31 OL-STA-10020-SB OL-0111-61 21 253 20-22 Ft OL-STA-10020-SB OL-0110-36 22-24 Ft 23 441 0.1 99.9 74 41 NP 0 452 OL-STA-10020-SB OL-0111-62 25-27 Ft 26 172 OL-STA-10020-SB OL-0111-63 30-32 Ft 31 OL-STA-10020-SB OL-0111-64 35-37 Ft 36 118 OL-STA-10020-SB OL-0111-65 40-42 Ft 41 67 OL-STA-10020-SB OL-0111-66 45-47 Ft 46 63 OL-STA-10020-SB OL-0111-67 50-52 Ft 50 51 OL-STA-10020-SB OL-0111-68 45 55-57 Ft 56 39 OL-STA-10020-SB OL-0110-38 59-61 Ft 60 0 0.1 99.9 59 38 35 19 16 34 OL-STA-10020-SB OL-0110-39 62-64 Ft 63 43 0 0.1 99.9 69 50 20 14 2.7 2.76 OL-STA-10020-SB OL-0111-69 64-66 Ft 65 20 OL-STA-10021-SB OL-0111-70 133 0-2 Ft 1 OL-STA-10021-SB OL-0111-71 6.5-8.5 Ft 101 7.5 OL-STA-10021-SB OL-0111-72 11.5-13.5 Ft 12.5 188 OL-STA-10021-SB OL-0110-40 13.5-15.5 Ft 14.5 201 0 4.1 95.9 38 20 110 47 63 OL-STA-10021-SB OL-0111-73 16-18 Ft 17 96 29 100 OL-STA-10021-SB OL-0110-41 18-20.5 Ft 19.25 118 0 3.1 96.9 9 87 42 45 5.5 2.53 OL-STA-10021-SB OL-0111-74 22-24 Ft 23 87 OL-STA-10021-SB OL-0111-75 26-28 Ft 27 85 OL-STA-10021-SB OL-0111-76 31.5-33.5 Ft 180 32.5 OL-STA-10021-SB OL-0111-77 36.5-38.5 Ft 37.5 81 OL-STA-10021-SB OL-0111-78 41-43 Ft 42 59 52 OL-STA-10021-SB OL-0111-79 47-49 Ft 48 OL-STA-10021-SB OL-0111-80 51.5-53.5 Ft 52.5 42 OL-STA-10021-SB OL-0111-81 56-58 Ft 57 31 64.5 OL-STA-10021-SB OL-0111-82 63.5-65.5 Ft 37 OL-STA-10021-SB OL-0110-43 65.5-67.5 Ft 66.5 57 0 0.2 99.8 59 43 41 37 4 3.3 2.73 52 99.7 29 33 OL-STA-10021-SB OL-0110-44 67.5-69.5 Ft 0 0.3 70 50 62 68.5 OL-STA-10021-SB OL-0111-83 71.5-73.5 Ft 72.5 18 OL-STA-10022-SB OL-0111-84 0-2 Ft 1 151 OL-STA-10022-SB OL-0110-45 12-14 Ft 13 157 0.1 1.7 98.2 15 106 55 51 5.1 2.58 87 36 OL-STA-10022-SB OL-0110-46 18 112 93.1 33 13 112 45 67 17-19 Ft 0 6.9 OL-STA-10022-SB OL-0110-49 64-66 Ft 65 60 0 0.1 99.9 62 42 66 32 34

GA080480 Appendix A Data Package Final.doc

consultants

											Page		75	of 101		
	V	Written by	/:	Ming Z	hu	Date	: 06/18/20	008 Reviewe	d by:	Raja N	ladhyann	apu	Date:	06/19/2008	_	
	(Client:	Honeyw	ell Pro	oject:	Ononda	ga Lake IL	WD Stability	Project	/ Proposa	al No.:	GJ4204	Task	No.: 01	_	
OL-STA-10022-SB	01-0110-50	66-68 Et	67	46	0	0.3	99.7	55		33	63	32	31	113	2.67	
OL-STA-10022-SB	OL-0071-54	0-2 Ft	1	173	0	35.4	64.6	17		7		NP	51	8.3	2.61	70
OL-STA-10023-SB	OL-0071-55	5 6-8 Ft	7	99												
OL-STA-10023-SB	OL-0071-56	6 11-13 Ft	12	73												
OL-STA-10023-SB	OL-0052-06	6 13-15 Ft	14	81	0	0.5	99.5	17		6		NP		4.8	2.34	78
OL-STA-10023-SB	OL-0071-57	7 16-18 Ft	17	85		_										
OL-STA-10023-SB	OL-0071-58	21-23 FL	22	106		_										
OL-STA-10023-SB	OL-0071-60	36-38 Ft	37	88		-										
OL-STA-10023-SB	OL-0071-61	41-43 Ft	42	88												
OL-STA-10023-SB	OL-0071-62	2 46-48 Ft	47	74												
OL-STA-10023-SB	OL-0052-04	50-52 Ft	51	71	0	0.2	99.8	31		21	91	39	52	7.5	2.65	35
OL-STA-10023-SB	OL-0071-65	5 54-56 Ft	55	65												
OL-STA-10024-SB	OL-0071-66	6 0-2 Ft	1	100							_					
OL-STA-10024-SB	OL-0071-67	5-7 Ft	6	67	0	C1	20	10		7	400	<u> </u>	55	5.0	2.54	64
OL-STA-10024-SB	OL-0071-68	9-11FL	10	230	0	61	39	12		1	123	68	55	5.9	2.54	01
OL-STA-10024-SB	OL-0071-08	7 15-17 Ft	16	124	0	13.2	86.8	24		11	83	63	20	67	2 48	78
OL-STA-10024-SB	OL-0071-70) 18-20 Ft	19	156		1012	00.0							0.1	2.10	
OL-STA-10024-SB	OL-0071-71	23-25 Ft	24	127												
OL-STA-10024-SB	OL-0071-72	2 28-30 Ft	29	130												
OL-STA-10024-SB	OL-0052-09	30-32 Ft	31	146	0	0.2	99.8	30		8	156	69	87	8	2.52	83
OL-STA-10024-SB	OL-0071-73	3 33-35 Ft	34	81		_										
OL-STA-10024-SB	OL-0071-74	38-40 Ft	39	88		_										
OL-STA-10024-SB	OL-0071-75	43-45 Ft	44	105		_										
OL-STA-10024-SB	OL-0071-77	5 40-50 Ft	- 49 - 54	64		-										
OL-STA-10024-SB	OL-0071-78	58-59.5 F	t 58.75	59												
OL-STA-10024-SB	OL-0052-12	2 64-66 Ft	65	70	0	1.2	98.8	39		26	90	40	50	6.8	2.66	48
OL-STA-10025-SB	OL-0071-31	0-2 Ft	1	157	0	2.6	97.4	21		10		NP		5	2.39	83
OL-STA-10025-SB	OL-0052-13	3 7-9 Ft	8	178	0	4.5	95.5	26		8		NP		7.6	2.43	87
OL-STA-10025-SB	OL-0071-32	2 15-17 Ft	16	206												
OL-STA-10025-SB	OL-0071-33	3 20-22 Ft	21	152		_										
OL-STA-10025-SB	OL-0071-34	25-27 Ft	26	103		_							-			
OL-STA-10025-SB	OL-0071-30	35-37 Ft	36	185		-										
OL-STA-10025-SB	OL-0071-37	40-42 Ft	41	100		-			-							
OL-STA-10025-SB	OL-0071-38	3 45-47 Ft	46	77												
OL-STA-10025-SB	OL-0071-39	9 50-52 Ft	51	77												
OL-STA-10025-SB	OL-0052-16	52-54 Ft	53	67	0	0.5	99.5	36		24	94	38	56	3.6	2.61	43
OL-STA-10025-SB	OL-0071-40) 55-57 Ft	56	69												
OL-STA-10025-SB	OL-0071-41	60-62 Ft	61	69	01.7	10.0	04.4	45		7		07	00	5.0	0.40	05
OL-STA-10026-SB	OL-0071-79	9 5-7 Ft	6	84	21.7	13.9	64.4	15		1	93	67	26	5.3	2.42	65
OL-STA-10026-SB	OL-0052-19) /-9 Ft) 11₋12 ⊑+	0 12	102	0	5.1	94.9	19		U		NP	1	1.2	2.04	83
OL-STA-10026-SB	OL-0071-81	16-18 Ft	17	85										+ +		
OL-STA-10026-SB	OL-0071-82	2 21-23 Ft	22	95												1
OL-STA-10026-SB	OL-0071-83	26-28 Ft	27	123									1			
OL-STA-10026-SB	OL-0071-84	31-33 Ft	32	89												
OL-STA-10026-SB	OL-0071-85	5 36-38 Ft	37	97												
OL-STA-10026-SB	OL-0071-86	6 41-43 Ft	42	96		_						ļ	I	ļ ļ		
UL-STA-10026-SB	OL-0071-87	46-48 Ft	47	74		0.0	00.7	40		25		44	40	E 7	2.50	40
0L-STA-10026-SB	UL-0052-22	2 00-52 Ft	51	/1	U	0.3	99.7	40		20	90	41	49	ə./	2.59	43

GA080480 Appendix A_Data Package_Final.doc

consultants

78

									Page		76	of 101	
	Written by:		Ming Zhu		Date:	06/18/20	008 Reviewed	l by: Raja M	adhyanı	napu	Date:	06/19/2008	<u>}</u>
	Client: I	loneywe	ell Projec	et:	Onondag	a Lake IL	WD Stability	Project/ Proposa	l No.:	GJ4204	Task	No.: 01	_
	20.07 00.00 Ft	04	<u></u>	0	24.5	<u> </u>	20	20		07	00	0.0	
OL-STA-20001-SB OL-007	2-07 20-22 FL	45.0	20	0	34.5	00.0	20	20	27	37	23	2.3	
OL-STA-20001-SB OL-007	72-09 44.9-40.9 Ft	45.9	29	0	0.1	99.9	30	30	21	10		2	2.65
OL-STA-20001-VC OL-007	71.02 12.2.16.5 Et	14.95	65	0	30.3	80.0	20	12	-			1.5	2.00
OL-STA-20002 VC OL-007	1 02 3 2 6 6 Et	4.05	80	0	12.9	97.2	10	5	65	41	24	1.5	2.26
OL-STA-20002-VC OL-007	71 04 12 2 16 F Et	4.95	104	0	11.0	07.2	10	10	00	20	40	4.4	2.30
OL-STA-20002-VC OL-007	1-04 13.2-10.3 Ft	21.05	61	0	11.3	00.7	52	22	52	39	49	7.2	2.30
OL-STA-20002-VC OL-009	20.3-23.011	21.95	26	0	20	07.1	32	10		NP	12	1.2	
OL-STA-20002-VC OL-008	71.05 66.0.0 Et	9.25	107	0	2.9	97.1	23	19	00	20	40	1.2	2.24
OL-STA-20003-VC OL-007	71.06 12.2.16.5 Et	14.95	79	0	29.6	71 /	17	0	00	NP	49	3.2	2.34
OL-STA-20003-VC OL-007	71-07 16 5-17 5 Ft	14.05	96	0	20.0	96.6	17	10	83	3/	30	3.0	2.02
OL-STA-20003-VC OL-007	1-07 10.3-17.311	29.55	52	0	1.4	90.0	62	20	56	42	14	6.4	
OL-STA-20003-VC OL-009	05-03 20.9-30.2 Ft	20.55	16	0	0.5	90.0	27	39	24	42	0	0.4	
OL-STA-20003-VC OL-003	72.01 12.14 Et	12	10	0	0.5	99.5	12	20	77	51	3	19	
OL STA 20004 SB OL 007	2-01 12-1411	27.6	27	0	2.0	97.4	45	30	26	14	12	4.0	
OL STA 20004 VC OL 007	71.09 0.2.2 Et	1.65	126	0	27	72	70	12	20	14	12	12.0	
OL-STA-20004-VC OL-007	71-00 23 5-26 7 Ft	25.1	64	06	10.6	88.8	30	10	76	35	41	13.9	
OL-STA-20004-VC OL-007	71-10 33 3-36 6 Ft	20.1	61	0.0	10.0	97.8	50 60	32	63	34	20	4.7	2.69
OL STA 20004 VC OL 011	19-25 0-2.2 Et	1.65	01	0.7	1.5	37.0	00	52		54	23	1.0	2.03
OL-STA-20005-VC OL-007	71-11 6 6-0 9 Ft	8.25	127	0	16	08.4	17	12	98	/3	55	9.5	2.09
OL STA 20005 VC OL 007	71-12 22 2-26 6 Et	24.0	69	0	0.0	00.1	60	21	72		25	3.3	2.66
OL-STA-20005-VC OL-007	71 12 23.2-20.0 Tt	24.5	40	0	0.9	99.1	50	29	52	22	20	2.5	2.00
OL-STA-20005-VC OL-007	71-13 33.3-30.011	0.05	40	0	0.5	99.7	39	30		23	29	2.1	
OL-STA-20006-VC OL-007	71-14 0.0-9.9 Ft	0.25	200	0	2.0	97.5	52	20	72	29		1.6	
OL-STA-20006-VC OL-007	71-15 23.0-27 FL	20.5	27	0	0.1	90.9	33	21	72	20	44	1.0	
OL-STA-20005-VC OL-007	71-16 30.9-40.2 Ft	38.55	27	0	0.1	99.9	44	31	23	14	20	1.3	
OL-STA-20007-SB OL-007	2-04 23-23 FL	24	67	0	1.4	90.0	64	33	67	30	29	2.3	
OL-STA-20007-SB OL-007	2-05 38.0-40.0 Ft	39.6	43	0	0.2	99.8	58	39	45	19	20	1.8	
OL-STA-20007-VC OL-007	7 I-17 3.3-0.0 FL	4.95	113	0	7.5	92.5	13	11	110	39	/1	15.7	
OL-STA-20007-VC OL-007	71-18 9.9-13.2 Ft	11.55	185	0	0.8	99.2	32	25	_			5.2	
OL-STA-20008-VC OL-007	71-19 9.9-13.2 Ft	11.55	173	0	0.2	99.8	43	20	-		1	3.8	2.50
OL-STA-20009-VC OL-007	7 1-20 0.0-9.9 Ft	0.20 10.15	90	0	72.3	21.1	15	4	72	42	20	2.1	2.59
OL-STA-20009-VC OL-007	1-21 10.3-19.0 Ft	10.10	73	0	23.3	70.0	10	6	73	43 ND	30	2.7	2.01
OL-STA-20009-VC OL-009	05-00 23.0-20.9 Tt	20.20	7.9	0	00.3	00.1	10	14	45	25	20	2.2	
OL-STA-20009-VC OL-008	71.22 2.2.6.6 Et	30.43	21	0	72.0	26.1	19	7	40	25	20	0.0	2.65
OL-STA-20010-VC OL-007	71 22 3.3-0.0 FL	4.95	70	0	73.9	20.1	9	12	_	_		1.2	2.00
OL-STA-20010-VC OL-007	1-23 13.2-10.3 Ft	14.00	13	0	40.1	00	10	12	64	40	16	3.7	2.03
OL-STA-20010-VC OL-008	20.9-30.2 Ft	20.00	20	0	0.0	92	42	21	22	40	10	3.3	
OL-STA-20010-VC OL-005	30.0-40.1 Ft	30.43	30	0	0.9	99.1	31	34	32	20	12	0.0	2.62
OL-STA-20011-VC OL-007	1-24 10.3-19.0 Ft	25.15	47	0	1.9	90.1	69	40	63	30	40	0.9	2.03
OL STA-20012 VC OL 003	71.25 2.266 E+	30.10	4/	0	10.0	90.1	00	49	40	20	20	5.8	2.14
OL-STA-20012-VC OL-007	1-20 0.0-0.0 FL	4.90	120	0	10.9	09.1	1	3	109	40	03	13.4	2.47
OL-STA-20012-VC OL-007	1-20 33.3-30.0 Ft	34.90	30	0	0.1	99.9	10	43	40	24	24	23.3	2.47
OL-STA-20012-VC OL-011	10-24 20.0-30 FT	20.3	00	0.1	1.1	90.9	03	34	co	<u> </u>	30	3	
OL-STA-20013-VC UL-007	1-2/ 13.2-16.5 Ft	14.85	138	0.1	0.7	99.2	32	16	65	NP 40	05	0.3	
OL-STA-20013-VC OL-009	33-36 Ft	34.5	48 20	0	5./	94.3	33 40	21	65	40	25	1.4	
OL-31A-20013-VC OL-009	39-42.2 Ft	40.0	30	0	0.0	99.4	40	30	31	15	10	1.5	
OL-STA-20014-VC OL-007	1-20 U-3.3 FT	14.05	132	0	0.1	90.4	10	0	01	40	20	/	
OL-STA-20014-VC OL-007	13.2-16.5 Ft	14.85	116	U	3.9	96.1	33	16	84	56	28	4.8	

consultants

					Page	77	of	101
Written by:	Ming Zhu	Date:	06/18/2008	Reviewed by:	Raja Madhyannapu	Date:	06/2	19/2008

Client: Project/ Proposal No .: Honeywell Project: **Onondaga Lake ILWD Stability** GJ4204 Task No.: 01

OL-STA-20014-VC OL-0101-02	23.3-26.9 Ft	25.1	62	0	0.7	99.3	69	50	64	31	33	3.1	2.69	91
OL-STA-20014-VC OL-0101-03	30.1-33.4 Ft	31.75	38	0	0.5	99.5	46	23	66	31	35	4.7	2.68	96
OL-STA-20015-VC OL-0071-30	3.3-6.6 Ft	4.95	178	0	0.5	99.5	39	18	127	63	64	6.5		
OL-STA-20015-VC OL-0095-12	23.6-26.9 Ft	25.25	35	0	0.8	99.2	60	28	61	42	19	3.3		
OL-STA-20015-VC OL-0095-13	30.2-33.5 Ft	31.85	24	0	0.3	99.7	44	30	32	22	10	5.3		
OL-STA-20016-SB OL-0110-51	14-16 Ft	15	28	0	8.9	91.1	35	24	25	15	10	0.9	2.7	9
OL-STA-20016-SB OL-0110-52	27-29 Ft	28	29	0.1	0.2	99.7	11	8		NP			2.75	
OL-STA-20016-SB OL-0110-53	57-59 Ft	58		0	9.3	90.7	7	6		NP			2.71	
OL-STA-20017-SB OL-0110-57	10-12 Ft	11	79	0	15.7	84.3	14	10		NP		3	2.67	
OL-STA-20017-SB OL-0110-58	37-39 Ft	38	79	0	0.2	99.8	66	53	40	16	24	9	2.57	
OL-STA-20017-SB OL-0110-59	42-44 Ft	43	28	0	0.1	99.9	50	35	23	13	10			
OL-STA-20018-SB OL-0110-54	10-12 Ft	11	68	0	19.5	80.5	18	11	41	29	12	2	2.68	61
OL-STA-20018-SB OL-0110-55	47-49 Ft	48	33	0.1	0.3	99.6	53	36	35	16	19			
OL-STA-20018-SB OL-0110-56	51-53 Ft	52	27	0	0	100	65	46	32	18	14			
OL-STA-20019-VC OL-0101-04	23.6-26.9 Ft	25.25	71	0.1	14.7	85.2	32	20	64	33	31	2.4	2.68	96
OL-STA-20019-VC OL-0101-05	33.5-36.8 Ft	35.15	44	0.1	0.9	99	66	45	46	22	24	1.1	2.78	35
OL-STA-20020-VC OL-0101-06	20.3-23.6 Ft	21.95	65	0.4	10.3	89.3	35	23	74	36	38	4.7	2.62	87
OL-STA-20020-VC OL-0101-07	36.8-40.1 Ft	38.45	29	0	1.2	98.8	41	29	31	14	17	1.8	2.7	17
OL-STA-20021-VC OL-0101-08	17-20.3 Ft	18.65	226	0.3	1.8	97.9	39	30	138	89	49	8.9	2.7	57
OL-STA-20021-VC OL-0101-09	26.9-30.2 Ft	28.55	56	0.2	2.4	97.4	63	40	63	29	34	8.4	2.7	87
OL-STA-20021-VC OL-0101-10	33.5-36.8 Ft	35.15	53	0.1	0.6	99.3	63	44	48	20	28	3.3	2.75	26
OL-STA-20022-VC OL-0101-11	17-20.3 Ft	18.65	248	0	1	99	39	28	129	79	50	8	2.54	65
OL-STA-20022-VC OL-0101-12	23.6-26.9 Ft	25.25	51	0	2.8	97.2	51	36	74	30	44	13.3	2.68	78
OL-STA-20022-VC OL-0101-13	33.5-36.8 Ft	35.15	41	0	0.4	99.6	61	41	48	19	29	6.6	2.45	13
OL-STA-20023-VC OL-0101-14	17-20.3 Ft	18.65	204	0	2.3	97.7	4	4	112	69	43	2.6	2.7	57
OL-STA-20023-VC OL-0101-15	20.3-21.3 Ft	20.8	72	0	4.6	95.4	48	38	80	34	46	5	2.6	87
OL-STA-20023-VC OL-0101-16	30.2-33.5 Ft	31.85	47	0	0.7	99.3	53	36	35	17	18	5	2.77	30

Note: NP indicates non-plastic.

					Page		78	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	mapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

	1 1		\mathbf{a}
a	h	le.	2

	Field	Depth	Average	Bulk	Water	Dry
Location ID	Sample ID		Depth	Density	Content	Density
		(ft)	(ft)	(pcf)	(%)	(pcf)
OL-STA-10013-SB	OL-0110-01	7-9	8	83.4	123	37.4
OL-STA-10013-SB	OL-0110-02	12-14	13	72.6	245	21.0
OL-STA-10013-SB	OL-0110-05	41-43	42	99	58	62.8
OL-STA-10014-SB	OL-0110-06	14.5-16.5	15.5	79	259	22.0
OL-STA-10014-SB	OL-0110-08	34.5-36.5	35.5	77.7	173	28.4
OL-STA-10014-SB	OL-0110-10	48-50	49	93.9	39	67.8
OL-STA-10015-SB	OL-0110-64	11.5-13.5	12.5	78.2	180	27.9
OL-STA-10015-SB	OL-0110-68	36.5-38.5	37.5	91.8	81	50.6
OL-STA-10016-SB	OL-0110-12	12-14	13	84.2	136	35.8
OL-STA-10016-SB	OL-0110-15	37-39	38	89.9	86	48.3
OL-STA-10017-SB	OL-0110-17	13-15	14	83	112	39.1
OL-STA-10017-SB	OL-0110-20	28-30	29	89.1	91	46.6
OL-STA-10018-SB	OL-0110-23	8-10	9	79	153	31.3
OL-STA-10018-SB	OL-0110-26	37-39	38	105	56	67.2
OL-STA-10018-SB	OL-0110-27	48-50	49	114	29	88.7
OL-STA-10019-SB	OL-0110-30	12.5-14.5	13.5	81.1	155	31.8
OL-STA-10019-SB	OL-0110-32	59.5-61.5	60.5	109.2	46	74.9
OL-STA-10020-SB	OL-0110-34	12-14	13	71	334	16.4
OL-STA-10020-SB	OL-0110-39	62-64	63	113	42	79.7
OL-STA-10021-SB	OL-0110-40	13.5-15.5	14.5	78.2	154	30.8
OL-STA-10021-SB	OL-0110-41	18-20.5	19.25	84.3	113	39.5
OL-STA-10021-SB	OL-0110-43	65.5-67.5	66.5	103	59	65.0
OL-STA-10022-SB	OL-0110-45	12-14	13	80	165	30.2
OL-STA-10022-SB	OL-0110-50	66-68	67	101	64	62.0
OL-STA-10023-SB	OL-0052-06	13-15	14	86.2	107	41.6
OL-STA-10023-SB	OL-0052-04	50-52	51	97.7	71	57.1
OL-STA-10024-SB	OL-0052-07	15-17	16	86.9	99	43.6
OL-STA-10024-SB	OL-0052-09	30-32	31	77.8	177	28.1
OL-STA-10024-SB	OL-0052-12	64-66	65	97.9	69	57.9
OL-STA-10025-SB	OL-0052-13	7-9	8	78.9	140	32.9
OL-STA-10025-SB	OL-0052-16	52-54	53	98	69	58.0
OL-STA-10026-SB	OL-0052-19	7-9	8	85.9	125	38.3
OL-STA-10026-SB	OL-0052-22	50-52	51	96.4	72	56.1
OL-STA-20001-SB	OL-0072-07	20-22	21	98.2	70	57.7
OL-STA-20001-SB	OL-0072-09	45-47	46	122	29	93.9
OL-STA-20004-SB	OL-0072-01	12-14	13	89.4	102	44.3
OL-STA-20004-SB	OL-0072-02	36.6-38.6	37.6	121	30	93.6
OL-STA-20007-SB	OL-0072-04	23-25	24	102	50	68.3
OL-STA-20007-SB	OL-0072-05	38.6-40.6	39.6	106	48	71.2
OL-STA-20016-SB	OL-0110-51	14-16	15	131	16	113.0
OL-STA-20017-SB	OL-0110-59	42-44	43	127	23	104.0
OL-STA-20018-SB	OL-0110-54	10-12	11	95.7	69	56.6
OL-STA-20018-SB	OL-0110-56	51-53	52	115	36	84.6

consultants

				Page		79	of	101
Written b	ру: <u>М</u>	ling Zhu	Date: 06/18/2008 Review	red by: Raja Madhya r	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.:	GJ4204	Task	No.:	01

|--|

	Field	Depth	Average	Compression	Recompression	Initial Void	Initial Water	Preconsolidation
Location ID	Sample ID		Depth	Index	Index	Ratio	Content	Pressure
		(ft)	(ft)	(Cc)	(Cr)	(e _o)	(%)	(tsf)
OL-STA-10013	OL-0110-05	41-43	42	0.51	0.06	1.60	57.6	0.6
OL-STA-10014	OL-0110-08	34.5-36.5	35.5	0.94	0.01	3.05	113.1	0.6
OL-STA-10017	OL-0110-20	28-30	29	0.94	0.13	2.74	103.7	0.3
OL-STA-10018	OL-0110-27	48-50	49	0.36	0.03	1.06	36.5	0.7
OL-STA-10019	OL-0110-30	12.5-14.5	13.5	0.08	0.01	4.24	148.7	1.0
OL-STA-10022	OL-0110-49	64-66	65	0.70	0.06	1.85	67.2	0.8
OL-STA-10023	OL-0052-06	13-15	14	1.59	0.02	3.38	142.2	0.5
OL-STA-10023	OL-0052-04	50-52	51	0.73	0.07	1.94	72.5	0.9
OL-STA-10024	OL-0052-07	15-17	16	1.18	0.02	3.08	120.9	0.8
OL-STA-10024	OL-0052-09	30-32	31	2.84	0.03	4.93	180.0	1.4
OL-STA-10024	OL-0052-12	64-66	65	0.57	0.09	1.81	63.4	0.6
OL-STA-10025	OL-0052-13	7-9	8	2.04	0.02	4.53	183.6	0.9
OL-STA-10025	OL-0052-16	52-54	53	0.65	0.08	1.88	70.3	0.7
OL-STA-10026	OL-0052-19	7-9	8	1.22	0.03	3.17	105.7	0.9
OL-STA-10026	OL-0052-22	50-52	51	0.69	0.09	1.99	76.5	0.7
OL-STA-20001	OL-0072-07	20-22	21	0.37	0.02	1.87	64.2	0.3
OL-STA-20001	OL-0072-09	44.9-46.9	45.9	0.26	0.04	0.95	32.7	0.5
OL-STA-20004	OL-0072-01	12-14	13	0.72	0.01	2.91	102.3	0.3
OL-STA-20004	OL-0072-02	36.6-38.6	37.6	0.16	0.02	0.90	31.4	0.4
OL-STA-20007	OL-0072-04	23-25	24	0.41	0.03	1.89	65.8	0.3
OL-STA-20007	OL-0072-05	38.6-40.6	39.6	0.49	0.05	1.33	48.6	0.5
OL-STA-20016	OL-0110-52	27-29	28	0.19	0.04	0.89	30.9	0.4
OL-STA-20017	OL-0110-57	10-12	11	0.51	0.01	1.42	37.2	0.4
OL-STA-20017	OL-0110-59	42-44	43	0.22	0.03	0.87	31.1	0.6
OL-STA-20018	OL-0110-55	47-49	48	0.23	0.02	0.91	32.7	0.7

Note:

These parameters are provided to show general material behavior for informational purposes only, additional interpretation will be required for design.

consultants

					Page		80	of	101
Written b	oy: <u>M</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

	1 1	1	
0	h		
ı a	U		-

	Field	Depth	Average	Water	Dry	Undrained	Strain
Location ID	Sample ID	-	Depth	Content	Density	Strength	at Failure
	-	(ft)	(ft)	(%)	(pcf)	(psf)	(%)
OL-STA-10013	OL-0110-02	12.0-14.0	13	245.2	21.0	382.3	2.6
OL-STA-10014	OL-0110-08	34.5-36.5	35.5	173.1	28.4	215.2	9.4
OL-STA-10014	OL-0110-10	48.0-50.0	49	38.5	67.8	165.6	14.3
OL-STA-10015	OL-0110-64	11.5-13.5	12.5	179.9	27.9	109.9	4.0
OL-STA-10015	OL-0110-68	36.5-38.5	37.5	81.3	50.6	431.3	6.6
OL-STA-10016	OL-0110-12	12.0-14.0	13	135.5	35.8	103.6	12.6
OL-STA-10016	OL-0110-15	37.0-39.0	38	86.2	48.3	330.9	10.8
OL-STA-10017	OL-0110-17	13.0-15.0	14	112.3	39.1	96.7	5.8
OL-STA-10017	OL-0110-20	28.0-30.0	29	91.2	46.6	247.0	9.0
OL-STA-10018	OL-0110-26	37.0-39.0	38	55.6	67.2	440.3	9.5
OL-STA-10018	OL-0110-27	48.0-50.0	49	28.7	88.7	335.8	7.8
OL-STA-10018	OL-0110-23	8.0-10.0	9	152.5	31.3	303.5	12.1
OL-STA-10019	OL-0110-30	12.5-14.5	13.5	154.6	31.8	309.8	15.0
OL-STA-10019	OL-0110-32	59.5-61.5	60.5	45.8	74.9	384.9	5.7
OL-STA-10020	OL-0110-34	12.0-14.0	13	333.8	16.4	74.4	6.0
OL-STA-10020	OL-0110-36	22.0-24.0	23	440.2	13.0	651.6	6.7
OL-STA-10020	OL-0110-39	62.0-64.0	63	41.6	79.7	285.7	13.9
OL-STA-10021	OL-0110-41	18-20.5	19.25	113.1	39.5	144.0	15.0
OL-STA-10021	OL-0110-43	65.5-67.5	66.5	59.0	65.0	417.1	9.8
OL-STA-10022	OL-0110-45	12.0-14.0	13	164.7	30.2	259.3	15.0
OL-STA-10022	OL-0110-50	66.0-68.0	67	63.6	62.0	406.8	8.7
OL-STA-10023	OL-0052-06	13.0-15.0	14	107.1	41.6	163.3	8.9
OL-STA-10023	OL-0052-04	50.0-52.0	51	71.2	57.1	465.2	6.4
OL-STA-10024	OL-0052-07	15.0-17.0	16	99.3	43.6	429.2	18.3
OL-STA-10024	OL-0052-09	30.0-32.0	31	176.9	28.1	464.5	11.7
OL-STA-10024	OL-0052-12	64.0-66.0	65	69.2	57.9	518.1	9.5
OL-STA-10025	OL-0052-16	52.0-54.0	53	68.8	58.0	460.3	8.2
OL-STA-10025	OL-0052-13	7.0-9.0	8	139.6	32.9	242.4	15.0
OL-STA-10026	OL-0052-22	50.0-52.0	51	71.7	56.1	476.7	9.6
OL-STA-10026	OL-0052-19	7.0-9.0	8	124.5	38.3	207.7	8.1
OL-STA-20001	OL-0072-07	20.0-22.0	21	70.2	57.7	99.8	11.7
OL-STA-20001	OL-0072-09	44.9-46.9	45.9	29.4	93.9	200.5	12.5
OL-STA-20004	OL-0072-01	12.0-14.0	13	101.9	44.3	63.2	10.8
OL-STA-20004	OL-0072-02	36.6-38.6	37.6	29.7	93.6	203.4	15.0
OL-STA-20007	OL-0072-04	23.0-25.0	24	49.9	68.3	247.6	10.5
OL-STA-20007	OL-0072-05	38.6-40.6	39.6	48.3	71.2	316.5	5.9
OL-STA-20016	OL-0110-51	14.0-16.0	15	15.6	113.4	3051.0	1.8
OL-STA-20016	OL-0110-52	27.0-29.0	28	26.8	98.1	229.5	4.0
OL-STA-20016	OL-0110-53	57.0-59.0	58	16.8	115.8	2240.0	9.8
OL-STA-20017	OL-0110-57	10.0-12.0	11	82.4	51.2	312.6	6.1
OL-STA-20017	OL-0110-58	37.0-39.0	38	29.2	95.7	576.4	5.5
OL-STA-20017	OL-0110-59	42.0-44.0	43	22.7	103.8	402.0	15.0
OL-STA-20018	OL-0110-54	10.0-12.0	11	62.7	58.8	222.5	12.5
OL-STA-20018	OL-0110-55	47.0-49.0	48	35.3	85.2	391.4	9.9
OL-STA-20018	OL-0110-56	51.0-53.0	52	35.9	84.6	357.7	9.8

<u>Note:</u> These parameters are provided to show general material behavior for informational purposes only, additional interpretation will be required for design.

					Page		81	of	101
Written b	y: <u>M</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Pro	ject/ Proposal No.:	GJ4204	Task	No.:	01

Т	ab	le	5
	uv.	••	-

									C	U	C	U
	Field	Depth	Average	Initial	Dry	Initial	Peak	Strain	Total	Stress	Effectiv	e Stress
Location ID	Sample ID		Depth	Water	Density	Confining	Deviator	at	Cohesion	Friction	Cohesion	Friction
		(64)	(64)	Content	(12.05)	Stress	Stress	Failure	(12.05)	Angle	(12.05)	Angle
OL CTA 10012	01 01 10 01	(ft)	(ft)	(%)		(psr)	(psr)	(%)	(psr)	(degrees)	(psr)	(degrees)
OL-STA-10013	OL-0110-01	7.0-9.0	8	123.4	37.4	180.4	385.6	1.5	07.0	20.4	54.5	37.3
		07.0.00.0	00	70.4	41.0	360.2	574.4	10.4	400	0	0.40	00.4
OL-STA-10013	OL-0110-04	37.0-39.0	38	70.4	58.1	780.7	1120.2	15.0	436	9	349	20.4
				72.2	57.2	1561	1765.4	13.2				
	01 01 0 05	44.0.40.0	10	86.8	50.4	3121	2050	15.0	470	110		10.5
OL-STA-10013	OL-0110-05	41.0-43.0	42	65.9	59.2	1720	1654.4	14.0	178	14.9	0	40.5
				60	60.0	3438	2830	15.0		= -		
OL-STA-10014	OL-0110-07	19.5-21.5	20.5	156.3	30.7	432.6	887.6	8.8	298	7.8	201	30.3
				127.1	36.2	864.9	854.4	15.0				
				117.5	39.4	1/2/	1440.4	10.0		10.0		
OL-STA-10014	OL-0110-09	46.0-48.0	47	67.1	59.9	959.3	1324	15.0	280	12.2	227	24.3
				69.5	58.1	1921	1479.2	15.0				
				67.6	59.7	3836	4468	15.0				
OL-STA-10015	OL-0110-69	38.5-40.5	39.5	75.8	55.3	807.1	1197	12.5	446	9.8	152	39.9
				85.2	51.1	1614	2010	15.0				
				81.6	52.6	3227	2246	11.4				
OL-STA-10015	OL-0110-65	44.0-46.0	45	206.5	24.2	348.9	368.0	9.5	121	12	30.3	44.3
				224.4	22.6	699.9	875.6	6.5				
				171.4	27.8	1400	939.8	12.9				
OL-STA-10016	OL-0110-13	17019.0	18	134.1	32.7	379.2	454.8	15.0	21.8	19.8	16.4	44.8
				133.8	34.5	759.7	737.4	15.0				
				135	33.7	1519	1635.6	11.9				
OL-STA-10016	OL-0110-16	39.0-41.0	40	75.2	52.9	819	1415	13.0	374	12.7	230	37.8
				80	52.7	1640	1786.4	15.0				
				79.3	53.4	3283	2782	15.0				
OL-STA-10017	OL-0110-21	30.0-32.0	31	88.5	49.7	1279	1652.2	11.3	387	10.9	258	32.5
				95.6	47.1	2562	2150	15.0				
OL-STA-10018	OL-0110-28	52.0-54.0	53	30.3	90.2	1081.3	1568.2	15.0	0	21.6	273.6	24.8
				25.6	96.4	2161.4	2085.1	15.0				
				21.5	97.5	4318.6	6042.2	15.0				
OL-STA-10019	OL-0110-29	7.5-9.5	8.5	110.9	41.0	288.3	504.8	15.0	33.4	27.5	96.2	44.2
				115.8	39.7	575.4	1307.6	15.0				
				104.4	42.5	860.9	1377.4	15.0				
OL-STA-10019	OL-0110-33	61.5-63.5	62.5	46.9	73.4	1296.0	1269.2	15.0	355	9.2	358	22.6
				49	72.6	2519.0	1839.0	10.7				
				52.9	68.8	5041.0	2742.0	11.6				
OL-STA-10020	OL-0110-35	17.0-19.0	18	388.2	14.7	760.0	1008.6	13.6	61	20.7	N	A
				307.9	17.6	1514.9	1446.6	15.0				
OL-STA-10020	OL-0110-38	59.0-61.0	60	24.9	94.0	1208.0	1725.2	15.0	419	13.2	100	36
				21.4	98.1	3630.0	3180.0	15.0				

consultants

									Page		82	of	101
Written by:	M	ing Zhu	D	Date: <u>06</u>	/18/2008	Reviewe	d by:	Raja M	adhyanı	napu	Date:	06/1	19/2008
Client:	Honeywell	Project:	Onor	ndaga Lal	ke ILWD	Stability	Project	/ Proposal	l No.:	GJ4204	Task	No.:	01
OL-STA-10021	OL-0110-40	13.5-15.5	14.5	154.3	30.8	309.0	680.4	15.0	137	20.2		N	A
				199.9	26.1	618.7	1041.2	4.7					
				160	30.2	1239.0	1701.2	12.9					
OL-STA-10021	OL-0110-44	67.5-68.5	68	43.8	70.0	1389.0	2136.0	15.0	627	10.6		110	36.7
				50.1	71.6	2781.0	2760.0	15.0					
OL-STA-10022	OL-0110-46	17.0-19.0	18	116.5	39.9	383.3	523.6	10.5	119	11.6	7	'0.1	34.2
				118.9	39.5	766.7	619.2	12.1					
				118.1	39.8	1531.0	1080.8	2.5					
OL-STA-10022	OL-0110-49	65.0-66.0	65.5	65.7	60.8	1311	1676.8	9.4	441	10.8	4	128	24
				66	60.6	2620	2312	15.0					
				63.4	62.2	8885	6212	6.4					
OL-STA-10023	OL-0052-05	52.0-54.0	53	61.8	62.3	1099	1218.4	11.5	159	16.1	5	68.4	39.9
				64.4	59.3	2198	1768.8	13.5					
				63.8	59.6	4414	3244	15.0					
OL-STA-10024	OL-0052-11	62.0-64.0	63	68.2	57.7	1298	1448	12.8	294	12		187	34.8
				68.8	58.6	2597	2038	12.3					
				67.9	58.9	5203	3480	14.7					
OL-STA-10025	OL-0052-17	57.0-59.0	58	56.9	63.6	1199	1936	12.1	749	7.3	Ę	504	25.5
				66.5	60.3	2398	2572	14.9					
				67.4	59.8	4801	3042	15.3					
OL-STA-20001	OL-0072-08	38.9-40.9	39.9	22.4	101.6	788.4	2652	15.0	158	18.6	0	.86	37.9
				23.3	101.3	1601	4546	15.0					
OL-STA-20004	OL-0072-03	38.6-40.6	39.6	26.5	86.8	1600	1528.8	15.0	13	19.7	7	'5.8	32.5
				23.8	101.7	3200	3180	15.0					
OL-STA-20007	OL-0072-06	36.6-38.6	37.6	25.4	93.3	746.4	770.4	8.8	0	25.1		123	29.3
				25.7	99.1	3001	4356	15.0					
OL-STA-20016	OL-0110-54	10.0-12.0	11	69.3	56.6	241.2	613.2	1.5	172	17.4		0	38
						479.1	972.3	1.3					
						945.4	1240.4	1.1					
OL-STA-20016	OL-0110-51	14.0-16.0	15	40.6	80.0	639.9	1738.4	15.0	159	27.8	4	6.9	34.5
				15.2	111.3	1281	8642	15.0					
OL-STA-20017	OL-0110-58	37.0-39.0	38	25.4	97.0	780.2	1089.8	4.5	280	8.7		0	36.5
				36.2	83.1	1559	997.6	2.1					
				31.4	88.8	3123	1827.8	2.3					

Note:

1. These parameters are provided to show general material behavior for informational purposes only,

additional interpretation will be required for design.

2. NA indicates not applicable. Additional interpretation is required to use these test results.

						Page		83	of	101
Written b	ру: <u>М</u>	ing Zhu	Date:	06/18/2008	Reviewed b	y: Raja Madhya i	mapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Project/ Proposal No.:	GJ4204	Task	No.:	01

Phase II Investigation

consultants

	Page								of	101
Written l	ру: <u>М</u>	ling Zhu	Date:	06/18/2008	Reviewed by	/: Raja Madhyar	mapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD	Stability I	Project/ Proposal No.:	GJ4204	Task	No.:	01

SMU 1 Index Test Results Summary

				Water	Atterberg	Limits (AS	FM D4318)	18) Grain Size (ASTM D422)			Specific		
Location ID	Field	Depth	Average	Content	Liquid	Plastic	Plasticity	Percent	Percent	Percent Fines	Clay-sized Particle	Clay-sized Particle	Gravity
	Sample ID	•	Depth	(ASTM D2216)	Limit	Limit	Index	Gravel	Sand	(clay & silt)	Content (0.005 mm)	Content (0.002 mm)	(ASTM D854)
		(ft)	(ft)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	· ,
SICT Index Tests													
OL-STA-10015-VC	OL-0119-05	9.9-13.2	11.55	233									
OL-STA-10016-VC	OL-0119-02	0-3.3	1.65	108.3	45	31	23	0	1.5	98.5	32	12	
OL-STA-10017-VC	OL-0119-06	0-3.3	1.65	152									
OL-STA-10017-VC	OL-0119-07	9.9-12.6	11.25	126.6	66	40	26	0.5	4.7	94.8	35	14	
OL-STA-10018-VC	OL-0119-04	6.6-9.9	8.25	217.6	115	74	41	0.4	8.6	91	33	11	2.54
OL-STA-10022-VC	OL-0119-01	9.9-13.2	11.55	171.8									
OL-STA-10024-VC	OL-0119-08	6.6-9.9	8.25	120.2	99	68	31	0	25.3	74.7	32	17	
OL-STA-10026-VC	OL-0119-03	3.3-6.6	4.95	54.7	69	45	24	0	55.3	44.7	18	11	
Phase II Index Test	s												
OL-VC-10034	OL-0236-08	0-3.3	1.65	180.6									
OL-VC-10034	OL-0236-07	3.3-6.6	4.95	213.1									
OL-VC-10034	OL-0236-09	6.6-9.9	8.25	277.7									
OL-VC-10034	OL-0236-10	9.9-13.2	11.55	263.5									
OL-VC-10034	OL-0236-11	13.2-16.5	14.85	260.9									
OL-VC-10034	OL-0236-12	16.5-19.7	18.1	64.8									
OL-VC-10037	OL-0236-13	0-3.3	1.65	112.3									
OL-VC-10037	OL-0256-01	3.3-6.6	4.95	161.4	78	59	19	0	1.6	98.4	44	18	2.45
OL-VC-10037	OL-0256-02	6.6-9.9	8.25	191.2	86	59	27	0	3.2	96.8	53	27	
OL-VC-10037	OL-0236-14	9.9-13.2	11.55	166									
OL-VC-10037	OL-0296-01	9.9-13.2	11.55	191.3	96	48	48	0	4.8	95.2	55	28	2.52
OL-VC-10037	OL-0236-15	13.2-16.5	14.85	219.3									
OL-VC-10037	OL-0236-16	16.5-19.8	18.15	88.3									
OL-VC-10038	OL-0250-19	0-3.3	1.65	161.3	127	80	47	3	35.6	61.4	34	17	
OL-VC-10038	OL-0236-17	3.3-6.6	4.95	215.2									
OL-VC-10038	OL-0236-18	6.6-9.9	8.25	144.9									
OL-VC-10038	OL-0236-19	9.9-13.2	11.55	236.2									
OL-VC-10038	OL-0296-02	9.9-13.2	11.55	223.4									
OL-VC-10038	OL-0250-20	13.2-16.5	14.85	160.8	77	60	17	0	3.4	96.6	48	18	
OL-VC-10038	OL-0236-20	16.5-18.9	17.7	225.2									
OL-VC-10040	OL-0237-01	0-3.3	1.65	88.9									
OL-VC-10040	OL-0237-02	3.3-6.6	4.95	114.3									
OL-VC-10040	OL-0250-17	6.6-9.9	8.25	127.4	72	46	26	0	2.2	97.8	28	9	
OL-VC-10040	OL-0250-18	9.9-13.2	11.55	155.9	94	62	32	0	4.4	95.6	30	10	
OL-VC-10046	OL-0237-03	0-3.3	1.65	173.4									
OL-VC-10046	OL-0250-15	3.3-6.6	4.95	153.6	108	70	38	0	4.2	95.8	29	6	2.67
OL-VC-10046	OL-0237-04	6.6-9.9	8.25	131.8				L					
OL-VC-10046	OL-0237-05	9.9-13.2	11.55	111.3									
OL-VC-10046	OL-0237-06	13.2-16.5	14.85	68.1									

Geosyntec consultants

									Page	85	of 101	
	Written by:	N	Aing Zhu	Date:	06/18/2	2008 Re	viewed b	oy: R	Raja Madhyanna	apu Date:	06/19/2008	
	Client: Ho	neywell	Project:	Onondag	ga Lake II	LWD Stab	ility	Project/ P	roposal No.:	GJ4204 Task 1	No.: 01	
OL-VC-10046	01-0250-16 16 5-19 2	17.85	66.2	47	33	14	0	0.8	99.2	29	13	
OL-VC-10047	OL-0237-07 0-3.3	1 65	144.9		00		Ŭ	0.0	00.2	20	10	
OL-VC-10047	OL-0250-13 3 3-6 6	4.95	151.3	91	56	35	0	4	96	32	16	2.63
OL-VC-10047	OI -0250-14 6 6-9 9	8 25	173.4	101	60	41	0.3	4.9	94.8	35	13	2.00
OL-VC-10047	OL-0237-08 9.9-13.2	11.55	113				0.0		0.110			
OL-VC-10047	OL-0237-09 13.2-16.5	14.85	92.7									
OL-VC-10047	OL-0237-10 16.5-19.8	18.15	111.3									
OL-VC-10054	OL-0237-15 0-3.3	1.65	134.3									
OL-VC-10054	OL-0250-11 6.6-9.9	8.25	93.4	62	40	22	0	14.7	85.3	33	12	
OL-VC-10054	OL-0250-12 9.9-13.2	11.55	114.6	63	44	19	0	1.5	98.5	36	11	
OL-VC-10054	OL-0237-17 13.2-16.5	14.85	76									
OL-VC-10054	OL-0237-18 16.5-18.8	17.65	72.6									
OL-VC-10057	OL-0237-11 0-3.3	1.65	143.7									
OL-VC-10057	OL-0250-09 3.3-6.6	4.95	197.1	130	88	42	0	27.6	72.4	27	13	
OL-VC-10057	OL-0237-12 6.6-9.9	8.25	193.4									
OL-VC-10057	OL-0250-10 9.9-13.2	11.55	140.1	85	55	30	0	1.3	98.7	28	12	
OL-VC-10057	OL-0237-14 13.2-16.5	14.85	141.9									
OL-VC-10057	OL-0237-13 16.5-19.5	18	127.2									
OL-VC-10062	OL-0237-19 0-3.3	1.65	177.8									
OL-VC-10062	OL-0250-07 3.3-6.6	4.95	127.3	103	63	40	0	7.6	92.4	33	11	
OL-VC-10062	OL-0237-20 6.6-9.9	8.25	185.3									
OL-VC-10062	OL-0238-01 9.9-13.2	11.55	144.4									
OL-VC-10062	OL-0238-02 13.2-16.5	14.85	181.6									
OL-VC-10062	OL-0250-08 16.5-19.2	17.85	181.8	96	59	37	0	3	97	36	14	2.7
OL-VC-10062A	OL-0296-03 3.3- 6.6	4.95	194.8	113	60	53	0	4.3	95.7	43	22	2.54
OL-VC-10063	OL-0250-05 0-3.3	1.65	221.6	88	60	28	0	1.2	98.8	30	12	
OL-VC-10063	OL-0238-03 3.3-6.6	4.95	209.4									
OL-VC-10063	OL-0238-04 6.6-9.9	8.25	172.4									
OL-VC-10063	OL-0238-05 9.9-13.2	11.55	154.4	1			Ī					
OL-VC-10063	OL-0238-06 13.2-16.5	14.85	180.4				I					
OL-VC-10063	OL-0250-06 16.5-19.8	18.15	169.4	82	55	27	0	2.2	97.8	30	13	
OL-VC-10066	OL-0238-07 0-3.3	1.65	131.7	1			1					
OL-VC-10066	OL-0249-12 3.3-6.6	4.95	112.4	60	50	10	0	30.3	69.7	17	7	
OL-VC-10066	OL-0238-08 6.6-9.9	8.25	99.2	1			1					1
OL-VC-10066	OL-0249-13 9.9-13.2	11.55	104.3	60	47	13	0	23.5	76.5	20	9	
OL-VC-10066	OL-0238-09 13.2-16.5	14.85	134.5									
OL-VC-10066	OL-0238-10 16.5-19.8	18.15	238									
OL-VC-10071	OL-0249-14 0-3.3	1.65	169.7	86	47	39	0	1.1	98.9	42	32	
OL-VC-10071	OL-0238-11 3.3-6.6	4.95	186	1		1	I					
OL-VC-10071	OL-0238-12 6.6-9.9	8.25	155.7				1					
OL-VC-10071	OL-0249-15 9.9-13.2	11.55	198.6	89	60	29	0	1.4	98.6	29	13	
OL-VC-10071	OL-0238-13 13.2-16.5	14.85	153.3	1			I					
OL-VC-10071	OL-0238-14 16.5-19.8	18.15	157.7	1			I					
OL-VC-10073	OL-0245-01 0-3.3	1.65	196.6	1			1					
OL-VC-10073	OL-0245-02 3.3-6.6	4.95	147.7	1			I					
			-	-								

Geosyntec consultants

									Page	86 o	f 101	
	Written by:	Μ	íing Zhu	Date:	06/18/2	<u>008</u> Re	viewed b	y: <u>R</u>	aja Madhyann	apu Date: _	06/19/2008	
	Client: Hon	leywell	Project:	Onondag	a Lake IL	WD Stabi	ility I	Project/ Pr	roposal No.:	GJ4204 Task No	o.: 01	
		9.25	104.2	72	17	25	0	17	08.3	20	11	
OL-VC-10073	OL-0245-03 9 9-13 2	11 55	152.3	12	47	20	0	1.7	90.5		11	
OL-VC-10073	OL-0245-05 13 2-16 5	14.85	151									
OL-VC-10073	OL-0245-04 16.5-19.8	18.15	159.5	1 1								
OL-VC-10076	OL-0245-06 0-3.3	1.65	151.4									
OL-VC-10076	OL-0245-07 3 3-6 6	4 95	154.2									
OL-VC-10076	OL-0245-08 9.9-13.2	11.55	192.3									
OL-VC-10076	OL-0249-17 13.2-16.5	14.85	178.7	116	70	46	0.1	7.2	92.7	38	17	
OL-VC-10076	OL-0245-09 16.5-19.8	18.15	169			-			-			
OL-VC-10077	OL-0249-18 0-3.3	1.65	150.4	61	44	17	0	0.4	99.6	31	15	
OL-VC-10077	OL-0245-10 3.3-6.6	4.95	187.5					-				
OL-VC-10077	OL-0245-11 6.6-9.9	8.25	138.4									
OL-VC-10077	OL-0249-19 9.9-13.2	11.55	177.7	76	48	28	0	1.4	98.6	38	18	
OL-VC-10077	OL-0245-12 13.2-16.5	14.85	151.1									
OL-VC-10077	OL-0245-13 16.5-17.9	17.2	216.8									
OL-VC-10078	OL-0248-05 0-3.3	1.65	48.1									
OL-VC-10078	OL-0248-06 3.3-6.6	4.95	108.5									
OL-VC-10078	OL-0248-07 6.6-9.9	8.25	150.8	1 1								
OL-VC-10078	OL-0249-20 9.9-13.2	11.55	181.3	119	82	37	0	10.3	89.7	14	11	
OL-VC-10078	OL-0248-08 13.2-16.5	14.85	153.4									
OL-VC-10078	OL-0248-09 16.5-19.8	18.15	181.4									
OL-VC-10080	OL-0245-14 0-3.3	1.65	135.2	1 1								
OL-VC-10080	OL-0250-01 3.3-6.6	4.95	94.6	56	40	16	0	9.2	90.8	26	10	
OL-VC-10080	OL-0245-15 6.6-9.9	8.25	185.6					-				
OL-VC-10080	OL-0245-16 9.9-13.2	11.55	252									
OL-VC-10080	OL-0296-04 9.9-13.2	11.55	224.3									
OL-VC-10080	OL-0250-02 13.2-16.5	14.85	203.5	114	83	31	0	2.5	97.5	8	2	
OL-VC-10080	OL-0245-17 16.5-19.3	17.9	175									
OL-VC-10081A	OL-0248-01 0-3.3	1.65	132.6									
OL-VC-10081A	OL-0250-03 3.3-6.6	4.95	172.1	122	67	55	0	3	97	38	19	2.69
OL-VC-10081A	OL-0248-02 6.6-9.9	8.25	197					-				
OL-VC-10081A	OL-0248-03 9.9-13.2	11.55	149									
OL-VC-10081A	OL-0248-04 13.2-16.5	14.85	183.4									
OL-VC-10081A	OL-0296-05 13.2-16.5	14.85	206.3	117	82	35	4.8	7.1	88.1	40	22	2.58
OL-VC-10081A	OL-0250-04 16.5-19.6	18.05	170.8	79	51	28	0	1.1	98.9	39	17	
OL-VC-10089	OL-0248-10 0-3.3	1.65	91.7	1 1								
OL-VC-10089	OL-0248-11 3.3-6.6	4.95	135.7	1 1								
OL-VC-10089	OL-0248-12 6.6-9.9	8.25	162.4									
OL-VC-10089	OL-0248-13 9.9-13.2	11.55	176.9									
OL-VC-10089	OL-0256-08 13.2-16.5	14.85	198.4	80	58	22	0	0.9	99.1	36	17	2.43
OL-VC-10089	OL-0248-14 16.5-19.7	18.1	161.3							1	1	
OL-VC-10090	OL-0248-15 0-3.3	1.65	179.1	1 1			Ì					<u> </u>
OL-VC-10090	OL-0256-09 3.3-6.6	4.95	104.3	52	35	17	0	1.7	98.3	20	8	
OL-VC-10090	OL-0248-16 6.6-9.9	8.25	116.6							-		
OL-VC-10090	OL-0248-17 9.9-13.2	11.55	83.7									
				-			-					

									Page	87	of 101	
	Written by:	Ν	ling Zhu	Date:	06/18/2	2008 Re	eviewed t	ру: <u></u>	Raja Madhyar	napu Date:	06/19/2008	
	Client: Ho	neywell	Project:	Onondag	ga Lake II	WD Stab	ility	Project/ P	Proposal No.:	GJ4204 Task	No.: 01	
		14.05	144 5	1			1	1				
OL-VC-10090	OL-0248-18 13.2-16.5	14.85	141.5	-								
OL-VC-10090	OL 0248-19 10.3-19.0	1 65	126.7	-								
OL-VC-10094	OL-0240-20 0-3.3	4.95	86.3	46	31	15	0	11	89	16	8	2.58
OL-VC-10094	OL-0249-01 6 6-9 9	8 25	106.6	40	51	15	0		03	10	0	2.30
OL-VC-10094	OL-0249-02 9 9-13 2	11.55	195.9	-								
OL-VC-10094	OL -0249-03 13 2-16 5	14.85	161.1	-								
OL-VC-10094	OI -0249-04 16 5-19 8	18 15	184.3	72	61	11	0	1	99	13	8	
OL-VC-10095A	OL-0256-05 0-3.3	1,65	193	109	38	71	Ő	27	97.3	24	16	
OL-VC-10095A	OL-0256-06 3.3-6.6	4.95	140.2	101	41	60	ŏ	1.9	98.1	19	12	
OL-VC-10095A	OL-0244-05 6.6-9.9	8.25	139.2						0011			
OL-VC-10095A	OL-0244-06 9.9-13.2	11.55	211.2				1					
OL-VC-10095A	OL-0244-07 13.2-16.5	14.85	126.3									
OL-VC-10095A	OL-0256-07 16.5-19.1	17.8	100.9	77	42	35	0	1.5	98.5	12	8	
OL-VC-10096	OL-0256-03 0-3.3	1.65	101.7	56	36	20	0	3.2	96.8	23	8	
OL-VC-10096	OL-0244-08 3.3-6.6	4.95	94.5			-		-		-		
OL-VC-10096	OL-0244-09 6.6-9.9	8.25	177.2									
OL-VC-10096	OL-0244-10 9.9-13.2	11.55	159.7									
OL-VC-10096	OL-0256-04 13.2-16.5	14.85	152.3	75	50	25	0	1	99	31	11	
OL-VC-10096	OL-0244-11 16.5-19.8	18.15	158.8									
OL-VC-10102	OL-0244-12 3.3-6.6	4.95	101.4									
OL-VC-10102	OL-0244-13 6.6-9.9	8.25	190.2									
OL-VC-10102	OL-0256-11 9.9-13.2	11.55	144.8	69	46	23	0	0.8	99.2	27	8	2.63
OL-VC-10102	OL-0244-14 13.2-16.5	14.85	140.4									
OL-VC-10102	OL-0244-15 16.5-17.2	16.85	159.4									
OL-VC-10103	OL-0244-16 0-3.3	1.65	161.5									
OL-VC-10103	OL-0244-17 3.3-6.6	4.95	178									
OL-VC-10103	OL-0256-10 6.6-9.9	8.25	172.7	75	50	25	0	0.9	99.1	30	13	
OL-VC-10103	OL-0244-18 9.9-13.2	11.55	152.8									
OL-VC-10103	OL-0244-19 13.2-16.5	14.85	142.9									
OL-VC-10103	OL-0244-20 16.5-18	17.25	163.3									
OL-VC-10105	OL-0244-01 0-3.3	1.65	210.9									
OL-VC-10105	OL-0296-06 0-3.3	1.65	215.3	89	55	34	0	11.7	88.3	35	20	2.6
OL-VC-10105	OL-0256-12 3.3-6.6	4.95	162.6	84	59	25	0	27	73	26	13	
OL-VC-10105	OL-0244-02 6.6-9.9	8.25	151.2									
OL-VC-10105	OL-0244-03 9.9-13.2	11.55	182.4									
OL-VC-10105	OL-0244-04 13.2-16.5	14.85	151.3									
OL-VC-10105	OL-0256-13 16.5-19.8	18.15	93.9	70	39	31	0	2.3	97.7	19	11	
OL-VC-10107	OL-0249-06 0-3.3	1.65	83.4									
OL-VC-10107	OL-0249-07 3.3-6.6	4.95	85.7									
OL-VC-10107	OL-0249-10 6.6-9.9	8.25	90.6	52	35	17	0	5.9	94.1	17	9	2.65
OL-VC-10107	OL-0249-08 9.9-13.2	11.55	75.1									
OL-VC-10107	OL-0249-05 13.2-16.5	14.85	103.2	59	44	15	0	5.5	94.5	17	8	2.71
OL-VC-10107	OL-0249-09 16.5-17.5	17	96									
OL-STA-10108	OL-0299-01 2-4	3	243.6									

										Page	88	of 101	
	Writ	ten by:	Μ	ling Zhu	Date:	06/18/2	2008 Re	viewed b	y: <u>R</u>	Raja Madhyann	apu Date:	06/19/2008	
	Clien	nt: Ho r	neywell	Project:	Onondag	ga Lake II	WD Stabi	ility]	Project/ P	roposal No.:	GJ4204 Task	No.: 01	
OL-STA-10108	01-0299-02	12-14	13	226.1	132	76	56	0	4 1	95.9	42	20	2 59
OL-STA-10108	01-0299-03	27-29	28	124.2	102	10		0	7.1	55.5	-72	20	2.00
OL-STA-10108	01-0299-04	1 32-34	33	112	1								
OL-STA-10108	01-0299-08	37-39	38	82.6	66	38	28	0.1	37	96.2	39	19	2.52
OL-STA-10108	01-0299-05	5 42-44	43	270.5		00	20	0.1	0.1	00.2		10	2.02
OL-STA-10108	OL-0299-06	6 47-49	48	85.5									
OL-STA-10108	OL-0298-05	5 47-49	48	86.43	92	44	48	0	3.6	96.4	34	27	2.57
OL-STA-10108	OL-0299-09	52-54	53	75.9	95	42	53	0.2	2.3	97.5	26	19	2.69
OL-STA-10108	OL-0299-07	57-59	58	73.9				0.2		0110			2.00
OL-STA-10108	OL-0299-10) 62-64	63	68.5									
OL-STA-10108	OL-0267-01	64-66	65	69.8									
OL-STA-10108	OL-0299-11	66-68	67	70.3									
OL-STA-10108	OL-0267-02	2 68-70	69	67.7	74	35	39	0	0.1	99.9	23	17	2.77
OL-STA-10108	OL-0299-12	2 70-72	71	60.2				-	•••				
OL-STA-10108	OL-0299-13	3 72-74	73	64.9	1								
OL-STA-10108	OL-0301-10) 76-78	77	64.6	67	36	31	0	0.4	99.6	47	29	
OL-STA-10108	OL-0299-14	1 82-84	83	40.6	1								
OL-STA-10108	OL-0301-11	88-90	89	41.7	44	20	24	0	0	100	33	27	
OL-STA-10108	OL-0299-15	5 103-105	104	44.4									
OL-STA-10108	OL-0301-13	3 113-115	114	33.7									
OL-STA-10108	OL-0301-12	2 118-120	119	31.5	40	18	22	0	0	100	55	41	
OL-STA-10108	OL-0299-16	6 123-125	124	20.4	1								
OL-STA-10108	OL-0299-17	7 128-130	129	18.6									
OL-STA-10108	OL-0301-14	134-136	135	17.2	17	15	2	0	8.1	91.9	17	13	2.79
OL-STA-10108	OL-0299-18	3 141-143	142	17.2									
OL-STA-10108	OL-0301-15	5 147-149	148	10	26	15	11	63.3	24	12.7	6	5	
OL-STA-10108	OL-0299-19	9 149-151	150	7.9	1								
OL-STA-10108	OL-0301-16	6 153-155	154	7.6	14	10	4	5.9	53.7	40.4	13	10	
OL-STA-10108	OL-0301-17	155-157	156	9.3	20	10	10	9.6	38	52.4	29	20	2.8
OL-STA-10108	OL-0299-20	165-167	166	11.2									

consultants

					Page		89	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Client: Honeywell Project:		Onondaga Lake ILWD	Stability Pr	oject/ Proposal No.:	GJ4204	Task	No.:	01

SMU 8 Index Test Results Summary

				Water	Atterberg L	M D 4318)			Grain Si	ze (ASTM D 422)		Specific	
Location ID	Field	Depth	Average	Content	Liquid	Plastic	Plasticity	Percent	Percent	Percent Fines	Clay-sized Particle	Clay-sized Particle	Gravity
	Sample ID		Depth	(ASTM D2216)	Limit	Limit	Index	Gravel	Sand	(clay & silt)	Content (0.005 mm)	Content (0.002 mm)	(ASTM D 854)
	-	(ft)	(ft)	(%)				(%)	(%)	(%)	(%)	(%)	
OL-VC-80028	OL-0281-07	0.5-3.3	1.9	206.4	105	48	57	0	0.5	99.5	31	20	2.65
OL-VC-80028	OL-0271-15	3.3-6.6	4.95	143.1									
OL-VC-80028	OL-0303-06	3.3-6.6	4.95	109	64	37	27	0	0.8	99.2	17	11	
OL-VC-80028	OL-0304-04	6.6-9.9	8.25	161.1									
OL-VC-80028	OL-0271-16	9.9-13.2	11.55	93.4									
OL-VC-80028	OL-0271-17	13.2-16.5	14.85	85.2									
OL-VC-80028	OL-0271-18	16.5-17.2	16.85	80.1									
OL-VC-80029	OL-0281-08	3.3-6.6	4.95	123.3	79	55	24	0	6	94	27	10	2.57
OL-VC-80029	OL-0271-11	6.6-9.9	8.25	227.9									
OL-VC-80029	OL-0271-12	9.9-13.2	11.55	103.4									
OL-VC-80029	OL-0271-13	13.2-16.5	14.85	134									
OL-VC-80029	OL-0271-14	16.5-20	18.25	171.3									
OL-VC-80030	OL-0281-17	3.3-6.6	4.95	232	99	61	38	0	1.5	98.5	29	11	
OL-VC-80030	OL-0272-03	6.6-9.9	8.25	172									
OL-VC-80030	OL-0272-04	9.9-13.2	11.55	176.8									
OL-VC-80030	OL-0303-04	9.9-13.2	11.55	176	95	61	34	0.1	1.3	98.6	41	17	2.6
OL-VC-80030	OL-0272-05	13.2-16.5	14.85	159.3									
OL-VC-80030	OL-0272-06	16.5-20	18.25	150.1									
OL-VC-80031	OL-0272-07	0-0.5	0.25	161.3									
OL-VC-80031	OL-0272-08	0.5-3.3	1.9	238.1									
OL-VC-80031	OL-0272-09	3.3-6.6	4.95	185.6									
OL-VC-80031	OL-0303-05	3.3-6.6	4.95	179.4	80	45	35	0.4	1.3	98.3	34	13	2.55
OL-VC-80031	OL-0272-10	6.6-9.9	8.25	141.2									
OL-VC-80031	OL-0272-11	9.9-13.2	11.55	168.4									
OL-VC-80031	OL-0272-12	13.2-16.5	14.85	140.1									
OL-VC-80031	OL-0272-13	16.5-20	18.25	148.5									
OL-VC-80032	OL-0281-04	0.5-3.3	1.9	186.2	120	45	75	0	1.2	98.8	20	13	2.5
OL-VC-80032	OL-0272-14	6.6-9.9	8.25	163.4									
OL-VC-80032	OL-0272-15	9.9-13.2	11.55	143.4									
OL-VC-80032	OL-0272-16	13.2-16.5	14.85	99.3									
OL-VC-80032	OL-0272-17	16.5-18.4	17.45	106									
OL-VC-80033	OL-0281-09	0-0.5	0.25	211.2	115	47	68	0	0.8	99.2	33	22	2.62
OL-VC-80033	OL-0271-01	3.3-6.6	4.95	147.9									
OL-VC-80033	OL-0271-02	6.6-9.9	8.25	49.1									
OL-VC-80033	OL-0271-03	9.9-13.2	11.55	199.2									
OL-VC-80033	OL-0271-04	13.2-16.5	14.85	115.4									
OL-VC-80033	OL-0271-05	16.5-19.7	18.1	139.1									
OL-VC-80034	OL-0281-10	0-0.5	0.25	215.6	113	49	64	0	0.7	99.3	25	17	
OL-VC-80034	OL-0304-08	0.5-3.3	1.9	232.5	161	49	112	0	1.4	98.6	8	7	

									Page	90 0	of 101	
	Written by	/:	Ming Zhu	Date:	06/18/	<u>2008</u> Re	viewed b	y: <u>R</u> a	aja Madhyann	apu Date:	06/19/2008	
	Client:	Honeywel	I Project:	Onondag	ga Lake II	LWD Stabi	ility I	Project/ Pro	oposal No.:	GJ4204 Task N	o.: 01	
OL-VC-80034 OL-0271	-06 3.3-6.6	4.95	181.4				1			[
OL-VC-80034 OL-0271	-07 6.6-9.9	8.25	174.4									
OL-VC-80034 OL-0271	-08 9.9-13.2	11.55	113.1									
OL-VC-80034 OL-0271	-09 13.2-16.5	14.85	198.4									
OL-VC-80034 OL-0271	-10 16.5-19.6	18.05	9.1									
OL-VC-80035 OL-0281	-18 0-0.5	0.25	219.2	103	48	55	0	2.1	97.9	25	19	2.73
OL-VC-80035 OL-0273	3-11 3.3-6.6	4.95	186.6									
OL-VC-80035 OL-0273	3-12 6.6-9.9	8.25	179.7									
OL-VC-80035 OL-0273	3-13 9.9-13.2	11.55	122.5									
OL-VC-80035 OL-0273	3-14 13.2-16.5	14.85	102.4									
OL-VC-80035 OL-0273	3-15 16.5-19	17.75	88.5									
OL-VC-80036 OL-0281	-19 0-0.5	0.25	269.4	113	52	61	0	0.8	99.2	13	10	
OL-VC-80036 OL-0273	3-07 3.3-6.6	4.95	140.7									
OL-VC-80036 OL-0281	-20 6.6-9.9	8.25	137	69	44	25	0	1.1	98.9	16	9	
OL-VC-80036 OL-0273	3-08 9.9-13.2	11.55	101.8									
OL-VC-80036 OL-0273	3-09 13.2-16.5	14.85	89.4									
OL-VC-80036 OL-0304	-09 13.2-16.5	14.85		78	37	41	0.1	0.7	99.2	7	6	
OL-VC-80036 OL-0273	3-10 16.5-18.5	17.5	104.4									
OL-VC-80041 OL-0271	-20 0.5-3.3	1.9	210									
OL-VC-80041 OL-0303	3-03 0-3.3	1.65	219.6	143	45	98	0	0.9	99.1	12	9	2.49
OL-VC-80049 OL-0272	2-01 0-0.5	0.25	248.1				1					
OL-VC-80049 OL-0272	2-02 0.5-3.3	1.9	234.5									
OL-VC-80050 OL-0273	3-04 0-0.5	0.25	176.9				1					
OL-VC-80050 OL-0273	3-05 0.5-3.3	1.9	167.8									
OL-VC-80050 OL-0282	2-01 3.3-6.6	4.95	56.7	84	48	36	0	0.6	99.4	10	5	
OL-VC-80050 OL-0273	3-06 6.6-9.9	8.25	131.4									
OL-VC-80050 OL-0282	2-02 13.2-16.5	14.85	119.9	117	51	66	0	1.1	98.9	31	22	
OL-VC-80050 OL-0304	-02 16.5-17	16.75	91.4				Î.					
OL-VC-80051 OL-0304	-01 0.5-3.3	1.9	189.1	126	44	82	0	0.8	99.2	13	10	
OL-VC-80051 OL-0304	-03 3.3-6.6	4.95	169.3									1

							Page		91	of	101
Written by: Ming Zhu			Date:	06/18/2008	Reviewed	by: _	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD S	Stability	Projec	et/ Proposal No.:	GJ4204	Task	No.:	01

Consolidation Test Results Summary

						Modified	Modified			
	Field	Depth	Average	Compression	Recompression	Compression	Recompression	Initial Void	Initial Water	Preconsolidation
Location ID	Sample ID		Depth	Index	Index	Index	Index	Ratio	Content	Pressure
		(ft)	(ft)	(C _c)	(C _r)	(C _{cε})	(C _{rɛ})	(e _o)	(%)	(psf)
OL-STA-10108	OL-0267-01	64-66	65	0.74	0.06	0.25	0.02	1.91	70.8	1702
OL-STA-10108	OL-0267-02	68-70	69	0.58	0.05	0.20	0.02	1.86	65.3	1032 (disturbed sample)

consultants

					Page		92	of	101
Written by: Ming Zhu			Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client: Honeywell Project:		Onondaga Lake ILWD	Stability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01	

DNAPL Investigation

consultants

					Page		93	of	101
Written b	y: <u>M</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	inapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Pro	oject/ Proposal No.:	GJ4204	Task	No.:	01

Index Test Results Summary

				Atterbe	Atterberg Limits (ASTM D4318)			M-1110-2-1906)	Carbonate	Organic	Water	Specific			Grain Size (A	STM D422)	
	Field	Depth	Average	Liquid	Plastic	Plasticity	Bulk	Dry	Content	Content	Content	Gravity	Percent	Percent	Percent Fines	Clay-sized Particle	Clay-sized Particle
Location ID	Sample ID		Depth	Limit	Limit	Index	Density	Density	ASTM D4373	ASTM D2974	ASTM D2216	ASTM D854	Gravel	Sand	(clay & silt)	Content (0.005 mm)	Content (0.002 mm)
		(ft)	(ft)	(%)	(%)	(%)	(pcf)	(pcf)					(%)	(%)	(%)	(%)	(%)
OL-SB-10115	OL-0317-01	26-28	27				116	88			31.6	2.7					
OL-SB-10121	OL-0317-02	40-42	41				118	92			24.4	2.73					
OL-SB-10124	OL-0317-03	42-44	43				109	72			50.1	2.7					
OL-STA-20056	OL-0317-04	41-43	42				110	79			39.2	2.72					
OL-STA-20056	OL-0317-05	43-45	44														
OL-STA-20052	OL-0318-06	4-6	5	139	88	51	74	16	26	45.1	367.3	2.76	0	0.3	99.7	82	72
OL-STA-20052	OL-0318-07	6-8	7														
OL-STA-20052	OL-0318-08	22-24	23														
OL-STA-20052	OL-0318-09	24-26	25	57	33	24	101	62	48	22.7	62	2.68	0	1	99	52	24
OL-STA-20052	OL-0318-10	30-32	31	24	15	9	124	97	4	8.4	26.6	2.7	0	1.8	98.2	40	27
OL-STA-20052	OL-0318-11	32-34	33														
OL-STA-20054	OL-0318-12	2-4	3														
OL-STA-20054	OL-0318-13	4-6	5	127	79	48	77	23	22	43	140.5	2.58	0	25.6	74.4	28	15
OL-STA-20054	OL-0318-14	20-22	21	46	24	22	103	70	9	10.1	47	2.82	0.3	1.6	98.1	70	48
OL-STA-20054	OL-0318-15	26-28	27	28	16	12	114	86	9	6.4	31.3	2.77	0	0.2	99.8	46	28
OL-SB-10118	OL-0333-01	10-12	11	73	48	25					115.6	2.62	0	25.7	74.3	22	10
OL-SB-10120	OL-0333-02	6-8	7	72	48	24					112.4	2.7	0.7	27.4	71.9	29	14
OL-SB-10126	OL-0333-03	12-14	13	146	66	80					209.2	2.43	0	3.6	96.4	1	0
OL-SB-10121	OL-0333-04	8-10	9	192	77	115					245	2.33	0	29.4	70.6	15	9
OL-SB-10121	OL-0333-05	14-16	15	91	60	31					147.4	2.53	0	7.1	92.9	24	8
OL-SB-10121	OL-0333-06	16-18	17	114	74	40					53	2.52	0.5	11.7	87.8	18	9
OL-SB-10124	OL-0333-07	4-6	5		Non-Plastic						63.1	2.7	0	95.9	4.1		
OL-SB-10124	OL-0333-08	10-12	11	74	47	27					144.9	2.52	0	20.5	79.5	22	4
OL-SB-10124	OL-0333-09	24-26	25	96	49	47					146.6	2.51	0	6.8	93.2	4	2

consultants

						Page		94	of	101
Written b	ру: <u>М</u>	ling Zhu	Date:	06/18/2008	Reviewed by	Raja Madhya	nnapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga	Lake ILWD	Stability P	roject/ Proposal No.:	GJ4204	Task	No.:	01

CIU Test Results Summary

				Initial	Initial	Peak			CIU Total Stress		CIU Effective Stress	
	Field	Depth	Average	Water	Confining	Deviator	Undrained	Strain		Friction		Friction
Location ID	Sample ID		Depth	Content	Stress	Stress	Strength	at Failure	Cohesion	Angle	Cohesion	Angle
		(ft)	(ft)	(%)	(psf)	(psf)	(psf)	(%)	(psf)	(degrees)	(psf)	(degrees)
OL-SB-10121	OL-0317-02	40-42	41	29.2	1561	1872.6	936.3	15	57.8	18.7	41.7	29.5
				25	2343	2002	1001	14.4				
				28.4	3123	3256	1628	15				
OL-SB-10124	OL-0317-03	42-44	43	49.4	1636	1502.8	751.4	11.5	319	10.7	195	26.4
				47.6	2455	2220	1110	15				
				31.6	3271	2388	1194	14.2				
OL-STA-20056	OL-0317-04	41-43	42	34.1	1597	1205.4	602.7	13.4	401	5	335	15.1
				29.9	2399	1390	695	10.2				
				39.2	3198	1540.8	770.4	8.46				
OL-STA-20052	OL-0318-07	6-8	7	297.3	267.2	624.2	312.1	3.4	79.1	25.5	200	46
				194.3	400	943.8	471.9	6.66				
				231.8	532.4	1002.8	501.4	7.92				
OL-STA-20054	OL-0318-13	4-6	5	230.6	295.5	744.6	372.3	8.1				

		Page	95 of 101
Written by: Ming	; Zhu Date: <u>06/18/2008</u> H	Reviewed by: Raja Madhyanna	ou Date: 06/19/2008
Client: Honeywell F	Project: Onondaga Lake ILWD Sta	bility Project/ Proposal No.: G	J4204 Task No.: 01

UU Test Results Summary

Location ID	Field Sample ID	Depth (ft)	Average Depth (ft)	Water Content (%)	Dry Density (pcf)	Confining Stress (psf)	Undrained Strength (psf)	Strain at Failure (%)
OL-SB-10115	OL-0317-01	26-28	27	32.7	87.4	1028	165.9	8.1
OL-STA-20052	OL-0318-06	4-6	5	211.1	23.82	190	225.1	23.1
OL-STA-20052	OL-0318-09	24-26	25	53.5	65.59	952	288.1	10.3
OL-STA-20052	OL-0318-10	30-32	31	27.8	95.6	1180	147.7	12.7
OL-STA-20054	OL-0318-14	20-22	21	62.9	63.21	800	236.9	10
OL-STA-20054	OL-0318-15	26-28	27	32	86.1	1028	123.6	11.9

						Page		96	of	101
Written by: Ming Zhu		Date: Date: Reviewed		Reviewed by:	i by: <u>Raja Madhyannapu</u>		Date:	06/1	9/2008	
Client:	Honeywell	Project:	Onondaga Lake	ILWD Sta	bility Proje	ct/ Proposal No.:	GJ4204	Task	No.:	01

Phase III investigation

GA080480 Appendix A_Data Package_Final.doc
consultants

					Page		97	of	101
Written b	ру: <u>М</u>	ing Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD	Stability Proj	ect/ Proposal No.:	GJ4204	Task	No.:	01

Index Test Results Summary

					Water	Atterberg	Limits (AST	M D4318)			Grain	Size (ASTM D422)		Organic	Specific	Carbonate	Bulk
Location ID	Field	Denth	Average	Sediment	Content	Liquid	Plastic	Plasticity	Percent	Percent	Percent Fines	Clav-sized Particle	Clav-sized Particle	Content	Gravity	Content	Density
Location in	Sample ID	Deptil	Donth	Type	(ASTM D2216)	Limit	Limit	Index	Gravel	Sand	(clay & cilt)	Contont (0.005 mm)	Contont (0.002 mm)	(ASTM D2974)	(ASTM D854)	(ASTM D4373)	(ASTM D2937)
	Sample ID	(f+)	(ft)	Type	(ASTNI D2210)	(%)	(%)	(%)	(%)	(%)	(04)	(%)	(%)	(A0111 02314)	(AOTIN 2004)	(A01111 D4010)	(AOTIN D2001)
OL 68 10120	01 0414 02	65.95	7.5	801W	(70)	(70)	(70)	(70)	(70)	(70)	(70)	(78)	(%)		2.52		0.2
OL-3B-10129	OL-0414-02	0.5-0.5	7.5	SOLW	110.3	55	35	10	0	0.9	99.1	36	12		2.55		03
OL-SB-10129	OL-0414-03	12-14	13	SOLW	97				-								85
OL-SB-10129	OL-0414-06	39-41	40	Marl	59.4	61	32	29	0	0.5	99.5	65	36	2.6		78	101
OL-SB-10129	OL-0414-08	44-46	45	Marl	53	64	32	32	0	0.3	99.7	32	14	2.7	2.69	70	100
OL-SB-10129	OL-0414-11	62-64	63	Silt/Clay	21.8	28	14	14	0	0	100	63	43	0.5		26	121
OL-SB-10129	OL-0414-12	65-67	66	Silt/Clay	110.3	31	14	17	0	0.2	99.8	45	33	1.3	2.76	26	125
OL-SB-10130	OL-0414-13	15-17	16	SOLW	202.3	114	67	47	0	1.8	98.2	45	18		2.57		78
OL-SB-10130	OL-0414-16	44-46	45	Marl	50	66	32	34	0	0.5	99.5	30	15	4.1	2.74	43	102
OL-SB-10130	OL-0414-18	49-51	50	Marl	47.2	62	35	27	0	0.5	99.5	74	48	2.5		52	98
OL-SB-10130	OI -0414-20	59-61	60	Silt/Clay	32.9	42	21	21	0	0.1	99.9	72	47	0.8	2 75	4	113
OL-SB-10130	01-0414-21	64-66	65	Silt/Clay	13.0	29	16	13	0	0.2	99.8	54	36	1.7	2.70	0	121
OL SB 10130	OL 0414 21	2.4	3	SOLW	104	64	40	24	0	4.2	95.0	22	13	1.7	2.59	0	94
OL-3D-10131	OL-0414-23	475405	40.5	SOLW	70.4	04	40	24	0	4.0	33.7	32	13		2.30		04
OL-SB-10131	OL-0414-27	17.5-19.5	18.5	SOLW	72.1	51	30	15	0	1.3	98.7	34	13		2.51	05	89
OL-SB-10131	OL-0414-28	42-44	43	Mari	73	97	43	54	0	0.6	99.4	43	29	6.5		65	95
OL-SB-10131	OL-0414-29	44.5-46.5	45.5	Marl	47	83	34	49	0	0.9	99.1	45	34	4.2	2.68	48	96
OL-SB-10131	OL-0414-32	54.5-56.5	55.5	Marl	46.8	67	33	34	0	7	93	52	35	2.2	2.67	57	98
OL-SB-10131	OL-0414-36	79.5-81.5	80.5	Marl?	23.8	39	17	22	0	0.2	99.8	40	27	2.3		35	116
OL-SB-10131	OL-0414-37	89.5-91.5	90.5	Silt/Clay	30.3	29	18	11	0	0.3	99.7	72	50	0.8	2.76	9	115
OL-SB-10132	OL-0414-38	15-17	16	SOLW	132	85	45	40	0	1.6	98.4	27	12		2.5		77
OL-SB-10132	OL-0414-40	46.5-48.5	47.5	Marl	56	83	34	49	0	1.5	98.5	41	26	6.4	2.67	39	93
OL-SB-10132	OL-0414-41	49-51	50	Marl	50	81	35	46	0	0.7	99.3	48	31	4.9		65	97
OL-SB-10132	OL-0414-43	54-56	55	Silt/Clay	51.6	75	38	37	0	0.3	99.7	30	20	5.6		52	97
OL-SB-10132	OL-0414-47	74-76	75	Silt/Clay	31.2	37	19	18	0	0.1	99.9	61	39	1.3	2.68	30	112
OL-SB-10133	01-0414-48	2-4	3	SOLW	258.9	109	52	57	0	0.8	99.2	33	13		2.58		76
OL OB 10100	OL 0414 51	10.01	20	SOLW	200.5	105	52	51	0	0.0	33.2		15		2.00		75
OL-3B-10133	OL-0414-51	19-21	20	SOLW	299.1	05	20	46	0	0.7	00.2	42	30	5.0		74	75
OL-3B-10133	OL-0414-52	41-43	42	IVIAII	00.1	00	39	40	0	0.7	99.3	43	29	3.6	0.50	14	90
OL-SB-10133	OL-0414-53	43.5-45.5	44.5	Mari	46	/4	34	40	0	1.1	98.9	47	29	4.6	2.58	43	103
OL-SB-10133	OL-0414-57	58.5-60.5	59.5	Silt/Clay	49.2	69	32	37	0	0.4	99.6	26	20	3.9		78	96
OL-SB-10133	OL-0414-58	63.5-65.5	64.5	Silt/Clay	47.9	64	31	33	0	0.3	99.7	39	24	1.6	2.77	61	101
OL-SB-10134	OL-0414-61	17.5-19.5	18.5	SOLW	181.4	135	75	60	0	30.7	69.3	32	15		2.52		76
OL-SB-10134	OL-0414-62	51.5-53.5	52.5	Marl	81.2	156	45	111	0	0.5	99.5	53	33	7.1	2.64	87	94
OL-SB-10134	OL-0414-63	54-56	55	Marl	78.1	94	40	54	0	0.7	99.3	32	24	5.4		35	91
OL-SB-10134	OL-0414-68	74-76	75	Marl	63.1	70	34	36	0	0.2	99.8	32	24	4.2		65	103
OL-SB-10134	OL-0414-69	79-81	80	Marl	62.1	65	37	28	0	0.5	99.5	43	30	4	2.73	61	95
OL-SB-10135	OL-0414-70	15-17	16	SOLW	211.8	92	50	42	0	1.1	98.9	40	20		2.57		77
OL-SB-10135	OI -0414-75	56 5-58 5	57.5	Marl	56.8	84	37	47	0	0.2	99.8	46	27	51	2.68	78	92
OL-SB-10135	OL-0414-76	61 5-63 5	62.5	Marl	50.7	78	37	41	0	1.5	98.5	19	15	4.8	2.00	74	95
OL-SB-10125	01-0414-79	71 5-73 5	72.5	Marl	67.6	69	34	35	ů 0	0.0	99.1	34	23	2.2		74	100
OL-SB-10135	01-0414-70	765-785	77.5	Marl	52.5	67	31	36	0	0.5	99.1	28	20	4.4	2.66	74	96
OL 68 80050	OL 0414-79	10.3-10.3	7.5	IVIAIT	109.4	07	50	30	0.1	0.1	33.3	45	20	4.1	2.00	/4	30
OL-SB-80052	OL-0414-81	0.5-8.5	7.5	SOLW	128.4	92	52	40	0.1	0.7	99.2	45	20		2.54		/5
OL-SB-80052	UL-0414-83	35-37	36	Mari	66.8	66	34	32	0	0.3	99.7	50	32	3.3		61	97
UL-SB-80052	UL-0414-84	37.5-39.5	38.5	Mari	48.2	69	33	36	0	0.5	99.5	35	23	2	2.46	91	100
OL-SB-80052	OL-0414-87	50-52	51	Marl	40.6	40	19	21	0	0	100	69	48	0.8	2.74	9	110
OL-SB-80052	OL-0414-92	93-95	94	Silt/Clay	23.2	27	14	13	0	0	100	59	41	0.8		9	127
OL-SB-80052	OL-0414-93	103-105	104	Silt/Clay	19.1	17	16	1	0	12.6	87.4	13	11	0.4	2.79	9	132
OL-SB-80053	OL-0414-94	4-6	5	SOLW	148.8	87	50	37	0	0.8	99.2	39	22		2.58		68
OL-SB-80053	OL-0414-96	32-34	33	Marl	86.6	98	39	59	0	1	99	54	31	3.7		48	89
OL-SB-80053	OL-0414-97	34.5-36.5	35.5	Marl	84.7	83	40	43	0	0.4	99.6	37	27	4.5	2.58	61	95
OL-SB-80053	OL-0414-101	54.5-56.5	55.5	Marl	68.7	62	32	30	0	0.2	99.8	55	36	2.9	2.71	74	100
OL-SB-80053	OL-0414-108	129-131	130	Silt/Clay	29.7	41	17	24	õ	0	100	84	63	1.9		26	121
OL-SB-80053	OL-0414-109	139-141	140	Silt/Clay	25.2	32	15	17	ő	01	99.9	63	43	1.0	2 79	30	127
OL 6B 80054	OL 0414 144	6 5 9 5	7.5	SOLW	100.2	65	27	29	0	1.5	09.5	22	+5	1.4	2.15	50	04
OL-SB-80054	OL-0414-111	0.5-8.5	7.5 29	SULW	100.2	100	3/	28	0	1.5	98.5	33	10	6.9	2.59	61	00
01-58-80054	01-0414-112	21-29	28	Iviari	90.1	100	39	10	U	1	99	35	25	0.8	2.00	01	88
OL-SB-80054	UL-0414-117	39.5-41.5	40.5	Mari	78.8	69	38	31	0	0.6	99.4	52	35	5.1		78	91
OL-SB-80054	UL-0414-119	49.5-51.5	50.5	Marl	64.7	64	37	27	0	0.2	99.8	35	19	1.5	2.56	96	100
OL-SB-80054	OL-0414-123	84.5-86.5	85.5	Silt/Clay	35.8	53	22	31	0	0.1	99.9	70	53	2.9		9	102
OL-SB-80054	OL-0414-128	134.5-136.5	135.5	Silt/Clay	32.7	46	18	28	0	0	100	73	56	1.4	2.72	30	125

GA080480 Appendix A_Data Package_Final.doc

consultants

						Page		98	of	101
Written b	y: <u>M</u> i	ing Zhu	Date: 06	6/18/2008	Reviewed by	: Raja Madhya	nnapu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga La	ke ILWD S	tability P	roject/ Proposal No.:	GJ4204	Task I	No.:	01

UU Test Results Summary

Location ID	Field Sample ID	Depth (ft)	Average Depth (ft)	Sediment Type	Water Content (%)	Dry Density (pcf)	Confining Stress (psf)	Undrained Strength (psf)	Strain at Failure (%)
OL-SB-10129	OL-0414-06	39-41	40	Marl	59.9	63.1	3442	318	11.4
OL-SB-10131	OL-0414-28	42-44	43	Marl	71.4	55.7	3701	557	9.41
OL-SB-10133	OL-0414-52	41-43	42	Marl	67.7	58.2	3572	469	9.43
OL-SB-80052	OL-0414-83	35-37	36	Marl	51.9	64.0	5528	312	8.65
OL-SB-80053	OL-0414-96	32-34	33	Marl	89.5	46.9	4959	125	15
OL-SB-80054	OL-0414-112	27-29	28	Marl	89.7	46.5	4247	150	15
OL-SB-80054	OL-0414-117	39.5-41.5	40.5	Marl	74.4	52.0	5372	216	12.5

Note:

-

1. These parameters are provided to show general material behavior for informational purposes only. Additional interpretation will be required for design.

consultants

					Page		99	of	101
Written b	oy: <u>M</u>	ling Zhu	Date: 06/18/2008	Reviewed by:	Raja Madhyan	napu	Date:	06/1	9/2008
Client:	Honeywell	Project:	Onondaga Lake ILWD S	tability Proje	ect/ Proposal No.:	GJ4204	Task	No.:	01

CIU Test Results Summary

					Initial	Initial	Peak			CIU Tota	Stress ¹	CIU Effectiv	ve Stress ¹	
	Field	Depth	Average	Sediment	Water	Confining	Deviator	Undrained	Strain		Friction		Friction	Test
Location ID	Sample ID		Depth	Туре	Content	Stress	Stress	Strength	at Failure	Cohesion	Angle	Cohesion	Angle	Туре
		(ft)	(ft)		(%)	(psf)	(psf)	(psf)	(%)	(psf)	(degrees)	(psf)	(degrees)	
OL-SB-10129	OL-0414-02	6.5-8.5	7.5	SOLW	150.1	1999	1144	572	9.18	0	12.2	0	34	1-Point CIU
OL-SB-10129	OL-0414-03	12-14	13	SOLW	73.9	500.3	1829.8	914.9	12.9	682	5.1	54.8	39.7	3-Point CIU
					88.4	999.3	1394.8	697.4	12.8					
					97.3	2002	1938	969	15					
OL-SB-10129	OL-0414-08	44-46	45	Marl	60	1199	1576.4	788.2	12.9	365	12.5	97.9	41.3	3-Point CIU ²
					60.5	4993	3682	1841	14.2					
OL-SB-10129	OL-0414-11	62-64	63	Silt/Clay	27.7	6001	3870	1935	14.8					1-Point CIU
OL-SB-10129	OL-0414-12	65-67	66	Silt/Clay	24	2000	2518	1259	15	347	13	292	27.7	3-Point CIU
					19.3	3001	2052	1026	15					
					21.8	5999	4456	2228	12.8					
OL-SB-10130	OL-0414-13	15-17	16	SOLW	173.3	499.8	979.6	489.8	9.46	217	19	0	58	3-Point CIU
					247.2	1001	1746.8	873.4	5.72					
					205.6	2000	2462	1231	15					
OL-SB-10130	OL-0414-16	44-46	45	Marl	62.6	1200	1352.6	676.3	14.4	287	11.7	101	32.9	3-Point CIU
					57	2498	1928.4	964.2	9.68					
					57.4	4999	3276	1638	14.5					
OL-SB-10130	OL-0414-18	49-51	50	Marl	54.8	5000	3178	1589	14.7					1-Point CIU
OL-SB-10130	OL-0414-20	59-61	60	Silt/Clay	34.8	1200	1218.4	609.2	12.4	239	12.1	130	29.5	3-Point CIU
					38.5	2499	1925	962.5	13.3					
					31.1	5000	3232	1616	15					
OL-SB-10130	OL-0414-21	64-66	65	Silt/Clay	29	6000	4652	2326	15					1-Point CIU
OL-SB-10131	OL-0414-23	2-4	3	SOLW	127.8	999.3	993.8	496.9	8.51	124	14.6	191	28.3	3-Point CIU ²
					106.3	1994	1664.4	832.2	3.8					
OL-SB-10131	OL-0414-27	17.5-19.5	18.5	SOLW	87.7	2000	1148	574	11.6					1-Point CIU
OL-SB-10131	OL-0414-29	44.5-46.5	45.5	Marl	63.4	1201	1467.8	733.9	15	210	16	261	32.1	3-Point CIU
					69.4	2500	2294	1147	12.2					
					70.1	5004	4764	2382	15					
OL-SB-10131	OL-0414-32	54.5-56.5	55.5	Marl	62.4	5000	3776	1888	15					1-Point CIU
OL-SB-10131	OL-0414-36	79.5-81.5	80.5	Marl?	36.7	6001	3486	1743	10					1-Point CIU
OL-SB-10131	OL-0414-37	89.5-91.5	90.5	Silt/Clav	41.3	2499	1893.6	946.8	9.72	474	7.7	292	25.1	3-Point CIU
					38.7	3800	2218	1109	13.9					
			1		31.9	7498	3420	1710	8.13					
OL-SB-10132	OL-0414-38	15-17	16	SOLW	152.4	499.8	613	306.5	3.78	170	9.7	118	30.3	3-Point CIU
			1		143.5	1000	801.6	400.8	5.61					
					189.9	2005	1221	610.5	9.56					

GA080480 Appendix A_Data Package_Final.doc

		Page	100	of 101
Written by: Ming Zh	Date: 06/18/2008 Reviewed by:	Raja Madhyannapu	Date:	06/19/2008
Client: Honeywell Proje	ect: Onondaga Lake ILWD Stability Pro	oject/ Proposal No.: GJ4204	Task 1	No.: 01

OL-SB-10132	OL-0414-40	46.5-48.5	47.5	Marl	81.4	1200	1200.4	600.2	15	0	16	46.3	36.6	3-Point CIU
					81.7	2500	1292.4	646.2	14.4					
					72.2	5000	4208	2104	15					
OL-SB-10132	OL-0414-41	49-51	50	Marl	70.6	4999	3150	1575	11.9					1-Point CIU
OL-SB-10132	OL-0414-43	54-56	55	Silt/Clay	65.5	5001	3180	1590	9.31					1-Point CIU
OL-SB-10132	OL-0414-47	74-76	75	Silt/Clay	32.4	1999	2018	1009	12.6	383	9.5	341	24.3	3-Point CIU
					35.1	4000	2046	1023	12					
					24.5	8000	4208	2104	15					
OL-SB-10133	OL-0414-48	2-4	3	SOLW	122	999.2	974.8	487.4	4.95	NA	3	0	40.2	3-Point CIU ²
					85	1998	812.6	406.3	9.82					
OL-SB-10133	OL-0414-51	19-21	20	SOLW	282.3	1999	1533.6	766.8	5.59					1-Point CIU
OL-SB-10133	OL-0414-53	43.5-45.5	44.5	Marl	68.6	1199	1462.4	731.2	13.1	267	13.6	290	28.2	3-Point CIU
					63.1	2500	2132	1066	10					
					56.1	5002	3196	1598	5.49					
OL-SB-10133	OL-0414-57	58.5-60.5	59.5	Silt/Clay	64.8	4999	3244	1622	15					1-Point CIU
OL-SB-10133	OL-0414-58	63.5-65.5	64.5	Silt/Clay	59.3	1997	1605.8	802.9	10.7	366	9.9	129	33	3-Point CIU
					60.4	2998	2240	1120	11.9					
					58.1	5997	3324	1662	12.6					
OL-SB-10134	OL-0414-61	17.5-19.5	18.5	SOLW	196.2	499.8	625.6	312.8	4.06	128	13.7	0.362	52	3-Point CIU
					125.3	1000	965.6	482.8	5.91					
					201.2	2001	1565.4	782.7	8.56					
OL-SB-10134	OL-0414-63	54-56	55	Marl	76.2	4999	3742	1871	13.6					1-Point CIU
OL-SB-10134	OL-0414-64	56.5-58.5	57.5		72.8	1200	1571.8	785.9	11.2	432	10.7	295	30.7	3-Point CIU
					73	2499	2216	1108	13.9					
					74	5000	3322	1661	9.71					
OL-SB-10134	OL-0414-68	74-76	75	Marl	60.4	6006	7554	3777	15					1-Point CIU
OL-SB-10134	OL-0414-69	79-81	80	Marl	67.7	2001	1757	878.5	12.2	306	10.7	78.9	33.6	3-Point CIU
					60.1	3999	2420	1210	13.1					
					54.9	8003	4448	2224	15					
OL-SB-10135	OL-0414-70	15-17	16	SOLW	216.8	500.7	606	303	2.96	214	11.5	150	36.1	3-Point CIU
					227.3	1001	1322.2	661.1	4.28					
	01 0444 75	50 5 50 5			188.4	2000	1375.8	687.9	9.58	055		400		
OL-SB-10135	OL-0414-75	56.5-58.5	57.5	Mari	//.9	1501	1285.4	642.7	10.6	255	11.4	188	31.9	3-Point CIU
					/6.8	3000	2214	1107	15					
		04 5 00 5	00 F	Mari	69.6 70.0	6000	3532	1/00	15				ļ	
OL-SB-10135	OL-0414-76	01.5-63.5	62.5	Mari	72.9	5998	3984	1992	14.6				ļ	T-Point CIU
OL-SB-10135	OL-0414-78	/1.5-73.5	72.5	Marl	65.1	6000	3542	1/71	7.5					1-Point CIU

consultants

					Page	101	of	101
Written by:	Ming Zhu	Date:	06/18/2008	Reviewed by:	Raja Madhyannapu	Date:	06/2	19/2008

Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 01

OL-SB-10135	OL-0414-79	76.5-78.5	77.5	Marl	65.9	2002	1832.2	916.1	12.8	448	10.4	331	27.7	3-Point CIU
					66.1	4000	3036	1518	14.6					
					66.8	8002	4538	2269	9.49					
OL-SB-80052	OL-0414-81	6.5-8.5	7.5	SOLW	192	500	370.2	185.1	5.35	44.5	11.8	53.3	31.8	3-Point CIU
					222.7	999.4	616.4	308.2	10.7					
					217.7	2001	1137.2	568.6	8.92					
OL-SB-80052	OL-0414-84	37.5-39.5	38.5	Marl	60.1	999.2	941.2	470.6	13.3	17.5	15.9	7.79	37.5	3-Point CIU
					66.7	2000	1356.6	678.3	11.9					
					58.7	4000	3124	1562	15					
OL-SB-80052	OL-0414-87	50-52	51	Marl	36.5	4999	6654	3327	15					1-Point CIU
OL-SB-80052	OL-0414-92	93-95	94	Silt/Clay	21.5	6000	5620	2810	15					1-Point CIU
OL-SB-80052	OL-0414-93	103-105	104	Silt/Clay	19.4	2999	9822	4911	15	0	50	0.192	36.6	3-Point CIU
					19.3	4503	49700	24850	11.8					
					18.8	8998	47160	23580	15					
OL-SB-80053	OL-0414-94	4-6	5	SOLW	257.9	499.8	396.8	198.4	5.95	86.5	9.5	41.1	33.1	3-Point CIU
					306.4	1009	604.8	302.4	7.18					
					196.1	1999	990.4	495.2	10.2					
OL-SB-80053	OL-0414-97	34.5-36.5	35.5	Marl	79.6	1000	1380.4	690.2	15	320	13.2	262	30.1	3-Point CIU
					82.9	2002	2020	1010	14.9					
					85.5	3997	3164	1582	15					
OL-SB-80053	OL-0414-101	54.5-56.5	55.5	Marl	66.5	4997	2888	1444	5.47					1-Point CIU
OL-SB-80053	OL-0414-108	129-131	130	Silt/Clay	30.6	5999	2784	1392	14					1-Point CIU
OL-SB-80053	OL-0414-109	139-141	140	Silt/Clay	25.3	4005	4462	2231	14.2	1530	8.5	236	30.1	3-Point CIU
					24.9	6002	6370	3185	15					
					25.4	12000	7522	3761	33.3					
OL-SB-80054	OL-0414-111	6.5-8.5	7.5	SOLW	125.6	998.6	660.4	330.2	12.4	0	15	0	45	3-Point CIU ²
					122.6	1998	1373.4	686.7	15					
OL-SB-80054	OL-0414-119	49.5-51.5	50.5	Marl	64.6	1503	1564.2	782.1	13.4	389	10.1	192	30.7	3-Point CIU
					61.8	2999	2210	1105	15					
					64.9	6000	3486	1743	15					
OL-SB-80054	OL-0414-123	84.5-86.5	85.5	Silt/Clay	56.6	5999	2276	1138	4.63					1-Point CIU
OL-SB-80054	OL-0414-128	134.5-136.5	135.5	Silt/Clay	26.8	4001	2424	1212	15	686	6.7	36	31.6	3-Point CIU
					15.3	6000	3348	1674	4.09					
					25.2	12000	4630	2315	3.56					

Notes:

1. Cohesion and friction angle are not determined for the 1-point CIU tests.

2. Only a 2-point CIU test could be performed at this interval.

3. NA indicates not applicable. Additional interpretation is required to use these test results.

4. These parameters are provided to show general material behavior for informational purposes only. Additional interpretation will be required for design.

APPENDIX H.2

LIQUEFACTION POTENTIAL ANALYSES

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

ITLE OF COMPUTATIONS	LIQUEFACTION POTENTIAL ANALYSES A	ND THE ADDEND
OMPUTATIONS BY:	Signature R. Kulangan	1/14/2011
		DATE
	and Title Senior Engineer	
SSUMPTIONS AND PROCEDURI	es h. The The Barl	
HECKED BY:	Signature COVBIV.	<u>1/14/2011</u>
'eer Reviewer)	Printed Name Ming Zhu/Iav Beech	DATE
	and Title Project Engineer/Principal	
OMPUTATIONS CHECKED BY:	Signature Michael	1/14/2011
		DATE
	Printed Name Ming Zhu	
	and Title Project Engineer	
OMPUTATIONS	R. Kulainan	1/14/2011
BACKCHECKED BY:	Signature	
Driginator)		DATE
	Printed Name R. Kulasingam	
COFINEW YO	Senior Engineer	
PPROVED BY:	Signature T. Back	1/14/2011
M or Designate)	Reinted Name Jav Beech	DATE
10 06633 VO 06633	and Title Principal	
Presson POFESSION	A A A A A A A A A A A A A A A A A A A	

NO.	SHEET	DATE	BY	CHECKED BY	APPROVAL

		Geo	osyntec 🖻
			consultants
		Page	1 of 48
Written by: R. Kulasingam	Date: 12/17/2010 Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD4	1014 Task No.: 02

LIQUEFACTION POTENTIAL ANALYSES

INTRODUCTION

This calculation package was prepared as part of the In-Lake Waste Deposit (ILWD) geotechnical stability evaluation for the Onondaga Lake Bottom Site. Specifically, the purpose of this package is to present liquefaction potential analyses for the ILWD area. The ILWD area consists of Sediment Management Unit (SMU) 1 and limited portions of SMUs 2, 7, and 8. Liquefaction potential of the Solvay Waste (SOLW) and the underlying soils was evaluated for existing conditions.

The evaluation of the capped condition is not explicitly included herein because the evaluation of the existing SOLW and underlying soils will not be affected by the installation of a cap (anticipated to be approximately 3 to 5.5-ft thick) at slopes that are similar to existing conditions. However, for completeness, the effect of cap weight on the liquefaction potential of the existing SOLW and underlying soils and the liquefaction potential of the cap itself are addressed in an addendum to this calculation package.

The remainder of this calculation package presents: (i) technical framework; (ii) subsurface stratigraphy and material properties; (iii) methodology; (iv) results; and (v) conclusions.

TECHNICAL FRAMEWORK

A technical framework for the proposed liquefaction evaluation is presented in this section. Defining a framework is important because the term "liquefaction" is used to describe a variety of phenomena in the literature. A description of the different liquefaction mechanisms and liquefaction potential evaluation procedures are presented in the following sections.

Liquefaction Mechanisms

Kramer [1996] writes the following about the term "liquefaction":

"The term liquefaction.....has historically been used in conjunction with a variety of phenomena that involve soil deformations caused by monotonic, transient, or repeated

		Ge	osyntec <a>>
			consultants
		Page	2 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD	04014 Task No.: 02

disturbance of saturated cohesionless soils under undrained loading conditions. The generation of excess pore pressure under undrained loading conditions is a hallmark of all liquefaction phenomena".

Generally liquefaction phenomena can be divided into two main groups: (i) flow liquefaction (or true liquefaction); and (ii) cyclic mobility (or cyclic liquefaction). These two types of "liquefaction" phenomena are illustrated in Figure 1 and explained in the following paragraphs.

Flow liquefaction can occur when the shear stress required for static equilibrium of a soil mass (static shear stress, τ_d in Figure 1) is greater than the shear strength of the soil in its liquefied state (S_{us} in Figure 1). The shear strength of the soil in its liquefied state is also referred to as the undrained steady state shear strength or residual undrained shear strength in the literature. This shear strength is less than the peak shear strength for strain softening soils and is the same as the peak shear strength for strain hardening soils. Deformations produced by flow liquefaction are driven by static shear stresses and can be very large [Kramer 1996]. Flow liquefaction can be initiated by seismic loading, vibrations such as pile driving, geophysical exploration, blasting, and/or monotonic loading (static liquefaction). Flow liquefaction stress paths due to monotonic loading and cyclic loading are illustrated in Figure 1(a). The above discussion about flow liquefaction is generally applicable to cohesionless soils and soils with low plasticity. The term liquefaction is not generally used for cohesive soils that show "clay-like" behavior. However, undrained shear strength of sensitive clays or cemented soils can reduce from their undisturbed undrained shear strength to remolded undrained shear strength when disturbed and show a "flow liquefaction"-like behavior.

Cyclic mobility can be initiated by cyclic loading (i.e., seismic or periodic wave loading) resulting in the development of incremental deformations during loading [Kramer 1996]. It can occur when the static shear stress is less than the shear strength of the liquefied soil, and it will not result in flow liquefaction, which is discussed in the previous paragraph. However, if the static shear stress is greater than the shear strength of the liquefied soil, cyclic mobility can act as a trigger to push the stress path past the peak shear strength and lead to flow liquefaction. Conversely, if cyclic loading is not strong enough to trigger cyclic mobility, flow liquefaction is not likely to occur under that same loading. Cyclic mobility stress path due to cyclic loading is illustrated in Figure 1(b). Monotonic loading stress paths for the same soil are also provided in this figure to illustrate that the soil deforming due to cyclic mobility still has shear strength to resist shear stresses.

		Ge	osyntec 🖻
			consultants
		Page	3 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GI	04014 Task No.: 02

While the term cyclic mobility or cyclic liquefaction is generally used for cohesionless soils and soils with low plasticity, the term cyclic softening is used to describe the behavior of silty and clayey soils during earthquakes [Boulanger and Idriss, 2007].

Liquefaction Potential Evaluation Procedures

The state-of-practice for evaluating the liquefaction potential does not explicitly account for different liquefaction mechanisms. State-of-practice procedures are mainly based on case histories of occurrences and non-occurrences of liquefaction due to past earthquakes. Occurrences (or non-occurrences) of liquefaction are determined by presence (or absence) of surface manifestations of liquefaction such as sand boils, ground cracking, slope movements, and/or flow failures. Surface manifestations are generally present if high pore pressures are generated due to seismic loading and "liquefaction" is triggered. Therefore, if soils at a particular site are deemed to be not susceptible to liquefaction based on methods used in state-of-practice, further analyses such as post-liquefaction slope stability or flow liquefaction are not needed for seismic loading.

An initial step in performing a liquefaction potential evaluation is application of screening criteria based on geotechnical properties to evaluate whether subsurface materials are potentially liquefiable. Seismic loading is not considered in this screening evaluation. In general, soils that show "clay-like" behavior are not susceptible to liquefaction. Boulanger and Idriss [2007] proposed a procedure to evaluate the potential for cyclic softening of silty and clayey soils based on undrained static shear strengths and seismic loading. The screening criteria and the Boulanger and Idriss [2007] procedure to evaluate to seismic loading, and therefore cover all forms of "liquefaction" due to seismic loading.

The state-of-practice for liquefaction analysis for cohesionless soils is based on empirical correlations based on insitu soil tests such as Standard Penetration Tests (SPT) or Cone Penetration Tests (CPT). The effect of seismic loading is considered in this approach. This procedure was developed based on field case histories where evidence of liquefaction was or was not observed after earthquakes, and, therefore, covers all forms of "liquefaction" due to seismic loading.

In addition to the state-of-practice based methods, potential for flow liquefaction or sensitivity for loss of shear strength can be directly evaluated for soils based on stressstrain behavior during laboratory tests such as undrained triaxial tests. A pronounced

		G	eosyntec⊳
			consultants
		Page	4 of 48
Written by: R. Kulasingam	_ Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.:	GD4014 Task No.: 02

strain softening behavior where the shear strength peaks at relatively low strains and then drops significantly to reach a steady state or residual value may be an indication of the potential to liquefy under certain conditions. On the other hand, a strain hardening behavior where the shear strength keeps increasing as the soil is strained or a limited strain softening behavior where the shear strength peaks and then drops slightly to reach a steady value indicates that flow liquefaction or sensitivity is not an issue. These three types of soil behavior are illustrated in Figure 2. It is noted that liquefaction due to cyclic mobility may still be triggered in a strain hardening soil depending on the acceleration and magnitude of the seismic loading.

SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES

Subsurface soils in the ILWD area consist of primarily seven strata (from top to bottom): (i) SOLW; (ii) marl; (iii) silt and clay; (iv) silt and sand; (v) sand and gravel; (vi) till; and (vii) shale. Standard Penetration Tests (SPT) were conducted in most of the borings to measure the SPT blow count values. Samples of SOLW, marl, and silt and clay were collected during the investigations for laboratory testing of index properties, shear strength, and compressibility. A detailed description of the development of the subsurface model and geotechnical parameters is presented in Appendix A titled "Summary of Subsurface Stratigraphy and Material Properties".

SOLW, marl, and silt and clay units can be classified as mainly MH, MH and CH, and CL and CH type material based on the Unified Soil Classification System (USCS). SPT values for SOLW, marl, and silt and clay mainly ranged from 0 to 7 (with most of the reported blow counts being 0). Plasticity index values for SOLW mainly ranged from 10 to 80. Most of the SOLW samples had water contents that were higher than their liquid limits. However, under laboratory undrained shearing, 12 out of 17 SOLW samples (two to three specimens were tested for each sample) showed strain hardening ductile behavior. Out of the remaining five samples, three showed limited strain-softening behavior and two showed gradual strain softening behavior. Based on laboratory triaxial test results, an undrained shear strength ratio of 0.35 for SOLW, marl, and silt and clay were selected to model the shear strength under undrained conditions. The undrained shear strength ratio of 0.35 for SOLW was subsequently adjusted to account for overconsolidation, corresponding to an overconsolidation ratio (OCR) of 2. SPT values for the deeper soil layers mainly ranged from 20 to 100. Table 1 summarizes the material properties of each subsurface layer (i.e., SOLW and soils).

		Ge	eosyntec ^D
			consultants
		Page	5 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	GD4014 Task No.: 02

METHODOLOGY

The liquefaction potential evaluation methodology used for the ILWD area is presented in this section. Screening criteria, Boulanger and Idriss [2007] evaluation procedure for "cohesive" soils, and Seed and Idriss [1971] evaluation procedure for "cohesionless" soils are applied to evaluate the potential for triggering liquefaction. In addition, the potential for flow liquefaction and/or sensitive behavior is directly evaluated for SOLW using stress paths observed in static triaxial tests. This evaluation is described in the following five steps:

- 1. A general screening is conducted to assess the liquefaction potential of the ILWD. Several screening criteria are used in state-of-practice for evaluating the liquefaction potential of cohesive soils (generally soils that can be classified as ML, CL, MH, CH or combinations of these). These screening criteria are developed from actual field evidence of both liquefaction and no liquefaction in different soil types and supplemental laboratory studies. These criteria cover both flow and cyclic liquefaction due to seismic loading. The following three criteria were used in the screening evaluation presented in this calculation package:
 - a. Chinese criteria [Wang 1979] has been widely used for the past two decades in US engineering practice to screen liquefaction potential of soils. Soil is considered susceptible if all three of the following conditions are met:
 - percent finer than 0.005 mm $\leq 15\%$
 - Liquid Limit $\leq 35\%$
 - Water Content $\geq 0.9 \text{ x Liquid Limit}$

Figure 3 presents these criteria in a chart format.

b. Andrews and Martin [2000] presented screening criteria to evaluate the liquefaction susceptibility of silty and clayey sands. These criteria are based on clay fraction (minus 0.002 mm) and Liquid Limit of soils. Figure 4 presents these criteria in a tabular form.

		Geosyntec [⊳]	
			consultants
		Page	6 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

- c. Bray and Sancio [2006] evaluated several case histories and performed laboratory cyclic triaxial tests to develop screening criteria based on water content, Liquid Limit, and Plasticity Index. These criteria and the data used to develop them are shown in Figure 5.
- 2. Cyclic stresses caused by seismic loading within soil units need to be evaluated for liquefaction analyses. The cyclic stresses on the soils are calculated as follows to evaluate the liquefaction potential for "cohesive" soils and "cohesionless" soils described below in steps 3 and 4, respectively.
 - a. Design bedrock acceleration for a contingency level seismic event (i.e., a seismic event with a 10 percent chance of exceedance in 50 years) was established using United States Geological Survey (USGS) seismic hazard maps [USGS, 2008].
 - b. The design earthquake magnitude was established using deaggregated seismic hazard provided by USGS. Deaggregation is done to identify the earthquake that is contributing the most to the total hazard at the site.
 - c. Maximum ground surface acceleration for the contingency level seismic event was estimated by considering potential for amplification using the chart proposed by Idriss [1990] for soft soil sites. This chart is presented in Figure 6. Application of this chart in lieu of site response analyses based on time histories is generally considered to be conservative.
 - d. Cyclic Stress Ratio (CSR) was evaluated using the simplified procedure proposed by Seed and Idriss [1971]. The steps involved and equations used are described below.

$$CSR_{M} = 0.65r_{d} \frac{a_{\max}}{g} \frac{\sigma_{v0}}{\sigma_{v0}}$$

Where:

 CSR_M = Cyclic Stress Ratio due to an earthquake with magnitude M;

		Geosyntec	
			consultants
		Page	7 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD	04014 Task No.: 02

 r_d = stress reduction factor;

a_{max} = maximum ground surface acceleration;

g = gravitational acceleration;

 σ_{v0} = total vertical stress; and

 σ_{v0}' = effective vertical stress.

The r_d value was calculated using the following equation presented in NCEER [1997] to approximate the mean values of the possible range of r_d .

$$r_{d} = \frac{\left(1.000 - 0.4113z^{0.5} + 0.04052z + 0.001753z^{1.5}\right)}{\left(1.000 - 0.4177z^{0.5} + 0.05729z - 0.006205z^{1.5} + 0.001210z^{2}\right)}$$

Where:

z = depth below ground surface in meters.

3. Cyclic softening potential was evaluated for cohesive soils using the procedure proposed by Boulanger and Idriss [2007]. This procedure is similar to the Seed and Idriss [1971] simplified procedure used for liquefaction evaluation of cohesionless soils, with some modifications for application to cohesive soils. Because this procedure evaluates the potential for significant pore pressure increase due to seismic loading, it covers all forms of "liquefaction" due to seismic loading. The steps involved and equations used are described below.

$$CRR_{M} = 0.8 \frac{S_{U}}{\sigma_{v0}} K_{\alpha} MSF$$

Where:

CRR_M = Cyclic Resistance Ratio for an earthquake with magnitude M;

		Geosyntec ^D	
			consultants
		Page	8 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

 S_U = static undrained shear strength;

 k_{α} = correction factor for driving static shear stresses; and

MSF = Magnitude Scaling Factor.

The k_{α} is a function of the driving static shear stresses or slope angle. For the mild overall slopes of the ILWD area ranging from three to five degrees, k_{α} can be assumed to be one.

The MSF for clay type soils can be calculated using the equation proposed by Boulanger and Idriss [2007] as illustrated in Figure 7.

$$MSF = 1.12 \exp\left(\frac{-M}{4}\right) + 0.828$$
, and $MSF \le 1.13$ (for clay)

Factor of safety against liquefaction (FS_{liq}) can be calculated as follows:

$$FS_{liq} = \frac{CRR_M}{CSR_M}$$

4. Liquefaction potential was evaluated for cohesionless soils using the simplified procedure proposed by Seed and Idriss [1971]. Because this procedure evaluates the potential for significant pore pressure increase due to seismic loading, it covers all forms of "liquefaction" due to seismic loading. The steps involved in this SPT based procedure and equations used are described below.

Figure 8 presents the relationship between SPT blow counts and $CRR_{7.5}$ based on case histories [NCEER, 1997]. The corrected normalized SPT blow count, $(N_1)_{60}$ can be calculated by the following equation presented by NCEER [1997].

$$(N_1)_{60} = N_m C_N C_E C_B C_R C_S$$

Where:

 N_m = measured SPT blow count;

		Geosyntec ⁶	
			consultants
		Page	9 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project	: Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

 C_N = correction for overburden pressure;

 C_E = correction for energy ratio;

 C_B = correction for borehole diameter;

 C_R = correction for rod length; and

 C_{S} = correction for sampler.

C_N can be calculated as follows:

$$C_{N} = \sqrt{\frac{P_{a}}{\sigma_{vo}}}$$

Where:

 P_a = atmospheric pressure (2117 psf).

The other corrections will be applied based on NCEER [1997] procedures as needed.

The MSF for cohesionless soils can be calculated using the equation proposed by Idriss [2007], as illustrated in Figure 7.

$$MSF = 6.9 \exp\left(\frac{-M}{4}\right) - 0.058$$
, and $MSF \le 1.8$ (for sand)

CRR_M is calculated by multiplying CRR_{7.5} by the MSF.

 FS_{liq} can be calculated as presented in step 3 above.

5. The potential for flow liquefaction or sensitivity for loss of shear strength can be directly evaluated for soils based on stress-strain behavior during laboratory tests such as undrained triaxial tests, as discussed in the technical framework section. Stress-strain plots for SOLW were compared with standard stress-strain plots for strain hardening, limited strain softening, and strain softening soil behavior. These three types of soil behavior were illustrated in Figure 2. It is noted that

		Geosyntec [⊳]	
			consultants
		Page	10 of 48
Written by: R. Kulasingam	Date: 12/17/2010 Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

liquefaction due to cyclic mobility cannot be evaluated with this procedure; however, it will be evaluated in the steps described previously.

RESULTS

The liquefaction potential evaluation results are presented in this section, and the steps in this section directly correspond to the steps in the methodology section.

- 1. Application of screening criteria used in state-of-practice for evaluating the liquefaction potential of cohesive soils indicates that SOLW, marl, and silt and clay units in the ILWD area are not susceptible to liquefaction.
 - a. Figure 9 presents the application of the Chinese Criteria for SOLW, marl, and silt and clay. Based on these criteria these soils can be considered not susceptible to liquefaction.
 - b. Liquid limits for SOLW, marl, and silt and clay are greater than 32. Based on the lab results, the clay content (particle size less than 0.002 mm) typically ranges from 5% to 30% for SOLW, from 20% to 43% for marl, and from 14% to 50% for silt and clay. The average clay content was calculated to be 14%, 30%, and 30% for SOLW, marl, and silt and clay, respectively. Per the screening criteria proposed by Andrews and Martin [2000] if clay content is greater than or equal to 10% and liquid limit greater than or equal to 32, soils can be considered not susceptible to liquefaction. If clay content is less than 10% or liquid limit is less than 32, further studies are required. Therefore, in general SOLW, marl, and silt and clay are not considered susceptible to liquefaction based on these criteria.
 - c. Figure 10 presents the application of the criteria proposed by Bray and Sancio [2006] to SOLW, marl, and silt and clay. Values of water content, liquid limit, and plasticity index were used to classify samples as susceptible, moderately susceptible, and not susceptible to liquefaction. Out of a total of 101 SOLW samples, 3, 11, and 87 samples were classified as susceptible, moderately susceptible, and not susceptible to liquefaction, respectively. Out of a total of 35 marl samples, 1, 0, and 34 were classified as susceptible, moderately susceptible, and not susceptible

				G	eosy	ntec ⁽	>
					cons	ultants	
				Page	11	of	48
Written by: R. Kulasinga	n Da	ate: <u>12/17/2010</u>	Reviewed by:	Ming Zhu/Jay Beech	Date	12/17/2	2010
Client: Honeywell Pr	oject: Or	nondaga Lake ILW	D Stability	Project/ Proposal No.:	G D4014	Task No.:	02

to liquefaction, respectively. Out of a total of 47 silt and clay samples, 3, 9, and 35 were classified as susceptible, moderately susceptible, and not susceptible to liquefaction, respectively. A few samples being classified as susceptible to liquefaction are not likely to cause overall liquefaction of the ILWD. Therefore, based on these criteria, these soils are not considered susceptible to liquefaction.

- 2. The cyclic stresses on the soils are calculated using the following steps:
 - a. Figure 11 presents the peak ground acceleration with a 10% probability of exceedance in 50 years [USGS, 2008]. A latitude of 43° 04' N and a longitude of 76° 11' W were used for the ILWD area to obtain a PGA value of 0.025g (0.02478g) using the interactive maps from the USGS website. Attachment 1 presents the deaggregated seismic hazard for the 10% probability of exceedance in 50 year event. It is noted that the deaggregated hazard was based on the 2002 USGS hazard maps because deaggregated hazard, a 5.3 moment magnitude was selected for use in liquefaction analyses as explained in Attachment 1.
 - b. Maximum ground surface acceleration of 0.09g was estimated for this seismic event by considering potential for amplification using the recommended mean relation in the chart presented in Figure 6. Application of this chart in lieu of site response analyses based on time histories is generally considered to be conservative.
 - c. Table 2 presents the CSR values calculated using the simplified procedure proposed by Seed and Idriss [1971]. The calculated CSR values are plotted with depth in Figure 12. The calculated CSR values generally ranged from 0.10 at 70 feet depth in the silt and clay unit to 0.25 near the top of the SOLW.
- 3. Table 2 presents the CRR values for cohesive soils calculated using the procedure proposed by Boulanger and Idriss [2007]. A normalized static strength ratio of 0.35 was used for SOLW, marl, and silt and clay as presented in Table 1 and Appendix A titled "Summary of Subsurface Stratigraphy and Material

		G	eosyntec⊳
			consultants
		Page	12 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: 0	G D4014 Task No.: 02

Properties". The undrained shear strength ratio of 0.35 for SOLW was subsequently adjusted to account for overconsolidation, corresponding to an OCR of 2. For the mild overall slopes of the ILWD area ranging from three to five degrees, k_{α} was assumed to be one. A MSF value of 1.13 was calculated. The calculated CRR values are plotted with depth in Figure 12. The calculated CRR values generally ranged from 0.32 for the marl and the silt and clay units to 0.55 for the SOLW. Calculated factors of safety against liquefaction are plotted in Figure 13. Calculated factors of safety against liquefaction ranged from about 2.2 to 2.3 for SOLW, 1.5 to 1.7 for marl, and 1.9 to 3.1 for silt and clay units. In liquefaction analyses, calculated factors of safety of 1.0 to 1.2 are considered adequate to conclude that adverse effects due to pore pressure buildup are unlikely. Therefore, based on this analysis, SOLW, marl, and silt and clay units in the ILWD area are not considered to be susceptible to liquefaction during the design seismic event established in step 2.

- 4. Uncorrected SPT blow counts for deeper soil units such as silt and sand, and sand and gravel ranged from 20 to 100 or more. An uncorrected SPT blow count of 20 is very conservatively assumed for demonstration purposes. It is assumed that energy correction is not required because SPT testing was done per standard US practice. After the application of overburden correction, which depends on the effective stress at a particular depth, one can calculate corrected blow count values (N_{1,60}) of about 13 to 20 for depths of 70 feet to 120 feet. Based on Figure 8, and assuming a fine content of less than 5%, these correspond to CRR_{7.5} values of about 0.14 to 0.22. An MSF value of 1.7 can be calculated for cohesionless soils based on Figure 7. Therefore, calculated CRR_M values range from about 0.24 to 0.37. These values are much greater than the CSR_M value of 0.10 calculated for 70 feet. CSR_M values below 70 feet will be even smaller. Therefore, based on this simple analysis, the silt and sand, and sand and gravel units are not considered susceptible to liquefaction during the design seismic event established in step 2.
- 5. Figures 14 and 15 present the stress-strain and q-p' paths, respectively, for SOLW under laboratory consolidated undrained monotonic triaxial tests. These tests were conducted with applied effective confining stresses that are in the general range of insitu effective vertical stresses. Under laboratory undrained shearing,

		Ge	eosyntec ^D
			consultants
		Page	13 of 48
Written by: R. Kulasingam	Date: 12/17/2010 Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

12 out of 17 SOLW samples (two to three specimens were tested for each sample) showed strain-hardening ductile behavior. Out of the remaining five samples, three showed limited strain-softening behavior (OL-STA-20052, OL-STA-20038, and OL-SB-10131 in Figure 14) and two showed gradual strain softening behavior (OL-SB-10133 and OL-SB-10135 in Figure 14). This gradual softening appears different from the sudden strength loss that is typical of soils susceptible to flow liquefaction or sensitive behavior. Therefore, based on these tests one can conclude that SOLW in the ILWD area is not likely to be susceptible to flow liquefaction or show sensitive behavior.

CONCLUSIONS

Liquefaction potential of the Solvay Waste (SOLW) and the underlying soils was evaluated for existing conditions. Based on the results summarized herein, the ILWD and underlying soils are not considered to have the potential for liquefaction or cyclic softening during the contingency level seismic event. In addition, the SOLW does not appear to have the potential for sensitive behavior or loss of shear strength.

As indicated previously, the evaluation of the capped condition is not explicitly included herein because the liquefaction potential evaluation of the existing SOLW and underlying soils will not be affected by the installation of a cap (anticipated to be approximately 3 to 5.5-ft thick) at slopes that are similar to existing conditions. However, for completeness, the effect of cap weight on the liquefaction potential of the existing SOLW and underlying soils and the liquefaction potential of the cap itself are addressed in an addendum to this calculation package.

		G	eosyntec⊳
			consultants
		Page	14 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: 12/17/2010
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.:	GD4014 Task No.: 02

REFERENCES

- Andrews, D.C.A. and Martin, G.R. (2000). "Criteria for Liquefaction of Silty Soils", 12th World Conference on Earthquake Engineering, Proceedings, Auckland, New Zealand.
- Boulanger, R.W. and Idriss, I.M. (2007), "Evaluation of Cyclic Softening in Silts and Clays", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Volume 133, No. 6, June 2007, pp. 641 652.
- Bray, J.D. and Sancio, R.B. (2006). "Assessment of the Liquefaction Susceptibility of Fine-Grained Soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, September 2006, Vol. 132, No. 9, pp. 1165-1177.
- Castro, G. (1976). "Comments on Seismic Stability Evaluation of Embankment Dams", *Proceedings of the Conference on Evaluation of Dam Safety.*
- Finn, W.D.L., Ledbetter, R.H., And Wu, G. (1994). "Liquefaction in Silty Soils: Design and Analysis", Ground Failures under Seismic Conditions, Geotechnical Special Publication 44, ASCE, New York, pp. 51 - 76.
- Idriss, I.M. (1990). "Response of Soft Soil Sites during Earthquakes", in J.M. Duncan, ed., Proceedings, H. Bolton Seed Memorial Symposium, BiTech Publishers, Vancouver, British Columbia, Vol. 2, pp. 273 - 289.
- Kramer, S.L (1996). "Geotechnical Earthquake Engineering", Prentice Hall, Upper Saddle River, New Jersey.
- NCEER (1997). "Summary Paper, Proc. of NCEER Workshop on Evaluation of Liquefaction Resistance of Soils", NCEER-97-0022.
- Seed, H.B. and Idriss, I.M. (1971). "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No. SM9, pp. 1249 - 1274.
- Seed, R. B., Cetin, K. O., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., and Riemer, M. F. (2001) "Recent Advances in Soil Liquefaction Engineering and Seismic Site Response Evaluation", 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, March 28-31, 2001.

		Ge	osyntec⊳
			consultants
		Page	15 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: <u>12/17/2010</u>
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

USGS (2008). "United States Geological Survey (USGS) seismic hazard maps", http://earthquake.usgs.gov/research/hazmaps/

- Wang, W. (1979). "Some Findings in Soil Liquefaction", Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China.
- Yamamuro, J. and Covert, K. (2001). "Monotonic and Cyclic Liquefaction of Very Loose sands with High Silt Content", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Volume 127, No. 4, April 2001, pp. 314 - 324.

		Ge	eosyntec ^D
			consultants
		Page	16 of 48
Written by: R. Kulasingam	Date: <u>12/17/2010</u> Reviewed by:	Ming Zhu/Jay Beech	Date: <u>12/17/2010</u>
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

Tables

consultants

		Page	17	of 4	48
Written by: R. Kulasingam	Date: 12/17/2010 Reviewed by:	Ming Zhu/Jay Beech	Date:	12/17/2	010
Client: Honeywell Proje	t: Onondaga Lake ILWD Stability	Project/ Proposal No.:	GD4014	Task No.:	02

Table 1. Summary of material properties

	General	General Typical Range of		General Typical Range of		Typical Range of	Typical Range of	Typical Range of	Typical Range of	Typical	Total Unit	Undrained Shear Strength ¹		
Material	Classification	Liquid Limit (%)	Plastic Limit (%)	Water Content (%)	Plasticity Index	Liquidity Index	Fines Content	Range of SPT N value	Weight (pcf)	From UU (psf)	From CU (psf)			
Silt ²	NA	NA	NA	NA	NA	NA	NA	NA^1	98	NA	NA			
SOLW	MH	40 - 146	30 - 80	40 - 260	10 - 80	1.0 - 6.4	65 - 100	$0 - 7^3$	81	245	$S_u / \sigma'_v = 0.35^4$			
Marl	MH and CH	60 - 80	25 - 45	35 - 85	20 - 50	0.4 – 1.1	96 - 100	$0 - 4^{3}$	98	350	$S_u/\sigma'_v = 0.35$			
Silt/Clay	CL and CH	32 - 70	20 - 45	20 - 80	15-40	0.4 - 1.0	93 - 100	0 ³	108	350	$S_u/\sigma'_v = 0.35$			
Silt/Sand	NA	NA	NA	NA	NA	NA	NA	20 - 80	120	NA	NA			
Sand/Gravel	NA	NA	NA	NA	NA	NA	NA	20 to > 100	120	NA	NA			
Till	NA	NA	NA		NA	NA	NA	> 100	120	NA	NA			
Shale	NA	NA	NA	NA	NA	NA	NA	> 100	120	NA	NA			

Notes:

¹NA – Not Applicable

 ² Properties of marl are also considered applicable for the silt overlying the Solvay waste in certain areas of the ILWD.
³ SPT N values are zero at most of the depths within the SOLW, marl, and silt/clay layers.
⁴ The undrained shear strength ratio of normally consolidated SOLW was estimated to be 0.35 as presented in the Data Package [The value of 240 psf for shear strength of the SOLW reported in Table 5 of the Data Package accounts for the insitu overconsolidation of SOLW. The shear strength ratio of 0.35 used herein conservatively assumes normally consolidated conditions and is used only to simplify the calculations].

consultants

Cu/Sigv'

0C

0.61

0.61

0.61

0.61

0.61

0.61

0.61

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

CRR7.5

0.49

0.49

0.49

0.49

0.49

0.49

0.49

0.28

0.28

0.28

0.28

0.28

0.28

0.28

0.28

0CR

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

					Page	18	of	48
Written by: R. Kulasingam		asingam	Date: 12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	u Date	: 12/17/2	010
Client: Honeywell Project:		Onondaga Lake ILW	D Stability	Project/ Proposal No .:	GD4014	Task No.:	02	

Table 2. Calculation of CSR, CRR, and factor of safety against liquefaction

Unit weight of water =	62.4 pcf
Maximum surface acceleration =	0.09 g
K-alpha =	1
OCR model parameter, m =	0.8
Earthquake magnitude =	5.3
Magnitude scaling factor for cohesive soils =	1.13

SOLW

Marl

Marl

Silt and Clay

81

98

98

108

108

108

108

108

108

30

35

40

45

50

55

60

65

70

9.1

10.7

12.2

13.7

15.2

16.8

18.3

19.8

21.3

Equivalent Vertical Vertical Unit Stress Cu/Sigv' Idealized Effective Total Cyclic C\$R_M Weight Depth (ft) Depth (m) Reduction Soil Type Stress Stress Shear NC (pcf) Factor (psf) (psf) Stress (psf) 0.0 SOLW 81 0 0 1.00 0 0.35 0 1.5 SOLW 81 93 405 0.99 23 0.25 0.35 5 10 3.0 SOLW 81 186 810 0.98 46 0.25 0.35 SOLW 279 1,215 0.97 69 0.25 0.35 15 4.6 81 372 91 0.96 0.35 20 6.1 SOLW 81 1,620 0.24 465 25 2,025 0.94 112 0.24 0.35 7.6 SOLW 81

2,430

2,920

3,410

3,950

4,490

5,030

5,570

6,110

6,650

0.92

0.89

0.85

0.80

0.75

0.70

0.66

0.62

0.59

131

152

170

186

198

207

215

222

230

0.23

0.21

0.19

0.16

0.14

0.13

0.12

0.11

0.10

558

736

914

1.142

1,370

1.598

1,826

2,054

2,282

CRR _M	FSliq
0.55	
0.55	2.18
0.55	2.20
0.55	2.22
0.55	2.25
0.55	2.29
0.55	2.34
0.32	1.52
0.32	1.70
0.32	1.94
0.32	2.18
0.32	2.43
0.32	2.68
0.32	2.91
0.32	3.12

Geosyntec D

						Page	19	of	48
Written	by: R. Kulasi	ngam	Date:	12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	n Date:	: 12/17/2	2010
Client:	Honeywell	Project:	Onond	aga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

Figures

consultants

Figure 1. Monotonic and cyclic soil behaviors leading to different liquefaction mechanisms [Castro, 1976].

Notes: the following is noted in regards to the terminology used in this figure and the text:

- 1. The terms static loading and monotonic loading are used to describe similar loading.
- 2. Cyclic loading may include seismic (earthquake) or periodic wave loading.
- 3. "Instability and flow" corresponds to flow liquefaction behavior.
- 4. "Deformations of stable soil" corresponds to cyclic mobility (or cyclic softening).

consultants

Figure 2. Undrained stress-strain behavior of soils. (Figures from: (a) Kramer [1996]; and (b) Yamamuro & Covert [2001]).

Notes: the following is noted in regards to the terminology used in this figure and the text:

- 1. The term dilation in the figure corresponds to the strain hardening behavior described in the text.
- 2. The term limited liquefaction in the figure corresponds to the limited strain softening behavior described in the text.
- 3. The term liquefaction in the figure corresponds to the strain softening behavior described in the text.

					Page	22	of	48
Written by:	R. Kula	asingam	Date: <u>12/17/2010</u> R	eviewed by:	Ming Zhu/Jay Beec	h Date	e: <u>12/17</u>	/2010
Client: Ho	oneywell	Project:	Onondaga Lake ILWD S	Stability	Project/ Proposal No.:	GD4014	Task No.:	02
		1.	Percent Finer than 0.00	5 mm	≤ 15%			
2. 3.		2.	Liquid Limit (LL)		≤ 35%			
		Water Content		≥ 0.9 x LL				
		Liquid Limit, LL (%)	100 SAFE 50 35%	TEST	W. (%)			

Figure 3. Modified Chinese criteria for screening liquefaction potential [Finn et al., 1994] (figure taken from Seed et al., 2001).

consultants

						Page	23	of	48
Written	by: R. Kulasi	ngam	Date:	12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date	: <u>12/17/2</u>	2010
Client:	Honeywell	Project:	Onond	aga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

	Liquid Limit ¹ < 32	Liquid Limit \geq 32
Clay Content ²	Susceptible	Further Studies Required
< 10/6		(Considering
		plastic non-clay
		sized grains –
		such as Mica)
	Further Studies	
Clay Content ²	Required	Not Susceptible
≥10%		
	(Considering non-	
	plastic clay sized	
	grains – such as	
	mine and quarry	
	tailings)	

Notes:

- Liquid limit determined by Casagrande-type percussion apparatus.
- 2. Clay defined as grains finer than 0.002 mm.

Figure 4. Liquefaction susceptibility of silty and clayey sands [Andrews and Martin, 2000] (figure taken from Seed et al., 2001).

Figure 5. Liquefaction susceptibility criteria with data plotted from: (a) laboratory cyclic triaxial testing; (b) field data from Turkey (Kocaeli) earthquake; (c) field data from Northridge earthquake; (d) field data used for developing Chinese criteria; and (e) field data from Taiwan (Chi-Chi) earthquake [Bray and Sancio, 2006].

Figure 6. Relationship between peak acceleration on rock and soft soil sites [Idriss, 1990].

					Page	26	of 4	48
Written	by: R. Kulas	ingam	Date: 12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date:	12/17/2	010
Client:	Honeywell	Project:	Onondaga Lake ILW	D Stability	Project/ Proposal No.: 0	GD4014	Task No.:	02

Figure 7. MSF correlations proposed by Boulanger and Idriss for clayey and sandy soils [2007].

						Page	27	of	48
Written	by: R. Kulas i	ngam	Date:	12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date:	12/17/2	2010
Client:	Honeywell	Project:	Onond	aga Lake ILW	D Stability	Project/ Proposal No.:	G D 4014	Task No.:	02

Figure 8. Relationship between SPT blow counts and CRR based on case histories [NCEER, 1997].

						Page	28	of 4	48
Written by: R. Kulasingam		ngam	Date: 12/17/2010 Reviewed by:		Ming Zhu/Jay Beech	Date:	12/17/2	17/2010	
Client: H	Ioneywell	Project:	Onond	aga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

Figure 9. Application of Chinese criteria for SOLW, marl, and silt and clay.

						Page	29	of 4	48
Written	by: R. Kulasir	igam	Date:	12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date:	12/17/2	2010
Client:	Honeywell	Project:	Ononda	aga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

Figure 10. Application of the criteria proposed by Bray and Sancio [2006] for SOLW, marl, and silt and clay.

Figure 11. Peak ground acceleration with a 10% probability of exceedance in 50 years [USGS, 2008]. A latitude of 43° 04' N and a longitude of 76° 11' W were used to obtain the PGA value using the interactive maps from the USGS website.

consultants

Note: The discontinuity in CRR_M values occurred at 30 ft because it is the interface between Solvay waste and Marl. Solvay waste shear strengths were modeled with an OCR of 2, and Marl was modeled with an OCR of 1. These OCR values are conservative.

60

70

80

consultants

Figure 13. Calculated FS_{liq} values for SOLW marl, and silt and clay.

Note: The discontinuity in FS-liq values occurred at 30 ft because it is the interface between Solvay waste and Marl. Solvay waste shear strengths were modeled with an OCR of 2, and Marl was modeled with an OCR of 1. These OCR values are conservative.

Figure 14. Consolidated undrained monotonic triaxial test stress-strain paths for SOLW (note that effective confining stresses applied in the lab are marked for each test).

Figure 14. Consolidated undrained monotonic triaxial test stress-strain paths for SOLW (note that effective confining stresses applied in the lab are marked for each test) (continued).

Figure 15. Consolidated undrained monotonic triaxial test q-p' stress paths for SOLW.

Geosyntec <a>>

Figure 15. Consolidated undrained monotonic triaxial test q-p' stress paths for SOLW (continued).

Figure 15. Consolidated undrained monotonic triaxial test q-p' stress paths for SOLW (continued).

consultants

					Page	38	of	48
Written	by: R. Kulas	ingam	Date: 12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date:	12/17/2	2010
Client:	Honeywell	Project:	Onondaga Lake ILW	D Stability	Project/ Proposal No.: G	D4014	Task No.:	02

Attachment 1

Deaggregated Seismic Hazard

consultants

						Page	39	of	48
Written	by: R. Kulas i	ingam	Date:	12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date	: <u>12/17/2</u>	2010
Client:	Honeywell	Project:	Onond	laga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

This attachment presents the deaggregated seismic hazard for the 10% probability of exceedance in a 50-year event, which is based on the 2002 United States Geological Survey (USGS) maps. The following paragraphs describe how a 5.3 moment magnitude was selected for the liquefaction analyses based on the deaggregation.

Conventional engineering methods for evaluation of soil liquefaction potential are deterministic. Required (deterministic) input parameters for evaluation of soil liquefaction include design earthquake magnitude, M (which is a proxy for duration of strong ground shaking) and free-field (zero-period) maximum ground surface acceleration (a_{max}).

In the Central and Eastern U.S., seismic hazard (and therefore a_{max}) is typically governed by multiple seismic sources at various distances. Probabilistic seismic hazard analysis is conducted in order to account for these multiple seismic source – distance pairs. The result of the probabilistic seismic hazard analysis is the a_{max} for a given return period. The contribution of each seismic source in evaluation of the a_{max} in a probabilistic seismic hazard analysis can be assessed by a process called deaggregation.

Deaggregation does not result in a single earthquake magnitude–distance pair. The result of deaggregation is a series of seismic hazard matrices (usually 3 to 5 matrices, each for a different period of oscillation, as available at the United States Geological Survey, USGS web site). For an evaluation of soil liquefaction potential, a_{max} is required. The value of a_{max} can be defined as the peak spectral acceleration (PSA) corresponding to a period of zero seconds. The PSA corresponding to a period of zero seconds is very close to the PSA corresponding to a period of 0.1 seconds. Hence, a 0.1-second matrix (matrix with the lowest period available from the USGS web page) is considered for this site. This is consistent with standard practice in seismic hazard evaluation.

A review of the 0.1-second matrix reveals the following three candidate magnitudedistance pairs:

M 4.81 at 36.3 km (Epsilon = 4.53) M 5.25 at 115.3 km (Epsilon = 3.39) M 5.72 at 164.7 km (Epsilon = 3.27)

These above-listed magnitude-distance pairs have the largest Epsilon and hence, dominate the a_{max} estimate for this site (zero Epsilon corresponds to the median motion; Epsilon = 2 corresponds to median plus one standard deviation motion; larger Epsilon=larger a_{max}).

An inspection of the above-listed candidate events indicates that the a_{max} evaluated for this site corresponds to M 4.81. However, M 4.81 at 36.3 km pair is associated with a relatively low duration of strong ground shaking (5.9 seconds as opposed to 18.5 seconds

consultants

						Page	40	of	48
Written	by: R. Kulasi	ngam	Date:	12/17/2010	Reviewed by:	Ming Zhu/Jay Beech	Date:	12/17/2	2010
Client:	Honeywell	Project:	Onond	aga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

from the M 5.25 event at a distance of 115.3 km). Therefore, Geosyntec selected the highest evaluated a_{max} (i.e., a_{max} that corresponds to an M 4.81 event at 36.3 km) and duration (i.e., duration that corresponds to M 5.25 event) for an evaluation of soil liquefaction at this site. This is a conservative approach.

									Page		41	of		48
Written ł	by: R. Kul	asingam	Date:	12/1	7/2010	Review	ed by:	Mir	ng Zhu/Ja	ay Beecl	n Dat	te: <u>1</u>	2/17/2	2010
Client:	Honeywell	Project:	Onor	daga La	ake ILW	D Stabili	ty	Project	/ Proposa	l No.:	GD4014	Task	No.:	02
		*** Deaggr	regation	of Seis	mic Haz	zard at T	hree Per	iods of S	Spectral	Accel '	***			
	***	¹ Data from I	US.G.S	. Natio	nal Seisi	nic Haza	ards Mar	oping Pr	oiect. 19	96 vers	ion ***			
	PSHA D	eaggregation	1 %cor	tributio	ons site.	Lake O	nondaga	a long 7	6 2000) W lat	·· 43 0600	N		
	Ret	turn period: 4	475vrs.	2.00 s	PSA =(0.012798	9g. Con	nputed a	nnual ra	te=.210	76E-02			
	DIST(KM) MAG(MW) ALL-	EPS EF	SILON	>2 1 <ei< td=""><td>PS < 2.0 <</td><td>EPS<1 -</td><td>-1<eps<< td=""><td><0 -2<e< td=""><td>PS<-1 EP</td><td>S<-2</td><td></td><td></td></e<></td></eps<<></td></ei<>	PS < 2.0 <	EPS<1 -	-1 <eps<< td=""><td><0 -2<e< td=""><td>PS<-1 EP</td><td>S<-2</td><td></td><td></td></e<></td></eps<<>	<0 -2 <e< td=""><td>PS<-1 EP</td><td>S<-2</td><td></td><td></td></e<>	PS<-1 EP	S<-2		
		13.1	4.87	0.121	0.037	0.065	0.019	0.001	0.000	0.000		-		
		13.7	5.27	0.250	0.022	0.091	0.106	0.029	0.001	0.000				
		35.4	5.30	0.262	0.044	0.134	0.082	0.002	0.000	0.000				
		64.1	5.33	0.163	0.062	0.094	0.007	0.000	0.000	0.000				
		89.6	5.34	0.090	0.054	0.036	0.000	0.000	0.000	0.000				
		114.5	5.35	0.115	0.087	0.028	0.000	0.000	0.000	0.000				
		138.7	5.35	0.101	0.090	0.011	0.000	0.000	0.000	0.000				
		164.8	5.36	0.133	0.130	0.003	0.000	0.000	0.000	0.000				
		190.1	5.36	0.082	0.082	0.000	0.000	0.000	0.000	0.000				
		210.1	5.36	0.076	0.076	0.000	0.000	0.000	0.000	0.000				
		234.6	5.37	0.093	0.093	0.000	0.000	0.000	0.000	0.000				
		259.7	5.37	0.057	0.057	0.000	0.000	0.000	0.000	0.000				
		284.5	5 37	0.067	0.067	0.000	0.000	0.000	0.000	0.000				
		13.6	5 71	0.212	0.006	0.037	0.091	0.067	0.010	0.000				
		36.1	5 74	0.522	0.027	0.155	0 255	0.082	0.002	0.000				
		65.2	5 76	0.514	0.051	0.226	0.219	0.018	0.000	0.000				
		90 0	5 77	0.418	0.060	0.233	0.125	0.000	0.000	0.000				
		110.3	5 78	0 474	0.083	0 292	0.099	0.000	0.000	0.000				
		135.6	5 78	0 974	0.210	0.633	0.130	0.000	0.000	0.000				
		165.3	5 79	1 135	0.311	0.055	0.064	0.000	0.000	0.000				
		190.3	5 79	0.816	0.275	0.521	0.021	0.000	0.000	0.000				
		210.3	5 80	0.841	0.330	0.510	0.002	0.000	0.000	0.000				
		234.9	5 80	1 164	0.525	0.639	0.000	0.000	0.000	0.000				
		259.8	5 81	0.805	0.413	0.392	0.000	0.000	0.000	0.000				
		284.8	5 81	1 048	0.621	0.322 0.427	0.000	0.000	0.000	0.000				
		309.9	5.81	0.662	0.021	0.127	0.000	0.000	0.000	0.000				
		334.7	5.82	0.828	0.593	0.235	0.000	0.000	0.000	0.000				
		364.3	5.82	0.662	0.536	0.126	0.000	0.000	0.000	0.000				
		389.7	5.82	0.361	0.318	0.043	0.000	0.000	0.000	0.000				
		410.0	5.82	0.278	0.251	0.026	0.000	0.000	0.000	0.000				
		434 5	5.83	0.315	0.296	0.019	0.000	0.000	0.000	0.000				
		464 3	5.83	0.207	0.204	0.002	0.000	0.000	0.000	0.000				
		489.2	5.83	0.102	0.102	0.000	0.000	0.000	0.000	0.000				
		509.7	5 84	0.072	0.072	0.000	0.000	0.000	0.000	0.000				
		202.1	2.01	0.012	0.072	0.000	0.000	0.000	0.000	0.000				
		534 1	5 84	0.073	0.073	0.000	()()())	()()()	()()	()()()				
		534.1 13 9	5.84 6.21	0.073	0.073	0.000	0.000	0.000	0.000	0.000				
		534.1 13.9 37.2	5.84 6.21 6.23	0.073 0.111 0.414	0.073 0.003 0.011	0.000 0.016 0.068	0.000	0.000	0.000	0.000				
		534.1 13.9 37.2 65.9	5.84 6.21 6.23 6.24	0.073 0.111 0.414 0.596	0.073 0.003 0.011 0.021	0.000 0.016 0.068 0.127	0.000 0.039 0.170 0.297	0.000 0.039 0.142 0.145	0.000 0.014 0.022 0.005	0.000 0.001 0.000 0.000				
		534.1 13.9 37.2 65.9 90.3	5.84 6.21 6.23 6.24 6.25	0.073 0.111 0.414 0.596 0.608	0.073 0.003 0.011 0.021 0.025	0.000 0.016 0.068 0.127 0.150	0.000 0.039 0.170 0.297 0.331	0.000 0.039 0.142 0.145 0.102	0.000 0.014 0.022 0.005 0.000	0.000 0.001 0.000 0.000 0.000				

						Page		42	of	48
Written by: R. Kulasingam	Date: 12/1	7/2010	D Reviewed by:			ng Zhu/Ja	ay Beech	Date	: <u>12/17/</u> 2	2010
Client: Honeywell Project:	Onondaga La	ake ILW	D Stabili	ty	Project	/ Proposa	l No.:	GD4014	Task No.:	02
126.0	()5 1 701	0.000	0.520	1.026	0 1 4 7	0.000	0.000			
136.0	6.25 1.791	0.089	0.529	1.026	0.14/	0.000	0.000			
165.6	6.26 2.422	0.140	0.835	1.348	0.100	0.000	0.000			
190.4	6.26 1.960	0.129	0.768	1.030	0.033	0.000	0.000			
210.4	6.27 2.199	0.160	0.959	1.074	0.007	0.000	0.000			
235.2	6.27 3.347	0.280	1.626	1.442	0.000	0.000	0.000			
259.9	6.27 2.536	0.242	1.358	0.937	0.000	0.000	0.000			
285.1	6.28 3.612	0.394	2.098	1.119	0.000	0.000	0.000			
309.9	6.28 2.485	0.309	1.527	0.650	0.000	0.000	0.000			
334.9	6.29 3.373	0.480	2.182	0.712	0.000	0.000	0.000			
364.5	6.29 2.964	0.495	2.012	0.458	0.000	0.000	0.000			
389.8	6.29 1.748	0.334	1.215	0.199	0.000	0.000	0.000			
410.1	6.30 1.434	0.306	1.009	0.119	0.000	0.000	0.000			
434.7	6.30 1.757	0.429	1.236	0.092	0.000	0.000	0.000			
464.5	6.30 1.264	0.362	0.884	0.018	0.000	0.000	0.000			
489.3	6.30 0.670	0.218	0.452	0.000	0.000	0.000	0.000			
509.8	6.31 0.500	0.178	0.323	0.000	0.000	0.000	0.000			
534.3	6.31 0.541	0.214	0.327	0.000	0.000	0.000	0.000			
559.8	6.31 0.299	0.132	0.167	0.000	0.000	0.000	0.000			
584.9	6.31 0.410	0.199	0.210	0.000	0.000	0.000	0.000			
37.6	6.72 0.167	0.004	0.023	0.059	0.059	0.021	0.001			
66.3	6.72 0.289	0.007	0.044	0.110	0.108	0.020	0.000			
90.4	6.72 0.324	0.009	0.052	0.130	0.122	0.012	0.000			
110.5	6.72 0.435	0.012	0.071	0.179	0.164	0.009	0.000			
136.2	6.73 1.060	0.030	0.181	0.454	0.386	0.009	0.000			
165.5	6.73 1.360	0.042	0.248	0.623	0.447	0.000	0.000			
190.5	6.73 1.127	0.037	0.218	0.548	0.324	0.000	0.000			
210.5	6.73 1.348	0.046	0.275	0.691	0.336	0.000	0.000			
235.5	6.73 2.217	0.081	0.486	1.220	0.430	0.000	0.000			
260.0	6.73 1.857	0.073	0.436	1.087	0.260	0.000	0.000			
285.4	6.73 2.937	0.124	0.743	1.771	0.299	0.000	0.000			
310.1	6.74 2.182	0.099	0.593	1.346	0.143	0.000	0.000			
333.9	6.74 2.479	0.122	0.726	1.533	0.099	0.000	0.000			
364.3	6.74 1.834	0.099	0.591	1.113	0.031	0.000	0.000			
389.9	6.74 1.049	0.061	0.367	0.620	0.001	0.000	0.000			
414.4	6.74 1.174	0.074	0.444	0.655	0.000	0.000	0.000			
439.8	6.74 0.693	0.048	0.285	0.360	0.000	0.000	0.000			
464.8	6.75 0.874	0.066	0.391	0.418	0.000	0.000	0.000			
489.8	6.75 0.500	0.041	0.243	0.216	0.000	0.000	0.000			
509.7	6.75 0.387	0.034	0.201	0.152	0.000	0.000	0.000			
534.3	6.75 0.409	0.039	0.233	0.136	0.000	0.000	0.000			
559.9	6.75 0.248	0.026	0.154	0.068	0.000	0.000	0.000			
585.3	6.75 0.354	0.041	0.232	0.082	0.000	0.000	0.000			
37.7	7.20 0.100	0.002	0.014	0.034	0.034	0.014	0.002			
66.4	7.21 0.184	0.004	0.026	0.064	0.064	0.024	0.001			
90.4	7.21 0.214	0.005	0.030	0.076	0.076	0.026	0.000			

					Page	43	of	48
Written by: R. Kulasingam	Date: 12/17	7/2010 Revie	wed by:	Min	g Zhu/Jay Be	ech Date	e: <u>12/17/2</u>	2010
Client: Honeywell Project:	Onondaga La	ake ILWD Stab	ility	Project/	Proposal No.:	GD4014	Task No.:	02
110.5	7.21 0.201	0.007 0.04	0 105	0.105	0.022 0.00	0		
110.5	7.21 0.291	0.00/ 0.04	2 0.105	0.105	0.033 0.00	00		
136.3	7.21 0.729	0.018 0.10	0.266	0.266	0.074 0.00	00		
165.5	7.21 0.975	0.024 0.14	0.365	0.365	0.076 0.00	00		
190.6	7.21 0.836	0.021 0.123	8 0.321	0.320	0.046 0.00	00		
210.6	7.21 1.031	0.027 0.16	0.405	0.395	0.042 0.00	00		
235.6	7.21 1.764	0.048 0.284	4 0.714	0.671	0.047 0.00	00		
260.0	7.22 1.535	0.043 0.25	5 0.641	0.569	0.026 0.00	00		
285.5	7.22 2.524	0.073 0.43	5 1.093	0.897	0.026 0.00	00		
310.1	7.22 1.945	0.058 0.34	0.872	0.656	0.011 0.00	00		
334.0	7.22 2.292	0.071 0.42	5 1.067	0.722	0.007 0.00	00		
364.4	7.22 1.776	0.058 0.34	5 0.869	0.502	0.001 0.00	00		
390.0	7.22 1.043	0.036 0.212	2 0.533	0.262	0.000 0.00	00		
414.5	7.22 1.202	0.043 0.25	5 0.642	0.261	0.000 0.00	00		
439.9	7.23 0.741	0.028 0.16	5 0.415	0.134	0.000 0.00	00		
464.9	7.23 0.976	0.038 0.22	3 0.564	0.145	0.000 0.00	00		
489.8	7.23 0.579	0.024 0.142	2 0.342	0.071	0.000 0.00	00		
509.6	7.23 0.454	0.019 0.110	5 0.271	0.047	0.000 0.00	00		
534.3	7.22 0.470	0.021 0.12	/ 0.285	0.037	0.000 0.00	00		
560.0	7.22 0.296	0.014 0.083	0.180	0.017	0.000 0.00	00		
383.3	7.23 0.439	0.023 0.13	9 0.274	0.025	0.000 0.00)0		
Summary at	atistics for abo	$v = 2 0 = DS \Lambda$	anaaraant	ion D-d	listanca a-ar	silon:		
Mean src	atistics for abo site $R = 289.7$	$km \cdot M = 6.53$	$e^{0} = 0.26$	5 e = 10	15 for all sour			
Modal si	rc-site $R = 285$	$1 \text{ km} \cdot \text{M} = 6.2$	$8 \cdot e^{0} = 0$	71 from	neak (RM) h	in		
Wodar 5.	Primary	<i>i</i> distance metr	ic FPICE	NTRAI		/111		
MODE R*= 335	.0km; M*= 6.2	9; EPS.INTER	VAL: 1 to	o 2 sigma	a % CONTR	IB.= 2.182		
Principal source	ves (faults, sub	duction rando	n seismici	ity havin	$\sigma > 10\%$ cont	ribution)		
Source:		% contr $R(k$	m seisinne. m) M	ensilon()	(mean value	s)		
CFI	IS gridded seis	micity Franke	117 17 17 17 17 17 17 17 17 17 17 17 17	295.0	658 018	3)		
CE	US gridded seis	smicity Toro at	t 42.88	293.0	545 036			
***********	****	*****	******	*****	****	*****	***	
PSHA Deaggregation	%contributio	ons site Lake	Onondaga	a long [.] 7	6 20000 W	lat [.] 43 0600 1	Ν	
Return period:	475vrs. 0.50 s.	PSA = 0.04820	607g. Con	nputed a	nnual rate= $.2$	1104E-02		
DIST(KM) MAG(MW) ALL-EPS EP	SILON>2 1<	EPS<2.0<	EPS<1 -	1 <eps<0 -2<<="" td=""><td><eps<-1 eps<="" td=""><td>i<-2</td><td></td></eps<-1></td></eps<0>	<eps<-1 eps<="" td=""><td>i<-2</td><td></td></eps<-1>	i<-2	
12.9	4.83 0.834	0.034 0.205	0.429	0.161	0.005 0.00	0		
34.1	4.85 1.073	0.150 0.614	0.305	0.005	0.000 0.00	0		
63.5	4.87 0.444	0.224 0.220	0.000	0.000	0.000 0.00	0		
89.6	4.88 0.219	0.178 0.041	0.000	0.000	0.000 0.00	0		
115.1	4.89 0.296	0.279 0.01	7 0.000	0.000	0.000 0.00)0		
139.9	4.89 0.185	0.185 0.00	0.000	0.000	0.000 0.00)0		
164.1	4.90 0.217	0.217 0.00	0.000	0.000	0.000 0.00)0		
189.8	4.90 0.105	0.105 0.000	0.000	0.000	0.000 0.00)0		
209.8	4.90 0.079	0.079 0.00	0.000	0.000	0.000 0.00)0		
233.8	4.91 0.073	0.073 0.00	0.000	0.000	0.000 0.00	00		

								Page		44	of	48	
Written l	by: <u>R.</u>	Kulasingam	Date	: 12/17	7/2010	Review	red by:	Mir	ng Zhu/J	ay Beech	n Date	: 12/17	/2010
Client:	Honeywell	Project:	Onor	ndaga La	ake ILW	D Stabili	ity	Project	/ Proposa	l No.:	GD4014	Task No.:	02
		10 -		·					 .				
		13.7	5.22	0.575	0.015	0.089	0.224	0.211	0.035	0.000			
		35.8	5.24	1.420	0.065	0.390	0.780	0.184	0.001	0.000			
		64.6	5.26	1.108	0.123	0.642	0.342	0.001	0.000	0.000			
		89.9	5.27	0.768	0.145	0.552	0.072	0.000	0.000	0.000			
		112.3	5.28	0.923	0.254	0.650	0.020	0.000	0.000	0.000			
		136.3	5.28	1.225	0.442	0.783	0.000	0.000	0.000	0.000			
		164.6	5.29	1.264	0.691	0.573	0.000	0.000	0.000	0.000			
		190.0	5.29	0.730	0.525	0.205	0.000	0.000	0.000	0.000			
		210.0	5.30	0.627	0.528	0.099	0.000	0.000	0.000	0.000			
		234.3	5.30	0.691	0.655	0.036	0.000	0.000	0.000	0.000			
		260.8	5.31	0.414	0.414	0.000	0.000	0.000	0.000	0.000			
		285.1	5.31	0.345	0.345	0.000	0.000	0.000	0.000	0.000			
		309.5	5.31	0.188	0.188	0.000	0.000	0.000	0.000	0.000			
		333.9	5.32	0.184	0.184	0.000	0.000	0.000	0.000	0.000			
		363.6	5.32	0.109	0.109	0.000	0.000	0.000	0.000	0.000			
		13.9	5.70	0.268	0.006	0.037	0.093	0.093	0.035	0.002			
		37.0	5.70	0.955	0.027	0.162	0.408	0.328	0.029	0.000			
		65.4	5.72	1.170	0.051	0.305	0.672	0.142	0.000	0.000			
		90.1	5.73	1.029	0.060	0.360	0.590	0.019	0.000	0.000			
		110.2	5.73	1.184	0.083	0.495	0.606	0.000	0.000	0.000			
		135.6	5.73	2.368	0.212	1.248	0.908	0.000	0.000	0.000			
		165.1	5.74	2.650	0.335	1.736	0.579	0.000	0.000	0.000			
		190.2	5.75	1.781	0.308	1.287	0.186	0.000	0.000	0.000			
		210.2	5.75	1.717	0.384	1.270	0.063	0.000	0.000	0.000			
		234.6	5.75	2.164	0.670	1.490	0.004	0.000	0.000	0.000			
		259.6	5.76	1.349	0.571	0.779	0.000	0.000	0.000	0.000			
		284.5	5.76	1.564	0.865	0.699	0.000	0.000	0.000	0.000			
		309.7	5.77	0.877	0.594	0.283	0.000	0.000	0.000	0.000			
		334.2	5.77	0.956	0.764	0.192	0.000	0.000	0.000	0.000			
		363.9	5.77	0.640	0.594	0.046	0.000	0.000	0.000	0.000			
		389.5	5.78	0.299	0.297	0.001	0.000	0.000	0.000	0.000			
		409.8	5.78	0.202	0.202	0.000	0.000	0.000	0.000	0.000			
		434.1	5.78	0.195	0.195	0.000	0.000	0.000	0.000	0.000			
		463.9	5.79	0.105	0.105	0.000	0.000	0.000	0.000	0.000			
		14.0	6.21	0.114	0.003	0.015	0.039	0.039	0.015	0.002			
		37.5	6.22	0.471	0.011	0.068	0.170	0.170	0.051	0.001			
		66.0	6.22	0.749	0.021	0.127	0.319	0.265	0.016	0.000			
		90.3	6.23	0.774	0.025	0.150	0.377	0.221	0.001	0.000			
		110.4	6.23	0.974	0.035	0.206	0.518	0.214	0.000	0.000			
		135.9	6.23	2.181	0.088	0.529	1.274	0.291	0.000	0.000			
		165.5	6.24	2.808	0.140	0.833	1.693	0.142	0.000	0.000			
		190.3	6.24	2.146	0.128	0.767	1.226	0.025	0.000	0.000			
		210.3	6.25	2.286	0.160	0.957	1.168	0.001	0.000	0.000			
		235.0	6.25	3.243	0.279	1.663	1.300	0.000	0.000	0.000			
		259.8	6.25	2.269	0.242	1.384	0.644	0.000	0.000	0.000			

								Page		45	of	48	
Written	by: <u>R.</u>	Kulasingam	Date	12/17	7/2010	Review	ed by:	Mir	ng Zhu/Ja	ay Beech	n Date	: <u>12/17</u> /	/2010
Client:	Honeywell	Project:	Onor	ndaga La	ike ILW	D Stabili	ty	Project	/ Proposa	l No.:	GD4014	Task No.:	02
		2010	676	2 0 4 4	0 204	2.012	0.520	0.000	0.000	0.000			
		204.0	0.20	2.944	0.394	2.012	0.339	0.000	0.000	0.000			
		309.8	6.26	1.83/	0.308	1.339	0.190	0.000	0.000	0.000			
		334.6	6.27	2.229	0.479	1.658	0.092	0.000	0.000	0.000			
		364.1	6.27	1.696	0.495	1.195	0.007	0.000	0.000	0.000			
		389.6	6.28	0.880	0.333	0.547	0.000	0.000	0.000	0.000			
		409.9	6.28	0.646	0.298	0.348	0.000	0.000	0.000	0.000			
		434.3	6.28	0.686	0.393	0.294	0.000	0.000	0.000	0.000			
		464.1	6.29	0.414	0.289	0.125	0.000	0.000	0.000	0.000			
		489.2	6.29	0.189	0.149	0.040	0.000	0.000	0.000	0.000			
		509.6	6.29	0.124	0.107	0.016	0.000	0.000	0.000	0.000			
		533.8	6.29	0.113	0.105	0.008	0.000	0.000	0.000	0.000			
		560.9	6.30	0.057	0.057	0.001	0.000	0.000	0.000	0.000			
		585.2	6.30	0.055	0.055	0.000	0.000	0.000	0.000	0.000			
		37.7	6.72	0.169	0.004	0.023	0.059	0.058	0.023	0.002			
		66.3	6.72	0.301	0.007	0.044	0.110	0.110	0.030	0.000			
		90.4	6.72	0.337	0.009	0.052	0.130	0.129	0.018	0.000			
		110.5	6.72	0.446	0.012	0.071	0.178	0.173	0.012	0.000			
		136.1	6.72	1.065	0.030	0.181	0.454	0.393	0.008	0.000			
		165.4	6.73	1.321	0.042	0.248	0.622	0.410	0.000	0.000			
		190.4	6.73	1.048	0.036	0.218	0.548	0.246	0.000	0.000			
		210.5	6.73	1.207	0.046	0.275	0.687	0.199	0.000	0.000			
		235.4	6.73	1.890	0.081	0.485	1.156	0.168	0.000	0.000			
		264.7	6.73	2.197	0.110	0.660	1.356	0.071	0.000	0.000			
		290.0	6.73	1.484	0.087	0.518	0.869	0.010	0.000	0.000			
		310.0	6.74	1.499	0.099	0.592	0.807	0.000	0.000	0.000			
		333.7	6.74	1.562	0.121	0.725	0.715	0.000	0.000	0.000			
		363.9	6.74	1.025	0.099	0.583	0.343	0.000	0.000	0.000			
		389.8	6 74	0.527	0.061	0 347	0 1 1 8	0.000	0.000	0.000			
		414 1	674	0.528	0.074	0.378	0.075	0.000	0.000	0.000			
		439.7	6 7 5	0.276	0.048	0.208	0.070	0.000	0.000	0.000			
		464 5	675	0.270	0.065	0.232	0.010	0.000	0.000	0.000			
		489.6	6 7 5	0.155	0.000	0.114	0.000	0.000	0.000	0.000			
		509.5	6 74	0 108	0.034	0.074	0.000	0.000	0.000	0.000			
		533.9	6 75	0.100	0.039	0.074	0.000	0.000	0.000	0.000			
		559.7	6 7 5	0.052	0.025	0.000	0.000	0.000	0.000	0.000			
		584.8	675	0.052	0.025	0.027	0.000	0.000	0.000	0.000			
		377	7 20	0.004	0.007	0.020	0.000	0.000	0.000	0.000			
		57.7	7.20	0.100	0.002	0.014	0.034	0.034	0.014	0.002			
		00.4	7.21 7.21	0.105	0.004	0.020	0.004	0.004	0.023	0.001			
		90.4 110 5	7.21 7.21	0.214	0.003	0.030	0.070	0.070	0.027	0.000			
		110.5	7.21 7.21	0.290	0.00/	0.042	0.104	0.104	0.033	0.000			
		130.2 165 F	7.21 7.21	0.718	0.018	0.100	0.200	0.200	0.003	0.000			
		103.3	7.21 7.21	0.742	0.024	0.143	0.204	0.339	0.049	0.000			
		190.5	7.21	0.789	0.021	0.128	0.321	0.297	0.022	0.000			
		210.5	1.21	0.949	0.027	0.161	0.404	0.541	0.010	0.000			
		235.5	7.22	1.568	0.048	0.284	0.713	0.511	0.011	0.000			

									Page		46	of	48
Written	by: R. Kulas	ingam	Date	12/17	7/2010	Review	red by:	Mir	ng Zhu/Ja	ay Beech	n Date	e: <u>12/17/</u>	2010
Client:	Honeywell	Project:	Onor	ndaga La	ıke ILW	D Stabili	ty	Project	Proposa	l No.:	GD4014	Task No.:	02
		261.9	7 22	1 501	0.050	0 301	0 755	0 393	0.002	0.000			
		286.4	7.22	1 859	0.065	0.389	0.969	0.436	0.000	0.000			
		310.0	7.22	1.009	0.005	0.347	0.909	0.450	0.000	0.000			
		333.8	7.22	1.490	0.038	0.347	0.040	0.233	0.000	0.000			
		364.2	7.23	1.005	0.071	0.424	0.909	0.199	0.000	0.000			
		280.0	7.23	0.645	0.038	0.340	0.092	0.089	0.000	0.000			
		209.9 414-2	7.23	0.043	0.033	0.212	0.307	0.031	0.000	0.000			
		414.5	7.24	0.08/	0.043	0.233	0.572	0.017	0.000	0.000			
		439.8	7.24	0.388	0.028	0.103	0.192	0.005	0.000	0.000			
		404./	7.24	0.467	0.038	0.225	0.207	0.000	0.000	0.000			
		489.7	7.25	0.253	0.024	0.132	0.097	0.000	0.000	0.000			
		509.5	7.25	0.184	0.019	0.103	0.061	0.000	0.000	0.000			
		533.9	7.25	0.1/1	0.021	0.105	0.045	0.000	0.000	0.000			
		559.8	7.25	0.096	0.014	0.063	0.020	0.000	0.000	0.000			
		585.2	7.26	0.132	0.023	0.089	0.020	0.000	0.000	0.000			
	S MODI Prin	Mean src Modal s E R*= 285 cipal source	-site R= rc-site I .1km; N ces (fau	= 229.7 R= 235 Primary M*= 6.2	km; M= .0 km; M= distanc 6; EPS.1 duction,	= 6.23 ; e A= 6.25 ; e metric INTERV random	e0= 0.49 e0= 0. EPICE AL: 1 to seismici	(0, K=0); e= 1.2 58 from NTRAL (0, 2) sigm	g >10%	e=epsil l source ,M) bin PNTRIB contrib	on: s. .= 2.012 ution)		
		Source:			% cont	r. R(kn	n) M	epsilon0	(mean v	values)			
		CEU	US grid	ded seis	micity,I	Frankel	66.19	237.1	6.24 0	.47			
		CE	US grid	lded seis	micity,	Foro att	33.81	215.3	5.22 0.	.53			
	*******	******	*****	******	*****	******	******	******	******	******	*******	***	
	PSHA Dea	ggregation	n. %cor	ntributio	ns. site:	Lake_O	nondaga	ı long: 7	6.20000) W., lat	: 43.0600 1	N.	
	Retur	rn period: 4	475yrs.	0.10 s.	PSA =0	0.070909	4g. Con	nputed a	nnual ra	te=.210	80E-02		
	DIST(KM) N	MAG(MW) ALL-	EPS EP	SILON	>2 1 <e< td=""><td>PS<2 0<</td><td>EPS<1 -</td><td>1<eps<< td=""><td><0 -2<e< td=""><td>PS<-1 EPS</td><td><-2</td><td></td></e<></td></eps<<></td></e<>	PS<2 0<	EPS<1 -	1 <eps<< td=""><td><0 -2<e< td=""><td>PS<-1 EPS</td><td><-2</td><td></td></e<></td></eps<<>	<0 -2 <e< td=""><td>PS<-1 EPS</td><td><-2</td><td></td></e<>	PS<-1 EPS	<-2	
		13.9	4.81	1.461	0.034	0.206	0.516	0.516	0.180	0.009			
		36.3	4.81	4.513	0.150	0.898	2.228	1.182	0.055	0.000			
		64.4	4.82	3.813	0.282	1.679	1.826	0.026	0.000	0.000			
		89.6	4.83	2.239	0.333	1.618	0.288	0.000	0.000	0.000			
		114.6	4.84	2.696	0.774	1.903	0.020	0.000	0.000	0.000			
		139.7	4.85	1.451	0.733	0.719	0.000	0.000	0.000	0.000			
		163.5	4.86	1.444	1.142	0.302	0.000	0.000	0.000	0.000			
		189.5	4.86	0.555	0.552	0.003	0.000	0.000	0.000	0.000			
		209.4	4.87	0.339	0.339	0.000	0.000	0.000	0.000	0.000			
		233.0	4.87	0.242	0.242	0.000	0.000	0.000	0.000	0.000			
		262.2	4.88	0.103	0.103	0.000	0.000	0.000	0.000	0.000			
		14.0	5.22	0.653	0.015	0.089	0.224	0.224	0.089	0.011			
		37.1	5.22	2.464	0.065	0.390	0.980	0.902	0.126	0.001			
		65.2	5.23	2.919	0.123	0.733	1.686	0.377	0.000	0.000			
		89.9	5.24	2.241	0.145	0.864	1.229	0.004	0.000	0.000			
		115.2	5.25	3.397	0.339	1.960	1.098	0.000	0.000	0.000			

							Page		47	of	48	
Written	by: R. Kulasingam	Date	e: <u>12/1</u> ′	7/2010	Review	red by:	Mir	ng Zhu/J	ay Beech	n Date	: 12/17/	2010
Client:	Honeywell Proje	et: Ono	ndaga La	ake ILW	D Stabili	ity	Project	/ Proposa	ll No.:	GD4014	Task No.:	02
	140	0 5 95	0.041	0.270	1 (1 2	0.000	0.000	0.000	0.000			
	140	0 5.25	2.241	0.370	1.043	0.229	0.000	0.000	0.000			
	104	0 5 26	2.094	0.802	1.803	0.028	0.000	0.000	0.000			
	189	8 5.26	1.2//	0.693	0.584	0.000	0.000	0.000	0.000			
	209	5.21	0.910	0.699	0.211	0.000	0.000	0.000	0.000			
	233	5 5.28	0.//4	0./34	0.040	0.000	0.000	0.000	0.000			
	262	0 5.28	0.407	0.407	0.000	0.000	0.000	0.000	0.000			
	289	0 5.29	0.132	0.132	0.000	0.000	0.000	0.000	0.000			
	309	0 5.29	0.077	0.077	0.000	0.000	0.000	0.000	0.000			
	332	0 5 70	0.051	0.051	0.000	0.000	0.000	0.000	0.000			
	14.	0 5.70	0.274	0.006	0.03/	0.093	0.093	0.03/	0.006			
	37.	5 5.70	1.141	0.02/	0.163	0.408	0.408	0.130	0.004			
	65.	8 5.70 1 5.71	1./28	0.051	0.305	0.767	0.585	0.020	0.000			
	90.	1 5./1	1.013	0.060	0.360	0.901	0.291	0.000	0.000			
	112	5 5.72	2.169	0.100	0.633	1.303	0.128	0.000	0.000			
	130	5 5./1	3.005	0.190	1.132	1.642	0.041	0.000	0.000			
	164	0 5.72	3.26/	0.335	1.881	1.052	0.000	0.000	0.000			
	189	9 5.73	1.8/2	0.308	1.348	0.21/	0.000	0.000	0.000			
	209	9 5.73	1.549	0.385	1.125	0.039	0.000	0.000	0.000			
	234	0 5.74	1.5/8	0.650	0.929	0.000	0.000	0.000	0.000			
	203	2 5.15	1.025	0.094	0.331	0.000	0.000	0.000	0.000			
	289	3 3.73	0.399	0.352	0.040	0.000	0.000	0.000	0.000			
	309	2 5.70	0.268	0.264	0.004	0.000	0.000	0.000	0.000			
	333	2 5.70	0.208	0.208	0.000	0.000	0.000	0.000	0.000			
	362	0 (21)	0.089	0.089	0.000	0.000	0.000	0.000	0.000			
	14.	0 6.21	0.114	0.003	0.016	0.039	0.039	0.016	0.003			
	37.	/ 6.21	0.493	0.011	0.068	0.170	0.1/0	0.06/	0.006			
	00.	2 0.22	0.859	0.021	0.127	0.320	0.319	0.071	0.000			
	90.	3 6.22 2 (22	0.913	0.025	0.150	0.5//	0.344	0.01/	0.000			
	110	.3 6.22	1.133	0.035	0.207	0.519	0.369	0.004	0.000			
	133	8 6.23	2.414	0.089	0.529	1.296	0.500	0.000	0.000			
	100	2 0.23	2.833	0.140	0.834	1.000	0.195	0.000	0.000			
	190	2 0.24	1.938	0.128	0.708	1.022	0.020	0.000	0.000			
	210	5 6 25	1.842	0.100	0.925	0.757	0.000	0.000	0.000			
	234	5 0.23	2.210	0.280	1.398	0.332	0.000	0.000	0.000			
	200	0 6.20	1.5/2	0.290	0.932	0.130	0.000	0.000	0.000			
	284	9 0.25 5 ()(1.198	0.342	0.833	0.023	0.000	0.000	0.000			
	309	J 6.20	0.629	0.283	0.340	0.000	0.000	0.000	0.000			
	333	1 0.21	0.3/9	0.3/1	0.208	0.000	0.000	0.000	0.000			
	303	3 0.28	0.309	0.239	0.050	0.000	0.000	0.000	0.000			
	389	2 0.29	0.11/	0.114	0.003	0.000	0.000	0.000	0.000			
	409	J 0.29	0.051	0.051	0.000	0.000	0.000	0.000	0.000			
	433	4 0.30	0.051	0.051	0.000	0.000	0.000	0.000	0.000			
	37.	1 0.12	0.1/1	0.004	0.023	0.039	0.039	0.023	0.004			
	66.	4 0.72	0.313	0.007	0.044	0.110	0.110	0.042	0.002			
	90.	4 0.72	0.338	0.009	0.052	0.130	0.130	0.038	0.000			

									Page		48	of	48
Written by:	R. Kulas	singam	Date	12/17	7/2010	Review	ed by:	Mir	ng Zhu/Ja	ay Beech	n Date	:: <u>12/17</u>	/2010
Client: Ho	neywell	Project:	Onor	ndaga La	ake ILW	D Stabili	ty	Project	/ Proposa	l No.:	GD4014	Task No.:	02
		110.4	6.72	0.470	0.012	0.071	0.179	0.177	0.031	0.000			
		136.0	6.72	1.092	0.030	0.181	0.454	0.400	0.027	0.000			
		165.2	6.72	1.281	0.042	0.248	0.622	0.367	0.002	0.000			
		190.3	6.73	0.945	0.037	0.218	0.518	0.172	0.000	0.000			
		210.3	6.73	1.004	0.046	0.275	0.581	0.102	0.000	0.000			
		235.0	6.73	1.385	0.081	0.486	0.779	0.039	0.000	0.000			
		264.2	6.73	1.345	0.111	0.636	0.599	0.000	0.000	0.000			
		289.8	6.73	0.758	0.087	0.442	0.230	0.000	0.000	0.000			
		309.8	6.73	0.656	0.099	0.439	0.118	0.000	0.000	0.000			
		333.0	6.74	0.557	0.121	0.400	0.035	0.000	0.000	0.000			
		363.3	6.74	0.274	0.094	0.180	0.000	0.000	0.000	0.000			
		389.5	6.75	0.109	0.051	0.058	0.000	0.000	0.000	0.000			
		413.3	6.75	0.084	0.054	0.031	0.000	0.000	0.000	0.000			
		37.7	7.20	0.100	0.002	0.014	0.034	0.034	0.014	0.002			
		66.4	7.20	0.188	0.004	0.026	0.064	0.064	0.026	0.003			
		90.4	7.21	0.219	0.005	0.030	0.076	0.076	0.030	0.001			
		110.5	7.21	0.296	0.007	0.042	0.105	0.105	0.037	0.001			
		136.2	7.21	0.723	0.018	0.106	0.266	0.265	0.068	0.000			
		165.4	7.21	0.919	0.024	0.145	0.365	0.336	0.049	0.000			
		190.5	7.21	0.738	0.021	0.128	0.321	0.250	0.017	0.000			
		210.4	7.22	0.846	0.027	0.161	0.403	0.248	0.007	0.000			
		235.3	7.22	1.291	0.048	0.284	0.664	0.295	0.001	0.000			
		264.5	7.23	1.431	0.065	0.387	0.780	0.200	0.000	0.000			
		289.9	7.23	0.914	0.051	0.304	0.499	0.061	0.000	0.000			
		309.9	7.24	0.874	0.058	0.338	0.454	0.023	0.000	0.000			
		333.4	7.24	0.838	0.071	0.377	0.388	0.002	0.000	0.000			
		363.6	7.25	0.485	0.058	0.265	0.161	0.000	0.000	0.000			
		389.6	7.26	0.219	0.036	0.138	0.045	0.000	0.000	0.000			
		413.7	7.26	0.192	0.041	0.131	0.020	0.000	0.000	0.000			
		439.5	7.27	0.087	0.024	0.061	0.002	0.000	0.000	0.000			
		464.1	1.28	0.085	0.030	0.055	0.000	0.000	0.000	0.000			
	S	Summary st	atistics	for abo	ve 0.1s l	PSA dea	aggregat	ion, R=c	listance,	e=epsil	on:		
		Mean src	-site R=	= 158.8	km; M=	= 5.82; e	0= 0.29	9; e= 1.1	3 for all	l sources	5.		
		Modal s	rc-site	R= 36.	3 km; N	[= 4.81;	e0= -0.	61 from	peak (R	,M) bin			
	MOD	DE R*= 37.	.5km; N	Primary ⁄I*= 4.8	v distanc 1; EPS.I	e metric NTERV	: EPICE AL: 0 to	NTRAL 1 sigma	a % CO	NTRIB.	= 2.228		
	Principal sources (faults, subduction, random seismi					seismici	itv havin	g >10%	contrib	ution)			
	Source: % contr. R(km) M						M	epsilon0	(mean	values)			
		CEI	US grid	lded seis	smicity F	Frankel	67.06	171 9	5.90 0	.30			
		CEI	US grid	lded seis	smicity.	Foro att	32.95	132.0	5.68 0	.29			
	*******	******	*****	*****	*****	******	******	******	*****	*****	******	***	

APPENDIX H.2

ADDENDUM

		G	eosy	ntec ^c	>
			cons	sultants	
		Page	1	of	13
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date	: 01/04/2	011
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: (G D 4014	Task No.:	02

ADDENDUM TO THE PACKAGE TITLED "LIQUEFACTION POTENTIAL ANALYSES"

INTRODUCTION

The purpose of this addendum is to supplement the calculation package titled "*Liquefaction Potential Analyses*" (original calculation package) by presenting the liquefaction potential analyses for the ILWD area subsurface materials that include the weight of the cap. Only the existing conditions were analyzed in the original calculation package because that was considered to be a conservative approach. The methodology used in this addendum is the same as what was used in the original calculation package. A 5-ft thick sediment cap with an estimated average unit weight of 120 pcf was modeled to evaluate the influence of the cap on the liquefaction potential of the subsurface materials. An evaluation of the cap liquefaction potential is also included in this addendum as Attachment 1.

ANALYSIS RESULTS AND CONCLUSION

Table 1 presents the Cyclic Stress Ratio (CSR) values calculated using the simplified procedure proposed by Seed and Idriss [1971], as described in the original calculation package. The calculated CSR values are plotted with depth in Figure 1. The calculated CSR values generally ranged from 0.09 at a depth of 75 ft (same as the 70-ft deep location for the existing conditions) in the silt and clay unit to 0.15 near the top of the Solvay waste (SOLW), with a maximum CSR value of 0.19 at a depth of 25 to 35 ft below the top of the cap. For existing conditions, the calculated CSR values generally ranged from 0.10 at a depth of 70 ft in the silt and clay unit to 0.25 near the top of the SOLW, as presented in the original calculation package. The difference in the calculated CSR values and distribution with depth was caused by the addition of the cap with a significantly higher unit weight than the subsurface materials. The calculated CSR values for the subsurface materials are less for the cap decreases the severity of the seismic loading conditions.

Table 1 also presents the Cyclic Resistance Ratio (CRR) values for cohesive soils calculated using the procedure proposed by Boulanger and Idriss [2007], as described in the original calculation package. Figure 1 shows the distribution of CRR with depth graphically. The same shear strength ratios were used in both this addendum and the

		Ge	eosyntec⊳
			consultants
		Page	2 of 13
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date: 01/04/2011
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

original calculation package. The results indicate that the calculated CRR values for the case including the cap are the same as those for the existing conditions. Because the calculated CSR values for the case including the cap are smaller than those for the existing conditions (as discussed in the previous section), the calculated factor of safety against liquefaction (FS_{liq}), which is the ratio between CRR and CSR, increases when considering the cap. As presented in Table 1 and Figure 2, the calculated factors of safety against liquefaction ranged from about 2.9 to 3.6 for the SOLW unit, 1.8 to 2.0 for the marl unit, and 2.3 to 3.4 for the silt and clay unit for the case including the cap analyzed herein. In liquefaction analyses, a calculated factor of safety of 1.0 to 1.2 is generally considered adequate to conclude that adverse effects due to pore pressure buildup are unlikely. Therefore, based on this analysis, the SOLW, marl, and silt and clay units in the ILWD area are not considered to be susceptible to liquefaction during the design seismic event.

The above analyses clearly show that the calculated CSR values decreased in the subsurface materials due to the addition of the cap, thereby indicating less severe seismic loading conditions. It is expected that the calculated CSR values for the deeper soil units such as silt and sand, and sand and gravel will decrease too. The strength of these soil units, expressed as corrected SPT blow counts for the purposes of liquefaction potential evaluation, are not expected to change due to the addition of a few feet thick cap. In addition, the calculations for the existing conditions presented in the original calculation package indicate significantly higher calculated CRR values compared to CSR values for these deeper soil units. Due to the above reasons, the deeper soils units (such as silt and sand, and sand and gravel) are not considered susceptible to liquefaction during the design seismic event.

All other additional evaluations and discussions presented in the original calculation package (e.g. screening criteria, triaxial test stress paths etc.) that contributed to the conclusion that subsurface materials are not considered susceptible to liquefaction during the design seismic event are not affected by the addition of a few feet thick cap, and therefore are not repeated herein.

An evaluation of the potential for cap liquefaction was also performed, as described in Attachment 1. Based on this evaluation, a monitoring and maintenance (as needed) approach is recommended. Additional details will be provided in the Cap Monitoring and Maintenance Plan.

		Ge	osyntec⊳
			consultants
		Page	3 of 13
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date: 01/04/2011
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GI	D4014 Task No.: 02

REFERENCES

- Boulanger, R.W. and Idriss, I.M. (2007), "Evaluation of Cyclic Softening in Silts and Clays", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Volume 133, No. 6, June 2007, pp. 641 652.
- Seed, H.B. and Idriss, I.M. (1971). "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No. SM9, pp. 1249 - 1274.

		Ge	eosyntec ^D
			consultants
		Page	4 of 13
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date: 01/04/2011
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: G	D4014 Task No.: 02

Tables

Geosyntec^D consultants

			Page	5	of	13
Written by: R.	Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date	: 01/04/2	011
Client: Honeywell	Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.:	GD4014	Task No.:	02

Table 1. Calculation of CSR, CRR, and factor of safety against liquefaction

		Unit weight	of water =	62.4	pcf								
	Maximu	m surface acc	eleration =	0.09	g								
			K-alpha =	1									
	00	R model parar	meter, m =	0.8									
		Earthquake m	agnitude =	5.3									
Magnit	ude scaling f	actor for cohes	sive soils =	1.13									
Depth (ft)	Depth (m)	ldealized Soil Type	Unit Weight (pcf)	Vertical Effective Stress (psf)	Vertical Total Stress (psf)	Stress Reduction Factor	Equivalent Cyclic Shear Stress (psf)	CSR _M	Cu/Sigv' - NC	OCR	Cu/Sigv' - OC	CRR _{7.5}	1
0	0.0	Сар	120	0	0	1.00	0						
5	1.5	Сар	120	288	600	0.99	35						
10	3.0	SOLW	81	381	1,005	0.98	58	0.15	0.35	2.0	0.61	0.49	
15	4.6	SOLW	81	474	1,410	0.97	80	0.17	0.35	2.0	0.61	0.49	
20	6.1	SOLW	81	567	1,815	0.96	102	0.18	0.35	2.0	0.61	0.49	
25	7.6	SOLW	81	660	2,220	0.94	122	0.19	0.35	2.0	0.61	0.49	
30	9.1	SOLW	81	753	2,625	0.92	141	0.19	0.35	2.0	0.61	0.49	
35	10.7	SOLW	81	846	3,030	0.89	158	0.19	0.35	2.0	0.61	0.49	
40	12.2	Marl	98	1,024	3,520	0.85	175	0.17	0.35	1.0	0.35	0.28	
45	13.7	Marl	98	1,202	4,010	0.80	189	0.16	0.35	1.0	0.35	0.28	
50	15.2	Silt and Clay	108	1,430	4,550	0.75	200	0.14	0.35	1.0	0.35	0.28	
55	16.8	Silt and Clay	108	1,658	5,090	0.70	209	0.13	0.35	1.0	0.35	0.28	
60	18.3	Silt and Clay	108	1,886	5,630	0.66	217	0.12	0.35	1.0	0.35	0.28	
65	19.8	Silt and Clay	108	2,114	6,170	0.62	225	0.11	0.35	1.0	0.35	0.28	
70	21.3	Silt and Clay	108	2,342	6,710	0.59	232	0.10	0.35	1.0	0.35	0.28	
75	22.9	Silt and Clay	108	2,570	7,250	0.57	241	0.09	0.35	1.0	0.35	0.28	

CRR _M	FSliq
0.55	3.63
0.55	3.26
0.55	3.06
0.55	2.96
0.55	2.92
0.55	2.94
0.32	1.84
0.32	2.01
0.32	2.25
0.32	2.50
0.32	2.74
0.32	2.97
0.32	3.18
0.32	3.36

		Geosy	ntec
		cons	sultants
		Page	6 of 13
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date: 01/04/2011
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD40	14 Task No.: 02

Figures

					Ge	osyn	tec	
						consul	tants	
					Page	7	of	13
Written by:	R. Kulasingan	n Date:	01/04/2011	Reviewed by:	Ming Zhu/Jay Beec	h Da	te: 01/0)4/2011
Client: H	oneywell Pro	oject: Onor	ndaga Lake ILW	D Stability	Project/ Proposal No.:	GD4014	Task No	o.: 02

Figure 1. Calculated CSR and CRR values for SOLW, marl, and silt and clay.

Note: The discontinuity in CRR_M values occurred at 35 ft below the top of cap because it is the interface between Solvay waste and Marl. Solvay waste shear strengths were modeled with an OCR of 2, and Marl was modeled with an OCR of 1. These OCR values are conservative. The top 5 ft consists of the cap material.

Figure 2. Calculated FS_{liq} values for SOLW, marl, and silt and clay.

Note: The discontinuity in FS-liq values occurred at 35 ft below the top of cap because it is the interface between Solvay waste and Marl. Solvay waste shear strengths were modeled with an OCR of 2, and Marl was modeled with an OCR of 1. These OCR values are conservative. The top 5 ft consists of the cap material.

		Geosy	
		Page	9 of 13
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech	Date: 01/04/2011
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD40	014 Task No.: 02

Attachment 1

		Geosyntec [⊳]		
		consultants		
		Page 10 of 13		
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech Date: 01/04/2011		
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD4014 Task No.: 02		

LIQUEFACTION POTENTIAL OF THE PROPOSED SEDIMENT CAP

As documented in the main text of the *Capping*, *Dredging*, *and Habitat Design*, the sediment cap design for Onondaga Lake consists primarily of medium sand and gravel layers. Mean cap thicknesses will vary depending on water depth, remediation area, and over placement. The sand cap materials will be placed using a hydraulic spreading system, except for in shallow areas near the shoreline where mechanical placement will be necessary. All the coarse gravel materials will be placed mechanically. It is anticipated that the sand placed hydraulically will have a low relative density because of the placement method. Based on experience, low density sand materials typically have more potential for liquefaction than coarser materials; therefore, it is the sand material that is considered in the evaluation presented below.

General screening criteria (e.g., the Chinese criteria [Wang, 1979] or Andrews and Martin [2000], as described in Appendix H.2) were considered to evaluate the liquefaction potential of the sand in the cap. Since the sand will likely have less than 10% clay content and a liquid limit less than 32, these criteria indicate that the capping layer may be susceptible to liquefaction. Other liquefaction evaluation methods that are used in standard practice to estimate liquefaction susceptibility and potential displacements were considered. For a variety of reasons, they were not considered appropriate for this application. Because of this, a more practical approach, as described in the paragraphs that follow, was selected. For completeness, a brief discussion of these other evaluation methods and why they are not considered applicable is provided following the references section below.

Onondaga Lake is not in a seismic impact zone, as defined in RCRA Subtitle D(258) Seismic Guidance for Municipal Solid Waste Landfill Facilities (Richardson et al, 1995), which means there is a less than 10 percent probability that the maximum horizontal acceleration in lithified earth material, as expressed as a percentage of the earth's gravitational pull, will exceed 0.10g in 250 years. As such, the risk and frequency of earthquakes is low. Liquefaction evaluations of the Solvay waste and underlying Marl and Silt and Clay [see Appendix H.2] resulted in acceptable factor of safety values. Therefore, if the sand layer in the cap does liquefy, the effects are expected to be limited to within the cap itself and not affect the underlying materials. These effects (if any) are generally expected to be manifested at the cap surface in the form of cracking, slumping, and/or displacements. In the event of liquefaction impacts from an unlikely seismic event, the cap can be readily repaired as part of the long-term monitoring and maintenance program. The extent of these potential effects has not been estimated because of the large uncertainties inherent in that type of calculation. The potential effects are strongly related to slope and seismic event, with steeper slopes and stronger seismic events showing greater potential for localized displacements. The slopes of the cap are generally very flat (i.e., three to five degrees), therefore, the extent of

		Geosyntec⊳		
		consultants		
		Page 11 of 13		
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech Date: 01/04/2011		
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD4014 Task No.: 02		

impact, if any, is expected to be limited. In addition, the steeper slope areas are primarily near the shoreline and are surrounded by flatter slopes.

Monitoring and maintenance (as needed) approaches have already been successfully used for caps installed at sites that are in seismic impact zones (i.e., the Western United States) [Waukeganweb, 2002]. For the Onondaga lake site, cap monitoring is recommended to be performed after: (i) indication of significant damage to structures in the Syracuse metropolitan area due to an earthquake; or (ii) occurrence of a 5.5 or greater magnitude on the Richter scale earthquake within 30 miles. Based on these monitoring events, cap maintenance would be performed, if required. Additional details will be provided in the Cap Monitoring and Maintenance Plan.

REFERENCES

- Andrews, D.C.A. and Martin, G.R. (2000). "Criteria for Liquefaction of Silty Soils", 12th World Conference on Earthquake Engineering, Proceedings, Auckland, New Zealand.
- Richardson, G., Kavazanjian, E., and Matasovic, N (1995). "RCRA Subtitle D(258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities", EPA/600/R-95/051.
- Wang, W. (1979). "Some Findings in Soil Liquefaction", Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China.
- Waukeganweb (2002), "Draft summary of contaminated sediment capping projects 2/27/2002", http://www.waukeganweb.net/waukegan%20harbor%20clean%20up/USEPA%20Summ ary%20of%20Capping%20Projects.pdf

OTHER LIQUEFACTION EVALUATION METHODS

As indicated above, liquefaction evaluation methods other than the general screening criteria approach were considered and then determined to be inapplicable for the sand cap. Specifically, methods used in standard engineering practice for evaluating liquefaction potential in sands (e.g., Seed and Idriss, 1971; NCEER, 1997) were considered. These methods are based on *in situ* soil testing, such as standard penetration tests (SPTs) and cone penetrometer tests (CPTs), and comparison to case history databases. Since the case histories do not include sand layers placed under water to shallow depths, as is the case for the proposed Onondaga Lake sediment cap, these methods were not considered applicable.

		Geosyntec ^D		
		consultants		
		Page 12 of 13		
Written by: R. Kulasingam	Date: 01/04/2011 Reviewed by:	Ming Zhu/Jay Beech Date: 01/04/2011		
Client: Honeywell Project:	Onondaga Lake ILWD Stability	Project/ Proposal No.: GD4014 Task No.: 02		

Liquefaction evaluation approaches using laboratory testing were also considered. These approaches have been used in cases of thick sand deposits placed under water (e.g., hydraulic fill dams) and are based on either: (i) undrained cyclic triaxial testing of sand samples prepared in the laboratory; or (ii) determination of the in situ void ratio of the hydraulically placed sand and comparing it to the critical state or steady state line obtained in the laboratory. Both these approaches suffer from limitations in terms of measuring or recreating the *in situ* void ratio and structure of the sand, as well as having to assume that fully undrained conditions would prevail during the design earthquake. Small changes in void ratio can have a large effect on the undrained behavior of sand in these tests, and estimating and recreating the *in situ* void ratio can be difficult. The void ratio can also vary with time (i.e., a freshly deposited sand will have a higher void ratio than a sand cap that has been in place for several years). This can lead to under or overestimation of the liquefaction potential. In addition, partial drainage (i.e., free draining boundary conditions above or below the deposit) will likely occur for a thin sand cap; however, this type of testing, which evaluates fully undrained conditions, is more applicable to a fully undrained thick sand deposit. Since this testing cannot take partial drainage into consideration, it will potentially overestimate susceptibility to liquefaction. Because of these limitations, laboratory testing approaches were not considered appropriate to evaluate the liquefaction potential of the proposed sediment cap.

In addition, hybrid approaches for evaluating the liquefaction potential that combine past experience with laboratory testing and case histories were considered. These approaches include estimating relative densities from past laboratory tests and correlating them to SPT blow counts, estimating undrained residual shear strengths from SPT blow counts using case histories, and performing deformation analyses. Typically, the deformation analyses result in large uncertainty in calculated cap displacements over a range of possible relative density values because of the numerous assumptions that are required as part of the analysis. In addition, all the limitations that were mentioned for the laboratory testing and case histories apply to this hybrid approach. From a practical standpoint, calculating a wide range in deformations is not considered useful because it would not influence how potential liquefaction will be addressed in the design; therefore, additional calculations are not recommended. Instead, low earthquake risk for the site, flat slopes, and underlying materials that are not susceptible to liquefaction were considered in developing a monitoring and maintenance, if required, approach for the cap, as discussed above.

REFERENCES

NCEER (1997). "Summary Paper, Proc. of NCEER Workshop on Evaluation of Liquefaction Resistance of Soils", NCEER-97-0022.

			consultants			
			Page	13	of	13
Written by: R. Kulasingam	Date: 01/04/2011	Reviewed by:	Ming Zhu/Jay Beech	Date	: 01/04/2	2011
Client: Honeywell Proj	ect: Onondaga Lake ILWI	D Stability	Project/ Proposal No.:	GD4014	Task No.:	02

Seed, H.B. and Idriss, I.M. (1971). "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No. SM9, pp. 1249 - 1274.

APPENDIX H.3

STATIC SLOPE STABILITY ANALYSES

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: Honeywell	Project: Onondaga L	ake ILWD Stabilit	yProject/Proposal #:	GJ4204 Task #: 14-05			
TITLE OF COMPU	TATIONS	STATIC SLOPE STABILITY ANALYSES					
COMPUTATIONS E	SY: Signature	En Zh	1/17/2011 DATE				
	and Title	Senior Stat	ff Engineer	-			
ASSUMPTIONS AN CHECKED BY: (Peer Reviewer)	D PROCEDURES	Nighs	R.Kulangan	1/17/2011 DATE			
	and Title	ame Ming Zhu/F Project En Engineer	R. Kulasingam	,			
COMPUTATIONS CH	ECKED BY: Signature Printed N and Title	lame Joseph Sura	f Engineer	1/17/2011 DATE			
COMPUTATIONS BACKCHECKED (Originator)	BY: Signature	- Tranzbur		1/17/2011 DATE			
APPROVED BY	Printed N AN F. BECCA Signature	Fan Zhu Senior Sta	ff Engineer	17-57012011			
(PM or Designate)	Printed N Printed N and Title	^{lame} Jay Beech Principal		DATE			
APPROVAL NOTES	Figure 1 was chang	ed on August 13, 20	11. M.Z.				
REVISIONS (Number	and initial all revisions)						
NO. SHEE	ET DATE	BY	CHECKED BY	APPROVAL			

24

consultants

						Page	1	of	37
Written by:	Fan Zh	ıu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beecl	<u>1</u>	Date:	1/14/2011
Client: Ho	neywell	Project:	Ononda	aga Lake ILV	VD Stability	Project/ Proposal No.: (GJ4204	Task N	No.: 14-05

STATIC SLOPE STABILITY ANALYSES

INTRODUCTION

This calculation package was prepared as part of the Remediation Area D geotechnical stability analysis for the Onondaga Lake Bottom Site. Specifically, the purpose of this package is to present static slope stability analyses for Remediation Area D after dredging, during capping, and after capping. Remediation Area D, which is also referred to as the In-Lake Waste Deposit (ILWD), is shown in Figure 1. Remediation Area D consists predominantly of Sediment Management Unit (SMU) 1 with limited portions of SMUs 2 and 7. The static slope stability was evaluated for (i) overall general cross sections along the ILWD slope, and (ii) localized areas that have relatively steep slopes. Analyses were performed for both undrained and drained cases under the interim condition after dredging, the interim condition during the potential phases of capping, and the final condition after capping.

It should be noted that the cap configurations used in the analyses presented herein are consistent with the mean cap thickness, as documented in the main text of the *Capping*, *Dredging*, *and Habitat Design*. For the purpose of the analyses presented herein, the maximum potential difference in cap thickness during the capping phases was assumed, as described later in this package.

Seismic slope stability analyses for the Remediation Area D after capping were performed and are presented in a separate calculation package titled "Seismic Slope Stability Analyses" in Appendix H.4 of the Capping, Dredging, and Habitat Design.

METHODOLOGY

Static Slope Stability

Static slope stability analyses were performed using Spencer's method [Spencer, 1973], as implemented in the computer program SLIDE, version 5.0 [Rocscience, 2006]. Spencer's method, which satisfies both vertical and horizontal force equilibrium and moment equilibrium, is considered to be more rigorous than other methods, such as the simplified Janbu method [Janbu, 1973] and the simplified Bishop method [Bishop, 1955].

In general, selection of a slope stability method depends on the accuracy of the analytical derivation of the method as well as the numerical implementation in a slope stability program. SLIDE 5.0 offers nine separate methods to analyze slope stability. Ordinary or Fellenius and
consultants

						Page	2	of	37
Written	by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Bee	ch	Date:	1/14/2011
Client:	Honeywell	Project:	Onond	aga Lake ILV	VD Stability	Project/ Proposal No.:	GJ4204	Task	No.: 14-05

Simplified Bishop methods satisfy only force equilibrium in one direction and moment Janbu's simplified, Corps of Engineers' (#1 and #2), and Lowe-Karafiath equilibrium. methods satisfy only force equilibrium in two directions. Janbu's corrected method as implemented in SLIDE uses a modification factor to correct the factor of safety to indirectly account for moment equilibrium. Spencer's, General Limit Equilibrium (GLE), and Morgenstern-Price methods satisfy force equilibrium in two directions and moment equilibrium. The implementation of GLE method in SLIDE is essentially the same as Morgenstern-Price method. Based on the number of equilibrium equations satisfied, Spencer's and GLE/Morgenstern-Price methods are the most rigorous methods available. GLE/Morgenstern-Price method is generally not available in many slope stability programs due to the complexity of numerical implementation, and therefore the experience of applying this method in general practice is significantly less than that for Spencer's method. For this reason, Spencer's method is the preferred method in standard practice for analyzing general circular slip surfaces. Therefore, Spencer's method was chosen as the standard method for performing slope stability analyses for potential circular failure surfaces.

Rotational type failure mode (i.e., circular slip surfaces) was considered to assess the slope stability factor of safety (FS) at the selected cross sections. The SLIDE program generated several potential circular slip surfaces, calculated the FS for each of these surfaces, and identified the most critical slip surface (i.e., the slip surface with the lowest FS). Wedge type slip surfaces were not considered applicable for Remediation Area D because they generally only apply when known weak layers or interfaces are present. Regardless, an independent analysis was performed assuming wedge type slip surfaces. The results indicated that the FSs calculated using the wedge type slip surfaces were evaluated and presented in this package.

Information required for the analyses included:

- geometry of the slope;
- subsurface soil stratigraphy;
- water table;
- properties of subsurface materials; and
- external loading and support conditions, if any.

consultants

						Page	3	of		37
Written by:	Fan Zhu	L .	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beecl	n	Date:	1/14/20	011
Client: Ho	neywell	Project:	Ononda	aga Lake ILW	/D Stability	Project/ Proposal No.:	GJ4204	Task	No.: 1	14-05

Target Factor of Safety

The Statement of Work (SOW) attachment of the Consent Decree (CD) provided guidelines for evaluating the stability of the ILWD. A FS of 1.5 is required for the long-term static condition. This is consistent with target FS values used in general engineering practice for the long-term condition [Hammer and Blackburn, 1977; USACE, 2003]. A minimum required FS of 1.3 was selected for the interim condition [USACE, 2003].

SUBSURFACE STRATIGRAPHY

Detailed information regarding the subsurface stratigraphy is presented in Appendix H.1 of the *Capping, Dredging, and Habitat Design* in a calculation package titled "*Summary of Subsurface Stratigraphy and Material Properties*" (referred to as the Data Package). In summary, the subsurface stratigraphy primarily consists of the following materials: Solvay Waste (SOLW), Marl, Silt and Clay, Silt and Sand, Sand and Gravel, Till, and Shale. In isolated areas of the ILWD, thin silt layers are present over the SOLW. The elevation of the lake water surface in the ILWD was assumed to be El. 363 feet above mean sea level (NAVD88), as presented in the Data Package.

The subsurface profile of the ILWD was developed based on the elevation of each layer from the boring logs provided by Parsons. As explained in the Data Package, the deeper surfaces (e.g., bottom of Silt and Clay, bottom of Silt and Sand) that were below the depth of the shallow borings were developed based on a limited number of deeper borings in the ILWD. Since critical slip surfaces identified in the analyses are generally located within depths that were covered by the shallower borings (i.e., borings that terminated in or above the Silt and Clay layer), this is not expected to affect the static slope stability evaluation.

ANALYZED CROSS SECTIONS

As shown on the proposed dredging plan in Figure 1, eight cross sections were selected for the stability analyses. The dredging plan was developed by Anchor QEA and provided to Geosyntec by Parsons. Cross Sections 1 through 5 were selected to represent the overall general slope of the ILWD bottom. Cross Sections A to C were selected to represent potentially critical localized steep slopes. The geometries of Cross Sections 1 through 5 and Cross Sections A through C after dredging are presented in Figures 2 to 9.

As documented in the main text of the *Capping, Dredging, and Habitat Design*, the total cap thickness varies with the water depth. The minimum and mean thicknesses of each cap

consultants

					Page	4	of	37
Written by:	Fan Zhu	Date	e: 1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Γ	Date:	1/14/2011
Client: Ho	neywell Pr	oject: Ono	ndaga Lake IL	WD Stability	Project/ Proposal No.: G	J4204	Task N	Io.: 14-05

component correspond to several ranges in water depths. The following potentially critical conditions during and after capping were analyzed:

- <u>Overall General Slopes during Capping:</u> The potential condition where only the cap in 0 to 3 ft of water near the shoreline is constructed and the cap has a mean (with overplacement) total thickness of 4.4 ft was considered to be the most critical condition based on a preliminary analysis. As an example, the analyzed geometry of Cross Section 1 during capping is shown in Figure 10.
- <u>Localized Steep Slopes during Capping:</u> The potential condition where only the cap in the shallower water zone (i.e., upslope side of the cross section) is constructed and the cap has the mean (with overplacement) total thickness corresponding to the water depth was considered to be the most critical condition based on a preliminary analysis. As an example, the analyzed geometry of Cross Section A during capping is shown in Figure 11.
- Overall General Slopes and Localized Steep Slopes after Capping of Remediation Area D: The potential condition where the cap in 10 to 30 ft of water has the minimum total thickness, while the caps in other areas have the mean (with overplacement) total thicknesses was considered to be the most critical condition based on a preliminary analysis. The same cap configuration for the overall general slopes was applied to the localized steep slopes. As examples, the analyzed geometry of Cross Sections 1 and A after capping are shown in Figures 12 and 13, respectively.

MATERIAL PROPERTIES

Detailed information related to the selection of subsurface material properties was presented in the Data Package. Table 1 summarizes the properties (i.e., unit weights, undrained and drained shear strengths) of each subsurface material and the cap material (i.e., the sand) used in the slope stability analyses.

It should be noted that to model the condition immediately after capping when the excess pore water pressure due to the cap has not yet dissipated and no shear strength gain has yet been achieved, the undrained shear strength ratios of the Marl and the Silt and Clay were manually adjusted (i.e., reduced as compared to the ratios used for the other conditions) in the slope stability program (i.e., SLIDE). This adjustment was necessary because the program automatically adds the effective cap loading to the vertical effective stress before calculating the undrained shear strength values. The reduced undrained shear strength ratios were selected so that the calculated undrained shear strengths are approximately the same before and

consultants

						Page	5	of	37
Written by	Fan Z	hu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beecl	h	Date:	1/14/2011
Client: H	loneywell	Project:	Onond	aga Lake ILV	VD Stability	Project/ Proposal No.: (GJ4204	Task I	No.: 14-05

immediately after cap placement. The calculation of the reduced undrained shear strength ratios for Marl and Silt and Clay are presented in Attachment 1 of this package. For the condition during dredging, the program automatically considers the reduction of undrained shear strength of the Marl and the Silt and Clay due to the reduction in vertical effective stress caused by dredging.

RESULTS AND CONCLUSIONS

The static slope stability of Remediation Area D after dredging, during capping and after capping was evaluated for five overall general slopes (i.e., Cross Sections 1 through 5) and three localized steep slopes (i.e., Cross Sections A through C). The results of the static slope stability analyses are summarized in Table 2. As examples, the critical circular slip surfaces for Cross Sections 4 and C are shown in Figures 14 through 25.

Under the interim condition after dredging, the calculated FSs for the selected eight cross sections range from 2.6 to 9.0 for the undrained case and 2.2 to 3.9 for the drained case. Under the interim condition during capping, the calculated FSs for the eight selected cross sections range from 2.1 to 2.5 for both the undrained and the drained cases. Under the final condition after capping, the calculated FSs for the eight selected cross sections range from 2.1 to 2.9 for both the undrained cases. The results indicate that the selected cross sections have acceptable calculated FSs.

Additional analyses were performed to evaluate the sensitivity of slope stability to the undrained and drained shear strengths of SOLW. One of the critical cross sections, i.e., Cross Section 3, was selected for the sensitivity analyses. In the sensitivity analyses, the SOLW shear strength values were reduced to represent the mean minus one standard deviation (i.e., 165 psf for the undrained shear strength) or lower value (i.e., 29 degrees for the drained friction angle), which were calculated based on the laboratory tests. The sensitivity analysis results indicate that (i) for the interim condition after dredging, the calculated FS is 2.4 for the undrained case and 1.6 for the drained case; (ii) for the interim condition during capping, the calculated FS is 1.8 for the undrained case and 2.5 for the drained case; and (iii) for the final condition after capping, the calculated FS is 1.8 for the undrained case and 2.5 for the drained case. Therefore, the calculated FS is 1.8 for the undrained case and 2.5 for the critical cross section using the reduced shear strengths for SOLW.

consultants

					Page	6	of	37
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beec	:h	Date:	1/14/2011
Client: Hone	ywell Project:	Onond	aga Lake ILV	VD Stability	Project/ Proposal No.:	GJ4204	Task	No.: 14-05

REFERENCES

- Bishop, A., "The Use of the Slip Circle in the Stability Analysis of Slopes," Geotechnique, Volume 5, No. 1, Jan 1955, pp. 7-17.
- Hammer, D.P., and Blackburn, E.D., "Design and Construction of Retaining Dikes for Containment of Dredged Material", Technical Report D-77-9, U.S. Army Engineer Water Experiment Station, Vicksburg, Mississippi, August 1977, pp. 93.
- Janbu, N., "Slope Stability Computations," Embankment Dam Engineering, Casagrande Memorial Volume, R. C. Hirschfield and S. J. Poulos, Eds., John Wiley, New York, 1973, pp. 47-86.
- Rocscience, "*SLIDE 2-D Limit Equilibrium Slope Stability for Soil and Rock Slopes*," User's Guide, Rocscience Software, Inc., Toronto, Ontario, Canada, 2006.

Spencer, E., "The Thrust Line Criterion in Embankment Stability Analysis," *Géotechnique*, Vol. 23, No. 1, pp. 85-100, March 1973.

U.S. Army Corps of Engineers (USACE), "Engineering and Design – Slope Stability", Engineering Manual EM 1110-2-1902, October 2003, pp. 3-2.

Geosyntec[▷] consultants

					Page	7	of	37
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	D	Date:	1/14/2011
Client: Ho	neywell Projec	et: Onond	aga Lake ILV	WD Stability	Project/ Proposal No.: G	GJ4204	Task No	o.: 14-05

Tables

consultants

					Page	8	0	f	37
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech		Date:	1/14	/2011
Client: Hone	well Project:	Onond	aga Lake ILV	- VD Stability	Project/ Proposal No.: G	J4204	Tasl	k No.:	14-05

 Table 1. Summary of Material Properties for Slope Stability Analyses

Material	Unit Weight (pcf)	Drained Shear Strength, \u03c6' (degrees)	Undrained Shear Strength used for analysis after dredging	Undrained Shear Strength used for analysis during and after capping
Cap-Sand ^[1]	120	32	N/A	N/A
Silt ^[2]	98	32	N/A	N/A
SOLW	81	37	240 psf	240 psf
Marl	98	32	$S_u/\sigma_v=0.35$	$S_u/\sigma_v = 0.24^{[3],[4]}$
Silt and Clay	108	30	$S_u/\sigma_v=0.35$	$S_u/\sigma_v = 0.26^{[3],[4]}$
Silt and Sand	120	32	N/A	N/A
Sand and Gravel	120	32	N/A	N/A
Till	120	40	N/A	N/A
Shale	120	40	N/A	N/A

Notes:

- [1]. For the purpose of the slope stability analysis, the relatively thin layer of gravel in the proposed cap was not modeled. The gravel material is expected to have a larger friction angle than the sand. Therefore, not modeling the gravel component of the cap in the slope stability analysis was considered to be conservative.
- [2]. The unit weight and the drained shear strength of Marl were used for Silt overlying the SOLW in certain areas of the ILWD.
- [3]. The undrained shear strength ratios of Marl and Silt and Clay below the cap were manually reduced in the SLIDE program to avoid the increase of undrained shear strengths of Marl and Silt and Clay due to the additional load from cap. For the portion of cross section without cap, the original ratio of 0.35 was applied to Marl and Silt and Clay.
- [4]. The reduced undrained shear strength ratios were calculated as described in Attachment 1.

					Page	9	of	37
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beecl	<u>ь</u> Г	Date:	1/14/2011
Client: Honey	well Project:	Onond	aga Lake ILW	D Stability	Project/ Proposal No.:	GJ4204	Task N	No.: 14-05

 Table 2. Summary of Static Slope Stability Analysis Results

Analyzed	Cross	Inter (af	rim-Condition ter dredging)	n	Inte (du	erim-Condition uring capping)	n)	Fi (a	nal-Condition (fter capping)		
Scenario	Section	Calculated Minimum FS	Target FS	Is FS OK?	Calculated Minimum FS	Target FS	Is FS OK?	Calculated Minimum FS	Target FS	Is FS OK?	
	1	7.09	1.3	Yes	2.50	1.3	Yes	2.63 ^[1]	1.5	Yes	
	2	2.64	1.3	Yes	2.50	1.3	Yes	2.64 ^[1]	1.5	Yes	
	3	2.64	1.3	Yes	2.40	1.3	Yes	$2.40^{[1]}$	1.5	Yes	
Undrainad	4	7.30	1.3	Yes	2.51	1.3	Yes	2.86 ^[1]	1.5	Yes	Res
Undrained	5	7.16	1.3	Yes	2.33	1.3	Yes	2.33 ^[1]	1.5	Yes	
	А	9.01	1.3	Yes	2.50	1.3	Yes	$2.58^{[1]}$	1.5	Yes	
	В	4.63	1.3	Yes	2.12	1.3	Yes	$2.12^{[1]}$	1.5	Yes	
	С	2.94	1.3	Yes	2.50	1.3	Yes	2.58 ^[1]	1.5	Yes	Res
	1	3.23	1.3	Yes	2.50	1.3	Yes	2.63	1.5	Yes	
	2	2.64	1.3	Yes	2.32	1.3	Yes	2.64	1.5	Yes	
	3	2.15	1.3	Yes	2.50	1.3	Yes	2.50	1.5	Yes	
Drainad	4	2.16	1.3	Yes	2.51	1.3	Yes	2.86	1.5	Yes	Res
Dramed	5	2.18	1.3	Yes	2.50	1.3	Yes	2.50	1.5	Yes	
	А	3.85	1.3	Yes	2.39	1.3	Yes	2.58	1.5	Yes	
	В	2.78	1.3	Yes	2.12	1.3	Yes	2.12	1.5	Yes	
	С	2.94	1.3	Yes	2.50	1.3	Yes	2.58	1.5	Yes	Res

Note:

[1]. The FSs were calculated using the reduced undrained shear strength ratios of Marl and Silt and Clay.

Note
sults shown in Figures 14, 16 and 18
sults shown in Figures 20, 22 and 24
sults shown in Figures 15, 17 and 19

sults shown in Figures 21, 23 and 25

consultants

						Page	10	of		37
Written	by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beec	h	Date:	1/14	/2011
Client:	Honeywel	Project:	Onond	aga Lake ILV	VD Stability	Project/ Proposal No.:	GJ4204	Task	No.:	14-05

Figures

Figure 1. Locations of Selected Cross Sections on Dredging Plan (Dredging plan was prepared by Anchor QEA and provided to Geosyntec by Parsons)

Figure 2. Geometry of Cross Section 1

Notes:

- 1. Axes show distances and elevations in feet.
- 2. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings located elsewhere in Remediation Area D.
- 3. At several locations, the borings shown in the figure are offset from the cross section line. As a result, the end of the boring at these locations does not match exactly the line of end of boring.
- 4. The above notes apply to Figures 3 through 6.

Figure 3. Geometry of Cross Section 2

Notes:

1. See notes for Figure 2.

Notes:

1. See notes for Figure 2.

Geosyntec[▷] consultants 15 37 Page of Ming Zhu/R. Written by: Fan Zhu 1/14/2011 1/14/2011 Date: Date: Reviewed by: Kulasingam/Jay Beech Project/ Proposal No .: Client: Honeywell **Onondaga Lake ILWD Stability** Project: GJ4204 Task No.: 14-05 Dredged Lake Bottom Location of Sheetpile Wall Mudline before Dredging W V OL-STA-10011-VC OL-VC-10079 OL-VC-10081A OL-VC-10088 OL-STA-10005-VC OL-VC-10083A SOLW Boring Location Silt Silt and Clay End of Boring Marl Till Silt and Sand Shale Sand and Gravel 100 300 500 900 1100 1200 1400 1600 1700 200 400 600 700 1000 1300 1500 4 800

Figure 5. Geometry of Cross Section 4

Notes:

1. See notes for Figure 2.

Figure 6. Geometry of Cross Section 5

Notes:

- 1. See notes for Figure 2.
- 2. The subsurface layer boundaries (i.e., the boundaries below the original mudline and the dredged lake bottom) were extended horizontally beyond the station of 850 ft for the purpose of slope stability analysis.

Figure 7. Geometry of Cross Section A

Notes:

- 1. Axes show distances and elevations in feet.
- 2. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings.
- 3. The above notes apply to Figures 8 and 9.

1. See notes for Figure 7.

Figure 9. Geometry of Cross Section C

4

Notes:

1. See notes for Figure 7.

Figure 10. Analyzed Geometry of Cross Section 1 during Capping

Figure 11. Analyzed Geometry of Cross Section A during Capping

320

Figure 12. Analyzed Geometry of Cross Section 1 after Capping

Figure 13. Analyzed Geometry of Cross Section A after Capping

Figure 14. Slope Stability Analysis Result for Cross Section 4 under Interim Condition after Dredging (Undrained)

Figure 15. Slope Stability Analysis Result for Cross Section 4 under Interim Condition after Dredging (Drained)

Figure 16. Slope Stability Analysis Result for Cross Section 4 under Interim Condition during Capping (Undrained)

Figure 17. Slope Stability Analysis Result for Cross Section 4 under Interim Condition during Capping (Drained)

Figure 18. Slope Stability Analysis Result for Cross Section 4 under Final Condition after Capping (Undrained)

Figure 19. Slope Stability Analysis Result for Cross Section 4 under Final Condition after Capping (Drained)

Figure 20. Slope Stability Analysis Result for Cross Section C under Interim Condition after Dredging (Undrained)

Figure 21. Slope Stability Analysis Result for Cross Section C under Interim Condition after Dredging (Drained)

Figure 22. Slope Stability Analysis Result for Cross Section C under Interim Condition during Capping (Undrained)

Figure 23. Slope Stability Analysis Result for Cross Section C under Interim Condition during Capping (Drained)

Figure 24. Slope Stability Analysis Result for Cross Section C under Final Condition after Capping (Undrained)

Figure 25. Slope Stability Analysis Result for Cross Section C under Final Condition after Capping (Drained)

consultants

						Page	36	of	37
Written	by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beec	h []]	Date:	1/14/2011
Client:	Honeywell	Project:	Onond	aga Lake ILW	VD Stability	Project/ Proposal No.:	GJ4204	Task	No.: 14-05

Attachment 1

Calculation of Reduced Undrained Shear Strength Ratios

consultants

						Page	37	7 с	f	37	
Written	by:	Fan Zhu	Date:	1/14/2011 Reviewed by:		Ming Zhu/R. Kulasingam/Jay Beech		Date:		1/14/2011	
Client:	Honeywel	Project:	Onond	aga Lake ILV	VD Stability	Project/ Proposal No.:	GJ4204	4 Tas	k No.:	14-05	

The reduced undrained shear strength ratios of Marl and Silt and Clay were calculated as follows:

- a) Assume a representative subsurface profile for ILWD: As presented in Figure 19 in the Data Package, the thicknesses of SOLW and Marl were assumed to be 30 ft and 10 ft, respectively. The unit weights of SOLW and Marl are 81 pcf and 98 pcf, respectively.
- b) Select the point at the middle of Marl and the point at the top of Silt and Clay: The undrained shear strength at the middle of Marl before capping is:

 $S_{u1} = 0.35\sigma_v' = 0.35 \times [30 \times (81-62.4) + 5 \times (98-62.4)] = 258 \text{ psf}$

The undrained shear strength at the top of Silt and Clay before capping is:

$$S_{u2} = 0.35\sigma_v' = 0.35 \times [30 \times (81 - 62.4) + 10 \times (98 - 62.4)] = 320 \text{ psf}$$

c) The vertical effective stresses at the selected points after capping (assuming a 5.5-ft thick cap consisting of 3.2 ft gravel and 2.3 ft sand) are:

 $\sigma_{v1}' = 3.2 \times (125-62.4) + 2.3 \times (120-62.4) + 30 \times (81-62.4) + 5 \times (98-62.4) = 1069 \text{ psf}$ $\sigma_{v2}' = 3.2 \times (125-62.4) + 2.3 \times (120-62.4) + 30 \times (81-62.4) + 10 \times (98-62.4) = 1247 \text{ psf}$

d) To consider the condition immediately after capping, the undrained shear strength ratios of Marl and Silt and Clay below cap were selected to be:

$$S_u/\sigma_v'_{(Marl)} = 258/1069 = 0.24$$

 $S_u/\sigma_v'_{(Silt and Clay)} = 320/1247 = 0.26$

It is noted that the above undrained strength ratios were calculated assuming that the maximum cap thickness is 5.5 ft. If the actual cap thickness is less than 5.5 ft, the calculated undrained shear strength ratios will be greater. Therefore, it is conservative to use the above calculated undrained shear strength corresponding to a 5.5 ft cap in the slope stability analyses for cases with thinner caps.
APPENDIX H.4

SEISMIC SLOPE STABILITY ANALYSES

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: Honeywell Pro	ject: Onondaga Lake	ILWD Stabili	ty_Project/Proposal #:	GJ4204 Task #: 14-05
TITLE OF COMPUTAT	IONS	SEISMIC S	SLOPE STABILITY AN	ALYSES
COMPUTATIONS BY:	Signature	Tan2	me	1/17/2011
	Printed Name and Title	Fan Zhu Senior Sta	ıff Engineer	DATE
ASSUMPTIONS AND PR CHECKED BY: (Peer Reviewer)	OCEDURES Signature Printed Name and Title	Ming Zhu/	R. Kulaingam)/17/2011 DATE
COMPUTATIONS CHECKE	DBY: Signature Printed Name and Title	Joseph Sur Senior Sta	ra aff Engineer	1/17/2011 DATE
COMPUTATIONS BACKCHECKED BY: (Originator)	EW YOAMA and Title	Fan Zhu	a	1/17/2011 DATE
APPROVED By: (PM or Designate)	BE C S Signature Signature Printed Name and Title	Jay Beech Principal		17 JAN 2611 DATE
APPROVAL NOTES:	gure 1 was changed on /	August 13, 2012	I. M.Z.	
REVISIONS (Number and	initial all revisions)			
NO. SHEET	DATE	BY	CHECKED BY	APPROVAL
	· · · · · · · · · · · · · · · · · · ·			

					G		ynte nsultan	C [▷] .ts
					Page	1	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14/2	2011
Client: Honeywell	Project:	Ononda	ga Lake ILW	D Stability	Project/ Proposal No.: GJ	4204	Task No.:	14-05

SEISMIC SLOPE STABILITY ANALYSES

INTRODUCTION

This calculation package was prepared as part of the Remediation Area D geotechnical stability analysis for the Onondaga Lake Bottom Site. Specifically, the purpose of this package is to present seismic slope stability analyses for Remediation Area D after capping. Remediation Area D, which is also referred to as the In-Lake Waste Deposit (ILWD), is shown in Figure 1. Remediation Area D consists predominantly of Sediment Management Unit (SMU) 1 with limited portions of SMUs 2 and 7. The seismic slope stability of both (i) overall general cross sections along the ILWD slope and (ii) localized areas that have relatively steep slopes was evaluated for the condition after capping.

It should be noted that the cap configurations used in the analyses presented herein are consistent with the mean cap thickness, as documented in the main text of the *Capping, Dredging, and Habitat Design*. For the purpose of the analyses presented herein, the expected potentially critical condition with the maximum potential difference in cap thickness was assumed, as described later in this package. The liquefaction evaluation of the cap is presented in Appendix H.2 of the *Capping, Dredging, and Habitat Design* in a calculation package titled "*Liquefaction Potential Analysis*" (referred to as the Liquefaction Package).

METHODOLOGY

Seismic Slope Stability

Seismic slope stability analyses were performed using Spencer's method [Spencer, 1973], as implemented in the computer program SLIDE, version 5.0 [Rocscience, 2006]. Rotational type failure mode, i.e. circular slip surface, was considered to assess the pseudostatic slope stability factor of safety (FS) of the selected cross sections. Wedge type slip surfaces were not considered applicable for Remediation Area D because they generally only apply when known weak layers or interfaces are present. Regardless, an independent analysis was performed assuming wedge type slip surfaces. The results indicated that the FSs calculated using the wedge type slip surfaces were greater than those calculated using the circular slip surfaces. Therefore, only circular slip surfaces were evaluated. Detailed discussion regarding Spencer's method and the SLIDE program is

					G	eos _{co}	ynte nsulta	ec [¢]
					Page	2	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/1	4/2011
Client: Honeyw	vell Project	: Ononda	nga Lake ILW	D Stability	Project/ Proposal No.: GJ4	4204	Task No	o.: 14-05

presented in Appendix H.3 of the *Capping, Dredging, and Habitat Design* in a calculation package titled "*Static Slope Stability Analyses*" (referred to as the Static Stability Package). The procedure for the seismic slope stability analysis presented herein is summarized as follows:

- Select a pseudostatic coefficient to reduce the maximum horizontal acceleration for use in slope stability analyses. This is done in recognition that maximum acceleration exists only for a very short time [Kramer, 1996]. Based on the discussions presented in the Federal Highway Administration's seismic design guidance document [Kavazanjian et al., 1997], a pseudostatic coefficient of 0.5 was conservatively selected for this seismic slope stability evaluation.
- Calculate the horizontal seismic coefficient (k) by multiplying the maximum horizontal acceleration by the pseudostatic coefficient. A maximum horizontal acceleration of 0.09g was selected for a contingency level event (i.e., a seismic event with a 10 percent chance of exceedance in 50 years) at the site, as required in the Statement of Work of the Consent Decree for the Onondaga Lake Bottom Subsite (United States District Court, 2007) and as presented in the Liquefaction Package. Using this maximum horizontal acceleration of 0.09g and a pseudostatic coefficient of 0.5, a horizontal seismic coefficient (k) of 0.045g was calculated for the seismic analysis.
- Perform pseudostatic slope stability analyses by applying a horizontal seismic coefficient to the same procedures used for static slope stability analyses. If the calculated pseudostatic FS is greater than 1.1, the slope is considered to have an acceptable FS under the contingency level seismic event (i.e., a seismic event of 10 percent chance of exceedance in 50 years). If the calculated pseudostatic FS is less than 1.1, calculate permanent seismic displacements by performing deformation analysis and compare the calculated displacement to allowable displacements. Calculate the yield acceleration (i.e., the horizontal seismic coefficient that results in a calculated FS of 1.0) and estimate permanent displacements using the Hynes and Franklin [1984] chart (Figure 2).

SUBSURFACE STRATIGRAPHY

Detailed information regarding the subsurface stratigraphy is presented in Appendix H.1 of the *Capping, Dredging, and Habitat Design* in a calculation package titled "Summary of Subsurface Stratigraphy and Material Properties" (referred to as the Data

					G		ynte nsulta	C ^D nts
					Page	3	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14	/2011
Client: Honeyw	vell Project	: Ononda	ıga Lake ILW	D Stability	Project/ Proposal No.: GJ4	204	Task No	.: 14-05

Package). In summary, the subsurface stratigraphy primarily consists of the following materials: Solvay Waste (SOLW), Marl, Silt and Clay, Silt and Sand, Sand and Gravel, Till, and Shale. In isolated areas of the ILWD, thin silt layers are present over the SOLW. The elevation of the lake water surface in the ILWD was assumed to be El. 363 feet above mean sea level (NAVD88), as presented in the Data Package.

The subsurface profile of the ILWD was developed based on the elevation of each layer from the boring logs provided by Parsons. As explained in the Data Package, the deeper surfaces (e.g., bottom of Silt and Clay, bottom of Silt and Sand) that were below the depth of shallow borings were developed based on a limited number of deeper borings in the ILWD. Since critical slip surfaces identified in the analyses are generally located within depths that were covered by the shallower borings (i.e., borings that terminated in or above the Silt and Clay layer), this is not expected to affect the seismic slope stability evaluation.

ANALYZED CROSS SECTIONS

As shown on the proposed dredging plan in Figure 1, eight cross sections were selected for the stability analyses. The dredging plan was developed by Anchor QEA and provided to Geosyntec by Parsons. Cross Sections 1 through 5 were selected to represent the overall general slope of the ILWD. Cross Sections A to C were selected to represent potentially critical localized steep slopes. As documented in the main text of the *Capping, Dredging, and Habitat Design*, the total cap thickness varies with the water depth. The minimum and mean thicknesses of each cap component correspond to several ranges in water depths.

For the overall general slopes after the entire Remediation Area D is capped, the condition where the cap in 10 to 30 ft of water has the minimum total thickness, while the caps in other areas have the mean (with overplacement) total thicknesses was found to be the potentially critical condition based on a preliminary analysis. The same cap configuration for the overall general slopes was applied to the localized steep slopes. The analyzed geometries of Cross Sections 1 through 5 and Cross Sections A through C after capping are presented in Figures 3 to 10.

					G	eos	ynte nsulta	∂C ^D nts
					Page	4	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Ja Beech	y Date:	1/14	4/2011
Client: Honeyw	rell Project	: Ononda	nga Lake ILW	D Stability	Project/ Proposal No.: GJ	4204	Task No	.: 14-05

MATERIAL PROPERTIES

Detailed information related to the selection of subsurface material properties was presented in the Data Package. Table 1 summarizes the material properties (i.e., unit weights and shear strengths) of each subsurface material and the cap material (i.e., the sand) used in the slope stability analyses.

Based on the material type, the appropriate undrained and drained material properties were used in the analyses. Specifically, drained shear strength properties were used for Silt and Sand, Sand and Gravel, Till, and Shale. The drained properties of Marl were used for the silt in isolated areas of the ILWD. The sand material in the proposed cap was modeled with drained strength parameters. Undrained shear strength properties were used for SOLW, Marl, and Silt and Clay, as they are fine grained materials and take a relatively long time to dissipate pore pressures generated under seismic loading conditions. As described for the after-capping condition in the Static Stability Package (see Material Properties section and Attachment 1 of that package), the undrained shear strength ratios of Marl and Silt and Clay were also manually reduced for the analyses presented herein.

RESULTS AND CONCLUSIONS

The seismic slope stability of Remediation Area D after capping was evaluated for five overall general slope cross sections (i.e., Cross Sections 1 through 5) and three localized steep slope cross sections (i.e., Cross Sections A through C). The results of seismic slope stability analyses are summarized in Table 2. As examples, the critical circular slip surfaces for Cross Sections 2, 3, and C are shown in Figures 11 through 13.

Under the after-capping condition, the calculated seismic slope stability FSs for the selected eight cross sections range from 1.4 to 1.9. The results indicate that the selected cross sections have acceptable calculated FSs after capping in case of a contingency level seismic event.

Additional analyses were performed to evaluate the sensitivity of the seismic slope stability to the undrained shear strength of SOLW. The three most critical cross sections, i.e., Cross Sections 2, 3, and C, were selected for the sensitivity analysis. In the sensitivity analysis, the SOLW shear strength value was reduced to represent the mean minus one standard deviation (i.e., 165 psf for the undrained shear strength), which was calculated based on the laboratory tests. The FSs for these three cross sections were calculated to be

					G		ynte nsulta	∂C ^D nts
					Page	5	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14	4/2011
Client: Honeywell	Project:	Ononda	ga Lake ILW	D Stability	Project/ Proposal No.: GJ4	204	Task No	.: 14-05

1.10, 1.06, and 1.02, respectively, for the seismic condition after capping using the reduced undrained shear strength of SOLW. Because the calculated FS is less than the target FS of 1.1 for Cross Sections 3 and C, a deformation analysis was performed for these cross sections. The seismic displacements were estimated to range from 0.2 to 0.6 inches for Cross Sections 3 and C, which were considered to be acceptable. The analysis results are presented in Attachment 1.

					G		ynte nsultan	C ^D its
					Page	6	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14/:	2011
Client: Honeyw	ell Projec	t: Onond a	aga Lake ILW	D Stability	Project/ Proposal No.: GJ4	4204	Task No.:	14-05

REFERENCES

- Hynes, M.E., and Franklin, A. G., "Rationalizing the Seismic Coefficient Method," Miscellaneous Paper GL-84-13, U.S Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 1984.
- Kavazanjian, E., Matasovic, N., Hadji-Hamou, T., and Sabatini, P. J., "Design Guidance: Geotechnical Earthquake Engineering for Highways – Design Priciples," Volume I, Publication No. FHWA-SA-97-076, U.S. Department of Transportation, 1997.
- Kramer, S., "Geotechnical Earthquake Engineering," Prentice Hall, NY, 1996.
- Rocscience, "SLIDE 2-D Limit Equilibrium Slope Stability for Soil and Rock Slopes," User's Guide, Rocscience Software, Inc., Toronto, Ontario, Canada, 2006.
- Spencer, E., "The Thrust Line Criterion in Embankment Stability Analysis," *Géotechnique*, Vol. 23, No. 1, pp. 85-100, March 1973.
- United States District Court, Northern District of New York. State of New York and Denise M. Sheehan against Honeywell International, Inc. Consent Decree Between the State of New York and Honeywell International, Inc. Senior Judge Scullin, Dated October 11, 2006. Filed January 4, 2007.

					G	eos co	ynte nsulta	∂C ^D nts
					Page	7	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14	4/2011
Client: Honeywel	l Project	: Ononda	aga Lake ILW	D Stability	Project/ Proposal No.: GJ4	1204	Task No	.: 14-05

Tables

					Ge	2OS co	ynte nsultar	C ^D its
					Page	8	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14/	2011
Client: Honeywell	Project:	Ononda	ga Lake ILW	D Stability	Project/ Proposal No.: GJ4	204	Task No.:	14-05

Table 1. Summary of Material Properties for Slope Stability Analyses

Material	Total Unit Weight (pcf)	Drained Shear Strength φ' (degrees)	Undrained Shear Strength
$Cap - Sand^{[1]}$	120	32	N/A
Silt ^[2]	98	32	N/A
SOLW	81	N/A	240 psf
Marl	98	N/A	$S_u / \sigma_v' = 0.24^{[3],[4]}$
Silt and Clay	108	N/A	$S_u / \sigma_v' = 0.26^{[3],[4]}$
Silt and Sand	120	32	N/A
Sand and Gravel	120	32	N/A
Till	120	40	N/A
Shale	120	40	N/A

Notes:

- [1]. For the purpose of the slope stability analysis, the relatively thin layer of gravel in the proposed cap was not modeled. The gravel material is expected to have a larger friction angle than the sand. Therefore, not modeling the gravel component of the cap in the slope stability analysis was considered to be conservative.
- [2]. Unit weight and drained shear strength of Marl were used for Silt overlying the SOLW in certain areas of the ILWD.

[3]. The undrained shear strength ratios of Marl and Silt and Clay below the cap were manually reduced in the SLIDE program to avoid the increase of undrained shear strengths of Marl and Silt and Clay due to the additional load from cap.

[4]. The reduced undrained shear strength ratios were calculated as described in Attachment 1 of the Static Stability Package.

Geosyntec[▷]

consultants

					Page	9	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Jay Beech	Date:	1/14/2	2011
Client: Honeywell	Project:	Ononda	ga Lake ILWI	D Stability	Project/ Proposal No.: GJ	4204	Task No.:	14-05

Table 2. Summary of Seismic Slope Stability Analysis Results

Cross Section	Horizontal Seismic Coefficient (K _h)	Calculated Minimum FS	Target FS	Is FS OK?	Deformation Analysis Necessary?	Note
1	0.045	1.56	1.1	Yes	No	
2	0.045	1.44	1.1	Yes	No	Results shown in Figure 11
3	0.045	1.45	1.1	Yes	No	Results shown in Figure 12
4	0.045	1.72	1.1	Yes	No	
5	0.045	1.80	1.1	Yes	No	
А	0.045	1.86	1.1	Yes	No	
В	0.045	1.69	1.1	Yes	No	
C	0.045	1.48	1.1	Yes	No	Results shown in Figure 13

					Geosyntec [⊳]			
					consultants			
					Page	10	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/. Beech	Jay Date:	: 1/14/	2011
Client: Honeywell	Project:	Ononda	ga Lake ILW	D Stability	Project/ Proposal No.: (GJ4204	Task No.:	14-05

Figures

Geosyntec[▷]

consultants

					Geosyntec ^D			
					consultants			
					Page	12	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/J Beech	ay Date:	1/	14/2011
Client: Honeywell	Project:	Ononda	ga Lake ILW	D Stability	Project/ Proposal No.: G	J4204	Task N	lo.: 14-05

Figure 2. Permanent Seismic Deformation Chart (Hynes and Franklin, 1984)

Figure 3. Geometry of Cross Section 1

- 1. Axes show distances and elevations in feet.
- 2. Subsurface profiles below the line of end of boring were estimated based on information from deeper borings located elsewhere in Remediation Area D.
- 3. Above notes also apply to Figures 4 through 10.

1. See notes for Figure 3.

Figure 5. Geometry of Cross Section 3

1. See notes for Figure 3.

Figure 6. Geometry of Cross Section 4

1. See notes for Figure 3.

1. See notes for Figure 3.

2. The subsurface layer boundaries were extended horizontally beyond the station of 850 ft for the purpose of slope stability analysis.

Figure 8. Geometry of Cross Section A

.

Note:

1. See notes for Figure 3.

Figure 9. Geometry of Cross Section B

1. See notes for Figure 3.

Figure 10. Geometry of Cross Section C

1. See notes for Figure 3.

Figure 11. Slope Stability Analysis Result for Cross Section 2

Figure 12. Slope Stability Analysis Result for Cross Section 3

Figure 13. Slope Stability Analysis Result for Cross Section C

Geosyntec ^c	
------------------------	--

consultants

					Page	24	of	26
Written by:	Fan Zhu	Date:	1/14/2011	Reviewed by:	Ming Zhu/R. Kulasingam/Ja Beech	Date	:	1/14/2011
Client: Honeywell	Project:	Ononda	ga Lake ILWI	D Stability	Project/ Proposal No.: G	J4204	Task	No.: 14-05

Attachment 1 Sensitivity Analysis

Geosyntec[▷] consultants Page 25 of 26 Ming Zhu/R. Kulasingam/Jay Written by: 1/14/2011 Fan Zhu 1/14/2011 Date: Date: Reviewed by: Beech Client: Honeywell Project: Onondaga Lake ILWD Stability Project/ Proposal No.: GJ4204 Task No.: 14-05

Table 1-1. Summary of Seismic Slope Stability Sensitivity Analysis Results

Cross Section	Calculated Minimum FS using Reduced Strength of SOLW	Yield Acceleration, $a_y^{[1]}$ (g)	Maximum Horizontal Acceleration, a _{max} (g)	ay/amax	Interpolated Displacement Range ^[2] (in)	
3	1.06	0.048	0.09	0.53	0.2~0.6	
С	1.02	0.047	0.09	0.52	0.2~0.6	

Notes:

- 1. The yield acceleration corresponds to the horizontal seismic coefficient that results in a calculated FS of 1.0.
- 2. The displacement range was interpolated using the mean and mean + standard deviation curves presented in Figure 1-1.

APPENDIX H SLIDE FILES

PARSONS