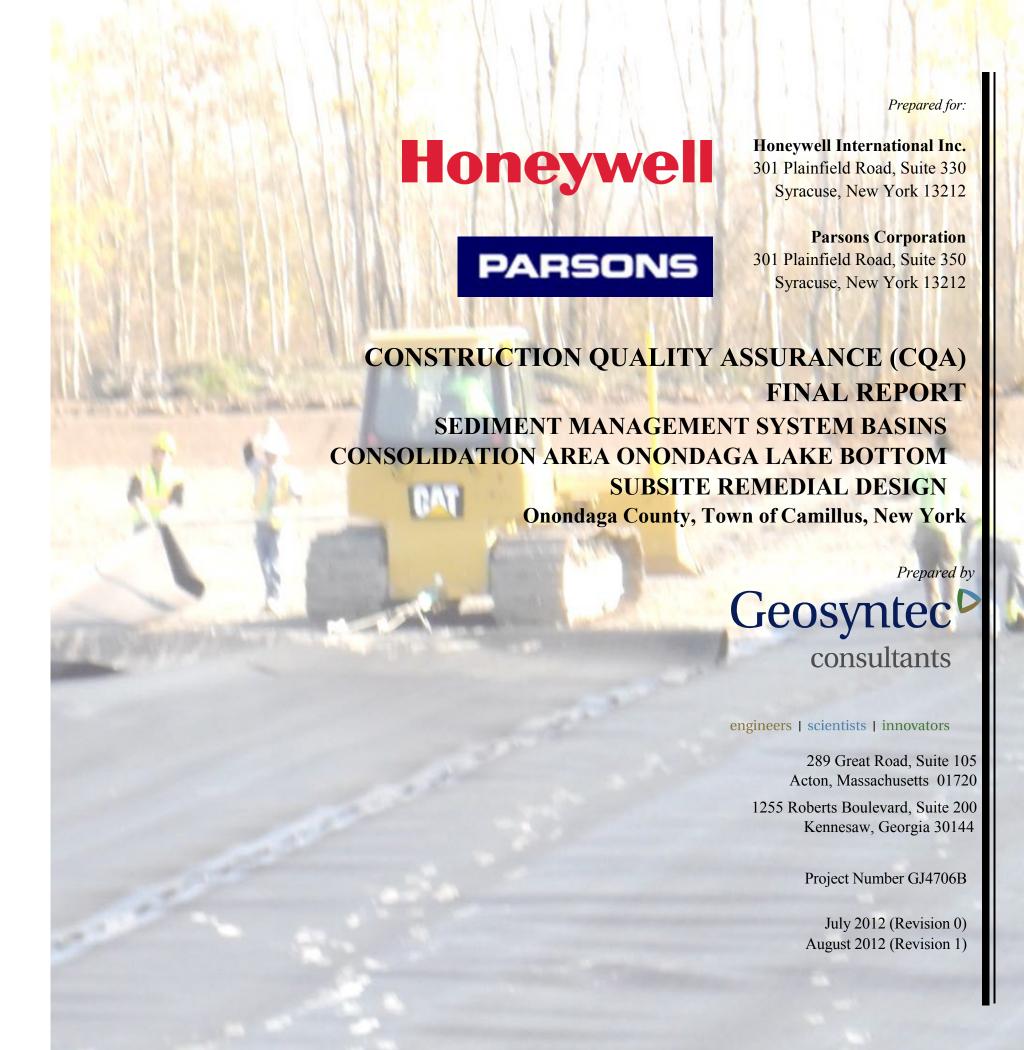
Honeywell

301 Plainfield Road Syracuse, New York 13212

FINAL REPORT
CONSTRUCTION
QUALITY
ASSURANCE


SEDIMENT
MANAGEMENT
AREA BASINS
ONONDAGA LAKE
BOTTOM
SUBSITE
REMEDIAL DESIGN
CAMILLUS, NEW
YORK

engineers | scientists | innovators

July 2012 (Revision 0)

August 2012 (Revision 1)

Prepared for

Honeywell International Inc.

301 Plainfield Road, Suite 330 Syracuse, New York 13212

Parsons

301 Plainfield Road, Suite 350 Syracuse, New York 13212

ONONDAGA LAKE SEDIMENT MANAGEMENT SYSTEM BASIN CONSTRUCTION CONSTRUCTION QUALITY ASSURANCE (CQA) FINAL REPORT ONONDAGA COUNTY, TOWN OF CAMILLUS, NEW YORK

Prepared by

engineers | scientists | innovators

289 Great Road, Suite 105 Acton, Massachusetts 01720

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GJ4706B

July 2012 (Revision 0) August 2012 (Revision 1)

EXECUTIVE SUMMARY

Honeywell International Inc. (Honeywell) entered into a Consent Decree (United States District Court, Northern District of New York, 2007) (89-CV-815) with the New York State Department of Environmental Conservation (NYSDEC) to implement the selected remedy for Onondaga Lake as outlined in the Record of Decision (ROD) issued on 1 July 2005. Under the agreement, Honeywell is required to construct a sediment consolidation area (SCA) over Wastebed 13, located in the Town of Camillus, New York. The SCA is being constructed to accept sediments dredged from nearby Onondaga Lake.

The SCA is being developed in several phases of construction, dependent of the area needed; they are numbered one through three. This Construction Quality Assurance (CQA) Final Report presents a summary of the Sediment Management System (SMS) basin construction activities for the Onondaga Lake SCA. The activities discussed in this report include: (i) a portion of earthwork (i.e., gravel placement) (ii) installation of geosynthetics (i.e., geotextile, geonet composite, and geomembrane liners); and (iii) installation of pipe. As appendices to the report, quality assurance/quality control (QA/QC) documentation is provided.

This report provides certification by an engineer, registered in the State of New York, that the area was constructed in accordance with the approved plans and specifications, and modifications approved by the Designer and NYSDEC. The test requirements for each of the major components of the lining system are summarized on the tables that follow.

TABLE 1
Geosynthetic Laboratory Testing Summary
Honeywell / Parsons
Sediment Management System
Camillus, NY

									MQC	QA	MQC	QA
DESCRIPTION		TEST	PROJECT	UNITS	MQC TEST	MQC UNIT	QA TEST	QA UNIT	No. of TESTS	No. of TESTS	No. of TESTS	No. of TESTS
DESCRIPTION		STANDARD	SPECIFICATIONS	UNIIS	FREQUENCY	MQC UNIT	FREQUENCY	QA UNII	REQUIRED (1)	REQUIRED (1)	PERFORMED	PERFORMED
											(failures)	(failures)
A. Geomembrane (referen	nce Part 4/Table	e A-4 of CQA Plan	& Section 02070 of S	Specific	ations)							
Estimated area of	of less than:	· · ·	sft to cover:	1 1	acres based on		rolls (each 23	ı i	1	_		_
a. Thickness		ASTM D5994	MARY 10	mil	50,000	SF	250,000	SF	33	7	138	7
b. Asperity Height		ASTM DCC03	MARV 10	mil	50,000	SF	NR	- CE	33	7	138 40	- 7
c. Tensile Properties Strength at Break		ASTM D6693 -Type IV	≥ 90	lb/in	50,000	SF	250,000	SF	33	/	40	/
Elongation at Break		-1 ypc 1 v	100	%								
Strength at Yield			≥ 126	lb/in								
Elongation at Yield			100	%								
d. Density/Specific Gravity (Reference RFI No. 19)	AS	STM D792A / D1505	≥ 0.940 (sheet) 0.93 (resin)	g/cm ³	50,000	SF	250,000	SF	33	7	40	7
e. Melt Flow		ASTM D1238E	≤ 1.0	g/10 min	certify	-	-	-		_	40	7
_c Carbon Black Content	Α	ASTM D1603/4218	2 to 3	%	50,000	SF	250,000	SF	33	7	40	7
(Reference RFI No. 13)			2 10 3	70	30,000	SF	230,000	SF	33	/	40	/
g. Carbon Black Dispersion	n	ASTM D5596	9 out of 10-Cat 1, 2	Cat.	50,000	SF	250,000	SF	33	7	40	7
h. Tear Resistance		ASTM D1004C	≥ 42	lb	50,000	SF	250,000	SF	33	7	40	7
i. Puncture Resistance		ASTM D4833	≥ 90	lb	NA	SF	250,000	SF	-	7	5	7
j. Oxidative Induction Time	ne	ASTM D3895	MARV 100	min	batch	-	NR	-	4	-	40	-
k. Stress Crack Resistance		ASTM D5397	≥ 300 (on smooth edges) fusion peel - 91	hrs	batch	-	NR	-	4	-	Certified 1500 hrs	-
l. Seam Destructive Tests ((2)	ASTM D6392	extrusion peel - 78 fus./ext. shear - 120	ppi	NA	-	500	LF	-	59	-	67 (2)
		-	weld 40 - 104 degrees wind 0 to 20 mph	F	-	-	-	-	-	-	-	-
m. Field Conditions	1											
n. Non-Destructive Tests B. Geonet Composite (refe		_	-			_		-	-	-	-	-
n. Non-Destructive Tests B. Geonet Composite (reference) Estimated area of		_	25-30 (<u>+</u> 3) psi-Air	5min A-6 & 5		y 168') less on		-	-	-	-	-
n. Non-Destructive Tests B. Geonet Composite (reference to the Estimated area of Geonet Component a. Thickness	of less than:	319,710 ASTM D5199	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200	5min A-6 & 5	Section 02735 or rolls (typical 14' by 90,000	y 168') less on SF	e rejected roll 250,000	SF	4	2	15	4
n. Non-Destructive Tests B. Geonet Composite (reference and the component and the component and the component below the component below the component and the component below the composite of t	of less than:	319,710 ASTM D5199 ASTM D1505	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935	5min A-6 & 5 137 mil g/cm ³	Section 02735 of rolls (typical 14' by 90,000 90,000	y 168') less on SF SF	e rejected roll	SF SF	4 4	2 2	15	4 4
n. Non-Destructive Tests B. Geonet Composite (reference to the Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content	of less than:	319,710 ASTM D5199	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3	A-6 & 5 137 mil g/cm ³ %	Section 02735 or rolls (typical 14' by 90,000	y 168') less on SF	e rejected roll 250,000					
n. Non-Destructive Tests B. Geonet Composite (reference to the Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer	of less than:	319,710 ASTM D5199 ASTM D1505	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935	5min A-6 & 5 137 mil g/cm ³	Section 02735 of rolls (typical 14' by 90,000 90,000	y 168') less on SF SF	e rejected roll 250,000				15	
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE	A-6 & S 137 mil g/cm³ %	Section 02735 or rolls (typical 14' by 90,000 90,000 90,000	y 168') less on SF SF SF SF	250,000 250,000 - -	SF		2 -	15 15	4 -
n. Non-Destructive Tests B. Geonet Composite (reference to the Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261	25-30 (\pm 3) psi-Air Illection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8	5min A-6 & 5 137 mil g/cm³ % - oz/yd²	Section 02735 of rolls (typical 14' by 90,000 90,000 90,000 90,000	y 168') less on SF SF SF SF	e rejected roll 250,000				15 15	
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9	A-6 & S 137 mil g/cm³ %	Section 02735 or rolls (typical 14' by 90,000 90,000 90,000 90,000 90,000	y 168') less on SF SF SF SF SF	250,000 250,000 - - 250,000	SF SF		2 -	15 15 15 5	2
n. Non-Destructive Tests B. Geonet Composite (reference to the Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261	25-30 (\pm 3) psi-Air Illection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1	Section 02735 of rolls (typical 14' by 90,000 90,000 90,000 90,000	y 168') less on SF SF SF SF	250,000 250,000 - -	SF		2 2	15 15	4 -
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632	25-30 (\pm 3) psi-Air Ilection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9 ≥ 75 ≥ 180	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb	Section 02735 of rolls (typical 14' by 90,000 90,000 90,000 90,000 90,000 90,000	y 168') less on SF SF SF SF SF SF SF	250,000 250,000 - - 250,000	SF SF	4 4 4 4 4 4	2 2	15 15 15 5 5	2
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533	25-30 (\pm 3) psi-Air Illection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb	Section 02735 of rolls (typical 14' by 90,000 90,000 90,000 90,000 90,000 90,000	y 168') less on SF SF SF SF SF SF	250,000 250,000 - - 250,000	SF SF		2 2	15 15 15 5 5	2
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632	25-30 (\pm 3) psi-Air Ilection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9 ≥ 75 ≥ 180	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	SF	250,000 250,000 - - 250,000 - 250,000 - 250,000	SF SF SF	4 4 4 4 4 4	2 2	15 15 15 5 5 5	2 - 2 - 2
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4833	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	y 168') less on SF SF SF SF SF SF SF SF SF	250,000 250,000 - - 250,000 - 250,000 -	SF SF	4 4 4 4 4 4	2 - - 2 - 2	15 15 15 5 5 5	2 - 2 -
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4833 ASTM D4833 ASTM D4751	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 $O_{95} \leq 0.21$	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb mm	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	SF	250,000 250,000 - - 250,000 - 250,000 - 250,000	SF SF SF	4 4 4 4 4 4 4	2 - - 2 - - 2	15 15 5 5 5 5	2 - 2 - 2
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component) a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength l. (Reference RFI No. 20)	of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4833 ASTM D4751 ASTM D 4716 STM F 904 mod./7005	25-30 (±3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 $O_{95} \le 0.21$ ≥ 2E-3 ≥ 0.5	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb lb mm m²/s lb/in	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	SF	250,000 250,000 - - 250,000 - 250,000 - 250,000	SF SF SF	4 4 4 4 4 4 4	2 - - 2 - - 2	15 15 5 5 5 5	2 - 2 - 2
n. Non-Destructive Tests B. Geonet Composite (reference Restimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength l. (Reference RFI No. 20) C. Nonwoven Geotextile Component	AS'	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218	25-30 (±3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 O ₉₅ ≤ 0.21 ≥ 2E-3 ≥ 0.5	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb mm m²/s lb/in	Section 02735 of rolls (typical 14' by 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	SF	250,000 250,000 - - 250,000 - 250,000 - 250,000 - - 250,000	SF SF SF	4 4 4 4 4 4 4	2 - - 2 - - 2	15 15 5 5 5 5	2 - 2 - 2
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component) a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength l. (Reference RFI No. 20) C. Nonwoven Geotextile Contents Estimated area of	AS'	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4833 ASTM D4751 ASTM D 4716 STM F 904 mod./7005	25-30 (±3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 O ₉₅ ≤ 0.21 ≥ 2E-3 ≥ 0.5	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb lb mm m²/s lb/in	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	SF S	250,000 250,000 - - 250,000 - 250,000 - 250,000 - 250,000	SF SF SF	4 4 4 4 4 4 4 4	2 - - 2 - - 2	15 15 15 5 5 5 5 5	2 - 2 - 2
n. Non-Destructive Tests B. Geonet Composite (reference Restimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength l. (Reference RFI No. 20) C. Nonwoven Geotextile Component Estimated area of a. Mass Per Unit Area	AS'	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4632 ASTM D4751 ASTM D 4716 STM F 904 mod./7005 Ence Part 4/Table A 1,201,500 ASTM D5261	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 $O_{95} \leq 0.21$ $\geq 2E-3$ ≥ 0.5 -5 of CQA Plan & So sft, a total of ≥ 24	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb mm m²/s lb/in	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 2074 of Specification of the stypically 90,000	SF S	250,000 250,000 - - 250,000 - 250,000 - 250,000 - 250,000	SF SF SF	4 4 4 4 4 4 4 4	2 - - 2 - 2 - 2 2 -	15 15 15 5 5 5 5 15	4 - 2 - 2 - 2 4 (1) -
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component) a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength (Reference RFI No. 20) C. Nonwoven Geotextile Component Estimated area of a. Mass Per Unit Area b. Grab Strength	AS'	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4833 ASTM D4751 ASTM D 4716 STM F 904 mod./7005 Ence Part 4/Table A 1,201,500 ASTM D5261 ASTM D4632	25-30 (±3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 O ₉₅ ≤ 0.21 ≥ 2E-3 ≥ 0.5 -5 of CQA Plan & Se sft, a total of ≥ 24 ≥ 230	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb mm m²/s lb/in ection 02 267 oz/yd² lb	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 2074 of Specifically 90,000 90,000	SF S	250,000 250,000 - 250,000 - 250,000 - 250,000 - 250,000 - 250,000	SF SF SF SF SF	4 4 4 4 4 4 4 4 4 4 4	2 - - 2 - 2 - 2 2 - - 5 5	15 15 15 5 5 5 5 5 15	4 - 2 - 2 - 2 4 (1) - 5 5 5
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength l. (Reference RFI No. 20) C. Nonwoven Geotextile Component Estimated area of a. Mass Per Unit Area	AS'	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4632 ASTM D4751 ASTM D 4716 STM F 904 mod./7005 Ence Part 4/Table A 1,201,500 ASTM D5261	25-30 (\pm 3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 $2 \text{ to } 3$ $95\% \text{ PE}$ ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 $O_{95} \leq 0.21$ $\geq 2E-3$ ≥ 0.5 -5 of CQA Plan & So sft, a total of ≥ 24	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb mm m²/s lb/in	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 2074 of Specification of the stypically 90,000	SF S	250,000 250,000 - - 250,000 - 250,000 - 250,000 - 250,000	SF SF SF	4 4 4 4 4 4 4 4	2 - - 2 - 2 - 2 2 -	15 15 15 5 5 5 5 15	4 - 2 - 2 - 2 4(1) -
n. Non-Destructive Tests B. Geonet Composite (reference Restimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile i. Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength l. (Reference RFI No. 20) C. Nonwoven Geotextile Component Estimated area of a. Mass Per Unit Area b. Grab Strength Puncture Resistance	AS' Cushion (reference of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4833 ASTM D4751 ASTM D 4716 STM F 904 mod./7005 Ence Part 4/Table A 1,201,500 ASTM D5261 ASTM D4632	25-30 (±3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 O ₉₅ ≤ 0.21 ≥ 2E-3 ≥ 0.5 -5 of CQA Plan & Se sft, a total of ≥ 24 ≥ 230	5min A-6 & 5 137 mil g/cm³ % - oz/yd² sec-1 lb lb mm m²/s lb/in ection 02 267 oz/yd² lb	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 2074 of Specifically 90,000 90,000	SF S	250,000 250,000 - 250,000 - 250,000 - 250,000 - 250,000 - 250,000	SF SF SF SF SF	4 4 4 4 4 4 4 4 4 4 14	2 - - 2 - 2 - 2 2 - - 5 5	15 15 15 5 5 5 5 5 15	4 - 2 - 2 - 2 4 (1) - 5 5 5
n. Non-Destructive Tests B. Geonet Composite (reference Estimated area of Geonet Component a. Thickness b. Density/Specific Gravity c. Carbon Black Content d. Polymer Geotextile Component e. Mass Per Unit Area f. Permittivity g. Tear Strength h. Grab Tensile Puncture Resistance i. (Reference RFI No. 20) j. Apparent Opening Size Finished Product k. Transmissivity Peel Strength (Reference RFI No. 20) C. Nonwoven Geotextile Component Estimated area of a. Mass Per Unit Area b. Grab Strength Puncture Resistance c. (Reference RFI No. 18)	AS' Cushion (reference of less than:	319,710 ASTM D5199 ASTM D1505 ASTM D1603/4218 - ASTM D5261 ASTM D4491 ASTM D4533 ASTM D4632 ASTM D4751 ASTM D 4716 STM F 904 mod./7005 Ence Part 4/Table A 1,201,500 ASTM D5261 ASTM D4632 ASTM D4632 ASTM D4632 ASTM D4632 ASTM D4633	25-30 (±3) psi-Air llection Layer/Table sft; assuming a total of ≥ 200 ≥ 0.935 2 to 3 95% PE ≥ 8 ≥ 0.9 ≥ 75 ≥ 180 ≥ 130 O ₉₅ ≤ 0.21 ≥ 2E-3 ≥ 0.5 -5 of CQA Plan & Second	Smin Smin	90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000 90,000	SF S	250,000 250,000 - 250,000 - 250,000 - 250,000 - 250,000 - 250,000 250,000 250,000	SF SF SF SF SF	4 4 4 4 4 4 4 4 4 4 4 14	2 - - 2 - 2 - 2 2 - 5 5 5	15 15 15 5 5 5 5 5 15	4 - 2 - 2 - 2 4 (1) - 5 5 5 5 5 5

Notes:

(1) Based upon the testing frequency presented in the Project Documents. Material quantities provided by . Actual quantities may vary.

Area of both basins is assumed to be: 5.31 acres or 231,413 sft

MARV- Min. Average Value; NA-Not Applicable; NP-Not Provided; NR-Not Required

GJ4706 SMS ExecutiveSummaryTables.xlsx

TABLE OF CONTENTS

EXE	ECUTIV	/E SUM	IMARY	i			
1.	INIT	DODIIO	CTION	1			
1.	1.1	INTRODUCTION					
	1.1		t Organization				
	1.2	Report	t Organization	1			
2.	PRO	DJECT I	DESCRIPTION	3			
3.	COI	CONSTRUCTION QUALITY ASSURANCE PROGRAM					
	3.1	Scope	of Services	6			
		3.1.1	Overview	6			
		3.1.2	Review of Documents	6			
		3.1.3	Field CQA Operations	7			
		3.1.4	Final Report and Record Drawings	8			
	3.2	Person	nnel	9			
		3.2.1	Project Personnel	9			
4.	COI	NSTRU(CTION QUALITY ASSURANCE - EARTHWORK	11			
	4.1						
	4.2	Field Monitoring and Testing					
	4.3	Soil A	nchorage of Geosynthetics	13			
5.	COI	CONSTRUCTION QUALITY ASSURANCE - GEOSYNTHETICS					
	5.1		al				
	5.2	CQA o	of Geomembrane	15			
		5.2.1	Conformance Testing and Documentation	15			
		5.2.2	Field Monitoring Activities	15			
		5.2.3	Nondestructive Testing	18			
		5.2.4	Destructive Seam Sample Testing	20			
		5.2.5	Geomembrane Repairs	21			
	5.3	CQA	of Geonet Composite	22			

TABLE OF CONTENTS (Continued)

		5.3.1	Conformance Testing and Documentation	22
		5.3.2	Field Monitoring Activities	22
	5.4	CQA	of Geotextile	24
		5.4.1	Conformance Testing and Documentation	24
		5.4.2	Field Monitoring Activities	24
6.1	PIPI	E INSTA	ALLATION	26
	6.1	Overv	riew	26
	Sump	Construction	26	
7.	SUN	MMARY	Y AND CONCLUSIONS	27

TABLE OF CONTENTS (Continued)

APPENDIX A: PHOTOGRAPHIC DOCUMENTATION

APPENDIX B: FIELD REPORTS AND CORRESPONDENCE

• Request for Information

Field Change Forms

Weekly Field Reports

APPENDIX C: MANUFACTURER'S QUALITY CONTROL DOCUMENTATION

• Geomembrane

• Geotextile

Geonet Composite

APPENDIX D: GEOSYNTHETIC CONFORMANCE TEST RESULTS

Geomembrane

Geotextile

Geonet Composite

APPENDIX E: INSTALLER'S CERTIFICATE OF ACCEPTANCE OF SUBGRADE

SURFACE

East/West Basins

Secondary

APPENDIX F: GEOMEMBRANE PANEL PLACEMENT MONITORING LOGS

East/West Basins

Primary

Secondary

APPENDIX G: GEOMEMBRANE TRIAL SEAM LOGS

• Calibration of Field Tensiometer

Fusion

Extrusion

TABLE OF CONTENTS (Continued)

APPENDIX H: GEOMEMBRANE PRODUCTION SEAM AND NON-

DESTRUCTIVE TEST LOGS

East/West Basins

• Primary

Secondary

APPENDIX I: GEOMEMBRANE DESTRUCTIVE SEAM TEST LOGS AND

LABORATORY TEST RESULTS

East/West Basins

• Primary

Secondary

APPENDIX J: GEOMEMBRANE REPAIR SUMMARY LOGS

East/West Basins

Primary

Secondary

APPENDIX K: RECORD DRAWINGS

• Contractor's Record Drawing

• Geomembrane Panel Layout and Seam Repair/Destructive Sample Location Drawings

1. INTRODUCTION

1.1 Overview

This final report summarizes the Construction Quality Assurance (CQA) activities performed by Geosyntec Consultants (Geosyntec) of Acton, Massachusetts and Kennesaw, Georgia during construction of the Sediment Management System (SMS) basins at the Honeywell International Inc. (Honeywell) Onondaga Lake Sediment Consolidation Area (SCA) in Camillus, Onondaga County, New York. Honeywell entered into a Consent Decree (CD) (United States District Court, Northern District of New York, 2007) (89-CV-815) with the New York State Department of Environmental Conservation (NYSDEC) to implement the selected remedy for Onondaga Lake as outlined in the Record of Decision (ROD) issued on 1 July 2005. The following documents are appended to the CD: ROD, Explanation of Significant Differences (ESD), Statement of Work (SOW), and Environmental Easement and can be referenced for additional information.

The CQA activities performed by Geosyntec included monitoring of: (i) a portion of earthwork (i.e., surface preparation and gravel placement); (ii) installation of geosynthetics (i.e., geotextile, geonet composite, and geomembrane liners); and (iii) installation of pipe. The CQA activities were performed to confirm construction materials and procedures that were monitored were in compliance with the Subpart 360 Regulations, as required by NYSDEC Solid Waste Management.

This report was prepared for Mr. Larry Somer of Honeywell by Mr. Marcus Fountain, Mr. Erik Miller, Ms. Nicole Caruso, Mr. Douglas Hamilton, and Mr. David Williams, and was reviewed by Mr. David Bonnett, P.E., all of Geosyntec.

1.2 Report Organization

This final report is organized as described below:

- A description of the project is provided in Section 2.
- A summary description of the CQA program is presented in Section 3.
- A description of the CQA monitoring and testing activities performed during the earthwork portion of the project is provided in Section 4.

- A description of the CQA monitoring and testing activities performed during the geosynthetics installation is provided in Section 5.
- A description of the CQA monitoring performed during pipe installation is provided in Section 6.
- A summary of the observations resulting from the CQA monitoring and testing activities performed by Geosyntec and a certification statement signed and sealed by a professional engineer registered in the State of New York are presented in Section 7.

Documentation and record drawings presenting the results of the CQA monitoring and testing activities performed by Geosyntec are contained in the appendices to this report. Construction quality control (QC) information provided by Parsons is also presented for completeness.

2. PROJECT DESCRIPTION

The Onondaga Lake is a 4.6 square mile (approximately 3,000 acre) lake located in central New York State, immediately northwest of the City of Syracuse. Honeywell is currently working on a sediment removal and lake remediation project to restore the lake. Parsons of Syracuse, New York and Geosyntec are members of the team assisting Honeywell in this effort. The remediation of the Onondaga Lake bottom is on the New York State Registry of Inactive Hazardous Waste Sites and is part of the Onondaga Lake National Priorities List site. As specified in the ROD [NYSDEC and USEPA, 2005], the major components of the remedy include construction of a hydraulic control system (consisting of a hydraulic barrier wall and a groundwater collection system); hydraulic dredging of contaminated sediments on the lakeside of the barrier wall; pumping of the dredge material to a sediment containment area (i.e., SCA); placing of the sediments within geotextile tubes for the purpose of dewatering in the SCA; and the collection and treatment of the decanted water through an on-site treatment facility.

The SCA is located on Wastebed 13, which encompasses approximately 163 acres. It is bordered to the north by Ninemile Creek and the CSX Railroad tracks; to the west by an Onondaga County Garage property and a former gravel excavation owned by Honeywell; and to the east and south by Wastebeds 12 and 14, respectively. The SCA has been designed to provide long-term containment of the dredged sediment. The SCA has been designed to hold up to the ROD specified volume of 2,653,000 cubic yards (cyd) of dredged sediment. To manage the water from the SCA, two basins exist east and west of Phase I. These basins are considered part of the sediment management system (SMS) for the SCA. Four 24-in diameter conveyance pipes connect each of the basins to the SCA.

The east basin, approximately 4 acres, is rectangular in shape with a sump located in the southwest corner of the basin. The west basin is a triangular shape and covers approximately 2.4 acres. The sump is located in the southeast corner.

The SMS basins incorporate a double liner system that meets the requirements established in the New York State approved "Onondaga Lake Sediment Management Design", dated September 2011. The double liner system consists of the following components (from top to bottom):

- 60-mil thick textured high density polyethylene (HDPE) geomembrane primary liner;
- geonet composite drainage layer;
- 60-mil thick textured HDPE geomembrane secondary liner; and
- existing subgrade of Solvay waste with varying thickness of engineered fill along the perimeter.

Within the sump areas, 24-in diameter secondary risers were installed and surrounded by gravel drainage material, having a minimum permeability of 10 cm/sec. A 24 oz/syd non-woven needle-punched geotextile was installed above and below the gravel. Parson modified the location of the risers, moving the secondary to the original primary riser location. Additionally, the primary riser and designed laterals in the primary sump areas were not installed; see Request For Information (RFI) No. 26 for details.

The original design and construction drawings were prepared by Geosyntec and Parsons. Parsons performed construction of the majority of the perimeter earthwork prior to Geosyntec's involvement with the SMS basins. The geosynthetics installer for the project was Chenango Contracting (Chenango or installer), of Johnson City, New York. The surveyor retained by Parsons for the project was Thew Associates (Thew) of Canton, New York. Thew performed initial site control setup and occasionally verified elevations. Parsons surveyed the existing conditions and prepared certified record drawings. Parsons used global positioning system (GPS) based survey equipment to accomplish this task. Geosyntec provided the construction quality assurance (CQA) monitoring, testing, and documentation. A list of personnel involved in construction of the SMS basins is included in Section 3.2 of this report.

A list of the key construction activities and associated dates are provided below:

- Geosyntec arrived on site to observe initial earthwork construction associated with Phase I on 3 May 2011 and started monitoring of the SMS basins on 17 October 2011.
- The SMS geomembrane installation commenced on the following dates:

- Secondary liner on 31 October 2011 and 8 November 2011 for the east and west basins, respectively; and
- Primary liner on 28 March 2012 and 5 April 2012 for the east and west basins, respectively.
- Construction of the basins was substantially complete on 14 June 2012 with the backfilling of the anchor trenches.

Work to complete Phase I and Phase II was re-started in 2012 along with completing the SMS basin installation. The majority of this Final Report pertains to the geosynthetics construction that started in 2011 and was finished in 2012. Due to the nature of the construction, activities overlapped between projects. Some information that is presented in the appendices also relates to Phase II (e.g., geosynthetic material inventory). The appendices to this report provide information collected in 2011 along with specific information regarding work performed in 2012 to complete construction of the SMS basins. For instance, in Appendix B, only the 2012 weekly reports are presented; the 2011 weekly reports were included in the Phase I report, dated 24 May 2012, while the remainder of 2012 weekly reports will be presented in the Phase II construction report.

3. CONSTRUCTION QUALITY ASSURANCE PROGRAM

3.1 Scope of Services

3.1.1 Overview

The scope of CQA monitoring, testing, and documentation services performed by Geosyntec during SMS construction included review of documents, field CQA operations, and preparation of this Final Report and record drawings. These are described in the following subsections.

3.1.2 Review of Documents

As previously noted, this final report summarizes the CQA activities performed by Geosyntec during SMS construction. The CQA activities conducted by Geosyntec were intended to satisfy the requirements of the following documents:

- Permit Drawings entitled "Sediment Consolidation Area Design, Camillus, New York", dated September 2011, prepared by Parsons and Geosyntec;
- "Construction Quality Assurance Plan, Onondaga Lake Sediment Consolidation Area (SCA) Final Design" including a Geocomposite Leakage Collection Layer insert, prepared by Geosyntec, dated April 2011; and
- Specifications entitled "Onondaga Lake Sediment Consolidation Area (SCA) Final Design Submittal", prepared by Parsons and Geosyntec, dated April 2011.

Geosyntec reviewed the above documents for familiarity prior to the commencement of on-site CQA activities. During construction, clarifications of the project specifications and drawings were typically requested in the form of Request for Information (RFI). Changes to the design documents were handled through Construction Field Change Forms (FCF). The RFIs and FCFs were issued by the contractor with responses by the Designer. The FCF were also signed by the Owner and the NYSDEC. The design changes were typically reviewed routinely during weekly progress meetings. Copies of the RFIs and FCFs are provided in Appendix B.

A major change to the CQC and CQA testing program included the following:

• FCF No. 5: "in lieu of using the number of CQC samples, CQA sample frequency will be tied to the delivered volumes such that the test frequency shall become: volume of soil delivered to the site divided by CQC test frequency and divided by ten".

Reference to the various RFIs and FCFs are provided throughout the report in the various related sections as well as in the material table found in the executive summary.

All of the above documents will be collectively referred to as the CQA Plan in this final report.

3.1.3 Field CQA Operations

The following activities were performed as part of Geosyntec's on-site CQA services:

- attending daily health and safety meetings;
- attending weekly progress meetings;
- maintaining photographic documentation of the construction;
- summarizing construction and CQA activities in weekly field reports;
- documenting construction progress and CQA activities in daily field reports;
- collecting samples of soils and geosynthetics; and
- coordinating geomembrane as-built surveys.

Earthwork:

- visually monitoring site preparation;
- collecting samples of soils considered for use as gravel drainage layer for testing at an off-site geotechnical laboratory;

- reviewing and evaluating geotechnical laboratory test results for compliance with the requirements of the CQA Plan;
- visual monitoring of placement and grading of the gravel drainage material in the secondary sump areas; and
- selectively monitoring pipe installation.

Geosynthetics:

- monitoring and tracking the inventory of geosynthetic materials delivered to the site;
- collecting geosynthetic conformance samples in-plant or from delivered rolls and forwarding samples to an off-site geosynthetics testing laboratory;
- collecting and reviewing geosynthetic manufacturers' certification documents (through contractor's submittals) and geosynthetic laboratory conformance test results for compliance with the requirements of the CQA Plan;
- monitoring installation of geosynthetic materials, including trial seaming, destructive and nondestructive sampling, and repair operations; and
- selective monitoring of the anchorage of the geosynthetics in the perimeter anchor trenches.

During construction activities involving monitoring and/or testing, the observations made and results obtained by Geosyntec CQA personnel were compared to the CQA Plan. The construction manager, and/or the appropriate contractor were notified of deficiencies in construction practices and/or materials so the contractor or installer could implement the appropriate corrective actions. The corrective actions were monitored and/or tested by CQA personnel for compliance with the CQA Plan.

3.1.4 Final Report and Record Drawings

Record drawings and this Final CQA Report were prepared as the final task of the CQA program. During construction, CQA documentation of on-site activities was maintained by CQA personnel in Daily Field Reports (DFRs) and summarized in weekly reports.

In addition, quality control (QC) certificates for the geosynthetic materials and as-built drawings were provided to Geosyntec for review. The weekly reports are included in the appendices to this report. CQA personnel also documented the results of on-site and off-site geotechnical testing conducted as part of the CQA program. Descriptions of the construction activities and the CQA documentation are presented in this Final CQA Report which contains the report text, summary tables, and Appendices A through K.

3.2 Personnel

3.2.1 Project Personnel

Senior personnel or representatives for the firms involved in the project are as follows:

Honeywell International Inc. (Owner)

• Larry Somer

New York State Department of Environmental Conservation (Regulatory Agency)

Tom Annal • Donald Hesler

Jim Christopher • Timothy Larson

Bob Edwards
 William Zeppetelli

Parsons and Geosyntec (Designer)

Paul Blue
 John Beech

Laura Brussel
 Ramachandran Kulasingam

Xiaodong Huang
 Joseph Sura

David Steele
 Ming Zu

Geosyntec (CQA Consultant)

Brett Banquer
 Marcus Fountain

David Bonnett
 Douglas Hamilton

• John (Billy) Carruth • Erik Miller

Nicole Caruso
 David Williams

Parsons (Earthwork Contractor)

- Michael Dobson
- Adam Dorn
- Josh Hawley
- Dhana Hillenbrand
- Xiaodong Huang
- Bill Moon

- Ron Prohaska
- Ken Sommerfield
- David Steele
- Al Steinhoff
- Sean Sullivan
- Scott Swift

Thew Associates (Surveyor)

• Michael Merithew

GeoTesting Express (Off-site Geotechnical Laboratory)

Mark Dobday

• Joe Tomei

SGI Testing Services, Inc. (Off-site Geotechnical Laboratory)

• Zehong Yuan

Chenango Contracting (Installer, Senior Personnel Only)

- Carl Burdick
- Martin Bystrak
- Matt Bilodeau
- Charlie Parks
- Khamson Phouthavong
- Vong Soumphonphakyd

4. CONSTRUCTION QUALITY ASSURANCE - EARTHWORK

4.1 Overview

As described in Section 3.1 of this report, several administrative activities were routinely performed by CQA personnel throughout the duration of construction. Many of these administrative activities were related to documenting overall construction status and progress. Other activities presented under general CQA services included monitoring of the related components and facilities for the construction project. Photographs of the construction were obtained on a regular basis and select photographs are presented in Appendix A. CQA personnel summarized the daily construction and CQA activities in weekly field reports. Weekly field reports are presented in Appendix B. It is noted that no CQA testing of the soil is provided in this report. Results pertaining to the gravel material can be found in the Phase I report and the future Phase II report.

The contractor was responsible to perform general civil site work for the project. The work included site preparation (dewatering, pre-loading future sump areas, excavating, relocating Solvay waste onsite, preparing subgrade, including clearing and grubbing); provision of imported fills; and survey control associated with earthworks and as-built drawings. Details regarding subgrade preparation are documented in RFI No. 8.

The perimeter berms were constructed using engineered fill material, placed and compacted initially in an approximately 14-in thick (loose) bridge lift (that was not required to be tested) and subsequent 7 to 10-in thick (loose) lifts. It is noted that perimeter berms were constructed prior to Geosyntec's involvement with the project. It is our understanding that a third party laboratory tested the material under the direction of the contractor (field test results, referred to as quality control (QC) tests, were included in Appendix E of the SCA Phase I report).

Gravel was used only within the sump areas. After installation of the secondary sideslope riser, gravel was placed around the base of the pipe. Additional detail of the pipe installation is presented in Section 6. It is noted in 2010, gravel was used to preload the basin sumps and that similar material was used in construction of the SCA, referred to as gravel drainage layer. The majority of the gravel material was received from Riccelli Syracuse Sand & Gravel, 489 County Rt 85, Granby, New York, referred to as the Granby source.

4.2 <u>Field Monitoring and Testing</u>

CQA personnel observed these earthwork construction activities and tested the soil materials to confirm that the material properties conformed to the CQA Plan. Geotechnical testing was performed during construction. The CQA laboratory testing was performed by GeoTesting Express (GTX) in Acton, Massachusetts. The contractor was responsible for obtaining and testing QC samples. The geotechnical QC samples were tested by Atlantic Testing Laboratories Inc. (ATL) in Syracuse, New York or P-W Laboratories, Inc. (PW) in East Syracuse, New York. The contractor also obtained samples for analytical testing at each source on a minimum frequency of one representative composite sample per 2,500 cyd. This was done internally by Parsons to ensure samples met the NYSDEC Subpart 375, Table 375-6.8(b). The results were included in Appendix C of the SCA Phase I report.

The geotechnical tests were performed to confirm that the following requirements were met.

• The material used in construction of the gravel drainage layer was classified as GW or GP according to the USCS when evaluated in accordance with ASTM D2487; had a nominal particle size of 4-in diameter, maximum of five percent and three percent passing the No. 4 and No. 200 sieves, respectively when tested in accordance with ASTM C136/D422 (reference RFI No. 17 for maximum diameter acceptance); and the hydraulic conductivity requirement was 10 cm/s or greater when evaluated in general accordance with ASTM D2434. (Note that the test method was modified by the testing laboratories due to the 'oversized' particles contained in the gravel.)

CQA personnel periodically monitored the placement of the gravel drainage material within the sump areas. The screened and washed gravel was placed in the sump area using a Kobelco SK260 long reach excavator. During placement of the gravel drainage layer, CQA personnel periodically monitored the contractor's activities to assure that the risk of damage to the underlying geosynthetics was minimized.

The tracking of gravel volumes was conducted as part of the SCA construction. As such, the laboratory test results for the gravel drainage material are presented in the SCA reports. Specifically the 2011 results are available in Appendix D of the Phase I report. The 2012 results will be provided in the SCA Phase II report.

4.3 Soil Anchorage of Geosynthetics

Geosyntec CQA personnel periodically monitored the method of anchorage for the geosynthetic material around the basin perimeter. Parsons requested a change be implemented to the SMS anchor trenches during construction as a result of the installation occurring over two construction seasons (reference FCF No. 2). The change involved the termination of the geonet composite layer and the backfilling of the anchor trench. Details of the anchoring are discussed below.

As required by the CQA Plan, a permanent anchor trench was constructed around the perimeter of the SMS basins. The construction sequence of the perimeter anchor trench was as follows:

- a 2-ft deep by 2-ft wide (minimum) trench was excavated approximately 1-ft from the crest of slope of perimeter berm;
- the secondary geomembrane was subsequently placed in and across the bottom of the anchor trench and temporarily ballasted with sandbags;
- an approximate 12-in thick lift of low-permeability material was placed and compacted in the anchor trenches located along the side of the basin shared with the SCA;
- the geonet composite was terminated at the crest of the berm;
- the primary geomembrane was subsequently placed in and across the bottom of the anchor trench and ballasted with sandbags; and
- lifts of engineered fill were placed and compacted.

The anchor trench backfill was compacted using various means including the bucket of a CAT 305.5 mini-excavator and a vibratory plate tamp.

5. CONSTRUCTION QUALITY ASSURANCE - GEOSYNTHETICS

5.1 General

The following types of geosynthetic materials were deployed as part of the SMS basins:

- 60-mil thick textured HDPE geomembrane liner was installed over the subgrade (i.e., secondary) as well as above the geonet composite drainage layer (i.e., primary);
- geonet composite drainage was installed over the secondary geomembrane; and
- non-woven geotextile cushion was installed over the geomembrane liner in the base of the sump areas.

Geosyntec CQA personnel monitored installation of geosynthetic components of the SMS basins. Field and laboratory tests were conducted to assure that the material properties were in compliance with construction documents and that prescribed installation procedures were followed. The specific geosynthetic monitoring and testing activities are described in the following subsections.

Periodically during construction, temperatures fell below 40 degrees Fahrenheit (°F) and occasionally were below 32°F. As indicated in Geosynthetic Research Institute (GRI) Test Method GM9 – *Cold Weather Seaming Geomembranes*, the installation and seaming procedures were modified to take into consideration the colder temperatures (e.g., slower welding speeds) and increased moisture (e.g., panel edges were dried). However the installer did not use nor require moveable enclosures. The installer would typically conduct his production welding well after sunrise and well before sunset. Trial welds were used to confirm a welder's ability to seam in the actual field conditions.

After installation, water was observed to have accumulated on top of the geomembrane in low areas. When this occurred, the installer would use various methods to remove water including blowers and suction trucks.

5.2 CQA of Geomembrane

5.2.1 Conformance Testing and Documentation

Initially a textured geomembrane was installed directly over the subgrade in the SMS basins. The initial geomembrane liner, HDT-60, was supplied by GSE Lining Technology, LLC (GSE) of Houston, Texas. Details of the 147 rolls, totaling 1,719,900 ft² in area was presented in the Phase I Construction Completion Report.

For the majority of the SMS basins (including the primary liner installed over the geonet composite drainage layer) and for Phase II construction, AgruAmerica, Micro Spike® of Georgetown, South Carolina was used. A total of 138 rolls were produced for the project, totaling 1,602,870 ft² in area. A total of 132 rolls were delivered, totaling 1,533,180 ft² in area. Geomembrane conformance samples were taken from the 60-mil thick HDPE textured geomembrane rolls used to construct the lining system in the manufacturer's plant. A total of seven (7) conformance samples were obtained. The sample frequency of one sample per 228,981 ft² of produced material or 219,025 ft² of delivered geomembrane exceeds the minimum acceptable sample frequency of one sample per 250,000 ft² required by the CQA Plan.

The conformance test results for the 60-mil liner and the manufacturer's QC certificates were reviewed by CQA personnel and were found to be in compliance with the CQA Plan. The conformance tests indicated the material meets the CQA Plan requirements. The geomembrane manufacturer's QC documentation, including resin and geomembrane certifications, is presented in Appendix C. The conformance test results are presented in Appendix D.

5.2.2 Field Monitoring Activities

5.2.2.1 Delivery and On-Site Storage

Upon delivery to the site, geomembrane rolls were stored in an area located to the southeast of the construction area. The rolls were typically transported by a Caterpillar 330 excavator (initial rolls only), Caterpillar 287 compact track loader, and/or Gehl 258 or Skytrak telehandler. CQA personnel periodically monitored the installer's delivery, unloading, and storage procedures to ensure that the material was handled in an appropriate manner. The CQA personnel also compared the roll numbers of the

geomembrane rolls delivered to the manufacturer's bill of lading and maintained an inventory of delivered materials.

Prior to deployment of the secondary geomembrane, the installer signed certificates of acceptance of the subgrade surface, which are presented in Appendix E. The geomembrane rolls were lifted using a spreader bar attached to a tracked dozer or telehandler. A dozer assisted with deployment of the secondary liner. A cable was tethered to a compact loader to assist with deployment of the primary liner.

To minimize contact with the Solvay waste, the installer deployed roofing felt under edges of panels of the secondary liner.

CQA personnel monitored the deployment of geomembrane panels. During deployment, the CQA personnel checked for the following:

- manufacturing defects;
- damage that may have occurred during shipment, storage, and handling; and
- damage resulting from installation activities, including damage as a consequence of panel placement, seaming operations, or weather.

If materials were observed to be damaged or deficient, the installer was notified and the damaged materials were either discarded or repaired. CQA personnel observed and documented the repair locations to verify compliance with the CQA Plan. Details of the geomembrane panel placement were recorded by CQA personnel on panel placement logs, which are presented in Appendix F.

5.2.2.2 Trial Seams

Prior to production seaming, the installer prepared geomembrane trial seams for each technician using each piece of seaming equipment. Typically, either a Demtech Services Inc., a Concord Geotech Services, LLC, or a Pro-Wedge welder was used. Additional trial seams were prepared every four to five hours, or less during cold weather seaming. CQA personnel evaluated the trial seams as follows:

• trial seam samples in the beginning of the day were typically 15-ft long for fusion and 3 ft long for extrusion and over 12 in. wide;

- trial seams were welded under similar conditions as for seaming;
- test strips were cut from the trial seams at random locations across each trialseam weld using a manual die press; each strip was 1 in. wide and 6 in. long; and
- test strips were tested for seam strength using a calibrated field tensiometer; two of the weld test strips were tested two in peel and two were tested in shear using a calibrated field tensiometer the passing criteria for the tests were as follows:
 - Fusion
 - Peel tests a minimum bonded seam strength of 91 lb/in -(Film Tear Bond) FTB; and
 - Shear test a minimum bonded seam strength of 120 lb/in.
 - Extrusion
 - Peel test a minimum bonded seam strength of 78 lb/in (Film Tear Bond) FTB; and
 - Shear test a minimum bonded seam strength of 120 lb/in.

A total of 184 trial seams were observed by CQA personnel during SMS basin construction; 118 trial seams were made using double-track fusion (i.e., hot wedge) welders and 66 were made using extrusion welders. All of the trial welds meet the criteria above.

Trial seam samples were not archived. Details of the trial seams, including the calibration certificates for the tensiometers and the trial seam test results, are presented in Appendix G.

5.2.2.3 Production Seams

Geomembrane production seaming operations were monitored by CQA personnel. The majority of the geomembrane production seams were fabricated using double-track fusion welders. Seam repairs were made using hand-held extrusion welders. Rub

sheets were periodically used during production seaming to provide a clean surface to weld over. During or after fabrication, the geomembrane seams were visually examined for workmanship and continuity. Geomembrane seaming logs are presented in Appendix H.

5.2.3 Nondestructive Testing

5.2.3.1 Scope

Nondestructive testing of geomembrane was periodically monitored by CQA personnel. A spark test was conducted on pipe boots. Geomembrane seams were nondestructively tested for continuity by the installer using the air pressure procedure for double-track fusion seams and the vacuum-box test procedure for extrusion-welded seams. Failed air-pressure test seams, if applicable, were capped and then retested using vacuum-box test methods after determining the failed seam length. Leaks identified using the vacuum-box method were repaired and retested as described in Section 5.2.5.

5.2.3.2 Air Pressure Testing

Accessible double-track fusion seams were nondestructively tested using the air pressure test. The procedure used by the installer for air pressure testing was as follows:

- visually observe the integrity of the annulus of the section of seam being tested and isolating the section by sealing the ends using heat and pressure;
- insert the needle of a pressure test apparatus into the annulus at one end of the seam;
- inflate the annulus to a gauge pressure of a minimum 25 30 psi with an air pump and maintain the gauge pressure for at least five minutes;
- if the pressure loss exceeded 3-psi, or if the pressure did not stabilize, the faulty area was repaired in accordance with Section 5.3.5 of this report; and
- confirm airflow through the entire annulus by releasing the air from the seam at the opposite end from where the needle was inserted.

Nondestructive test results are presented with the production seam logs in Appendix H.

5.2.3.3 Vacuum-Box Testing

The vacuum-box was used by the installer to nondestructively test extrusion seams and repairs. The procedure used by the installer for vacuum testing was as follows:

- wet a strip of seam with a soapy solution;
- place the vacuum-box assembly over the wetted area, close the bleed valve and open the vacuum valve;
- force the box onto the sheet until 5-psi vacuum is observed;
- examine the seam through the viewing window for a period of 20 seconds (when observed by CQA personnel) to allow for observance for the occurrence of air bubbles;
- remove the assembly and continue the process over the entire seam with a typical 3-in wide overlap; and
- record the location of any leaks.

If nondestructive testing indicated repairs were necessary, repairs were made in accordance with procedures presented in Section 5.2.5 of this report and vacuum testing was repeated. Vacuum test results are presented with the production seam logs and repair summary logs in Appendices H and J, respectively.

5.2.3.4 Spark Testing

Geomembrane boots were welded around pipe penetrations (e.g., four discharge pipes connecting the SCA and the secondary riser pipe). A spark test was used to nondestructively test extrusion seams used to fabricate the pipe boots. The spark test requires a continuous copper wiring to be extrusion welded into the seam. An electric current is applied while a probe is passed next to the seam. Any seam discontinuity is detected by the generation of a spark passing between the wire and the probe. When a spark was observed, repairs were made and the seam re-tested. After being non-

destructively tested, three stainless steel straps with neoprene gaskets were installed and the ends of the pipe penetration were sealed using a silicone sealant.

5.2.4 Destructive Seam Sample Testing

5.2.4.1 Scope

In accordance with the CQA Plan, CQA personnel identified and collected geomembrane seam samples for destructive testing. The samples were tested in the field prior to being forwarded to the independent laboratory, GTX.

During SMS basin construction, 67 geomembrane seam samples were taken initially from approximately 29,098 linear ft of seams constructed. The breakdown between basins and liners was:

- <u>East Basin</u>: total of 39 samples, 19 from the secondary liner and 20 from the primary liner.
- West Basin: total of 28 samples; 14 from the secondary liner as well as the primary liner.

This corresponds to an approximate sample frequency of one per 434 linear ft of seam. This frequency meets the minimum acceptable sample frequency of one per 500 linear ft of production seams, as required by the CQA Plan. Prior to the removal of the full seam sample, four geomembrane test strips were taken by the installer from either end of the destructive sample. Two strips were peel-tested and two strips were tested n shear in the field. If the samples exhibited passing results, the adjacent destructive seam sample was shipped to the laboratory for testing.

For a destructive seam sample to be considered as passing, the seam strength criteria, which are described in Section 5.2.2.2, had to be met.

5.2.4.2 Sampling Procedures

At each destructive seam sample location, a test sample measuring approximately 12 in. across the seam and 42 in. along the seam was obtained. The sample was divided into three pieces and distributed to: (i) the geosynthetics laboratory for testing, (ii) the installer, and (iii) for an on-site archive.

5.2.4.3 Test Results

Off-site laboratory testing of geomembrane seam samples was performed in accordance with the CQA Plan. At the testing laboratory (i.e., GTX), 1-in wide test specimens were removed from the destructive seam sample using a die press. On a calibrated tensiometer, five test specimens were peel-tested for adhesion strength. For fusion seams, peel tests were performed on both the inside and outside tracks. Additionally, five specimens were tested for shear strength. The seam strength acceptance/rejection criteria described in Section 5.2.2.2 (for trial welds) were used to evaluate the destructive seam samples.

For the SMS basins, a total of 67 destruct sample locations were selected. During testing operations, all samples were observed to pass field-testing, while two samples, DS 3-007 obtained from east basin primary and DS 4-010 obtained from west basin secondary, failed laboratory testing. In the case of failed samples, additional test strips were taken from the seam at locations approximately 10 ft from each side of the failing sample location. If the additional test strips had passing results, a full destructive seam sample was taken. If the samples did not pass, test strips were obtained at another location approximately 10 ft further from the failure, repeating until passing samples were obtained and the failing area was localized. Once the bounds of the failing seam were determined, the entire seam length between the passing samples was repaired by the procedures described in the following subsection. The destructive seam test results are presented in Appendix I.

5.2.5 Geomembrane Repairs

The repair procedures presented in this subsection were used by the installer to patch holes and tears, spot-extrude impact damage or other minor scratches. In the cases where patches or caps were used to repair the damaged geomembrane (i.e., small holes, tears, or on seams which failed nondestructive or destructive testing), an approximately 12-in wide capping strip was used.

During the repair or panel tie-in operations, the following procedures were implemented:

• technicians and seaming equipment used were required to pass trial welds;

- patches or caps extended at least 6-in beyond the edge of the defect and all corners were rounded; and
- repairs were vacuum tested and visually observed for continuity.

Seam and panel repair logs are presented in Appendix I. Complete panel layout drawings illustrating the location of seam and panel repairs for the secondary and primary liners are shown in the record drawings in Appendix K.

5.3 CQA of Geonet Composite

5.3.1 Conformance Testing and Documentation

As part of the leak detection system, a geonet composite was installed between the geomembrane liners. The geonet composite, Transnet 300-2-8, was supplied by Skaps Industries, Inc. (Skaps) of Commerce, Georgia. A total of 137 geonet composite rolls were produced for the project consisting of 322,090 ft² of material. Initially, two conformance samples were obtained; however, one roll, No. 45391010022, was rejected as a result of a failing transmissivity test, ASTM D4716. Two additional samples were taken from before and after the rejected rolls (i.e., roll nos. 45391010021 and 45391010023). Therefore the total area of geonet composite accepted was 319,710 ft². The sampling frequency of one sample per 159,855 ft2 of material exceeds the minimum acceptable sample frequency of one per 250,000 ft² required by the COA Plan. The conformance samples were forwarded to GTX for testing. The conformance test results and the manufacturer's quality control (QC) letters and certificates were reviewed by CQA personnel and were found to be in compliance with the CQA Plan. The delivered rejected roll was removed from the site by the installer and was not used The manufacturer's QC documentation and the results of the in construction. conformance tests are presented in Appendices C and D, respectively.

5.3.2 Field Monitoring Activities

5.3.2.1 Delivery and On-Site Storage

Upon delivery to the site, geonet composite rolls were stored in an area located west of the construction area. The geonet composite rolls were typically transported on site by a Gehl 258 or Skytrak telehandler. CQA personnel periodically monitored the delivery,

unloading, storage procedures to ensure the material was handled in an appropriate manner.

5.3.2.2 Deployment

CQA personnel monitored the deployment of the geonet composite for manufacturing defects, damage that may have occurred during shipment, storage, or handling, and damage resulting from installation activities. If the materials were observed to be damaged, the installer was notified and the damaged materials were either discarded or repaired. CQA personnel observed repair locations to verify conformance with the CQA Plan. CQA personnel periodically monitored the deployment of the geonet composite, as well as its condition after installation, to confirm that the installer took measures to:

- securely anchor the geonet composite in the anchor trench or ballast it with sand bags;
- unroll the geonet composite down the slope in a manner that kept the panel in sufficient tension to avoid excessive wrinkling;
- avoid entrapment of dust, stones, or other objects that would damage or clog the geonet composite;
- avoid damaging the underlying geomembrane during deployment;
- secure the geonet composite panels with nylon fasteners, installed on a maximum 5-ft spacing laterally and at 1-ft spacing on end seams; and
- overlap and continuously sew the upper geotextile edges.

Observed holes in the geotextile portion of the composite were repaired by placing a patch of non-woven geotextile over the hole, and extended at least one foot beyond the edge of the hole. These patches were continuously thermally bonded to the undamaged portion of the geocomposite. This method was also used along the tie-ins, as well as along trimmed panels. Observed holes or tears in the geonet portion of the composite were repaired by placing a patch of the same material over or under the hole or tear, at least 2-ft beyond the edges of the hole or tear. These patches were secured using nylon

fasteners, followed by thermal bonding of the uppermost geotextile of the patch to the undamaged geocomposite panel.

5.4 CQA of Geotextile

5.4.1 Conformance Testing and Documentation

A non-woven geotextile was used as a cushion between the gravel drainage layer and geomembrane liner in the sump area. The non-woven geotextile, GE-240 was manufactured by Skaps of Commerce, Georgia. The needle-punched, non-woven geotextile has a nominal weight per unit area of 24-oz/yd². The majority of the material was used in the SCA construction.

During construction, CQA personnel obtained five conformance samples from the 267 rolls delivered; totaling 1,201,500 ft² in area. The sampling frequency of one sample per 240,300 ft² of material exceeds the minimum acceptable sample frequency of one per 250,000 ft² required by the CQA Plan.

The manufacturer's quality control (QC) letters and certificates and the results of the conformance tests are presented in Appendices E and F, respectively.

5.4.2 Field Monitoring Activities

5.4.2.1 Delivery and On-Site Storage

Upon delivery to the site, geotextile rolls were typically stored in an area located south of the construction area. The geotextile rolls were transported on site by a Gehl 258 or Skytrak telehandler. CQA personnel periodically monitored the delivery, unloading, and storage procedures to ensure that the material was handled in an appropriate manner. An inventory of delivered rolls was maintained by CQA personnel.

5.4.2.2 Deployment and Seaming

The non-woven geotextile was manually unrolled over the geonet composite or drainage aggregate within the basin sump areas. CQA personnel monitored the deployment of the non-woven geotextile rolls for manufacturing defects, damage that may have occurred during shipment, storage, and handling, and damage resulting from installation activities. If materials were observed to be damaged, the installer was

Geosyntec consultants

notified and the damaged materials were either discarded or repaired. CQA personnel observed repair locations to verify conformance with the requirements of the CQA Plan.

After deployment of the geotextile, CQA personnel observed that the installer overlapped geotextile panels a minimum of 4 to 6-in then used a wedge welder to seam the panels together.

6. PIPE INSTALLATION

6.1 Overview

Within the each basin, a sump area was constructed (as previously mentioned the area was preloaded with a minimum of 5-ft of gravel in 2010). The base of the sumps is 25-ft by 33.5-ft which is graded into the 2.5 horizontal (H): 1 vertical (V) perimeter sideslope. The main component of the sump de-watering system is a 24-in diameter polyethylene (PE) standard dimension ration (SDR) – 17 pipe. The pipe has 8 rows of 1 in. diameter perforations on 0.5-in centers in the base of the sump. Per RFI No. 26, only the secondary riser was installed.

Sump Construction

The pipe was supplied by the pipe manufacturer, Chevron Phillips Chemical Company, LP (DriscoPlex) PW4100 of Plano, Texas. CQA personnel verified the proper size and spacing of the perforations by visual observation of the pipe during installation. No conformance testing of the pipe was required by the CQA Plan. The bills of laden were presented in Appendix F of the SCA Phase I Final Report.

The pipe, when delivered to the site, was stockpiled in an area located south of the construction area. The pipe was typically transported from the stockpile to the construction area by an excavator.

Pipe sections were joined using butt-fusion or electro-fusion welding techniques. CQA personnel periodically monitored the installation of the various components of the dewatering system to ensure that industry-accepted procedures were used by the installer for butt-fusing and electro-fusing the pipes. It was noted that the initial angle welded on the secondary riser pipe needed to be re-fabricated to better match the 2.5H:1V sideslope.

7. SUMMARY AND CONCLUSIONS

Observation of the construction of the Sediment Management System basins at the Onondaga Lake Sediment Consolidation Area was performed by Geosyntec during the period of 17 October 2011 to 14 June 2012. During this time, CQA personnel monitored the installation of the following components:

- earthwork (gravel around secondary riser pipe in sump areas);
- geosynthetics (installation of geomembrane liner, geonet composite and geotextile); and
- pipe installation (installation of secondary sideslope riser pipes).

During construction of the above components, CQA personnel verified that conformance and CQA testing were performed on the construction materials at the frequencies required in the CQA Plan (as defined in Section 3.1.2 of this report), and that materials meeting the CQA Plan requirements were used. CQA personnel also verified that conditions or materials identified as not conforming to the CQA Plan were replaced, repaired, and/or retested, as described in this report.

The results of the CQA activities undertaken by Geosyntec as described in this report indicate that Sediment Management System basins of the Onondaga Lake Sediment Consolidation Area were constructed in accordance with the drawings and Specifications, as modified through RFIs and FCFs.

Marcus Fountain CQA Manager David J. Bonnett, P.E. CQA Engineer-of-Record New York PE #89889

David J. Born

I, David J. Bonnett, certify that I am currently a New York State Registered Professional Engineer, who had primary responsibility to ensure implementation of the subject construction program, and that I certify that the Remedial Design Plans and Specifications were implemented and that construction activities were completed in substantial conformance with the approved NYSDEC approved Remedial Design and Specifications including modifications approved by the Designer and/or NYSDEC.

APPENDIX A

Photographic Documentation

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 1: Secondary layer panels of 60-mil thick HDPE geomembrane were deployed from rolls using a dozer. Roofing Felt was placed under edges of panels to minimize contact with the Solvay waste.

Photograph 2: Deployed panels were manually positioned to set panel overlap.

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 3: Seams between adjacent panels were constructed using fusion welders. Welder operators cleaned the geomembrane along the overlap prior to seaming.

Photograph 4: Fusion welded seams were non-destructively tested using the air pressure method.

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 5: Repairs to the geomembrane were heat bonded to the underlying material and the edges of the repair were abraded using an electric grinder.

Photograph 6: Repairs to the geomembrane were extrusion welded.

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 7: Extrusion welds were non-destructively tested using the vacuum test method.



Photograph 8: Four 24-in dia. pipes penetrated the primary and secondary layers (secondary shown) of the liner system in each basin. Boots were constructed in the field and installed over the penetrations.

PROJECT NAME: Onondaga Lake Sediment Management System (SMS) Basins		PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 9: The completed boots were non-destructively tested using the spark test method.

Photograph 10: Geocomposite was deployed over the secondary geomembrane layer.

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 11: The net component of adjacent geocomposite panels were connected using plastic ties.

Photograph 12: The upper geotextile component of adjacent geocomposite panels was continuously sewn.

Geosyntec^D

consultants

PHOTOGRAPH LOG

PROJECT NAME: Onondaga Lake Sediment Management System (SMS) Basins PROJECT NO.: GJ4706B

CLIENT.: Honeywell FILE NAME: Photolog.pptx

Photograph 13: A side-slope riser was installed within the sump of each basin between the primary and secondary layers as part of the leak detection system.

Photograph 14: Drainage gravel was placed over the riser pipe within the sump area as ballast and collection layer.

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 15: A view of the riser structure upon completion of the Drainage Gravel placement.

Photograph 16: Panels of the primary geomembrane layer were deployed from rolls suspended by a telehandler equipped with a spreader bar.

PHOTOGRAPH LOG

PROJECT NAME: Onondaga Lake Sediment Management System (SMS) Basins PROJECT NO.: GJ4706B

CLIENT.: Honeywell FILE NAME: Photolog.pptx

Photograph 17: A compact loader equipped with a cable winch, positioned opposite the telehandler, was used to pull panels across the basin.

Photograph 18: The steps of seaming and repairing geomembrane outlined for the secondary layer were then implemented on the primary layer. A view of a completed basin sump is shown above.

PROJECT NAME:	Onondaga Lake Sediment Management System (SMS) Basins	PROJECT NO.: GJ4706B
CLIENT.:	Honevwell	FILE NAME: Photolog.pptx

Photograph 19: A view of the completed geosynthetics prior to backfilling of the anchor trench.

Photograph 20: The primary geomembrane was temporarily folded to facilitate installation of a LP soil plug in the anchor trench between the primary and secondary layers.

PROJECT NAME: Onondaga Lake Sediment Management System (SMS) Basins		PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 21: The primary liner was then placed into the anchor trench and backfilling of the trench was completed.

Photograph 22: Boots were installed where the side-slope riser of the leak detection system penetrates the primary liner.

APPENDIX B

Field Reports and Correspondence

- Request For Information
- Field Change Forms
- Weekly Field Reports

Request For Information

REQUEST FOR INFORMATION No. 00008

TITLE: East and West Basins Subgrade DATE: 7/1/2011

PROJECT: HW SCA CONSTRUCTION JOB: 446199

TO: Attn: John (Jay) Beech
GEOSYNTEC CONSULTANTS
STARTED:

1255 Roberts Boulevard NW COMPLETED:

Suite 200 **REOUIRED:** 7/12/2011

Kennesaw, GEORGIA 30144

WORK SCHEDULE COST

Phone: 678-202-9500 Fax: 404-267-1102

IMPACT: Unknown IMPACT: Unknown Unknown

QUESTION:

What is the final decision/deatil for the SCA East and West Basin subgrade preparation and liner system?

PROPOSED SOLUTION:

ANSWER:

Primavera ®

- (1) According to an email by David Steele of Parsons dated 7/5/2011 sent to Ramachandran Kulasingam, Jay Beech and Laura Brussel, David Steele was collecting information related to RFI-00008 and RFI-0009. As of 12 July 2011, no further communication has taken place.
- (2) Geosyntec notes that we have received these RFI's and will work with Parsons going forward in crafting an official response to the addressed questions.

UPDATED ANSWER:

Geosyntec (with approval from NYSDEC and Parsons design team), has determined that the Basin Liner System will be in accordance with the details shown on drawing number 444853-201-C-008 and that the geomembrane may be placed directly on solvay waste in accordance with direction from Dave Steele and NYSDEC PER DARCY JONES, PARSONS EMAIL DATED: 27 Jul 11

Geosyntec confirms that the first three details (1/8, 2/8, and 3/8) showing the proposed liner system for the basin on drawing number 444853-201-C-008 (attached) are still good from a design standpoint. Geosyntec is okay with stripping the vegetative mat and placing the geomembrane, as proposed. Consistent with the SCA low permeability soil layer specifications, visible rock particles at the subgrade surface with a maximum dimension larger than one inch should be removed before placing the geomebrane.

I have copied the Engineer-of Record Jay Beech and he is good with the above. The attached email from Tim Larson of NYSDEC was forwarded to me by you, and seems to indicate that NYSDEC is good with the proposed geomembrane placement method. I would assume Laura Brussel would confirm that Parsons design team's approval. PER R. KULA KULASINGAM, GEOSYNTEC EMAIL DATED 27 Jul 11

Requested By:PARSONS	Date:	7/1/2011
Signed:	*	
Darcy Jones		

REQUEST FOR INFORMATION

No. 00008

TITLE:

East and West Basins Subgrade

DATE:

7/1/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

STARTED:

COMPLETED:

Suite 200

Kennesaw, GEORGIA 30144

REQUIRED:

7/12/2011

Phone: 678-202-9500 Fax: 404-267-1102

WORK

SCHEDULE

COST

IMPACT: Unknown

IMPACT: Unknown

IMPACT:

Unknown

FYI, placing the SCA basins liner directly on the Solvay Waste is acceptable and needs to be consistent with Dave's attached email. Please contact me if you have any questions relating to this issue. Thank you.

Tim PER TIM LARSON, DEC EMAIL DATED 26 Jul 11

We can comply with the requirements below with the following clarifications:

1)The slope of the basin liner subgrade will be as indicated on the design drawings. This slope, which is less than 2%, uses berms and the existing topography of Wastebed 13 to provide for the necessary temporary storage capacity.

b)It is not feasible to perform compaction and compaction testing on this subgrade. The subgrade will be cleared to meet the requirements described in the email below and graded to be smooth and uniform. A foundation analysis was performed and the subgrade, without compaction, was found to have sufficient structural integrity to support the loads and stresses on the liner imposed when the basin is in operation. The geomembrane installation subcontractor will inspect the subgrade and certify that it is acceptable for geomembrane installation.

Dave PER DAVID STEELE, PARSONS EMAIL DATED: 11 Jul 11

'equested By:PARSONS	Date:	7/1/2011	
Signed:			
Darcy Jones			

REQUEST FOR INFORMATION No. 00013

TITLE:

ASTM D4218 Testing

DATE:

7/22/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

STARTED:

COMPLETED:

Suite 200

Kennesaw, GEORGIA 30144

Phone: 678-202-9500 Fax: 404-267-1102

REQUIRED:

7/29/2011

WORK

SCHEDULE

COST

IMPACT: Unknown

IMPACT: Unknown

IMPACT:

Unknown

QUESTION:

Specification 02740 states HDPE Geomembrane Liner to be tested per ASTM D4218 for carbon black content. GSE manufcturer tested per ASTM D1603. As testing per ASTM D1603 also meets the required testing criteria Parsons requests that ASTM D1603 be used in place of ASTM D4218.

Drawings 444853-101-C-009 through 444853-101-C-012

PROPOSED SOLUTION:

Parsons proposes substituting ASTM D1603, which also meets specified requirements, for ASTM D4218.

ANSWER:

Proposed solution is acceptable.

COMPLETED

equested By:PARSONS	Date:	7/22/2011	
Signed:			
Michael Dobson			

REQUEST FOR INFORMATION

No. 00017

COMPLETED

TITLE:

Gravel Drainage Grain Size

DATE:

12/8/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

Suite 200

Kennesaw, GEORGIA 30144

Phone: 678-202-9500 Fax: 404-267-1102

STARTED:

COMPLETED:

REQUIRED:

12/15/2011

15 Dec 11

WORK **IMPACT:**

SCHEDULE

IMPACT:

COST IMPACT:

QUESTION:

Regarding Gravel Drainage Layer (Specification Section 02300-2.01.B and see FCF#1)

- (i) To confirm the tested material properties of the gravel meets the intent of the project. The results from construction quality assurance (CQA) testing, specifically the grain size analysis (ASTM D422) tests, indicate oversized material was retained on the 4-in diameter sieve. See summary attached for detail.
- (ii) To confirm the removal procedure to be used in the field to remove marginal material observed during gravel placement.

PROPOSED SOLUTION:

- (i) The material with oversized material meets the intent of the specification. The Contractor should avoid dumping gravel directly on the lining system using a maximum drop of less than 3-ft.
- (ii) During gravel placement operations, accumulation of fines has been observed. These areas have been delineated using high visibility sand bags. It appears fines become concentrated in high traffic areas (e.g., off access roads) or can become accumulated by the washing of fines through precipitation. These areas of concentrated fines will require removal.

Small low ground pressure equipment should be used to remove observed accumulated fines. The equipment bucket should be a straight edge with plastic, flexible rubber or similar material to avoid excessively sharp edges. The removal work should be coordinated with CQA personnel and a spotter should be present during removal activities to ensure no damage occurs to the existing lining system.

ANSWER:

- (i) The material with oversized material meets the intent of the specification. The Contractor should avoid dumping gravel directly on the lining system using a drop of less than 3-ft.
- (ii) During gravel placement operations, accumulation of fines has been observed. These areas have been delineated using high visibility sand bags. It appears fines become concentrated in high traffic areas (e.g., off access roads) or can become accumulated by the washing of fines through precipitation. These areas of concentrated fines will require removal.

mall low ground pressure equipment should be used to remove observed accumulated fines. The equipment bucket should be a straight edge with plastic, flexible rubber or similar material to avoid excessively sharp edges. The removal work should be coordinated with CQA personnel and a spotter should be present during removal activities to ensure no damage occurs to the existing lining system.

Answered By: GEOSYNTEC CONSULTANTS

Signed: John (Jay) Beech

REQUEST FOR INFORMATION No. 00018

TITLE:	Modify Geotex Cushion Punct Streng	D A	ATE: 4/24/2012
PROJEC	CT: HW SCA CONSTRUCTION	JO	DB: 446199
TO:	Attn: John (Jay) Beech		
	GEOSYNTEC CONSULTANTS	C/T	ADTED.
	1255 Roberts Boulevard NW Suite 200		'ARTED: OMPLETED:
	Kennesaw, GEORGIA 30144 Phone: 678-202-9500 Fax: 404-267-1102		EQUIRED: 5/1/2012
RFI SUB.	JECT: SCA Specification Section 02710 – Geote	xtile Cushion	
(i) Refere psf to 250	ence Table 2710-1: Request to modify geotextile of lb.	cushion puncture s	trength (ASTM D4833) from 5
	ence Part 3.02 and 303, which indicates geotextile minimum one foot beyond damaged area and sew		verlapped or seamed. Patches
Requested	By:GEOSYNTEC CONSULTANTS	Date:	4/24/2012
Signed:		Date:	4/24/2012
Signed:		Date:	4/24/2012
Signed:	avid Bonnett	Date:	4/24/2012
Signed:	avid Bonnett	rformed and a 24	
Signed:	avid Bonnett R: g the design, geotextile performance tests were pe	rformed and a 24 er GRI-GT12(a).	oz/syd material was chosen. T
Signed:	R: g the design, geotextile performance tests were performed is acceptable performing of geotextile overlaps and patches is acceptable.	erformed and a 24 er GRI-GT12(a). eptable. The Cont	oz/syd material was chosen. T
Signed:	R: g the design, geotextile performance tests were performed by the design of geotextile performance tests were performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable graphics.	erformed and a 24 er GRI-GT12(a). eptable. The Cont	oz/syd material was chosen. T
Signed:	R: g the design, geotextile performance tests were performed by the design of geotextile performance tests were performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable graphics.	erformed and a 24 er GRI-GT12(a). eptable. The Cont	oz/syd material was chosen. T
Signed:	R: g the design, geotextile performance tests were performed by the design of geotextile performance tests were performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable graphics.	erformed and a 24 er GRI-GT12(a). eptable. The Cont	oz/syd material was chosen. T
Signed:	R: g the design, geotextile performance tests were performed by the design of geotextile performance tests were performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable performed by the design of geotextile overlaps and patches is acceptable graphics.	erformed and a 24 er GRI-GT12(a). eptable. The Cont	oz/syd material was chosen. T

Date: <u>5/1/2012</u>

REQUEST FOR INFORMATION No. 00019

TITLE:	Test Substitution		D	ATE: 4/24/2012	
PROJEC"	T: HW SCA CONSTRUC	CTION	J(OB: 446199	
TO:	Attn: John (Jay) Beech GEOSYNTEC CONSU 1255 Roberts Boulevar Suite 200 Kennesaw, GEORGIA Phone: 678-202-9500 ECT: SCA Specification S	ULTANTS rd NW . 30144	C) R)	TARTED: OMPLETED: EQUIRED: 5/1/2012	
				allow substitution of the test method are also as the contract of ASTM D1505	ıod
Requested B	y:GEOSYNTEC CONSULTA	ANTS	Date:	4/24/2012	
	id Bonnett	Ĺ			
ANSWER	a				
The propos	sed changes are acceptable	e.			

Density provides an indication of a material's molecular structure and degree of crystallinity. It can be measured using a water displacement method or in a gradient column. ASTM D792 (Method B) and ASTM D1505 are considered equal and are industry standards, as discussed in GRI GM-13.

Answered By: GEOSYNTEC CONSULTANTS	Date: 5/1/2012	
Signed:		
John (Jay) Beech		

John (Jay) Beech

REQUEST FOR INFORMATION No. 00020

TITLE: Modify Geotex Componet Punct Streng	DATE: 4/24/2012
PROJECT: HW SCA CONSTRUCTION	JOB: 446199
TO: Attn: John (Jay) Beech	
GEOSYNTEC CONSULTANTS	CEA DEED
1255 Roberts Boulevard NW	STARTED:
Suite 200 Kennesaw, GEORGIA 30144	COMPLETED:
Phone: 678-202-9500 Fax: 404-267-1102	REQUIRED: 5/1/2012
RFI SUBJECT: SCA Specification Section 02735 - G	eonet Composite
Reference Table 02735-1:	
Request to modify geotextile component puncture stren Request to allow the use of ASTM D7005 in lieu of AS	ngth (ASTM D4833) from 3,000 psf to 130 lb. STM F904 for ply adhesion of the geocomposite.
Requested By: GEOSYNTEC CONSULTANTS	Date: 4/24/2012
Signed:	
David Bonnett	
ANSWER:	
Specification Section 02735 – Geocomposite Leakage CQA Plan insert shall be used for the geonet composite	Collection Layer, dated 23 May 2011, and the associated e layer.
For the 8 oz/syd nonwoven geotextile heat bonded to the pounds is acceptable, as it exceeds the puncture strengt GT12(a).	ne geonet, replacing the 3,000 psf equivalent with 130 th recommendation for 10 oz/syd discussed in GRI
The use of ASTM D7005 – Standard Test Method for I Geocomposites as a substitute for ASTM F904 is accept	Determining Bond Strength (Ply Adhesion) of ptable as it is specific to the material.
CLO	SED
Answered By: GEOSYNTEC CONSULTANTS	Date: 5/1/2012

REQUEST FOR INFORMATION (RFI) RESPONSE

TO:	David Steele / Dhana Hillenbrand		D	ate: 1 May 2012	Job No.: GJ4706		
ADDRESS:	Parsons		S	Sediment Consolidation Area (SCA)			
	522 Gerelock Road		S	Sediment Management System (SMS)			
	Syracuse, NY		C	amillus, NY			
RFI No.: SCA-F	RFI-0020	Revision No	.: 0	Date of RFI: 24 Apr	ril 2012		
RFI SUBJECT:	SCA Specification Se	ction 02735 -	- Geonet Co	omposite			
Reference Table	02735-1:						
Request to modi	fy geotextile componer	nt puncture stre	ength (AST	M D4833) from 3,0	00 psf to 130 lb.		
Request to allow	the use of ASTM D70	05 in lieu of A	ASTM F904 for ply adhesion of the geocomposite.				
PROPOSED RI	ESPONSE:						
	ction 02735 – Geocom Plan insert shall be use				ay 2011, and the		
	nonwoven geotextile h ceptable, as it exceeds						
The use of ASTN Geocomposites a	M D7005 – Standard Toss a substitute for ASTI	est Method for M F904 is acce	Determini eptable as i	ing Bond Strength (F t is specific to the m	Ply Adhesion) of aterial.		
Joseph M	be		Jt.	Bul			
Prepared by		Date	Engineer-		Date		
Name: Joseph S	Sura 1	May 2012	Name: Jay	Beech, P.E.	1 May 2012		
Distribution:	M. Fountain, Geosynto	ec 🛛 Joe Su	ra, Geosynte	=====================================	n Kulasingam, Geosyntec		

Attachments: GRI-GT12(a)

David Bonnett, Geosyntec

Geosynthetic Institute

475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441

Original: February 18, 2002

GRI Test Method GT12(a)* - ASTM Version

Standard Specification for

"Test Methods and Properties for Nonwoven Geotextiles Used as Protection (or Cushioning) Materials"

This specification was developed by the Geosynthetic Research Institute (GRI) with the cooperation of the member organizations for general use by the public. It is completely optional in this regard and can be superseded by other existing or new specifications on the subject matter in whole or in part. Neither GRI, the Geosynthetic Institute, nor any of its related institutes, warrant or indemnifies any materials produced according to this specification either at this time or in the future.

1. Scope

- 1.1 This specification covers nonwoven geotextile test properties for subsequent use as protection (or cushioning) materials.
 - Note 1: The typical use will be as a protective covering or underlayment of a geomembrane against puncture or tear due to rock, stones, concrete or other hard surfaces and/or objects.
- 1.2 This specification sets forth a set of physical, mechanical and endurance properties that must be met, or exceeded by the geotextile being manufactured.
- 1.3 In the context of quality systems and management, this specification represents a manufacturing quality control (MQC) document.
 - Note 2: Manufacturing quality control represents those actions taken by a manufacturer to assure that a product represents the stated objective and properties set forth in the specification.
- 1.4 This standard specification is intended to assure good quality and performance of fabrics used as geotextile protection materials but is possibly not adequate for the complete specification in a specific situation. Additional tests, or more restrictive

^{*}This GRI standard is developed by the Geosynthetic Research Institute through consultation and review by the member organizations. This specification will be reviewed at least every 2-years, or on an as-required basis. In this regard it is subject to change at any time. The most recent revision date is the effective version.

- values for the tests indicated, may be necessary under conditions of a particular application.
- 1.5 This standard specification does not address installation practices or design guidance. Both of these items are addressed in the literature dealing with this particular application.

2. Referenced Documents

2.1 ASTM Standards

- D 4354 Practice for Sampling of Geosynthetics for Testing
- D 4355 Test Method for Deterioration of Geotextiles from Exposure to Ultraviolet Light and Water (Xenon-Arc Type Apparatus)
- D 4533 Test Method for Trapezoidal Tearing Strength of Geotextiles
- D 4632 Test Method for Grab Breaking Load and Elongation of Geotextiles
- D 4759 Practice for Determining the Specification Conformance of Geosynthetics
- D 4833 Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Products
- D 4873 Guide for Identification, Storage and Handling of Geotextiles
- D 5261 Test Method for Measuring Mass per Unit Area of Geotextiles
- D 5494 Test Method for the Determination of Pyramid Puncture Resistance of Unprotected and Protected Geomembranes
- D 6241 Test Method for Static Puncture Strength of Geotextiles and Geotextile Related Product Using a 50-mm Probe

2.2 AASHTO Specification

M288-00 Geotextile Specification for Highway Applications

3. Definitions

- 3.1 Formulation The mixture of a unique combination of ingredients identified by type, properties and quantity. For nonwoven geotextiles, a formulation is defined as the exact percentages and types of resin(s), additives and/or carbon black.
- 3.2 Manufacturing Quality Control (MQC) A planned system of inspections that is used to directly monitor and control the manufacture of a material which is factory originated. MQC is normally performed by the manufacturer of geosynthetic materials and is necessary to ensure minimum (or maximum) specified values in the manufactured product. MQC refers to measures taken by the manufacturer to determine compliance with the requirements for materials and workmanship as stated in certification documents and contract specifications [ref. EPA/600/R-93/182].
 - Note 3: This particular specification for nonwoven protection geotextiles falls under the concept of MQC.

3.3 Minimum Average Roll Value (MARV) – For geosynthetics, a manufacturing quality control tool used to allow manufacturers to establish published values such that the user/purchaser will have a 97.7% confidence that the property in question will meet published values. For normally distributed data, "MARV" is calculated as the typical value minus two (2) standard deviations from documented quality control test results for a defined population from one specific test method associated with one specific property.

4. Material Classification and Formulation

- 4.1 This specification covers geotextiles used as protection (or cushioning) materials.
- 4.2 The type of resins are usually polypropylene, polyester or polyethylene, but other resins are also possible in this regard.
- 4.3 The type of geotextile style is designated as a nonwoven since research has shown these fabrics to be most effective in the typical applications toward which this specification is directed. While needle-punched nonwovens are usually used, heat bonded and resin dipped manufacturing styles (or others) can also be considered.

5. Specification Requirements

- 5.1 The geotextiles for use as protection (or cushioning) materials shall conform to Table 1. The table is given in English units and in SI (Metric) units. The conversion from English to SI units is "soft".
- 5.2 Since there are a number of geotextile puncture test methods available, Table 2 is provided. Either of these tests can be considered to be an alternative test replacing ASTM D4833 in Table 1. The decision to make such a replacement must be agreed upon by the parties involved. The table is given in English units and in SI (Metric) units. The conversion from English to SI units is "soft".
- 5.3 The required values for all properties in Tables 1 and 2 are to be minimum average roll values (MARV) except UV resistance which is a minimum value.

6. Workmanship and Appearance

- 6.1 The finished geotextile shall have good appearance qualities. It shall be free from such defects that would affect the specific properties of the geotextile, or its proper functioning.
- 6.2 General manufacturing procedures shall be performed in accordance with the manufacturer's internal quality control guide and/or documents.

7. MQC Sampling, Testing, and Acceptance

- 7.1 Geotextiles shall be subject to sampling and testing to verify conformance with this specification. Sampling shall be in accordance with the most current modification of ASTM Standard D 4354, using the section titled, "Procedure for Sampling for Purchaser's Specification Conformance Testing." In the absence of purchaser's testing, verification may be based on manufacturer's certifications as a result of testing by the manufacturer of quality assurance samples obtained using the procedure for Sampling for Manufacturer's Quality Assurance (MQA) Testing. A lot size shall be considered to be the shipment quantity of the given product or a truckload of the given product, whichever is smaller.
- 7.2 Testing shall be performed in accordance with the method referenced in this specification for the indicated application. The number of specimens to test per sample is specified by each test method. Geotextile product acceptance shall be based on ASTM D4759. Product acceptance is determined by comparing the average test results of all specimens within a given sample to the specification MARV. Refer to ASTM D 4759 for more details regarding geotextile acceptance procedures.

8. MQC Retest and Rejection

8.1 If the results of any test do not conform to the requirements of this specification, retesting to determine conformance or rejection should be done in accordance with the manufacturing protocol as set forth in the manufacturer's quality manual.

9. Shipment and Storage

- 9.1 Geotextile labeling, shipment, and storage shall follow ASTM D 4873. Product labels shall clearly show the manufacturer or supplier name, style, and roll number. Each shipping document shall include a notation certifying that the material is in accordance with the manufacturer's certificate.
- 9.2 Each geotextile roll shall be wrapped with a material that will protect the geotextile, including the ends of the roll, from damage due to shipment, water, sunlight and contaminants. The protective wrapping shall be maintained during periods of shipment and storage.
- During storage, geotextile rolls shall be elevated off the ground and adequately covered to protect them from the following: site construction damage, precipitation, extended ultraviolet radiation including sunlight, chemicals that are strong acids or strong bases, flames including welding sparks, temperatures in excess of 160°F (71°C), and any other environmental condition that may damage the property values of the geotextile.

10. Certification

- 10.1 The contractor shall provide to the engineer a certificate stating the name of the manufacturer, product name, style number, chemical composition of the filaments or yarns, and other pertinent information to fully describe the geotextile.
- 10.2 The manufacturer is responsible for establishing and maintaining a quality control program to assure compliance with the requirements of the specification. Documentation describing the quality control program shall be made available upon request.
- 10.3 The manufacturer's certificate shall state that the finished geotextile meets MARV requirements of the specification as evaluated under the manufacturer's quality control program. A person having legal authority to bind the manufacturer shall attest to the certificate.
- 10.4 Either mislabeling or misrepresentation of materials shall be reason to reject those geotextile products.

Table 1(a) – Required Properties, Test Methods and Values for Geotextiles Used as Geomembrane Protection (or Cushioning) Materials

Property ⁽¹⁾	Test Method ASTM	Unit		Mass	s/Unit A	rea (oz/y	d^2	
3.6		/ 12	10	10	1.0	0.4	20	(0
Mass per unit area	D5261	oz/yd²	10	12	16	24	32	60
Grab tensile strength	D4632	lb	230	300	370	450	500	630
Grab tensile elongation	D4632	%	50	50	50	50	50	50
Trap. tear strength	D4533	lb	95	115	145	200	215	290
Puncture (pin) strength	D4833	1b	120	140	170	250	300	390
UV resistance ⁽²⁾	D4355	%	70	70	70	70	70	70

Notes:

- (1) All values are MARV except UV resistance; it is a minimum value.
- (2) Evaluation to be on 2.0 inch strip tensile specimens after 500 hours exposure.

Table 2(a) – Alternative Puncture Test Methods to be Considered in Place of Pin Puncture, ASTM D4833, in Table 1(a)

Property ⁽¹⁾	Test Method ASTM	Unit		N	lass/Uni	t Area (o	z/yd²)	
Mass per unit area	D5261	oz/yd²	10	12	16	24	32	60
Puncture (pyramid) strength	D5494	lb	300	320	410	440	510	760
Puncture (CBR) strength	D6241	lb	700	800	900	1100	1700	2400
Puncture (CBR) elongation	D6241	in.	1.5	1.5	1.5	1.5	1.5	1.5

(1) All values are MARV

S.I. (Metric) Units

Table 1(b) – Required Properties, Test Methods and Values for Geotextiles Used as Geomembrane Protection (or Cushioning) Materials

Property ⁽¹⁾	Test Method ASTM	Unit		Ma	ss/Unit A	rea (g/m	2)	
Mass per unit area	D5261	g/m ²	340	406	542	812	1080	2000
Grab tensile strength	D4632	kN	1.02	1.33	1.64	2.00	2.25	2.80
Grab tensile elongation	D4632	%	50	50	50	50	50	50
Trap. tear strength	D4533	kN	0.42	0.51	0.64	0.89	0.96	1.27
Puncture (pin) strength	D4833	kN	0.53	0.62	0.75	1.11	1.33	1.71
UV resistance ⁽²⁾	D4355	%	70	70	70	70	70	70

Notes:

- (3) All values are MARV except UV resistance; it is a minimum value.
- (4) Evaluation to be on 50 mm strip tensile specimens after 500 hours exposure.

Table 2(b) – Alternative Puncture Test Methods to be Considered in Place of Pin Puncture, ASTM D4833, in Table 1(b)

Property ⁽¹⁾	Test Method	Unit	Mass/Unit Area (g/m²)					
	ASTM							
Mass per unit area	D5261	g/m ²	340	406	542	812	1080	2000
Puncture (pyramid) strength	D5494	kN	1.33	1.42	1.82	1.96	2.27	3.37
Puncture (CBR) strength	D6241	kN-	3.11	3.56	4.00	4.90	7.56	10.60
Puncture (CBR) elongation	D6241	mm	38	38	38	38	38	38

(1) All values are MARV

REQUEST FOR INFORMATION

No. 00026

301 Plainfield Road
Suite 350
Phone: 315-552-9736
Syracuse, NY 13212
Fax: 315-451-9570

TITLE:

Secondary Riser Pipes

DATE: 5/31/2012

PROJECT: HW OL SEDIMENT MANAGEMENT

JOB: 446345

TO:

Attn: John "Jay" Beech Geosyntec Consultants

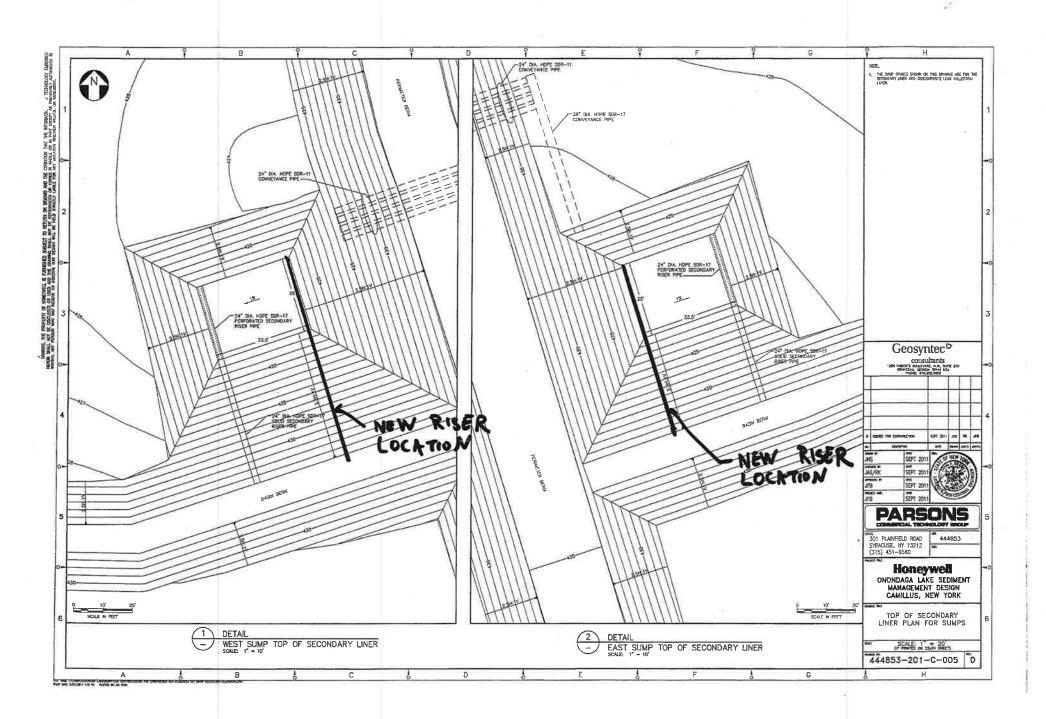
STARTED:

COMPLETED:

REOUIRED: 6/7/2012

1) In order to facilitate construction, it is proposed to install the Secondary Riser Pipes in the East and West Basins on the edge of the sump that is closest to the SCA. See attached figure 1.

2) Basin design drawings show gravel and perforated piping in the sumps on top of the primary liner. In order to prevent the potential for clogging of the gravel during operations, the perforated piping and gravel will not be installed at the start of operations. Perforated piping will be available on site and gravel will be readily available for installation if needed.


Requested By:PARSONS	Date:	5/31/2012
Signed:		
David Steele		

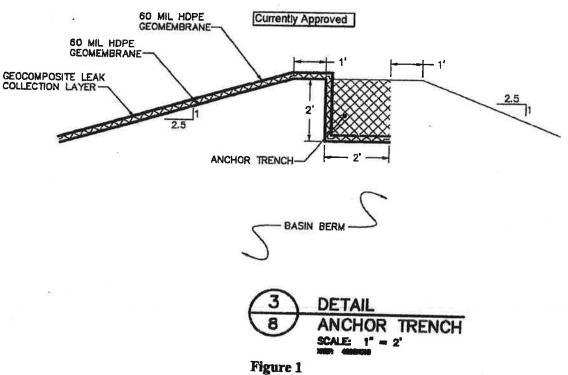
ANSWER:

- 1) The relocation is considered acceptable. All other associated design features will need to be relocated and constructed as well. Clearance and conflicts with other site features have not been checked and should be verified prior to relocation of the pipe.
- 2) The gravel weight on top of the primary liner in the basin sumps was considered in the settlement analyses to prevent grade reversal and facilitate flow from the SCA perimeter channels into the basin sumps. The basin sumps have been preloaded prior to excavation and are below the elevation of the surrounding ground. The gravel also was considered in the slope stability analyses and provided a buttressing effect. Slope stability was reevaluated without the gravel and indicates that calculated factor of safety values still meet the targets selected for the temporary basins. Therefore, it is considered acceptable to not install the perforated piping and gravel at the start of operations. However, it is noted that if grade reversal is observed or stability concerns are identified (either visually or based on inclinometers), the perforated piping, gravel and any other measures needed should be installed to restore the conditions per the original design and address any grade reversal.

Answered By: Geosyntec Consultants	Date: 6/20/2012
Signed:	ÿ.
John "Jay" Beech	

Field Change Forms

SEDIMENT MANAGEMENT SYSTEM CONSTRUCTION CAMILLUS, NEW YORK


FIELD CHANGE FORM # 2

Page 1 of 4

Project Number:	446345	Date: 28 March 2012
Construction Manager:	Ken Sommerfield	
Contractor:	Parsons	

You are hereby authorized and instructed to complete the following modifications to the approved Final Design:

The currently approved design of the SCA basin liner system is to install the geocomposite and geomembrane into the anchor trench and terminate them at the same location (see Fig 1).

FIELD CHANGE FORM # 2 Page 2 of 4

The proposed revision to this detail would terminate the geocomposite before entering the anchor trench to address the request from NYSDEC to modify the permitted detail (Fig 1) to minimize the potential for wicking of water from the anchor trench to the interstitial space between the geomembrane layers. For the portion of the berm that is also an SCA berm, the two layers of textured geomembrane would be separated by a 1' soil layer (see Fig 2).

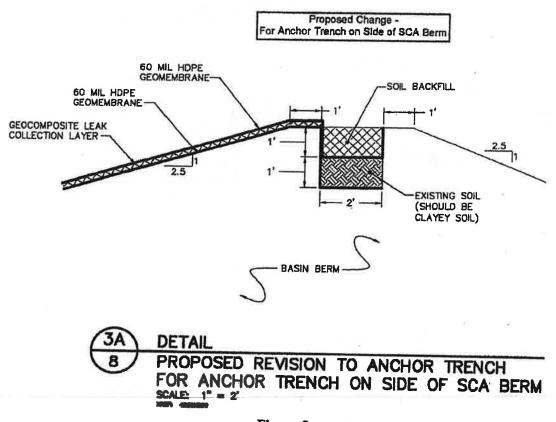


Figure 2

FIELD CHANGE FORM # 2 Page 3 of 4

For the portion of the berm that is only the basin berm, the two layers of geomembrane would be placed in the anchor trench without a separating soil layer. The separating soil layer is not needed in these basin-only berms because they are narrower than the basin/SCA berms and have even less surface area through which precipitation may potentially infiltrate and wick up in between the two geomembrane layers (see Fig 3).

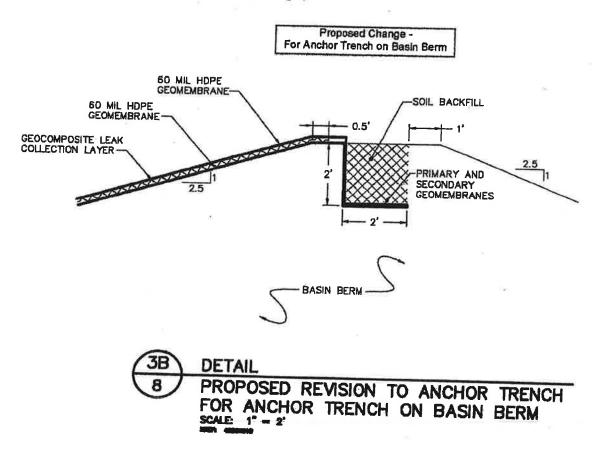


Figure 3

FIELD CHANGE FORM # 2 Page 4 of 4

APPROVALS:
Design Engineer
Name: Jay Beech
Signature: J.L. Back
Date: 5 April 2012
Contractor Representative
Name: David Steele
Signature: David Steele Signature: David Aleet
Date: 4/23/12
Owner
Name: Arry M. Somer Signature:
My Some
Date: 4/20/12
NYSDEC Representative
Name: // IMOTUM J. LANSON
Signature: Of an all the signature of an all the signature of the signatur
Date: 4/26/12

SCA CONSTRUCTION CAMILLUS, NEW YORK

FIELD CHANGE FORM #5

Page 1 of 1

Project Number:	444853	Date: 14 October 2011
Construction Manager:	Ken Sommerfield	d
Contractor:	Parsons	
		lete the following modifications to the approved Final Design:
control (CQC) soil sample to that conformance samples be frequency for soils be modif delivered volumes such that • Volume of soil deli material type) and of	esting frequency. The collected typically 1 fed. In lieu of using the test frequency shavered to the site dividuality divided by ten.	led by CQC test frequency (presented in Spec Part 1.05.D for each
This change is proposed so t quantities are reached, rather factors beyond material deli-	r than on number of C	an track material deliveries and sample as the appropriate CQC samples (the number of which can be related to additional ling borrow investigations).
APPROVALS:		
Design Engineer		
Name:	BEECH	4
	Buch	
Date: /4 0	U-Z:11	
Contractor Representative	1	
Name: David	Strele d Sleet	
Signature:	d Sleet	L.
Date:	oct/11	
Owner		
Name: Larry	M. Sou	ner
Signature: Jun S	Lower	
Date: 10/17/	(1)	
NYSDEC Representative	_	
Name: Impur	1 J. Lan	san
Signature:	DI_	
Date:	16	

Weekly Field Reports

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200/300</u>		
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II/SMS WEF	EK ENDING: April 1, 2012		

This report is written for the period of 26 March through 01 April 2012. Geosyntec was on-site 5 days (181 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 21°F to a high of 64°F during the hours worked. A total of approximately 0.11 inches of rain were recorded between 28-29 March. Representatives of Geosyntec, Chenango Contractors, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday, 26 March. A visit to the Riccelli Enterprises quarry in Granby was conducted 30 March. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Parsons continued to dewater the East and West Basins.
- Parsons graded and compacted the existing Low Permeability (LP) soil at the eastern and western portions of Phase IIB.
- LP soil was hauled by trucks to site from the Marcellus Pit this week totaling approximately 5,848 cyd.
- Between 21-23 March, Parsons hauled and placed 3,336 cyd of LP soil along the northern portion of Phase II prior to Geosyntec mobilizing to site.
- LP soil was placed at the western portion of Phase IIB placed this week.
- Engineered Fill was placed at the western portion of the south perimeter berm. Geosyntec performed three field density testing (FDT) on Engineered Fill. The tests met the project requirements for relative compaction and moisture content.
- Parsons resumed placement of screened and washed Drainage Gravel material for the Phase IA sump from the Granby Pit. Operations were halted to investigate increase of fines content.
- Received volume of Drainage Gravel screened and hauled to date from Parsons. Three loads were calculated to be approximately 35 tons/load. Total to date in 2012 is estimated to be 105 tons, or 70 lcy the delivered material was placed in Phase I toward the Phase IA sump.

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200/300</u>		
DESCRIPTION: Sediment Consolidation Area (SCA)	- Phase I/Phase II/SMS WEEI	K ENDING: <u>April 1, 2012</u>		

• Geosyntec obtained and shipped one sample of Low Permeability soil (LP-103) and one sample of Drainage Gravel (DG-013) for CQA testing.

- Chenango worked three days this week in the East Basin installing double-sided geocomposite over secondary geomembrane and started installation of the primary geomembrane.
- Chenango successfully completed three passing extrusion trial seams and seven passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion repairs on secondary (anchor trench only) and on primary geomembrane at the East Basin.
- Chenango installed approximately 142,900 sft of double-sided geocomposite and installed approximately 121,500 sft of primary geomembrane at the East Basin.
- Approximately 5,840 lf of production seams were welded. Non-destructive testing of fusion seams was started. Eight destructive samples were marked to date by Geosyntec for removal and testing.

COPY TO: File	PER: Billy Carruth
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>		
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	OING: <u>April 8, 2012</u>		

This report is written for the period of 02 through 06 April 2012. Geosyntec was on-site 5 days (186 days total to date) to provide CQA services during construction of the SCA and geosynthetic deployment in the Sediment Management System (SMS). Temperatures generally ranged from a low of 25° F to a high of 53° F during the hours worked. Approximately 0.5-in of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were onsite throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Parsons continued to dewater the East and West Basins.
- Engineered Fill was placed and compacted along the western portion of the south perimeter berm. Field Density Testing (EF-004 to EF-006) was conducted on Engineered Fill by Geosyntec this week. All three FDT met the project requirements for relative compaction and moisture content.
- Parsons graded, moisture conditioned, and compacted Low Permeability (LP) soil material in west end of Phase II, lift 2 over existing LP layer. In addition Parson's placed LP soil at the northeast area of Phase II. Approximately 7,098 LCY of LP soil was hauled from the Marcellus Pit, placed, and compacted in Phase II.
- Approximately 1,538 LCY of Drainage Gravel material was hauled from the Granby Pit and stockpiled on site this week.
- Geosyntec obtained and shipped one sample of Low Permeability soil (LP-103) and one sample of Drainage Gravel (DG-013) last week for CQA conformance testing. Results are pending.
- Geosyntec obtained samples for Interface testing of materials in Phase II; Geotextile (GT-012), Geomembrane (GM-011) Low Permeability Clay (LP-104) and Drainage Gravel (DG-014). Results are pending.

COPY TO: File	PER: David Williams
	·

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: 200		
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 8, 2012</u>		

- Chenango worked five days this week in the East and West Basins installing doublesided geocomposite over secondary geomembrane and started installation of the primary geomembrane.
- Chenango successfully completed nine passing extrusion trial seams and seventeen passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion welded repairs on primary geomembrane at the East and West Basins.
- Chenango installed approximately 186,150 sf. of double-sided geocomposite in the East and West Basins.
- Chenango installed approximately 109,400 sf. of primary geomembrane at the West Basin.
- Chenango installed approximately 50,000 sf. of primary geomembrane at the East Basin.
- Approximately 4,360 lf. of production seams were welded. Non-destructive testing of fusion seams was completed.
- Thirteen destructive samples (DS 3-001 to DS 3-013) were obtained and shipped to GeoTesting Express (GTX) for testing. All destructive tests passed with the exception of DS 3-007. Additional destructive samples (DS 3-007A and DS 3-007B) were collected to delineate the failing area. DS 3-007B also failed to meet the project requirements. Geosyntec and Chenango will continue to delineate the failing area.
- Ten destructive samples (DS 5-001 through DS 5-010) were marked on the primary geomembrane deployed in the West Basin and are pending field testing before being forwarded to GTX.

COPY TO: File PER: David Wi	lliams
-----------------------------	--------

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>		
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 15, 2012</u>		

This report is written for the period of 9 April through 13 April 2012. Geosyntec was on-site 5 days (191 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 39° F to a high of 61° F during the hours worked. Less than 0.1 inch of rain was recorded this week. Representatives of Geosyntec, Chenango Contractors and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 5,117 LCY of Low Permeability (LP) soil was transported to the site from the Marcellus borrow source this week.
- Parsons graded, moisture conditioned, and compacted P soil material in Phase II.
- Approximately 922 LCY of Drainage Gravel material was transported to the site from the Granby borrow source this week. The material was stockpiled adjacent to Phase I.
- No Engineered Fill was placed this week.
- Field Density Testing (5-001 to 5-037) was conducted on placed LP soil material this week. Four of the 37 tests failed to meet the requirements of the layer. Three of the four failures were retested and met the project requirements. The retest of one failure is pending.
- Geosyntec obtained three samples of LP soil (LP-105 through LP-108) for CQA testing. Results for these samples are pending.
- Parsons placed Drainage Gravel in the Phase IA sump. Material was placed 8-in thick in the floor of the sump and 12-in thick over the side slopes of the sump. Completion of the Drainage Gravel in the Phase IA sump is pending installation of other components.

COPY TO:	File	PER:	David Williams	

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>		
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	OING: <u>April 15, 2012</u>		

- Chenango worked five days this week in the East and West Basins installing primary geomembrane and 24 oz/sy non-woven geotextile.
- Chenango successfully completed seven (7) passing extrusion trial seams and 28 passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion welded repairs on primary geomembrane at the East and West Basins.
- Chenango installed approximately 30,000 sf. of primary geomembrane in the West Basin.
- Chenango installed approximately 70,000 sf. of primary geomembrane in the East Basin.
- Approximately 5,130 lf. of production seams were welded. Non-destructive testing of fusion seams was completed.
- One destructive samples (DS-007B1) was removed and shipped to GeoTesting Express for testing, Destructive sample DS-007B1 met the project requirements.
- Seven additional destructive samples are marked on primary geomembrane deployed in the East Basin, but have not been removed as of yet.
- Approximately 16,200 sf. of 24 oz/sy non-woven geotextile was installed in the East and West Basins.
- THG Geophysics conducted a leak location survey of the geomembrane in Phase I. No leaks have been identified to date. The leak location survey is incomplete and has been postponed until a significant rain event occurs in lieu of using a water truck to provide adequate moisture.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Constructi	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 22, 2012</u>

This report is written for the period of 16 April through 20 April 2012. Geosyntec was on-site 5 days (196 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 33° F to a high of 84° F during the hours worked. No rainfall was recorded during the week. Representatives of Geosyntec, Chenango Contractors, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily. No incidents were reported.

EARTHWORK:

- Parsons graded, moisture conditioned, and compacted low-permeability (LP) soil in Phase II.
- Approximately 6,133 LCY of LP soil was imported from the Marcellus Pit this week. Material was transported, placed, and compacted in Phase II, western end of cell.
- Benching of the LP layer occurred along the Phase I and II tie-in.
- Field density tests (FDTs) 5-038 to 5-058 were conducted on the LP soil layer in Phase II for lifts requiring 90 percent of maximum dry density and ±3 percent of optimum moisture, as determined by ASTM D698. Three of these tests failed to meet the minimum project requirements and are pending retest.
- FDTs 6-001 to 6-038 were conducted on the LP soil layer final lift in Phase II. All of these tests meet or exceed the minimum project requirements.
- Geosyntec obtained 11 samples of LP soil material (LP-109 through LP-119) for CQA testing. Results are pending. Geosyntec also obtained 4 thin-walled (i.e., Shelby) tube samples (ST-029 through ST-032). Results of samples ST-029 through ST -031 meet or exceed the project's permeability requirements. Results for sample ST-032 are pending.
- No Engineered Fill was placed this week.
- Parsons placed Drainage Gravel in the Phase IB sump. Material was placed approximately 8-in thick in the sump floor and 12-in thick along the side slopes of the sump. Parsons plans to complete placement of the Drainage Gravel in the floor of the sump in Phase IA and IB upon completion of piping installation.
- Approximately 970 LCY of Drainage Gravel material was imported from the Granby Pit and stockpiled on-site this week.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Construct	ion	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 22, 2012</u>

- Chenango worked five days this week performing detail work (e.g., pipe boot penetrations, repairs, non-destructive testing, etc.) on the primary liner system in the East and West Basins.
- Chenango successfully completed twelve passing extrusion trial seams prior to extrusion welding repair work this week.
- Eleven destructive samples (DS 3-013 through 3-020 and DS 5-011 through DS 5-014) were obtained and shipped to GeoTesting Express for testing. All destructive samples achieved the minimum project requirements.
- Approximately 545,905 sf. of 60-mil thick HDPE geomembrane was delivered and inventoried during the week.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	OING: <u>April 29, 2012</u>

This report is written for the period of 23 through 29 April 2012. Geosyntec was on-site 6 days (202 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 29° F to a high of 59° F during the hours worked. Approximately 1.36 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 117 LCY of Drainage Gravel material (+4 inches) were hauled from the Granby Pit for placement in Phase IA sump this week. Two of the loads received were rejected due to excessive fines content.
- Engineered Fill was placed in the West Basin along the western anchor trench this week.
- Test results were received for Low Permeability soil samples LP-106 through LP-108 and ST-032 from GeoTesting Express. These samples meet the minimum project specifications.
- Parsons placed an additional 4 inches of Drainage Gravel in the Phase IA sump floor, for a total thickness of 12 inches.
- Parsons fused segments of 12-in diameter SDR-11 perforated HDPE pipe and connected the segments to the risers in Phase IA and IB sumps.

- No activities were conducted by Chenango crew this week and
- Approximately 569,135 SF of 60-mil thick HDPE geomembrane was delivered and inventoried this week.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Constructi	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>May 5, 2012</u>

This report is written for the period of 30 April through 4 May 2012. Geosyntec was on-site five (5) days (207 days total to date) to provide CQA services during construction in the SCA. Temperatures generally ranged from a low of 29° F to a high of 81° F during the hours worked. Approximately 1 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 550 LCY of Low Permeability (LP) soil was imported this week from the Marcellus borrow source. Material was placed along the southern berm at the western end of Phase II and in the northwest corner of Phase II.
- Approximately 1,341 LCY of 4-inch maximum particle size Drainage Gravel was imported from the Granby borrow source and stockpiled on site. Parsons placed an additional 4 inches of Drainage Gravel (<4-inch) material in the Phase IB sump floor for a total of 12 inch thick layer.
- Approximately 1,079 LCY of Drainage Gravel material (4<12 inch) was imported from the Granby borrow source and placed in the Phase IA and IB sumps this week.
- Engineered Fill was placed in the East and West Basin anchor trenches this week, however, backfilling has not been completed.
- Parsons completed installation of 12-in diameter SDR-11 perforated HDPE lateral pipes and connection to the risers within the Phase IB sump.
- Parsons exposed and removed plywood placed along the southern limits of Phase I at former ramp locations.

- No activities were conducted by Chenango (CCI) this week due to wet conditions.
- Parsons crew exposed the geomembrane in an area approximately 10 feet square within Phase IB where an electrical leak location survey indicated a potential hole in the 60-mil thick HDPE geomembrane. CCI will vacuum test the extrusion welded patch located at the indicated area to determine location of the hole and make appropriate repair.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK ENI	DING: May 13, 2012

This report is written for the period of 7 through 11 May 2012. Geosyntec was on-site 5 days (212 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 42° F to a high of 71° F during the hours worked. Approximately 1.65 inches of rainfall were recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is provided below.

SAFETY:

• Safety meetings were held daily. No incidents were reported.

EARTHWORK:

- Approximately 1,733 LCY of Low Permeability (LP) soil were imported this week from the Marcellus borrow source. The imported material was placed in Phase II as it was received onsite. Importation efforts were delayed Tuesday through Friday due to wet site conditions. Lifts 2 and lift 3 were placed in Grids H through J this week.
- Geosyntec conducted a total of 41 FDTs on compacted LP soil in Phase II this week.
 Nine of the FDTs failed to achieve satisfactory results due to low moisture content.
 Geosyntec obtained LP soil samples LP-120 thru LP-127 for moisture content analysis and LP-128 and LP-129 for conformance testing.
- Approximately 289 LCY of 4 inch maximum diameter particle size Drainage Gravel were imported from the Granby borrow source this week and stockpiled on-site.
- Parsons crew used a compact loader with a flip screen attachment to process areas of excessive fines within the Drainage Gravel in the Phase I area.
- Parsons stockpiled material rejected during screening operations along the northern limits of Phase I for future use. Parsons has proposed the material as an alternate fill material for the construction of the Phase I/Phase III temporary berm.
- Parsons continued to pump stormwater from Phase IA and IB sumps.
- Parsons placed Engineered Fill in the West Basin anchor trench.
- Parsons crew pumped stormwater from the East Basin trapped between the primary and secondary geomembrane in the East Basin sump area. The four culverts require banding and caulking.

GEOSYNTHETICS:

• No Geosynthetics activities were conducted this week due to wet site conditions.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>May 20, 2012</u>

This report is written for the period of 14 through 18 May 2012. Geosyntec was on-site 5 days (217 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 44° F to a high of 74° F during the hours worked. Approximately 0.01 inches of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. THG Geophysics on-site 14-16 May to conduct electrical leak location survey. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 9,817 LCY of Low Permeability (LP) soil were imported this week from the Marcellus borrow source. Parsons continued placement of LP soil within Phase II and also performed moisture conditioning and compaction of material placed previously. Parsons prepared the surface of the LP soil layer for geosynthetics in Grids E through I.
- Geosyntec conducted field density tests (FDTs) on compacted LP soil in Phase II. A total of 60 FDTs were performed this week, two of which failed to meet the minimum project requirements for moisture and/or compaction.
- Geosyntec obtained Shelby Tube samples ST-033 to ST-037 for CQA testing. Results were received for ST-033 to ST-035, which indicated acceptable values.
- Approximately 454 LCY of 4-in dia. Drainage Gravel was imported and stockpiled on site.
- Parsons crew stockpiled fill material along the northern limits of Phase I to be used in construction of Phase I containment berm.
- Parsons continued to use the flip screen attachment to remove excess fines from Drainage Gravel in Phase I.
- Parsons crew investigated four areas in Phase I for possible leaks in the geomembrane based on THG survey. Holes were located in each of the areas of the geomembrane within Phase I.

GEOSYNTHETICS:

• Chenango worked four days this week in Phase II installing geomembrane and worked one day on repairs in the East Basin.

COPY TO: File	PER: Billy Carruth
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: May 20, 2012

- Chenango successfully completed six passing extrusion trial seams and forty four passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion welded repairs on primary geomembrane at the East Basin and Phase II.
- Chenango installed approximately 354,900 square feet of primary geomembrane in Phase II
- Approximately 16,787 linear feet of production seams were welded. Non-destructive testing of fusion seams was started but not completed.
- Eleven destructive samples (DS-6-001 to 6-009 and 6-012 to 6-013) were removed and shipped to GeoTesting Express for testing. Thirty three destructive samples to date were marked on primary geomembrane deployed in Phase II, but all samples have not been removed or field tested yet.
- (THG Geophysics crew completed leak testing on the geomembrane liner system in Phase I; four leaks were detected to date that are scheduled to be repaired by Chenango next week.

COPY TO:	File	DED 1	Billy Carruth	
COLLIO.	THE	1 111.	Birry Carrain	

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>May 27, 2012</u>

This report is written for the period of 21 through 27 May 2012. Geosyntec was on-site five days (222 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 54° F to a high of 86° F during the hours worked. 0.01 inches of rainfall was recorded this week, however, production was unaffected. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

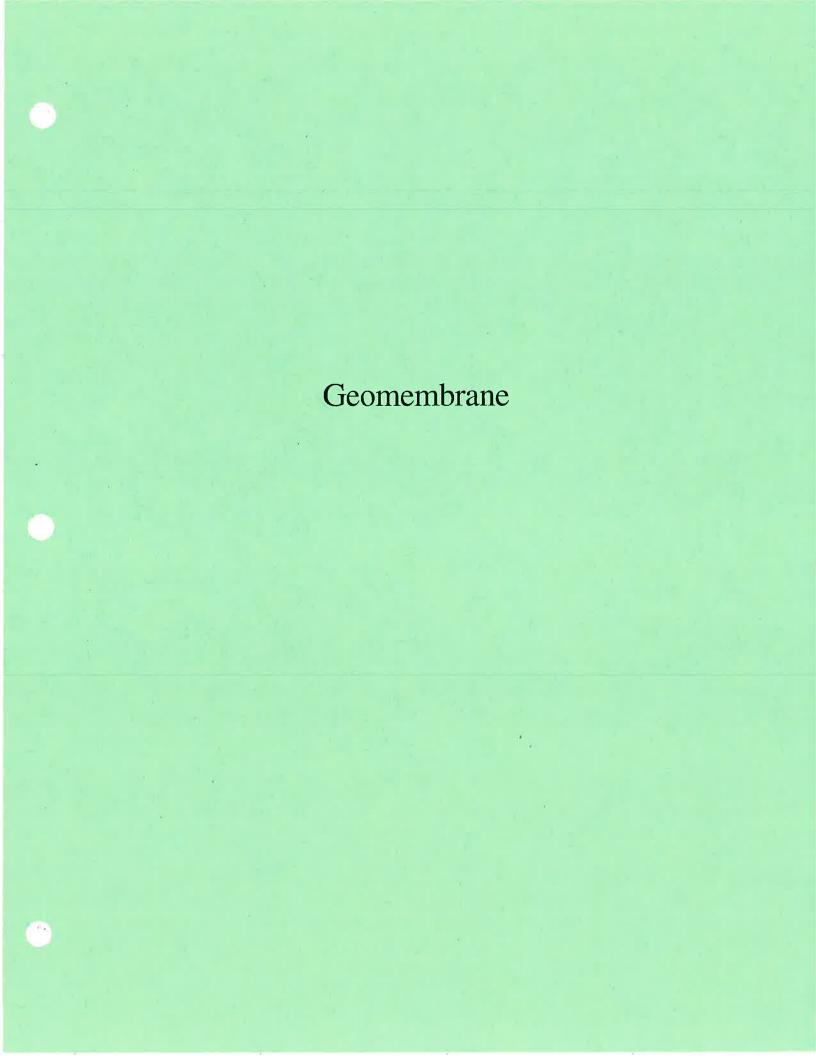
- Approximately 12,167 LCY of Low Permeability (LP) soil was imported this week from the Marcellus borrow source. Parsons continued placement of LP soil within Phase II. Parsons also conducted moisture conditioning and compaction of material placed previously.
- Geosyntec conducted a total of 65 Field Density Tests (FDTs) on compacted LP soil this week. One FDT failed to meet project requirements initially, but passed upon retest.
- Geosyntec obtained Shelby Tube samples ST-038 to ST-044 for testing. Results were received for ST-036 to ST-042, which indicated the samples met the minimum project requirements for permeability.
- Approximately 1,382 LCY of Drainage Gravel (4 inch maximum particle size) were imported from the Granby borrow source and stockpiled on site.
- Removal of the eastern end of the existing haul road in Phase II was progressed.
- Areas within Phase I requiring additional remediation of the Drainage Gravel were identified. Geosyntec informed Parsons of the areas requiring additional work.
- Parsons crew stockpiled fill material along the northern limits of Phase I to be used in construction of the Phase I/III temporary berm.
- Parsons prepared the surface of the LP soil layer for geosynthetics in Grids J through L.

GEOSYNTHETICS:

• Chenango progressed installation of the 60-mil thick HDPE geomembrane and 24-oz/sy non-woven geotextile within Phase II.

COPY TO: File	PER: David Williams	
	PER: David Williams	

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: May 27, 2012


- Chenango successfully complete ten passing extrusion trial seams and seventeen passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing on extrusion welds on repairs to geomembrane in Phase II.
- Chenango installed approximately 193,000 sf of geomembrane and 242,600 sf of 24 oz Geotextile in Phase II.
- Approximately 9,200 lf of production seams were constructed. Non-destructive testing of fusion seams is on-going.
- A total of 54 destructive sample locations have been marked on the primary geomembrane deployed in Phase II. A total of 32 destructive samples (DS-6-010 to 6-011 and 6-014 to 6-040 and DS-6-050 to DS-6-052) were removed and shipped to GeoTesting Express for laboratory testing. DS-6-034 failed to meet the minimum project requirements in the laboratory. Isolation of the failing area is pending.

COPY TO: File	PER: David Williams	
	PER: David Williams	

APPENDIX C

Manufacturer's Quality Control Documentation

- Geomembrane
- Geotextile
- Geonet Composite

Geosyntec >

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: <u>GJ4706</u>

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

Material T	<i>Type:</i> gml : 6	Manufac	<i>turer:</i> Ag	gτu Ameri	ca		Produ	ct Type:	Microspik	e HD 60-mi	1			
	Inventory						Q.A. Conformance				Q.C. Documents			
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL		
Accepted Ro	olls													
1/15/2011	7110583-443557-11	23	505	DW	11/4/2011	GM-09	Р	DB	11/3/2011	11/3/2011	P	DB		
11/15/2011	7110583-443558-11	23	505	DW					11/3/2011	11/3/2011	р	DB		
11/14/2011	7110583-443559-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
11/14/2011	7110583-443560-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
11/15/2011	7110583-443561-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
11/14/2011	7110583-443562-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
11/14/2011	7110583-443563-11	23	505	DW	4/3/2012	GM-11		DW	11/3/2011	11/3/2011	Р	DB		
11/15/2011	7110583-443565-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
11/15/2011	7110583-443566-11	23	505	DW		Ī			11/3/2011	11/3/2011	Р	DB		
11/15/2011	7110583-443567-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
11/15/2011	7110583-443568-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
1/14/2011	7110583-443569-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
1/14/2011	7110583-443570-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
1/14/2011	7110583-443673-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
1/15/2011	7110583-443674-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
1/15/2011	7110583-443675-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
1/14/2011	7110583-443676-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
1/14/2011	7110583-443677-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
1/14/2011	7110583-443678-11	23	505	DW					11/3/2011	11/3/2011	P	DB		
1/14/2011	7110583-443679-11	23	505	DW					11/3/2011	11/3/2011	Р	DB		
4/23/2012	7120199-311449-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		
4/23/2012	7120199-311450-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		
4/23/2012	7120199-311451-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120199-311452-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		
4/23/2012	7120199-311453-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120199-311454-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		
4/23/2012	7120199-311455-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		
4/23/2012	7120199-311556-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		

Geosyntec[>]

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

ProjNo: GJ4706

TaskNo: 07

Material 7	<i>Type:</i> gml : 6	Manufac	turer: Ag	gru Amer	ica		Produ	ict Type.	Microspik	e HD 60-mi	1	
	Invento	ry			Q.A	. Conf	orman	ce	Q	C. Docui	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/23/2012	7120199-311557-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311558-12	23	505	DWH	3/29/2012	GM-13	P	DB	4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311559-12	23	505	DWH			7/		4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311560-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311561-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311562-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311563-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311564-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311565-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311566-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311567-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311568-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311569-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311670-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311671-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311672-12	23	505	DWH	***************************************				4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311673-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311674-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311675-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311676-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311677-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311678-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311679-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311680-12	23	505	DWH	3/29/2012	GM-14	Р	DB	4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311681-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311682-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311683-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311784-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311785-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH

Geosyntec D

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

Material T	<i>Type:</i> gml : 6	Manufac	turer: Ag	ru Ameri	ica		Produ	ct Type:	Microspik	e HD 60-mi	[
	Inventor	y			Q.A.	Q.A. Conformance			Q.C. Documents			
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/23/2012	7120199-311786-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311787-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311330-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311331-12	23	505	DWH			10.00		4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311332-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311333-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311334-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311335-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311336-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311337-12	23	505	DWH	3/29/2012	GM-12	P	DB	4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311338-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311339-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311340-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311341-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311442-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311443-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311444-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311445-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311446-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120200-311447-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120200-311448-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-311788-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-311789-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-311790-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-311791-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	8110773-311792-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-311793-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-311794-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-311795-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH

Geosyntec >

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

2MS

ProjNo: GJ4706

TaskNo: 07

Material	Type: gml: 6	Manufac	urer: A	gru Amei	rica		Produ	uct Type	: Microspil	ke HD 60-mi	l		
	Inventor	"y			Q.1	1. Conf	orman	се	Q.C. Documents				
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL	
4/23/2012	8110773-311796-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH	
4/23/2012	8110773-312101-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312102-12	23	505	DWH		1			4/27/2012	4/27/2012	P	DWH	
4/23/2012	8110773-312103-12	23	505	DWH		1				4/27/2012	P	DWH	
4/23/2012	8110773-312104-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312105-12	23	505	DWH	4/18/2012	GM-15	Р	DWH		4/27/2012	P	DWH	
4/23/2012	8110773-312106-12	23	505	DWH					4/27/2012		P	DWH	
4/23/2012	8110773-312107-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312108-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312109-12	23	505	DWH					i	4/27/2012	P	DWH	
4/23/2012	8110773-312110-12	23	505	DWH						4/27/2012	p	DWH	
4/23/2012	8110773-312111-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312112-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312113-12	23	505	DWH						4/27/2012	P	DWH	
4/23/2012	8110773-312114-12	23	505	DWH			-			4/27/2012	P	DWH	
4/23/2012	8110773-312115-12	23	505	DWH						4/27/2012	P	DWH	
1/23/2012	8110773-312116-12	23	505	DWH			-		4/27/2012		P	DWH	
4/24/2012	8110773-312217-12	23	505	DWH						4/27/2012	-	DWH	
1/24/2012	8110773-312218-12	23	505	DWH	-					4/27/2012		DWH	
1/24/2012	8110773-312219-12	23	505	DWH				-		4/27/2012		DWH	
1/24/2012	8110773-312220-12	23	505	DWH	2					4/27/2012		DWH	
/23/2012	8110773-312221-12	23	505	DWH				_		4/27/2012		DWH	
/23/2012	8110773-312222-12	23	505	DWH					4/27/2012			DWH	
/24/2012	8110773-312223-12	23	505	DWH						4/27/2012	-	DWH	
/23/2012	8110773-312224-12	23	505	DWH						4/27/2012		DWH	
/24/2012	8110773-312225-12	23	505	DWH				_		4/27/2012		DWH	
/24/2012	8110773-312226-12	23		DWH			-	_		4/27/2012			
/24/2012	8110773-312227-12	23			4/18/2012	GM-16	P			4/27/2012	_	DWH	
/24/2012	8110773-312228-12	23		DWH		0.11-10	1		4/27/2012		_	DWH DWH	

Geosyntec D

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

Material T	<i>type:</i> gml: 6	Manufac	turer: Ag	ı rı ı Ameri	ca		Produ	ct Type:	Microspik	e HD 60-mi	1	
	Q.A. Conformance			ce	Q.C. Documents							
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/23/2012	8110773-312229-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
11/14/2011	8210664-443682-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/15/2011	8210664-443683-11	23	505	DW	11/4/2011	GM-10	P	DB	11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443784-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443785-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443786-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443787-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443788-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/15/2011	8210664-443789-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443790-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443791-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443792-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443793-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443796-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443797-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-444101-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-444102-11	23	505	DW					11/3/2011	11/3/2011	P	DB

Average Roll Width(ft.): 23

Average Roll Length(ft.): 505

Total Number of Rolls: 132

Cumulative Area(sq.ft.): 1533180

Total Number of Conformance Tests: 8

Comments: 7110583-443563-11:used for Interface Friction testing

Oct 24 2011 Phana PARSONS

High Density Polyethylene Micro Spike[®] Liner

Product Data

Property	Test Method		-	Value	S	
Thickness, nominal (mm)		30 (.75)	40 (1.0)	60 (1.5)	SO (2.0)	100 (2.5)
Thickness (min. ave.), mil (mm)	ASTM D5994*	29 (.71)	38 (.95)	57 (1.43)	6 (1.90)	95 (2.38)
Thickness (lowest indiv. for 8 of 10 spec.), mil (mm)	ASTM D5994*	7 (.68)	36 (.90)	54 (1.35)	(1.80)	90 (2.25)
Thickness (lowest indiv. for 1 of 10 spec.), mil (mm)	ASTM D5994*	26 (.64)	34 (.85)	51 (1.28)	68 (1.70)	85 (2.1/3)
*The thickness values may be c	hanged due to project specifications	(i.e., bsolu	te minimu		16 (10)	
Asperity Height (min. ave.), mil (mm)	ASTM D7466	16 (.41)	16 (.41)	16 (.41)	6 (.41)	16 (.41)
Density, g/cc, minimum	ASTM D792, Method B	0.94	0.94	0.94	√0.94 \	0.94
Tensile Properties (ave. both directions)	ASTM D6693, Type IV	1	15		7 \	
Strength @ Yield (min. ave.), lb/in width (N/mm)	2 in/minute	66 (11/6)	88 (15.9)	132 (23.1	76 (30/8)	220 (38.5)
Elongation @ Yield (min. ave.), % (GL=1.3in)	5 specimens in each direction	13	/13 5	13	√ 3 \	1/3
Strength @ Break (min. ave.), lb/in width (N/mm)		66 (11.6)	88 (15.4)	132 (23.1	76 (30.8)	220 (38.5)
Elongation @ Break (min. ave.), % (GL=2.0in)		350	350	350	\$50	V ₃₅₀
Tear Resistance (min. ave.), lbs. (N)	ASTM D1004	23 (102)	30 (133)	45 (200)	-60 (267)	72 (320)
Puncture Resistance (min. ave.), lbs. (N)	ASTM D4833	60 (267)	90 (400)	120 (534)	1 1	80 (801)
Carbon Black Content (range in %)	ASTM D4218	2-3	2-3	2-3	2-3 /	2-3
Carbon Black Dispersion (Category)	ASTM D5596	Only/near	shericaLa	gglomerate	s) /	
			1		2 and 1 vie	w in cat. 3
Stress Crack Resistance (Single Point NCTL), hours	ASTM D5397, Appendix	300	300	300	200	300
Oxidative Induction Time, minutes	ASTM D3895, 200°C, 1 atm O2	≥ 100	≥100 €	≥100	≥100	≥100
Melt Flow Index, g/10 minutes	ASTM D1238, 190°C, 2.16kg	≰ 1.0	≤1.0 €	≤1.0	€1. 0	≤1.0 \
Oven Aging	ASTM D5721	\$ 0	80	80	80/	80
with HP OIT, (% retained after 90 days)	ASTM D5885, 150°C, 500psi O2		K		2/	1
UV Resistance	GRI GM11	20hr. Cyc	le @ 75 C/	hr. dark co	ongensation (@ 60°C \
with HP OIT, (% retained after 1600 hours)	ASTM D5885, 150°C, 500psi O2	50	50 (1	50	L B 0	50

These product specifications meet or exceed GRI's GM13

Supply Information (Standard Roll Dimensions)

Thickness		Width		Length		Area (approx.)		Weight (average)*	
mil	mm	ft	m	ft	m	ft ²	m ²	lbs	kg
-30	.75	23	 7	930	283.117	21,390	1,984	3,900	1,770
40	1.0	23-	7	710	216.41	16,330	1,514.87	3,900	1,770
60	1.5	23	7	505	153.53	11,615	1,078	3,900	1,770
-80	2:0	23	7	385	117.35	8,855	821	3,900	1,770
100-	2.5	23	7	310	94:49	7,130	661	3,900	1.770

Notes

All rolls are supplied with two slings. All rolls are wound on a 6 inch core: Special lengths are available on request. All roll lengths and widths have a tolerance of ±1% *The weight values may change due to project specifications (i.e. absolute minimum thickness or special roll lengths) or shipping requirements (i.e. international containerized shipments).

All information, recommendations and suggestions appearing in this literature concerning the use of our products are based upon tests and data believed to be reliable; however, it is the users responsibility to determine the suitability for their own use of the products described herein. Since the actual use by others is beyond our control, no guarantee or warranty of any kind, expressed or implied, is made by Agru/America as to the effects of such use or the results to be obtained, nor does Agru/America assume any liability in connection herewith. Any statement made herein may not be absolutely complete since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations. Nothing herein is to be construed as permission or as a recommendation to infringe any patent.

500 Garrison Road, Georgetown, South Carolina 29440

843-546-0600 800-373-2478

www.agruamerica.com

Fax: 843-527-2738

Geosynthetic Institute

475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441

June 7, 2010

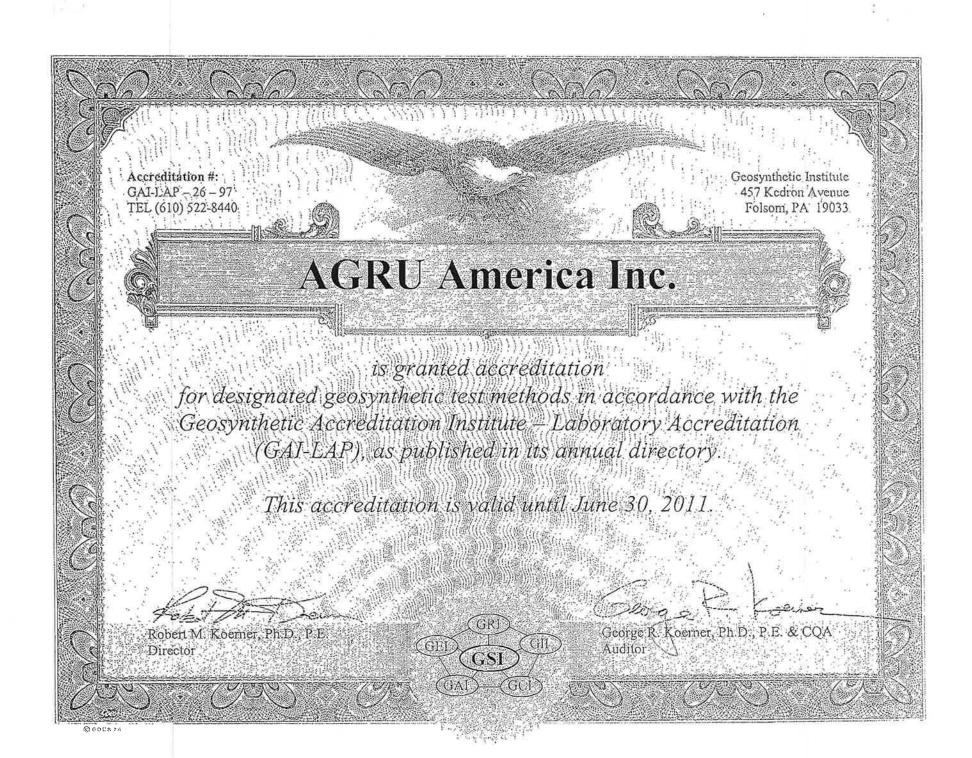
Mr. Grant Palmer Laboratory Director Agru-America Inc. 500 Garrison Road Georgetown, SC 29440

Re: GAI-LAP Accreditation

Dear Grant:

The Geosynthetic Institute (GSI) is pleased to acknowledge Agru-America Inc. on its repertoire of Geosynthetic Accreditation Institute's-Laboratory Accreditation Program (GAI-LAP) accredited tests. This letter should serve as notification that Agru-America Inc. located in Georgetown, SC is currently accredited for the following twenty test methods until June 30, 2011.

- 1. ASTM D792 Test Method for Specific Gravity (Relative Density) and Density of Plastics by Displacement
- 2. ASTM D1004 Test Method for Initial Tear Resistance of Plastic Film and Sheeting
- 3. ASTM D1204 Test Method for Linear Dimensional Changes of Nonrigid Thermoplastic Sheeting or Film at Elevated Temperature
- 4. ASTM D1238 Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer
- 5. ASTM D1693 Test Method for Environmental Stress-Cracking of Ethylene Plastics
- 6. ASTM D3895 Test Methods for Oxidative-Induction Time of Polyolefins by Differential Scanning Calorimetry
- 7. ASTM D4218 Test Method for Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique
- 8. ASTM D4716 Test Method for Determining the (In-Plane) Flow Rate per Unit Width and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head
- 9. ASTM D4833 Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Products


- 10. ASTM D5035 Test Method for Breaking Strength and Elongation of Textile Fabrics (Strip Method)
- 11. ASTM D5199 Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes
- 12. ASTM D5261 Test Method for Measuring Mass per Unit Area of Geotextiles
- 13. ASTM D5397 Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes using Notched Constant Tension Load Test
- 14. ASTM D5596 Test Methods for Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics
- 15. ASTM D5994 Test Method for Measuring the Core Thickness of Textured Geomembranes
- 16. ASTM D6693 Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes
- 17. ASTM D7005 Test Method for Determining the Bond Strength (Ply Adhesion) of Geocomposites
- 18. ASTM D7179 Test Method for Determining the Geonet Breaking Force
- 19. FTM STD. No. 101c (method 2065), Puncture Resistance and Elongation Test (1/8 in. radius probe)
- 20. ASTM D7466 Test Method for Measuring the Asperity Height of Textured Geomembranes

A certificate to this affect has been enclosed, signed and sealed. Any questions regarding your accreditation should be directed to George or Robert Koemer at (610) 522-8440. Once again congratulation and thank you for participating in the GAI-LAP.

Best Regards,

George (R. Koemer, Ph.D., P.E. & CQA

Director Designate GSI

Geosynthetic Institute

475 Kedron Avenue Folsom, PA 19033-1208 USA TEL (610) 522-8440 FAX (610) 522-8441

February 18, 2010

Mr. Chris Adams Agru America 2000 East Newlands Drive Fernley, NV 89408

Re: GAI-LAP

Dear Chris:

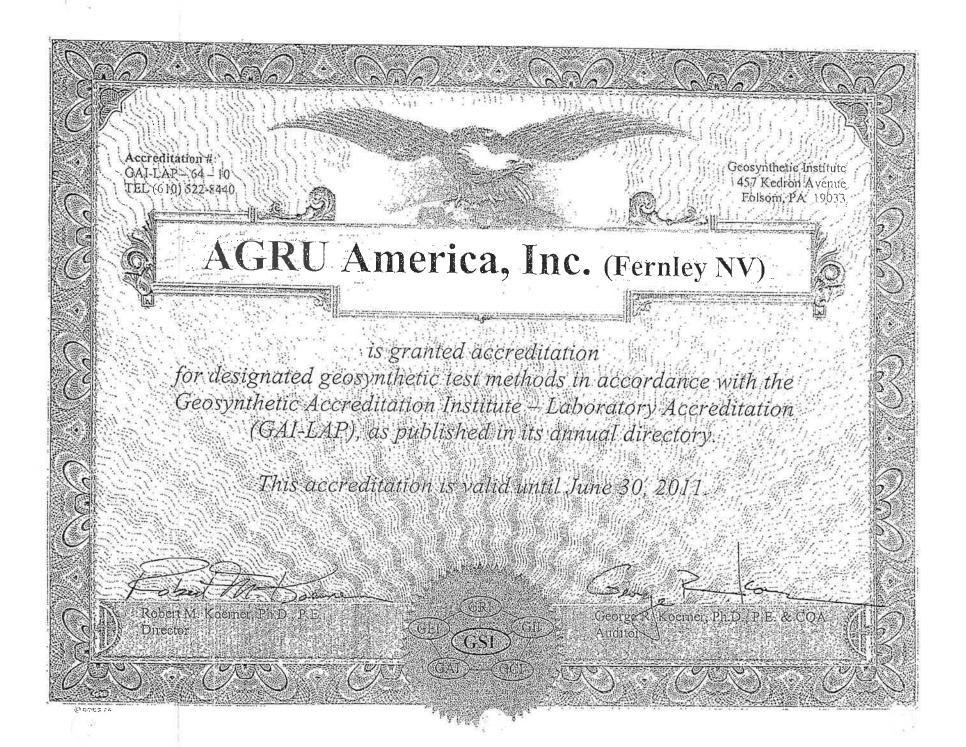
The Geosynthetic Institute (GSI) is pleased to acknowledge Agru-America Inc. on its repertoire of Geosynthetic Accreditation Institute's-Laboratory Accreditation Program (GAI-LAP) accredited tests. This letter should serve as notification that Agru-America Inc. located in Fernley, Nevada is currently accredited for the following fourteen test methods until June 30, 2011.

- 1. ASTM D792 Test Method for Specific Gravity (Relative Density) and Density of Plastics by Displacement
- 2. ASTM D1004 Test Method for Initial Tear Resistance of Plastic Film and Sheeting
- 3. ASTM D1204 Test Method for Linear Dimensional Changes of Nonrigid Thermoplastic Sheeting or Film at Elevated Temperature
- 4. ASTM D1238 Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer (2.16 kg and 190 degree Celsius)
- ASTM D3895 Test Method for Oxidative-Induction Time of Polyolefins by Differential Scanning Calorimetry
- 6. ASTM D4218 Test Method for Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique
- 7. ASTM D4833 Test Method for Index Puncture of Geotextiles, Geomembranes and Related Products
- 8. ASTM D5199 Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes
- 9. ASTM D5397 Test Method for NCTL Stress Crack Appendix "A"
- 10. ASTM D5596 Test Method for Dispersion
- 11. ASTM D5994 Test Method for Core Thickness

- 12. ASTM D6693 Standard of Method for Determining Tensile Properties of Nonreinforced Polyethylene and nonreinforced Flexible Polypropylene Type IV die with cross head movement
- 13. ASTM D7466 Test Method for Measuring the Asperity Height of Textured Geomembranes
- 14. FTM 101C

Test Method 2065 for Puncture

A certificate to this affect has been enclosed, signed and sealed. Any questions regarding your accreditation should be directed to George or Robert Koerner at (610) 522-8440. Once again congratulation and thank you for participating in the GAI-LAP.


Best Regards,

* v +

George R. Koerner, Ph.D., P.E. & CQA Director Designate GSI

DCN: GAI-LAP-64-10

Page 2 of 2

Chenango Contracting, Inc.

Chenango Contracting, Inc. (Chenango) is a well established lining installation company within the Geosynthetic Industry. Chenango is one of the largest installers of Agru America, Inc.'s products and one of our top installers in the United States.

Agru America, Inc. has worked successfully with Chenango over the years on multiple projects. Chenango is familiar with approved installation procedures and we have recognized them as one of our top-tier "Priority Installers".

Agru America, Inc. does not warrant or guarantee the work of any Approved Installer. Approved installers are independent contractors that provide specific installation services and do not act as agents or representatives of Agru America, Inc.

Paul W. Barker

Technical Director

Paul Barker (VP)

Agru America, Inc.

Date: February 1, 2008

Chenango Contracting Honeywell Sedim Consol doc 17645

PO# 2276

8210664

				Syracuse, NY		P0#	2216
				138 rolls 60 HD micro (505)			
	Eng	lish Dimer	nsions	The second state of the second			
roll#	wid	len	area	check weld rod qty (if ordered)	wgt		resin lot #
				I) Color to			resin for #
443557 .11	23	505	11,615.0	60HD micro 138tot 1	3898	2ft conf	7110583
443558 .11	23	505	11,615.0	60HD micro 138tot 2	3894	211 00111	7110583
443559 .11	23	505	11,615.0	60HD micro 138tot 3	3894		7110583
443560 .11	23	505	11,615.0	60HD micro 138tot 4	3892		7110583
443561 .11	23	505	11,615.0	60HD micro 138tot 5	3894		7110583
443562 .11	23	505	11,615.0	60HD micro 138tot 6	3892		7110583
443563 .11	23	505	11,615.0	60HD micro 138tot 7	3894		7110583
443565 .11	23	505	11,615.0	60HD micro 138tot 8	3896		
443566 .11	23	505	11,615.0	60HD micro 138tot 9	3892		7110583
443567 .11	23	505	11,615.0	60HD micro 138fot 10	3900		7110583
443568 .11	23	505	11,615.0	60HD micro 138tot 11	3804		7110583
443569 .11	23	505	11,615.0	60HD micro 138tot 12	3804		7110583
443670 .11	23	505	11,615.0	60HD micro 138tot 13	3802		7110583
443673 .11	23	505	11,615.0	60HD micro 138tot 14	3797		7110583
443674 .11	23	505	11,615.0	60HD micro 138tot 15	3797		7110583
443675 .11	23	505	11,615.0	60HD micro 138tot 16	3794		7110583
443676 .11	23	505	11,615.0	60HD micro 138tot 17	3800		7110583
443677 .11	23	505	11,615.0	60HD micro 138tot 18	3796		7110583
443678 .11	23	505	11,615.0	60HD micro 138tot 19			7110583
443679 .11	23	505	11,615.0	60HD micro 138tot 20	3794 3796		7110583
443682 .11	23	505	11,615.0	60HD micro 138tot 21			7110583
443683 .11	23	505	11,615.0	60HD micro 138tot 22	3908 3914	D#	8210664
443784 .11	23	505	11,615.0	60HD micro 138tot 23	3916	2ft conf	8210664
443785 .11	23	505	11,615.0	60HD micro 138tot 24			8210664
443786 .11	23	505	11,615.0	60HD micro 138tot 25	3920		8210664
443787 .11	23	505	11,615.0	60HD micro 138tot 26	3916		8210664
443788 .11	23	505	11,615.0	60HD micro 138tot 27	3920		8210664
443789 .11	23	505	11,615.0	60HD micro 138tot 28	3922		8210664
443790 .11	23	505	11,615.0	60HD micro 138tot 29	3920		8210664
443791 .11	23	505	11,615.0	60HD micro 138tot 30	3910		8210664
443792 .11	23	505	11,615.0		3946		8210664
443793 .11	23	505	11,615.0	60HD micro 138tot 31 60HD micro 138tot 32	3940		8210664
443796 .11	23	505	11,615,0		3788		8210664
443797 .11	23	505	11,615.0	60HD micro 138tot 33 60HD micro 138tot 34	3788		8210664
444101 .11	23	505	11,615.0	60HD micro 138tot 35	3788		8210664
444102 .11	23	505	11,615.0	60HD micro 138tot 35			8210664

60HD micro 138tot 36

444102 .11

23

505

11,615.0

PO# 2276

Syracuse, NY

			Î			USe, NY	OE)			
	Engl	lish Dimen:	sions		138 rolls 60	HD micro (5	05)			
roll#	wid	len	area	ch	eck weld ro	d qty (if ord	ered)	wgt		resin lot #
311330 .12	23	505	11,615.0	60H	D micro	138tot	37	3882		7120200
311331 .12	23	505	11,615.0		D micro	138tot	38	3946		7120200
311332 .12	23	505	11,615.0		D micro	138tot	39	3875		7120200
311333 .12	23	505	11,615.0		D micro	138tot	40	3852		7120200
311334 .12	23	505	11,615.0		D micro	138tot	41	3837		7120200
311335 .12 311336 .12	23 23	505 505	11,615.0 11,615.0		D micro D micro	138tot 138tot	42 43	3828 3838		7120200 7120200
311337 .12	23	505	11,615.0		D micro	138tot	44			7120200
311338 .12	23	505	11,615.0	60H		138tot	45	3833		7120200
311339 .12	23	505	11,615.0		D micro	138tot	46	3843		7120200
311340 .12	23	505	11,615.0	60H	D micro	138tot	47	3925		7120200
311341 .12	23	505	11,615.0	60H	D micro	138tot	48	3927		7120200
311442 .12	23	505	11,615.0	60H	D micro	138tot	49	3929		7120200
311443 .12	23	505	11,615.0		D micro	138tot	50	3919		7120200
311444 .12	23	505	11,615.0	60H		138tot	51	3923		7120200
311445 .12 311446 .12	23	505	11,615.0		D micro	138tot	52	3934		7120200
311447 .12	23 23	505 505	11,615.0 11,615.0	60H	D micro D micro	138tot 138tot	53 54	3938 3943		7120200 7120200
311448 .12	23	505	11,615.0	60H		138tot	55	3921		7120200
311449 .12	23	505	11,615.0	60H		138tot	56	3911		7120199
311450 .12	23	505	11,615.0	60H		138tot	57	3894		7120199
311451 .12	23	505	11,615.0		D micro	138tot	58	3897		7120199
311452 .12	23	505	11,615.0	60H	D micro	138tot	59	3889		7120199
311453 .12	23	505	11,615.0	60H	D micro	138tot	60	3887		7120199
311454 .12	23	505	11,615.0	60H	D micro	138tot	61	3884		7120199
311455 .12	23	505	11,615.0	60H		138tot	62	3896		7120199
311556 .12	23	505	11,615.0	60H		138tot	63	3897		7120199
311557 .12	23	505	11,615.0	60H		138tot	64	3858		7120199
311558 ,12 311559 ,12	23 23	505 505	11,615.0	60H		138tot	65	3832 2f 3866		7120199
311560 .12	23	505	11,615.0 11,615.0	60H 60H		138tot 138tot	66 67	3840		7120199 7120199
311561 .12	23	505	11,615.0	60H		138tot	68	3908		7120199
311562 .12	23	505	11,615.0	60H		138tot	69	3901		7120199
311563 .12	23	505	11,615.0		D micro	138tot	70	3904		7120199
311564 .12	23	505	11,615.0	: 60H	D micro	138tot	71	3905		7120199
311565 .12	23	505	11,615.0	60H	D micro	138tot	72	3910	,	7120199
311566 .12	23	505	11,615.0	60H	D micro	138tot	73	3904	,	7120199
311567 .12	23	505	11,615.0		D micro	138tot	74	3904		7120199
311568 .12	23	505	11,615.0	60H		138tot	75	3915		7120199
311569 .12	23	505	11,615.0	60HI		138tot	76	3920		7120199
311670 .12 311671 .12	23 23	505 505	11,615.0 11,615.0		D micro D micro	138tot 138tot	77 78	3918 3277		7120199 7120199
311672 .12	23	505	11,615.0		D micro	138tot	79	3922		7120199
311673 .12	23	505	11,615.0		D micro	138tot	80	3926		7120199
311674 .12	23	505	11,615.0		D micro	138tot	81	3934		7120199
311675 .12	23	505	11,615.0		D micro	138tot	82	3947		7120199
311676 .12	23	505	11,615.0	60Hi	D micro	138tot	83	3912		7120199
311677 .12	23	505	11,615.0	60HI	D micro	138tot	84	3911		7120199
311678 .12	23	505	11,615.0		D micro	138tot	85	3907		7120199
311679 .12	23	505	11,615.0		D micro	138tot	86	3908		7120199
311680 .12	23	505	11,615.0		O micro	138tot	87			7120199
311681 .12 311682 .12	23 23	505 505	11,615.0 11,615.0		D micro D micro	138tot	88	3918 3910		7120199
311683 .12	23	505	11,615.0) micro	138tot 138tot	89 90	3912		7120199 7120199
311784 .12	23	505	11,615.0		O micro	138tot	91	3910		7120199
311785 .12	23	505	11,615.0) micro	138tot	92	3911		7120199
311786 .12	23	505	11,615.0) micro	138tot	93	3918		7120199
311787 .12	23	505	11,615.0		O micro	138tot	94			7120199
311788 .12	23	505	11,615.0	60НІ) micro	138tot	95	3956	100	8110773
311789 .12	23	505	11,615.0	60HI) micro	138tot	96	3897	891	8110773
311790 .12	23	505	11,615.0) micro	138tot	97	3923		8110773
311791 .12	23	505	11,615.0		micro	138tot	98	3924		8110773
311792 .12	23	505	11,615.0) micro	138tot	99	3911		8110773
311793 .12	23	505	11,615.0		micro	138tot	100	3842		8110773
311794 .12	23	505 505	11,615.0		micro Page 1 micro	138tot	101	3836	19801	8110773
311795 .12	23	505	11,615.0	DOHD	шсго	138tot	102	3855		8110773

Chenango Contracting Honeywell Sedim Consol doc 17645

PO# 2276

8110773

					Syrac	use, NY					
				13	138 rolls 60 HD micro (505)						
	Engl	ish Dimens	sions								
roll#	roll# wid len		area	check weld rod qty (if ordered)				wgt		resin lot#	
311796 .12	23	505	11,615.0	60HD	micro	138tot	103	3856		8110773	
312101 .12	23	505	11,615.0	60HD	micro	138tot	104	3851		8110773	
312102 .12	23	505	11,615.0	60HD	micro	138tot	105	3929		8110773	
312103 .12	23	505	11,615.0	60HD	micro	138tot	106	4001		8110773	
312104 .12	23	505	11,615.0	60HD	micro	138tot	107	4011		8110773	
312105 .12	23	505	11,615.0	60HD	micro	138tot	108	3912	2ft conf	8110773	

312106 .12 23 505 11,615.0 60HD micro 138tot 109 3814 8110773 312107 .12 505 11,615.0 60HD micro 138tot 110 3870 8110773 312108 .12 23 505 11,615.0 60HD micro 138tot 111 3865 8110773 312109 .12 23 505 11,615.0 60HD micro 138tot 112 3859 8110773 312110 .12 23 505 11,615.0 60HD micro 138tot 113 3855 8110773 312111 .12 23 505 11,615.0 60HD micro 138tot 114 3852 8110773 312112 .12 505 23 11,615.0 60HD micro 138tot 115 3854 8110773 312113 .12 23 505 11,615.0 60HD micro 138tot 116 3855 8110773 312114 .12 23 505 11,615.0 60HD micro 138tot 117 3867 8110773 312115 .12 23 505 11,615.0 60HD micro 138tot 118 3871 8110773 312216 .12 23 505 11,615.0 60HD micro 138tot 119 3864 8110773 312217 .12 23 505 11,615.0 60HD micro 138tot 120 3862 8110773 312218 .12 23 505 11,615.0 60HD micro 138tot 121 3864 8110773 312219 .12 23 505 11,615.0 60HD micro 138tot 122 3852 8110773 312220 .12 23 505 11,615.0 60HD micro 138tot 123 3865 8110773 312221 .12 23 505 11,615.0 60HD micro 138tot 124 3875 8110773 312222 .12 23 505 11,615.0 60HD micro 138tot 125 3876 8110773 312223 .12 23 505 11,615.0 60HD micro 138tot 126 3865 8110773 312224 .12 505 23 11,615.0 60HD micro 138tot 127 3857 8110773 312225 .12 23 505 11,615.0 60HD micro 138tot 128 3848 8110773 312226 .12 23 505 11,615.0 60HD micro 138tot 129 3858 8110773 312227 .12 23 505 11,615.0 60HD micro 138tot 130 3830 2ft conf 8110773 312228 .12 23 505 11,615.0 60HD micro 138tot 131 3850 8110773 312229 .12 23 505 11,615.0 60HD micro 138tot 132 3856 8110773 312330 .12 23 505 11.615.0 60HD micro 138tot 133 8110773 312331 .12 23 505 11,615.0 60HD micro 138tot 134 8110773 312332 .12 23 505 11,615.0 60HD micro 138tot 135 8110773 312333 .12 23 505 11,615.0 60HD micro 138tot 136 8110773 312334 .12 23 505 11,615.0 60HD micro 138tot 137 8110773

60HD micro

138tot

312335 .12

23

505

11,615.0

Honeywell Sediment Consolid. Syracuse, NY

Agru America will certify that the resin used to manufacture this material meets the requirements of Specification Section 02740

Paul W. Barker

Technical Director

Paul Barker (VD)

Date: April 14, 2012

Honeywell Sediment Consolid. Syracuse, NY

Agru America will certify that the Geomembrane produced for this project will be from new, first-quality polyethylene resin. No reclaimed polymer shall be added to the resin. The use of polymer recycled through the manufacturing process is permitted but shall not exceed 10% by weight of total polymer weight.

Paul W. Barker

Technical Director

Paul Barker (VP)

Date: April 14, 2012

Honeywell Sediment Consolid. Syracuse, NY

Agru America, Inc. certifies that for this project we will test to ASTM D5397- Standard Test Method for evaluation of stress crack resistance of polyolefin geomembranes using notched constant tensile load test.

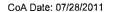
Paul W. Barker

Technical Director

Paul Barker (VP)

Date: April 14, 2012

Honeywell Sediment Consolid. Syracuse, NY


The properties of the welding rod (extrudate) supplied for this project will meet requirements set forth in these specifications.

Paul W. Barker

Technical Director

Paul Barker (VV)

Date: April 14, 2012

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88305479

PO #: 5844

Weight: 194700 LB Ship Date: 07/28/2011

Package: BULK

Mode: Hopper Car

Car #: CEFX053841

Seal No: 260555

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7110583

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.27	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	24	pel/g
Production Date		05/03/2011	, ,

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

ROLL# 443557-1	Lot #:	" 7110583	Liner Type:	MICROSPIR	KE™ HDPE
Measurement ASTM D5994 M (Modified) M	METRIC E IN: 1.49 mm 5 AX: 1.67 mm 6	ENGLISH 59 mil 66 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^m ;	60 mil 505.0 feet 23.0 feet
Asperity ASTM D7466: 27/37 mil A	VE: 1.58 mm 6	62 	IT(Standard) ASTM D389	5 minutes 186	
Specific Gravity ASTM D792	Density		g/cc		.946 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	(190°C /2160 g	g/10 min		.27 🗸
Carbon Black Content ASTM D4218	Range		%		2.42
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Streng	th @ Yield	28 N/mm (kN/m)	161 ppi	2.511 / 2.650 / 2.581 psi 3.334 /
(2 inches / minute)	Average Streng	th @ Break	34 N/mm (kN/m)	197 ppi	2.992 ∕ 3,163 psi 16.11
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elonga	ation @ Yield	%		13.95 15.03 483.4
Lo = 1.3" Yield Lo = 2.0" Break	Average Elonga	ation @ Break	%		556.5 519.5
Dimensional Stability ASTM D1204 (Modified)	Average Dimen	sional change	%		-0.33
Tear Resistance ASTM D1004 (Modified)	Average Tear R	Resistance	258.7 N		58.704 57.596 58.150 lbs
Puncture Resistance FTMS 101 Method 2065 (Modi	Average Peak	Load	412.5 N		92.742 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	608.8 N		136.86 lbs 🗸
ESCR ASTM D1693	Minimum Hrs v	v/o Failures	1500 hrs	C	ERTIFIED
Notched Constant Tensile Loa ASTM D5397	d pass / fail @ 30 ^d	%	300 hrs		PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Department

10-28-11

ROLL# 443558-1	1 Lot #: 71105	i83 Liner Type:	MICROSPIKE™ HDPE
/ CHI DOOD -	METRIC ENGLISH N: 1.52 mm 60 mi	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 ^{feet} 7.01 ^m ; 23.0 feet
(Modified) M. Asperity ASTM D7466: 27/37 mil AV	AX; 1.74 mm 69 mi /E: 1.59 mm 63 mi	Ι !	TEST
TOP / BOTTOM		OIT(Standard) ASTM D389	95 minules 186 RESULTS
Specific Gravity ASTM D792	Density	g/cc	.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /21	60 g g/10 min	.27 🗸
Carbon Black Content ASTM D4218	Range	%	2.40
Carbon Black Dispersion ASTM D5596	Category		10 in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield	28 N/mm (kN/m)	2,628 158 ppi 2,529 psi 3,226 3,109
(2 mones / minute)	Average Strength @ Break	35 N/mm (kN/m)	198 ppi 3,169 psi
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elongation @ Yie	ld %	17.06 14.11 16.04
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Bre	ak %	478.8 571.0 524.9
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional chan	ge %	-0.33
Tear Resistance			57.981 - 60.095 -
ASTM D1004 (Modified)	Average Tear Resistance	262.6 N	59.038 lbs
Puncture Resistance FTMS 101 Method 2065 (Modif	Average Peak Load	454.0 N	102.07 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	648.2 N	145.72 lbs
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs	PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-28-11

ROLL# 44355	9-11	Lot	#:		71	10583	Liner	Type:	MICRO	SPIK	Ϊ HDF	PE
Measurement ASTM D5994	MIN:	METR 1.52	IC mm	ENC 60	GLIS	SH mil	Thicknes Length		1.5 m 153.926 7.01		000.0	eet eet
(Modified)	MAX:	1.77	mm	70		mil	Width		7.01	,		
Asperity ASTM D7466: 27/37 TOP / BOTTOM	mil AVE:	1.59	mm	63		mil	OIT(Standard) AS	STM D389	5 minutes	186	TES' RESUL	
Specific Gravity ASTM D792		Density					g/cc				.946	
MFI ASTM D1238 COND. E GRADE: K30	07	Melt Flov	v Inde	ex 19	0°C	/2160 (g g/10 n	nin	•		.27	
Carbon Black Content ASTM D4218		Range					%				2.40	
Carbon Black Dispersion ASTM D5596		Category	,							10	0 in Cat 1	
Tanaila Otranath											2,430 2,628	
Tensile Strength ASTM D6693		Average	Strer	ngth (@ Yi	ield	28 N/mm	(kN/m)	158 p	pi	2,529	psi
ASTM D638 (Modified)											3, 2 28 3,109	
(2 inches / minute)		Average	Strer	nath (@ B	reak	35 N/mm	(kN/m)	198 p	igo	3,169	psi
				,							17.96	-
Elongation ASTM D6693 ASTM D638 (Modified)		Average	Elone	aatio	n @	Yield	%				14.11	
(2 inches / minute)				J			.,				478.8	
Lo = 1.3" Yield Lo = 2.0" Break					_		0.4				571.0	
		Average	Elon	gatio	n @	вгеак	%	-			524.9	
Dimensional Stability ASTM D1204 (Modified)		Average	Dime	nsion	nal c	hange	%				-0.33	
Tear Resistance	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										57.981	
ASTM D1004 (Modified)		Average	Tear	Resi	stan	ice	262.6	N			60.095 59.038	lbs
Puncture Resistance FTMS 101 Method 2065 ((Modified)	Average					454.0		1,		102.07	lbs
Puncture Resistance ASTM D4833 (Modified)		Average	Pea	k Loa	ad		648.2	N			145.72	lbs
ESCR ASTM D1693		Minimur	n Hrs	w/o	Failı	ures	1500 hrs			CI	ERTIFIED	
Notched Constant Tensile ASTM D5397	Load	pass / fail	@ 3	0%			300 hrs				PASS	

Customer: Chenango Contracting, Inc.
PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature......Quality Control Department

10-28-11

60HDmic.FRM 12/23/05

ROLL# 443560-1	Lot #: 7 1	110583	Liner 1	Type: N	/IICROS	SPIK	E™ HDF	PΕ
Measurement ASTM D5994 MIN (Modified) MA		SH mil mil	Thickness Length Width		1.5 m 153.926 7.01		23.0 f	eet eet
Asperity ASTM D7466: 27/35 mil AVI	E: 1.56 mm 61	mil Of	T(Standard) AS	TM D3895	minutes	186	TES RESUL	
Specific Gravity ASTM D792	Density		g/cc				.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C	C /2160 g	g/10 m	iin			.27	
Carbon Black Content ASTM D4218	Range		%				2.40	
Carbon Black Dispersion ASTM D5596	Category					10) in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ \	Yield	27 N/mm (kN/m)	155 p	pji	2,430 2,628 2,529 3,228 3,109	ps
(2 mones / minute)	Average Strength @ B	Break	34 N/mm (kN/m)	195 p	pi	3,169	ps
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elongation @	⑦ Yield	%				17.96 14.11 16.04 478.8 571.0	
Lo = 2.0" Break	Average Elongation @	ng Break	%				524.9	
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional	change	%				-0.33	
Tear Resistance ASTM D1004 (Modified)	Average Tear Resista	ance	262.6	N			57.981 60.095 59.038	lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load		454.0	N			102.07	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load		648.2	N			145.72	lbs
ESCR ASTM D1693	Minimum Hrs w/o Fai	ilures	1500 hrs			CE	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Quality Control Department

REV 03 12/23/05

443561-11 Lot #: 7110583 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 505.0 153.926 m MIN: 1.47 mm 58 Length..... ASTM D5994 mil 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.69 mm 67 mil **TEST** 28/34 mil AVE: Asperity ASTM D7466: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 186 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .27 COND. E GRADE: K307 Carbon Black Content Range % 2.40 **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 **ASTM D5596** 2.430 Tensile Strength 2,628 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) 156 ppi 2,529 psi ASTM D638 (Modified) 3,228 (2 inches / minute) 3,109 Average Strength @ Break 34 N/mm (kN/m) 196 ppi 3,169 psi 17.96 Elongation ASTM D6693 14.11 ASTM D638 (Modified) Average Elongation @ Yield % 16.04 (2 inches / minute) 478.8 Lo = 1.3" Yield 571.0 Lo = 2.0" Break Average Elongation @ Break % 524.9 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -0.3357.981 Tear Resistance 60.095 ASTM D1004 (Modified) Average Tear Resistance 262.6 N 59.038 lbs Puncture Resistance Average Peak Load lbs 102.07 FTMS 101 Method 2065 (Modified) 454.0 Ν Puncture Resistance Average Peak Load 648.2 N lbs 145.72 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.

Quality Control Department

10-28-11

440500 44		7440500	l in an Tropaci	MICDOCDIA	ZETM LIDDE
ROLL# 443562-11	Lot #:	7110583	Liner Type: I		
Measurement ASTM D5994 ✓ MIN:		GLISH mil	Thickness	1.5 mm 153.926 ^m 7.01 ^m ;	60 mil 505.0 feet 23.0 feet
Modified) MAX	: 1.78 mm 70	mil	Width	7.01	23.0 leet
Asperity ASTM D7466: 25/35 mil AVE	: 1.62 mm 64	mil o	IT(Slandard) ASTM D389	5 minutes 186	TEST RESULTS
Specific Gravity ASTM D792	Density		g/cc		.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 19	90°C /2160 g	g/10 min		.27
Carbon Black Content ASTM D4218	Range		%		2.46
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Strength	@ Yield	31 N/mm (kN/m)	175 ppi	2,750 psl
(2 inches / minute) Elongation ASTM D6693	Average Strength	@ Break	39 N/mm (kN/m)	222 ppi	3,479 psi 13,66 13,99
ASTM D638 (Modified) (2 inches / minute)	Average Elongatio	n @ Yield	%		16.33 V
Lo = 1.3" Yield Lo = 2,0" Break	Average Elongatio	n @ Break	%		548.2 523.6
Dimensional Stability ASTM D1204 (Modified)	Average Dimensio	nal change	%		-0.33
Tear Resistance					57.381
ASTM D1004 (Modified)	Average Tear Res	istance	257.3 N		57.837 lbs~
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Lo	ad	424.8 N		95.506 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Lo	ad	606.9 N		136.45 lbs v
ESCR ASTM D1693	Minimum Hrs w/o	Failures	1500 hrs	С	ERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%		300 hrs		PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:_____

Signature...Quality Control Department

ROLL# 4	4356	33.	-11	Lo	t #:		 7110583	3 I	_ Liner	Type: N	/IICROS	SPIK	E™ HD	PE
Measurement ASTM D5994 (Modified)			MIN: MAX:	METF 1.48 1.67	RIC mm mm	58	LISH mil mil	Le	nicknes ength lidth		1.5 m 153.926 7.01		23.0	feet feet
Asperity ASTM D7466 TOP / BOTTOM	: 28/37	mil	AVE:	1.57	mm	62	mil	OIT(Star	ndard) AS	STM D3895	minutes	186	TES RESU	
Specific Gravity ASTM D792				Density				3.	g/cc				.946	;
MFI ASTM D123 COND. E GRADE:	8 K3	07		Melt Flo	w Ind	ex 190	0°C /2160	g	g/10 r	nin			.27	•
Carbon Black Co ASTM D4218	ontent			Range					%				2.46	5
Carbon Black Dis ASTM D5596	spersion			Categor	у							10	0 in Cat 1	
Tensile Strength									***************************************				2,616 2,883	
ASTM D6693				Average	Stre	ngth @) Yield	3	80 N/mm	(kN/m)	170 p	pi	2,750	
ASTM D638 (Mo	,												3,789 3,169	
(2 inches / minu	ie)			Average	Stre	ngth @) Break	;	38 N/mm	(kN/m)	215 p	pi	3,479	
Flammation ACT	M D0000												18.66 13.99	, ,
Elongation ASTI ASTM D638 (Mo		3		Average	Elon	gation	@ Yield		%				16.33	
(2 inches / minu	•												499.0)
Lo = 1.3" Yield Lo = 2.0" Break				Average	Flon	aation	@ Break		%				548.2 523.6	
Dimensional Stal	bility			rtvorago	LIOIT	gation	w Break		70				020.0	
ASTM D1204 (M				Average	Dime	ension	al change		%				-0.33	3
Tear Resistance			A11										57.381	
ASTM D1004 (M	odified)			Average	Tear	Resis	tance		257.3	N			58.292 57.83 7	
Puncture Resista FTMS 101 Metho		(Mo	odified)	Average					424.8	-			95.506	
Puncture Resista ASTM D4833 (M				Average	e Pea	k Loa	d		606.9	N			136.45	; lbs
ESCR ASTM D1693				Minimu	m Hrs	s w/o F	ailures	1500) hrs			CI	ERTIFIED)
Notched Constar ASTM D5397	nt Tensil	e Lo	oad	pass / fai	I @ 3	0%	-	- 300	hrs				PASS	3

Customer: Chenango Contracting, Inc.
PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

60HDmic FRM REV 03

10-28-11

443565-11 Lot #: 7110583 Liner Type: MICROSPIKE™ HDPE ROLL # 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m feet 505.0 Length..... MIN: 1.54 mm 61 mil ASTM D5994 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** Asperity ASTM D7466: 27/30 mil AVE: 1.60 mm 63 mil OIT(Standard) ASTM D3895 minutes 186 RESULTS TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g q/10 min .27 COND. E GRADE: K307 Carbon Black Content % 2.46 Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category ASTM D5596 2,616 2,883 Tensile Strength Average Strength @ Yield 173 ppi 30 N/mm (kN/m) 2,750 psi **ASTM D6693** ASTM D638 (Modified) 3,789 3,169 (2 inches / minute) Average Strength @ Break 38 N/mm (kN/m) **219** ppi 3,479 psi 18.66 13.99 Elongation ASTM D6693 % 16.33 ASTM D638 (Modified) Average Elongation @ Yield (2 inches / minute) 499.0 Lo = 1.3" Yield 548.2 Lo = 2.0" Break Average Elongation @ Break % 523.6 **Dimensional Stability** % -0.33Average Dimensional change ASTM D1204 (Modified) 57.381 Tear Resistance 58.292 ASTM D1004 (Modified) Average Tear Resistance 257.3 Ν 57.837 lbs Puncture Resistance Average Peak Load lbs 95.506 424.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.9 N lbs 136.45 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

01

10-28-11

Signature......Quality Control Department

Measurement	ROLL# 443566-1	1 Lot #: 7110583	Liner Type: MICROSPIK	E™ HDPE
Specific Gravity	ASTM D5994 MI (Modified) MA	N: 1.50 mm 59 mil	Length 153.926 m	505.0 feet 23.0 feet
ASTM D792		(E: 1.58 mm 62 mil	OIT (Standard) ASTM D3895 minutes 186	
COND. E GRADE: K307 Carbon Black Content ASTM D4218 Carbon Black Dispersion ASTM D5596 Category Category Carbon Black Dispersion ASTM D5693 Average Strength @ Yield ASTM D6893 ASTM D638 (Modified) (2 inches / minute) Elongation ASTM D6893 ASTM D638 (Modified) (2 inches / minute) Average Elongation @ Yield (2 inches / minute) Elongation ASTM D6893 ASTM D638 (Modified) (2 inches / minute) Dimensional Stability ASTM D1204 (Modified) Average Dimensional change Average Tear Resistance ASTM D1004 (Modified) Puncture Resistance FTMS 101 Method 2065 (Modified) Puncture Resistance ASTM D1693 Notched Constant Tensile Load Minimum Hrs w/o Failures Notched Constant Tensile Load PASS Model PASS Mo		Density	g/cc	.947
ASTM D4218 Carbon Black Dispersion ASTM D5596 Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield (2 inches / minute) Lo = 1.3" Yield (2 inches / minute) Lo = 2.0" Break Dimensional Stability AsTM D1204 (Modified) Average Dimensional change % Fast D1004 (Modified) Average Tear Resistance ASTM D1004 (Modified) Puncture Resistance FTMS 101 Method 2065 (Modified) Puncture Resistance FTMS 101 Method 2065 (Modified) Puncture Resistance ASTM D4333 (Modified) Average Peak Load	COND. E	Melt Flow Index 190°C /2160 g	g/10 min	.27
ASTM D5596 Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Everage Strength @ Break ASTM D638 (Modified) (2 inches / minute) Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Yield Average Elongation @ Break Dimensional Stability ASTM D1204 (Modified) Average Dimensional change Average Peak Load Average Peak Load Puncture Resistance ASTM D1004 (Modified) Average Peak Load A		Range	%	2.45
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Average Strength @ Break ASTM D638 (Modified) (2 inches / minute) Average Strength @ Break ASTM D638 (Modified) (2 inches / minute) Average Elongation @ Yield (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Dimensional Stability ASTM D1204 (Modified) Average Dimensional change Average Dimensional change Average Peak Load		Category	10	in Cat 1
Elongation ASTM D6693 AVerage Elongation @ Yield Werage Elongation @ Break Lo = 2.0" Break Average Elongation @ Break Average Elongation @ Break Average Dimensional change ASTM D1204 (Modified) Average Dimensional change Average Peak Load Aver	ASTM D6693 ASTM D638 (Modified)	Average Strength @ Yield	•	2,764 2 2,675 psī
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Dimensional Stability ASTM D1204 (Modified) Average Dimensional change Average Tear Resistance ASTM D1004 (Modified) Average Peak Load Puncture Resistance FTMS 101 Method 2065 (Modified) Average Peak Load	(2 inches / minute)	Average Strength @ Break	39 N/mm (kN/m) 220 ppi	
Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Break Dimensional Stability ASTM D1204 (Modified) Average Dimensional change ASTM D1004 (Modified) Average Tear Resistance ASTM D1004 (Modified) Average Tear Resistance Puncture Resistance FTMS 101 Method 2065 (Modified) Average Peak Load	ASTM D638 (Modified)	Average Elongation @ Yield	%	16.18 18.12
ASTM D1204 (Modified) Average Dimensional change % For A12 AVERAGE Pear Resistance AVERAGE Peak Load Puncture Resistance FTMS 101 Method 2065 (Modified) Average Peak Load	Lo = 1.3" Yield	Average Plongation @ Break	%	569.4
ASTM D1004 (Modified) Average Tear Resistance Average Peak Load Puncture Resistance FTMS 101 Method 2065 (Modified) Average Peak Load Average		Average Dimensional change	%	-0.33
FTMS 101 Method 2065 (Modified) Puncture Resistance ASTM D4833 (Modified) Average Peak Load Average Peak		Average Tear Resistance	256.0 N	57.716
ASTM D4833 (Modified) ESCR ASTM D1693 Minimum Hrs w/o Failures 1500 hrs CERTIFIED Notched Constant Tensile Load pass / fail @ 30% 300 hrs		Average Peak Load	443.7 N	99.756 lbs
ASTM D1693 Notched Constant Tensile Load nass / fail @ 30% 300 brs		Average Peak Load	644.5 N	144.89 lbs V
		Minimum Hrs w/o Failures	1500 hrs CE	RTIFIED
		pass / fail @ 30%	300 hrs	PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

10-29-11

.11 Lot #:	7110583	Liner Type:	MICROSPIK	E™ HD	PE
		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	000.0	eet
		OIT(Standard) ASTM D389	5 minutes 186	TES RESU	
Density		g/cc		.947	
Melt Flow Inde	ex 190°C /2160	g g/10 min		.27	
Range		%		2.45	
Category	-		1	0 in Cat 1	
Average Strer	ngth @ Yield	30 N/mm (kN/m)	169 ppi	2,586 2,764 2,675 3,834	psi
Average Strer	ngth @ Break	39 N/mm (kN/m)	223 ppi	3,536	psi
		%		15.18 18.12 504.5 569.4	
		%		-0.33	
Average Tear	Resistance	256.0 N		57.412 57.716 57.564	lbs
Average Pea	k Load	443.7 N		99.756	lbs
Average Pea	k Load	644.5 N		144.89	lbs
Minimum Hrs	w/o Failures	1500 hrs	CI	ERTIFIED	
ad pass / fail @ 3	0%	300 brs		DASS	
	METRIC MIN: 1.48 mm MAX: 1.74 mm AVE: 1.60 mm Density Melt Flow Index Range Category Average Street Average Elong Average Elong Average Dimes Average Pear Average Pear Average Pear Minimum Hrs	METRIC ENGLISH MIN: 1.48 mm 58 mil MAX: 1.74 mm 69 mil AVE: 1.60 mm 63 mil Density Melt Flow Index 190°C /2160 Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Tear Resistance Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness MIN: 1.48 mm 58 mil Length	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness 1.5 mm 153.926 m 505.0 fm 7.01 m 23.0 fm 23.0 fm 505.0 fm 505.0 fm 7.01 m 23.0 fm 505.0 fm 505.0 fm 505.0 fm 7.01 m 23.0 fm 505.0 fm 505.

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-29-11

Signature......Quality Control Department

443568-11 Lot #: 7110583 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement feet 153.926 m 505.0 Length..... MIN: 1.47 mm 58 ASTM D5994 mil 7.01 m; 23.0 feet Width..... (Modified) mm 69 MAX: 1.76 mil **TEST** Asperity ASTM D7466: 28/35 mil AVE: 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes RESULTS 186 TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .27 g/10 min COND. E GRADE: K307 Carbon Black Content % 2.45 Range **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 ASTM D5596 2,586 2,764 Tensile Strength Average Strength @ Yield 29 166 ppi psi N/mm (kN/m) 2,675 **ASTM D6693** ASTM D638 (Modified) 3,834 3,237 (2 inches / minute) 3,536 Average Strength @ Break 39 N/mm (kN/m) 220 ppi psi 21.06 15.18 Elongation ASTM D6693 % 18.12 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 504.5 Lo = 1.3" Yield 569.4 Lo = 2.0" Break Average Elongation @ Break % 537.0 **Dimensional Stability** % Average Dimensional change -0.33ASTM D1204 (Modified) 57.412 Tear Resistance 57.716 ASTM D1004 (Modified) 256.0 Average Tear Resistance Ν 57.564 lbs Puncture Resistance Average Peak Load 99.756 lbs 443.7 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 644.5 N 144.89 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-29-11

Quality Control Department

4.40							_					
443	569	-11	Lo	t #:	7	7110583	Line	r Type:	MICROS	SPIK	E™ HI	DPE
			METE	RIC	ENGL	ISH	Thickne	ess			60 mi	I
		MIN:	1.46			mil				m	505.0	feet
						mil			7.01	m;	23.0	feet
7466: 2 TOM	7/36 mil		1.55			mil	OIT(Standard)	ASTM D389	5 minutes	186		ST ULT
vity			Density				g/cc				.94	7
1238	K307		Melt Flo	w Ind	ex 190º	°C /2160 g	g g/10) min			.2	7
k Contei B	nt		Range				%				2.4	5
k Disper 3	sion		Categor	У						10	0 in Cat	1
	ed)		Average	Stre	ngth @	Yield	29 N/r	nm (kN/m)	163 p	pji	2,76 2,6 7	4 5
ninute)			Average	Strer	ngth @	Break	38 N/r	nm (kN/m)	216 p	pi		
							%				15.1	8
(Modifie ninute) Id	eu)		Average	LIOIT	gation	@ Fleid	70				504	.5
eak			Average	Elon	gation	@ Break	%				537.	0
-			Average	Dime	ensiona	al change	%				-0.3	3
nce 4 (Modifi	ied)		Average	Tear	Paciet	ance	256 (0 N			57.71	6
sistance		odified)	Average						7	g.		
sistance	<u>`</u>		-	e Pea	k Load		644.	5 N			144.8	9 1
3			Minimu	n Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIE	D
nstant Te 7	ensile Lo	oad	pass / fai	l @ 3	0%		300 hrs				PAS	S
	7466: 2 TOM vity 1238 C Conters C Dispers C Modified in the content of the cont	7466: 27/36 mil TOM vity 1238 K307 C Content 3 C Dispersion 6 Ingth 3 (Modified) Ininute) ASTM D6693 (Modified) Ininute) Id eak Stability 4 (Modified) Ince 4 (Modified) Ince 4 (Modified) Ince 5 (Modified) Ince 6 (Modified) Ince 7 (Modified) Ince 8 (Modified) Instance 8 (Modified) Instance 8 (Modified) Instant Tensile Logarity	MIN: MAX: 7466: 27/36 mil AVE: TOM vity 1238 K307 C Content C Dispersion C Modified) ninute) ASTM D6693 (Modified) ninute) Id eak Stability (Modified) eak Stability (Modified) sistance ethod 2065 (Modified) sistance ethod 2065 (Modified) sistance C Modified)	METERMIN: 1.46 MAX: 1.75 7466: 27/36 mil AVE: 1.55 TOM Vity Density 1238 Melt Flow K307 C Content Range C Dispersion Category (Modified) Category Average ASTM D6693 (Modified) Category Average	METRIC MIN: 1.46 mm MAX: 1.75 mm 7466: 27/36 mil AVE: 1.55 mm 7466: 27/36 mil AVE: 1.55 mm TOM Vity Density 1238 Melt Flow Indi K307 C Content Range C Dispersion Category Ogth Average Stree Average Stree Average Elon Stability Average Elon Stability Average Dime METRIC 1.46 mm MAX: 1.75 mm Average Average Stree Average Elon Stability Average Elon Stability Average Dime Average Pea Minimum Hrs Stant Tensile Load Minimum Hrs	METRIC ENGL MIN: 1.46 mm 57 MAX: 1.75 mm 69 7466: 27/36 mil AVE: 1.55 mm 61 TOM Vity Density 1238 Melt Flow Index 190 K307 Content Range Cotegory Average Strength @ (Modified) Minimute) Average Elongation Stability (Modified) Average Elongation Stability (Modified) Average Dimensional Average Peak Load Sistance (Modified) Average Peak Load Average Peak Load Average Peak Load Minimum Hrs w/o F Average Peak Load Minimum Hrs w/o F Average Peak Load Minimum Hrs w/o F	METRIC ENGLISH MIN: 1.46 mm 57 mil MAX: 1.75 mm 69 mil 7466: 27/36 mil AVE: 1.55 mm 61 mil 74766: 27/36 mi	METRIC ENGLISH MIN: 1.46 mm 57 mil Length MAX: 1.75 mm 69 mil 7466: 27/36 mil AVE: 1.55 mm 61 mil OIT(Standard) Vity Density g/cc 1238 Melt Flow Index 190°C /2160 g g/10 K307 C Content Range C Dispersion Category Average Strength @ Yield Average Strength @ Break Average Elongation @ Yield Average Elongation @ Yield Average Elongation @ Break Stability Average Elongation @ Break Average Peak Load Average Peak Load Average Peak Load Average Peak Load Minimum Hrs w/o Failures 1500 hrs Average Fail @ 30% Average Fail @ 30% Average Fail @ 30% Average Fail @ 30% Average Fail @ 30%	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness 1.5 mm 153.926 Width 1.46 mm 57 mil Length 153.926 Width 1.75 mm 69 mil 0 OIT(Standard) ASTM D3895 minutes 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 1.238 Melt Flow Index 190°C /2160 g g/10 min K307 K Content Range % K307 K Content Range % K307 K Content Range % K308 Melt Flow Index 190°C /2160 g g/10 min K307 K Content Range % K308 Melt Flow Index 190°C /2160 g g/10 min K307 K Content Range % K308 Melt Flow Index 190°C /2160 g g/10 min K307 K Content Range % Melt Flow Index 190°C /2160 g g/10 min K307 K Content Range % Melt Flow Index 190°C /2160 g g/10 min Melt Flow Index 190°C /2160 g	METRIC ENGLISH Thickness 1.5 mm 153.926 m 153.926 m	## Add #

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Quality Control Department

ROLL# 443670-1	1 Lot #: 7110583	Lines Turner	MICDOSDIVE	TM UDDE
		Liner Type: I	1.5 mm	60 mil
Measurement ASTM D5994 MIN	METRIC ENGLISH N: 1.49 mm 59 mil	Thickness Length	153.926 m	505.0 feet
(Modified) MA	X: 1.65 mm 65 mil	Width	7.01 m; 2	23.0 feet
Asperity ASTM D7466: 27/36 mil AV	E: 1.57 mm 62 mil	OIT(Standard) ASTM D3895	minutes 186	TEST RESULTS
Specific Gravity ASTM D792	Density	g/cc		.945 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160 g	g/10 min		.27✓
Carbon Black Content ASTM D4218	Range	%		2.46
Carbon Black Dispersion ASTM D5596	Category		10 i	n Cat 1
Tensile Strength ASTM D6693	Average Strength @ Yield	27 N/mm (kN/m)	155 ppi	2,413 3,606 2,510 psi
ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Break	35 N/mm (kN/m)	197 ppi	3,250 3,138 3,195 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elongation @ Yield	%		16.72 13.61 16.17 ✓
Lo = 1.3" Yield Lo = 2.0" Break	Average Plongation @ Break	%		492.0 590.0 541.0
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	%		-0.33
Tear Resistance				56.443 V 55.799 V
ASTM D1004 (Modified)	Average Tear Resistance	247.4 N		55.621 lbs V
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load ed)	402.6 N		90.510 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	641.6 N		144.23 lbs 🗸
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs	CER	TIFIED
Notched Constant Tensile Load ASTM D5397 ✓	pass / fail @ 30%	300 hrs		PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Quality Control Department

10-29-11

60HDmic,FRM REV 03

443673-11 Lot #: 7110583 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153,926 m 505.0 feet Length..... MIN: 1.39 mm 55 **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 65 MAX: 1.64 mil **TEST** 26/35 mil AVE: Asperity ASTM D7466: 1.52 mm 60 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 186 TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 .27 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content Range % 2.46 **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category ASTM D5596 2.413 2,606 Tensile Strength Average Strength @ Yield 150 ppi psi 26 N/mm (kN/m) 2,510 **ASTM D6693** ASTM D638 (Modified) 3,250 3,139 (2 inches / minute) 3,195 Average Strength @ Break 33 N/mm (kN/m) **191** ppi psi 18.72 13.61 Elongation ASTM D6693 16.17 % Average Elongation @ Yield > ASTM D638 (Modified) (2 inches / minute) 492.0 Lo = 1.3" Yield 590.0 Lo = 2.0" Break 541.0 Average Elongation @ Break % **Dimensional Stability** -0.33 Average Dimensional change % ASTM D1204 (Modified) 55.443 Tear Resistance 55.799 ASTM D1004 (Modified) 55.621 lbs Average Tear Resistance 247.4 N Puncture Resistance lbs Average Peak Load 90.510 402.6 N FTMS 101 Method 2065 (Modified) Puncture Resistance 641.6 N Average Peak Load 144.23 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

QI.

10-29-11

ROLL# 443674-11	Lot #: 7110583	Liner Type: MICROSPIKE™	HDPE
Measurement ASTM D5994 MIN (Modified) MAX		Thickness) feet
Asperity ASTM D7466: 26/33 mil AVE	E: 1.52 mm 60 / mil	OIT(Standard) ASTM D3895 minutes 186 R	TEST RESULTS
Specific Gravity ASTM D792	Density	g/cc	.947
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160 g	g/10 min	.27 V
Carbon Black Content ASTM D4218	Range	%	2.46
Carbon Black Dispersion ASTM D5596	Category	10 in (Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Preak	27 N/min (kN/m) 152 ppi	2,545 psi 2,545 psi 2,257 3,110 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Yield Average Elongation @ Break	%	18.78 6.34 17.06 / 190.4 589.7
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change		-0.33
Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	57	7.793 7.902 lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load d)	423.5 N 95	5.220 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	659.4 N 14	48.24 lbs
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs CERTI	FIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs F	ASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-29-11

ROLL# 443675-1	1 Lot #:	7110583	Liner Type:	MICROSPIN	KE™ HDPE		
Measurement ASTM D5994 MI (Modified) MA			Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;		et eet	
Asperity ASTM D7466: 26/33 mil AV	'E: 1.55 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 186	TES ⁻ RESUL		
Specific Gravity ASTM D792	Density		g/cc		.947		
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 ç	g g/10 min		.27		
Carbon Black Content ASTM D4218	Range		%		2.46		
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1		
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stren	ngth @ Yield	27 N/mm (kN/m)	155 ppi	2,529 2,560 2,545 3,287 3,110	psi	
(2 inches / minute)	Average Stren	igth @ Break	34 N/mm (kN/m)	195 ppi	3,199	psi	
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elong		%		18.78 15.34 17.06 490.1 589.7 539.9		
Dimensional Stability ASTM D1204 (Modified)		gation @ Break ensional change	%		-0.33	_	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	257.5 N		58.010 57.793 57.902	lbs	
Puncture Resistance FTMS 101 Method 2065 (Modifi	Average Peal ied)	k Load	423.5 N		95.220	lbs	
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	659.4 N		148.24	lbs	
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED		
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Quality Control Department

10-29-11

60HDmic FRM

ROLL# 44	3676	-11	Lo	t #:		7110583	Liner	Type: I	MICROS	SPIK	E™ HI	OPE
Measurement ASTM D5994 (Modified)		MIN: MAX;	METF 1.49 1.71	RIC mm mm	59	LISH mil mil	Thicknes Length Width		1.5 m 153.926 7.01		60 mi 505.0 23.0	feet feet
Asperity ASTM D7466: TOP / BOTTOM	27/34 mil	AVE:	1.58	mm	62	mil	OIT(Standard) AS	STM D3895	5 minutes	186		ST ULTS
Specific Gravity ASTM D792			Density				g/cc				.94	7
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flov	w Inde	ex 190	0°C /2160 g	g/10 r	nin			.2	7
Carbon Black Cont ASTM D4218	ent		Range				%				2.4	6
Carbon Black Dispe ASTM D5596	ersion		Category	/						10) in Cat	1
Tensile Strength ASTM D6693 ASTM D638 (Modif (2 inches / minute)	,		Average	Strer	ngth @) Yield	28 N/mm	(kN/m)	158 p	pi	2,52 2,56 2,54 3,28 3,11	0 5 psi 7
			Average	Strer	igth @) Break	35 N/mm	(kN/m)	199 p	pi	3,19	9 psi
Elongation ASTM [ASTM D638 (Modifi (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	ied)		Average Average			@ Yield @ Break	%				18.7 15.3 17.0 490. 589.	4 6 1
Dimensional Stabilit ASTM D1204 (Modi	•					al change	%				-0.3	
Tear Resistance ASTM D1004 (Modi	ified)		Average	Tear	Resis	tance	257.5	N		-	58.01 57.79 57.90	3
Puncture Resistanc FTMS 101 Method 2	-	dified)	Average	Peak	k Load	l	423.5	N			95.22	0 lbs
Puncture Resistanc ASTM D4833 (Modi			Average	Peak	k Load		659.4	N			148.2	4 lbs
ESCR ASTM D1693			Minimun	n Hrs	w/o F	ailures	1500 hrs			CE	RTIFIE)
Notched Constant T ASTM D5397	ensile Lo	ad I	pass / fail	@-30)%		300 hrs				PASS	3

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

011

10-29-11

THE REAL PROPERTY.		_					•	_							
ROLL# 443677-11		-11	Lot #: 7110583				3 Lir	Liner Type: MIC				ICROSPIKE™ HDPE			
A				METI	RIC	ENGL	ISH	Thick	ness	S	1.5 m		60 m		
Measurement ASTM D5994			MIN:	1.49	mm		mil			•••••	153.926		505.0	fee	
Modified)			MAX:	1.74	mm	69	mil	Widtl	h	*******	7.01	m;	23.0	fee	et
Asperity ASTM D7		/31 mil	AVE:	1.58	mm		mil	OIT(Standar	rd) AS	TM D3895	minutes	186	TE RES	ST UL	
Specific Grav ASTM D792	ity			Density				g/c	cc				.94	17	
MFI ASTM D [^] COND. E GRADE:		K307		Melt Flo	w Ind	ex 190	°C /2160	g g/	/10 m	nin			.2	27	
Carbon Black ASTM D4218		t		Range				%					2.4	16	
Carbon Black ASTM D5596		ion		Categor	у							10	0 in Cat	1	
													2,57 2,56	29	
Tensile Stren ASTM D6693	_			Average	Stre	ngth @	Yield	28	N/mm	(kN/m)	158 p	pi	2,54		ps
ASTM D638 (d)											3,28	37	
(2 inches / m	inute)			Average	Stro	nath @	Brook	35	N/mm	(I-N1/m)	199 p	mi	3,11 3,19		ps
				Average	Suc	ngin w	Dieak		INZITIELI	(KIWIII)	100 P	γPi	18.	78	PC
Elongation A				A.,	. Class	cation	@ Viold	%					15.3 17.0		
ASTM D638 ((2 inches / m		1)		Average	EION	igation	@ rieid	70)						
Lo = 1.3" Yiel	•												490 589	.7	
Lo = 2.0" Bre	ak			Average	e Elon	gation	@ Break	%					539	.9	
Dimensional : ASTM D1204	-	ed)		Average	e Dime	ensiona	al change	. %	6				-0.	33	
Tear Resistar	nce		7										58.0		
ASTM D1004		ed)		Average	יפפד מ	r Resist	ance	25	7.5	N			57.79 57.90		lb:
Puncture Res		65 (M	odified	Averag				-	23.5				95.2		-
Puncture Res ASTM D4833	sistance			Averag	e Pea	ak Load		65	9.4	N			148.:	24	lb
ESCR ASTM D1693				Minimu	ım Hr	s w/o F	ailures	1500 h	nrs			С	ERTIFIE	D	
Notched Con ASTM D5397		nsile L	oad	pass / fa	il @ 3	30%		300 hr	s				PAS	SS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

REV 03 12/23/05

ROLL# 443678-1	1 Lot #: 7110	583 Liner Type:	MICROSPIKE™ HDPE
Measurement ASTM D5994 MII (Modified) MA	X: 1.64 mm 65 n	Thickness nil Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 m: 23.0 feet
Asperity ASTM D7466: 27/38 mil AV	E: 1.56 mm 61 / m	OIT(Standard) ASTM D38	TEST 95 minutes 186 RESULTS
Specific Gravity ASTM D792	Density	g/cc	.945 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2	160 g g/10 min	.27 🗸
Carbon Black Content ASTM D4218	Range	%	2.53
Carbon Black Dispersion ASTM D5596	Category		10 in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield		2,501 2,845 164 ppi 2,674 psi 3,476 202 ppi 3,287 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Yie		10.66 15.02 17.04 ~ 474.1 561.4 517.8 ~
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional cha	nge %	-0.33
Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	252.2 N	56.918 - 58.476 - 56.697 lbs -
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load	375.7 N	84.466 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	609.6 N	137.05 lbs
ESCR ASTM D1693	Minimum Hrs w/o Failure	s 1500 hrs	CERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs	PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-30-11

Signature Quality Control Department

443679-11 Lot #: 7110583 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.48 mm 58 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** Asperity ASTM D7466: 25/36 mil AVE: 1.56 mm 61 mil OIT(Standard) ASTM D3895 minutes 186 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .27 g/10 min COND. E GRADE: K307 Carbon Black Content Range % 2.53 **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 ASTM D5596 2,501 2,846 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) 164 ppi 2,674 psi **ASTM D6693** ASTM D638 (Modified) 3,398 (2 inches / minute) 3,176 Average Strength @ Break 35 N/mm (kN/m) 202 ppi 3,287 psi 19.06 15.02 Elongation ASTM D6693 ASTM D638 (Modified) Average Elongation @ Yield % 17.04 (2 inches / minute) 474.1 Lo = 1.3" Yield 561.4 Lo = 2.0" Break Average Elongation @ Break % 517.8 **Dimensional Stability** Average Dimensional change % -0.33ASTM D1204 (Modified) 56.918 Tear Resistance 56.476 ASTM D1004 (Modified) Average Tear Resistance 56.697 252.2 N lbs Puncture Resistance Average Peak Load lbs 84.466 375.7 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 609.6 N lbs 137.05 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-30-11

Signature......Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88305989

PO #: 5844

Weight: 185800 LB Ship Date: 07/30/2011

Package: BULK Mode: Hopper Car

Car #: PSPX002613 Seal No: 270868

MARLEX POLYETHYLENE K307 BULK

Lot Number: 8210664

Property	Test Method	Value	Unit
Melt Index HLMI Flow Rate Density Pellet Count Production Date	ASTM D1238 ASTM D1238 D1505 or D4883 P02.08.03	0.28 22 0.937 26 05/29/2011	g/10mi g/10mi g/cm3 pel/g

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

ROLL# 443682-	-11 Lot #:	8210664	Liner Type:	MICROSPIN	E™ HDPE
/A.A (10°1)	MIN: 1.51 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet
Asperity ASTM D7466: 26/33 mil	MAX: 1.67 mm AVE: 1.57 mm	62 / mil	DIT(Standard) ASTM D389	95 minules 190	TEST RESULTS
Specific Gravity ASTM D792 ✓	Density		g/cc		.945
MFI ASTM D1238 V COND. E GRADE: K307	Melt Flow Inde	x 190°C /2160 g	g/10 min		.28 🗸
Carbon Black Content ASTM D4218	Range		%		2.48
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1 🗸
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Streng		29 N/mm (kN/m) 35 N/mm (kN/m)	166 ppi 200 ppi	2,693 2,754 2,689 psi 3,336 3,142 3,239 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elong		%		19.55 15.16 17.35 489.1 569.7
Dimensional Stability	Average Dimer		%		529.4 V -0.39
ASTM D1204 (Modified) Tear Resistance ASTM D1004 (Modified)	Average Tear I		268.8 N		60.625 60.257 60.441 lbs
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Peak		445.8 N		100.22 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	669.3 N		150.48 lbs 🗸
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CI	ERTIFIED
Notched Constant Tensile Lo ASTM D5397	ad pass / fail @ 30	%	300 hrs		PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-30-11

60HDmic FRM REV 03

ROLL#	443	3683	3-11	Lo	t #:	82	210664	Liner	Гуре: N	/IICROS	SPIK	E™ HD	PΕ
Measurement ASTM D5994			MIN:	METI 1.48	RIC mm	ENGLI 58	SH mil	Thickness Length		1.5 m 153.926 7.01	m m m;	00010	feet
(Modified)			MAX:	1.67	mm	66	mil	Width		7.01	111,	2010	feet
Asperity ASTM D7 TOP / BOTT		25/34 m	nil AVE:	1.57	mm	62	mil	OIT(Standard) AS	TM D3895	minutes	190	TES RESU	
Specific Gravi ASTM D792	ity			Density				g/cc				.945	i
MFI ASTM D1 COND. E GRADE:	1238	K30	7	Melt Flo	w Ind	ex 190°(C /2160 (g g/10 m	nin			.28	
Carbon Black ASTM D4218	Conte	ent		Range				%				2.48	
Carbon Black ASTM D5596		ersion		Categor	у						10	0 in Cat 1	
Tanaila Strone	ath								-			2,593 2,784	
Tensile Streng ASTM D6693	gui			Average	Stre	ngth @ \	Yield	29 N/mm	(kN/m)	166 p	pi	2,689	
ASTM D638 (3,336	· *
(2 inches / mi	inute))		Average	Stre	nath @ F	Break	35 N/mm	kN/m)	200 p	mi	3,142 3,239	
				/ Wordge	. 01101	igui (g) i	Sioun	O Territory	niwith	200 p	Ρ.	19.58	÷
Elongation ASTM Dean (Average	Flon	aation @	Neiv 6	%				15.15 17.35	
ASTM D638 ((2 inches / mi				Average	LIOII	gallon	y i leiu	70				489.1	
Lo = 1.3" Yield	ď											569.7	
Lo = 2.0" Brea	ak			Average	Elon	gation @) Break	%				529.4	
Dimensional S ASTM D1204				Average	Dime	ensional	change	%				-0.39	
Tear Resistan	ice											60.625	
ASTM D1004		ified)		Average	Tear	Resista	nce	268.8	N			60.257 60.441	
Puncture Res			Modified)	Averag				445.8				100.22	
Puncture Res ASTM D4833				Averag	e Pea	k Load		669.3	N			150.48	lbs
ESCR ASTM D1693				Minimu	m Hrs	s w/o Fa	ilures	1500 hrs			CI	ERTIFIED)
Notched Cons	stant 1	Tensile	Load	pass / fa	il @ 3	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11

60HDmic.FRM

443784-11 Liner Type: MICROSPIKE™ HDPE 8210664 Lot #: ROLL# 1.5 mm 60 mil **ENGLISH** Thickness...... **METRIC** Measurement 153.926 m feet 505.0 Length..... MIN: 1.46 mm 57 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: mil 1.70 mm 67 **TEST** Asperity ASTM D7466: 25/32 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 190 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .28 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.47 % Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category ASTM D5596 2,593 2,784 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) 166 ppi 2,689 psi **ASTM D6693** ASTM D638 (Modified) 3,336 3,142 (2 inches / minute) Average Strength @ Break 35 N/mm (kN/m) **200** ppi 3,239 psi 19.55 15.15 Elongation ASTM D6693 17.35 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 489.1 569.7 Lo = 1.3" Yield Lo = 2.0" Break % 529.4 Average Elongation @ Break **Dimensional Stability** -0.39Average Dimensional change % ASTM D1204 (Modified) 60.625 Tear Resistance 60.257 ASTM D1004 (Modified) 268.8 60.441 lbs Average Tear Resistance Ν Puncture Resistance lbs Average Peak Load 100.22 445.8 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance lbs 669.3 N 150.48 Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature.

Quality Control Department

10-30-11

ROLL# 4	4378	5-11	Lo	t #:	8	 8210664	Liner	Type: I	MICROS	SPIK	E™ HD	PE
Measurement		MIN:	METF 1.48	RIC mm	ENGI	LISH mil	Thicknes Length	ss	1.5 m 153.926	ım	60 mil	feet
ASTM D5994 (Modified)		MAX:		mm		mil	Width		7.01	m;		feet
Asperity ASTM D746 TOP / BOTTOM			1.58	mm		mil	OIT(Standard) A	STM D3898	5 minutes	190	TES RESU	
Specific Gravity ASTM D792			Density				g/cc				.945	
MFI ASTM D123 COND. E GRADE:	38 K3 (07	Melt Flo	w Ind	ex 190	°C /2160 g	g/10 r	min			.28	
Carbon Black Co ASTM D4218	ontent		Range				%				2.47	
Carbon Black Di ASTM D5596	spersion	-	Category	y						10) in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Mo (2 inches / minu	odified)		Average	Strer	ngth @	Yield	29 N/mm	ı (kN/m)	167 p	pji	2,593 2,784 2,689 3,336 3,142	psi
(2 menes / mine	,		Average	Strer	ngth @	Break	35 N/mm	(kN/m)	201 p	pi	3,239	
Elongation AST ASTM D638 (Mo (2 inches / minu Lo = 1.3" Yield	dified)		Average				%				19.56 15.15 17.35 489.1 569.7	
Lo = 2.0" Break	L SCA.		Average	Elong	gation	@ Break	%			_	529.4	
Dimensional Sta ASTM D1204 (M			Average	Dime	nsiona	il change	%				-0.39	
Tear Resistance ASTM D1004 (M			Average	Tear	Resist	ance	268.8	N			60.625 60.257 60.441	
Puncture Resista FTMS 101 Metho		Modified)	Average				445.8				100.22	
Puncture Resista ASTM D4833 (M			Average	Peal	k Load		669.3	N			150.48	lbs
ESCR ASTM D1693			Minimur	n Hrs	w/o Fa	ailures	1500 hrs			CE	RTIFIED	
Notched Constar ASTM D5397	nt Tensile	Load	pass / fail	@ 30	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11

Signature. Quality Control Department

ROLL# 44378	6-11	Lot #:	8210664	Liner Type:	MICROSPIK	E™ HDPE
Measurement ASTM D5994 (Modified)	MIN:	METRIC 1.43 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet
	MAX:	1.56 mm	61 mil	DIT(Standard) ASTM D3898	5 minutes 190	TEST RESULTS
Specific Gravity ASTM D792	I	Density		g/cc		.948
MFI ASTM D1238 COND. E GRADE: K36		Melt Flow Index	∢190°C /2160 g	g/10 min		.28
Carbon Black Content ASTM D4218	F	Range		%		2.48
Carbon Black Dispersion ASTM D5596	(Category			10) in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	_	Average Streng		29 N/mm (kN/m)	168 ppi	2,652 2,802 2,742 psi 3,848 2,28
Elongation ASTM D6693 ASTM D638 (Modified)	~	Average Streng		38 N/mm (kN/m) %	219 ppi	3,572 psi 18,63 18,90 16.81 ✓
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	d	verage Plong	ation @ Break	%		492.2 691.9 542.1
Dimensional Stability ASTM D1204 (Modified)	,	Average Dimer	nsional change	%		-0.39
Tear Resistance ASTM D1004 (Modified)	- 0	verage Tear F	Resistance	272.9 N		61.973 60.739 61.356 lbs
Puncture Resistance FTMS 101 Method 2065	(Modified)	Average Peak	Load	471.9 N		106.08 lbs
Puncture Resistance ASTM D4833 (Modified)		Average Peak	Load	672.4 N		151.16 lbs /
ESCR ASTM D1693		Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED
Notched Constant Tensile ASTM D5397	e Load p	ass / fail @ 30	%	300 hrs		PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11 Date:_____

Signature......Quality Control Department

ROLL# 4	43787-	11	Lo	t #:	i	 8210664	Liner	Type: I	MICROS	SPIK	E™ HI	OPI	Ε
Measurement ASTM D5994 (Modified)		MIN:	METF 1.46	mm		mil	Thicknes Length Width	SS	1.5 m 153.926 7.01	m	60 mi 505.0 23.0		t
Asperity ASTM D7466		MAX: AVE:	1.66 1.55	mm mm		mil mil	OIT(Standard) A		5 minutes	190	TE RES	ST ULT	
Specific Gravity ASTM D792			Density				g/cc	v.	···· ·	<i>∞ / .</i>	.94	8	
MFI ASTM D123 COND. E GRADE:	8 K307		Melt Flo	w Ind	ex 190)°C /2160 (g g/10 ı	min			.2	8	
Carbon Black Co ASTM D4218	ntent		Range				%				2.4	8	
Carbon Black Dis ASTM D5596	spersion		Categor	y						10	0 in Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Moo (2 inches / minut			Average	Strer	ngth @) Yield	29 N/mm	ı (kN/m)	167 բ	pji	2,68 2,80 2,74 3,84 3,29	2 2 8	psi
			Average	Strer	ngth @) Break	38 N/mrr	(kN/m)	218 p	pi	3,57		ps
Elongation ASTM ASTM D638 (Moo (2 inches / minut Lo = 1.3" Yield Lo = 2.0" Break	dified)		Average		-	@ Yield @ Break	%				14.9 16.8 492. 591. 542.	9 1 2 9	
Dimensional Stat ASTM D1204 (Mo						al change	%				-0.3		
Tear Resistance ASTM D1004 (Mo	odified)		Average	Tear	Resis	tance	272.9	N			61.97 60.73 61.35	9	lbs
Puncture Resista FTMS 101 Metho		dified)	Average	e Pea	k Load	t	471.9	N			106.0	8	lbs
Puncture Resista ASTM D4833 (Mo			Average	e Pea	k Load	d	672.4	N			151.1	6	lbs
ESCR ASTM D1693			Minimu	n Hrs	w/o F	ailures	1500 hrs			Ci	ERTIFIE	D	
Notched Constan ASTM D5397	t Tensile Lo	ad	pass / fai	l @ 3	0% -		300 hrs				PAS	s	******

Customer: Chenango Contracting, Inc.
PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11

60HDmic,FRM REV 03

443788-11 8210664 ROLL# Lot #: Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153,926 m 505.0 feet MIN: 1.50 mm 59 Length..... **ASTM D5994** mil 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.68 mm 66 mil **TEST** Asperity ASTM D7466: 28/38 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 190 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .948 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .28 COND. E GRADE: K307 Carbon Black Content % Range 2.48 **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 **ASTM D5596** 2,682 2,802 Tensile Strength Average Strength @ Yield 30 N/mm (kN/m) 169 ppi **ASTM D6693** 2.742 psi ASTM D638 (Modified) 3,848 3,295 (2 inches / minute) Average Strength @ Break 39 N/mm (kN/m) 221 ppi 3,572 psi 18.63 Elongation ASTM D6693 14.99 ASTM D638 (Modified) Average Elongation @ Yield % 16.81 (2 inches / minute) 492.2 Lo = 1.3" Yield 591.9 Lo = 2.0" Break Average Elongation @ Break % 542.1 **Dimensional Stability** Average Dimensional change % -0.39 ASTM D1204 (Modified) 61.973 Tear Resistance 60.739 ASTM D1004 (Modified) Average Tear Resistance 272.9 N 61.356 lbs Puncture Resistance Average Peak Load lbs 106.08 471.9 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 672.4 N 151.16 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature Quality Control Department

10-30-11

ROLL# 4	4378	9-11	Lo	t #:		8210664	Line	Type:	MICROS	SPIK	E™ HD	PE
Measurement ASTM D5994		MIN:	METF 1.49	mm	59	SLISH mil		ess	1.5 m 153.926 7.01		60 mil 505.0 23.0	feet feet
(Modified)		MAX:		mm	67	mil	vviuti		7.01	,		
Asperity ASTM D7466 TOP / BOTTOM	: 25/37 _N	nil AVE:	1.59	mm	63	mil	OIT(Standard) A	ASTM D389	5 minutes	190	TE: RESU	
Specific Gravity ASTM D792			Density				g/cc				.948	
MFI ASTM D123 COND. E GRADE:	8 K30	7	Melt Flor	w Inde	ex 190	0°C /2160	g g/10	min	A 3 7		.28	
Carbon Black Co ASTM D4218	ntent		Range				%				2.48	
Carbon Black Dis ASTM D5596	persion		Category	/						10) in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Mod			Average	Strer	ngth @) Yield	30 N/mr	n (kN/m)	172 p	pi	2,682 2,802 2,742 3,848	psi
(2 inches / minut	e)		Average	Stren	igth @) Break	39 N/mr	n (kN/m)	224 p	pi	3,295 3,572	
Elongation ASTM ASTM D638 (Moo (2 inches / minute Lo = 1.3" Yield	dified)		Average	Elong	gation	@ Yield	%				18.63 14.99 16.81 492.2 591.9	
Lo = 2.0" Break			Average	Elong	gation	@ Break	%				542.1	
Dimensional Stab ASTM D1204 (Mo			Average	Dime	nsiona	al change	%	-			-0.39	
Tear Resistance ASTM D1004 (Mo	odified)		Average	Tear	Resist	ance	272.9	N			61.973 60.739 61.356	ibs
Puncture Resistar FTMS 101 Method		(lodified)	Average	Peak	Load		471.9	N			106.08	-
Puncture Resistar ASTM D4833 (Mo			Average	Peak	Load		672.4	N			151.16	lbs
ESCR ASTM D1693			Minimun	n Hrs	w/o Fa	ailures	1500 hrs			CE	RTIFIED	
Notched Constant ASTM D5397	Tensile L	-oad r	oass / fail	@ 30)%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11

Signature Quality Control Department

(A)					11							
ROLL#	443790-	11	Lo	t #:	8:	210664	Liner 7	Гуре: І	MICRO	SPIK	E™ HD	PE
Measurement ASTM D5994			METF 1.49	RIC mm	ENGLI	ISH mil	Thickness Length		1.5 m 153.926	m	000.0	feet
Modified)		MAX:	1.67	mm	66	mil	Width		7.01	m;	23.0	feet
sperity ASTM D7 TOP / BOTT	466: 26/33 mil /		1.60		63	mil	DIT(Standard) AS	TM D389	5 minutes	190	TES RESU	
Specific Gravi ASTM D792 <i>►</i>	ty	De	nsity				g/cc				.948	
MFI ASTM D1 COND. E GRADE:	238 K307	Me	elt Flo	w Inde	ex 190°	C /2160 g	g/10 m	nin			.28	
Carbon Black ASTM D4218		Ra	nge				%				2.29	
Carbon Black ASTM D5596		Ca	tegor	У						10	0 in Cat 1	
Tensile Streng ASTM D6693 ASTM D638 (I	Modified)	ÁV	erage	Strer	ngth @ '	Yield	32 N/mm ((kN/m)	183 ;	opi	2 797 3,000 2,903 3 742 3,282	psi
(2 inches / mi	nute)	AV	erage	Strer	ngth @ l	Break	39 N/mm ((kN/m)	221	pi	3,512 20.44	psi
Elongation AS	Modified)	AV	erage	Elon	gation @) Yield	%				14.76 17.60	/
2 inches / mi _o = 1.3" Yield _o = 2.0" Brea	a ,	AV	erage	Elong	gation @) Break	%				482.2 631.8 507.0	
Dimensional S ASTM D1204		Av	erage	Dime	ensional	change	%				-0.39	
Fear Resistan ASTM D1004		AV	erage	Pear	Resista	ince	266.5	N			58,811 59,921	
Puncture Resi FTMS 101 Me	stance thod 2065 (Mod	A	-		k Load		437.5	N			98.370	lbs
Puncture Resi ASTM D4833		- Av	/erage	e Pea	k Load		635.9	N			142.96	lbs
ESCR ASTM D1693		M	inimuı	n Hrs	w/o Fa	ilures	1500 hrs			CI	ERTIFIED	
Notched Cons ASTM D5397	tant Tensile Loa	ad pas	s / fai	1@3	0%		300 hrs				PASS	~

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-30-11
Signature. Control Department 60HDmic.FRM REV 03

REV 03 12/23/05

ROLL # 443791-1			Lot #:			8210664	Liner Type: MICROSPIKE™ HDPE					
Measurement ASTM D5994 (Modified)		MIN: MAX:	METF 1.55 1.67	RIC mm mm	61	LISH mil mil	Thicknes Length Width	ss	1.5 m 153.926 7.01	m	60 mil 505.0	feet feet
Asperity ASTM D7466: 23/34 mil AVE			1.63	mm	m 64 mil		OIT(Standard) ASTM D3895		o minutes 1		TEST 0 RESULTS	
Specific Gravity ASTM D792			Density				g/cc	g/cc			.948	
MFI ASTM D1238 COND. E GRADE: K307			Melt Flow Index 190°C /2160 g				g g/10 r	nin			.28	
Carbon Black Co ASTM D4218	ontent		Range				%				2.29	
Carbon Black Dispersion ASTM D5596			Category							10) in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)			Average Strength @ Yield				33 N/mm		186 p	-	2,797 3,008 2,903 3,742 3,282	psi
		-	Average	Strer	ngth @	Break	39 N/mm	(kN/m)	225 p	pi	3,512 20.44	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break			Average Elongation @ Yield Average Elongation @ Break				%				14.75 17.60 482.2 531.8 507.0	
Dimensional Stability ASTM D1204 (Modified)			Average Dimensional change				%			-	-0.39	1011
Tear Resistance ASTM D1004 (M	odified)		Average	Tear	Resist	ance	266.5	N			61,032 58,811 59,92 1	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified)			Average Peak Load				437.5	N	,		98.370	
Puncture Resista ASTM D4833 (M			Average	Peak	Load		635.9	N			142.96	lbs
ESCR ASTM D1693			Minimum Hrs w/o Failures				1500 hrs			CE	RTIFIED	
Notched Constant Tensile Load ASTM D5397			pass / fail @ 30%				300 hrs				PASS	-

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

10-30-11

60HDmic.FRM REV 03

443792-11 Lot #: 8210664 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 MIN: 1.57 mm 62 Length..... **ASTM D5994** mil 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.82 mm 72 mil **TEST** Asperity ASTM D7466: 22/30 mil AVE: 1.67 mm 66 mil OIT(Standard) ASTM D3895 minutes 190 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .948 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min COND. E .28 GRADE: K307 Carbon Black Content Range % 2.29 **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 **ASTM D5596** 2.797 3,008 Tensile Strength Average Strength @ Yield **ASTM D6693** 33 N/mm (kN/m) 191 ppi 2,903 psi ASTM D638 (Modified) 3,742 3,282 (2 inches / minute) Average Strength @ Break 40 N/mm (kN/m) 231 ppi 3,512 psi 20.44 14.75 Elongation ASTM D6693 ASTM D638 (Modified) Average Elongation @ Yield % 17.60 (2 inches / minute) 482.2 Lo = 1.3" Yield 531.8 Lo = 2.0" Break Average Elongation @ Break % 507.0 **Dimensional Stability** Average Dimensional change ASTM D1204 (Modified) % -0.39 61.032 Tear Resistance 58.811 ASTM D1004 (Modified) Average Tear Resistance 266.5 Ν 59.921 lbs Puncture Resistance Average Peak Load lbs 98.370 FTMS 101 Method 2065 (Modified) 437.5 N Puncture Resistance Average Peak Load 635.9 N 142.96 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-30-11

443793-11 Lot #: 8210664 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.56 mm 61 Length..... ASTM D5994 mil 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.76 mm 69 mil **TEST** Asperity ASTM D7466: 24/30 mil AVE: 1.65 mm 65 mil OIT(Standard) ASTM D3895 minutes **RESULTS** TOP / BOTTOM 190 Specific Gravity Density g/cc .948 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .28 **GRADE:** K307 Carbon Black Content Range % 2.29 **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 ASTM D5596 2,797 Tensile Strength 3,008 Average Strength @ Yield 33 N/mm (kN/m) 189 ppi **ASTM D6693** 2,903 psi ASTM D638 (Modified) 3,742 (2 inches / minute) 3.282 Average Strength @ Break 40 N/mm (kN/m) 228 ppi 3,512 psi 20.44 Elongation ASTM D6693 14.75 ASTM D638 (Modified) Average Elongation @ Yield % 17.60 (2 inches / minute) Lo = 1.3" Yield 531.8 Lo = 2.0" Break Average Elongation @ Break % 507.0 **Dimensional Stability** Average Dimensional change % -0.39 ASTM D1204 (Modified) 61.032 Tear Resistance 58.811 ASTM D1004 (Modified) Average Tear Resistance 266.5 Ν 59.921 lbs Puncture Resistance Average Peak Load lbs 98.370 437.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 635.9 Ν lbs 142.96 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

Signature.

Quality Control Department

60HDmic FRM REV 03

110-00				
ROLL# 443796-1	1 Lot #: 8	210664 Liner Typ	e: MICROSPIK	E™ HDPE
Measurement ASTM D5994 MI	METRIC ENGL N: 1.38 mm 54	mil Length	153.926 ^m	60 mil 505.0 feet
(Modified)	X: 1.64 mm 65	mil Width,,,	7.01 m;	23.0 feet
Asperity ASTM D7466: 26/33 mil AV TOP / BOTTOM	E: 1.52 mm 60	mil OIT(Standard) ASTM D	3895 minutes 190	TEST RESULTS
Specific Gravity ASTM D792	Density	g/cc		.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°	C /2160 g g/10 min		.28
Carbon Black Content ASTM D4218	Range	%		2.42 🗸
Carbon Black Dispersion ASTM D5596	Category		10	in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @	Yield 28 N/mm (kN/m)	160 ppi	2.800 / 2.800 / 2,675 psi 3.371 / 3,224 /
	Average Strength @ B	Break 35 N/mm (kN/m)	197 ppi	3,298 psi
Elongation ASTM D6693 ASTM D638 (Modified)	Elongation @) Yield %		17.76 12.99 15.38
2 inches / minute) _o = 1.3" Yield _o = 2.0" Break	Average Elongation @) Break %		468.4 589.3 528.8
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional	change %		-0.39
Fear Resistance ASTM D1004 (Modified)	Average Tear Resista	nce 268.9 N		61.226 × 59.667 × 60.447 lbs ×
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load	410.4 N		92.277 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	605.3 N		136.07 lbs -
ESCR ASTM D1693	Minimum Hrs w/o Fai	lures 1500 hrs	CEI	RTIFIED
Notched Constant Tensile Load	pass / fail @ 30%	300 hrs		PASS -
" · · · · · · · · · · · · · · · · · · ·				

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 10-30-11

ROLL# 4437	797-11	Lot	#:		8210664	Liner ⁻	Гуре:	MICRO	SPIK	E™ HDF	PΕ
Measurement ASTM D5994 (Modified)	MIN: MAX:	METR 1.42	RIC mm mm	56	LISH mil	Thickness Length Width		1.5 m 153.926 7.01		000.0	eet eet
	35 mil AVE:	1.64 1.52	mm		mil mil	OIT(Standard) AS	TM D389	95 minutes	190	TES RESUL	
Specific Gravity ASTM D792		Density				g/cc				.946	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flov	w Ind	ex 19(0°C /2160 g	g/10 m	nin			.28	
Carbon Black Content ASTM D4218		Range				%				2.42	
Carbon Black Dispers ASTM D5596	ion	Category	y	-					1	0 in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified (2 inches / minute))	Average	Stre	ngth @) Yield	28 N/mm	(kN/m)	160 ;	opi	2,550 2,800 2,675 3,371 3,224	psi
		Average	Stre	ngth @) Break	35 N/mm	(kN/m)	197	opi	3,298 17.76	ps
Elongation ASTM D66 ASTM D638 (Modified (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break					Yield	%				12.99 15.38 468.4 589.3 528.8	
Dimensional Stability ASTM D1204 (Modifie	d)				@ Break hal change	%				-0.39	-
Tear Resistance ASTM D1004 (Modifie	d)	Average	Tear	Resis	stance	268.9	N			61.226 59.667 60.447	lbs
Puncture Resistance FTMS 101 Method 20	65 (Modified)	Average	e Pea	ık Loa	d	410.4	N			92.277	lbs
Puncture Resistance ASTM D4833 (Modifie	d)	Average	e Pea	ık Loa	d	605.3	N			136.07	lbs
ESCR ASTM D1693		Minimu	m Hrs	s w/o F	Failures	1500 hrs			С	ERTIFIED	
Notched Constant Ter ASTM D5397	nsile Load	pass / fai	I @ 3	80%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.
PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11

Quality Control Department

60HDmic,FRM

ROLL# 444101-1	1 Lot #:	8210664 Liner Typ	e: MICROSPIK	E™ HDPE
Measurement ASTM D5994 MI (Modified) MA	N: 1.43 mm 56	GLISH Thickness mil Length Width	153.926 ^m	60 mil 505.0 feet 23.0 feet
Asperity ASTM D7466: 25/35 mil AV		mil mil OIT(Standard) ASTM D	03895 minutes 190	TEST RESULTS
Specific Gravity ASTM D792	Density	g/cc		.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 19	0°C /2160 g g/10 min		.28 🗸
Carbon Black Content ASTM D4218	Range	%		2.30 🗸
Carbon Black Dispersion ASTM D5596	Category		10) in Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength (165 ppi	2,643 2 2,716 psi 3,240 2 3,312 psi
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elongation		201 ββί	19.20 14.77 17.03
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Flongation	n @ Break %		487.8 688.7 538.3 ✓
Dimensional Stability ASTM D1204 (Modified)	Average Dimension	nal change %		-0.39
Tear Resistance ASTM D1004 (Modified)	Average Tear Resis	stance 259.4 N		59.269 67,356 58.323 lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Loa	d 456.9 N		102.71 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Loa	d 630.1 N		141.65 lbs
ESCR ASTM D1693	Minimum Hrs w/o I	Failures 1500 hrs	CE	RTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs		PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

10-31-11

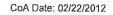
Quality Control Department

60HDmic,FRM 12/23/05

ROLL# 444102-1	1 Lot #:	8210664	Liner Type:	MICROSPIE	(E™ HDPE
Measurement ASTM D5994 MIN (Modified) MA: Asperity ASTM D7466: 26/34 mil AVE	X: 1.66 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet TEST RESULTS
Specific Gravity ASTM D792	Density		g/cc	7 minutes 190	.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 (g g/10 min		.28
Carbon Black Content ASTM D4218	Range		%		2.30
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1 🖊
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	gth @ Yield	28 N/mm (kN/m)	163 ppi	2.643 2.788 2,716 psi 3.383 3.240
	Average Stren	gth @ Break	35 N/mm (kN/m)	198 ppi	3,312 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Flong	ation @ Yield	%		17.03
Lo = 1.3" Yield Lo = 2.0" Break	Average Elong	ation @ Break	%		487.8 588.7 538.3
Dimensional Stability ASTM D1204 (Modified)	Average Dimer	nsional change	%		-0.39
Tear Resistance ASTM D1004 (Modified)	Average Tear F	Resistance	259.4 N		59.289 57.356 58.323 Ibs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peak	Load	456.9 N		102.71 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	630.1 N		141.65 lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	ERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	%	300 hrs		PASS L

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation


Destination Syracuse, NY

Date:....

100

10-31-11

Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88417741

PO #: 006413

Weight: 193300 LB

Ship Date: 02/22/2012

Package: BULK

Mode: Car #:

Hopper Car CHVX896092

Seal No: 282624

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7120200

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.25	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	26	pel/g
Production Date		02/13/2012	P 0 11 9

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

ROLL# 311330-	12 Lot #:	7120200	Liner Type: N	/IICROSPIKE™ HDPE
Modified)	MIN: 1.45 mm 5 MAX: 1.61 mm 6	3 mil	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 ^m ; 23.0 feet
sperity ASTM D7466: 36/31 mil / TOP / BOTTOM	AVE: 1.53 mm 6	o mil	IT(Standard) ASTM D3895	
Specific Gravity ASTM D792	Density		g/cc	.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	190°C /2160 g	g/10 min	.25
Carbon Black Content ASTM D4218	Range		%	2.21
Carbon Black Dispersion ASTM D5596	Category			10 In Cat 1
Fensile Strength ASTM D6693 ASTM D638 (Modified) 2 inches / minute)	Average Strengt	th @ Yield th @ Break	27 N/mm (kN/m) 33 N/mm (kN/m)	2.456 2.608 2.532 psi 3.124 3.102 188 ppi 3,113 psi
Elongation ASTM D6693 ASTM D638 (Modified) 2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elonga		%	17.20 14.86 16.06 468.6 976.5 517.6
Dimensional Stability ASTM D1204 (Modified)	Average Dimens		%	45
Fear Resistance ASTM D1004 (Modified)	Average Tear R	esistance	267.8 N	59,490 60.217 lbs **
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Peak I	Load	410.2 N	92.224 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak I	Load	612.7 N	137.74 lbs
ESCR ASTM D1693	Minimum Hrs w	ı/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Lo	pass / fail @ 30%	%	300 hrs	PASS -

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Quality Control Department

3/14/2012

044004	40	=	
ROLL# 311331	-12 Lot #: 7120200	Liner Type:	MICROSPIKE™ HDPE
Measurement ASTM D5994 (Modified)	METRIC ENGLISH MIN: 1.52 mm 60 mil MAX: 1.69 mm 67 mil	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 ^m ; 23.0 feet
Asperity ASTM D7466: 37/32 mll	AVE: 1.59 mm 63 mil	OIT(Standard) ASTM D389	TEST 95 minutes 167 RESULTS
Specific Gravity ASTM D792	Density	g/cc	.945
MFI ASTM D1238 COND. E GRADE; K307	Melt Flow Index 190°C /2160	g g/10 min	.25 ✓
Carbon Black Content ASTM D4218	Range	%	2.27
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield	27 N/mm (kN/m)	2,371 2,521 153 ppi 2,446 psi 3.193 2,936
Elongation ASTM D6693 VASTM D638 (Modified) (2 inches / minute)	Average Strength @ Break Average Elongation @ Yield	34 N/mm (kN/m) %	192 ppi 3,065 psi 16.91 46.27 16.09 452.4
Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Break	%	628.3 490.4
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	%	45
Tear Resistance ASTM D1004 (Modified)	Average rear Resistance	247.7 N	57.784V 53.588V 55.686 lbsV
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Peak Load	462.1 N	103.89 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	635.4 N	142.85 lbs V
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Lo ASTM D5397	pad pass / fail @ 30%	300 hrs	PASS
	The second secon		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/14/2012

311332-12 Lot #: 7120200 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Measurement Thickness..... 153.926 m 505.0 feet MIN: Length..... **ASTM D5994** 1.46 mm 57 mil 7.01 (Modified) Width..... m; 23.0 feet MAX: 1.63 mm 64 mil Asperity ASTM D7466: 36/31 mil AVE: 1.55 **TEST** mm 61 mil OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc ASTM D792 .945 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.27 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2.371 Tensile Strength 2,521 Average Strength @ Yield **ASTM D6693** 26 N/mm (kN/m) 149 ppi 2,446 psi ASTM D638 (Modified) 3,193 (2 inches / minute) 2.936 Average Strength @ Break 33 N/mm (kN/m) **187** ppi 3,065 psi 16.91 Elongation ASTM D6693 15.27 ASTM D638 (Modified) Average Elongation @ Yield % 16.09 (2 inches / minute) 452.4 Lo = 1.3" Yield 528.3 Lo = 2.0" Break Average Elongation @ Break % 490.4 Dimensional Stability ASTM D1204 (Modified) Average Dimensional change % -.45 57.784 Tear Resistance 53.588 ASTM D1004 (Modified) Average Tear Resistance 247.7 Ν 55.686 lbs Puncture Resistance Average Peak Load lbs 103.89 FTMS 101 Method 2065 (Modified) 462.1 Ν Puncture Resistance Average Peak Load 635.4 N 142.85 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **ASTM D5397 PASS**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/14/2012

Signature. Quality Control Department

ROLL# 3	1333	-12	Lo	t #:		7120200) Line	Type:	MICRO	SPIK	Ϊ HD	PE
Measurement ASTM D5994		MIN:	METI 1.47	RIC mm		LISH mil	Thickne	ss	1.5 m 153.926 7.01	ım	60 mil 505.0	feet feet
(Modified)		MAX:	1.67	mm	66	mil	vviatri		7.01	,		
Asperity ASTM D7466: TOP / BOTTOM	36/32 mil	AVE:	1.55	mm	61	mil	OIT(Standard) A	ASTM D389	95 minutes	167	TES RESU	
Specific Gravity ASTM D792			Density				g/cc				.945	5
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flo	w Inde	ex 190	0°C /2160	g g/10	min			.25	i
Carbon Black Cor ASTM D4218	itent		Range				%		317—31X		2.27	
Carbon Black Disp ASTM D5596	persion		Category	/						10) In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Mod (2 inches / minute	•		Average	Strer	ngth @) Yield	26 N/mr	π (kN/m)	149 p	pi	2,371 2,521 2,446 3,193	psi
(2 mones / minute			Average	Stren	igth @) Break	33 N/mr	m (kN/m)	187 p	pi	2,936 3,065	
Elongation ASTM ASTM D638 (Modi (2 inches / minute	fied)		Average	Elong	gation	@ Yield	%				16.91 15.27 16.09 452.4	
Lo = 1.3" Yield Lo = 2.0" Break			Average	Flone	action	@ Brook	%				528.3 490.4	
Dimensional Stabil ASTM D1204 (Mod	•					al change	%				45	-
Tear Resistance								v.		^ w . w	57.784	
ASTM D1004 (Mod	dified)		Average	Tear	Reciet	ance	247.7	N			53.588 55.686	lba
Puncture Resistan FTMS 101 Method			Average				462.1	-			103.89	
Puncture Resistand ASTM D4833 (Mod			Average	Peak	Load		635.4	N			142.85	lbs
ESCR ASTM D1693			Minimun	n Hrs	w/o Fa	ailures	1500 hrs			CE	RTIFIED	-
Notched Constant ASTM D5397	Tensile Loa	ad p	oass / fail	@ 30)%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/201

Signature.....Quality Control Department

ROLL#	311	1334	-12	Lo	t #:		7120200	Liner	Type: I	MICRO	SPIK	E™ HI	DPE
Measurement ASTM D5994 (Modified)			MIN: MAX:	METF 1.47 1.63	RIC mm mm	58	LISH mil mil	Thicknes Length Width	SS	1.5 m 153.926 7.01	m	60 mi 505.0 23.0	
Asperity ASTM D74		36/32 mil	AVE:	1.54	mm	61	mil	OIT(Standard) A	STM D3898	5 minutes	167		ST ULTS
Specific Gravit ASTM D792	ty			Density				g/cc		-		.94	5
MFI ASTM D12 COND. E GRADE:	238	K307		Melt Flo	w Inde	ex 190)°C /2160 g	g/10 r	nin			.2	5
Carbon Black (ASTM D4218	Conte	nt		Range				%			.,	2.2	7
Carbon Black I ASTM D5596	Disper	rsion		Categor	y						10	In Cat	1
Tensile Strengt ASTM D6693 ASTM D638 (M (2 inches / mir	/lodifie	ed)		Average	Strer	ngth @) Yield	26 N/mm	(kN/m)	148 p	pi	2,37 2,52 2,44 3,19	6 ps
(= 1.101.1001.11111	,			Average	Stren	ngth @) Break	33 N/mm	(kN/m)	186 p	pi	2,936 3,06 9	
Elongation AS ASTM D638 (M (2 inches / min Lo = 1.3" Yield	/lodifie nute)			Average	Elong	gation	@ Yield	%				16.9 15.2 16.0 452. 528.	7 9 4
Lo = 2.0" Break				Average	Elong	gation	@ Break	%				490.4	
Dimensional St ASTM D1204 (•			Average	Dime	nsiona	al change	%				4	5
Tear Resistanc ASTM D1004 (I		ed)		Average	Tear	Resist	tance	247.7	N			57.784 53.588 55.686	3
Puncture Resis FTMS 101 Met			odified)	Average	Peak	k Load		462.1	N			103.8	
Puncture Resis ASTM D4833 (I			•	Average	Peak	(Load		635.4	N			142.8	5 lbs
ESCR ASTM D1693				Minimur	n Hrs	w/o F	ailures	1500 hrs			CE	RTIFIED)
Notched Consta ASTM D5397	ant Te	ensile Lo	oad	pass / fail	@ 30)%		300 hrs				PASS	3

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

60HDmic FRM REV 03

ROLL#	311335	-12	Lot #:	7120200	Liner Type:	MICROSPIK	E™ HDPE
Measuremer ASTM D599 (Modified)	4	MIN: MAX:	METRIC 1.47 mm 1.61 mm	63 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet
Asperity ASTM TOP / BC		AVE:	1.55 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 167	RESULTS
Specific Gra ASTM D792		De	ensity		g/cc		.947
MFI ASTM I COND. E GRADE:	D1238 K307		elt Flow Inde	ex 190°C /2160 g	g g/10 min		.25
Carbon Blac ASTM D421		Ra	ange		%		2.35
Carbon Blac ASTM D559	ck Dispersion	Ca	ategory			10	In Cat 1
Tensile Stre ASTM D669 ASTM D638 (2 inches /	3 (Modified)	Á	verage Stren	ngth @ Yield	28 N/mm (kN/m)	160 ppi	2,481 2,751 2,616 psi 3,129 2,944
	,	A	erage stren	igth @ Break	32 N/mm (kN/m)	185 ppi	3,037 psi 20,20
Elongation ASTM D638	• ,	Áv	erage Elong	gation @ Yield	%		14.64 17.42
Lo = 1.3" Yie Lo = 2.0" Br	eld	Av	erage Elong	gation @ Break	%		441.1 544.0 492.6 ✓
Dimensiona ASTM D120	l Stability 04 (Modified)	Av	erage Dime	nsional change	%		45
Tear Resista ASTM D100	ance 04 (Modified) 🗸	ÁV	erage Tear	Resistance	250.6 N		57.969 × 54.689 × 56.329 lbs
Puncture Re FTMS 101 N	esistance Method 2065 (M	A	verage Peak		386.8 N		86.965 lbs
Puncture Re ASTM D483	esistance 3 (Modified) 🖊	A	verage Peak	(Load	561.3 N		126.18 lbs u
ESCR ASTM D169	13	М	inimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED
Notched Co. ASTM D539	nstant Tensile L	oad pas	ss / fail @ 30	0%	300 hrs		PASS V

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Quality Control Department

60HDmic,FRM REV 03

ROLL#	311	1336	5-12	Lo	t #:		7120200	Liner	Type:	MICRO	SPIK	E™ HI	OPE
Measurement ASTM D5994			MIN:	METI 1.47	RIC mm	ENG 58	LISH mil	Thicknes Length	SS	1.5 m 153.926	m m	60 mi 505.0	
(Modified)			MAX:	1.66	mm	65	mil	Width	············	7.01	m;	23.0	feet
Asperity ASTM D746		35/34 m	il AVE:	1.54	mm	61	mil	OIT(Standard) A	STM D3895	minutes	167		ST ULTS
Specific Gravity ASTM D792	у			Density				g/cc				.94	7
MFI ASTM D12 COND. E GRADE:	238	K307		Melt Flo	w Ind	ex 190	°C /2160 g	g/10 r	nin			.2	5
Carbon Black C ASTM D4218	Conte	nt		Range				%				2.3	5
Carbon Black D ASTM D5596	Disper	rsion		Categor	y		_		3.0		10	In Cat	1
Tensile Strengt ASTM D6693 ASTM D638 (M (2 inches / min	lodifie	ed)		Average	Strer	ngth @	Yield	28 N/mm	(kN/m)	159 p	pi	2,48 2,75 2,61 0 3,12	1 6 ps 9
(2 mones / min	ute)			Average	Stren	igth @	Break	32 N/mm	(kN/m)	184 p	pi	2,944 3,037	
Elongation AST ASTM D638 (M (2 inches / min	lodifie			Average	Elong	gation	@ Yield	%		•	,	20.2 14.6 1 7.4 :	0
Lo = 1.3" Yield Lo = 2.0" Break	·			Average	Flone	action /	@ Break	%				441.°)
Dimensional Sta ASTM D1204 (M	ability				77. 3.		l change	%				492.6	
Tear Resistance	-										-	57.969	
ASTM D1004 (N		ied)		Average	Toor	Racie+	ance	250.6	N			54.689	
Puncture Resist FTMS 101 Meth				Average				386.8	N N			56.329 86.96	
Puncture Resist ASTM D4833 (N	tance			Average	Peak	Load		561.3	N		_	126.18	3 lbs
ESCR ASTM D1693				Minimur	n Hrs	w/o Fa	ailures	1500 hrs			CE	RTIFIED)
Notched Consta ASTM D5397	ant Te	ensile L	oad	oass / fail	@ 30)%		300 hrs				PASS	}

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

ate: 3/14/2012

Signature.....Quality Control Department

60HDmic.FRM REV 03

311337-12 Lot #: 7120200 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.45 Length..... mm 57 mil ASTM D5994 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.64 mm 65 mil **TEST** 36/33 mil AVE: 1.53 Asperity ASTM D7466: mm 60 mil OIT(Standard) ASTM D3895 minutes 167 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content % Range 2.35 ASTM D4218 Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.481 Tensile Strength 2.751 Average Strength @ Yield 28 N/mm (kN/m) 158 ppi **ASTM D6693** psi 2,616 ASTM D638 (Modified) 3,129 (2 inches / minute) 2,944 Average Strength @ Break 32 N/mm (kN/m) 183 ppi 3,037 psi 20.20 Elongation ASTM D6693 14.64 ASTM D638 (Modified) Average Elongation @ Yield % 17.42 (2 inches / minute) 441.1 Lo = 1.3" Yield 544.0 Lo = 2.0" Break Average Elongation @ Break % 492.6 **Dimensional Stability** Average Dimensional change % -.45 ASTM D1204 (Modified) 57.969 Tear Resistance 54.689 ASTM D1004 (Modified) Average Tear Resistance 250.6 Ν 56.329 lbs Puncture Resistance Average Peak Load 86.965 lbs 386.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 561.3 N 126.18 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature......Quality Control Department

3/14/2012

11338-	-12	Lo	t #:		712020	0 Lir	er Type	e: MICRO	SPIK	E™ HDP	Έ
	MIN:	METF 1.46			SLISH mil	Leng	th	153.926	m	60 mil 505.0 fe	et et
	MAX:	1.59	mm	63	mil	vviat	n	7.01			
36/35 mil	AVE:	1.53	mm	60	mil	OIT(Standa	rd) ASTM D	3895 minutes	167		
		Density				g/d	cc			.947	
3 K307		Melt Flo	w Ind	ex 190	0°C /2160) g g,	/10 min			.25	
ntent		Range				%				2.35	
persion		Categor	у						1	0 In Cat 1	
dified)		Average	e Strei	ngth @	② Yield	28	N/mm (kN/m)	158	opi	2,481 2,751 2,616 3,129	psi
e)		Average	Strei	ngth @	② Break	32	N/mm (kN/m)	183	opi	3,037	psi
/I D6693 dified) e)		Average	e Elon	gatior	n @ Yield	%	0			14.64 17.42 441.1	
		Average	e Elon	gation	n @ Brea	k %				492.6	
oility odified)		Average	e Dime	ension	nal chang	e %	6			45	
odified)		Average	e Tear	Resis	stance	25	60.6 N			57.969 54.689 56.329	lbs
nce od 2065 (Mo	odified	Averag	e Pea	ık Loa	ıd	38	86.8 N			86.965	lbs
nce odified)		Averag	e Pea	ık Loa	ıd	56	31.3 N			126.18	lbs
		Minimu	m Hr	s w/o l	Failures	1500 h	nrs		С	ERTIFIED	
t Tensile L	oad	pass / fa	il @ 3	30%		300 hr	S			PASS	
	36/35 mil 36/35 mil 36/35 mil 36/35 mil 36/35 mil	MAX: 36/35 mil AVE: 3 K307 Intent Inpersion diffied) e) M D6693 diffied) e) bility podified) modified) modified) modified ince ind 2065 (Modified) ince	METER MIN: 1.46 MAX: 1.59 36/35 mil AVE: 1.53 Density Melt Flo K307 Intent Range Spersion Categor Average diffied) e) Average All D6693 diffied) Average e) Average Average Average Average Average Minimum A	METRIC MIN: 1.46 mm MAX: 1.59 mm 36/35 mil AVE: 1.53 mm Density Melt Flow Ind K307 Intent Range Spersion Category Average Street Codified) Average Elon Average Elon Codified) Average Elon Codified) Average Dime Average Pear Average	METRIC ENG. MIN: 1.46 mm 57 MAX: 1.59 mm 63 36/35 mil AVE: 1.53 mm 60 Density Melt Flow Index 19 K307 Average Strength (addition) Edified) EDIFFERENCE OF Category Average Strength (addition) Average Elongation Edified) Average Elongation Edified Average Peak Load Average Peak Load Edified) Average Peak Load Ence ENCE ENCE ENCE ENCE ENCE ENCE ENCE ENC	METRIC ENGLISH MIN: 1.46 mm 57 mil MAX: 1.59 mm 63 mil 36/35 mil AVE: 1.53 mm 60 mil Density Melt Flow Index 190°C /2160 K307 Intent Range Average Strength @ Yield diffied) e) Average Strength @ Break A D6693 diffied) e) Average Elongation @ Yield e) Average Elongation @ Brea politity podified) Average Dimensional change Average Tear Resistance Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thick Leng Width MAX: 1.59 mm 63 mil OIT(Standar) Bensity Grown Melt Flow Index 190°C /2160 g grown Melt Flow Index 190°C	MIN: 1.46 mm 57 mil Length	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness	MIN: 1.46 mm 57 mil Length

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/14/2012

Signature.

Quality Control Department

ROLL# 311339-	-12 Lot#:	7120200	Liner Type:	MICROSPIKE	E™ HDPE
A PEC D	METRIC E MIN: 1.47 mm 5 MAX: 1.55 mm 6		Thickness Length Width		60 mil 505.0 feet 23.0 feet
Asperity ASTM D7466: 34/32 mil 7	AVE: 1.52 mm 6	mil o	IT(Standard) ASTM D389	5 minutes 167	TEST RESULTS
Specific Gravity ASTM D792	Density		g/cc		.945
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	: 190°C /2160 g	g/10 min		.25 🗸
Carbon Black Content ASTM D4218	Range		%		2.38
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		th @ Yield	27 N/mm (kN/m)	151 ppi	2,434 2,624 2,529 psi 3,196 2,683
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Streng Average Elonga		30 N/mm (kN/m) %	173 ppi	2,890 psi 20.98 17.08 19.03 / 445.3 440.7
Lo = 2.0" Break	Average Blonga	ition @ Break	%		443.0
Dimensional Stability ASTM D1204 (Modified)	Average Dimen	sional change	%		45
Tear Resistance ASTM D1004 (Modified)	Average Tear R	esistance	249.5 N		56.973 V 56.198 V 56.086 lbs V
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Peak dified)	Load	399.2 N		89.74 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	562.8 N		126.53 lbs
ESCR ASTM D1693	Minimum Hrs v	v/o Failures	1500 hrs	CE	RTIFIED
Notched Constant Tensile Lo ASTM D5397	pad pass / fail @ 309	%	300 hrs		PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Quality Control Department

11340	-12	Lo	t #:	-	7120200	Liner	Гуре: І	MICRO	SPIK	E™ HDF	PΕ
	MIN:	1.45	mm	57	mil	Length				000.0	eet eet
		1.57			mil	OIT(Standard) AS	TM D389	5 minutes	167		
		Density				g/cc			Hes	.945	
8 K307		Melt Flo	w Ind	ex 190	°C /2160 g	g/10 m	nin			.25	
ontent		Range				%				2.38	
spersion		Categor	У						10	0 In Cat 1	
dified)		Average	Strer	ngth @) Yield	27 N/mm	(kN/m)	156 բ	ppi	2,434 2,624 2,529 3,196 2,583	psi
		Average	Strer	ngth @	Break	31 N/mm	(kN/m)	179 p	pi	2,890	psi
dified)		Average	Elon	gation	@ Yield	%				17.08 19.03	
ie)		Average	Flon	nation	⋒ Break	%				440.7	
•	_					%				45	
odified)		Average	Tear	Resist	tance	249.5	N			55.973 56.198 56.086	lbs
	odified)	Average	e Pea	k Load	I	399.2	N			89.74	lbs
		Average	e Pea	k Load	l	562.8	N			126.53	lbs
		Minimu	n Hrs	w/o F	ailures	1500 hrs			CI	ERTIFIED	
nt Tensile Lo	oad	pass / fai	l @ 3	0%		300 hrs				PASS	
	88 K307 Content Spersion M D6693 odified) te) bility lodified) lodified) ance od 2065 (Modance lodified)	MAX: 3: 37/32 mil AVE: 38 K307 Intent Spersion M D6693 Indified) Ite) bility Indified) Ince Indified) Ince Ince Indified) Ince Ince Indified) Ince Ince Ince Indified)	METERMIN: 1.45 MAX: 1.69 S: 37/32 mil AVE: 1.57 Density Melt Flor K307 Ontent Range Spersion Category Average Odified) Average Minimum Average Average	METRIC MIN: 1.45 mm MAX: 1.69 mm Density Melt Flow Indi K307 Ontent Range Spersion Category Average Stren Average Stren MD6693 Odified) Average Elong bility Average Elong bility Indi Average Elong bility Indi Average Dime Average Pea Average Pea Average Pea Minimum Hrs	METRIC ENG MIN: 1.45 mm 57 MAX: 1.69 mm 67 S: 37/32 mil AVE: 1.57 mm 62 Density Melt Flow Index 190 K307 Category Average Strength @ Average Strength @ Average Elongation bility Average Elongation bility Average Dimensional codified) Average Tear Resist ance ance and 2065 (Modified) Average Peak Load Average Peak Load Average Peak Load Minimum Hrs w/o F	METRIC ENGLISH MIN: 1.45 mm 57 mil MAX: 1.69 mm 67 mil Density Melt Flow Index 190°C /2160 g K307 Content Range Spersion Category Average Strength @ Yield Average Strength @ Break M D6693 Adified) Average Elongation @ Yield Average Elongation @ Break Average Elongation @ Break Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness Length MIN: 1.45 mm 57 mil Length MAX: 1.69 mm 67 mil Density g/cc Melt Flow Index 190°C /2160 g g/10 m K307 Melt Flow Index 190°C /2160 g g/10 m K307 Category Average Strength @ Yield 27 Norm Average Strength @ Break 31 Norm MD6693 Idified) Ite) Average Elongation @ Yield % Average Elongation @ Break % Molity Index 190°C /2160 g g/10 m Average Strength @ Strength & Strength @ Strength @ Strength & Str	MIN: 1.45 mm 57 mil Length	METRIC ENGLISH MIN: 1.45 mm 57 mil MAX: 1.69 mm 67 mil MAX: 1.69 mm 62 mil MAX: 1.69 mm 62 mil Melt Flow Index 190°C /2160 g Melt Flow Index 190°C /2160 g	METRIC ENGLISH Thickness 1.5 mm 153.926 m 153.926 m 7.01 ms 153.926 m	MIN: 1.45 mm 57 mil Length

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/14/2012

Signature.....

Quality Control Department

ROLL# 31134	1-12	Lo	t #:	7	120200	Liner	Type: N	MICROS	SPIK	E™ HDI	PE
Measurement ASTM D5994	MIN:	METF 1.48	mm		mil	Thicknes Length		1.5 m 153.926 7.01		000.0	eet eet
(Modified)	MAX:	1.70	mm	67	mil	v vidii				TES	_
Asperity ASTM D7466: 33/34 TOP / BOTTOM	mil AVE:	1.57	mm	62	mil	OIT(Standard) AS	STM D3895	minutes	167	RESU	
Specific Gravity ASTM D792		Density				g/cc				.945	
MFI ASTM D1238 COND. E GRADE: K30	07	Melt Flo	w Ind	ex 190°	°C /2160 g	g g/10 n	nin			.25	
Carbon Black Content ASTM D4218		Range				%				2.38	
Carbon Black Dispersion ASTM D5596		Categor	y						10	In Cat 1	
										2,434 2,624	
Tensile Strength ASTM D6693		Average	Stre	nath @	Yield	27 N/mm	(kN/m)	156 p	igo	2,529	ps
ASTM D638 (Modified)		3		5 0						3,196	
(2 inches / minute)		Average	Stre	nath @	Break	31 N/mm	(kN/m)	179 p	nni	2,583 2,890	ps
El		7 Wordge	Otro	igui @	Broak		(MVIII)			20.98 17.08	
Elongation ASTM D6693 ASTM D638 (Modified)		Average	Elon	gation (@ Yield	%				19.03	
(2 inches / minute)		J			0					445.3	
Lo = 1.3" Yield						è				440.7	
Lo = 2.0" Break		Average	Elon	gation (@ Break	%				443.0	
Dimensional Stability ASTM D1204 (Modified)		Average	Dime	ensiona	l change	%				45	
Tear Resistance										55.973	
ASTM D1004 (Modified)		Average	Tear	Resist	ance	249.5	N			56.198 56.086	lbs
Puncture Resistance FTMS 101 Method 2065 ((Modified)	Average				399.2				89.74	
Puncture Resistance ASTM D4833 (Modified)		Averag	e Pea	ık Load		562.8	N			126.53	lbs
ESCR ASTM D1693		Minimu	m Hr	s w/o Fa	ailures	1500 hrs			CI	ERTIFIED	
Notched Constant Tensile ASTM D5397	e Load	pass / fa	il @ 3	80%	3	300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.

Quality Control Department

311442-12 Lot #: 7120200 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153.926 m 505.0 feet MIN: 1.52 mm 60 Length..... ASTM D5994 mil 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.68 mm 66 mil **TEST** Asperity ASTM D7466: 33/32 mil AVE: 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.38 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2.434 Tensile Strength 2,624 Average Strength @ Yield 28 N/mm (kN/m) **ASTM D6693 157** ppi 2,529 psi ASTM D638 (Modified) 3,196 (2 inches / minute) 2.583 Average Strength @ Break 31 N/mm (kN/m) 180 ppi 2,890 psi 20.98 Elongation ASTM D6693 17.08 Average Elongation @ Yield ASTM D638 (Modified) % 19.03 (2 inches / minute) 445.3 Lo = 1.3" Yield 440.7 Lo = 2.0" Break Average Elongation @ Break % 443.0 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.45 55.973 Tear Resistance 56.198 ASTM D1004 (Modified) 249.5 Average Tear Resistance Ν 56.086 lbs Puncture Resistance Average Peak Load 89.74 lbs 399.2 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 562.8 Ν 126.53 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

	(Car) (Car)(Car)		II .			
ROLL# 31144	3-12	Lot #:	7120200	Liner Type:	MICROSPIR	(E™ HDPE
Measurement ASTM D5994 ✓ Modified)	MIN: MAX:	METRIC 1.49 mm 1.69 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet
Asperity ASTM D7466: 37/32 TOP / BOTTOM	mil AVE:		63 mil	OIT(Standard) ASTM D389	5 minutes 167	TEST RESULTS
Specific Gravity ASTM D792	С	ensity		g/cc		.946
MFI ASTM D1238 COND. E GRADE: K30		lelt Flow Ind	ex 190°C /2160 ç	g g/10 min		.25
Carbon Black Content ASTM D4218	R	ange		%		2.28
Carbon Black Dispersion ASTM D5596	C	ategory			1	0 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified)	A	verage Strer	ngth @ Yield	29 N/mm (kN/m)	166 ppi	2,558 2,718 2,638 psi 3,214
(2 inches / minute)	A	verage Strer	ngth @ Break	35 N/mm (kN/m)	200 ppi	3.144 3,179 psi 19.48
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		verage Elong	gation @ Yield	%		16.13 17.31
Lo = 1.3" Yield Lo = 2.0" Break	A	verage)Elong	gation @ Break	%		466.5 567.8 511.7
Dimensional Stability ASTM D1204 (Modified)	A	verage Dime	nsional change	%		-,45
Tear Resistance ASTM D1004 (Modified) <i>∽</i>	A	verage Tear	Resistance	250.5 N		57.945 V 54.681 V 56.313 lbs v
Puncture Resistance FTMS 101 Method 2065 (I	Modified)	verage Peal	Load	387.3 N		87.08 lbs
Puncture Resistance ASTM D4833 (Modified)	A	verage Peal	Load	598.2 N		134.48 lbs /
ESCR ASTM D1693	N	linimum Hrs	w/o Failures	1500 hrs	C	RTIFIED
Notched Constant Tensile ASTM D5397	Load _{pa}	ss / fail @ 30)%	300 hrs		PASS ~

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

oto.

3/15/2012

ROLL# 3	1144	4-12	Lo	t #:		7120200	Liner	Туре:	MICRO:	SPIK	E™ HD	PE
Measurement ASTM D5994		MIN:	METI 1.49	RIC mm	ENG 59	LISH mil	Thicknes Length		1.5 m 153.926	. m	000.0	feet
(Modified)		MAX:	1.66	mm	65	mil	Width	**********	7.01	m;	23.0	feet
Asperity ASTM D7466: TOP / BOTTOM	33/33	mil AVE:	1.57	mm	62	mil	OIT(Standard) AS	STM D389	5 minutes	167	TES RESU	
Specific Gravity ASTM D792			Density				g/cc				.946	1
MFI ASTM D1238 COND. E GRADE:	3 K3 (07	Melt Flo	w Ind	ex 190	0°C /2160 g	g g/10 n	nin			.25	
Carbon Black Co ASTM D4218	ntent		Range			· · · · · · · · · · · · · · · · · · ·	%				2.28	
Carbon Black Dis ASTM D5596	persion		Categor	у						1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Moo			Average	Strei	ngth @) Yield	29 N/mm	(kN/m)	163 բ	ppi	2,558 2,718 2,638 3,214	psi
(2 inches / minute	e)		Average	Stre	ngth @) Break	34 N/mm	(kN/m)	196 p	pi	3,144 3,179	psi
Elongation ASTM ASTM D638 (Mod (2 inches / minute Lo = 1.3" Yield	dified)		Average	: Elon	gation	@ Yield	%				19.48 15.13 17.31 455.5 567.8	È Ž
Lo = 2.0" Break			Average	Elon	gation	@ Break	%				511.7	'
Dimensional Stab ASTM D1204 (Mo	•		Average	Dime	ension	al change	%				45	i
Tear Resistance ASTM D1004 (Mo	odified)		Average	Tear	Resis	tance	250.5	N			57.945 54.681 56.313	
Puncture Resistar		(Modified	Averag	e Pea	k Load	d	387.3	N			87.08	lbs
Puncture Resista ASTM D4833 (Mo			Averag	e Pea	k Load	1	598.2	N			134.48	lbs
ESCR ASTM D1693			Minimu	m Hrs	s w/o F	ailures	1500 hrs			C	ERTIFIED	
Notched Constan ASTM D5397	t Tensile	Load	pass / fa	il @ 3	0%		300 hrs				PASS	-

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/15/2012

311445-12 7120200 ROLL# Lot #: Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: Length..... 1.50 mm 59 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** Asperity ASTM D7466: 34/33 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 167 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.28 **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,558 2,718 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) 163 ppi 2,638 psi **ASTM D6693** ASTM D638 (Modified) 3.214 (2 inches / minute) 3,144 Average Strength @ Break 3,179 34 N/mm (kN/m) 196 ppi psi 19.48 Elongation ASTM D6693 15.13 % Average Elongation @ Yield 17.31 ASTM D638 (Modified) (2 inches / minute) 455.5 Lo = 1.3" Yield 567.8 Lo = 2.0" Break Average Elongation @ Break % 511.7 **Dimensional Stability** Average Dimensional change % -.45 ASTM D1204 (Modified) 57.945 Tear Resistance 54.681 ASTM D1004 (Modified) Average Tear Resistance 250.5 N 56.313 lbs Puncture Resistance Average Peak Load 87.08 lbs 387.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 598.2 N 134.48 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature...

3/15/2012

Quality Control Department

ROLL# 3	1144	6-12	Lo	t #:		7120200	Liner	Type:	MICRO	SPIK	Ϊ HI	DPE
Measurement ASTM D5994		MIN:		RIC mm		SLISH mil	Thicknes	ss	1.5 m 153.926 7.01	m	60 mi 505.0	l feet
(Modified)		MAX	1.65	mm	65	mil	Width		7.01	''',	23.0	feet
Asperity ASTM D7466 TOP / BOTTOM	37/31	_{mil} AVE:	1.58	mm	62	mil	OIT(Standard) A	STM D389	5 minutes	167		ST ULTS
Specific Gravity ASTM D792			Density				g/cc				.94	
MFI ASTM D123 COND. E GRADE:	8 K30)7	Melt Flo	w Ind	ex 190)°C /2160 g	g/10 r	nin	18211	-	.2	5
Carbon Black Co ASTM D4218	ntent		Range				%			_	2.2	8
Carbon Black Dis ASTM D5596	spersion		Category	/						10	In Cat	1
Tensile Strength ASTM D6693 ASTM D638 (Moo (2 inches / minut			Average	Stren	ngth @) Yield	29 N/mm	(kN/m)	164 p	pi	2,55 2,71 2,63 3,21	8 8 ps 4
(= menee / mina.	. ,		Average	Stren	igth @) Break	35 N/mm	(kN/m)	198 p	pi	3,144 3,179	
Elongation ASTM ASTM D638 (Mod (2 inches / minute	dified)		Average	Elong	gation	@ Yield	%				19.4 15.1 17.3	8 3 1
Lo = 1.3" Yield Lo = 2.0" Break			Average	Elong	gation	@ Break	%				567.8 511.7	3
Dimensional Stab ASTM D1204 (Mo	-		Average	Dime	nsiona	al change	%				4	5
Tear Resistance ASTM D1004 (Mo	odified)		Average	Tear	Resist	ance	250.5	N	\$11000 AV		57.944 54.681 56.313	
Puncture Resistar FTMS 101 Method		/lodified)	Average	Peak	Load		387.3	-				lbs
Puncture Resistar ASTM D4833 (Mo			Average	Peak	Load		598.2	N			134.48	ß lbs
ESCR ASTM D1693			Minimun	n Hrs	w/o Fa	ailures	1500 hrs			CE	RTIFIEC)
Notched Constant ASTM D5397	Tensile I	Load	pass / fail	@ 30	%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/15/2012

ROLL# 311447-12	Lot #: 7120	200 Liner Type:	: MICROSPIKE™ HDPE
Measurement ASTM D5994 MIN		Thickness	AFRICAC III FOF A foot
(Modified) MA: Asperity ASTM D7466: 36/32 _{mil} AVE		nil OIT(Standard) ASTM D38	TEST
Specific Gravity ASTM D792	Density	g/cc	.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2	160 g g/10 min	.25 🗸
Carbon Black Content ASTM D4218	Range	%	2.31
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield	27 N/mm (kN/m)	2,439 2,572 154 ppi 2,506 psi 3,093 2,706
	Average Strength @ Brea	1k 31 N/mm (kN/m)	178 ppi 2,900 psi
Elongation ASTM D6693 VASTM D638 (Modified)	(verage Elongation @ Yie	eld %	20.64 15.14 17.89
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Brown	eak %	450.0 483.1 466.6
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional cha	nge %	45
Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	266.2 N	61.540 58.145 59.843 lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load	415.2 N	93.335 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	577.9 N	129.92 lbs
ESCR ASTM D1693	Minimum Hrs w/o Failure	s 1500 hrs	CERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs	PASS /

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/15/2012

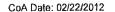
Quality Control Department

60HDmlc,FRM REV 03

311448-12 Lot #: ROLL# 7120200 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.50 mm 59 Length..... **ASTM D5994** mil Width..... 7.01 m; 23.0 feet (Modified) MAX: 1.67 mm 66 mil **TEST** Asperity ASTM D7466: 37/32 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.31 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2.439 Tensile Strength 2,572 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) 155 ppi 2,506 psi ASTM D638 (Modified) 3,093 (2 inches / minute) 2,706 Average Strength @ Break 31 N/mm (kN/m) **179** ppi 2,900 psi 20.64 Elongation ASTM D6693 15.14 ASTM D638 (Modified) Average Elongation @ Yield % 17.89 (2 inches / minute) 450.0 Lo = 1.3" Yield 483.1 Lo = 2.0" Break Average Elongation @ Break % 466.6 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.45 61.540 Tear Resistance 58.145 ASTM D1004 (Modified) Average Tear Resistance 266.2 Ν 59.843 lbs Puncture Resistance Average Peak Load 93.335 lbs FTMS 101 Method 2065 (Modified) 415.2 N Puncture Resistance Average Peak Load 577.9 Ν 129.92 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation


Destination Syracuse, NY

Date:.....

3/15/2012

Signature.

Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88417742

PO #: 006413

Weight: 194400 LB

Ship Date: 02/22/2012

Package: BULK

Mode:

Hopper Car CHVX896605 Car #:

Seal No: 282623

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7120199

Property	Test Method	Value	Unit
Melt Index HLMI Flow Rate	ASTM D1238 ASTM D1238 D1505 or D4883	0.25 21 0.938	g/10mi g/10mi g/cm3
Density Pellet Count Production Date	P02.08.03	26 02/12/2012	pel/g

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

311449-12 Lot #: ROLL# 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Measurement Thickness..... 153.926 m MIN: 505.0 feet 1.44 mm 57 ASTM D5994 Length..... mil 7.01 23.0 (Modified) Width..... feet MAX: 1.70 mm 67 mil **TEST** Asperity ASTM D7466: 35/32 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.31 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,439 Tensile Strength 2,572 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) 155 ppi 2,506 psi ASTM D638 (Modified) 3,093 (2 inches / minute) 2.706 Average Strength @ Break 31 N/mm (kN/m) 179 ppi 2,900 psi 20.64 Elongation ASTM D6693 15.14 ASTM D638 (Modified) Average Elongation @ Yield % 17.89 (2 inches / minute) 450.0 Lo = 1.3" Yield 483.1 Lo = 2.0" Break Average Elongation @ Break % 466.6 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.55 61.540 Tear Resistance 58.145 ASTM D1004 (Modified) Average Tear Resistance 266.2 Ν 59.843 lbs Puncture Resistance Average Peak Load 93.335 lbs FTMS 101 Method 2065 (Modified) 415.2 Ν Puncture Resistance Average Peak Load 577.9 Ν 129.92 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature...

Quality Control Department

3/15/2012

THE RELEASE								11							
ROLL#	31	145	50 -'	12	Lo	t #:		7120199	Liner	Type: I	MICROS	SPIK	E™ H	OP	Ε
					MET	RIC	FNG	LISH	Thickne	ss	1.5 m	m	60 mi	I	
Measurement ASTM D5994			Λ	/IN:	1.48	mm		mil	Length		153.926	m	505.0	fee	et
Modified)				/IAX:	1.69	mm		mil	Width		7.01	m;	23.0	fee	et
													TE	ST	
Asperity ASTM D7		36/32	mil A	NVE:	1.60	mm	63	mil	OIT(Standard) A	STM D389	5 minutes	180	RES		
Specific Grav ASTM D792	vity				Density				g/cc				.94	5	
MFI ASTM D COND. E GRADE:	1238	К3	07		Melt Flo	w Ind	ex 19(0°C /2160 g	g g/10	min			.2	25	
Carbon Black ASTM D4218		ent			Range				%				2.3	1	
Carbon Black ASTM D5596		ersion			Categor	у						10	0 In Cat	1	
Tensile Stren ASTM D6693 ASTM D638	3 (Modif	,			Average	Strei	ngth @) Yield	28 N/mi	π (kN/m)	158 p	pji	2,43 2,57 2,50 3,09	2 6 3	ps
(2 inches / m	iinute)			Average	Stre	ngth @) Break	32 N/mi	m (kN/m)	183 p	pi	2,70 2,90		ps
Elongation A ASTM D638			3		Average	e Elon	gation	ı @ Yield	%				20.6 15.1 17.8	4	
(2 inches / m Lo = 1.3" Yiel Lo = 2.0" Bre	ld)			Average	e Elon	gation	ı @ Break	%				450. 483. 466.	200	
Dimensional ASTM D1204								al change	%				5	55	
Tear Resistar ASTM D1004		lified)			Average	Tear	Resis	stance	266.2	N			61.54 58.14 59.84	5	lb
Puncture Res			(Mod	lified)	Averag	e Pea	k Loa	d	415.2	N			93.33	35	lb
Puncture Res ASTM D4833					Averag	e Pea	k Loa	d	577.9	N			129.9	92	lbs
ESCR ASTM D1693	3				Minimu	m Hrs	s w/o F	-ailures	1500 hrs			CI	ERTIFIE	D	
Notched Con ASTM D5397		Tensil	e Loa	ad	pass / fa	il @ 3	0%		300 hrs				PAS	S	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Quality Control Department

3/15/2012

ROLL# 31145	51-12	Lot #:	7120199	Liner Type: I	MICROSPIKI	E™ HDPE	=
Measurement ASTM D5994 Modified)	MIN: MAX:	METRIC 1.50 mm 1.69 mm		Thickness Length Width		60 mil 505.0 ^{feet} 23.0 feet	
Asperity ASTM D7466: 36/32 TOP / BOTTOM	mil AVE:	1.56 mm	61 / mil	OIT(Standard) ASTM D389	5 minutes 180	TEST RESULT	S
Specific Gravity ASTM D792		Density		g/cc		.946 V	_
MFI ASTM D1238 COND. E GRADE: K3	307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.25 🛩	
Carbon Black Content ASTM D4218		Range		%		2.16 د	/
Carbon Black Dispersion ASTM D5596	1	Category			10	In Cat 1	/
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		Average Stren		28 N/mm (kN/m) 32 N/mm (kN/m)	160 ppi	3,177 2,787	osi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	3		gation @ Yield	%	- ''-	20 26 15 10 17.68 ~ 460.6 512.4	/
Lo = 2.0" Break		Average Elong	gation @ Break	%		486.5	
Dimensional Stability ASTM D1204 (Modified)		Average Dime	nsional change	%		55	
Tear Resistance ASTM D1004 (Modified)		Average Tear	Resistance	270.0 N		62.591 58,806 60.699 1	bs
Puncture Resistance FTMS 101 Method 2065	(Modified)	Average Peal	k Load	407.5 N		91.606	bs
Puncture Resistance ASTM D4833 (Modified)	/	Average Peal	k Load	559.9 N		125.88	bsi
ESCR ASTM D1693		Minimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED	
Notched Constant Tensil	le Load	pass / fail @ 30	0%	300 hrs		PASS ~	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

311452-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... MIN: 1.48 mm 58 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 64 MAX: 1.63 mil **TEST** Asperity ASTM D7466; 29/32 mil AVE: 1.56 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content Range % 2.16 ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2.478 2,741 Tensile Strength Average Strength @ Yield 160 ppi psi 28 N/mm (kN/m) 2,610 **ASTM D6693** 3,177 ASTM D638 (Modified) 2,787 (2 inches / minute) 183 ppi 2,982 Average Strength @ Break 32 N/mm (kN/m) psi 20.25 15.10 Elongation ASTM D6693 % 17.68 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 460.6 Lo = 1.3" Yield 512.4 Lo = 2.0" Break 486.5 Average Elongation @ Break % **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 62.591 Tear Resistance 58.806 ASTM D1004 (Modified) 60.699 270.0 N lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 91.606 407.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance 559.9 Average Peak Load Ν 125.88 lbs ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature.

3/15/2012

Quality Control Department

311453-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.49 mm 59 Length..... mit ASTM D5994 7.01 23.0 Width..... feet (Modified) MAX: 1.68 mil mm 66 **TEST** Asperity ASTM D7466: 36/32 mil AVE: 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .25 g/10 min COND. E GRADE: K307 Carbon Black Content % Range 2.16 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.478 2,741 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **162** ppi 2,610 psi **ASTM D6693** ASTM D638 (Modified) 3.177 (2 inches / minute) 2.787 Average Strength @ Break 32 N/mm (kN/m) 185 ppi 2,982 psi 20.25 Elongation ASTM D6693 15.10 Average Elongation @ Yield % 17.68 ASTM D638 (Modified) (2 inches / minute) 460.6 Lo = 1.3" Yield 512.4 Lo = 2.0" Break % Average Elongation @ Break 486.5 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 62.591 Tear Resistance 58.806 ASTM D1004 (Modified) Average Tear Resistance 270.0 N 60.699 lbs Puncture Resistance Average Peak Load 91.606 lbs 407.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 559.9 N 125.88 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Signature.

Quality Control Department

311454-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.49 mm 59 MIN: mil ASTM D5994 7.01 m: 23.0 feet Width..... (Modified) MAX: 1.69 67 mil mm **TEST** mm 62 Asperity ASTM D7466: 37/32 mil AVE: 1.57 mil OIT(Standard) ASTM D3895 minutes 180 RESULTS TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.16 % Range ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,478 2,741 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **161** ppi 2,610 psi **ASTM D6693** 3,177 ASTM D638 (Modified) (2 inches / minute) 2.787 Average Strength @ Break 32 N/mm (kN/m) 184 ppi 2,982 psi 20.25 15.10 Elongation ASTM D6693 Average Elongation @ Yield % 17.68 ASTM D638 (Modified) (2 inches / minute) 460.6 512.4 Lo = 1.3" Yield Lo = 2.0" Break % 486.5 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 62.591 Tear Resistance 58.806 ASTM D1004 (Modified) 270.0 Ν 60.699 lbs Average Tear Resistance Puncture Resistance Average Peak Load lbs 91.606 407.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance lbs 559.9 N 125.88 Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/15/2012

ROLL# 311455-1	2 Lot #:	 7120199	Liner Type: N	MICROSPIK	E™ HDPE
/ N.A. = -100 = -10	IN: 1.56 mm 61 AX: 1.76 mm 69	GLISH mil mil mil or	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet TEST RESULTS
Specific Gravity ASTM D792	Density		g/cc	100	.946
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 1	90°C /2160 g	g/10 min		.25
Carbon Black Content ASTM D4218	Range		%		2.26
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength		28 N/mm (KN/m)	162 ppi	2.437 2.579 2,508 psi 3.164 2.466
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elongation		32 N/mm (KN/m)	182 ppi	2,815 psi 19.13 15.89 17.51 466,3
Lo = 1.3" Yield Lo = 2.0" Break	Average Mongation	n @ Break	%		447.7
Dimensional Stability ASTM D1204 (Modified)	Average Dimension	nal change	%		55
Tear Resistance ASTM D1004 (Modified)	Average Jear Res	istance	256.7 N		59.683 55.718 57.701 lbs V
Puncture Resistance FTMS 101 Method 2065 (Modif	Average Peak Lo	ad	450.0 N		101.15 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Lo	ad	603.9 N		135.76 lbs
ESCR ASTM D1693	Minimum Hrs w/o	Failures	1500 hrs	CE	RTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%		300 hrs		PASS /

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/15/2012

Quality Control Department

0.4	4 = = 0	4.0				11	=					
ROLL# 31	1556	-12	Lo	t #:		7120199	Line	r Type: I	MICRO	SPIK	E™ HI	DPE
Measurement			METE	RIC	ENG	LISH	Thickne	ess	1.5 m		60 mi	1
ASTM D5994		MIN:	1.44	mm	57	mil	Length.		153.926		505.0	feet
(Modified)		MAX:	1.62	mm	64	mil	Width		7.01	m;	23.0	feet
Asperity ASTM D7466: TOP / BOTTOM	37/32 mil	AVE:	1.55	mm	61	mil	OIT(Standard)	ASTM D389	5 minutes	180		ST ULTS
Specific Gravity ASTM D792			Density				g/cc				.94	6
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flor	w Inde	ex 190)°C /2160 (g g/10) min			.2	5
Carbon Black Cont ASTM D4218	ent		Range				%				2.2	6
Carbon Black Disp ASTM D5596	ersion		Category	У						10	In Cat	1
Tensile Strength ASTM D6693 ASTM D638 (Modif (2 inches / minute	•		Average	Stren	ngth @) Yield	27 N/m	nm (kN/m)	153 p	pi	2,43 2,57 2,50 3,16	9 8 ps 4
(= menes / minate	/		Average	Stren	igth @) Break	30 N/m	ım (kN/m)	172 p	pi	2,46 2,81	
Elongation ASTM ASTM D638 (Modif (2 inches / minute	ïed)		Average	Elong	gation	@ Yield	%				19.1 15.8 17.5	9 1
Lo = 1.3" Yield Lo = 2.0" Break	,		Average	Elong	gation	@ Break	%				465. 430. 447.	1
Dimensional Stabili ASTM D1204 (Mod			Average	Dime	nsiona	al change	%				5	5
Tear Resistance ASTM D1004 (Mod	ified)		Average	Tear	Resist	tance	256.7	'N			59.68 55.718 57.70	3
Puncture Resistand FTMS 101 Method	_		Average				450.0				101.1	
Puncture Resistanc ASTM D4833 (Mod			Average	Peak	Load		603.9	N			135.70	ß Ibs
ESCR ASTM D1693			Minimun	n Hrs	w/o F	ailures	1500 hrs			CE	RTIFIE)
Notched Constant 7 ASTM D5397	ensile Lo	ad p	oass / fail	@ 30)%		300 hrs				PASS	3

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

REV 03 12/23/05

311557-12 Lot #: ROLL# 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.51 **ASTM D5994** mm 59 Length..... mil Width..... 7.01 m; 23.0 feet (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466; 38/33 mil AVE: 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.26 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,437 Tensile Strength 2,579 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) **156** ppi 2,508 psi ASTM D638 (Modified) 3,164 (2 inches / minute) 2,465 Average Strength @ Break 31 N/mm (kN/m) 175 ppi 2,815 psi 19.13 Elongation ASTM D6693 15.89 ASTM D638 (Modified) Average Elongation @ Yield % 17.51 (2 inches / minute) 465.3 Lo = 1.3" Yield 430.1 Lo = 2.0" Break Average Elongation @ Break % 447.7 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.55 59.683 Tear Resistance 55.718 ASTM D1004 (Modified) Average Tear Resistance 256.7 N 57.701 lbs Puncture Resistance Average Peak Load 101.15 lbs 450.0 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 603.9 Ν 135.76 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/16/2012

Signature.....

Quality Control Department

ROLL# 31155	8-12	Lot	#:		 7120199	Liner	Type:	MICRO	SPIK	E™ HD	PΕ
Measurement ASTM D5994	MIN:		mm		mil	Thickne Length Width		1.5 m 153.926 7.01		000.0	feet feet
(Modified) Asperity ASTM D7466: 37/31	MAX: mil AVE:		mm mm		mil mil		- Contract			TES	ST
TOP / BOTTOM	mii //VL.	1.00		.		OIT(Standard) A	STM D389	5 minutes	180	RESU	LTS
Specific Gravity ASTM D792		Density				g/cc				.946	i
MFI ASTM D1238 COND. E GRADE: K3	07	Melt Flov	v Ind	ex 190	°C /2160 (g g/10	min			.25	}
Carbon Black Content ASTM D4218		Range				%				2.26	
Carbon Black Dispersion ASTM D5596		Category	,					4	10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)		Average Strength @ Yield				27 N/mi	m (kN/m)	154 բ	pji	2,437 2,579 2,508 3,164	ps
(2 inches / minute)		Average	Strer	ngth @) Break	30 N/mi	m (kN/m)	173 p	pi	2,4 6 5 2,815	ps
Elongation ASTM D6693 ASTM D638 (Modified)		Average	Elon	gation	@ Yield	%				19.13 15.89 17.51	}
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break		Averene	Elan	aation	@ Drook	%				465.3 430.1 447.7	
Dimensional Stability ASTM D1204 (Modified)		Average Average			al change	% %				58	
ASTW D1204 (Wodilled)				-						59.683	
Tear Resistance										55.718	
ASTM D1004 (Modified)		Average	Tear	Resis	tance	256.7	N			57.701	lbs
Puncture Resistance FTMS 101 Method 2065	(Modified)	Average	Pea	k Load	<u>.</u>	450.0	N			101.15	j lbs
Puncture Resistance ASTM D4833 (Modified)		Average	Pea	k Load	<u> </u>	603.9	N			135.76	i lbs
ESCR ASTM D1693		Minimun	n Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIED)
Notched Constant Tensile ASTM D5397	pass / fail @ 30%				300 hrs				PASS		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

ate:.....

Signature.

Quality Control Department

3/16/2012

ROLL# 311559-1	2 Lot #: 712019	9 Liner Type:	MICROSPIKE™ HDPE			
Measurement ASTM D5994 MII (Modified) MA Asperity ASTM D7466: 36/33 mil AV	X: 1.62 mm 64 mil	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 m: 23.0 feet			
TOP / BOTTOM	E. 1.30 Hill 61 - Hill	OIT(Standard) ASTM D389				
Specific Gravity ASTM D792	Density	g/cc	.946			
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160) g g/10 min	.25			
Carbon Black Content ASTM D4218	Range	%	2.35			
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1			
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield	28 N/mm (kN/m)	160 ppi 2,605 psi 3,116 v 2,597 v			
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Strength @ Break Average Elongation @ Yield	31 N/mm (kN/m) %	175 ppi 2,857 psi 18.68 15.26 16.95 488.7			
Lo = 2.0" Break	Average Elongation @ Break	%	450.8 455.3			
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	e %	55			
Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	247.9 N	57,487 V 53,959 V 55.723 lbs V			
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load	417.7 N	93.901 lbs			
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	584.3 N	131.35 lbs			
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED			
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs	PASS			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/16/2012

311560-12 ROLL# Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil METRIC **ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.46 mm 57 **ASTM D5994** mil 7.01 Width..... 23.0 feet (Modified) MAX: 1.58 mm 62 mil **TEST** Asperity ASTM D7466: 38/36 mil AVE: 1.52 mm 60 mil OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM **RESULTS** Specific Gravity Density q/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 q g/10 min COND. E .25 GRADE: K307 Carbon Black Content Range % 2.35 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.526 Tensile Strength 2,683 Average Strength @ Yield 27 N/mm (kN/m) **ASTM D6693** 156 ppi 2,605 psi ASTM D638 (Modified) 3.116 (2 inches / minute) 2.597 Average Strength @ Break 30 N/mm (kN/m) **171** ppi 2,857 psi 18.65 Elongation ASTM D6693 15.25 ASTM D638 (Modified) Average Elongation @ Yield % 16.95 (2 inches / minute) 459.7 Lo = 1.3" Yield 450.8 Lo = 2.0" Break Average Elongation @ Break % 455.3 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 57.487 Tear Resistance 53.959 ASTM D1004 (Modified) Average Tear Resistance 247.9 N 55.723 lbs Puncture Resistance Average Peak Load lbs 93.901 417.7 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 584.3 N 131.35 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/16/2012

311561-12 Lot #: Liner Type: MICROSPIKE™ HDPE 7120199 ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: Length..... 1.46 mm 57 mil ASTM D5994 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.58 mm 62 mil **TEST** 36/33 mil AVE: 1.52 mm 60 Asperity ASTM D7466: mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.35 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.526 Tensile Strength 2,683 Average Strength @ Yield **156** ppi 27 N/mm (kN/m) 2,605 psi **ASTM D6693** ASTM D638 (Modified) 3,116 (2 inches / minute) 2.697 Average Strength @ Break 30 N/mm (kN/m) 171 ppi 2,857 psi 18.65 Elongation ASTM D6693 15.25 Average Elongation @ Yield % ASTM D638 (Modified) 16.95 (2 inches / minute) 459.7 Lo = 1.3" Yield 450.8 Lo = 2.0" Break Average Elongation @ Break % 455.3 **Dimensional Stability** % Average Dimensional change -.55 ASTM D1204 (Modified) 57.487 Tear Resistance 53.959 ASTM D1004 (Modified) Average Tear Resistance 247.9 N 55.723 lbs Puncture Resistance Average Peak Load lbs 93.901 417.7 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 584.3 N lbs 131.35 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/16/2012

Signature. Quality Control Department

311562-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil Thickness..... **ENGLISH METRIC** Measurement 153.926 m 505.0 feet Length..... MIN: 1.51 mm 59 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.63 mm 64 mil **TEST** 36/34 mil AVE: 1.57 mm 62 mil Asperity ASTM D7466: **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc .946 Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.35 Range ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2.526 2.683 Tensile Strength **161** ppi Average Strength @ Yield psi 28 N/mm (kN/m) 2,605 **ASTM D6693** 3,116 ASTM D638 (Modified) 2,597 (2 inches / minute) 2,857 Average Strength @ Break 31 N/mm (kN/m) 177 ppi psi 18.65 15.25 Elongation ASTM D6693 16.95 % Average Elongation @ Yield ASTM D638 (Modified) 459.7 (2 inches / minute) 450,8 Lo = 1.3" Yield 455.3 Lo = 2.0" Break % Average Elongation @ Break **Dimensional Stability** -.55 % Average Dimensional change ASTM D1204 (Modified) 57,487 Tear Resistance 53.959 ASTM D1004 (Modified) 55.723 lbs 247.9 N Average Tear Resistance Puncture Resistance lbs Average Peak Load 93.901 417.7 N FTMS 101 Method 2065 (Modified) Puncture Resistance lbs Average Peak Load 584.3 Ν 131.35 ASTM D4833 (Modified) **ESCR CERTIFIED** Minimum Hrs w/o Failures 1500 hrs **ASTM D1693** Notched Constant Tensile Load **PASS** pass / fail @ 30% 300 hrs **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/16/2012

REV 03 12/23/05

60HDmic.FRM

ROLL# 311563-	12 Lot #:	7120199	Liner Type:	MICROSPIK	E™ HDF	E
(1.0 III DOCO-7 -	METRIC E MIN: 1.50 mm & MAX: 1.59 mm &		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;		et
Asperity ASTM D7466: 35/38 mil /	AVE: 1.54 mm 6	61 mil	DIT(Standard) ASTM D389	5 minutes 180	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	∢190°C /2160 g	g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.32	-
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Streng		29 N/mm (kN/m)32 N/mm (kN/m)	165 ppi	2,677 2,769 2,723 3,085 2,993 2,993	psî
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elonga		%		18.97 18.18 17.08 448.8 620.8 485.2	
Dimensional Stability ASTM D1204 (Modified)	Average Dimen		%		55	
Tear Resistance ASTM D1004 (Modified)	Average Tear F	Resistance	264.0 N		55.536v 59.349	100
Puncture Resistance FTMS 101 Method 2065 (Mod	Average Peak	Load	430.8 N		96.85	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	591.1 N		132.88	lbs 🗸
ESCR ASTM D1693	Minimum Hrs v	w/o Failures	1500 hrs	CE	RTIFIED	
Notched Constant Tensile Lo ASTM D5397	ad pass / fail @ 30	%	300 hrs		PASS	_

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/16/2012

Quality Control Department

ROLL# 311564-	12 Lot #:	" 7120199	Liner Type:	MICROSPIK	E™ HDE	ΡF
ROLL# 311564-7	21 4477			1.5 mm	60 mil	_
Measurement	METRIC IIN: 1.46 mm	ENGLISH n 57 mil	Thickness Length	153.926 m		et
TO THE DOOD T		n 65 mil	Width	7.01 m;	23.0 fe	eet
Asperity ASTM D7466: 36/36 mil A		n 61 mil	OIT(Standard) ASTM D389	5 minutes 180	TES ⁻ RESUL	
Specific Gravity ASTM D792	Density		g/cc		.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inc	dex 190ºC /2160 (g g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.32	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stre	ength @ Yield	29 N/mm (kN/m)	167 ppi	2,677 2,769 2,723 3,083 2,903	ps
(2 inches / minute)	Average Stre	ength @ Break	32 N/mm (kN/m)	184 ppi	2,993	ps
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elo	ngation @ Yield	%		18.97 15.18 17.08 443.5	
Lo = 1.3" Yield Lo = 2.0" Break	Average Elo	ngation @ Break	%		526.8 485.2	
Dimensional Stability ASTM D1204 (Modified)	Average Dim	nensional change	%		55	
Tear Resistance					60.161	
ASTM D1004 (Modified)	Average Tea	r Resistance	264.0 N		58.536 59.349	lb
Puncture Resistance FTMS 101 Method 2065 (Mod	Average Pe		430.8 N		96.85	lb
Puncture Resistance ASTM D4833 (Modified)	Average Pe	ak Load	591.1 N		132.88	lb
ESCR ASTM D1693	Minimum H	rs w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Loa ASTM D5397	pass / fail @	30%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

3/16/2012

311565-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mii **METRIC ENGLISH** Thickness...... Measurement 153,926 m 505.0 feet MIN: 1.52 mm 60 Length..... mil ASTM D5994 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.65 mil mm 65 **TEST** Asperity ASTM D7466: 35/38 mil AVE: 1.57 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .25 q/10 min COND. E GRADE: K307 Carbon Black Content % Range 2.32 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.677 2,769 Tensile Strength Average Strength @ Yield **168** ppi 29 N/mm (kN/m) psi 2,723 **ASTM D6693** ASTM D638 (Modified) 3,083 (2 inches / minute) 2.903 Average Strength @ Break 32 N/mm (kN/m) 185 ppi 2,993 psi 18.97 Elongation ASTM D6693 15.18 Average Elongation @ Yield % 17.08 ASTM D638 (Modified) (2 inches / minute) 443.5 Lo = 1.3" Yield 526.8 Lo = 2.0" Break % Average Elongation @ Break 485.2 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 60.161 Tear Resistance 58,536 ASTM D1004 (Modified) Average Tear Resistance 264.0 N 59.349 lbs Puncture Resistance Average Peak Load lbs 96.85 430.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 591.1 Ν 132.88 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.

3/16/2012

Quality Control Department

311566-12 ROLL# Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.51 mm 59 mil Length..... ASTM D5994 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.64 mm 65 mil **TEST** Asperity ASTM D7466: 37/35 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes **RESULTS** 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.32 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,677 2.769 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) **168** ppi psi **ASTM D6693** 2,723 ASTM D638 (Modified) 3,083 (2 inches / minute) 2.903 Average Strength @ Break 32 N/mm (kN/m) 185 ppi 2,993 psi 18.97 Elongation ASTM D6693 15.18 Average Elongation @ Yield ASTM D638 (Modified) % 17.08 (2 inches / minute) 443.5 Lo = 1.3" Yield 526.8 Lo = 2.0" Break Average Elongation @ Break % 485.2 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 60.161 Tear Resistance 58.536 ASTM D1004 (Modified) Average Tear Resistance 264.0 N 59.349 lbs Puncture Resistance Average Peak Load lbs 96.85 430.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 591.1 N 132.88 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature......Quality Control Department

		11	-	
ROLL# 311567	-12 Lot #:	7120199	Liner Type: I	MICROSPIKE™ HDPE
Measurement ASTM D5994 (Modified)		ENGLISH n 59 mil n 64 mil	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feel 7.01 ^m 23.0 feet
Asperity ASTM D7466: 35/32 mil TOP / BOTTOM		n 62 mil	DIT(Standard) ASTM D3898	TEST 5 minutes 180 RESULTS
Specific Gravity ASTM D792	Density		g/cc	.947
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inc	dex 190ºC /2160 g	g/10 min	.25
Carbon Black Content ASTM D4218	Range		%	2.35
Carbon Black Dispersion ASTM D5596	Category			10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stre	ength @ Yield	27 N/mm (kN/m)	2,517 2,494 155 ppi 2,506 psi 3,237
(2 inches / minute)	Average Stre	ength @ Break	33 N/mm (kN/m)	190 ppi 2,924 psi
Elongation ASTM D6693 VASTM D638 (Modified) (2 inches / minute)	Average Elor	ngation @ Yield	%	15.73 17.61
Lo = 1.3" Yield Lo = 2.0" Break	Average Flor	ngation @ Break	%	458.2 537.6 497.9
Dimensional Stability ASTM D1204 (Modified)	Average Dim	ensional change	%	55
Tear Resistance ASTM D1004 (Modified)	Average Tea	r Resistance	248.6 N	57,276 54,501 55.889 lbs -
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Pea	ak Load	454.3 N	102.14 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pea	ak Load	606.0 N	136.23 lbs <i>⊌</i>
ESCR ASTM D1693	Minimum Hr	s w/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Lo	pad pass / fail @ 3	30%	300 hrs	PASS L

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

SALI

3/16/2012

Quality Control Department

(I)(I)(I)		"				
ROLL# 311568-12	Lot #:	7120199	Liner Type:	MICROSPIN	(E™ HDF	PE
Measurement	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	- 4
ASTM D5994 MIN:	1.56 mm	61 mil	Length	153.926 ^m	000.0	eet
Modified) MAX	1.67 mm	66 mil	Width	7.01 m;	23.0 fo	eet
sperity ASTM D7466: 36/32 mil AVE:	1.61 mm	63 mil	OIT(Standard) ASTM D389	5 minutes 180	TES RESUL	
Specific Gravity ASTM D792	Density		g/cc		.947	
MFI ASTM D1238 COND. E GRADE: K307	Meit Flow Inde	x 190°C /2160 g	g g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.35	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stren	gth @ Yield	28 N/mm (kN/m)	159 ppi	2,517 2,494 2,506 3,237	ps
(2 inches / minute)	Average Stren	gth @ Break	34 N/mm (kN/m)	195 ppi	2,924 3,081	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elong	ation @ Yield	%		19.49 15.73 17.61	
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Flore	uction @ Prock	%	8	458.2 537.6 497.9	
Dimensional Stability ASTM D1204 (Modified)	Average Elong Average Dime	nsional change	%		55	
AOTHI D1204 (Modifica)				onaman a to a sensenta neces	57.276	
Tear Resistance					54.501	
ASTM D1004 (Modified)	Average Tear	Resistance	248.6 N		55.889	lb
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peak I)	c Load	454.3 N		102.14	lb
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	606.0 N		136.23	lb
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Quality Control Department

3/16/2012

311569-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.53 Length..... mm 60 mil **ASTM D5994** 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.70 mm 67 mil **TEST** 1.59 Asperity ASTM D7466: 38/32 mil AVE: mm 63 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 COND. E Melt Flow Index 190°C /2160 g q/10 min .25 GRADE: K307 Carbon Black Content Range % 2.35 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.517 Tensile Strength 2,494 Average Strength @ Yield 27 N/mm (kN/m) 157 ppi **ASTM D6693** 2,506 psi ASTM D638 (Modified) 3,237 (2 inches / minute) 2.924 Average Strength @ Break 34 N/mm (kN/m) 193 ppi 3,081 psi 19.49 Elongation ASTM D6693 15.73 Average Elongation @ Yield % ASTM D638 (Modified) 17.61 (2 inches / minute) 458.2 Lo = 1.3" Yield 537.6 Lo = 2.0" Break Average Elongation @ Break % 497.9 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 57.276 Tear Resistance 54.501 ASTM D1004 (Modified) Average Tear Resistance 248.6 Ν 55.889 lbs Puncture Resistance Average Peak Load 102.14 lbs 454.3 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.0 Ν 136.23 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

60HDmic.FRM REV 03

311670-12 ROLL# Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.58 mm 62 Lenath..... **ASTM D5994** mil 7.01 Width..... m; 23.0 feet (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466; 38/31 mil AVE: 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a g/10 min COND. E .25 GRADE: K307 Carbon Black Content Range % 2.35 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,517 Tensile Strength 2,494 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) 156 ppi 2,506 psi ASTM D638 (Modified) 3,237 (2 inches / minute) 2.924 Average Strength @ Break 34 N/mm (kN/m) **192** ppi 3,081 psi 19.49 Elongation ASTM D6693 15.73 ASTM D638 (Modified) Average Elongation @ Yield % 17.61 (2 inches / minute) 458.2 Lo = 1.3" Yield 537.6 Lo = 2.0" Break Average Elongation @ Break % 497.9 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.55 57.276 Tear Resistance 54.501 ASTM D1004 (Modified) Average Tear Resistance 248.6 Ν 55.889 lbs Puncture Resistance Average Peak Load 102.14 lbs 454.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.0 N 136.23 lbs ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

Quality Control Department

ROLL#	311671	-12	Lo	t #:	71	120199	Liner	Туре: І	MICRO:	SPIK	E™ HD	PE
Measurement ASTM D5994 v (Modified) Asperity ASTM D7 TOP / BOTT	/466: 38/31 mi	MIN: MAX: AVE:	METF 1.47 1.69 1.59	mm mm		mil mil mil	Thicknes Length Width		1.5 m 153.926 7.01	m m;		
Specific Grav	ity	[Density				g/cc			1,00	.947	
MFI ASTM D1 COND. E GRADE:	1238 ✓ K307		Melt Flo	w Inde	ex 190°C	C /2160 g	g/10 r	nin			,25	V
Carbon Black ASTM D4218		F	Range				%				2.46	
Carbon Black ASTM D5596			Category	,						10	In Cat 1	V
Tensile Streng ASTM D6693 ASTM D638 (I (2 inches / mi	Modified)			`	ngth @ Y		32 N/mm		181 p 215 p		2,786 2,983 2,885 3,440 3,431 3,436	psi
Elongation AS ASTM D638 (I 2 inches / mi Lo = 1.3" Yield	Modified) nute)				gation @		%	(MVIII)	210 p	Pi	19.28 14.70 16.99 471.5	✓
Lo = 2.0" Brea		e	verage	Elong	gation @	Break	%				519.7	
Dimensional S ASTM D1204		А	verage	Dime	nsional d	change	%				55	
Tear Resistan ASTM D1004			verage	Tear	Resistar	nce	264.9	N			61,927 57,199 59,563	~
Puncture Resi TMS 101 Me	stance thod 2065 (M	odified)	Average	Peak	k Load		456.0	N			102.51	lbs
Puncture Resi		/ /	Average	Peak	k Load		605.5	N			136.12	lbs 6
SCR ASTM D1693		ı	Minimur	n Hrs	w/o Fail	ures	1500 hrs			CE	RTIFIED	
Notched Cons ASTM D5397		oad pa	ass / fail	@ 30)%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Signature......Quality Control Department

ROLL# 31	1672-	.12	10	t #:		" 7120199	⊒- Linor	Typo:	MICROS	SDIN	ети ш)DE
NOLL#	1012	14			_							
Measurement		N#INI.	METE			GLISH	Thickne		1.5 m 153.926		60 mi 505.0	feet
ASTM D5994 (Modified)		MIN:	1.45	mm		mil	Length Width		7.01	m;	23.0	feet
(imodifica)		MAX:	1.61	mm	63	mil	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
Asperity ASTM D7466: TOP / BOTTOM	38/32 mil	AVE:	1.56	mm	61	mil	OIT(Standard) A	STM D389	5 minutes	180	RES	ST ULTS
Specific Gravity ASTM D792			Density				g/cc				.94	7
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flor	w Inde	ex 19	0°C /2160 g	g g/10	min			.2	5
Carbon Black Con ASTM D4218	tent		Range				%			-	2.4	6
Carbon Black Disp ASTM D5596	ersion		Category	/						10	In Cat	1
Tensile Strength ASTM D6693 ASTM D638 (Modi (2 inches / minute	,		Average	Stren	ıgth @) Yield	31 N/mm	n (kN/m)	177 p	pi	2,78 2,98 2,88 3,44	3 5 ps
(= moneo / minate	/		Average	Stren	gth @) Break	37 N/mm	n (kN/m)	211 p	pi	3,43° 3,43 6	
Elongation ASTM ASTM D638 (Modit (2 inches / minute	fied)		Average	Elong	gation	@ Yield	%				19.2 14.7 16.9	0 9
Lo = 1.3" Yield Lo = 2.0" Break	,		Average	Elono	ation	@ Break	%				471.5 567.8 519 .7	3
Dimensional Stabili ASTM D1204 (Mod	•					al change	%				5	
Tear Resistance ASTM D1004 (Mod	lified)		Average	Tear	Resis	tance	264.9	N			61.92 57.199 59.563	}
Puncture Resistand FTMS 101 Method		lified)	Average	Peak	Load	d	456.0	N			102.5	
Puncture Resistand ASTM D4833 (Mod			Average	Peak	Load	d	605.5	N			136.12	2 lbs
ESCR ASTM D1693		79 800	Minimun	n Hrs	w/o F	ailures	1500 hrs		T-T-11	CE	RTIFIEC)
Notched Constant 7 ASTM D5397	Tensile Loa	ad p	oass / fail	@ 30	1%		300 hrs				PASS	3

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

311673-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 MIN: 1.50 mm 59 Length..... **ASTM D5994** mil 7.01 23.0 Width..... feet (Modified) MAX: 1.68 mm 66 mil **TEST** Asperity ASTM D7466: 36/31 mil AVE: 1.60 mm 63 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.46 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,786 Tensile Strength 2,983 Average Strength @ Yield 32 N/mm (kN/m) 182 ppi **ASTM D6693** psi 2,885 ASTM D638 (Modified) 3,440 (2 inches / minute) 3,431 Average Strength @ Break 38 N/mm (kN/m) **216** ppi 3,436 psi 19.28 Elongation ASTM D6693 14.70 ASTM D638 (Modified) Average Elongation @ Yield % 16.99 (2 inches / minute) 471.5 Lo = 1.3" Yield 567.8 Lo = 2.0" Break Average Elongation @ Break % 519.7 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 61.927 Tear Resistance 57.199 ASTM D1004 (Modified) Average Tear Resistance 264.9 59.563 lbs Puncture Resistance Average Peak Load lbs 102.51 456.0 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 605.5 Ν lbs 136.12 ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/17/2012

Signature......

Quality Control Department

ROLL# 31167	4-12	Lo	t #:	7	120199	Liner	Type: I	MICROS	SPIK	Ϊ HC	PE
Measurement ASTM D5994 (Modified)	MIN:	METF 1.47	mm		mil	Thickne Length		1.5 m 153.926 7.01		60 mil 505.0 23.0	feet feet
	MAX: mil AVE:	1.57 1.52	mm mm		mil mil	OIT(Standard) A		5 minutes	180	TE: RESU	
Specific Gravity ASTM D792		Density				g/cc				.94	7
MFI ASTM D1238 COND. E GRADE: K30)7	Melt Flor	w Ind	ex 190°	C /2160	g g/10	min			.29	5
Carbon Black Content ASTM D4218		Range				%				2.4	3
Carbon Black Dispersion ASTM D5596		Categor	y						1	0 In Cat	1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		Average	Strer	ngth @	Yield	30 N/mi	m (kN/m)	173 p	ppi	2,78(2,98; 2,88 ! 3,44(3,431	3 5 ps
(2 mones / minute)		Average	Strer	ngth @	Break	36 N/mi	n (kN/m)	206 p	pi	3,436	p s
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		Average	Elon	gation () Yield	%				19.21 14.70 16.9 9	9
Lo = 1.3" Yield Lo = 2.0" Break		Average	Elon	gation @) Break	%				567.8 519. 7	3
Dimensional Stability ASTM D1204 (Modified)		Average	Dime	ensional	change	%				5	5
Tear Resistance										61.92	
ASTM D1004 (Modified)		Average	Tear	Resista	nce	264.9	N			57.199 59.56 3	
Puncture Resistance FTMS 101 Method 2065 (Modified)	Average	e Pea	k Load		456.0	N			102.5	1 lbs
Puncture Resistance ASTM D4833 (Modified)		Average	e Pea	k Load		605.5	N			136.1	2 lbs
ESCR ASTM D1693		Minimu	m Hrs	w/o Fa	ilures	1500 hrs			CI	ERTIFIE)
Notched Constant Tensile ASTM D5397	Load	pass / fai	I @ 3	0%		300 hrs				PASS	3

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

ate: 9x All

Quality Control Department

ROLL# 311675-	12 Lot #: 712019	99 Liner Type:	MICROSPIKE™ HDPE
Measurement ASTM D5994 N	METRIC ENGLISH 1.54 mm 61 mil 1.69 mm 67 mil	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 ^m ; 23.0 feet
Specific Gravity ASTM D792	Density	g/cc	.945
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160	0 g g/10 min	.25 🗸
Carbon Black Content ASTM D4218 V	Range	%	2.28
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield Average Strength @ Break	29 N/mm (kN/m) 32 N/mm (kN/m)	163 ppi 2,576 psi 1,053 2,786 2,910 psi
Elongation ASTM D6693 ASTM D638 (Modified) 2 inches / minute) Lo = 1.3" Yield	Average Elongation @ Yield	%	19.51 14.97 17.24 488.0 526.5
_o = 2.0" Break	Average Blongation @ Break	%	492.3
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	e %	55
Tear Resistance ASTM D1004 (Modified)	Average Sear Resistance	269 .9 N	61.486 59.889 60.688 lbs
Puncture Resistance TMS 101 Method 2065 (Modif	Average Peak Load	462.0 N	103.85 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	619.2 N	139.20 lbs
SCR STM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Load	pass / fail @ 30%	300 hrs	PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/17/2012

Quality Control Department

311676-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 60 mil 1.5 mm **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet 1.49 mm 59 Length..... MIN: mil ASTM D5994 7.01 23.0 feet Width..... (Modified) MAX: 1.63 mm 64 mil **TEST** Asperity ASTM D7466: 36/36 mil AVE: 1.57 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a q/10 min .25 COND. E GRADE: K307 Carbon Black Content % 2.28 Range ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,508 2,644 Tensile Strength Average Strength @ Yield 159 ppi 28 N/mm (kN/m) 2,576 psi **ASTM D6693** 3,053 ASTM D638 (Modified) (2 inches / minute) 2,766 Average Strength @ Break 31 N/mm (kN/m) 180 ppi 2,910 psi 19.51 14.97 Elongation ASTM D6693 17.24 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 458.0 Lo = 1.3" Yield 526.5 Lo = 2.0" Break % 492.3 Average Elongation @ Break **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 61.486 Tear Resistance 59.889 ASTM D1004 (Modified) 60.688 Average Tear Resistance 269.9 lbs Ν Puncture Resistance Average Peak Load lbs 103.85 462.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 619.2 N 139.20 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

Signature......Quality Control Department

REV 03 12/23/05

1677	-12	Lot	#:	7	120199	Liner	Type: N	MICROS	SPIK	E™ HD	PE
	MIN: MAX:	1.52	mm	60	ISH mil mil	Length	,		m	000.0	feet feet
36/34 mil	AVE:	1.57	mm	62	mil	OIT(Standard) AS	STM D3895	minutes	180		
		Density				g/cc				.945	
K307		Melt Flov	v Inde	ex 190°	C /2160	g g/10 n	nin			.25	
ent		Range				%				2.28	
ersion		Category	′						10	In Cat 1	
īed)		Average	Strer	ngth @	Yield	28 N/mm	(kN/m)	159 p	pi	2,644 2,576 3,053	psi
,		Average	Strer	ngth @	Break	31 N/mm	(kN/m)	180 p	pi	2,910	psi
D6693 ïed))		Average	Elon	gation (@ Yield	%				14.97 17.24 458.0	
		Average	Elong	gation (to Break	%					
ty lified)						%				55	
lified)		Average	Tear	Resista	ance	269.9	N			59.889	
e 2065 (Mo	-	Average					-				
e ified)		Average	Peal	k Load		619.2	N	-		139.20	lbs
		Minimun	n Hrs	w/o Fa	ilures	1500 hrs			CE	RTIFIED	
Γensile Lo	oad	pass / fail	@ 30	0%		300 hrs	-			PASS	
	K307 Fent ersion D6693 Fied) ty lified) se 2065 (Modes	MAX: 36/34 mil AVE: K307 Tent Ersion Tied) Ty Iffied) Se 2065 (Modified) Se ified)	METR MIN: 1.52 MAX: 1.68 36/34 mil AVE: 1.57 Density Melt Flow K307 Tent Range Category Average fied) Average ty iffied) Average ty iffied) Average 2065 (Modified) Average Average Average Average Minimum	METRIC MIN: 1.52 mm MAX: 1.68 mm Density Melt Flow Index K307 Tent Range Category Average Stren Average Stren Average Elong ty iffied) Average Elong ty iffied) Average Dime Average Peal Minimum Hrs	METRIC ENGL MIN: 1.52 mm 60 MAX: 1.68 mm 66 36/34 mil AVE: 1.57 mm 62 Density Melt Flow Index 190 K307 Tent Range ersion Category Average Strength @ fied) Average Elongation (aty lifted) Average Elongation (aty lifted) Average Dimensional Average Tear Resistate Average Peak Load Minimum Hrs w/o Fa	MIN: 1.52 mm 60 mil MAX: 1.68 mm 66 mil 36/34 mil AVE: 1.57 mm 62 mil Density Melt Flow Index 190°C /2160 g K307 Tent Range ersion Category Average Strength @ Yield fied) Average Elongation @ Yield Average Elongation @ Break ty Average Dimensional change description Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness MIN: 1.52 mm 60 mil Length MAX: 1.68 mm 66 mil Width Density g/cc Melt Flow Index 190°C /2160 g g/10 r K307 Tent Range Strength @ Yield 28 N/mm Average Strength @ Break 31 N/mm D6693 Fied) Average Elongation @ Yield % Average Elongation @ Break % Average Peak Load 462.0 Minimum Hrs w/o Failures 1500 hrs	MIN: 1.52 mm 60 mil Length	MIN: 1.52 mm 60 mil Length	MIN: 1.52 mm 60 mil Length	MIN: 1.52 mm 60 mil Length

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/17/2012

Signature.

Quality Control Department

311678-12 ROLL # Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153,926 m 505.0 feet MIN: 1.50 mm 59 Length..... ASTM D5994 mil Width..... 7.01 23.0 (Modified) feet MAX: 1.59 mm 63 mil **TEST** Asperity ASTM D7466: 36/34 mil AVE: 1.56 mm 61 mil OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM RESULTS Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.28 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.508 Tensile Strength 2,644 Average Strength @ Yield **ASTM D6693** 28 N/mm (kN/m) 158 ppi 2,576 psi ASTM D638 (Modified) 3.053 (2 inches / minute) 2.766 Average Strength @ Break 31 N/mm (kN/m) 179 ppi 2,910 psi 19.51 Elongation ASTM D6693 14.97 ASTM D638 (Modified) Average Elongation @ Yield % 17.24 (2 inches / minute) 458.0 Lo = 1.3" Yield 526.5 Lo = 2.0" Break Average Elongation @ Break % 492.3 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.55 61.486 Tear Resistance 59.889 ASTM D1004 (Modified) Average Tear Resistance 269.9 N 60.688 lbs Puncture Resistance Average Peak Load 103.85 lbs 462.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 619.2 N 139.20 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Quality Control Department

ROLL# 311679	-12 Lot #: 7120199	9 Liner Type: I	MICROSPIKE™ HDPE
Measurement ASTM D5994 Modified) Asperity ASTM D7466: 37/35 mil	METRIC ENGLISH MIN: 1.50 mm 59 mil MAX: 1.63 mm 64 mil	Thickness Length Width	1.5 mm 60 mil 153.926 m 505.0 feet 7.01 m; 23.0 feet
Specific Gravity ASTM D792	Density	g/cc	.946 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160	g g/10 min	.25
Carbon Black Content ASTM D4218	Range	%	2.30
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield	29 N/mm (kN/m)	2,625 2,609 2,617 psi 3,124
monder minute ,	Average Strength @ Break	33 N/mm (kN/m)	2,933 2,933 3,029 psi
Elongation ASTM D6693 ASTM D638 (Modified) 2 inches / minute)	Average Elongation @ Yield	%	17.35
_o = 1.3" Yield _o = 2.0" Break	Average Elongation @ Break	%	447.3 539.3 493.3
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	%	55
Tear Resistance ASTM D1004 (Modified)	Average Year Resistance	274.2 N	62.043 61.236 61.641 lbs
Puncture Resistance TMS 101 Method 2065 (Mo	dified) Average Peak Load	431.8 N	97.08 lbs
runcture Resistance STM D4833 (Modified)	Average Peak Load	609.9 N	137,12 lbs
SCR STM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED
lotched Constant Tensile Lo	pass / fail @ 30%	300 hrs	PASS -

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Quality Control Department

3/17/2012

60HDmic,FRM REV 03

311680-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153.926 m feet 505.0 Length..... MIN: 1.52 mm 60 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.68 mm 66 mil **TEST** 36/35 mil AVE: 1.58 mm 62 Asperity ASTM D7466: mil OIT(Standard) ASTM D3895 minutes **RESULTS** 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .25 g/10 min COND. E GRADE: K307 Carbon Black Content Range % 2.30 ASTM D4218 Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,625 2,609 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) 163 ppi psi 2,617 **ASTM D6693** ASTM D638 (Modified) 3.124 (2 inches / minute) 2,933 Average Strength @ Break 33 N/mm (kN/m) 188 ppi 3,029 psi 19.55 Elongation ASTM D6693 15.14 ASTM D638 (Modified) Average Elongation @ Yield % 17.35 (2 inches / minute) 447.3 Lo = 1.3" Yield 539.3 Lo = 2.0" Break Average Elongation @ Break % 493.3 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 62.043 Tear Resistance 61.238 ASTM D1004 (Modified) Average Tear Resistance 274.2 N 61.641 lbs Puncture Resistance Average Peak Load lbs 97.08 431.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 609.9 Ν lbs 137.12 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature......Quality Control Department

3/17/2012

311681-12 Lot #: ROLL# 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil METRIC **ENGLISH** Thickness..... Measurement 153.926 m feet MIN: 1.52 mm 60 505.0 **ASTM D5994** Length..... mil 7.01 Width..... 23.0 (Modified) feet MAX: 1.72 mm 68 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE: 1.63 mm 64 mil OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.30 ASTM D4218 Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,625 Tensile Strength 2,609 Average Strength @ Yield **ASTM D6693** 29 N/mm (kN/m) 168 ppi 2,617 psi ASTM D638 (Modified) 3,124 (2 inches / minute) 2,933 Average Strength @ Break 34 N/mm (kN/m) 194 ppi 3,029 19.55 Elongation ASTM D6693 15.14 ASTM D638 (Modified) Average Elongation @ Yield % 17.35 (2 inches / minute) 447.3 Lo = 1.3" Yield 539.3 Lo = 2.0" Break Average Elongation @ Break % 493.3 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.55 62.043 Tear Resistance 61.238 ASTM D1004 (Modified) Average Tear Resistance 274.2 Ν 61.641 lbs Puncture Resistance Average Peak Load 97.08 lbs FTMS 101 Method 2065 (Modified) 431.8 N Puncture Resistance Average Peak Load 609.9 Ν lbs 137.12 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

311682-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.48 mm 58 mil ASTM D5994 7.01 23.0 feet Width..... (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466: 36/36 mil AVE: 1.58 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .25 g/10 min COND. E GRADE: K307 Carbon Black Content % 2.30 Range **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,625 Tensile Strength 2.609 Average Strength @ Yield 29 N/mm (kN/m) 163 ppi **ASTM D6693** 2,617 psi ASTM D638 (Modified) 3,124 (2 inches / minute) 2.933 Average Strength @ Break 33 N/mm (kN/m) 188 ppi 3,029 psi 19.55 Elongation ASTM D6693 15.14 Average Elongation @ Yield % 17.35 ASTM D638 (Modified) (2 inches / minute) 447.3 Lo = 1.3" Yield 539.3 Lo = 2.0" Break Average Elongation @ Break % 493.3 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 62.043 Tear Resistance 61.238 ASTM D1004 (Modified) Average Tear Resistance 274.2 N 61.641 lbs Puncture Resistance Average Peak Load lbs 97.08 431.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 609.9 N 137.12 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

(A)

3/17/2012

Quality Control Department

244602	40									
ROLL# 311683-	METRIC ENGLISH D5994 MIN: 1.49 mm 59 n MAX: 1.60 mm 63 n ASTM D7466: 38/32 mil AVE: 1.54 mm 61 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n METRIC ENGLISH MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n MAX: 1.60 mm 63 n Melt Flow Index 190°C /2 Category Melt Flow Index 190°C /2 Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Br Average Elongation @ Br Average Elongation @ Br Average Dimensional chall Method 2065 (Modified) Average Peak Load Minimum Hrs w/o Failure MAX: 1.60 mm 59 n MAX: 1.60 mm 63 n MAX: 1.60 mm 61 MAX: 1.60 mm 63 n MAX: 1.60 mm 61 MAX: 1.60 mm 63 n MA	7120199	Liner Type: I	MICROSPIKE™ HDPE						
M P.C. D	MIN; 1.49 mm 5	i9 mil	Thickness Length Width	1.5 mm 153.926 m 7.01 m;	60 mil 505.0 feet 23.0 feet					
sperity ASTM D7466: 36/32 mil 4	AVE: 1.54 mm 6	i1 mil o	DIT(Standard) ASTM D3895	5 minutes 180	TEST RESULTS					
Specific Gravity ASTM D792	Density		g/cc		.946 🗸					
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	190°C /2160 g	g/10 min		.25					
Carbon Black Content ASTM D4218 V	Range		%		2.29					
Carbon Black Dispersion ASTM D5596	Category			11	0 In Cat 1					
Tensile Strength ASTM D6693 VASTM D638 (Modified) 2 inches / minute)			30 N/mm (kN/m)	169 ppi	2,781 psi 3,179v 2,580					
Elongation ASTM D6693 ASTM D638 (Modified) 2 inches / minute)			31 N/mm (kN/m) %	178 ppi	2,935 psi 18.09 14.86 16.48					
.o = 1.3" Yield .o = 2.0" Break	Average Elonga	tion @ Break	%		445.6L					
Dimensional Stability ASTM D1204 (Modified)	Average Dimens	sional change	%		55					
ear Resistance STM D1004 (Modified)	Average Tear Ro	esistance	266.8 N		60.150 59.802 59.976 lbs					
Puncture Resistance TMS 101 Method 2065 (Mod	Average Peak L	_oad	420.2 N		94.469 lbs					
Puncture Resistance STM D4833 (Modified)	Average Peak L	₋oad	582.8 N		131.02 lbs					
SCR STM D1693	Minimum Hrs w	/o Failures	1500 hrs	C	ERTIFIED					
Notched Constant Tensile Loa	ad pass / fail @ 30%	6	300 hrs		PASS V					

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/17/2012

Signature Quality Control Department

311784-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil METRIC **ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 mm 58 Length..... MIN: 1.48 **ASTM D5994** mil 7.01 23.0 feet Width..... (Modified) MAX: 1.64 mm 65 mil **TEST** 1.56 36/31 mil AVE: mm 61 Asperity ASTM D7466: mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min COND. E .25 GRADE: K307 Carbon Black Content % Range 2.29 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.694 2.867 Tensile Strength Average Strength @ Yield 30 N/mm (kN/m) **171** ppi 2,781 **ASTM D6693** psi ASTM D638 (Modified) 3,179 (2 inches / minute) 2.690 Average Strength @ Break 32 N/mm (kN/m) **180** ppi 2,935 psi 18.09 Elongation ASTM D6693 14.86 ASTM D638 (Modified) Average Elongation @ Yield % 16.48 (2 inches / minute) 442.0 Lo = 1.3" Yield 449.2 Lo = 2.0" Break Average Elongation @ Break % 445.6 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 60.150 Tear Resistance 59.802 ASTM D1004 (Modified) Average Tear Resistance 266.8 N 59.976 lbs Puncture Resistance Average Peak Load 94.469 lbs 420.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 582.8 N 131.02 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/18/2012

311785-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.52 ASTM D5994 mm 60 mil Length..... 7.01 m; (Modified) Width..... 23.0 feet MAX: 1.68 mm 66 mil TEST Asperity ASTM D7466 36/33 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .25 GRADE: K307 Carbon Black Content Range % 2.29 **ASTM D4218** Carbon Black Dispersion Category 10 in Cat 1 **ASTM D5596** 2,694 Tensile Strength 2.867 Average Strength @ Yield **ASTM D6693** 30 N/mm (kN/m) 172 ppi 2,781 psi ASTM D638 (Modified) 3,179 (2 inches / minute) 2.690 Average Strength @ Break 32 N/mm (kN/m) **181** ppi 2,935 psi 18.09 Elongation ASTM D6693 14.86 ASTM D638 (Modified) Average Elongation @ Yield % 16.48 (2 inches / minute) 442.0 Lo = 1.3" Yield 449.2 Lo = 2.0" Break Average Elongation @ Break % 445.6 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.55 60.150 Tear Resistance 59.802 ASTM D1004 (Modified) Average Tear Resistance 266.8 Ν 59.976 lbs Puncture Resistance Average Peak Load 94.469 lbs 420.2 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 582.8 Ν 131.02 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/18/2012

nent

REV 03 12/23/05

60HDmic.FRM

					11	=						
ROLL# 31178	86-12	Lot	#:	7	7120199	Liner	Type: N	MICRO:	SPIK	E™ HI	OPE	:
Magauramant		METR	IC.	ENGL	ISH	Thicknes	S	1.5 m		60 mi	l	
Measurement ASTM D5994	MIN:	1.46	mm		mil	Length		153.926	m	505.0	feet	
(Modified)	MAX:	1.62	mm		mil	Width		7.01	m;	23.0	feet	
Actual D7460 00100	mil AVE:	1.57	mm		mil					TE	ST	
Asperity ASTM D7466: 36/33 TOP / BOTTOM	MII AVE.	1,57	111111	02		OIT(Standard) AS	STM D3895	minutes	180	RES	ULTS	S
Specific Gravity ASTM D792		Density				g/cc				.94	6	
MFI ASTM D1238 COND. E GRADE: K3		Melt Flov	v Inde	ex 190°	°C /2160 g	g/10 n	nin			.2	5	
Carbon Black Content ASTM D4218		Range				%				2.2	9	
Carbon Black Dispersion ASTM D5596		Category	,			•			10	In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)		Average	Strer	ngth @	Yield	30 N/mm	(kN/m)	172 p	pji	2,69 2,86 2,78 3,17	7 1 p	os
(2 inches / minute)		Average	Strer	ngth @	Break	32 N/mm	(kN/m)	181 p	pi	2,69 2,93	0 5 p	วร
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		Average	Elon	gation	@ Yield	%				18.0 14.8 16.4	6 8	
Lo = 1.3" Yield Lo = 2.0" Break		Average	Flone	nation (@ Break	%				442. 449. 445.	2	
Dimensional Stability ASTM D1204 (Modified)					ıl change	%				5		
							199			60.15	0	
Tear Resistance ASTM D1004 (Modified)										59.80		
		Average	Tear	Resist	ance	266.8	N			59.97	6 11	bs
Puncture Resistance FTMS 101 Method 2065	(Modified)	Average	Pea	k Load		420.2	N			94.46	9 11	bs
Puncture Resistance ASTM D4833 (Modified)		Average	Pea	k Load		582.8	N			131.0	2	bs
ESCR ASTM D1693		Minimur	n Hrs	w/o Fa	ailures	1500 hrs			CI	ERTIFIE	D	
Notched Constant Tensilo ASTM D5397	e Load	oass / fail	@ 3	0%		300 hrs				PAS	S	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

3/18/201

Quality Control Department

ROLL# 311787-	12 Lot #:	7120199	 Liner Type: MICROSPIKE™ HDPE					
(NA = -115) = -1)	METRIC 1.54 mm MAX; 1.67 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet			
Asperity ASTM D7466: 36/34 mil A	VE: 1.58 mm		OIT(Standard) ASTM D3899	5 minutes 180	TEST RESULTS			
Specific Gravity ASTM D792	Density		g/cc		.947			
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190ºC /2160 g	g/10 min		.25 —			
Carbon Black Content ASTM D4218	Range		%		2.33			
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1			
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	igth @ Yield igth @ Break	28 N/mm (kN/m) 34 N/mm (kN/m)	163 ppi	2,539 2,688 2,614 psl 3,249 2,945 3,097 psi			
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield		gation @ Yield	%		20.42 14.46 17.44 429.1 544.5			
Lo = 2.0" Break Dimensional Stability	Average Elong	gation @ Break	%		486.8			
ASTM D1204 (Modified)	Average Dime	nsional change	%		55			
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	255. 5 N		57.351 57.523 57.437 lbs			
Puncture Resistance FTMS 101 Method 2065 (Mod	Average Peak	k Load	426.9 N		95.985 lbs			
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	600.7 N		135.04 lbs			
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED			
Notched Constant Tensile Loa ASTM D5397	d pass / fail @ 30)%	300 hrs		PASS			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/18/2012

Signature Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA: RAINS

MILEPOST SH317

RAINS SC 29589

USA

Recipient: PALMER

Fax:

Delivery #: 88357558

PO #: 5847

Weight: 179200 LB Ship Date: 10/31/2011

Package: BULK

Mode: Hopper Car PSPX002559 Car #:

Seal No: 265824

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 8110773

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.29	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	27	pel/g
Production Date		07/01/2011	

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

311788-12 Lot #: ROLL# 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil Measurement METRIC **ENGLISH** Thickness..... 505.0 153.926 m feet MIN: 1.56 ASTM D5994 mm 61 Length..... mil Width..... 7.01 (Modified) 23.0 feet MAX: 1.68 mm 66 mil **TEST** Asperity ASTM D7466: 37/34 mil AVE: 1.60 mm 63 mil OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 COND. E Melt Flow Index 190°C /2160 a g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.33 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,539 Tensile Strength 2,688 Average Strength @ Yield **ASTM D6693** 29 N/mm (kN/m) 165 ppi 2,614 psi ASTM D638 (Modified) 3,249 (2 inches / minute) 2,945 Average Strength @ Break 34 N/mm (kN/m) **195** ppi 3,097 psi 20.42 Elongation ASTM D6693 14:46 ASTM D638 (Modified) Average Elongation @ Yield % 17.44 (2 inches / minute) 429.1 Lo = 1.3" Yield 544.5 Lo = 2.0" Break Average Elongation @ Break % 486.8 Dimensional Stability Average Dimensional change % ASTM D1204 (Modified) -.44 57.351 Tear Resistance 57.523 ASTM D1004 (Modified) Average Tear Resistance 255.5 N 57.437 lbs Puncture Resistance Average Peak Load 95.985 lbs FTMS 101 Method 2065 (Modified) 426.9 Ν Puncture Resistance Average Peak Load 600.7 N 135.04 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/18/2012

311789-12 8110773 Lot #: ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet MIN: Length..... 1.50 mm 59 ASTM D5994 mil 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** 1.57 Asperity ASTM D7466: 37/34 mil AVE: mm 62 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .29 g/10 min COND. E GRADE: K307 Carbon Black Content % Range 2.33 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.539 2,688 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **162** ppi 2,614 psi **ASTM D6693** ASTM D638 (Modified) 3,249 (2 inches / minute) 2,945 Average Strength @ Break **191** ppi 34 N/mm (kN/m) 3,097 psi 20.42 Elongation ASTM D6693 14.46 Average Elongation @ Yield % ASTM D638 (Modified) 17.44 (2 inches / minute) 429.1 Lo = 1.3" Yield 544.5 Lo = 2.0" Break % Average Elongation @ Break 486.8 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.351 Tear Resistance 57.523 ASTM D1004 (Modified) Average Tear Resistance 255.5 Ν 57.437 lbs Puncture Resistance Average Peak Load lbs 95.985 426.9 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 600.7 N 135.04 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature.

Quality Control Department

3/18/2012

311790-12 Lot #: 8110773 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153,926 m MIN: 505.0 feet 1.49 ASTM D5994 mm 59 Length..... mil 7.01 23.0 Width..... (Modified) feet MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466: 37/36 mil AVE: 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.33 ASTM D4218 Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,539 Tensile Strength 2,688 Average Strength @ Yield **ASTM D6693** 28 N/mm (kN/m) 163 ppi psi 2,614 ASTM D638 (Modified) 3,249 (2 inches / minute) 2,945 Average Strength @ Break 34 N/mm (kN/m) 193 ppi 3,097 psi 20.42 Elongation ASTM D6693 14.46 ASTM D638 (Modified) Average Elongation @ Yield % 17.44 (2 inches / minute) 429.1 Lo = 1.3" Yield 544.5 Lo = 2.0" Break Average Elongation @ Break % 486.8 Dimensional Stability Average Dimensional change % ASTM D1204 (Modified) -.44 57.351 Tear Resistance 57.523 ASTM D1004 (Modified) Average Tear Resistance 255.5 Ν 57.437 lbs Puncture Resistance Average Peak Load 95.985 lbs 426.9 FTMS 101 Method 2065 (Modified) Ν Puncture Resistance Average Peak Load 600.7 Ν 135.04 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature...

Quality Control Department

3/18/2012

		_							
ROLL# 311791	-12 Lot #:	8110773	Liner Type: M	ICROSPIKE™ HDP	E				
Measurement ASTM D5994 (Modified)		ENGLISH 59 mil 63 mil	Longui	1.5 mm 60 mil 153.926 ^m 505.0 fe 7.01 ^m ; 23.0 fe					
Asperity ASTM D7466: 37/35 mil	AVE: 1.55 mm	61 ✓ mil	DIT(Standard) ASTM D3895	minutes 184 RESUL					
Specific Gravity ASTM D792	Density		g/cc	.945					
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Ind	ex 190°C /2160 g	g/10 min	.29 ،	/				
Carbon Black Content ASTM D4218	Range		%	2.28	/				
Carbon Black Dispersion ASTM D5596	Category			10 In Cat 1 4					
Tensile Strength ASTM D6693 ASTM D638 (Modifiéd) (2 inches / minute)	Average Stre	ngth @ Yield	28 N/mm (kN/m)	2,588 v 2,738 v 2,738 v 2,663 3,960 v 3,087 v	psi				
(<u> </u>	Average Stre	ngth @ Break	33 N/mm (kN/m)	187 ppi 3,064	psi				
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elon	gation @ Yield	%	19.07 15.79 17.43 •	/				
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elon	gation @ Break	%	445.7 551.5 498.6	/				
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%	44					
Tear Resistance ASTM D1004 (Modified)	Average Jean	Resistance	268.1 N	60.226 v 60.316 v 60.271					
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Pea	k Load	432.5 N	97.228	lbs				
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	597.3 N	134.27	lbs 🗸				
ESCR ASTM D1693	Minimum Hrs	s w/o Failures	1500 hrs	CERTIFIED					
Notched Constant Tensile Lo ASTM D5397 ✓	pad pass / fail @ 3	0%	300 hrs	PASS L	/				

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/18/2012

Signature...

Quality Control Department

311791-12 Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.49 mm 59 Length..... mil ASTM D5994 7.01 23.0 Width..... feet (Modified) MAX: 1.60 mm 63 mil **TEST** Asperity ASTM D7466: 37/35 mil AVE: 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .29 g/10 min COND. E GRADE: K307 Carbon Black Content Range % 2.28 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.588 Tensile Strength 2,738 Average Strength @ Yield **ASTM D6693** 28 N/mm (kN/m) 163 ppi 2,663 psi ASTM D638 (Modified) 3,060 (2 inches / minute) 3,067 Average Strength @ Break 33 N/mm (kN/m) 187 ppi 3,064 psi 19.07 Elongation ASTM D6693 15.79 ASTM D638 (Modified) Average Elongation @ Yield % 17.43 (2 inches / minute) 445.7 Lo = 1.3" Yield 551.5 Lo = 2.0" Break Average Elongation @ Break % 498.6 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 60.226 Tear Resistance 60.316 ASTM D1004 (Modified) Average Tear Resistance 268.1 60.271 lbs Puncture Resistance Average Peak Load lbs 97.228 FTMS 101 Method 2065 (Modified) 432.5 Ν Puncture Resistance Average Peak Load 597.3 Ν 134.27 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

311792-12 Liner Type: MICROSPIKE™ HDPE Lot #: 8110773 ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m feet 505.0 MIN: mm 59 Length..... 1.51 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: mil 1.66 mm 65 **TEST** Asperity ASTM D7466: 37/35 mil AVE: 1.59 mm 63 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.28 ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,588 2,738 Tensile Strength psi Average Strength @ Yield 29 N/mm (kN/m) **167** ppi 2,663 **ASTM D6693** 3,060 ASTM D638 (Modified) (2 inches / minute) 3,067 Average Strength @ Break 34 N/mm (kN/m) **192** ppi 3,064 psi 19.07 15.79 Elongation ASTM D6693 % Average Elongation @ Yield 17.43 ASTM D638 (Modified) (2 inches / minute) 445.7 Lo = 1.3" Yield 551.5 Lo = 2.0" Break % 498.6 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 60.226 Tear Resistance 60.316 ASTM D1004 (Modified) 60.271 Average Tear Resistance 268.1 lbs N Puncture Resistance Average Peak Load lbs 97.228 432.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 597.3 134.27 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

ROLL# 311793-12			Lot #: 8110773		3 Liner Type: MICROSPIKE™ HD					PE		
Measurement ASTM D5994 (Modified)		MIN:	METF 1.45	mm		mil	Thicknes Length Width	ss	1.5 m 153.926 7.01	m	60 mil 505.0	feet feet
Asperity ASTM D7466: 3:		MAX: AVE:	1.62 1.54	mm mm		mil mil	OIT(Standard) AS		minutes	184	TES RESU	
Specific Gravity ASTM D792			Density				g/cc	,			.945	5
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flor	w Inde	ex 190	°C /2160 (g g/10 r	nin			.29	
Carbon Black Conter ASTM D4218	nt		Range				%				2.28	
Carbon Black Disper ASTM D5596	sion		Category	/						10) In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		Average	Strer	ngth @	Yield	28 N/mm	(kN/m)	161 p	pi	2,588 2,738 2,663 3,060 3,067	ps	
(=)			Average	Strer	ngth @	Break	33 N/mm	(kN/m)	186 p	pi	3,064	
Elongation ASTM D6 ASTM D638 (Modifie (2 inches / minute) Lo = 1.3" Yield			Average	Elon	gation (@ Yield	%				19.07 15.79 17.43 445.7 551.5	
Lo = 2.0" Break			Average	Elon	gation (@ Break	%				498.6	
Dimensional Stability ASTM D1204 (Modifi			Average	Dime	ensiona	ıl change	%				44	
Tear Resistance ASTM D1004 (Modifi	ed)		Average	Tear	Resist	ance	268.1	N			60.226 60.316 60.271	
Puncture Resistance FTMS 101 Method 20		dified)	Average	Peal	k Load		432.5	N			97.228	lbs
Puncture Resistance ASTM D4833 (Modifi			Average	Peal	k Load		597.3	N			134.27	lbs
ESCR ASTM D1693			Minimur	n Hrs	w/o Fa	ailures	1500 hrs		, ,	CE	RTIFIED	
Notched Constant Te ASTM D5397	ensile Lo	ad	pass / fai	@ 3	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

ate:.....

Signature......Quality Control Department

3/18/2012

311794-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... MIN: 1.45 mm 57 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466: 36/32 mil AVE: 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.28 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,588 2,738 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) 163 ppi 2,663 psi **ASTM D6693** 3.060 ASTM D638 (Modified) (2 inches / minute) 3.067 Average Strength @ Break 187 ppi 3,064 psi 33 N/mm (kN/m) 19.07 15.79 Elongation ASTM D6693 Average Elongation @ Yield % 17.43 ASTM D638 (Modified) (2 inches / minute) 445.7 551.5 Lo = 1.3" Yield Lo = 2.0" Break % 498.6 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 60.226 Tear Resistance 60.316 ASTM D1004 (Modified) 60.271 lbs Average Tear Resistance 268.1 N Puncture Resistance 97.228 lbs Average Peak Load 432.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance 597.3 N lbs Average Peak Load 134.27 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

ROLL# 311795-	-12 Lot #:	 8110773	Liner Type:	MICDOSDIK	CETM LIND	_
ROLL# 311/95-	LOT #.	0110773				_
(BA 1161 1)	MIN: 1.52 mm 6 MAX: 1.62 mm 6	64 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^m ;	60 mil 505.0 fee 23.0 fe	et
TOP / BOTTOM		C	DIT(Standard) ASTM D389	5 minutes 184	RESUL	15
Specific Gravity ASTM D792	Density		g/cc		.945 (
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	∢190°C /2160 g	g/10 min		.29 ١	
Carbon Black Content ASTM D4218	Range		%		2.26	/
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	/
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Streng	din a	27 N/mm (kN/m)	157 ppi	2,681 2 2,681 2 2,537 3,181 2	psi
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elonga		33 N/mm (kN/m) %	190 ppi	3,079 20,84 15,20 18,02	psi
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elonga	ation @ Break	%		448.4 647.1 497.8 h	1
Dimensional Stability ASTM D1204 (Modified)	Average Dimen	sional change	%		44	4
Tear Resistance ASTM D1004 (Modified)	Average Tear F	Resistance	252.4 N		56.447 v 56.739	
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Peak	Load	411.2 N		92.457	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	591.5 N		132.98	lbs 🗠
ESCR ASTM D1693	Minimum Hrs v	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Lo ASTM D5397	pass / fail @ 30	%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Quality Control Department

3/19/2012

ROLL# 311796-12	Lot #:	8110773	Liner Type: N	MICROSPIK	Ϊ HD	PE
Measurement ASTM D5994 MIN: (Modified) MAX		ENGLISH 57 mil 63 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;		eet feet
Asperity ASTM D7466; 37/34 mil AVE:	1.52 mm	60 mil	OIT(Standard) ASTM D3895	minutes 184	TES RESU	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Ind	lex 190°C /2160	g g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.26	
Carbon Black Dispersion ASTM D5596	Category		•	10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stre	ngth @ Yield	27 N/mm (kN/m)	152 ppi	2,423 2,651 2,537 3,181	psi
(2 mones / minute)	Average Stre	ngth @ Break	32 N/mm (kN/m)	184 ppi	2,977 3,079	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elon	gation @ Yield	%		20.84 15.20 18.02 448.4	
Lo = 2.0" Break	Average Elon	gation @ Break	%		547.1 497.8	
Dimensional Stability ASTM D1204 (Modified)		ensional change	%		44	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	252.4 N		58.031 55.447 56.739	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified)	Average Pea	k Load	411.2 N		92.457	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	591.5 N		132.98	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

ate:

Quality Control Department

3/19/2012

312101-12 Lot #: 8110773 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm **METRIC ENGLISH** 60 mil Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.49 mm 59 ASTM D5994 Length..... mil 7.01 m; 23.0 (Modified) Width..... feet MAX: 1.60 mm 63 mil TEST Asperity ASTM D7466: 35/33 mil AVE: 1.54 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.26 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2.423 Tensile Strength 2,651 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) **154** ppi 2,537 psi ASTM D638 (Modified) 3,181 (2 inches / minute) 2.977 Average Strength @ Break 33 N/mm (kN/m) **187** ppi 3,079 psi 20.84 Elongation ASTM D6693 15.20 ASTM D638 (Modified) Average Elongation @ Yield % 18.02 (2 inches / minute) 448.4 Lo = 1.3" Yield 547.1 Lo = 2.0" Break Average Elongation @ Break % 497.8 Dimensional Stability ASTM D1204 (Modified) Average Dimensional change % -.44 58.031 Tear Resistance 55.447 ASTM D1004 (Modified) Average Tear Resistance 252.4 Ν 56.739 lbs Puncture Resistance Average Peak Load lbs 92.457 FTMS 101 Method 2065 (Modified) 411.2 Ν Puncture Resistance Average Peak Load 591.5 N 132.98 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/19/2012

Signature.

Quality Control Department

312102-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 Length..... MIN: 1.44 mm 57 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: mm 65 1.64 mil **TEST** Asperity ASTM D7466: 35/33 mil AVE: 1.54 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.26 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,423 2,651 Tensile Strength Average Strength @ Yield 27 N/mm (kN/m) **154** ppi 2,537 psi **ASTM D6693** ASTM D638 (Modified) 3.181 (2 inches / minute) 2.977 Average Strength @ Break 33 N/mm (kN/m) **187** ppi 3,079 psi 20.84 Elongation ASTM D6693 15.20 % Average Elongation @ Yield 18.02 ASTM D638 (Modified) (2 inches / minute) 448.4 Lo = 1.3" Yield 547.1 Lo = 2.0" Break Average Elongation @ Break % 497.8 **Dimensional Stability** % Average Dimensional change -.44 ASTM D1204 (Modified) 58.031 Tear Resistance 55,447 ASTM D1004 (Modified) Average Tear Resistance 252.4 N 56.739 lbs Puncture Resistance Average Peak Load lbs 92.457 411.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 591.5 N Average Peak Load lbs 132.98 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/19/2012
Signature. Stalin

Quality Control Department

ROLL#	312103	-12 Lot #:	8110773	Liner Type:	MICROSPIKE	™ HDPE
Measuremen ASTM D599 (Modified)	4/	MIN: 1.51 mm MAX: 1.62 mm	64 mil	Thickness Length Width		60 mil 505.0 feet 23.0 feet
Asperity ASTM TOP / BC	*****	AVE: 1.56 mm		OIT(Standard) ASTM D389	5 minutes 184	TEST RESULTS
Specific Gra ASTM D792		Density		g/cc		.945
MFI ASTM COND. E GRADE:	D1238 K307	Melt Flow Index	x 190°C /2160 g	g/10 min		.29 🗸
Carbon Blac ASTM D421		Range		%		2.27
Carbon Blad ASTM D559	ck Dispersion 96	Category			10	In Cat 1
Tensile Stre ASTM D669 ASTM D638 (2 inches / 1	3 (Modified)	Average Streng	gth @ Yield	28 N/mm (kN/m)	162 ppi	2,610 / 2,782 / 2,631 psl 3,220 / 2,905 /
ASTM D638		Average Streng		33 N/mm (kN/m) %	188 ppi	3,064 psi 19.62 14.37 17.00
(2 inches / I Lo = 1.3" Yid Lo = 2.0" Br	eld	Average Elonga	ation @ Break	%		489.6 531.5 495.6
Dimensiona ASTM D120	I Stability 04 (Modified)	Average Dimen	sional change	%		44
Tear Resista ASTM D100	ance 04 (Modified)	Average Tear R	tesistance	257.2 N		57.873 × 57.757 × 57.815 lbs ×
Puncture Re FTMS 101 N	esistance Method 2065 (Mo	Average Peak	Load	422.6 N		95.001 lbs
Puncture Re ASTM D483	esistance 3 (Modified)	Average Peak	Load	579.1 N		130.19 lbs 🗸
ESCR ASTM D169	13	Minimum Hrs v	v/o Failures	1500 hrs	CEF	RTIFIED
Notched Cor ASTM D539	nstant Tensile Lo	ad pass / fail @ 30%	%	300 hrs		PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/19/2012

Measurement MIN:	ROLL# 312104-12	Lot #: 8110773		IKE™ HDPE
Specific Gravity ASTM D792 Density g/cc .945	ASTM D5994 MIN	: 1.51 mm 59 mil	Length 153.926 ^m	505.0 feet
ASTM D792 MFI ASTM D1238 COND. E GRADE: K307 Carbon Black Content ASTM D4218 Carbon Black Dispersion ASTM D5596 Category Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Average Strength @ Break Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Average Elongation @ Yield Average Elongation @ Break Dimensional Stability ASTM D1204 (Modified) Average Dimensional change Melt Flow Index 190°C /2160 g g/10 min 2.99 g/10 min 2.29 10 In Cat 1 2.510 2.752 2.5510 2.752 2.752 2.5510 2.752 2.752 2.752 2.903 3.220 2.903 3.220 2.903 3.220 2.903 4.37 3.51 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37		E: 1.62 mm 64 mil	OIT(Standard) ASTM D3895 minutes 18	
COND. E GRADE: Melt Flow Index 190°C /2160 g g/10 min .29 Carbon Black Content ASTM D4218 Range % 2.27 Carbon Black Dispersion ASTM D5596 Category 10 In Cat 1 Tensile Strength ASTM D6693 ASTM D6693 (V 2 inches / minute) Average Strength @ Break 29 N/mm (kN/m) 168 ppi 2,631 psi 3,220 2,908 psi 3,064 psi 3,220 2,908 psi 3,064 psi 3,220 2,908 psi 3,064 psi 3,		Density	g/cc	.945
ASTM D4218 Carbon Black Dispersion ASTM D5596 Category 10 In Cat 1 Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Average Strength @ Break Average Elongation @ Yield (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Break Average Elongation @ Break Average Dimensional Change **Category 10 In Cat 1 2,510 2,752 2,510 2,752 3,020 1,031 1,032 1,032 1,033 1,064 1,073 1,000	COND. E	Melt Flow Index 190°C /2160 g	g g/10 min	.29
ASTM D5596 Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Average Strength @ Break Average Elongation @ Yield (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Break Average Elongation @ Break Average Elongation @ Break Average Elongation @ Break Average Dimensional change % 44		Range	%	2.27
Average Strength @ Yield 29 N/mm (kN/m) 168 ppi 2,631 psi 3,220 (2 inches / minute) Average Strength @ Break 34 N/mm (kN/m) 195 ppi 3,064 psi 2,908 Average Strength @ Break 34 N/mm (kN/m) 195 ppi 3,064 psi 19.63 14.37 ASTM D638 (Modified) Average Elongation @ Yield % 17.00 (2 inches / minute) Lo = 1.3" Yield 459.6 531.5 Lo = 2.0" Break Average Elongation @ Break % 495.6 Dimensional Stability ASTM D1204 (Modified) Average Dimensional change % 44 44 44		Category		10 In Cat 1
Average Strength @ Break 34 N/mm (kN/m) 195 ppi 3,064 psi Elongation ASTM D6693 ASTM D638 (Modified) Average Elongation @ Yield % 17.00 (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Break % 495.6 Dimensional Stability ASTM D1204 (Modified) Average Dimensional change %44	ASTM D6693 ASTM D638 (Modified)	Average Strength @ Yield	29 N/mm (kN/m) 168 ppi	2,752 2,631 psi 3,220
ASTM D638 (Modified) Average Elongation @ Yield % 17.00 (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Break % 495.6 Dimensional Stability ASTM D1204 (Modified) Average Dimensional change %44	(= manos / minato)	Average Strength @ Break	34 N/mm (kN/m) 195 ppi	
Lo = 2.0" Break Average Elongation @ Break % 495.6 Dimensional Stability ASTM D1204 (Modified) Average Dimensional change %44	ASTM D638 (Modified) (2 inches / minute)	Average Elongation @ Yield	%	14.37 17.00 459.6
ASTM D1204 (Modified) Average Dimensional change % 44	Lo = 2.0" Break	Average Elongation @ Break	%	
57 873		Average Dimensional change	%	44
ASTM D1004 (Modified) Average Tear Resistance Average Tear Resistance 257.2 N 57.815 lbs	Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	257.2 N	
Puncture Resistance FTMS 101 Method 2065 (Modified) Average Peak Load 422.6 N 95.001 lbs		Average Peak Load	422.6 N	
Puncture Resistance Average Peak Load 579.1 N 130.19 lbs		Average Peak Load	579.1 N	130.19 lbs
ESCR ASTM D1693 Minimum Hrs w/o Failures 1500 hrs CERTIFIED		Minimum Hrs w/o Failures	1500 hrs C	ERTIFIED
Notched Constant Tensile Load ASTM D5397 pass / fail @ 30% 300 hrs PASS		pass / fail @ 30%	300 hrs	PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

oate:.....

Quality Control Department

3/19/2012

312105-12 Lot #: ROLL# 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm **METRIC ENGLISH** 60 mil Thickness...... Measurement 153.926 m 505.0 feet MIN: 1.54 mm 61 Length..... **ASTM D5994** mil 7.01 m; 23.0 (Modified) Width..... feet MAX: 1.70 mm 67 mil **TEST** Asperity ASTM D7466; 37/33 mil AVE: 1.62 mm 64 mil OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.27 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2.510 Tensile Strength 2,752 Average Strength @ Yield **ASTM D6693** 29 N/mm (kN/m) 168 ppi 2,631 psi ASTM D638 (Modified) 3,220 (2 inches / minute) 2.908 Average Strength @ Break 3,064 34 N/mm (kN/m) 195 ppi psi 19.63 Elongation ASTM D6693 14.37 ASTM D638 (Modified) Average Elongation @ Yield % 17.00 (2 inches / minute) 459.6 Lo = 1.3" Yield 531.5 Lo = 2.0" Break Average Elongation @ Break % 495.6 **Dimensional Stability** ASTM D1204 (Modified) Average Dimensional change % -.44 57.873 Tear Resistance 57.757 ASTM D1004 (Modified) Average Tear Resistance 257.2 Ν 57.815 lbs Puncture Resistance Average Peak Load 95.001 lbs FTMS 101 Method 2065 (Modified) 422.6 Ν Puncture Resistance Average Peak Load 579.1 Ν 130.19 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/19/2012

Signature.

Quality Control Department

		13				
ROLL# 312106	-12 Lot #:	8110773	Liner Type: I	VIICROSPIK	E™ HD	PE
Magaurament	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement ASTM D5994	MIN: 1.48 mm		Length	153.926 ^m	505.0	eet
(Modified)	MAX: 1.60 mm		Width	7.01 m;	23.0	feet
Asperity ASTM D7466: 36/35 mil TOP / BOTTOM		61 mil	OIT(Standard) ASTM D3895	minutes 184	TES RESU	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Ind	ex 190°C /2160 g	g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.27	
Carbon Black Dispersion ASTM D5596	Category			1(0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stre	ngth @ Yield	28 N/mm (kN/m)	160 ppi	2,510 2,752 2,631 3,220	ps
(2 inches / minute)	Average Stre	ngth @ Break	33 N/mm (kN/m)	186 ppi	2,908 3,064	ps
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elon	gation @ Yield	%	a.	19.63 14.37 17.00	Moor
Lo = 1.3" Yield Lo = 2.0" Break	Average Elon	gation @ Break	%		459.6 531.5 495.6	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%		44	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	257.2 N		57.873 57.757 57.815	lbs
Puncture Resistance FTMS 101 Method 2065 (Mo	Average Pea		422.6 N		95.001	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	579.1 N		130.19	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	ERTIFIED	
Notched Constant Tensile Lo	oad pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

3/19/2

Signature.....

Quality Control Department

REV 03 12/23/05

242407	40	=	
ROLL# 312107	-12 Lot#: 8110773	B Liner Type: I	MICROSPIKE™ HDPE
Measurement ASTM D5994 (Modified) Asperity ASTM D7466: 37/35 mil	METRIC ENGLISH MIN: 1.49 mm 59 mil MAX: 1.62 mm 64 mil AVE: 1.58 mm 62 mil	Thickness Length Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 ^m 23.0 feet
TOP / BOTTOM	7.00 11.111 02 11.111	OIT(Standard) ASTM D3899	
Specific Gravity ASTM D792	Density	g/cc	.945 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160 g	g g/10 min	.29
Carbon Black Content ASTM D4218	Range	%	2.29
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1 🗸
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield	27 N/mm (kN/m)	2.406 / 2.565 / 2,486 psi 3.179 / 2.647 /
	Average Strength @ Break	32 N/mml (kN/m)	181 ppi 2,913 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elongation @ Yield	%	19.78 14.79 17.29
Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Break	%	470.9 517.0 494.0
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	%	44
Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	264.4 N	60.474 58,430 59,452 lbs
Puncture Resistance FTMS 101 Method 2065 (Mod	Average Peak Load	433.2 N	97.389 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	606.3 N	136.29 lbs V
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Loa	pass / fail @ 30%	300 hrs	PASS -

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/19/2012

312108-12 ROLL# Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 mm 59 Length..... MIN: 1.51 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.61 mm 63 mil TEST Asperity ASTM D7466: 36/35 mil AVE: 1.56 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 RESULTS TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.29 ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2.406 2,565 Tensile Strenath Average Strength @ Yield 27 N/mm (kN/m) 153 ppi 2,486 psi **ASTM D6693** ASTM D638 (Modified) 3.179 (2 inches / minute) 2,647 Average Strength @ Break 31 N/mm (kN/m) 179 ppi 2,913 psi 19.78 Elongation ASTM D6693 14.79 % Average Elongation @ Yield 17.29 ASTM D638 (Modified) (2 inches / minute) 470.9 Lo = 1.3" Yield 517.0 Lo = 2.0" Break % Average Elongation @ Break 494.0 **Dimensional Stability** % Average Dimensional change -.44 ASTM D1204 (Modified) 60.474 Tear Resistance 58.430 ASTM D1004 (Modified) Average Tear Resistance 264.4 N 59.452 lbs Puncture Resistance Average Peak Load 97.389 lbs 433.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.3 N 136.29 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/19/2012

Signature Quality Control Department

312109-12 Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... MIN: 1.47 mm 58 mil ASTM D5994 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.62 mm 64 mil **TEST** Asperity ASTM D7466: 35/36 mil AVE: 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g q/10 min .29 COND. E GRADE: K307 Carbon Black Content % Range 2.29 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,406 2.565 Tensile Strength Average Strength @ Yield 27 N/mm (kN/m) 152 ppi **ASTM D6693** 2,486 psi ASTM D638 (Modified) 3.179 (2 inches / minute) 2.647 Average Strength @ Break 31 N/mm (kN/m) 178 ppi 2,913 psi 19.78 Elongation ASTM D6693 14.79 Average Elongation @ Yield % 17.29 ASTM D638 (Modified) (2 inches / minute) 470.9 Lo = 1.3" Yield 517.0 Lo = 2.0" Break % Average Elongation @ Break 494.0 **Dimensional Stability** % Average Dimensional change -.44 ASTM D1204 (Modified) 60.474 Tear Resistance 58.430 ASTM D1004 (Modified) Average Tear Resistance 264.4 Ν 59.452 lbs Puncture Resistance Average Peak Load lbs 97.389 433.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.3 N 136.29 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date: 3/19/2012

Signature.

Quality Control Department

312110-12 Lot #: 8110773 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm **METRIC** Thickness..... **ENGLISH** Measurement 153.926 m 505.0 feet MIN: 1.50 mm 59 Length..... mil ASTM D5994 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.59 mm 63 mil **TEST** 37/36 mil AVE: Asperity ASTM D7466: 1.54 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a a/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.29 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.406 2,565 Tensile Strength Average Strength @ Yield 26 N/mm (kN/m) **151** ppi **ASTM D6693** 2,486 psi ASTM D638 (Modified) 3,179 (2 inches / minute) 2.647 Average Strength @ Break 31 N/mm (kN/m) 2,913 177 ppi psi 19.78 Elongation ASTM D6693 14.79 Average Elongation @ Yield ASTM D638 (Modified) % 17.29 (2 inches / minute) 470.9 Lo = 1.3" Yield 517.0 Lo = 2.0" Break Average Elongation @ Break % 494.0 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 60.474 Tear Resistance 58.430 ASTM D1004 (Modified) Average Tear Resistance 264.4 N 59.452 lbs Puncture Resistance Average Peak Load lbs 97.389 433.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.3 Ν lbs 136.29 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/19/2012

ROLL# 312111-	12 Lot #:	 8110773	Liner Type: I	MICROSPIKE	™ HDPE
Measurement ASTM D5994	METRIC E MIN: 1.47 mm 5 MAX: 1.62 mm 6		Thickness Length Width	153.926 ^m 50	60 mil 05.0 feet 3.0 feet
sperity ASTM D7466: 38/36 mil /	AVE: 1.53 mm 6	mil O	ب IT(Standard) ASTM D389	5 minutes 184	TEST RESULTS
Specific Gravity ASTM D792	Density		g/cc		.944 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	190°C /2160 g	g/10 min		.29 🗸
Carbon Black Content ASTM D4218 🗸	Range		%		2.30
Carbon Black Dispersion	Category			10 Ir	Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Streng	th @ Yield	28 N/mm (kN/m)	158 ppi	2.320 / 2.732 / 2,631 psi 3.180 / 3.182 /
	Average Streng	th @ Break	34 N/mm (kN/m)	192 ppi	3,186 psi 18.68
Elongation ASTM D6693 STM D638 (Modified) 2 inches / minute)	Average Elonga	ition @ Yield	%		16.22 16.95 473.6
o = 1.3" Yield o = 2.0" Break	Average Elonga	ition @ Break	%		568.6 521.1
Dimensional Stability ASTM D1204 (Modified)	Average Dimens	sional change	%		44
Cear Resistance ASTM D1004 (Modified)	Average Tear R	esistance	260.4 N		58.531 58.565 58.548 lbs
Puncture Resistance TMS 101 Method 2065 (Mod	Average Peak l	Load	421.7 N		94.814 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	591.0 N		132.85 ibs
SCR STM D1693	Minimum Hrs w	ı/o Failures	1500 hrs	CER	TIFIED
Notched Constant Tensile Lo	ad pass / fail @ 30%	%	300 hrs		PASS -

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/19/2012

					11							
ROLL# 31211:	3-12	Lot	#:	8	3110773	Line	r Type:	MICROS	SPIK	ETM H	DPE	Ξ
Jacques and		METR	IC.	ENGL	ISH	Thickne	ess	1.5 m	m	60 mi	i	
Measurement ASTM D5994	MIN:	1.50	mm		mil			153.926	m	505.0	feet	
(Modified)	MAX:	1.67	mm		mil	Width		7.01	m;	23.0	feet	
Asperity ASTM D7466: 35/32 n	nil AVE:	1.60	mm		mil	OIT(Standard)	ASTM D389	5 minutes	184	TE RES	ST ULT	s
Specific Gravity ASTM D792		Density				g/cc				.94	14	
MFI ASTM D1238 COND. E GRADE: K30		Melt Flov	v Inde	ex 190	°C /2160 g	g g/10) min			.2	29	
Carbon Black Content ASTM D4218		Range				%				2.3	30	
Carbon Black Dispersion ASTM D5596		Category	/						10) In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)		Average	Strer	ngth @	Yield	29 N/n	nm (kN/m)	166 p	pi	2,52 2,74 2,63 3,19	12 11 10	ps
(2 inches / minute)		Average	Strer	ngth @	Break	35 N/n	nm (kN/m)	201 p	pí	3,18 3,1 8	2 6	08
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)		Average	Elon	gation	@ Yield	%				18.6 15.2 16.9 473	22 15	
Lo = 1.3" Yield Lo = 2.0" Break		Average	Elong	gation	@ Break	%				568. 521 .	.6	
Dimensional Stability ASTM D1204 (Modified)	,	Average	Dime	nsiona	al change	%				4		
Tear Resistance ASTM D1004 (Modified)		Average	Tear	Resist	ance	260.4	4 N			58.53 58.56 58.54	5	b
Puncture Resistance FTMS 101 Method 2065 (I	Modified)	Average	Pea	k Load		421.7	7 N			94.81	4	b
Puncture Resistance ASTM D4833 (Modified)		Average	Peal	k Load		591.0) N			132.8	3 5	bs
ESCR ASTM D1693		Minimur	n Hrs	w/o Fa	ailures	1500 hrs			CI	ERTIFIE	D	
Notched Constant Tensile ASTM D5397	Load p	oass / fail	@ 3	0%		300 hrs				PAS	s	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature.....Quality Control Department

312114-12 Lot #: 8110773 ROLL# Liner Type: MICROSPIKE™ HDPE **METRIC** 1.5 mm **ENGLISH** 60 mil Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.47 mm 58 ASTM D5994 Length..... mil 7.01 m; 23.0 (Modified) Width..... feet MAX: 1.63 mm 64 mil **TEST** Asperity ASTM D7466: 37/34 mil AVE: 1.54 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM **RESULTS** Specific Gravity Density g/cc .944 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.30 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,520 Tensile Strength 2.742 Average Strength @ Yield **ASTM D6693** 28 N/mm (kN/m) **160** ppi 2,631 psi ASTM D638 (Modified) 3,190 (2 inches / minute) 3.182 Average Strength @ Break 34 N/mm (kN/m) 193 ppi 3,186 psi 18.68 Elongation ASTM D6693 15.22 ASTM D638 (Modified) Average Elongation @ Yield % 16.95 (2 inches / minute) 473.5 Lo = 1.3" Yield 568.6 Lo = 2.0" Break Average Elongation @ Break % 521.1 Dimensional Stability Average Dimensional change ASTM D1204 (Modified) % -.44 58.531 Tear Resistance 58.565 ASTM D1004 (Modified) Average Tear Resistance 260.4 Ν 58.548 lbs Puncture Resistance Average Peak Load 94.814 lbs FTMS 101 Method 2065 (Modified) 421.7 Ν Puncture Resistance Average Peak Load 591.0 Ν 132.85 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature.

3/19/2012

Quality Control Department

ROLL# 312115-	12 Lot #:	8110773	Liner Type: I	MICROSPIKE	E™ HDPE
(Modified)	MIN: 1.46 mm 5 MAX: 1.62 mm 6	54 mil	Thickness Length Width		60 mil 505.0 feet 23.0 feet TEST
Asperity ASTM D7466: 36/36 mil /	AVE; 1.53 mm 6	0	IT(Standard) ASTM D389	5 minutes 184	RESULTS
Specific Gravity ASTM D792	Density		g/cc		.947
MFI ASTM D1238 COND. E GRADE; K307	Melt Flow Index	∢190°C /2160 g	g/10 min		.29 🗸
Carbon Black Content ASTM D4218 V	Range		%		2.32
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Streng	yth @ Yield	26 N/mm (kN/m)	146 ppi	2,415 2,430 2,428 psi 3,067 2,812
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elonga		31 N/mm (kN/m)	177 ppi	2,940 psi 19.66 18.41 19.05
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elonga	ation @ Break	%		491.8 492.8 477.3
Dimensional Stability ASTM D1204 (Modified)	Average Dimen	sional change	%		44 56.927
Tear Resistance ASTM D1004 (Modified)	Average Tear F	Resistance	249.0 N		55.016 / 55.972 lbs /
Puncture Resistance FTMS 101 Method 2065 (Mod	Average Peak dified)	Load	417.1 N		93.771 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	594.8 N		133.72 lbs
ESCR ASTM D1693	Minimum Hrs v	w/o Failures	1500 hrs	CE	RTIFIED
Notched Constant Tensile Lo ASTM D5397	ad pass / fail @ 30	%	300 hrs		PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:......

Signature......

Quality Control Department

ROLL# 312216-	12 Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDI	PE
/h #!'C' - 1)	METRIC //IN: 1.48 mm //AX: 1.66 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	000.0	eet eet
Asperity ASTM D7466: 33/33 mil A	NVE: 1.56 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 184	TES RESUI	
Specific Gravity ASTM D792	Density		g/cc		.947	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	x 190°C /2160 ς	g g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.32	
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Streng	gth @ Yield	26 N/mm (kN/m)	149 ppi	2,415 2,440 2,428 3,067	psi
(= manas	Average Streng	gth @ Break	32 N/mm (kN/m)	181 ppi	2,812 2,940	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elong	ation @ Yield	%		19.68 18.41 19.05 491.8	
Lo = 1.3 Heid Lo = 2.0" Break	Average Elonga	ation @ Break	%		462.8 477.3	
Dimensional Stability ASTM D1204 (Modified)	Average Dimer	sional change	%		44	
Tear Resistance	1			·············· = / ··· ···	56.927	· · · · ·
ASTM D1004 (Modified)	Average Tear F	Resistance	249.0 N		55.016 55.972	lbs
Puncture Resistance FTMS 101 Method 2065 (Modi	Average Peak		417.1 N		93.771	
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	594.8 N		133.72	lbs
ESCR ASTM D1693	Minimum Hrs v	w/o Failures	1500 hrs	CE	RTIFIED	
Notched Constant Tensile Loa ASTM D5397	d pass / fail @ 30	%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.....Quality Control Department

312217-12 ROLL# Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.48 mm 58 Lenath..... **ASTM D5994** mil 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.66 mm 65 mil **TEST** Asperity ASTM D7466: 37/34 mil AVE: 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.32 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,415 Tensile Strength 2,440 Average Strength @ Yield psi 26 N/mm (kN/m) 148 ppi **ASTM D6693** 2,428 ASTM D638 (Modified) 3,067 (2 inches / minute) 2,812 Average Strength @ Break 179 ppi 31 N/mm (kN/m) 2,940 psi 19.68 Elongation ASTM D6693 18.41 Average Elongation @ Yield ASTM D638 (Modified) % 19.05 (2 inches / minute) 491.8 Lo = 1.3" Yield 462.8 Lo = 2.0" Break Average Elongation @ Break % 477.3 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 56.927 Tear Resistance 55.016 ASTM D1004 (Modified) Average Tear Resistance 249.0 Ν 55.972 lbs Puncture Resistance Average Peak Load 93.771 lbs 417.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 594.8 N 133.72 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/20/2012

Quality Control Department

60HDmic.FRM REV 03

312218-12 ROLL# Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm **METRIC ENGLISH** 60 mil Measurement Thickness..... MIN: 153.926 m 505.0 feet ASTM D5994 1.49 mm 59 Length..... mil 7.01 m; (Modified) Width..... 23.0 feet MAX: 1.61 mm 63 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE: 1.55 mm 61 mil TOP / BOTTOM OIT(Standard) ASTM D3895 minutes 184 **RESULTS** Specific Gravity Density g/cc ASTM D792 .947 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.32 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2.415 Tensile Strength 2,440 Average Strength @ Yield **ASTM D6693** 26 N/mm (kN/m) 148 ppi 2,428 psi ASTM D638 (Modified) 3.067 (2 inches / minute) 2.812 Average Strength @ Break 31 N/mm (kN/m) **179** ppi 2,940 psi 19.68 Elongation ASTM D6693 18.41 ASTM D638 (Modified) Average Elongation @ Yield % 19.05 (2 inches / minute) 491.8 Lo = 1.3" Yield 462.8 Lo = 2.0" Break Average Elongation @ Break % 477.3 Dimensional Stability Average Dimensional change ASTM D1204 (Modified) % -.44 56.927 Tear Resistance 55.016 ASTM D1004 (Modified) Average Tear Resistance 249.0 N 55.972 lbs Puncture Resistance Average Peak Load lbs 93.771 FTMS 101 Method 2065 (Modified) 417.1 Ν Puncture Resistance Average Peak Load 594.8 N 133.72 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature....

Quality Control Department

Measurement ASTM D5994 MIN: 1.45 mm 57 mil (Modified) MAX: 1.64 mm 65 mil Asperitu ASTM D7466: 14/24 mil AVE: 1.55 mm 61 mil	00 mil 05.0 feet .0 feet TEST RESULTS
Specific Gravity Density g/cc	.948
MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min GRADE: K307	.29
Carbon Black Content Range %	2.36
ASTM D5596 V	Cat 1 2,516
ASTM D6693 Average Strength @ Yield 28 N/min (kN/m) 159 ppi. ASTM D638 (Modified) (2 inches / minute) Average Strength @ Break 33 N/mm (kN/m) 189 ppi	2,702 2,609 psl 3,091 2 3,104 3,098 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Average Elongation @ Yield %	17.72 14.68 16.31 457.4 567.3 512.3
Dimensional Stability ASTM D1204 (Modified) Average Dimensional change %	44
Tear Resistance	4.974 / 2.568 / 3.771 lbs /
Puncture Resistance Average Peak Load 435.1 N 9	97.812 lbs
Puncture Resistance Average Peak Load 583.5 N 1	131.18 lbs
ESCR Minimum Hrs w/o Failures 1500 hrs CERT	TFIED
Notched Constant Tensile Load pass / fail @ 30% 300 hrs	PASS ~

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/20/2012

ROLL# 312220-1	2 Lot #:	II 944077		MODOODU		
		8110773				
Measurement ASTM D5994 MI	METRIC N: 1.46 mm	ENGLISH	Thickness	1.5 mm 153.926 ^m	60 mil 505.0	feet
(Modified) MA			Length Width	7.01 m;	23.0	feet
Asperity ASTM D7466: 37/32 mil AV		T. T. 1743(1)	OIT(Standard) ASTM D3895	i minutes 184	TE: RESU	
Specific Gravity ASTM D792	Density		g/cc		.948	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160	g g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.36	
Carbon Black Dispersion ASTM D5596	Category			10	0 In Cat 1	-
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	igth @ Yield	28 N/mm (kN/m)	160 ppi	2,516 2,702 2,609 3,091	ps
	Average Stren	gth @ Break	33 N/mm (kN/m)	190 ppi	3,104 3,098	
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elong	ation @ Yield	%		17.72 14.89 16.31 457.4	
Lo = 2.0" Break	Average Elong	ation @ Break	%		567.3 512.3	
Dimensional Stability ASTM D1204 (Modified)	Average Dimer		%		44	
Tear Resistance ASTM D1004 (Modified)	Average Tear I	Resistance	239.2 N		54.974 52.568 53.771	lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Averanà Peak		435.1 N		97.812	1000000
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	583.5 N	4	131.18	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/20/2012

Signature......

Quality Control Department

ROLL# 312221-12	Lot #:	8110773	Liner Type: N			PE
Measurement ASTM D5994 MIN: (Modified) MAX			Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;		eet
Asperity ASTM D7466; 37/33 mil AVE:	1.58 mm	62 mil	OIT(Standard) ASTM D3895	minutes 184	TES RESUI	
Specific Gravity ASTM D792	Density		g/cc		.948	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160	g g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.36	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	ngth @ Yield	28 N/mm (kN/m)	162 ppi	2,516 2,702 2,609 3,091	psi
(Average Stren	ngth @ Break	34 N/mm (kN/m)	193 ppi	3,104 3,098	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elong		%		17.72 14.89 16.31 457.4 567.3	· ·
Lo = 2.0" Break	Average Elong	gation @ Break	%		512.3	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	nsional change	%		44	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	239.2 N		54.974 52.568 53.771	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peak	c Load	435.1 N	-	97.812	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	k Load	583.5 N		131.18	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/20/2012

Quality Control Department

60HDmic FRM REV 03

312222-12 Lot #: 8110773 ROLL # Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.51 mm 59 Length..... **ASTM D5994** mil 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.70 mm 67 mil **TEST** Asperity ASTM D7466: 37/32 mil AVE: 1.61 mm 63 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .948 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.36 ASTM D4218 Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2.516 Tensile Strength 2,702 Average Strength @ Yield **ASTM D6693** 29 N/mm (kN/m) **165** ppi 2,609 psi ASTM D638 (Modified) 3.091 (2 inches / minute) 3,104 Average Strength @ Break 34 N/mm (kN/m) **196** ppi 3,098 psi 17.72 Elongation ASTM D6693 14.89 ASTM D638 (Modified) Average Elongation @ Yield % 16.31 (2 inches / minute) 457.4 Lo = 1.3" Yield 567.3 Lo = 2.0" Break Average Elongation @ Break % 512.3 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.44 54.974 Tear Resistance 52,568 ASTM D1004 (Modified) Average Tear Resistance 239.2 Ν 53.771 lbs Puncture Resistance Average Peak Load 97.812 lbs 435.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 583.5 N 131.18 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.

3/20/2012

Quality Control Department

Con 1989	7		
ROLL# 312223-12	Lot #: 8	110773 Liner Type:	: MICROSPIKE™ HDPE
Measurement ASTM D5994 (Modified) MAX		ISH Thickness mil Length mil Width	ACO DOC M COE O feet
Asperity ASTM D7466: 36/32 mil AVE		mil OIT(Standard) ASTM D38	TEST RESULTS
Specific Gravity ASTM D792	Density	g/cc	.944 🗸
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°	C /2160 g g/10 min	.29 🗸
Carbon Black Content ASTM D4218	Range	%	2.19
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @		2,493 / 2,634 / 2,564 psi 3,232 / 2,803 / 3,018 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation (18.82 46.41 17.47 491.5 495.7 493.6
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional		44
Tear Resistance ASTM D1004 (Modified)	Average Tear Resista	ance 241.6 N	56.284 / 52.327 / 54.305 lbs -
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load	419.0 N	94.191 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	614.5 N	138.14 lbs _k
ESCR ASTM D1693	Minimum Hrs w/o Fa	ilures 1500 hrs	CERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs	PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/20/2012

Signature Quality Control Department

ROLL# 31	2224	-12	Lo	t #:		8110773	Liner	Type: N	MICROSPIKE™		E™ HD	PE
Measurement ASTM D5994		MIN:	METF 1.52	mm	60	GLISH mil	Thicknes Length		1.5 m 153.926 7.01		000.0	feet feet
(Modified) Asperity ASTM D7466: TOP / BOTTOM	37/32 mil	MAX: AVE:	1.68 1.58	mm mm		mil mil	OIT(Standard) A		minutes	184	TES RESU	
Specific Gravity ASTM D792			Density	-,-,-			g/cc				.944	
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flor	w Ind	ex 19	0°C /2160	g g/10 ı	min			.29	
Carbon Black Con ASTM D4218	tent		Range				%				2.19	
Carbon Black Disp ASTM D5596	persion		Categor	y						10	In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modi (2 inches / minute			Average	Strer	ngth (@ Yield	28 N/mm	ı (kN/m)	159 p	ppi	2,493 2,634 2,564 3,232 2,803	psi
			Average	Strer	ngth (@ Break	33 N/mm	(kN/m)	188 p	pi	3,018	psi
Elongation ASTM ASTM D638 (Modi (2 inches / minute	ified)		Average	Elon	gatior	n @ Yield	%				18.82 16.11 17.47 491.5	
Lo = 1.3" Yield Lo = 2.0" Break			Average	Elon	gation	n @ Break	%				495.7 493.6	
Dimensional Stabi ASTM D1204 (Mod						nal change	%				44	
Tear Resistance ASTM D1004 (Mod	dified)		Average	Теаг	Resi	stance	241.6	N			56.284 52.327 54.305	
Puncture Resistan FTMS 101 Method		odified)	Average	e Pea	k Loa	ıd	419.0	N			94.191	lbs
Puncture Resistan ASTM D4833 (Mod			Average	e Pea	k Loa	d	614.5	N			138.14	lbs
ESCR ASTM D1693			Minimu	n Hrs	w/o l	Failures	1500 hrs			CE	ERTIFIED	
Notched Constant ASTM D5397	Tensile L	oad	pass / fai	l @ 3	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature.....Quality Control Department

ROLL# 312225-12	1	_					
ROLL# 312225-12		811077					
Measurement ASTM D5994 MIN	METRIC : 1.48 mm	ENGLISH 58 mil	Thickness Length	1.5 mm 153.926 ^m	60 mil 505.0	feet	
(Modified) MA	K: 1.70 mm	67 mil	Width	7.01 m;	23.0	feet	
Asperity ASTM D7466: 35/32 mil AVI	: 1.57 mm	62 mil	OIT(Standard) ASTM D3895	minutes 184	TES RESU		
Specific Gravity ASTM D792	Density		g/cc		.944		
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Ind	ex 190°C /2160	g g/10 min		.29		
Carbon Black Content ASTM D4218	Range	100	%		2.19	-11	
Carbon Black Dispersion ASTM D5596	Category			10) In Cat 1		
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Strer	ngth @ Yield	28 N/mm (kN/m)	158 ppi	2,493 2,634 2,564 3,232	ps	
(2 inches / minute)	Average Strer	ngth @ Break	33 N/mm (kN/m)	187 ppi	2,803 3,018	ps	
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elon	gation @ Yield	%		18.82 16.11 17.47 491.5		
Lo = 1.3" Yield Lo = 2.0" Break	Average Elong	gation @ Break	%		495.7 493.6		
Dimensional Stability ASTM D1204 (Modified)		ensional change	%		44		
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	241.6 N	-	56.284 52.327 54.305	lbs	
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peal	k Load	419.0 N		94.191	lbs	
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	614.5 N		138.14	lbs	
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED		
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	0%	300 hrs		PASS		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

.....

Quality Control Department

312226-12 Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.49 Length..... mm 59 mil ASTM D5994 7.01 23.0 Width..... feet (Modified) MAX: 1.66 mm 65 mil TEST 36/33 mil AVE: Asperity ASTM D7466: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .944 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.19 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,493 Tensile Strength 2,634 Average Strength @ Yield **ASTM D6693** 28 N/mm (kN/m) 158 ppi 2,564 psi ASTM D638 (Modified) 3,232 (2 inches / minute) 2,803 Average Strength @ Break 33 N/mm (kN/m) 187 ppi 3,018 psi 18.82 Elongation ASTM D6693 16.11 ASTM D638 (Modified) Average Elongation @ Yield % 17.47 (2 inches / minute) 491.5 Lo = 1.3" Yield 495.7 Lo = 2.0" Break Average Elongation @ Break % 493.6 Dimensional Stability Average Dimensional change % ASTM D1204 (Modified) -.44 56.284 Tear Resistance 52.327 ASTM D1004 (Modified) Average Tear Resistance 241.6 N 54.305 lbs Puncture Resistance Average Peak Load 94.191 lbs 419.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 614.5 N lbs 138.14 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs. **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

ROLL# 312227-12	2 Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDPE
Measurement ASTM D5994 MIN (Modified) MA	J: 1.49 mm 5 X: 1.69 mm 6	7 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet
Asperity ASTM D7466: 36/33 mil AVE TOP / BOTTOM	E: 1.55 mm 6	1 mil	DIT(Standard) ASTM D389	5 minutes 184	RESULTS
Specific Gravity ASTM D792	Density		g/cc		.945
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	190°C /2160 g	g/10 min		.29 🖊
Carbon Black Content ASTM D4218 V	Range		%		2.26
Carbon Black Dispersion ASTM D5596	Category			10	In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strengtl		27 N/mm (kN/m)	156 ppi	2,492 / 2,608 / 2,550 psi 3,123 / 2,976 /
	Average Strengt	n @ Break	33 N/mm (kN/m)	186 ppi	3,050 psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elongat	ion @ Yield	%		16.51 16.66 🗸
Lo = 1.3" Yield Lo = 2.0" Break	Average Elongat	ion @ Break	%		443.8 589.8 506.8
Dimensional Stability ASTM D1204 (Modified)	Average Dimensi	ional change	%		44
Tear Resistance ASTM D1004 (Modified)	Average Tear Re	esistance	250.3 N		57.395 56.160 56.280 lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak L	oad	405.0 N		91.063 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak L	oad	605.1 N		136.04 lbs
ESCR ASTM D1693	Minimum Hrs w/	o Failures	1500 hrs	CE	RTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%		300 hrs		PASS

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/20/2012

312228-12 ROLL# Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153,926 m MIN: Length..... 505.0 feet ASTM D5994 1.49 mm 59 mil 7.01 Width..... 23.0 (Modified) feet MAX: 1.63 mm 64 mil **TEST** Asperity ASTM D7466: 37/35 mil AVE: 1.56 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM RESULTS Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 a g/10 min COND. E .29 GRADE: K307 Carbon Black Content Range % 2.26 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,492 Tensile Strength 2,608 Average Strength @ Yield **ASTM D6693** 27 N/mm (kN/m) 157 ppi 2,550 psi ASTM D638 (Modified) 3,123 (2 inches / minute) 2,976 Average Strength @ Break 33 N/mm (kN/m) 187 ppi 3,050 psi 18.80 Elongation ASTM D6693 14.51 ASTM D638 (Modified) Average Elongation @ Yield % 16.66 (2 inches / minute) 443.8 Lo = 1.3" Yield 569.8 Lo = 2.0" Break Average Elongation @ Break % 506.8 Dimensional Stability Average Dimensional change % ASTM D1204 (Modified) -.44 57.399 Tear Resistance 55.160 ASTM D1004 (Modified) Average Tear Resistance 250.3 Ν 56.280 lbs Puncture Resistance Average Peak Load lbs 91.063 FTMS 101 Method 2065 (Modified) 405.0 Ν Puncture Resistance Average Peak Load 605.1 Ν lbs 136.04 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature....

Quality Control Department

3/20/2012

312229-12 Lot #: 8110773 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: Length..... 1.49 mm 59 **ASTM D5994** mil Width..... 7.01 23.0 feet (Modified) MAX: 1.67 mm 66 mil **TEST** Asperity ASTM D7466: 36/34 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.26 ASTM D4218 Carbon Black Dispersion Category 10 In Cat 1 ASTM D5596 2,492 Tensile Strength 2,608 Average Strength @ Yield **ASTM D6693** 28 N/mm (kN/m) 158 ppi 2,550 psi ASTM D638 (Modified) 3,123 (2 inches / minute) 2.976 Average Strength @ Break 33 N/mm (kN/m) 188 ppi 3,050 psi 18.80 Elongation ASTM D6693 14.51 ASTM D638 (Modified) Average Elongation @ Yield % 16.66 (2 inches / minute) 443.8 Lo = 1.3" Yield 569.8 Lo = 2.0" Break Average Elongation @ Break % 506.8 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.399 Tear Resistance 55.160 ASTM D1004 (Modified) Average Tear Resistance 250.3 Ν 56.280 lbs Puncture Resistance Average Peak Load 91.063 lbs 405.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 605.1 N 136.04 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

inatura 504

3/21/2012

Quality Control Department

312330-12 Lot #: 8110773 ROLL# Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil METRIC **ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet MIN: 1.42 mm 56 Length..... **ASTM D5994** mil 7.01 23.0 Width..... feet (Modified) MAX: 1.60 mm 63 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE: 1.54 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content Range % 2.26 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,492 Tensile Strength 2,608 Average Strength @ Yield **ASTM D6693** N/mm (kN/m) 155 ppi psi 2,550 ASTM D638 (Modified) 3,123 (2 inches / minute) 2,976 Average Strength @ Break 32 N/mm (kN/m) 185 ppi 3,050 psi 18.80 Elongation ASTM D6693 14.51 ASTM D638 (Modified) Average Elongation @ Yield % 16.66 (2 inches / minute) 443.8 Lo = 1.3" Yield 569.8 Lo = 2.0" Break Average Elongation @ Break % 506.8 Dimensional Stability Average Dimensional change % ASTM D1204 (Modified) -.44 57.399 Tear Resistance 55,160 ASTM D1004 (Modified) Average Tear Resistance 250.3 N 56.280 lbs Puncture Resistance Average Peak Load 91.063 lbs 405.0 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 605.1 136.04 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.....

Quality Control Department

3/21/2012

・ 	11		
ROLL# 312331-12	Lot #: 8110773	Liner Type: MICROS	PIKE™ HDPE
Measurement ASTM D5994 MIN (Modified) MA		Thickness	m 505.0 feet m; 23.0 feet
Asperity ASTM D7466: 36/34 mil AVI	E: 1.53 mm 60 mil	OIT(Standard) ASTM D3895 minutes	TEST 184 RESULTS
Specific Gravity ASTM D792	Density	g/cc	.945
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 190°C /2160 (g g/10 min	.29
Carbon Black Content ASTM D4218	Range	%	2.38
Carbon Black Dispersion ASTM D5596	Category		10 In Cat 1
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength @ Yield Average Strength @ Break	27 N/mm (kN/m) 156 pp	3,274
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elongation @ Yield	%	18.49 14.73 16.31
Lo = 1.3" Yield Lo = 2.0" Break	Average Elongation @ Break	%	502.3 481.1
Dimensional Stability ASTM D1204 (Modified)	Average Dimensional change	%	44
Tear Resistance ASTM D1004 (Modified)	Average Tear Resistance	258.9 N	57 648 58.768 58.208 lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak Load	411.0 N	92.39 lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Load	597.7 N	134.38 lbs v
ESCR ASTM D1693	Minimum Hrs w/o Failures	1500 hrs	CERTIFIED
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%	300 hrs	PASS
Company of the Compan			

Customer: Chenango Contracting, Inc.
PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/21/2012

Signature. Quality Control Department

60HDmic,FRM REV 03

312332-12 ROLL# Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153.926 m 505.0 feet Length..... MIN: 1.49 ASTM D5994 mm 59 mil 7.01 m; Width..... 23.0 feet (Modified) MAX: 1.67 mm 66 mil TEST Asperity ASTM D7466: 35/34 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g COND. E g/10 min .29 GRADE: K307 Carbon Black Content Range % 2.38 **ASTM D4218** Carbon Black Dispersion Category 10 In Cat 1 **ASTM D5596** 2,493 Tensile Strength 2,675 Average Strength @ Yield 28 N/mm (kN/m) 160 ppi **ASTM D6693** 2,584 psi ASTM D638 (Modified) 3.274 (2 inches / minute) 2.785 Average Strength @ Break 33 N/mm (kN/m) 187 ppi 3,030 psi 18.49 Elongation ASTM D6693 14.13 ASTM D638 (Modified) Average Elongation @ Yield % 16.31 (2 inches / minute) 459.8 Lo = 1.3" Yield 502.3 Lo = 2.0" Break Average Elongation @ Break % 481.1 **Dimensional Stability** Average Dimensional change % ASTM D1204 (Modified) -.44 57.648 Tear Resistance 58.768 ASTM D1004 (Modified) Average Tear Resistance 258.9 Ν 58.208 lbs Puncture Resistance Average Peak Load 92.39 lbs 411.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 597.7 N 134.38 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Signature.

Quality Control Department

HODE .		II 📉	= /			
ROLL# 312333-12	Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDF	P E
	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement ASTM D5994 MIN:	1.50 mm		Length	153.926 m	505.0 fe	eet
10 1101 0000 1			Width	7.01 m;	23.0 fo	eet
, , , , , , , , , , , , , , , , , , , ,					TES	Т
Asperity ASTM D7466: 34/33 mil AVE: TOP / BOTTOM	1.55 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 184	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160	g g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.38	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength	Average Strer	nath @ Viold	28 N/mm (kN/m)	158 ppi	2,493 2,675 2,584	ps
ASTM D6693	Average Strei	igti to rield	20 19/1911 (819/11)	100 ppi	3,274	РО
ASTM D638 (Modified) (2 inches / minute)	Average Strer	noth @ Break	32 N/mm (kN/m)	185 ppi	2,785 3,030	ps
Elongation ASTM D6693 ASTM D638 (Modified)		gation @ Yield	%	TOO PP.	18.49 14.13 16.31	
(2 inches / minute) Lo = 1.3" Yield					459.8 502.3	
Lo = 2.0" Break	Average Elon	gation @ Break	%		481.1	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%		44	
Toor Decistance					57.648	
Tear Resistance ASTM D1004 (Modified)	Augres Ts	Desistance	250 0 N		58.768	lha
	Average Tear	кезізіапсе	258.9 N		58.208	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Pea	k Load	411.0 N		92.39	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	597.7 N		134.38	lbs
ESCR ASTM D1693	Minimum Hrs	s w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.

Quality Control Department

3/21/2012

ROLL#	31	2334	4-12	Lo	t #:		811077	3 Liner	Type:	MICRO	KE™ HD	PE	
Measurement ASTM D5994 (Modified)			MIN: MAX:	METI 1.44 1.64	RIC mm mm	57	GLISH mil mil	Thicknes Length Width		1.5 m 153.926 7.01		60 mil 505.0 23.0	feet feet
Asperity ASTM D74		36/32 m	nil AVE:	1.55	mm		mil	OIT(Standard) A	STM D389	95 minutes	184	TES RESU	
Specific Gravit ASTM D792	ty			Density				g/cc				.945	5
MFI ASTM D12 COND. E GRADE:	238	K307	7	Melt Flo	w Ind	ex 19	0°C /2160	g g/10 ı	min			.29)
Carbon Black (ASTM D4218	Conte	ent		Range				%				2.38	
Carbon Black I ASTM D5596	Dispe	ersion		Categor	у						10	0 In Cat 1	
Tensile Streng ASTM D6693 ASTM D638 (N (2 inches / mir	/lodifi	•		Average				28 N/mm		158 p		2,493 2,675 2,584 3,274 2,785	, psi
Elongation AS ASTM D638 (N (2 inches / mir	/lodifi	ed)			.====0		@ Break	32 N/mrr	1 (kN/m)	185 p	pji	3,030 18.49 14.13 16.31 459.8	
Lo = 1.3" Yield Lo = 2.0" Break				Average	Elon	gatior	n @ Break	%				502.3 481.1	
Dimensional St ASTM D1204 (•		Average	Dime	nsior	nal change	%				44	
Tear Resistand ASTM D1004 (fied)		Average	Tear	Resis	stance	258.9	N			57.648 58.768 58.208	
Puncture Resis			(lodified	Average	e Pea	k Loa	d	411.0	N			92.39	lbs
Puncture Resis ASTM D4833 (Average	e Peal	k Loa	d	597.7	N			134.38	lbs
ESCR ASTM D1693				Minimu	m Hrs	w/o l	Failures	1500 hrs			CI	ERTIFIED	
Notched Const ASTM D5397	ant T	ensile l	Load	pass / fai	I @ 3	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.....Quality Control Department

quality certificate

ROLL#	312335-	-12	Lot #:	 8110773	Liner Type:	MICROSPIN	(E™ HDPE
Measurement ASTM D5994		MIN:	METRIC 1.51 mm	ENGLISH 59 mil	Thickness Length	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 feet 23.0 feet
Modified)	///	MAX:	1.62 mm	64 mil	vvidti1,	7101	25.0
sperity ASTM D TOP / BOT		AVE:	1.58 mm	62 mil	OIT(Standard) ASTM D38	95 minutes 184	TEST RESULTS
Specific Grav ASTM D792		D	ensity		g/cc		.947
MFI ASTM D COND. E GRADE:	1238 K307	M	elt Flow Inde	ex 190°C /2160 g	g/10 min		.29 🗸
Carbon Black ASTM D4218		R	ange		%		2.32
Carbon Black ASTM D5596		C	ategory			10	O In Cat 1
Tensile Stren ASTM D6693 ASTM D638 (2 inches / m	(Modified)	A	verage-8tren	igth @ Yield	29 N/mm (kN/m)	163 ppi	2,653 2,686 2,620 psi 3,180
Z iliches / Ili	imute)	A	verage Stren	gth @ Break	34 N/mm (kN/m)	192 ppi	2,994 7 3,087 psi
Elongation A ASTM D638 (2 inches / m		A	verage Elong	gation @ Yield	%		16.92 15.08 17.00
_o = 1.3" Yiel _o = 2.0" Brea	ld	A	verage Flong	gation @ Break	%		466.9 542.9 504.9
Dimensional 3 ASTM D1204		Av	erage Dime	nsional change	%		44
ear Resistar ASTM D1004		ÁV	erage Pear I	Resistance	247.6 N		57.194 54.125 55.660 lbs
Puncture Res	sistance ethod 2065 (Mod	A	verage Peak		431.6 N		97.029 lbs
Puncture Res ASTM D4833		A	verage Peak	Load	586.1 N		131.76 lbs
SCR STM D1693		M	inimum Hrs	w/o Failures	1500 hrs	CE	RTIFIED
	tched Constant Tensile Load pass / fail @ 30% 300 hrs			PASS -			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/21/2012

Signature.....Quality Control Department

60HDmic FRM REV 03 12/23/05

		SELABINO OU	ORT CORE	A ODICINAL NOTAL	COTIABLE	_ /	st lood	- 272	,,,,,,	B/L NO.	w .
AM" OF CARRIE	R T	RUCK /	704	enzie	CARRIER'S NO.		DATE	11/11	/2011		03164
CEIVED, subject to property describe derstood througho piles carrier on the perty, that ev this is a rail hereby certifi	the class d below in this control route to ery serv or a rail- ies that	sifications and lawfully filed in apparent good order, ex- ontract as meaning any pers o said destination. It is mutu- ice to be performed hereun water shipment, or (2) in the le is familiar with all the ter hipper and accepted for him	tarffs in effect, cept as noted (co on or corporatio ally agreed as to der, shall be sub applicable mot ms and conditio	but the date of issue of this Bill of Lading intents and condition of contents of pac in in possession of the property under the each carrier of all or any of said proper ject to all the terms and conditions of to carrier classification or tartiff if this is ins of the said bill of lading, set forth in one.	kages unknown), re e contract) agrees ty over all or any p he Uniform Domes a motor carrier ship the classification or	narked, o to carry portion o tic Strai oment. r tariff w	consigned, and to its usual pla of said route to ght Bill of Lad which governs	destined as ice of deliven destination, ing set forth the transport	indicated below v y at said destinati and as to each pa (1) in Uniform Fre ation of this ship	which said on, if on i rty at any right Clas ment, and	I carrier (the word carrier ts route, otherwise to de time inter in all or sifications t on the
ROM: ;HIPPER (ORIGIN)		AGRU/A	AMERICA, RISON ROAL TOWN, SOU	INC.	TO: CONSIGNEE STREET	52 S'		ELL SEI LOCK I	DIMENT C ROAD JSA		
	19		[EMERGENCY RESPONSE PHONE NO.	DESTINATIO		014 7 10 1	304 700		2	ZIP
ELIVERING ARRIER	N	C Kanz	e	ROUTE					VEHICLE NUMBER		
NO. PACKAGES	нm	KI	ND OF PACKA	AGE, DESCRIPTION OF ARTICLES MARKS AND EXCEPTIONS	S		*WEI		CLASS OR RATE	✓ (F	CHARGES OR CARRIER USE O
139,380		HD DBL MICRO	60MIL	,			_	45,996 Ho 3	255		
		Item Key		Roll Number	lof#(7.	Qu	antity	1	165		
		Location: GTOV	-23 -23 -23 -23 -23 -23 -23 -23	Date: 09/30/11 Request		3/11	,615 ,615 ,615 ,615 ,615 ,615 ,615 ,615				
			<i>y-</i>								
EMIT C.O.D. TO); •	AGRU/AMER 500 GARRISON GEORGETOWN (843) 546-0600		JNA 29440	C.O.D. An	nt \$			C.O.D. FEE	aid ect \$	N _
ater, the law requi	res that	en two ports by a carrier by	required to state	e rate is dependent on value, shippers are specifically in writing the agreed or declared	Subject to Section delivered to the	n 7 of cor	les without re	course on tr	CHARGES	S \$	
hr : r it is "carrier's	or shippe	r's weight".	The agreed o specifically state	ierty. r declared value of the property is hareby d by the shipper to be not exceeding	The carrier shall n payment of freight	not make and all ot	delivery of this s her lawful charg	nipment witho	Freight cha PREPAID u	rges ar nless	e Cl JX if charges are
	take Com	imp; not a part of bill of lading imerca Commission.	\$	per cribed, packaged, marked and labeled, and	are in proper cond	iSignatur	e of Consigner) transportation	according to 1	marked co	lect.	4
		Page 1 of 1		Shipper, Pe	16 HAZABDOH	ZI SAMAT	FRIAL AS D	FFINED IN	Agent, Per	A L	REGULATIONS.
Vhen transporting h	azardous idard (HN	materials include the technica M-126C). Provide emergency re	l or chemical nan sponse phone nu	ne for n.o.s. (not otherwise specified) or ge imber in case of incident or accident.	neric description of r	nateriai \	мин арргоргіате	, ON OLIMA NU	THAT IS COURSE III	20011	0

Date:

BOL#:

Document#:

Customer:

Destination:

MIRACUSE,

							Y va					
	1	443559-1		N	Y		Y	ı	1	Y N		
*	2	443563-1	Y	N	Y	N	Y	N	1	/ Ñ		
1	3		2000-00000000-0-	N	Y	N	Y	N	Υ.	N		
•	4	443670-1	7111	N	. Y	Ņ	Y	N	Y	N		
	5	443673-11	Y	N	Y	N	Υ	N	Υ	N		
•	6	443676-11	Y	N	Y	N	Y.	N	Y	N		
ß	7	443677-11	Y	N	· Y	N	Y	N	Y	N		
ı	8	11-680EPP	Υ	N	. Y	N	Y	N	Y	Ň	!	
•	9	443788-11	Y	N	Y	N	Y	N	Y	N	i	T
*	10	443790-11	Y	N	Y.	N	Y.	, N	Y	N	4	
1	11	443792-11	Y	N,	Y	N	Y .	N	Y	N		
	12	443796-11	Ý	N	Y	N	Y	N	Y	N		
	13		Υ	N	Y	N	Y	N	Υ	N		1
	14		Ŷ	Ŋ	Y	N	Y	N	Y	N		-
-	15		Y	N	Y	N	Υ	N.	Υ	N	*	1
-	16		Y	N	Y	N	Y	N	Υ	,N		1
1	7	*	Ŷ	N	Y	N	Υ	N	Υ	N		1
1	8	1	Υ	N	Y	N	Y	N	·Υ	N		
1	9		Υ	N	Υ ·	N	Y	N	Y	N	. ,	
2	0		Y	N	. Y	N.	Y	N .	Y	N	1.	

External Visual Check : Clean Roll; Damage (Holes, Tears); Telescoping; Liner Defects (Volds, Bug Marks, etc.); Legible markings on roll

Strip Check: 6 foot spacing; Check for wear, cuts

Core Check : Check for cracks, defects

Weld Rod Check ("if neccessary) : Secure Load; Lot # on BOL; Check type

ments: Note comments for ANY & ALL "No" entries on form

CHECK OFF ON ALL FIELDS - INSPECTOR VERIFIES ALL COMMENTS

SHIPREL FRM

inspector ·

Digital photo taken of shipment?

yes

no

I nader . J CW

		HORT FORM - ORIGINAL - NOT				B/L NO.
AME OF CARRIE	TRUCK		CARRIER'S NO.	DATE 11	/11/2011	031647
CEIVED, subject to property describe derstood througho other carrier on the id property, that evered is a rail ipp by certifi	the classifications and lawfully d below, in apparent good order ut this contract as meaning any route to said destination. It is rey service to be performed her or a rail-water shipment, or (2) is es that he is familiar with all they the shipment or the contract of the	filed tariffs in effect on the date of issue of this Bill of Lac, except as noted (contents and condition of contents of person or corporation in possession of the property unde utually agreed as to each carrier of all or any of said pro eunder, shall be subject to all the terms and conditions to the applicable motor carrier classification or tariff if this terms and conditions of the said bill of lading, set forth himself and his assigns.	ling, packages unknown), marked, con the contract) agrees to carry to perty over all or any portion of s of the Uniform Domestic Straigh is a motor carrier shipment in the classification or tariff whi	signed, and destined its usual place of deli aid route to destinati Bill of Lading set fo th governs the transp	as indicated below very at said destinat on, and as to each p rth (1) in Uniform Fr	which said carrier (the word carrier ion, if on its route, otherwise to delivarty at any time interer all or a eight Classifications in the condition of the said terms and conditions.
ROM: HIPPER (ORIGIN)	AGR 500 G GEOR	U/AMERICA, INC. ARRISON ROAD GETOWN, SOUTH CAROLINA 29440 646-0600 EMERGENCY RESPONSE PHONE NO	TO: CONSIGNEE HC 522 STREET SY	NEYWELL S GEAR LOC RACUSE, NY N 716-564-7	SEDIMENT (K ROAD / USA	
LIVERING ARRIER	Lith	ROUTE			VEHICLE NUMBER	
NO. PACKAGES	+ HM	KIND OF PACKAGE, DESCRIPTION OF ARTICL SPECIAL MARKS AND EXCEPTIONS	ES (S	*WEIGHT UBJECT TO CORE	CLASS	CHARGES (FOR CARRIER USE ON
139,380	Item Key L-HD-MSDS-I L-HD-MSD	60-23	11,6 11,6 11,6 11,6 11,6 11,6 11,6 11,6	315 315 315 315 315 315 315 315 315 315		
ar, the law requires ther it is "carrier's or sh	petween two ports by a carrier by that the bill of lading shall state	ROAD , SOUTH CAROLINA 29440 NOTE: Where the rate is dependent on value, shippers are	C.O.D. Amt \$ Subject to Section 7 of conditions debrered to the consigner with consignor shall sign! The carrier shall not make delivery payment of freight and all other law	hout recourse on the	CHARCEC	es are Check L.

Date :

BOL#:

Document#: **對**17645 Customer:

Destination:

Syracuse NY

-	1 44	3560-1		Y N		Y N	Y			Y N		
L	2 443	5602-1	1	N		Y N	Y	٨	i	r N		
L	3 443	678-11	Y	'N	1.	N	Y	N	Y.	N		
4	443	u79-11	Y	N)	N	Y	N	Y	N		
5	443	784-11	Y	N	Y	N	Y	N	Y	N		
6	443	785-11	Y	N	Y	N	Y.	N	Y	N		
7	943	187-Ü	Y	N	Y	N "	Y	N	Y	N		
8	11	193-11	Y	N	_ Y	N	Y	N	Y	N	<u> </u>	
9	1143-	197-11	Y	N	Y	N	Y	N	Y	· N	i i	
10	44411	DI~ I I	Y	N	Y.	N	Y.	N	Y	N	<u> </u>	
11	4441		Y	N.	Y	N	. Y	N	Υ	N		
12	4437	86-11	Ý	N	Y	N	Y	N	Y	N		
13			Υ	N	Y	N	Y	N	Υ	N		
14			Ý	N	Y	N	Y	N	Y	N		,
15			Υ	N	Y	N	Y	N.	Υ	N	*	\neg
16		•	Y	N	Y	N	Y	N	Υ	N	:	
17			Ŷ	N	Y	N	Y	N	Y	N		7
18		1	Υ	N	Y	N	Y	N	·Y	N	, .	
19			Υ	N	Υ -	N	Υ	N	Y	N		
20			Y	N	. Y	N.	Y	N	Υ	N	;	

External Visual Check : Clean Roll; Damage (Holes, Tears); Telescoping; Liner Defects (Voids, Bug Marks, etc.); Legible markings on roll

Strip Check: 6 foot spacing; Check for wear, cuts

Core Check : Check for cracks, defects

weld Rod Check ("if neccessary) : Secure Load; Lot # on BOL; Check type

ments: Note comments for ANY & ALL "No" entries on form

CHECK OFF ON ALL FIELDS - INSPECTOR VERIFIES ALL COMMENTS

SHIPREL FRM REV 01

Inspector :

2611

Digital photo taken of shipment?

yes

no

I nader

TRAIGHT B	ILL OF LADING - SH	IORT FORM - ORIGINAL - NO	OT NEGOTIABLE		B/L I	NO.
AME OF CARRIE	TRUCK 5# 29	8308 #1611	CARRIER'S NO.	DATE 11/11		031634
CEIVED, subject to property describe derstood throughouther carrier on the id or arry, that ever the is is a rail of the carrier of the c	the classifications and lawfully filed below, in apparent good order, et ut this contract as meaning any per route to said destination. It is mut ery service to be performed hereu or a rail-water shipment, or (2) in the sthat he is familiar with all the te by the shipper and accepted for high the stage of the same that he is familiar with all the te by the shipper and accepted for high.	ed tariffs in effect on the date of issue of this Bill xcept as noted (contents and condition of conter rson or corporation in possession of the property ually agreed as to each carrier of all or any of sa nder, shall be subject to all the terms and condi re applicable motor carrier classification or tariff arms and conditions of the said bill of lading, set	of Lading, its of packages unknown), marked, c y under the contract) agrees to carry ild property over all or any portion or tions of the Uniform Domestic Strain if this is a motor carrier shipment. t forth in the classification or tariff w	consigned, and destined as to its usual place of deliver if said route to destination, ght Bill of Lading set forth which governs the transport	indicated below which y at said destination, it and as to each party a (1) in Uniform Freight tation of this shipment	n said carrier (the word carrier b f on its route, otherwise to deliv- it any time interestration all or ar Classifications ir on the t, and the said teads of condit
ROM: SHIPPER (ORIGIN)	AGRUA 500 GAI	AMERICA, INC. RRISON ROAD ETOWN, SOUTH CAROLINA 29440	STREET RC	DNEYWELL SED 2 GEAR LOCK F RACUSE, NY L DN 716-564-7033	ROAD JSA	SOLID
LIVERING	1.71)	ROUTE			VEHICLE NUMBER	ZII
NO.		IND OF PACKAGE, DESCRIPTION OF A		*WEIGHT	CLASS /	CHARGES
139,380	HD DRI MICRO	SPECIAL MARKS AND EXCEPTION 60MIL 23FT	IS .	(SUBJECT TO CORR.)	OR RATE	(FOR CARRIER USE ONI
139,300	Item Key L-HD-MSDS-60 Total Weight: 45 Total Units: Order No.: 1764 Location: GTOV	Roll Number -23	11, 11, 11, 11, 11, 11, 11, 11,	ntity 615 615 615 615 615 615 615 615 615 615		BEEM SCA
ater, the law requires nether it is "carrier's or Give amprint in lie proved by the intersta	AGRU/AMER 500 GARRISON GEORGETOWN (843) 546-0600 s between two ports by a carrier by s that the bill of lading shell state shipper's weight".	NOTE: Where the rate is dependent on value, ships required to state specifically in writing the agreed or cyalue of the property. The agreed or declared value of the property is specifically stated by the shipper to be not exceeding.	C.O.D. Amt S pers are declared delivered to the consignor shall. The carrier shall not make de payment of freight and all othe (Signature of	itions, if this shipment is to be e without recourse on the sign the following statemati- livery of this shipment without r lawful charges.	CHARGES \$ Freight charges PREPAID unless marked collect.	if charges are Coll
is is to certify that the	Page 1 of 1	ly classified, described, packaged, marked and labe Shippe + MARK WITH "X" TO DES	As .		Agent, Pe	Denue Cea

Date:

11-11-11

BOL#:

17645

Customer:

Destination:

Syracuse NY

		.1 1472					digital History Little						-
-	1 4435	57-11	Y	N		r N	I Y	ľ	1	Y N		i	Ī
	2 4435	58-11	Y	N	<u> </u>	N	Y	V	<u>' `</u>	Y N	 3.55 8)	i	Ī
L	3 4435	(Q1-11	Y	N	Y	N	Y	N	ו וו	r N	***************************************	. !	T
L	44350	ps-11	Y	N	Y	N	Y	N	Y	. N	AVIORE COMP		T
1			Y	N	Y	N	Y	N	Y	N			Ī
6			Y	N	Y	N	Y.	N	Y	N			Ť
7		VII. SANS SANS	Υ	N	Y	N	Y	N	Y	N			Ť
8	11	- 1	Υ	N	- Y	N	Y	N	Y	N	 		T
9	44368		Y	N	Y	N	Y	N	Y	· N		i i	t
10	110		Y	N	Y	N	Y.	N	Y	N		·	
11			Υ	N,	Y	N	. Y	N	Y	N		i	Ħ
12		1	Ý	N	Y	N	Y	N	Y	N	***************************************		
13			Y	N	Y	N	Y	N	Υ	N	 ·····		\parallel
14	II.		Ý	N	Y	N	Y	N	Y	N			.
15			Y	N	Y	N	Y	N.	Υ	N			1
16	(a)		Y	N	Y	N:	Y	N	Y	.N	 •	 	l
17			Y	N	Y	N	Y	N	Y	N	 8		l
18			Y	N	Y	N	Y	N	Y	N			
19			Y	N	Υ ·	N	Υ	N	Y	N	**************************************	/	
20			Y	N	. Y	N	Y	N	Y	N	 		

External Visual Check : Clean Roll; Damage (Holes, Tears); Telescoping; Liner Defects (Voids, Bug Marks, etc.); Legible markings on roll

Strap Check: 6 foot spacing; Check for wear, cuts

Core Check: Check for cracks, defects

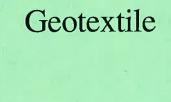
Weld Rod Check ("if neccessary) : Secure Load; Lot # on BOL; Check type

ments: Note comments for ANY & ALL "No" entries on form

CHECK OFF ON ALL FIELDS - INSPECTOR VERIFIES ALL COMMENTS

SHIPREL FRM REV 01

Inspector :


50kg

Digital photo taken of shipment?

yes

no

I nader · TCU)

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: <u>GJ4706</u>

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

Material Ty	pe: oz GT : 7	Manufac	turer: Sk	CAPS			Produ	ict Type	GE240			
	Inven		Q.A	. Conf	ormano	се	Į Q	.C. Docui	ments			
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
Accepted Roll	S	1	fue -	deierie— is					п			
4/23/2012	22388-001	15	300	DWH	1/2/2012	GT-13	Р	DB	4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-002	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-003	15	300	DWH		T			4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-004	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-005	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-006	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-007	15	300	DWH	(4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-008	15	300	DWH		-			4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-009	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-010	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-011	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-012	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-013	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-014	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-015	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-016	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-017	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-018	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-019	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-020	15	300	DWH	1/2/2012	GT-14	P	DB	4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-021	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-022	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-023	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-024	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-025	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-026	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-027	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-028	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

ProjNo: GJ4706

Material Typ	pe: oz GT : 7	Manufac	<i>turer:</i> SK	APS			Produ	ict Type.	GE240			
	Invent	ory			Q.A	I. Conf	orman	се	Q	.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/23/2012	22388-029	15	300	DWH		T			4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-030	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-031	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-032	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-033	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-034	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-035	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-036	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-037	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-038	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-039	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-040	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-041	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-042	15	300	DWH				-	4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-043	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-044	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-045	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-046	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-047	15	300	DWH	×11511				4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-048	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-049	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-050	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-051	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-052	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-053	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-054	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-055	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-056	15	300	DWH	1/2/2012	GT-15	P	DB	4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-057	15	300	DWH					4/27/2012	4/27/2012	р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase l Cell

SMS

ProjNo: GJ4706

Material Ty	pe: oz GT : 7	Manufac	turer: SK	CAPS			Produ	ct Type:	GE240			
	Inven	tory			Q.A	l. Conf	ormano	ce	Q	.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/23/2012	22388-058	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-059	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-060	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-061	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-062	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-063	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-064	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-065	15	300	DWH		100			4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-066	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-067	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-068	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-069	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-070	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-071	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-072	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-073	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-074	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-075	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-076	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-077	15	300	DWH	"				4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-078	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/24/2012	22388-079	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/24/2012	22388-080	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/24/2012	22388-081	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/24/2012	22388-082	15	300	DWH			2.17		4/27/2012	4/27/2012	P	DWH
1/24/2012	22388-083	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/24/2012	22388-084	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/24/2012	22388-085	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/24/2012	22388-086	15	300	DWH					4/27/2012		Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

ProjNo: GJ4706

Material Ty	pe: oz GT : 7	Manufac	<i>turer:</i> SK	CAPS			Produ	ict Type:	GE240			
	Inven	tory			Q.A	. Conf	orman	се	Q	C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/24/2012	22388-087	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-088	15	300	DWH		1			4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-089	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-090	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-091	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-092	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-093	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-094	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-095	15	300	DWH		1			4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-096	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-097	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-098	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-099	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-100	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-101	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-102	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-103	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-104	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-105	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-106	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-107	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-108	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-109	15	300 -	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-110	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-111	15	300	DWH	1/2/2012	GT-16	Р	DB	4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-112	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/25/2012	22388-113	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/25/2012	22388-114	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/25/2012	22388-115	15	300	DWH		- 7			4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

ProjNo: <u>GJ4706</u>

Material Typ	<i>pe</i> : oz GT : 7	Manufac	<i>turer:</i> SK	APS			Produ	ct Type.	GE240			
	Invent	tory			Q.A	1. Conf	ormano	се	Q	.C. Docu	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/25/2012	22388-116	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-117	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-118	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-119	15	300	DWH		1			4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-120	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-121	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-122	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-123	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-124	15	300	DWH		1			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-125	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-126	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-127	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-128	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-129	15	300	DWH	7.17				4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-130	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-131	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-132	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-133	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-134	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-135	15	300	DWH	-				4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-136	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-137	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-138	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-139	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-140	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-141	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-142	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-143	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-144	15	300	DWH				-	4/27/2012	4/27/2012	P	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: <u>GJ4706</u>

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

Material Ty	pe: oz GT : 7	Manufac	turer: Sk	CAPS			Produ	ict Type.	: GE240			
	Inven	tory			Q.A.	l. Conf	orman	се	(Q.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec			QAID
4/25/2012	22388-145	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-146	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-147	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-148	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-149	15	300	DWH		1			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-150	15	300	DWH						4/27/2012	Р	DWH
4/25/2012	22388-151	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-152	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-153	15	300	DWH		1			4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-154	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-155	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-156	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-157	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-158	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-159	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-160	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-161	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-162	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-163	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-164	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-165	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-166	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-167	15	300	DWH					4/27/2012	4/27/2012	р	DWH
4/25/2012	22388-168	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-169	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-170	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-171	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-172	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/25/2012	22388-173	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

ProjNo: <u>GJ4706</u>

TaskNo: <u>07</u>

Material Ty	pe: oz GT: 7	Manufac	turer: SI	KAPS			Produ	ict Type.	: GE240			
	Inven	tory		1	Q.A	1. Conf	ormano	се	Į (Q.C. Docui	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/25/2012	22388-174	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-175	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-176	15	300	DWH		<u> </u>			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-177	15	300	DWH		1			4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-178	15	300	DWH		1			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-179	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-180	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-181	15	300	DWH		1			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-182	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-183	15	300	DWH				-		4/27/2012	Р	DWH
4/25/2012	22388-184	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-185	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-186	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-187	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-188	15	300	DWH	-				4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-189	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-190	15	300	DWH					4/27/2012	4/27/2012	р	DWH
4/25/2012	22388-191	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-192	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-193	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-194	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-195	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-196	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-197	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/25/2012	22388-198	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/25/2012	22388-199	15	300	DWH					4/27/2012		P	DWH
1/25/2012	22388-200	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/26/2012	22388-201	15	300	DWH					4/27/2012		_	DWH
1/26/2012	22388-202	15	300	DWH			-		4/27/2012			DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

ProjNo: GJ4706

TaskNo: <u>07</u>

Material Ty	ppe: oz GT : 7	Manufac	turer: Sk	CAPS			Produ	ict Type.	: GE240			
	Inven	tory			Q. A	1. Conf	ormano	се	Q).C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/26/2012	22388-203	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-204	15	300	DWH				,	4/27/2012		P	DWH
4/26/2012	22388-205	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-206	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-207	15	300	DWH		1		*****	4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-208	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-209	15	300	DWH					4/27/2012		P	DWH
4/26/2012	22388-210	15	300	DWH		1			4/27/2012		р	DWH
4/26/2012	22388-211	15	300	DWH					4/27/2012		Р	DWH
4/26/2012	22388-212	15	300	DWH					4/27/2012		P	DWH
4/26/2012	22388-213	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-214	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-215	15	300	DWH					4/27/2012		Р	DWH
4/26/2012	22388-216	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-217	15	300	DWH			-		4/27/2012		P	DWH
4/26/2012	22388-218	15	300	DWH						4/27/2012	P	DWH
4/26/2012	22388-219	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-220	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-221	15	300	DWH	1/2/2012	GT-17	Р	DB	4/27/2012	4/27/2012	P	DWH
1/26/2012	22388-222	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/26/2012	22388-223	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/26/2012	22388-224	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
1/26/2012	22388-225	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/26/2012	22388-226	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/26/2012	22388-227	15	300	DWH					4/27/2012	4/27/2012	P	DWH
1/26/2012	22388-228	15	300	DWH					-	4/27/2012	P	DWH
1/26/2012	22388-229	15	300	DWH						4/27/2012	-	DWH
/26/2012	22388-230	15	300	DWH						4/27/2012		DWH
/26/2012	22388-231	15	300	DWH					4/27/2012			DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell SMS

ProjNo: GJ4706

Material Typ	<i>pe:</i> oz GT : 7	Manufac	<i>turer:</i> SK	APS			Produ	ct Type.	GE240			
	Invent	ory			Q.,	4. Conf	ormano	се	Q	.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/26/2012	22388-232	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-233	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-234	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-235	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-236	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-237	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-238	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-239	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-240	15	300	DWH		-			4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-241	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-242	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-243	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-244	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-245	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-246	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-247	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-248	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-249	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-250	15	300	DWH			14		4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-251	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-252	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-253	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-254	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-255	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-256	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-257	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-258	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-259	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-260	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS

Material Type: oz GT: 7

Manufacturer: SKAPS

Product Type: GE240

	Invent	ory			Q.A. Conformance			Q.C. Documents				
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/27/2012	22388-261	15	300	DWH			<u></u>		4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-262	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-263	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-264	15	300	DWH					4/27/2012	4/27/2012	р	DWH
4/27/2012	22388-265	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-266	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-267	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

Average Roll Width(ft.): 15

Average Roll Length(ft.): 300

Total Number of Rolls: 267

Cumulative Area(sq.ft.): 1201500

Total Number of Conformance Tests: 5

Comments:

18th January 2012

To whom it may concern

Re: Needle Detection facilities

This letter is in reference to the SKAPS Industries geotextile GE240 and GE180 proposed for shipment to Chenango Constructions for Honeywell Sediment Consolidation.. SKAPS Industries maintains strict quality control over its products using the best and latest testing equipment and techniques.

Metal detectors are placed on the production line to detect needles and other contaminates. Routine checks are performed continuously throughout the manufacturing process. If needles are detected the line is shut down and the needles are located and removed. Additionally, line inspectors are always monitoring the material for defects.

Please feel free to contact us if you have any questions.

Sincerely,

Anurag Shah

Skaps Industries

SKAPS Industries 335 Athena Drive, Athens, GA 30606

Phone: 706-354-3700, 706-354-3737

www.skaps.com

Date: 3/20/2012

RE: UV Stability test for GE Nonwoven Geotextile

Customer: Chenango Contracting

Project: Honeywell SCA

Product: 24 Oz nonwoven geotextile.

To whom It May Concern:

This letter is to certify that SKAPS Industry periodically sends samples for UV testing at third party laboratory. All SKAPS geotextiles are manufactured from same fiber formulations (manufactured on same set of fiber production lines) on same set of nonwoven production lines. SKAPS does not perform project specific UV testing since fiber formulation stays same for every manufactured nonwoven needle punched geotextile.

Regards.

ANURAG SHAH

QUALITY CONTROL MANAGER

NO EXCEPTIONS
EXCEPTIONS AS NOTED
PROCEED WITH WORK

SUBMIT CERTIFIED PRINTS

ACTION TAKEN HEREON DOES NOT SUPERSEDE REQUIREMENTS OF APPLICABLE DESIGN DRAWINGS, SPECIFICATIONS, ORDERS, CODES OR REGULATIONS, OR RELIEVE THE CONTRACTOR OR SUPPLIER FROM

RESPONSIBILITY FOR ERRORS OR OMISSIONS.

RESUBMIT

PARSONS

CLIENTAJOB NO. _

SKAPS Industries (Nonwoven Division) 335, Athena Drive Athens, GA 30601 (U.S.A.) Phone (706) 354-3700 Fax (706) 354-3737

E-mail: info@skaps.com

Sales Office:

Engineered Synthetic Product Inc.

Phone: (770)564-1857 Fax: (770)564-1818

January 26, 2012 Chenango Contracting

29 Arbutus Road Johnson City, NY 13790

Ref: Honeywell Sediment Control

PO: 2279

Dear Sir/Madam:

	EXCEPTIONS AS NOTED PROCEED WITH WORK RESUBMIT
	SUBMIT CERTIFIED PRINTS
	PARSONS 446199
CONT	DATE

NO EXCEPTIONS

ACTION TAKEN HEREON DOES NOT SUPERSEDE REQUIREMENTS OF APPLICABLE DESIGN DRAWINGS, SPECIFICATIONS, ORDERS, CODES OR REGULATIONS, OR RELIEVE THE CONTRACTOR OR SUPPLIER FROM RESPONSIBILITY FOR ERRORS OR OMISSIONS.

This is to certify that SKAPS GE240 is a high quality needle-punched nonwoven geotextile made of 100% polypropylene staple fibers, randomly networked to form a high strength dimensionally stable fabric. SKAPS GE240 resists ultraviolet deterioration, rotting, biological degradation. The fabric is inert to commonly encountered soil chemicals. Polypropylene is stable within a pH range of 2 to 13. SKAPS GE240 conforms to the property values listed below:

PROPERTY	TEST METHOD	UNITS	M.A.R.V. Minimum Average Roll Value
Weight	ASTM D 5261	oz/sy (g/m²)	24.00 (814)
Grab Tensile	ASTM D 4632	lbs (kN)	230 (1.02)
Grab Elongation	ASTM D 4632	%	50
Trapezoidal Tear	ASTM D 4533	lbs (kN)	95 (0.42)
Puncture Resistance	ASTM D 4833	lbs (kN)	250 (1.11)
UV Resistance	ASTM D 4355	%/hrs	70/500

Notes:

ANURAG SHAH

QUALITY CONTROL MANAGER

www.skaps.com

www.espgeosynthetics.com

^{*} At the time of manufacturing. Handling may change these properties.

Product: GE240-15

ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURI D4833
UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
TARGET	24.00	230	50	230	50	95	95	250
22388.001	26.30	603	66	695	76	170	181	285
22388.002	26.30	603	66	695	76	170	181	285
22388.003	26.30	603	66	695	76	170	181	285
22388.004	26.30	603	66	695	76	170	181	285
22388.005	25.59	559	61	631	74	170	181	285
22388.006	25.59	559	61	631	74	170	181	285
22388.007	25.59	559	61	631	74	170	181	285
22388.008	25.59	559	61	631	74	170	181	285
22388.009	25.59	559	61	631	74	170	. 181	285
22388.010	26.41	612	69	652	79	165	175	282
22388.011	26.41	612	69	652	79	165	175	282
22388.012	26.41	612	69	652	79	165	175	282
22388.013	26.41	612	69	652	79	165	175	282
22388.014	26.41	612	69	652	79	165	175	282
22388.015	25.93	584	64	625	71	165	175	282
22388.016	25.93	584	64	625	71	165	175	282
22388.017	25.93	584	64	625	71	165	175	282
22388.018	25.93	584	64	625	71	165	175	282
22388.019	25.93	584	64	625	71	165	175	282
22388.020	26.48	645	67	690	75	168	184	290
22388.021	26.48	645	67	690	75	168	184	290
22388.022	26.48	645	67	690	75	168	184	290
22388.023	26.48	645	67	690	75	168	184	290
22388.024	26.48	645	67	690	75	168	184	290
22388.025	25.71	570	60	613	73	168	184	290
22388.026	25.71	570	60	613	73	168	184	290
22388.027	25.71	570	60	613	73	168	184	290
22388.028	25.71	570	60	613	73	168	184	290
22388.029	25.71	570	60	613	73	168	184	290
22388.030	26.57	635	70	661	77	161	178	275
22388.031	26.57	635	70	661	77	161	178	275
22388.032	26.57	635	70	661	77	161	178	275
22388.033	26.57	635	70	661	77	161	178	275

Product: GE240-15

ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
UNITS	oz/sq yd	lbs.	%	lbs	B+002 %			
TARGET	24.00	230	50	230	50 50	lbs.	lbs	lbs.
22388,034	26.57	635				95	95	250
22388.035	25.79		70	661	77	161	178	275
22388.036	25.79	557	62	645	74	161	178	275
	25.79	557	62	645	74	161	178	275
22388.037		557	62	645	74	161	178	275
22388.038	25.79	557	62	645	74	161	178	275
22388.039	25.79	557	62	645	74	161	178	275
22388.040	26.69	627	68	671	80	175	180	283
22388.041	26.69	627	68	671	80	175	180	283
22388.042	26.69	627	68	671	80	175	180	283
22388.043	26.69	627	68	671	80	175	180	283
22388.044	26.69	627	68	671	80	175	180	283
22388.045	25.86	581	64	615	71	175	180	283
22388.046	25.86	581	64	615	71	175	180	283
22388.047	25.86	581	64	615	71	175	180	283
22388.048	25.86	581	64	615	71	175	180	283
22388.049	25.86	581	64	615	71	175	180	283
22388.050	26.55	600	66	699	76	167	177	279
22388.051	26.55	600	66	699	76	167	177	279
22388.052	26.55	600	66	699	76	167	177	279
22388.053	26.55	600	66	699	76	167	177	279
22388.054	26.55	600	66	699	76	167	177	279
22388.055	25.91	568	61	602	74	167	177	279
22388.056	25.91	568	61	602	74	167	177	279
22388.057	25.91	568	61	602	74	167	177	279
22388.058	25.91	568	61	602	74	167	177	279
22388.059	25.91	568	61	602	74	167	177	279
22388.060	27.00	617	69	688	79	171	185	287
22388.061	27.00	617	69	688	79	171	185	287
22388.062	27.00	617	69	688	79	171	185	287
22388.063	27.00	617	69	688	79	171	185	287
22388.064	27.00	617	69	688	79	171	185	287
22388.065	25.50	556	63	612	72	171	185	287
22388.066	25.50	556	63	612	72	171	185	287

Product : GE240-15

ROLL # ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE
UNITS	oz/sq yd	lbs.	%	lbs				D4833
TARGET	24.00	230	50	230	% 50	lbs.	lbs	lbs.
22388.067	25.50	556			50	95	95	250
22388.068	25.50	556	63	612	72	171	185	287
22388.069	25.50	556	63	612	72	171	185	287
22388.070	26.59	626	63 67	612	72	171	185	287
22388.071	26.59	626		644	75	160	` 179	276
22388.072	26.59	626	67	644	75	160	179	276
22388.073	26.59		67	644	75	160	179	276
22388.074		626	67	644	75	160	179	276
22388.075	26.59	626	67	644	75	160	179	276
	25.87	596	60	626	70	160	179	276
22388.076	25.87	596	60	626	70	160	179	276
22388.077	25.87	596	60	626	70	160	179	276
22388.078	25.87	596	60	626	70	160	179	276
22388.079	25.87	596	60	626	70	160	179	276
22388.080	26.25	601	70	700	80	174	183	284
22388.081	26.25	601	70	700	80	174	183	284
22388.082	26.25	601	70	700	80	174	183	284
22388.083	26.25	601	70	700	80	174	183	284
22388.084	26.25	601	70	700	80	174	183	284
22338.085	25.94	579	65	619	74	174	183	284
22338.086	25.94	579	65	619	74	174	183	284
22338.087	25.94	579	65	619	74	174	183	284
22338.088	25.94	579	65	619	74	174	183	284
22388.089	25.94	579	65	619	74	174	183	284
22388.090	26.75	613	68	673	77	164	176	281
22388.091	26.75	613	68	673	77	164	176	281
22388.092	26.75	613	68	673	77	164	176	281
22388.093	26.75	613	68	673	77	164	176	281
22388.094	26.75	613	68	673	77	164	176	281
22388.095	25.72	555	62	610	72	164	176	281
22388.096	25.72	555	62	610	72	164	176	281
22388.097	25.72	555	62	610	72	164	176	281
22388.098	25.72	555	62	610	72	164	176	281
22388.099	25.72	555	62	610	72	164	176	281

^{*}All values are MARV.

Product: GE240-15

ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
TARGET	24.00	230	50	230	50	95	95	250
22388.100	26.88	607	65	691	75	169	180	288
22388.101	26.88	607	65	691	75	169	180	288
22388.102	26.88	607	65	691	75	169	180	288
22388.103	26.88	607	65	691	75	169	180	288
22388.104	26.88	607	65	691	75	169	180	288
22388.105	25.95	566	60	627	70	169	180	288
22388.106	25.95	566	60	627	70	169	180	288
22388.107	25.95	566	60	627	70	169	180	288
22388.108	25.95	566	60	627	70	169	180	288
22388.109	25.95	566	60	627	70	169	180	288
22388.110	26.96	643	69	674	78	162	178	277
22388.111	26.96	643	69	674	78	162	178	277
22388.112	26.96	643	69	674	78	162	178	277
22388.113	26.96	643	69	674	78	162	178	277
22388.114	26.96	643	69	674	78	162	178	277
22388.115	25.88	599	64	649	73	162	178	277
22388.116	25.88	599	64	649	73	162	178	277
22388.117	25.88	599	64	649	73	162	178	277
22388.118	25.88	599	64	649	73	162	178	277
22388.119	25.88	599	64	649	73	162	178	277
22388.120	26.33	602	66	689	76	172	184	286
22388.121	26.33	602	66	689	76	172	184	286
22388.122	26.33	602	66	689	76	172	184	286
22388.123	26.33	602	66	689	76	172	184	286
22388.124	26.33	602	66	689	76	172	184	286
22388.125	25.74	578	61	609	71	172	184	286
22388.126	25.74	578	61	609	71	172	184	286
22388.127	25.74	578	61	609	71	172	184	286
22388.128	25.74	578	61	609	71	172	184	286
22388.129	25.74	578	61	609	71	172	184	286
22388.130	26.98	625	68	678	80	167	175	280
22388.131	26.98	625	68	678	80	167	175	280
22388.132	26.98	625	68	678	80	167	175	280

Product: GE240-15

ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
UNITS	oz/sq yd	lbs.	%	lbs	%			l .
TARGET	24.00	230	50	230	50	lbs.	lbs	lbs.
22388.133	26.98	625				95	95	250
22388.134	26.98	625	68 68	678	80	167	175	280
22388.135	25.96	565	65	678	80	167	175	280
22388.136	25.96	565		646	75	167	175	280
22388.137	25.96		65	646	75	167	175	280
22388.138	25.96	565 565	65	646	75	167	175	280
22388.139	25.96		65	646	75	167	175	280
22388.140		565	65	646	75	167	175	280
	26.56	605	70	698	77	175	182	289
22388.141	26.56	605	70	698	77	175	182	289
22388.142	26.56	605	70	698	77	175	182	289
22388.143	26.56	605	70	698	77	175	182	289
22388.144	26.56	605	70	698	77	175	182	289
22388.145	25.82	553	63	630	70	175	182	289
22388.146	25.82	553	63	630	70	175	182	289
22388.147	25.82	553	63	630	70	175	182	289
22388.148	25.82	553	63	630	70	175	182	289
22388.149	25.82	553	63	630	70	175	182	289
22388.150	26.31	623	68	682	79	163	180	276
22388.151	26.31	623	68	682	79	163	180	276
22388.152	26.31	623	68	682	79	163	180	276
22388.153	26.31	623	68	682	79	163	180	276
22388.154	26.31	623	68	682	79	163	180	276
22388.155	25.89	562	60	606	73	163	180	276
22388.156	25.89	562	60	606	73	163	180	276
22388.157	25.89	562	60	606	73	163	180	276
22388.158	25.89	562	60	606	73	163	180	276
22388,159	25.89	562	60	606	73	163	180	276
22388.160	26.92	633	65	693	75	168	185	287
22388.161	26.92	633	65	693	75	168	185	287
22388.162	26.92	633	65	693	75	168	185	287
22388.163	26.92	633	65	693	75	168	185	287
22388.164	26.92	633	65	693	75	168	185	287
22388.165	25.97	577	62	614	71	168	185	287

Product: GE240-15

ROLL # ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
UNITS	oz/sq yd	lbs.	%	lbs	D+002 %			
TARGET	24.00	230	50	230	50	lbs. 95	lbs	lbs.
22388.166	25.97	577					95	250
22388.167	25.97	577	62	614	71	168	185	287
22388.168	25.97		62	614	71	168	185	287
22388.169	25.97	577	62	614	71	168	185	287
22388.170		577	62	614	71	168	185	287
	26.83	606	69	679	80	160	177	279
22388.171	26.83	606	69	679	80	160	177	279
22388.172	26.83	606	69	679	80	160	177	279
22388.173	26.83	606	69	679	80	160	177	279
22388.174	26.83	606	69	679	80	160	177	279
22388.175	25.56	571	60	601	74	160	177	279
22388.176	25.56	571	60	601	74	160	177	279
22388.177	25.56	571	60	601	74	160	177	279
22388.178	25.56	571	60	601	74	160	177	279
22388.179	25.56	571	60	601	74	160	177	279
22388.180	26.99	620	65	684	76	173	181	283
22388.181	26.99	620	65	684	76	173	181	283
22388.182	26.99	620	65	684	76	173	181	283
22388.183	26.99	620	65	684	76	173	181	283
22388.184	26.99	620	65	684	76	173	181	283
22388.185	25.83	552	63	611	72	173	181	283
22388.186	25.83	552	63	611	72	173	181	283
22388.187	25.83	552	63	611	72	173	181	283
22388.188	25.83	552	63	611	72	173	181	283
22388.189	25.83	552	63	611	72	173	, 181	283
22388.190	26.26	611	68	692	79	166	179	281
22388.191	26.26	611	68	692	79	166	179	281
22388.192	26.26	611	68	692	79	166	179	281
22388.193	26.26	611	68	692	79	166	179	281
22388.194	26.26	611	68	692	79	166	179	281
22388.195	25.90	561	61	604	75	166	179	281
22388.196	25.90	561	61	604	75	166	179	281
22388.197	25.90	561	61	604	75	166	179	281
22388.198	25.90	561	61	604	75	166	179	281

Product: GE240-15

							Г	I -
ROLL#	WEIGHT	MD TENSILE	MD ELONG	XMD TENSILE	XMD ELONG	MD TRAP	XMD TRAP	PUNCTURE
ASTM METHOD	D5261	D4632	D4632	D4632	D4632	D4533	D4533	D4833
UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
TARGET	24.00	230	50	230	50	95	95	250
22388.199	25.90	561	61	604	75	166	179	
22388.200	26.93	634	66	686	77	170	183	281 290
22388.201	26.93	634	66	686	77	170	183	290
22388.202	26.93	634	66	686	77	170	183	290
22388.203	26.93	634	66	686	77	170	183	290
22388.204	26.93	634	66	686	77	170	183	290
22388.205	25.60	572	64	633	73	170	183	290
22388.206	25.60	572	64	633	73	170	183	290
22388.207	25.60	572	64	633	73	170	183	290
22388.208	25.60	572	64	633	73	170	183	290
22388.209	25.60	572	64	633	73	170	183	290
22388.210	26.37	608	70	653	75	161	176	275
22388.211	26.37	608	70	653	75	161	176	275
22388.212	26.37	608	70	653	75	161	176	275
22388.213	26.37	608	70	653	75	161	176	275
22388.214	26.37	608	70	653	75	161	176	275
22388.215	25.84	550	62	603	70	161	176	275
22388.216	25.84	550	62	603	70	161	176	275
22388.217	25.84	550	62	603	70	161	176	275
22388.218	25.84	550	62	603	70	161	176	275
22388.219	25.84	550	62	603	70	161	176	275
22388.220	26.47	650	67	665	78	174	180	284
22388.221	26.47	650	67	665	78	174	180	284
22338.222	26.47	650	67	665	78	174	180	284
22338.223	26.47	650	67	665	78	174	180	284
22338.224	26.47	650	67	665	78	174	180	284
22338.225	25.61	574	60	621	74	174	180	284
22338.226	25.61	574	60	621	74	174	180	284
22338.227	25.61	574	60	621	74	174	180	284
22388.228	25.61	574	60	621	74	174	180	284
22338.229	25.61	574	60	621	74	174	180	284
22388.230	26.66	641	65	694	76	165	178	280
22388.231	26.66	641	65	694	76	165	178	280

Product: GE240-15

								i
ROLL#	WEIGHT	MD TENSILE	MD ELONG	XMD TENSILE	XMD ELONG	MD TRAP	XMD TRAP	PUNCTURE
ASTM METHOD		D4632	D4632	D4632	D4632	D4533	D4533	D4833
UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	ibs	
TARGET	24.00	230	50	230	50	95	95	lbs.
22388.232	26.66	641	65	694				250
22388.233	26.66	641	65	694	76	165	178	280
22388.234	26.66	641	65	694	76	165	178	280
22388.235	25.92	580	63	648	76	165	178	280
22388.236	25.92	580	63	648	71	165	178	280
22388.237	25.92	580	63		71	165	178	280
22388.238	25.92	580	63	648	71	165	178	280
22388.239	25.92	580		648	71	165	178	280
22388.240	26.94		63	648	71	165	178	280
22388.241		631	69	677	80	169	184	288
22388.242	26.94	631	69	677	80	169	184	288
	26.94	631	69	677	80	169	184	288
22388.243	26.94	631	69	677	80	169	184	288
22388.244	26.94	631	69	677	80	169	184	288
22388.245	26.24	560	61	618	73	169	184	288
22388.246	26.24	560	61	618	73	169	184	288
22388.247	26.24	560	61	618	73	169	184	288
22388.248	26.24	560	61	618	73	169	184	288
22388.249	26.24	560	61	618	73	169	, 184	288
22388.250	26.53	622	66	666	75	162	175	278
22388.251	26.53	622	66	666	75	162	175	278
22388.252	26.53	622	66	666	75	162	175	278
22388.253	26.53	622	66	666	75	162	175	278
22388.254	26.53	622	66	666	75	162	175	278
22388.255	25.85	576	64	608	70	162	175	278
22388.256	25.85	576	64	608	70	162	175	278
22388.257	25.85	576	64	608	70	162	175	278
22388.258	25.85	576	64	608	70	162	175	278
22388.259	25.85	576	64	608	70	162	175	278
22388.260	26.44	649	70	685	78	172	181	283
22388.261	26.44	649	70	685	78	172	181	283
22388.262	26.44	649	70	685	78	172	181	283
22388.263	26.44	649	70	685	78	172	181	283
22388.264	26.44	649	70	685	78	172	181	283

Product: GE240-15

	/							
ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
TARGET	24.00	230	50	230	50	95	95	250
22388.265	25.51	551	60	600	72	172	181	283
22388.266	25.51	551	60	600	72	172	181	283
22388.267	25.51	551	60	600	72	172	181	283

Geonet Composite

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase | Cell

ProjNo: GJ4706

Material Ty	<i>pe:</i> gdl : 5	APS .	Product Type: Transnet 300-2-8									
	Invent	ory		1	Q.,	Q.A. Conformance				.C. Docui	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
Accepted Roll	S											
11/14/2011	45391010001	14	165	DW					11/4/2011	11/4/2011	P	DB
1/14/2011	45391010002	14	170	DW		+				-		

Accepted Rol	Is											
11/14/2011	45391010001	14	165	DW				T	11/4/2011	11/4/2011	Р	DB
11/14/2011	45391010002	14	170	DW		1		T				-
11/14/2011	45391010003	14	170	DW		1		1	1			
11/14/2011	45391010004	14	170	DW		1		1	-			
11/14/2011	45391010005	14	170	DW	1							
11/14/2011	45391010006	14	180	DW								
11/14/2011	45391010007	14	170	DW					1			
11/14/2011	45391010008	14	170	DW				†	1			
11/14/2011	45391010009	14	170	DW					ļ			-
11/14/2011	45391010010	14	170	DW					11/4/2011	11/4/2011	P	DB
11/14/2011	45391010011	14	170	DW								
11/14/2011	45391010012	14	170	DW		1						
11/14/2011	45391010013	14	170	DW					-			
11/14/2011	45391010014	14	170	DW								
11/14/2011	45391010015	14	115	DW				-	-			
11/14/2011	45391010016	14	170	DW							-	
11/14/2011	45391010017	14	170	DW								
11/14/2011	45391010018	14	170	DW	-			1	-			
11/14/2011	45391010019	14	170	DW								
11/14/2011	45391010020	14	170	DW					11/4/2011	11/4/2011	P	DB
11/14/2011	45391010021	14	170	DW	11/8/2011	GD-03	P	DB				
11/14/2011	45391010023	14	170	DW	11/8/2011	GD-04	P	DB			_	_
11/14/2011	45391010024	14	160	DW								
11/14/2011	45391010025	14	170	DW							_	
11/14/2011	45391010026	14	170	DW								
11/14/2011	45391010027	14	170	DW						-		
11/17/2011	45391010028	14	170	DW								
11/17/2011	45391010029	14	170	DW								_

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

11/4/2011 11/4/2011

DB

TaskNo: 07

Material Ty	<i>ppe:</i> gdl: 5	Manufac	<i>turer:</i> SK	LAPS	S Product Type:					300-2-8		
	Invent	ory			Q.1	1. Conf	orman	се	Q.C. Documents			
Inv Date	Batch-Roll	Width (ft.)	Length (ft,)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
1/17/2011	45391010030	14	170	DW		1			11/4/2011	11/4/2011	P	DB
1/17/2011	45391010031	14	170	DW								
1/17/2011	45391010032	14	170	DW		1						
1/17/2011	45391010033	14	170	DW								
1/17/2011	45391010034	14	170	DW								
1/17/2011	45391010035	14	170	DW								
1/17/2011	45391010036	14	170	DW								
1/17/2011	45391010037	14	170	DW	**********							
1/17/2011	45391010038	14	170	DW								
1/17/2011	45391010039	14	170	DW							-	
1/14/2011	45391010040	14	170	DW					11/4/2011	11/4/2011	P	DB
1/14/2011	45391010041	14	180	DW	-							
1/14/2011	45391010042	14	190	DW								
1/14/2011	45391010043	14	180	DW		-						

200

180

180

180

180

180

180

180

180

180

180

180

180

180

180

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

DW

DW

DW

DW DW

DW

DW

DW

DW

DW

DW

DW

DW

DW DW

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

11/14/2011

45391010044

45391010045

45391010046

45391010047

45391010048

45391010049

45391010050

45391010051

45391010052

45391010053

45391010054

45391010055

45391010056

45391010057

45391010058

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Ty	pe: gdl: 5	Manufac	turer: SK	APS			Produ	ict Type:	Transnet	300 - 2-8		
							orman	се	Q	.C. Docui	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
11/14/2011	45391010059	14	180	DW		T						
11/14/2011	45391010060	14	180	DW					11/4/2011	11/4/2011	Р	DB
11/14/2011	45391010061	14	180	DW								
11/14/2011	45391010062	14	180	DW								
11/14/2011	45391010063	14	180	DW			-					
11/14/2011	45391010064	14	180	DW								
11/14/2011	45391010065	14	180	DW								
11/14/2011	45391010066	14	180	DW								
11/16/2011	45391010067	14	180	DW								
11/16/2011	45391010068	14	180	DW								
11/16/2011	45391010069	14	180	DW								
11/16/2011	45391010070	14	180	DW					11/4/2011	11/4/2011	P	DB
11/16/2011	45391010071	14	130	DW								
11/16/2011	45391010072	14	180	DW								
11/16/2011	45391010073	14	180	DW								10-11-11-1
11/16/2011	45391010074	14	180	DW								
11/16/2011	45391010075	14	180	DW								
11/16/2011	45391010076	14	180	DW								
11/16/2011	45391010077	14	180	DW								
11/16/2011	45391010078	14	180	DW	===							
1/16/2011	45391010079	14	180	DW								
1/16/2011	45391010080	14	180	DW					11/4/2011	11/4/2011	P	DB
11/16/2011	45391010081	14	150	DW								
11/16/2011	45391010082	14	180	DW								
11/16/2011	45391010083	14	180	DW								
1/16/2011	45391010084	14	180	DW								
11/16/2011	45391010085	14	180	DW	=2(1)					-		
1/16/2011	45391010086	14	180	DW								
11/16/2011	45391010087	14	180	DW								

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

Material Type: gdl: 5	
-----------------------	--

Manufacturer: SKAPS

Product Type: Transnet 300-2-8

T						Q.A. Conformance Q.C. Documents									
	Invento	ory			Q.A				Q	.C. Docu	ments				
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID			
11/16/2011	45391010088	14	180	DW											
11/16/2011	45391010089	14	180	DW											
11/16/2011	45391010090	14	180	DW					11/4/2011	11/4/2011	Р	DB			
11/17/2011	45391010091	14	180	DW											
11/16/2011	45391010092	14	200	DW											
11/16/2011	45391010093	14	180	DW											
11/16/2011	45391010094	14	180	DW											
11/17/2011	45391010095	14	180	DW											
11/16/2011	45391010096	14	160	DW											
11/16/2011	45391010097	14	160	DW											
11/16/2011	45391010098	14	160	DW											
11/16/2011	45391010099	14	160	DW											
11/16/2011	45391010100	14	160	DW					11/4/2011	11/4/2011	P	DB			
11/16/2011	45391010101	14	160	DW											
11/16/2011	45391010102	14	160	DW											
11/16/2011	45391010103	14	160	DW											
11/16/2011	45391010104	14	160	DW											
11/16/2011	45391010105	14	160	DW											
11/16/2011	45391010106	14	160	DW											
11/16/2011	45391010107	14	160	DW											
11/16/2011	45391010108	14	160	DW											
11/16/2011	45391010109	14	160	DW											
11/16/2011	45391010110	14	160	DW					11/4/2011	11/4/2011	P	DB			
11/16/2011	45391010111	14	160	DW											
11/16/2011	45391010112	14	160	DW											
11/16/2011	45391010113	14	160	DW											
11/16/2011	45391010114	14	160	DW											
11/16/2011	45391010115	14	160	DW											
11/16/2011	45391010116	14	160	DW											

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type: gdl: 5 Manufacturer: SKAPS

Product Type: Transnet 300-2-8

	Invento	ory			Q.A.	Confe	ormano	ce	Q	.C. Docu	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
11/16/2011	45391010117	14	160	DW								
11/16/2011	45391010118	14	160	DW						211000000000000000000000000000000000000		
11/16/2011	45391010119	14	160	DW								
11/16/2011	45391010120	14	160	DW					11/4/2011	11/4/2011	Р	DB
11/16/2011	45391010121	14	160	DW								
11/16/2011	45391010122	14	160	DW								
11/17/2011	45391010123	14	160	DW								
11/17/2011	45391010124	14	160	DW								
11/17/2011	45391010125	14	160	DW								
11/17/2011	45391010126	14	160	DW								
11/16/2011	45391010127	14	70	DW								
11/16/2011	453910101271	14	65	DW								
11/17/2011	45391010128	14	105	DW								
11/17/2011	453910101281	14	115	DW								
11/17/2011	45391010129	14	160	DW								
11/17/2011	45391010130	14	160	DW	10/26/2011	GD-02	P	DB	11/4/2011	11/4/2011	P	DB
11/17/2011	45391010131	14.5	150	DW								
11/17/2011	45391010132	14.5	150	DW								
11/17/2011	45391010133	14	140	DW								
11/17/2011	45391010134	14.5	150	DW								
11/17/2011	45391010135	14.5	150	DW								

Average Roll Width(ft.): 14

Total Number of Rolls: 136

Average Roll Length(ft.): 168

Cumulative Area(sq.ft.): 319710

Total Number of Conformance Tests: 4

Rejected Rolls

11/14/2011	45391010022	14	170	DW	10/26/2011 GD-01	F	DB		

Geosyntec[>]

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type.	gdl : 5	Manufac	Manufacturer: SKAPS Prod				Produ	ict Type:	ype: Transnet 300-2-8				
Inventory					Q.A. Conformance			Q	Q.C. Documents				
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID	

Average Roll Width(ft.): 14

Average Roll Length(ft.): 170

Total Number of Rolls: 1

Cumulative Area(sq.ft.): 2380

Total Number of Conformance Tests: 4

Comments:

ENGINEERED SYNTHETIC PRODUCTS, INC.

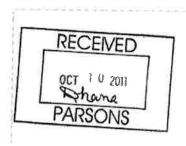
212 North Way Birmingham, AL 35242 Phone (205)981-1900

DRAINAGE PRODUCT DESCRIPTION SHEET Honeywell Sediment Consolidation, Syracuse, NY TRANSNET 300-2-8

Transnet 300-2-8 is a superior quality drainage media made by extruding two sets of HDPE strands together to form a diamond shaped net. The net is then heat laminated to an 8 ounce non-woven fabric on each side. This three dimensional structure provides excellent planar liquid flow. The Transnet 300-2-8 conforms to the physical property values listed below:

NET PROPERTY	TEST METHOD	UNITS	MINIMUM AVERAGE ROLL VALUE		
Thickness	ASTM D-5199	mils	275		
Density of Polymer	ASTM D-1505	g/cm ²	0.94		
Carbon Black	ASTM D-1603	%	2-3		
Transmissivity (composite)	ASTM D-4716	m²/sec	2 x 10 ⁻³ *		
Ply Adhesion (composite)	ASTM D-7005	lbs/in	0.5		

^{*}Transmissivity of the geocomposite measured using water at 20 Degrees C with a gradient of 0.1, under a confining pressure of 3,000 psf, between steel plates after a 15 minute seating time. Values may vary based on dimension of the transmissivity specimen and specific laboratory.


STYLE GE180

GE180 is a superior quality, nonwoven geotextile produced by needlepunching together 100% polypropylene staple fibers in a random network to form a high strength dimensionally stable fabric. The polypropylene fibers are specially formulated to resist ultraviolet light deterioration, and are inert to commonly encountered soil chemicals. The fabric will not mildew, is non-biodegradable, and is resistant to damage from insects and rodents. Polypropylene is stable within a ph range of 2 to 13. GE180 conforms to the physical property values below:

FABRIC PROPERTY	TEST METHOD	UNITS	MINIMUM AVERAGE ROLL VALUE
Weight	ASTM D-5261	oz/yd2	8
Grab Tensile	ASTM D-4632	lbs	180
Grab Tensile Elongation	ASTM D-4632	%	50
Trap Tear	ASTM D-4533	lbs	75
Puncture Strength	ASTM D-4833	lbs	130
Permittivity*	ASTM D-4491	sec ⁻¹	0.9
AOS	ASTM D-4751	US Sieve (mm)	80 (0.18)

^{*}At time of manufacturing. Handling may change these properties.

To the best of our knowledge the information contained herein is accurate. However, ESP, Inc. cannot anticipate all conditions under which ESP=s product information and our products, or the products of other manufacturers in combination with our products, may be used. We accept no responsibility for results obtained by the application of this information or the safety or suitability of our products either alone or in combination with other products. Final determination of the suitability of any information or material for the use contemplated, of its manner of use, and whether the suggested use infringes any patents is the sole responsibility of the user.

18th January 2012

To whom it may concern

Re: Needle Detection facilities

This letter is in reference to the SKAPS Industries geotextile GE240 and GE180 proposed for shipment to Chenango Constructions for Honeywell Sediment Consolidation.. SKAPS Industries maintains strict quality control over its products using the best and latest testing equipment and techniques.

Metal detectors are placed on the production line to detect needles and other contaminates. Routine checks are performed continuously throughout the manufacturing process. If needles are detected the line is shut down and the needles are located and removed. Additionally, line inspectors are always monitoring the material for defects.

Please feel free to contact us if you have any questions.

Sincerely,

Anurag Shah

Skaps Industries

SKAPS Industries 571 Industrial Parkway Commerce, GA 30529 Phone: 706-336-7000, 706-336-7007 www.skaps.com

Date: January 18, 2012

Τo

Carl Burdick Chenango Contracting, Inc. 29 Arbutus Road Johnson City, NY 13790

Sub: ASTM D7005 Vs ASTM F904

Ref: Honeywell Sediment Consolidation, NY

The ASTM F904 "Standard Test for Comparision of Bond Strength or Ply Adhesion of Similar Laminates Made from Flexible Materials".

The ASTM D7005 "Standard Test for Determining the Bond Etrength or Ply Adhesion of Geocomposites". The focus is on geotextiles bonded to geonets or other types of drainage cores. This test includes geocomposites of geotxtiles thermally bonded to geogrids or geonets. The ASTM D7005 test is specifically developed for drainage geocomposite and approved by the ASTM Geosynthetics Committee D35.

In conclusion the ASTM D7005 is specifically developed for geocomposites and is the most applicable and reliable test for geocomposites.

Nilay Patel

Quality Assurance Manager

January 20, 2012 Chenango Contraction, Inc. 29 Arbutus Road Johnson City, NY 13790

Ref.: Honeywell Sediment Consolidation, NY

Customer P.O. # 2279 Product : TN 300-2-8

We certify that the TN 300-2-8 drainage geocomposite, meets the project requirements as stated in the specifications. The properties listed in this section are:

Property	Test Method	Unit	Required Value	Qualifier
Geonet ³	الأجاج الجراب ماريون			
Mass per Unit Area	ASTM D 5261	lbs/ft²	0.197	Minimum
Thickness	ASTM D 5199	mil	275	Minimum
Carbon Black	ASTM D 4218	%	2.0 - 3.0	Range
Melt Flow	ASTM D 1238 ²	g/10 min	1.0	Maximum
Density	ASTM D 1505	g/cm³	0.94	Minimum
Composite				
Ply Adhesion	ASTM D 7005	lb/in	0.5	MARV ⁵
Transmissivity ¹	ASTM D 4716	m²/sec	2.0 x 10 ⁻³	MARV
Geotextile ^{3 & 4}		سياد حينيا والعنا	A North Profes	A AND THE
Fabric Weight	ASTM D 5261	oz/yd²	8.0	MARV
Grab Strength	ASTM D 4632	lbs	180	MARV
Tear Strength	ASTM D 4533	lbs	75	MARV
Puncture Resistance	ASTM D 4833	lbs	130	MARV
Permittivity	ASTM D 4491	sec ⁻¹	0.90	MARV
AOS	ASTM D 4751	US Sieve	70	MARV
UV Resistance	ASTM D 4355	%/hrs	70/500	MARV

Notes:

- 1 Transmissivity measured using water at 21 \pm 2 °C (70 \pm 4 °F) with a gradient of 0.1 and a confining pressure of 3,000 psf between steel plates after 15 minutes.
- 2 Condition 190/2.16
- 3 Geotextile and Geonet properties are prior to lamination.
- 4 Geotextile data is provided by the supplier.
- 5 MARV is statistically defined as mean minus two standard deviations and it is the value which is exceeded by 97.5% of all the test data.

Sincerely,

Nilay Patel

Nilay Patel QA Manager

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project:

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile	Roll Number		hesion 'in)	Geocomposit Transmissivit	
			Side A	Side B	Minimum	Áverage	(m²/sec)	/
1	45391010001	45391010001 - N	4539.030	4539.027	1.61	2.42 🗸	2.55 x 10 ⁻³	7
2	45391010002	45391010002 - N	4539.030	4539.027				
3	45391010003	45391010003 - N	4539.030	4539.027				
4	45391010004	45391010004 - N	4539.030	4539.027		,		
5	45391010005	45391010005 - N	4539.030	4539.027				
6	45391010006	45391010006 - N	4539.030	4539.027				7
7	45391010007	45391010007 - N	4539.034	4539,022				
8	45391010008	45391010008 - N	4539.034	4539.022				
9	45391010009	45391010009 - N	4539.034	4539.022		/	/	7
10	45391010010	45391010010 - N	4539.034	4539.022	1.45	2.69 🗸		
11	45391010011	45391010011 - N	4539.034	4539.022				7
12	45391010012	45391010012 - N	4539.034	4539.022				7
13	45391010013	45391010013 - N	4539.028	4539.037				7
14	45391010014	45391010014 - N	4539.028	4539.037				7
15	45391010015	45391010015 - N	4539.028	4539.037				7
16	45391010016	45391010016 - N	4539.028	4539.037				7
17	45391010017	45391010017 - N	4539.028	4539.037				
18	45391010018	45391010018 - N	4539.028	4539.037				
19	45391010019	45391010019 - N	4539.016	4539.023		,	<i>,</i>	
20	45391010020	45391010020 - N	4539.016	4539.023	1.52	2.36		7
21	45391010021	45391010021 - N	4539.016	4539.023				
22	45391010022	45391010022 - N	4539.016	4539.023	FALLED	CONFOR	MANCE DO,	NOT SHIT!
23	45391010023	45391010023 - N	4539.016	4539.023				
24	45391010024	45391010024 - N	4539.016	4539.023				
25	45391010025	45391010025 - N	4539.031	4539.043				1
26	45391010026	45391010026 - N	4539.031	4539.043				7
27	45391010027	45391010027 - N	4539.031	4539.043				7

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project:

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (lb/ft²)	Thickness (mils)	Carbon Black (%)	Transmissivity (m²/sec)
45391010001 - N	ECUX887436	0.9527 /	0.413	336 /	2.52	
45391010002 - N	ECUX887436	0.9527				
45391010003 - N	ECUX887436	0.9527		1		
45391010004 - N	ECUX887436	0.9527				
45391010005 - N	ECUX887436	0.9527				
45391010006 - N	ECUX887436	0.9527				
45391010007 - N	ECUX887436	0.9527				
45391010008 - N	ECUX887436	0.9527				
45391010009 - N	ECUX887436	0.9527	/			
45391010010 - N	ECUX887436	0.9527 /	0.421	331	2.55	
45391010011 - N	ECUX887436	0.9527				
45391010012 - N	ECUX887436	0.9527				
45391010013 - N	ECUX887436	0.9527				
45391010014 - N	ECUX887436	0.9527				
45391010015 - N	ECUX887436	0.9527				
45391010016 - N	ECUX887436	0.9527				
45391010017 - N	ECUX887436	0.9527				-
45391010018 - N	ECUX887436	0.9527				
45391010019 - N	ECUX887436	0.9527	/			
45391010020 - N	ECUX887436	0.9527 🗸	0.410	334	2.23	
45391010021 - N	ECUX887436	0.9527				
45391010022 - N	ECUX887436	0.9527	FAILED A	OWFORMANCE	SAMPIN	DO NOT SHIP
45391010023 - N	ECUX887436	0.9527			STITUTES TO	LV NOI SALI
45391010024 - N	ECUX887436	0.9527				
45391010025 - N	ECUX887436	0.9527				
45391010026 - N	ECUX887436	0.9527				
45391010027 - N	ECUX887436	0.9527				

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project:

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile	Roll Number	Ply Ad (lb/	hesion 'in)	Geocomposite Transmissivity	
			Side A	Side B	Minimum	Average	(m²/sec)	
28	45391010028	45391010028 - N	4539.031	4539.043			П — — И — — — — — — — — — — — — — — — —	
29	45391010029	45391010029 - N	4539.031	4539,043		,		
30	45391010030	45391010030 - N	4539.031	4539.043	1.49	2.33		
31	45391010031	45391010031 - N	4539.041	4539.010		2.00		
32	45391010032	45391010032 - N	4539.041	4539.010				
33	45391010033	45391010033 - N	4539.041	4539.010	3 17			
34	45391010034	45391010034 - N	4539.041	4539.010				
35	45391010035	45391010035 - N	4539.041	4539.010			2.44 x 10 ⁻³	
36	45391010036	45391010036 - N	4539.041	4539.010			2.117.20	
37	45391010037	45391010037 - N	4539.006	4539.005				
38	45391010038	45391010038 - N	4539.006	4539.005				
39	45391010039	45391010039 - N	4539.006	4539.005		,		
40	45391010040	45391010040 - N	4539.006	4539.005	1.42	2.67		
41	45391010041	45391010041 - N	4539.006	4539.005		2.07		
42	45391010042	45391010042 - N	4539.006	4539.005				
43	45391010043	45391010043 - N	4539.008	4539.019				
44	45391010044	45391010044 - N	4539.008	4539.019				
45	45391010045	45391010045 - N	4539.008	4539.019				
46	45391010046	45391010046 - N	4539.008	4539.019				
47	45391010047	45391010047 - N	4539.008	4539.019				
48	45391010048	45391010048 - N	4539.008	4539.019			·	
49	45391010049	45391010049 - N	4539.025	4539.017		/	,	
50	45391010050	45391010050 - N	4539.025	4539.017	1.55	2.65		
51	45391010051	45391010051 - N	4539.025	4539.017	1.55	2.05*		
52	45391010052	45391010052 - N	4539.025	4539.017	-+			
53		45391010053 - N	4539.025	4539.017				
54		45391010054 - N	4539.025	4539.017				

571 Industrial Parkway, Commerce, GA 30529 Ph: 706-336-7000 Fax: 706-336-7007 Email: info@skaps.com

TN 300-2-8

Project :

Honeywell Sediment Consolidation, NY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project:

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (lb/ft²)	Thickness (mils)	Carbon Black (%)	Transmissivity (m²/sec)
45391010028 - N	ECUX887436	0.9527				
45391010029 - N	ECUX887436	0.9527			,	
45391010030 - N	ECUX887436	0.9527 /	0.414	338 /	2.28 /	<u> </u>
45391010031 - N	ECUX887436	0.9527				
45391010032 - N	ECUX887436	0.9527				
45391010033 - N	ECUX887436	0.9527			-	
45391010034 - N	ECUX887436	0.9527				
45391010035 - N	ECUX887436	0.9527				-
45391010036 - N	ECUX887436	0.9527				
45391010037 - N	ECUX887436	0.9527				
45391010038 - N	ECUX887436	0.9527				
45391010039 - N	ECUX887436	0.9527	7		,	
45391010040 - N	ECUX887436	0.9527	0.420	335	2.31	
45391010041 - N	ECUX887436	0.9527				
45391010042 - N	ECUX887436	0.9527				T-W
45391010043 - N	ECUX887436	0.9527				
45391010044 - N	ECUX887436	0.9527				
45391010045 - N	ECUX887436	0.9527				
45391010046 - N	ECUX887436	0.9527				
45391010047 - N	ECUX887436	0.9527				
45391010048 - N	ECUX887436	0.9527				
45391010049 - N	ECUX887436	0.9527				
45391010050 - N	ECUX887436	0.9527	0.417	332	2.30	
45391010051 - N	ECUX887436	0.9527				
45391010052 - N	ECUX887436	0.9527				
45391010053 - N	ECUX887436	0.9527				
45391010054 - N	ECUX887436	0.9527				

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project:

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile	Roll Number	Ply Ad (lb/		Geocomposite Transmissivity
			Side A	Side B	Minimum	Average	(m²/sec)
55	45391010055	45391010055 - N	4539.018	4539.013			
56	45391010056	45391010056 - N	4539.018	4539.013			
57	45391010057	45391010057 - N	4539.018	4539.013			
58	45391010058	45391010058 - N	4539.018	4539.013			
59	45391010059	45391010059 - N	4539.018	4539.013		,	
60	45391010060	45391010060 - N	4539.018	4539.013	1.48	2.16	
61	45391010061	45391010061 - N	4539.040	4539.011			
62	45391010062	45391010062 - N	4539,040	4539.011			
63	45391010063	45391010063 - N	4539.040	4539.011			
64	45391010064	45391010064 - N	4539.040	4539.011			
65	45391010065	45391010065 - N	4539.040	4539.011			
66	45391010066	45391010066 - N	4539.040	4539.011			
67	45391010067	45391010067 - N	4539.044	4539.020			
68	45391010068	45391010068 - N	4539.044	4539.020			
69	45391010069	45391010069 - N	4539.044	4539.020		/	
70	45391010070	45391010070 - N	4539,044	4539.020	1.51	2.44	2.26 x 10 ⁻³
71	45391010071	45391010071 - N	4539.044	4539.020			
72	45391010072	45391010072 - N	4539.044	4539.020			
73	45391010073	45391010073 - N	4539.045	4539.036			**
74	45391010074	45391010074 - N	4539.045	4539.036			
75	45391010075	45391010075 - N	4539.045	4539.036			
76	45391010076	45391010076 - N	4539.045	4539.036			
77	45391010077	45391010077 - N	4539.045	4539.036			
78	45391010078	45391010078 - N	4539.045	4539.036			
79	45391010079	45391010079 - N	4539.014	4539.029	1	,	
80	45391010080	45391010080 - N	4539.014	4539.029	1.65	2.57√	
81	45391010081	45391010081 - N	4539.014	4539.029	20000000		

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project:

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (lb/ft²)	Thickness (mils)	Carbon Black (%)	Transmissivity (m²/sec)
45391010055 - N	ECUX887436	0.9527				
45391010056 - N	ECUX887436	0.9527				
45391010057 - N	ECUX887436	0.9527				
45391010058 - N	ECUX887436	0.9527				
45391010059 - N	ECUX887436	0.9527			/	
45391010060 - N	ECUX887436	0.9527	0.418	337 🗸	2.42	
45391010061 - N	ECUX887436	0.9527				
45391010062 - N	ECUX887436	0.9527				
45391010063 - N	ECUX887436	0.9527				
45391010064 - N	ECUX887436	0.9527				
45391010065 - N	ECUX887436	0.9527				
45391010066 - N	ECUX887436	0.9527				
45391010067 - N	ECUX887436	0.9527				
45391010068 - N	ECUX887436	0.9527		*		
45391010069 - N	ECUX887436	0.9527	/			
45391010070 - N	ECUX887436	0.9527 🗸	0.421	333 /	2:40	•
45391010071 - N	ECUX887436	0.9527				
45391010072 - N	ECUX887436	0.9527				
45391010073 - N	ECUX887436	0.9527				= 30
45391010074 - N	ECUX887436	0.9527				
45391010075 - N	ECUX887436	0.9527				
45391010076 - N	ECUX88/436	0.9527				
45391010077 - N	ECUX887436	0.9527				
45391010078 - N	ECUX887436	0.9527				
45391010079 - N	ECUX887436	0.9527				
45391010080 - N	ECUX887436	0.9527	0.416	330	2.46 √	
45391010081 - N	ECUX887436	0.9527				

TN 300-2-8

Project :

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project:

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile	Roll Number	Ply Ad (lb/		Geocomposite Transmissivity
			Side A	Side B	Minimum	Average	(m²/sec)
82	45391010082	45391010082 - N	4539.014	4539,029			
83	45391010083	45391010083 - N	4539.014	4539.029			
84	45391010084	45391010084 - N	4539.014	4539.029			
85	45391010085	45391010085 - N	4539.021	4539.012			
86	45391010086	45391010086 - N	4539.021	4539.012			
87	45391010087	45391010087 - N	4539.021	4539.012			
88	45391010088	45391010088 - N	4539.021	4539.012			
89	45391010089	45391010089 - N	4539.021	4539.012			,
90	45391010090	45391010090 - N	4539.021	4539.012	1.44	2.43/	
91	45391010091	45391010091 - N	4539.047	4539.033			
92	45391010092	45391010092 - N	4539.047	4539,033			
93	45391010093	45391010093 - N	4539.047	4539,033			
94	45391010094	45391010094 - N	4539,047	4539.033			
95	45391010095	45391010095 - N	4539.047	4539.033			
96	45391010096	45391010096 - N	4539.047	4539.033			
97	45391010097	45391010097 - N	4539.002	4539.035			
98	45391010098	45391010098 - N	4539.002	4539.035			
99	45391010099	45391010099 - N	4539,002	4539.035			/
100	45391010100	45391010100 - N	4539.002	4539.035	1.47	2.47/	1 9
101	45391010101	45391010101 - N	4539.002	4539.035		2.1/	
102	45391010102	45391010102 - N	4539.002	4539.035			
103	45391010103	45391010103 - N	4539.024	4539.007			
104	45391010104	45391010104 - N	4539.024	4539.007			
105	45391010105	45391010105 - N	4539.024	4539.007			2.31 x 10 ⁻³
106	45391010106	45391010106 - N	4539.024	4539.007			
107	45391010107	45391010107 - N	4539.024	4539.007			
108	45391010108	45391010108 - N	4539.024	4539.007			

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project:

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (lb/ft²)	Thickness (mils)	Carbon Black (%)	Transmissivity (m²/sec)
45391010082 - N	ECUX887436	0.9527				
45391010083 - N	ECUX887436	0.9527				
45391010084 - N	ECUX887436	0.9527				
45391010085 - N	ECUX887436	0.9527				
45391010086 - N	ECUX887436	0.9527				
45391010087 - N	ECUX887436	0.9527				
45391010088 - N	ECUX887436	0.9527		*****		
45391010089 - N	ECUX887436	0.9527	<i>y</i>			/
45391010090 - N	ECUX887436	0.9527	0.419	335	2.25 🗸	
45391010091 - N	ECUX887436	0.9527				
45391010092 - N	ECUX887436	0.9527				
45391010093 - N	ECUX887436	0.9527				
45391010094 - N	ECUX887436	0.9527				
45391010095 - N	ECUX887436	0.9527				
45391010096 - N	ECUX887436	0.9527				
45391010097 - N	ECUX887436	0.9527				
45391010098 - N	ECUX887436	0.9527				
45391010099 - N	ECUX887436	0.9527				
45391010100 - N	ECUX887436	0.9527	0.422	331	2:43	
45391010101 - N	ECUX887436	0.9527				
45391010102 - N	ECUX887436	0.9527				
45391010103 - N	ECUX887436	0.9527				-
45391010104 - N	ECUX887436	0.9527	,			
45391010105 - N	ECUX887436	0.9527		-		
45391010106 - N	ECUX887436	0.9527				
45391010107 - N	ECUX887436	0.9527			~ · · · · · · · · ·	
45391010108 - N	ECUX887436	0.9527				

TN 300-2-8

Project :

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project :

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile	Roll Number	Ply Ad (lb/		Geocomposite Transmissivity
			Side A	Side B	Minimum	Average	(m²/sec)
109	45391010109	45391010109 - N	4539.046	4539.042		,	,
110	45391010110	45391010110 - N	4539.046	4539.042	1.59	2.04/	
111	45391010111	45391010111 - N	4539.046	4539.042			
112	45391010112	45391010112 - N	4539.046	4539.042			
113	45391010113	45391010113 - N	4539.046	4539.042			
114	45391010114	45391010114 - N	4539.046	4539.042			
115	45391010115	45391010115 - N	4539.015	4539.039			
116	45391010116	45391010116 - N	4539.015	4539.039			
117	45391010117	45391010117 - N	4539.015	4539.039			
118	45391010118	45391010118 - N	4539.015	4539,039			
119	45391010119	45391010119 - N	4539.015	4539.039		/	
120	45391010120	45391010120 - N	4539.015	4539.039	1.54	2.63	<u> </u>
121	45391010121	45391010121 - N	4539.001	4539.003		2,05*	
122	45391010122	45391010122 - N	4539.001	4539.003			
123	45391010123	45391010123 - N	4539.001	4539.003			
124	45391010124	45391010124 - N	4539.001	4539.003			
125	45391010125	45391010125 - N	4539.001	4539.003		- +	
126	45391010126	45391010126 - N	4539.001	4539.003			
127	45391010127	45391010127 - N	4539.032	4539.004			. *
128	45391010128	45391010128 - N	4539.032	4539.004			
129	45391010129	45391010129 - N	4539.032	4539.004			
130	45391010130	45391010130 - N	4539.032	4539.004	1.64	1.99	
131	45391010131	45391010131 - N	4539.032	4539.004	1.01	1.55	
132	45391010132	45391010132 - N	4539.032	4539.004	-		
133		45391010133 - N	4539.009	4539.026			
134	45391010134	45391010134 - N	4539.009	4539.026			
135	45391010135	45391010135 - N	4539.009	4539.026	<u>-</u>	-	

TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project:

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (lb/ft²)	Thickness (mils)	Carbon Black (%)	Transmissivity (m²/sec)
45391010109 - N	ECUX887436	0.9527				
45391010110 - N	ECUX887436	0.9527	0.415	336 /	2.64	
45391010111 - N	ECUX887436	0.9527				
45391010112 - N	ECUX887436	0.9527				
45391010113 - N	ECUX887436	0.9527				
45391010114 - N	ECUX887436	0.9527		-		
45391010115 - N	ECUX887436	0.9527				
45391010116 - N	ECUX887436	0.9527				
45391010117 - N	ECUX887436	0.9527				
45391010118 - N	ECUX887436	0.9527				
45391010119 - N	ECUX887436	0.9527		/		
45391010120 - N	ECUX887436	0.9527	0.412	332	2.56	
45391010121 - N	ECUX887436	0.9527				
45391010122 - N	ECUX887436	0.9527				
45391010123 - N	ECUX887436	0.9527				
45391010124 - N	ECUX887436	0.9527				
45391010125 - N	ECUX887436	0.9527				
45391010126 - N	ECUX887436	0.9527				
45391010127 - N	ECUX887436	0.9527				
45391010128 - N	ECUX887436	0.9527				/
45391010129 - N	ECUX887436	0.9527				
45391010130 - N	ECUX887436	0.9527 √	0.420	334 √	2.23 7	
45391010131 - N	ECUX887436	0.9527				
45391010132 - N	ECUX887436	0.9527				
45391010133 - N	ECUX887436	0.9527				
45391010134 - N	ECUX887436	0.9527				
45391010135 - N	ECUX887436	0.9527				

TN 300-2-8

Project :

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project :

Roll	Geocomposite Roll Number	Geonet Roll Number	Geotextile	(lb/in) Trans		Geocomposite Transmissivity	
			Side A	Side B	Minimum	Average	(m²/sec)
136	45391010136	45391010136 - N	4539.009	4539.026			
137	45391010137	45391010137 - N		4539.026			
138	45391010138	45391010138 - N	4539.009				
139		45391010139 - N		4539.026			
140			15551010	4539.038			/
470	45391010140	45391010140 - N	4539.048	4539.038	1.57	2.19	2.8 × 10 ⁻³

TN 300-2-8

Project

Honeywell Sediment Consolidation, NY

We, the Geonet Manufacturer, hereby certify the following for the material sent to the above referenced project:

Geonet Roll Number	Resin Lot Number	Geonet Density (gm/cc)	Mass Per Unit Area (lb/ft²)	Thickness (mils)	Carbon Black	Transmissivity (m²/sec)
45391010136 - N	ECUX887436	0.9527				
45391010137 - N	ECUX887436	0.9527				
45391010138 - N	ECUX887436	0.9527				
45391010139 - N	ECUX887436	0.9527			/	/
45391010140 - N	ECUX887436	0.9527 🗸	0.414	337 🗸	2.50	

SKAPS	90		ASTM D 4716
Client: Project: Product:	Chenango Contraction Honeywell Sediment C TN 300-2-8	, Inc. Consolidation, NY	Job # 4539
Test Configurati	on:		
	INFLOW	12 X 12 Test :	OUTFLOW)
Test Inform	nation:		- 4.1.2.0.2
Boundary Condit	ions:	Steel Plate Geocomposite Steel Plate	Normal Load: 3000 Gradient: 0.1 Seating Time: 15 minutes Flow Direction: MD
est Results:			The state of the s
Roll No.	Pressure, psf	Gradient	Transmissivity, m²/sec
45391010001 45391010035 45391010070 45391010105 45391010140	3000	0.1	2.55 × 10 ⁻³ 2.44 × 10 ⁻³ 2.26 × 10 ⁻³ 2.31 × 10 ⁻³ 2.8 × 10 ⁻³

POLYETHYLENE RESIN CERTIFICATION

Customer Name:

International

Chenango Contraction, Inc.

Project Name:

Honeywell Sediment Consolidation, NY

Geocomposite Manufacturer: Geocomposite Production Plant:

SKAPS Industries

Commerce, GA TN 300-2-8

ECUX887436

Geocomposite Brand Name:

We, the Geonet Manufacturer, hereby certify the following for the material delivered to the above referenced project:

Resin **Resin Brand** Resin Lot Resin **Resin Supplier** Production Tested Property **Test Method** Units Name Number Supplier Value* Plant Value Marco Polo Density **ASTM D1505** 0.9470 / Chevron, TX gm / cc HDPE 0.9475 v

Melt flow Index

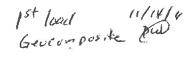
ASTM D1238(a)

gm / 10 min

0.25

0.25

(a) Condition 190/2.16 * Data from SKAPS Quality Control


TN 300-2-8

Project:

Honeywell Sediment Consolidation, NY

We, the Geocomposite Manufacturer, hereby certify the following for the material delivered to the above referenced project:

GEOCOMP ROLL#	FABRIC ROLL#	WEIGHT oz/sq yd	MD TENSILE lbs.	XMD TENSILE lbs.	MD TRAP lbs.	XMD TRAP lbs.	PUNCTURE lbs.	AOS us sieve	PERM- ITY sec ⁻¹
45391010001	4539.030	8.48 🗸	228 ✓	236 √	96 √	118	135 🗸	80 🗸	1.34
13331010001	4539.027	8.27 √	226 √	237 ∨	102 🗸	114⁄	140 🗸	80 🗸	1.34 🛩
45391010035	4539.041	8.52 🗸	227 √	239 ✓	100 🗸	110 🗸	137 🗸	80 🚩	1.34 ₺
13391010035	4539.010	8.46 √	226 √	245 ∨	96 🗸	111 🗸	136 🏑	80 W	1.34
45391010070	4539.044	8.52 √	227 🗸	239 🗸	100 🗸	110 🗸	137 V	80 V	1.34 🛩
13331010070	4539.020	8.45 √	230 √	240 ∨	102 V	114 V	140 🗸	80 🗸	1.34 🗸
45391010105	4539.024	8.45 √	230 √	240 √	102 🗸	114 V	140 🗸	80 🗸	1.34
13391010103	4539.007	8.53 √	234 ∨	241 J	104 🗸	117 🗸	132 🗸	80 🖊	1.34
45391010140	4539.048	8.27 √/	229 √	245 √	100 🗸	110 🗸	137 🗸	80 V	1.34
13331010110	4539.038	8.31 🗸	233 J	243 🗸	96 🗸	118 🗸	135 🗸	80 🚾	1.34 🗸

SKAPS Industries

571 Industrial Parkway Commerce, GA 30529

Ph: 7060-336-7000 Fax: 706-336-7007

SHIP-TO:

Project: Honeywell Sediment Consolidation, NY

Address: 522 Gearlock Road

City, State, Zip: Camillus, NY, 13031

Contact: Ron

Phone: 716-564-7033

No	Roll #	Sq. Ft.	
1	0045391010040	2,380.00	2170
2	0045391010041	2,520.00	-100
3	0045391010042	2,660.00	-190
4	0045391010043	2,520.00	180
5	0045391010044	2,800.00	ما ما
6	0045391010045	2,520.00	180
7	0045391010046	2,520.00	180
8	0045391010047	2,520.00	احكتك
9	0045391010048	2,520.00	-
10	0045391010049	2,520.00	7-1
11	0045391010050	2,520.00	≥.
12	0045391010051	2,520.00	
13	0045391010052	2,520.00	-
14	0045391010053	2,520.00 -	30
15	0045391010054	2,520.00	
16	0045391010055	2,520.00	14
17	0045391010056	2,520.00	-
18	0045391010057	2,520.00	7-/
19	0045391010058	2,520.00	
20	0045391010059	2,520.00	7 1
21	0045391010060	2,520.00	-
22	0045391010061	2,520.00	12
23	0045391010062	2,520.00	- James
24	0045391010063	2,520.00	on
25	0045391010064	2,520.00	71
26	0045391010065	2,520.00	7-1 /
27	0045391010066	2,520.00	\$ 180

Total Rolls:

Total Sq Feet; Total Weight (lbs):

27 68,320.00 86,480.00

Bags of Ties:

Driver sign below if you have

mentioned items :

Driver's Sign.

received above

Ship Date: 11/12/11 Sales Order #: C000005 Cust. P.O. #: 2279

Bill of Lading #: C00000070

Customer Name: Chenango Contracting, Inc.

Ship Via: Flatbed Delivery Terms: Plant / PPA

Container #: Seal #:

SIGN HERE FOR SHIPPER: SHIPPER ADDRESS:

items mentioned on the BOL and any discrepencies must be reported to SKAPS Industries within 7 days of receipt of goods.					
Receiver Print Name	Receiver's Signature				
Receive Date	Receiver's Company Name				

ATTN RECEIVER: Please sign below if you have received the

Driver Requirements:

- 1) For Monday delivery driver must call on Friday.
- 2) Driver must call 706-336-7000 when unloaded.
- 3) Driver must call and advise of any delay in transit.
- 4) A copy of this bill-of-lading must accompany freight invoice, failure to do this will result in delayed payments.

Delivery Timings:	7:30 am to 3:30 pm
Driver's Name:	-Tim Sprague
Driver's Sign:	Pul Ja
Driver's Cell Phone #:	200 0000 0000
Trucking Co.:	206 744 6033
Trucking Co. Phone #:	207 200
Broker:	Cheeta
Date:	11/12/11
Truck Departure Time:	940
Comments:	0. W22
Driver please call 24 hour	rs prior to delivery

David William 27 roll 04 1/14/11

CARRIER MUST COLLECT THE FREIGHT FROM THE BROKER ONLY

Received at Commerce, GA from SKAPS Industries the property described above, in apparent good order except as noted (contents and condition of packages unknown), marked, consigned, and destined as indicated above, which said Carrier (the word "Carrier" being understood throughout this Shipping Order as meaning the person or corporation in possession of the property) agrees to carry to the place of delivery at said destination. It is mutually agreed as to each Carrier of all or any of said property, over all or any portion of said route to destination and as to each party at any time interested in all or any of said property, that every service performed here under shall be subject to either. (a) if the shipper noted herein is SKAPS Industries as indicated by the designation of the "Shipper" to be SKAPS Industries, then the Shipper and Carrier, are subject to the terms and conditions contained in the Contract for truck Transportation existing between the parties or (b) if the Shipper noted herein is not SKAPS Industries then SKAPS Industries is acting solely as the agent for the denoted Shipper, and thus every aspect of the service to be perform here under between the Shipper and the Carrier shall be subject to all the terms and conditions of the Uniform Domestic Straight Bill of Lading set forth (1) in Official Southern, Western, and Illinois Freight Classifications in effect on the date hereof, if this a rail-water shipment, or (2) in the applicable motor carrier classification or tarriff if this is a motor carrier shipment. When acting in the capacity of an agent for a Shipper in placing the material in transit on behalf of a Shipper, SKAPS Industries accepts no liability for loss of cargo, damage to containers, or any other consequences occurring during transportation. Carrier having agreed that the transportation arrangement was initiated by the Shipper and not by SKAPS Industries Subject to the above terms and conditions are hereby agreed and accepted for himself and his assigns. and conditions that govern the transportation of this shipment, and the said terms and conditions are hereby agreed and accepted for himself and his assigns.

Bill of Lading #: C00000066 Ship Date: 11/11/11

Sales Order #: C000005

Ship Via: Flatbed

Delivery Terms: Plant / PPA

Cust. P.O. #: 2279

Seal #:

Container #:

Customer Name: Chenango Contracting, Inc.

SKAPS Industries

571 Industrial Parkway Commerce, GA 30529

Ph: 7060-336-7000 Fax: 706-336-7007

SHIP-TO:

Project: Honeywell Sediment Consolidation, NY

Address: 522 Gearlock Road

City, State, Zip: Camillus, NY, 13031

Contact: Ron

Phone: 716-564-7033

SIGN HERE FOR SHIPPER: Product Code: TN300-2-8 165 SHIPPER ADDRESS: 571 INDUSTRIAL PKWY. No Roll# Sq. Ft. 14 × 170 COMMERCE, GA 30529 2380 F 0045391010001 2.310.007 2 0045391010902 2,380.00 ATTN RECEIVER: Please sign below if you have received the items mentioned on the BOL and any discrepencies must be 3 0045391010003 2,380.00 reported to SKAPS Industries within 7 days of receipt of goods. 4 0045391010004 2,380.00 5 0045391010005 2,380.00 6 0045391010006 2,520.00 Receiver's Signature Receiver Print Name 3 170 0045391010007 2,380.00 8 0045391010008 2,380.00 9 0045391010009 2,380.00 Receive Date Receiver's Company Name 10 0045391010010 2,380.00 **Driver Requirements:** 11 0045391010011 2.380.00 1) For Monday delivery driver must call on Friday. 12 0045391010012 2,380.00 2) Driver must call 706-336-7000 when unloaded. 13 0045391010013 2,380.00 3) Driver must call and advise of any delay in transit. 0045391010014 14 2,380.00 4) A copy of this bill-of-lading must accompany freight invoice, 15 0045391010015 1,610,00 4 failure to do this will result in delayed payments. 16 0045391010016 2,380.00 Delivery Timings: 7:30 am to 3:30 pm 17 0045391010017 2,380.00 Driver's Name: 0045391010018 2,380.00 18 19 0045391010019 2,380.00 Driver's Sign 20 0045391010020 2,380.00 Driver's Cell Phone #: 21 0045391010021 2,380.00 22 0045391010022 2,380,00 Trucking Co.: X Trucking Co. Phone #: 23 0045391010023 2,380.00 24 0045391010024 2,240.00 Broker: Landstar 25 0045391010025 2.380.00 -120 Date: 11/11/11 26 0045391010026 2,380.00 Truck Departure Time: 27 0045391010027 2,380.00 Total Rolls: 27 Driver please call 24 hours prior to delivery Total Sq Feet: 63,420.00

Bags of Ties:

Driver sign below if you have received above

Total Weight (lbs):

mentioned items :

Driver's Sign:

Tailed cont. test (Transmission)

To Note: Roll # 0045391010022 on site

Ox 11/14/11 DWGeosyntec seperate voll from stockpilos

2ND luxel 11/14/11 Cow

CARRIER MUST COLLECT THE FREIGHT FROM THE BROKER ONLY

34,676.00

Received at Commerce, GA from SKAPS Industries the property described above, in apparent good order except as noted (contents and condition of packages unknown), marked, consigned, and destined as indicated above, which said Carrier (the word "Carrier" being understood throughout this Shipping Order as meaning the person or corporation in possession of the proporty) agrees to carry to the place of delivery at said destination. It is mutually agreed as to each Carrier of all or any of said property, over all or any portion of said route to destination and as to each party at any time interested in all or any of said property, that every service performed here under shall be subject to either: (a) if the shipper noted herein is destination and as to each party at any time interested in all of any of said property, that every service period the contract of the subject to enter. (a) the shipper and carrier are subject to the terms and conditions contained in the Contract for truck Transportation existing between the parties or (b) if the Shipper noted herein is not SKAPS Industries then SKAPS Industries is acting solely as the agent for the denoted Shipper, and thus every aspect of the service to be perform here under between the Shipper and the Carrier shall be subject to all the terms and conditions of the Uniform Domestic Straight Bill of Lading set forth (1) in Official Southern, Western, and Illinois Freight Classifications in effect on the date hereof, if this a rail-water shipment, or (2) in the applicable motor carrier classification or tariff if this is a motor carrier shipment. When acting in the capacity of an agent for a Shipper in placing the material in transit on behalf of a Shipper, SKAPS Industries accepts no liability for loss of cargo, darriage to containers, or any other consequences occurring during transportation. Carrier having agreed that the transportation arrangement was initiated by the Shipper and not by SKAPS Industries Subject to the above terms and conditions as to which party is the Shipper, Shipper hereby certifies that he is familiar with the terms and conditions that govern the transportation of this shipment, and the said terms and conditions are hereby agreed and accepted for himself and his assigns.

COMShippingDefinitive rpt

SKAPS Industries

571 Industrial Parkway Commerce, GA 30529

Ph: 7060-336-7000 Fax: 706-336-7007

160

SHIP-TO:

Project: Honeywell Sediment Consolidation, NY

Address: 522 Gearlock Road

City, State, Zip: Camillus, NY, 13031

Contact: Ron

Phone: 716-564-7033

Product Code: TN300-2-8

	Product Code: 1N300-2-6					
Į	No	Roll #	Sq. Ft.			
٠	1	0045391010096	2,240.00			
۱.	2	0045391010097	2,240.00			
I	3	0045391010098	2,240.00			
1	4	0045391010099	2,240.00			
4	5	0045391010100	2,240.00			
٠	6	0045391010101	2,240.00			
1	7	0045391010102	2,240.00			
ı	8	0045391010103	2,240.00			
4	9	0045391010104	2,240.00			
۱-	10	0045391010105	2,240.00			
-	11	0045391010106	2,240.00			
	12	0045391010107	2,240.00			
-	13	0045391010108	2,240.00			
-	14	0045391010109	2,240.00			
ŀ	15	0045391010110	2,240.00			
.	16	0045391010111	2,240.00			
~	17	0045391010112	2,240.00			
.	18	0045391010113	2,240.00			
4	19	0045391010114	2,240.00			
٠	20	0045391010115	2,240.00			
١.	21	0045391010116	2,240.00			
-	22	0045391010117	2,240.00			
	23	0045391010118	2,240.00			
-	24	0045391010119	2,240.00			
-	25	0045391010120	2,240.00			
4	26	0045391010121	2,240.00			
	27	0045391010122	2,240.00			
1						

Total Rolls: Total Sq Feet:

27 60,480.00

Total Weight (lbs):

28,898.00

Bags of Ties:

Driver sign below if you have received above mentioned items:

Driver's Sign:

Bill of Lading #: C00000079 Ship Date: 11/14/11 Sales Order #: C000005

Customer Name: Chenango Contracting, Inc.

Cust. P.O. #: 2279 Ship Via: Flatbed Delivery Terms: Plant / PPA Container #:

Seal #:

SIGN HERE FOR SHIPPER:

SHIPPER ADDRESS:

571 INDUSTRIAL PKWY. COMMERCE, GA 30529

ATTN RECEIVER: Please sign below if you have received the items mentioned on the BOL and any discrepencies must be reported to SKAPS Industries within 7 days of receipt of goods. Receiver's Signature Receiver Print Name Receive Date Receiver's Company Name

Driver Requirements:

- 1) For Monday delivery driver must call on Friday.
- 2) Driver must call 706-336-7000 when unloaded.
- 3) Driver must call and advise of any delay in transit.
- 4) A copy of this bill-of-lading must accompany freight invoice, failure to do this will result in delayed payments.

Delivery Timings:	7:30 am to 3:30 pm
Driver's Name:	NAMED THINGS
Driver's Sign:	Thatin Howard
Driver's Cell Phone #:	404-101-3202
Trucking Co.:	050
Trucking Co. Phone #:	674-118-36
Broker:	ose' "
Date:	11/14/11
Truck Departure Time:	~ JUNY 1

Comments:

Driver please call 24 hours prior to delivery

CARRIER MUST COLLECT THE FREIGHT FROM THE BROKER ONLY

Received at Commerce, GA from SKAPS Industries the property described above, in apparent good order except as noted (contents and condition of packages unknown), marked, consigned, and destined as indicated above, which said Carrier (the word "Carrier" being understood throughout this Shipping Order as meaning the person or corporation in possession of the property) agrees to carry to the place of delivery at said destination. It is mutually agreed as to each Carrier of all or any of said property, over all or any portion of said route to destination and as to each party at any time interested in all or any of said property, that every service performed here under shall be subject to either: (a) if the shipper noted herein is SKAPS Industries as indicated by the designation of the "Shipper" to be SKAPS Industries, then the Shipper and Carrier are subject to the terms and conditions contained in the Contract SKAPS industries as indicated by the designation of the "Shipper" to be SKAP's industries, then the Shipper and Carrier are subject to the terms and conditions contained in the Control of the Carrier shall be subject to the terms and conditions of the gent for the denoted Shipper, and thus every aspect of the service to be perform here under between the Shipper and the Carrier shall be subject to all the terms and conditions of the Uniform Domestic Straight Bill of Lading set forth (1) in Official Southern, Western, and Illinois Freight Classifications in effect on the date hereof, if this a rail-water shipment, or (2) in the applicable motor carrier classification or tariff if this is a motor carrier shipment. When acting in the capacity of an agent for a Shipper in placing the material in transit on behalf of a Shipper, SKAPS Industries accepts no liability for loss of cargo, damage to containers, or any other consequences occurring during transportation. Carrier having agreed that the transportation arrangement was initiated by the Shipper and not by SKAPS Industries Subject to the above terms and conditions as to which party is the Shipper, Shipper hereby certifies that he is familiar with the terms and conditions that govern the transportation of this shipment, and the said terms and conditions are hereby agreed and accepted for himself and his assigns.

COMShippingDefinitive,rpt

SKAPS Industries

571 Industrial Parkway Commerce, GA 30529

Ph: 7060-336-7000 Fax: 706-336-7007

SHIP-TO:

Project: Honeywell Sediment Consolidation, NY

Address: 522 Gearlock Road

City, State, Zip: Camillus, NY, 13031

Contact: Ron

Phone: 716-564-7033

Product Code: TN300-2-8

No	Roll #	Sq. Ft.	
1	0045391010067	2,520.00	180"
2	0045391010068	2,520.00	1 .
3	0045391010069	2,520.00	1 (
4	0045391010070	2,520.00	1 4
5	0045391010071	1,820.00	=130
6	0045391010072	2,520.00	180
7	0045391010073	2,520.00	1.
8	0045391010074	2,520.00	4
9	0045391010075	2,520.00	1
10	0045391010076	2,520.00	1
11	0045391010077	2,520.00	1
12	0045391010078	2,520.00	
13	0045391010079	2,520.00	1 180
14	0045391010080	2,520.00	130
15	0045391010081	2,100.00	-150
16	0045391010082	2,520.00	180
17	0045391010083	2,520.00	1
18	0045391010084	2,520.00	1 '
19	0045391010085	2,520.00	1
20	0045391010086	2,520.00	1
21	0045391010087	2,520.00	1
22	0045391010088	2,520.00	1
23	0045391010089	2,520.00	1,80
24	0045391010090	2,520.00	,—
25	0045391010092	2,800.00	200
26	0045391010093	2,520.00	180
27	0045391010094	2,520.00	130
28	0045391010127	980.00	70
29	00453910101271	910.00	65'
	Tatal Dallar	20	

Total Rolls:

29

Total Sq Feet:

69,090.00

Total Weight (lbs):

38.355.00

Bags of Ties:

Driver sign below if you have received above

mentioned items :

Driver's Sign:

Bill of Lading #: C00000083 Ship Date: 11/14/11 Sales Order #: C000005

Sales Order #: C000005

Customer Name: Chenango Contracting, Inc.

Cust. P.O. #: 2279 Ship Via: Flatbed Delivery Terms: Plant / PPA

> Container #: Seal #:

SIGN HERE FOR SHIPPER:

SHIPPER ADDRESS:

571 INDUSTRIAL PKWY. COMMERCE, GA 30529

items mentioned on the BOL and any discrepencies must be reported to SKAPS Industries within 7 days of receipt of goods,			
Receiver Print Name	Receiver's Signature		
Receive Date	Receiver's Company Name		

Driver Requirements:

- 1) For Monday delivery driver must call on Friday.
- 2) Driver must call 706-336-7000 when unloaded.
- 3) Driver must call and advise of any delay in transit.
- 4) A copy of this bill-of-lading must accompany freight invoice, failure to do this will result in delayed payments.

Delivery Timings: 7:30 am to 3:30 pm	
Driver's Name:	_
Driver's Sign:	
Driver's Cell Phone #:	
Trucking Co.:	_
Trucking Co. Phone #:	
Broker: Landstar	
Date: 11/14/11	
Truck Departure Time:	
Comments:	
Driver please call 24 hours prior to delivery	

11/15/11 29 volls

115 Dail William ok

CARRIER MUST COLLECT THE FREIGHT FROM THE BROKER ONLY

Received at Commerce, GA from SKAPS Industries the property described above, in apparent good order except as noted (contents and condition of packages unknown), marked, consigned, and destined as indicated above, which said Carrier (the word "Carrier" being understood throughout this Shipping Order as meaning the person or corporation in possession of the property) agrees to carry to the place of delivery at said destination. It is mutually agreed as to each Carrier of all or any of said property, over all or any portion of said route to destination and as to each party at any time interested in all or any of said property, that every service performed here under shall be subject to either: (a) if the shipper noted herein is SKAPS Industries as indicated by the designation of the "Shipper" to be SKAPS Industries, then the Shipper and Carrier are subject to the terms and conditions contained in the Contract for truck Transportation existing between the parties or (b) if the Shipper noted herein is not SKAPS Industries then SKAPS Industries is acting solely as the agent for the denoted Shipper, and thus every aspect of the service to be perform here under between the Shipper and the Carrier shall be subject to all the terms and conditions of the Uniform Domestic Straight Bill of Lading set forth (1) in Official Southern, Western, and Illinois Freight Classifications in effect on the date hereof, if this a rail-water shipment, or (2) In the applicable motor carrier classification or tariff if this is a motor carrier shipment. When acting in the capacity of an agent for a Shipper in placing the material in transit on behalf of a Shipper, SKAPS Industries accepts no liability for loss of cargo, damage to containers, or any other consequences occurring during transportation. Carrier having agreed that the transportation arrangement was and conditions that govern the transportation of this shipment, and the said terms and conditions are hereby agreed and accepted for himself and his assigns.

COMShippingDefinitive.rpt

SKAPS Industries

571 Industrial Parkway Commerce, GA 30529

Ph: 7060-336-7000 Fax: 706-336-7007

SHIP-TO:

Project: Honeywell Sediment Consolidation, NY

Address: 522 Gearlock Road

City, State, Zip: Camillus, NY, 13031

Contact: Ron

Phone: 716-564-7033

Prod	uct Code: TN300-2-8	ı	
No	Roll #	Sq. Ft.	7
1	0045391010028	2,380.00	1-170
2	0045391010029	2,380.00	-170
3	0045391010030	2,380.00	- 170
4	0045391010031	2,380.00	-120
5	0045391010032	2,380.00	-020
6	0045391010033	2,380.00	-170
7	0045391010034	2,380.00	- 120
8	0045391010035	2,380.00	-070
9	0045391010036	2,380.00	1
10	0045391010037	2,380.00	1
11	0045391010038	2,380.00	-170
12	0045391010039	2,380.00	-170
13	0045391010091	2,520.00	100
14	0045391010095	2,520.00	- i80
15	0045391010123	2,240.00	-860
16	0045391010124	2,240.00	-160
17	0045391010125	2,240.00	-160
18	0045391010126	2,240.00	- 160
19	0045391010128	1,470.00	-115
20	00453910101281	1,610.00	1-115
21	0045391010129	2,240.00	-1:60
22	0045391010130	2,240.00	
23	0045391010131	2,175.00	- 150
24	0045391010132	2,175.00	-150
25	0045391010133	1,960.00	-140
26	0045391010134	2,175.00	~150
27	0045391010135	2,175.00	-650
			•

Total Rolls: Total Sq Feet: 27

60,780.00

Total Weight (lbs):

31,840.00

Bags of Ties:

Driver sign below if you have received above

mentioned items

Driver's Sign:

Bill of Lading #: C00000088 Ship Date: 11/15/11 Sales Order #: C000005

Customer Name: Chenango Contracting, Inc.

Cust. P.O. #: 2279 Ship Via: Flatbed Delivery Terms: Plant / PPA Container #:

Seal #:

SIGN HERE FOR SHIPPER

SHIPPER ADDRESS:

571 INDUSTRIAL PKWY. COMMERCE, GA 30529

ems mentioned on the BOL ar	below if you have received the nd any discrepencies must be within 7 days of receipt of goods.
Receiver Print Name	Receiver's Signature
Receive Date	Receiver's Company Name

Driver Requirements:

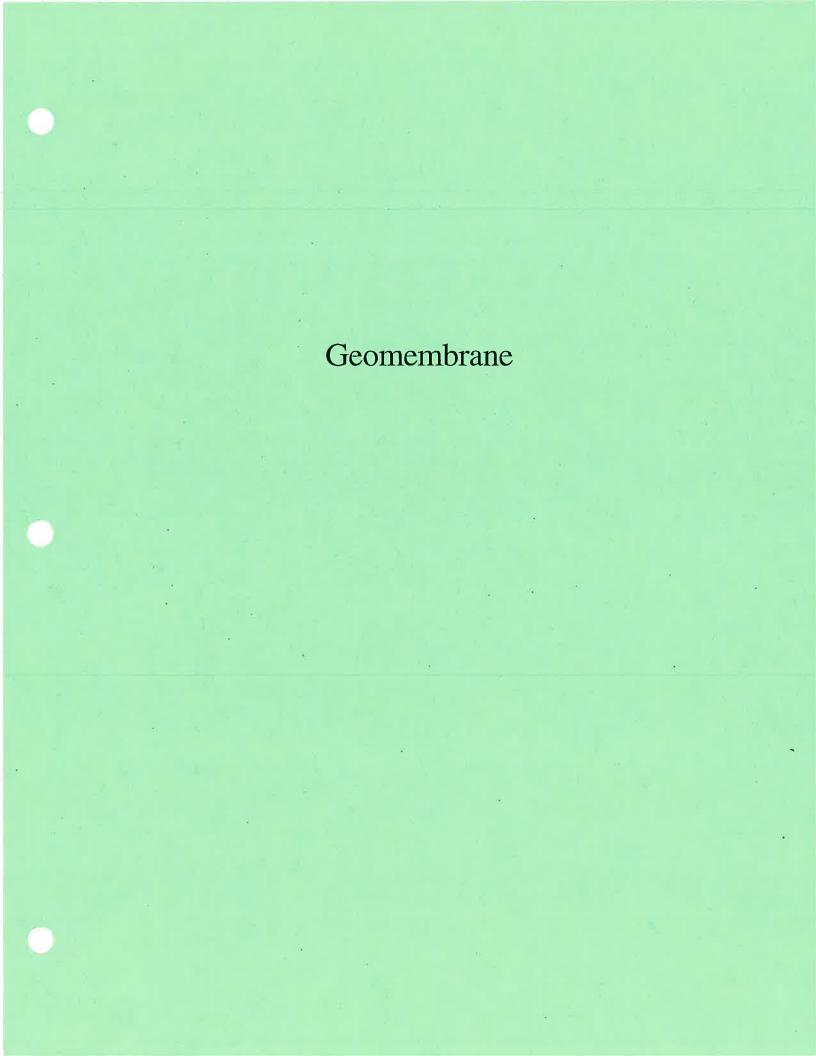
- 1) For Monday delivery driver must call on Friday.
- 2) Driver must call 706-336-7000 when unloaded.
- 3) Driver must call and advise of any delay in transit.
- 4) A copy of this bill-of-lading must accompany freight invoice, failure to do this will result in delayed payments.

Delivery Timings:	7:30 am to 3:30 pm
Driver's Name:	M. Ossidetook
Driver's Sign.	- Clerc
Driver's Cell Phone #:	7064984424
Trucking Co.:	SEMMI
Trucking Co. Phone #:	., , , , , , , , , , , , , , , , , , ,
Broker:	Load Pro
Date:	11/15/11
Truck Departure Time:	

Comments:

Driver please call 24 hours prior to delivery

CARRIER MUST COLLECT THE FREIGHT FROM THE BROKER ONLY


Received at Commerce, GA from SKAPS Industries the property described above, in apparent good order except as noted (contents and condition of packages unknown), marked, consigned, and dostined as indicated above, which said Carrier (the word "Carrier" being understood throughout this Shipping Order as meaning the person or corporation in possession of consigned, and dostined as indicated above, which said Carrier (the word "Carrier" being understood throughout this Shipping Order as meaning the person or corporation in possession of the property) agrees to carry to the place of delivery at said destination. It is mutually agreed as to each Carrier of all or any of said property, over all or any portion of said route to destination and as to each party at any time interested in all or any of said property, that every service performed here under shall be subject to either: (a) if the shipper noted herein is SKAPS Industries as indicated by the designation of the "Shipper" to be SKAPS Industries, then the Shipper and Carrier are subject to the terms and conditions contained in the Contract for truck Transportation existing between the parties or (b) if the Shipper noted herein is not SKAPS Industries it acting solely as the agent for the denoted Shipper, and thus every aspect of the service to be perform here under between the Shipper and the Carrier shall be subject to all the terms and conditions of the Uniform Domestic Straight Bill of Lading set forth (1) in Official Southern, Western, and Illinois Freight Classifications in effect on the date hereof, if this a rail-water shipment, or (2) in the applicable motor carrier classification or tariff if this is a motor carrier shipment. When acting in the capacity of an agent for a Shipper in placing the material in transit in transition arrangement was accepts no liability for loss of cargo, damage to containers, or any other consequences occurring during transportation. Carrier having agreed that the transportation arrangement was initiated by the Shipper and not by SKAPS Industries Subject to the above terms and conditions as to which party is the Shipper, Shipper hereby certifies that he is familiar with the terms and conditions that govern the transportation of this shipment, and the said terms and conditions are hereby agreed and accepted for himself and his assigns.

COMShippingDefinitive_rpl

APPENDIX D

Geosynthetic Conformance Test Results

- Geomembrane
- Geotextile
- Geonet Composite

Client:	Parson Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	cwd
Test Date:	11/07/11	Checked By:	bfs
Sample ID:	Roll #443557 (GM-9)		
Sample Description:	Black, 60 mil textured HDPE geomembrane		

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine:

Mitutoyo Digimatic Indicator, Model #: IDC-112E

Pressure:

2.0 oz

Presser Foot:

cone point

Loading Time:

5 seconds

Specimen Size: 2-Inch-diameter

Measurement Number	Thickness, mils
1	71.4
2	75.7
3	65.5
4	70.5
5	67.2
6	72.4
7	70.0
8	69.6
9	65.8
10	68.0
Average	69.6
Standard Deviation	2.98
Coefficient of Variation, %	4.28

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client: Parsons Engineering Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: 10596 Tested By: ad Test Date: 11/07/11 Checked By: bfs Sample ID: Roll #443557 (GM-9) Black, 60 mil textured HDPE geomembrane Description:

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature, F: 66.2 - 73.4

Die Type:

			YIELD		BREAK			
Direction	Specimen Number	' I INICKRESS MII		Tensile Strength, Elong		Tensile Strength,		Elongation,
			ppi	psi	%	ppi	psi	%
ĺ	1	62.9	164	2601	19	205	3259	435
	2	60.5	163	2691	18	203	3348	507
	3	65.8	165	2505	15	282	4283	491
Machina	4	64.5	165	2561	21	237	3677	476
Machine	5	67.5	171	2528	22	249	3689	488
	Average	64.2	165	2577	19	235	3651	479
	Standard Deviation	2.69	3.09	73.06	2.7	33.0	402.2	27.2
	1	60.0	182	3033	14	208	3477	600
1	2	65.8	176	2668	18	179	2723	523
	3	64.7	172	2666	15	195	3010	582
Cusas Mashins	4	66.4	176	2653	15	196	2959	577
Cross Machine	5	66.5	184	2770	13	188	2824	529
	Average	64.7	178	2758	15	193	2999	562
	Standard Deviation	2.73	4.87	161.0	1.9	10.8	290.1	34.2

Comments:

yield gauge length = 1.3 in.

break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parson Engineering		
Project Name:	Geosynthetic Testing	g	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	bfs
Test Date:	11/07/11	Checked By:	jdt
Sample ID:	Roll #443557 (GM-9	9)	
Description:	Black, 60 mil texture	ed HDPE geomembrane	

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Caralana North	Machine Direction		Cross Machine Direction		
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, II	
1	67.7	64	69.2	65	
2	63.3	60	67.4	62	
3	69.0	64	73.4	61	
4	72.8	63	68.1	57	
5	68.8	58	69.2	57	
6	70.6	59	68.8	61	
. 7	66.6	56	67.2	58	
8	68.2	64	65.1	56	
9	70.1	61	70.8	62	
10	72.5	64	69.0	58	
Average	68.9	61	68.8	60	
Standard Deviation	2.82	2.8	2.21	3.0	

Comments:

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	11/04/11	Checked By: bfs
Sample ID:	Roll #443557 (GM-9)	
Description:	Black, 60 mil textured i	IDPE geomembrane

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, Ibs
1	149
2	133
3	160
4	160
5	148
Average	150
Standard Deviation	11.2
Coefficient of Variation, %	7.44

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parson Engineering	
Project:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX Project No.:	10596	
Test Date:	11/07/11	
Tested By:	bfs	
Checked By:	jdt	

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Sample ID	Spec. #	Density, g/cm ³
Roll #443557 (GM-9)	1	0.9416
Black, 60 mil textured HDPE geomembrane	2	0.9411
	3	0.9408
	AVG.	0.9412

Sample ID	Spec. #	Density, g/cm³
Roll #443683 (GM-10)	1	0.9418
The state of the s	2	0.9420
Biack, 60 mil textured HDPE geomembrane	3	0.9419
	AVG.	0.9419

Comments:

23°C

Temperature:

Client: Parson Engineering
Project Name: Geosynthetic Testing
Project Location: Syracuse, NY
GTX #: 10596 Tested By: ad
Test Date: 11/06/11 Checked By: bfs

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID	Specimen Number	Carbon Black, %	
Roll #443557 (GM-9)	1	2.41	
Black, 60 mil textured HDPE	2	2.42	
geomembrane	Average	2.42	

Sample ID	Specimen Number	Carbon Black, %
Roll #443683 (GM-10)	1	2.56
Black, 60 mil textured HDPE	2	2.50
geomembrane	Average	2.53

	1

Comments:

Client: Parson Engineering
Project Name: Geosynthetic Testing
Project Location: Syracuse, NY
GTX #: 10596 Tested By: bfs
Test Date: 11/04/11 Checked By: jdt

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID	Specimen Number	Category Rating Random Field of View	
•		R ₁ 1	R _i 2
	1	1	1
Roll #443557 (GM-9) Black, 60 mil textured HDPE geomembrane	2	1	1
	3	1	1
	4	1	11
	5	1	1
	Average	1	1
	Lowest Quality Observed	1	1

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _i 1	R _i 2
	1	1	1
Roll #443683 (GM-10) Black, 60 mil textured HDPE geomembrane	2	1	1
	3	1	1
	4	1	1
	5	1	1
	Average	1	1
	Lowest Quality Observed	1	1

Comments:

Method of preparation: Microtome

Client:	Parson Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	cwd
Test Date:	11/07/11	Checked By:	bfs
Sample ID:	Roll #443683 (GM-10)		
Sample Description:	Black, 60 mil textured HDPE geomembrane		

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mlls	
1	66.0	
2	66.8	
3	67.5	
4	67.8	
5	74.0	
6	70.2	
7	71.7	
. 8	70.9	
9	66.6	
10	64.9	
Average	68.6	
Standard Deviation	2.76	
Coefficient of Variation, %	4.03	

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	ad	
Test Date:	11/07/11	Checked By:	bfs	
Sample ID:	Roll #443683 (GM-10)			
Description:	Black, 60 mil textured HDPI	geomembrane		

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

Grips: Die Type: ATS pneumatic

Temperature, F: 66.2 - 73.4

Direction	Specimen Number	Thickness, mil	YIELD			BREAK		
			Tensile Strength,		Elongation,	Tensile Strength,		Elongation,
			ppi	psi	%	ppi	psi	%
Machine	1	63.3	163	2581	21	240	3796	486
	2	62.1	163	2628	18	218	3504	461
	3	68.0	156	2301	17	211	3104	444
	4	65.5	169	2574	19	211	3225	435
	5	63.6	160	2522	15	210	3300	488
	Average	64.5	162	2521	18	218	3386	463
	Standard Deviation	2.31	4.45	128.8	2.2	12.8	271.3	24.0
Cross Machine	1	63.3	182	2869	14	194	3070	581
	2	61.0	181	2972	13	207	3390	598
	3	71.4	179	2500	13	189	2650	534
	4	68.0	169	2492	14	178	2611	525
	5	66.6	172	2585	18	180	2704	572
	Average	66.1	177	2684	14	190	2885	562
	Standard Deviation	4.06	5.50	222.2	2.1	11.8	336.1	31.3

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch

psi = pounds per square inch

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parson Engineerin	g		
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	bfs	
Test Date:	11/07/11	Checked By:	jdt	
Sample ID:	Roll #443683 (GM-10)			
Description:	Black, 60 mil textured HDPE geomembrane			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Constant Number	Machine	Direction	Cross Machine Direction	
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, It
1	67.4	64	72.2	56
2	68.9	59	68.8	62
3	65.9	57	65.1	66
4	65.7	57	68.1	55
5	67.1	63	71.1	58
6	71.2	64	75.1	56
7	66.6	62	64.2	63
8	71.1	64	75.3	62
9	72.6	63	71.2	54
10	68.2	54	68.5	59
Average	68.5	61	70.0	59
Standard Deviation	2.43	3.7	3.76	4.0

Comments:

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	11/04/11	Checked By: bfs	
Sample ID:	Roll #443683 (GM-10)		
Description:	Black, 60 mil textured HDPE geomembrane		

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs
1	152
2	146
3	142
4	143
5	141
Average	145
Standard Deviation	4.19
Coefficient of Variation, %	2.90

Comments:

See Interface Shear Testing Results for Sample GM-11

Client:	Parsons Engineering				
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2				
Project Location:	Syracuse, NY				
GTX #:	11644	Tested By:	ad		
Test Date:	03/27/12	Checked By:	bfs		
Sample ID:	Roll #311337-12			GM-12	
Sample Description:	Black, microspike 6	60 mil HDPE geomer	nbrane	arria	

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils	
1	69.4	
2	69.6	
3	67.9	
4	68.7	
5	66.4	
6	66.3	
7	65.9	
8	65.6	
9	61.8	
10	62.4	
Average	66.4	
Standard Deviation	2.55	
Coefficient of Variation, %	3.84	

Comments:

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sedimen	nt Consolidation Area -	Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/27/12	Checked By:	bfs
Sample ID:	Roll #311337-12		1 M 10
Description:	Black, microspike 60 mil	HDPE geomembrane	GM-12

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature, °F: 66.2 - 73.4

Die Type:

IV

			YIELD		BREAK			
Direction	Specimen Number	Thickness, mil	Tensile	Strength,	Elongation,	Tensile	Strength,	Elongation,
			ppi	psi	%	ppi	psi	%
	1	67.4	159	2358	19	176	2611	414
	2	67.7	158	2336	17	193	2845	419
	3	62.0	151	2437	21	191	3090	423
Machine	4	65.5	158	2412	18	181	2759	421
ridenine	5	66.6	165	2481	15	184	2766	415
	Average	65.8	158	2405	18	185	2814	418
	Standard Deviation	2.33	5.00	58.71	2.2	7.08	175.9	3.85
	1	66.1	172	2605	15	171	2584	505
	2	67.6	167	2477	13	172	2546	503
	3	63.9	162	2543	14	166	2593	510
Cross Machine	4	63.5	164	2580	13	162	2556	506
Cross Flaciline	5	65.0	166	2547	13	178	2731	543
	Average	65.2	166	2551	14	170	2602	513
	Standard Deviation	1.68	3.82	48.28	0.9	5.91	74.60	16.7

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

Client:	Parsons Engineering			
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	03/28/12	Checked By:	bfs	
Sample ID:	Roll #311337-12		GM-12	
Description:	Black, microspike 60	mil HDPE geomembra	ane Contract	

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Carainan Number	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib
1	67.8	61	67.4	61
2	67.3	64	66.4	58
3	66.9	64	66.8	62
4	67.2	61	66.9	62
5	66.7	61	68.6	58
6	69.7	65	69.5	62
7	68.4	60	65.9	57
8	62.8	58	63.8	56
9	64.7	59	62.3	53
10	61.8	56	64.3	56
Average	66.3	61	66.2	58
Standard Deviation	2.48	3.0	2.21	3.0

Comments:

Client:	Parsons Engineering]	
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By: ad	
Test Date:	03/30/12	Checked By: bfs	
Sample ID:	Roll #311337-12	GM-12	
Description:	Black, microspike 6	mil HDPE geomembrane	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		,

Specimen Number	Puncture Resistance, Ibs	
1	138	
2	137	
3	150	
4	141	
5	136	
Average	140	
Standard Deviation	5.91	
Coefficient of Variation, %	4.21	

Comments:

Client:	Parsons Engineering			
Project:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX Project No.:	11644			
Test Date:	03/29/12			
Tested By:	ad			
Checked By:	bfs			

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Sample ID	Spec. #	Density, g/cm ³
Roll #311337-12 GM-12	1	0.9417
Black, microspike 60 mil HDPE	2	0.9419
geomembrane	3	0.9419
	AVG.	0.9418
Sample ID	Spec. #	Density, g/cm ³
Roll #311558-12 GM-13	1	0.9427
Black, microspike 60 mil HDPE	2	0.9427
geomembrane	3	0.9427
	AVG.	0.9427
Sample ID	Spec. #	Density, g/cm³
Roll #311680-12 GM-14	1	0.9430
Black, microspike 60 mil HDPE	2	0.9432
geomembrane	3	0.9433
	AVG.	0.9432

Comments:

Temperature: 23° C

Client:	Parsons Engineeri	ing
Project Name:	Onondaga Lake S	ediment Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	03/28/12	Checked By: bfs

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID	Specimen Number	Carbon Black, %
Roll #311337-12 GM-12	1	2.28
Black, microspike 60 mil HDPE	2	2.24
geomembrane	Average	2.26

Sample ID	Specimen Number	Carbon Black, %
Roll #311558-12 <i>GM-13</i>	1	2.33
Black, microspike 60 mil HDPE	2	2.30
geomembrane	Average	2.32

Sample ID	Specimen Number	Carbon Black, %
Roll #311680-12 GM-14	1	2.32
Black, microspike 60 mil HDPE geomembrane	2	2.29
	Average	2.31

Comments:

Client:	Parsons Engineering				
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2				
Project Location:	Syracuse, NY				
GTX #:	11644	Tested By:	ad		
Test Date:	03/27/12	Checked By:	bfs		
Sample ID:	Roll #311558-12		GM-13		
Sample Description:	Black, microspike 60) mil HDPE geomer	mbrane		

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils 67.3		
1			
2	74.1		
3	70.0		
4	69.1		
5	66.0		
6	65.4		
7	60.4		
8	64.4		
9	63.0		
10	63.6		
Average	66.3		
Standard Deviation	3.75		
Coefficient of Variation, %	5.66		

Comments:

Client: Parsons Engineering Project Name: Onondaga Lake Sediment Consolidation Area - Phase 2 Project Location: Syracuse, NY GTX #: 11644 Tested By: Test Date: 03/27/12 Checked By: bfs Sample ID: Roll #311558-12 Black, microspike 60 mil HDPE geomembrane Description:

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

in.

Grips:

ATS pneumatic

Temperature, °F: 66.2 - 73.4

Die Type:

IV

			YIELD			BREAK		
Direction	Specimen Thickness, mil	Tensile Strength,		Elongation,	Tensile :	Strength,	Elongation,	
			ppi	psi	%	ррі	psi	%
	1	70.7	168	2374	18	207	2922	461
	2	71.9	170	2364	18	206	2868	465
	3	69.4	168	2417	15	185	2670	466
Machine	4	65.7	152	2316	19	204	3107	436
Machine	5	63.8	146	2291	17	196	3072	430
	Average	68.3	161	2352	17	200	2928	452
	Standard Deviation	3.45	10.9	49.60	1.5	9.09	175.4	17.2
	1	59.9	164	2738	14	169	2817	529
	2	68.5	177	2590	13	183	2669	526
	3	65.0	179	2757	17	177	2722	494
Cross Machine	4	69.3	179	2578	13	214	3083	608
Cross Machine	5	64.4	167	2594	17	190	2956	593
	Average	65.4	173	2651	15	186	2849	550
	Standard Deviation	3.74	7.16	88.25	2.0	17.2	170.4	48.4

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sedi	ment Consolidation Ar	ea - Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/28/12	Checked By:	bfs
Sample ID:	Roll #311558-12		1M 12
Description:	Black, microspike 60	mil HDPE geomembra	ane (2/11-13)

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Machine Direction		
Specifier Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, It	
1	64.2	60	62.8	59	
2	66.3	58	62.5	58	
_ 3	64.0	61	66.6	60	
4	65.0	60	65.9	59	
5	65.9	58	65.1	56	
6	66.0	61	64.2	60	
7	70.1	64	70.0	62	
8	70.0	64	71.2	65	
9	69.9	60	67.5	62	
10	69.5	67	66.1	58	
Average	67.1	61	66.2	60	
Standard Deviation	2.51	2.7	2.84	2.5	

Comments:

Client:	Parsons Engineerin	g		
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By: ad		
Test Date:	03/30/12	Checked By: bfs		
Sample ID:	Roll #311558-12	Cm 12		
Description:	Black, microspike 6	0 mil HDPE geomembrane 6M-13		

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs
1	152
2	146
3	143
4	147
5	136
Average	145
Standard Deviation	5.99
Coefficient of Variation, %	4.13

Comments:

r -				
Client:	Parsons Engineering			
Project Name:	Onondaga Lake Sed	iment Consolidatio	n Area	- Phase 2
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	03/27/12	Checked By:	bfs	
Sample ID:	Roll #311680-12			GM-14
Sample Description:	Black, microspike 60) mil HDPE geomer	mbrane	Girir

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz
Presser Foot: cone point Loading Time: 5 seconds
Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils
1	69.3
2	67.6
3	66.5
4	64.9
5	69.6
6	71.0
7	69.1
8	69.0
9	66.6
10	64.2
Average	67.8
Standard Deviation	2.09
Coefficient of Variation, %	3,08

Comments:

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sedimer	nt Consolidation Area -	Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/27/12	Checked By:	bfs
Sample ID:	Roll #311680-12		1.00 111
Description:	Black, microspike 60 mil	HDPE geomembrane	GM-14

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

in...

Grips:

ATS pneumatic

Temperature, °F: 66.2 - 73.4

Die Type:

IV

			YIELD			BREAK		
Direction Specimen	Specimen Number	Thickness, mil	Tensile	Strength,	Elongation,	Tensile	Strength,	Elongation,
			ppi	psi	%	ppi	psi	%
	1	67.7	171	2527	19	196	2889	426
	2	68.0	171	2515	17	206	3027	421
	3	72.4	181	2497	18	200	2757	420
Machine	4	68.0	164	2419	21	191	2804	408
Tractime	5	69.5	167	2398	18	194	2797	407
	Average	69.1	171	2471	19	197	2855	416
	Standard Deviation	1.97	6.25	58.48	1.5	5.73	107.7	8.44
	1	71.4	170	2385	13	184	2583	549
	2	71.6	182	2546	13	176	2463	481
1	3	70.3	183	2603	17	186	2645	508
Cross Machine	4	68.9	175	2541	17	170	2476	494
Cross Machine	5	69.9	180	2579	15	173	2479	486
	Average	70.4	178	2531	15	178	2529	504
	Standard Deviation	1.13	5.40	85.28	2.0	6.82	80.82	27.4

Comments:

yield gauge length = 1.3 in, break gauge length = 2.0 in, ppi = pounds per inch psi = pounds per square inch

Client:	Parsons Engineerin	ıg	
Project Name:	Onondaga Lake Se	diment Consolidation Area -	Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/28/12	Checked By:	bfs
Sample ID:	Roll #311680-12		Am ul
Description:	Black, microspike (50 mil HDPE geomembrane	G111-17

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Guarina a Number	Machine	Direction	Cross Machine Direction		
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib	
1	68.9	67	66.5	65	
2	69.5	64	67.7	63	
3	66.8	65	63.3	65	
4	71.8	65.	65.1	60	
5	70.5	67	69.5	66	
6	70.3	67	68.0	68	
7	69.5	69	68.5	68	
8	67.0	63	64.8	63	
9	64.3	63	68.2	62	
10	68.6	62	72.0	65	
Average	68.7	65	67.3	65	
Standard Deviation	2.18	2.2	2.53	2.6	

Comments:

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sed	iment Consolidation Area -	Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By: a	d
Test Date:	03/30/12	Checked By: b	fs
Sample ID:	Roll #311680-12		GM-14
Description:	Black, microspike 60) mil HDPE geomembrane	רו-ויעם

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		•

Specimen Number	Puncture Resistance, Ibs
1	151
2	154
3	158
4	151
5	148
Average	153
Standard Deviation	4.01
Coefficient of Variation, %	2.63

Comments:

Client:	Parsons Engineerin	g
Project Name:	Onondaga Lake Se	diment Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: bfs
Test Date:	03/28/12	Checked By: jdt

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID	Specimen Number		ory Rating Field of View
		R _f 1	R ₁ 2
Roll #311337-12 GM-12	1	1	- 1
Roll #311337-12	2	1	1
Black, microspike 60 mil HDPE geomembrane	3	1	1
	4	1	1
	5	1	11
	Average	1	1
	Lowest Quality Observed	1	1

Sample ID	Specimen Number	Categor Random Fi	
		R _f 1	R _f 2
1.00	1	1	1
Roll #311558-12 GM+13	2	1	1
Black, microspike 60 mil HDPE geomembrane	3	1	1
	4	1	1
	5	1	1
	Average	1	1
	Lowest Quality Observed	1	1

Sample ID		Categor	y Rating
	Specimen Number	Random Field of View	
		R _f 1	R _f 2
1 m-14	1	11	1
Roll #311680-126M-14	2	1	1
Black, microspike 60 mil HDPE geomembrane	3	1	1
	4	1	1
	5	1	1
	Average	1	1
	Lowest Quality Observed	1	1

Comments:

Method of preparation: Microtome

Client:	Parsons Engineering	1		
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	04/16/12	Checked By:	bfs	
Sample ID:	Roll #312105-12			
Sample Description:	Black, microspike 60 mil HDPE geomembrane			

GM-15

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz
Presser Foot: cone point Loading Time: 5 seconds
Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils	
1	65.6	
2	66.4	
3	68.5	
4	66.8	
5	67.4	
6	69.2	
7	68.1	
8	68.3	
9	67.3	
10	64.7	
Average	67.2	
Standard Deviation	1.33	
Coefficient of Variation, %	1.97	

Comments:

Client: Parsons Engineering Project Name: Onondaga Lake Sediment Consolldation Area - Phase 2 Project Location: Syracuse, NY GTX #: Tested By: 11644 ad Test Date: Checked By: bfs 04/17/12 Sample ID: Roll #312105-12 Description: Black, microspike 60 mil HDPE geomembrane

GM-I

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./mln.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature,°F: 66.2 - 73.4

Die Type:

				YIELD		BREAK		
Direction Specimen	Thickness, mil	Tensile	Strength,	Elongation,	Tensile	Strength,	Elongation,	
	(Validae)		ppl	psi	%	ppi	psl	%
	1	64.8	151	2326	17	194	3001	443
	2	65.2	156	2398	18	193	2953	420
	3	69.0	163	2368	17	191	2773	468
	4	68.8	164	2392	18	198	2881	489
Machine	5	65.4	153	2346	17	188	2872	425
Average	Average	66.6	158	2366	17	193	2896	449
	Standard Deviation	2.07	6.08	30.42	0.5	3.85	86.6	29.21
	1	67.5	172	2545	14	186	2756	548
	2	66.3	166	2505	13	186	2806	555
	3	66.5	177	2658	15	182	2732	522
	4	60.9	174	2863	13	191	3137	564
Cross Machine	5	66.7	177	2662	13	187	2812	544
	Average	65.6	173	2646	14	186	2849	547
	Standard Deviation	2.67	4.59	139,16	0.9	3.30	164.68	15.7

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sed	iment Consolidation Ar	rea - Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	04/17/12	Checked By:	bfs
Sample ID:	Roll #312105-12		
Description:	Black, microspike 60	mil HDPE geomembra	ane

6M-15

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine Direction		Cross Machine Direction	
Specifien Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, It
1	63.7	64	65.7	63
2	62.7	62	65.0	59
3	64.9	62	66.4	59
4	67.6	60	65.9	59
5	63.8	60	68.9	58
6	66.1	64	69.5	66
7	66.6	64	67.2	61
8	69.7	66	66.5	58
9	64.1	58	65.2	60
10	65.7	58	61.3	57
Average	65.5	62	66.2	60
Standard Deviation	2.11	2.8	2.26	2.5

Comments:

Cllent:	Parsons Engineering		
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #;	11644	Tested By: ad	
Test Date:	04/16/12	Checked By: bfs	
Sample ID:	Roll #312105-12		
Description:	Black, microspike 60 mil HDPE geomembrane		

6M-15

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 In/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs	
1	137	
2	149	
3	149	
4	148	
5	145	
Average	146	
Standard Deviation	5.03	
Coefficient of Variation, %	3.46	

Comments:

Client:	Parsons Engineerin	ng
Project Name:	Onondaga Lake Se	diment Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: bfs
Test Date:	04/18/12	Checked By: gtt

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _f 1	R _f 2
	1	1	1
Roll #312105-12	2	1	1
Black, microspike 60 mil HDPE - geomembrane	3	1	1
	4	1	1
	5	1	1
	Average	1	1
	Lowest Quality Observed	1	1

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _f 1	R _f 2
	1	1	1
Roll #312227-12	2.	1	1
Black, microspike 60 mil HDPE geomembrane	3	1	1
	4	1	1
	5	1	1
	Average	1	1
	Lowest Quality Observed	1	1

Comments:

Method of preparation: Microtome

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

15

Client:	Parsons Engineer	ing
Project Name:	Onondaga Lake S	ediment Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	04/18/12	Checked By: bfs

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID	Specimen Number	Carbon Black, %
Roll #312105-12	1	2.25
Black, microspike 60 mll HDPE	2	2.26
geomembrane	Average	2.25

15

Sample ID	Specimen Number	Carbon Black, %	
Roll #312227-12	1	2.29	
Black, microspike 60 mil HDPE	2	2.28	
geomembrane	Average	2.28	

16

Comments:

Client:	Parsons Engineering
Project:	Onondaga Lake Sediment Consolidation Area - Phase 2
Project Location:	Syracuse, NY
GTX Project No.:	11644
Test Date:	04/18/12
Tested By:	bfs
Checked By:	gtt

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Sample ID	Spec. #	Density, g/cm³	
Roll #312105-12	1	0.9417	
Black, microspike 60 mil HDPE	2	0.9417	'
geomembrane	3	0.9418	
	AVG.	0.9418	
Sample ID	Spec. #	Density, g/cm ³	
Roll #312227-12	1	0.9420	
Black, microspike 60 mil HDPE	2	0.9421	
geomembrane	3	0.9419	
	AVG.	0.9420	

Comments:

Temperature: 23° C

Cllent:	Parsons Enginee	ring	
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	04/16/12	Checked By:	bfs
Sample ID:	Roll #312227-12	<u> </u>	
Sample Description:	Black, microspike 60 mil HDPE geomembrane		

61-16

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine:

Mitutoyo Digimatic Indicator, Model #: IDC-112E

Pressure:

2.0 oz

Presser Foot:

cone point

Loading Time:

5 seconds

Specimen Size:

2-inch-dlameter

Measurement Number	Thickness, mils
1	65.3
2	67.0
3	67.6
4	66.0
5	67.5
6	66.6
7	65.0
8	65.8
9	67.2
10	66.1
Average	66.4
Standard Deviation	0.85
Coefficient of Variation, %	1.28

Comments:

Client:	Parsons Engineering			
Project Name:	Onondaga Lake Sedimer	t Consolidation Area -	Phase 2	1
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	04/17/12	Checked By:	bfs	
Sample ID:	Roll #312227-12			
Description:	Black, microspike 60 mil	HDPE geomembrane		

5M-16

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

Grips: Die Type: ATS pneumatic

Temperature, F: 66.2 - 73.4

				YIELD			BREAK	
Direction	Specimen Number	Thickness, mil	Tensile :	Strength,	Elongation,	Tensile	Strength,	Elongation
	Hamber		ppi	psi	%	ppi	psi	%
	1	65.2	156	2396	18	193	2963	423
	2	63.5	155	2441	18	185	2913	424
	3	65.9	152	2308	17	190	2887	440
Ma abi	4	66.8	152	2277	17	185	2767	420
Machine	5	68.8	159	2317	18	204	2967	462
	Average	66.0	155	2348	18	191	2899	434
	Standard Deviation	1.96	3.11	68.12	0.5	7.94	81.1	17.58
	1	67.2	169	2517	17	169	2515	516
	2	60.5	169	2787	13	174	2869	522
	3	68.0	167	2453	13	168	2469	533
Cross Machine	4	67.0	166	2474	13	170	2537	528
	5	69.8	169	2427	13	175	2508	547
	Average	66.5	168	2532	14	171	2580	529

Comments:

yield gauge length = 1.3 in, break gauge length = 2.0 in, ppi = pounds per inch psi = pounds per square inch

Standard

Deviation

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

1.59

146,62

1.8

3,06

163.77

11.8

Client:	Parsons Engineer	ing	
Project Name:	Onondaga Lake S	Sediment Consolidation Ar	ea - Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	04/17/12	Checked By:	bfs
Sample ID:	Roll #312227-12		
Description:	Black, microspike	e 60 mil HDPE geomembra	ine

GN-16

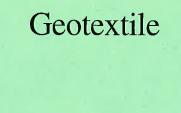
Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Machine Direction	
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mll	Tear Resistance, It
1	65.7	63	65.3	62
2	68.7	63	66.1	60
3	66.0	60	67.0	58
4	65.0	61	64.0	56
5	66.1	60	67.9	58
6	67.6	62	69.8	64
7	66.9	58	66.8	61
8	65.7	60	67.7	62
9	67.5	58	69.5	60
10	66.4	57	69.3	60
Average	66.5	60	67.3	60
Standard Deviation	1.13	2.1	1.89	2.3

Comments:

Cilent:	Parsons Engineering		
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By: ad	
Test Date:	04/16/12	Checked By: bfs	
Sample ID:	Roll #312227-12		
Description:	Black, microspike 60 mil HDPE geomembrane		


6H-16

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/mln
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs
1	141
2	148
3	149
4	142
5	144
Average	145
Standard Deviation	3,49
Coefficient of Variation, %	2.41

Comments:

See Interface Shear Testing Results for Sample GT-012

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Tested By: bfs GTX #: 10596 Test Date: Checked By: jdt 02/01/12 Roll #22388.1 (GT-007) GT GT-013 Sample ID: Sample Description: Black, nonwoven geotextile

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min

Grip Separation: 1 in Grips: Curtis "Geo" Grip

Condition: dry

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	164	246	
2	170	254	
3	207	224	
4	210	200	
5	222	220	
6	206	236	
7	198	277	
8	191	264	
9	182	222	
10	294	283	
Average	205	243	
Standard Deviation	36.4	26.9	
Coefficient of Variation, %	17.8	11.1	

Comments:

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596 Tested By: bfs		
Test Date:	02/01/12 Checked By: jdt		
Sample ID:	Roll #22388.1 (GI-007) GT GT-013		
Description:	Black, nonwoven geotextile		

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:

Instron 1000

Testing Speed:

12 in/min

Grip Separation:

3 in

Grips: Padding: Curtis "Geo" Grip

Maximum Obtainable Load:

2500 lb

Condition:

dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	598	142	637	133
2	621	133	783	130
3	576	121	620	125
4	598	125	650	134
5	616	122	632	135
6	632	128	591	127
7	547	134	640	124
8	621	127	672	127
9	595	124	789	138
10	664	127	716	124
Average	607	128	673	130
Standard Deviation	31.9	6.40	67.9	5.03
Coefficient of Variation, %	5.26	4.98	10.1	3.88

Comments:

Client:	Parsons Engineering	Science	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	02/02/12	Checked By: bfs	
Sample ID:	Roll #22388.1 (GI	807/AF GT-013	
Description:	Black, nonwoven geotextile		

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		·

Specimen Number	Puncture Resistance, lbs
1	333
2	328
3	359
4	402
5	338
6	292
7	367
8	302
9	336
10	330
11	298
12	350
13	400
14	345
15	316
Average	340
Standard Deviation	32.9
Coefficient of Variation, %	9.69

Comments:

Clinate	Davisana Englisania		
Client:	Parsons Engineering	9	
Project Name:	Geosynthetic Testir	ng	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	01/02/12	Checked By: jdt	
Sample ID:	Roll #22388.1 (GT-007) GF GT-013		
Description:	Black, nonwoven ge		

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m ²	
1	26.3		
2	25.4	863	
3	25.2	855	
4	23.9	811	
5	25.7	870	
Average	25.3	858	
Standard Deviation	0.89	30.2	

Comments:

Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Engineering Science			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By: bfs		
Test Date:	02/01/12	Checked By: jdt		
Sample ID:	Roll #22388.20 (GT-008) GT-014			
Description:	Black, nonwoven a			

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 3 in Grips: Curtis "Geo" Grip
Maximum Obtainable Load: 2500 lb Padding: --Condition: dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	542	140	682	124
2	604	128	703	131
3	551	129	691	120
4	593	120	714	119
5	564	124	618	124
6	560	117	686	134
7	572	121	737	115
8	669	133	645	116
9	641	128	702	115
10	615	122	617	124
Average	591	126	679	122
Standard Deviation	41.4	6.86	40.2	6.53
Coefficient of Variation, %	7.01	5.44	5.92	5.34

Comments:

Client:	Parsons Engineeri	ng Science	
Project Name:	Geosynthetic Test	ng	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.20 (I=008) Gy GT-014	
Sample Description:	Black, nonwoven g	jeotextile	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 1 in Grips: Curtis "Geo" Grip
Condition: dry

	Maximum Tear Strength, lb		
Specimen Number	Machine Direction	Cross Machine Direction	
1	193	242	
2	195	300	
3	195	271	
4	190	256	
5	189	253	
6	179	314	
7	180	279	
8	200	259	
9	172	258	
10	179	256	
Average	187	269	
Standard Deviation	9.15	22.6	
Coefficient of Variation, %	4.89	8.42	

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	02/02/12	Checked By: bfs
Sample ID:	Roll #22388.20 (GT-008)	GT-014
Description:	Black, nonwoven geotextile	4.0.1

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, Ibs
1	317
2	328
3	339
4	343
5	361
6	335
7	296
8	335
9	314
10	340
11	296
12	346
13	256
14	323
15	316
Average	323
Standard Deviation	25.8
Coefficient of Variation, %	7.98

Comments:

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY	<u> </u>	
GTX #:	10596	Tested By: bfs	
Test Date:	01/02/12	Checked By: jdt	
Sample ID:	Roll #22388.20 (GT-	008564 GT-014	
Description:	Black, nonwoven geo		

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	24.6	835
2	27.9	947
3	25.2	855
4	26.6	902
5	25.1	851
Average	25.9	878
Standard Deviation	1.36	46.1

Comments:

Specimen Size, in: 4 inch x 8 inch

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: 10596 Tested By: bfs Checked By: jdt Test Date: 02/01/12 Roll #22388.56 (GT-009) Sample ID: Sample Description: Black, nonwoven geotextile

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, lb		
Specimen Number	Machine Direction	Cross Machine Direction	
1	203	334	
2	205	241	
3	209	241	
4	187	249	
5	211	290	
6	204	249	
7	229	258	
8	213	244	
9	246	290	
10	245	251	
Average	215	265	
Standard Deviation	19.0	30.6	
oefficient of Variation, %	8.82	11.6	

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	02/01/12	Checked By: jdt
Sample ID:	Roll #22388.56 (C	I-0097 GT-015
Description:	Black, nonwoven g	eotextile 017-073

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine: Instron 1000 Testing Speed: 12 in/min

Grip Separation: 3 in Maximum Obtainable Load: 2500 lb

Curtis "Geo" Grip Grips: Padding:

Condition:

dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	643	120	587	144
2	551	120	682	129
3	586	111	636	124
4	544	123	578	144
5	603	122	605	124
6	534	116	615	148
7	531	117	668	125
8	564	124	598	117
9	552	124	631	124
10	574	120	626	130
Average	568	120	622	131
Standard Deviation	34.7	4.08	33.6	10.6
Coefficient of Variation, %	6.11	3.41	5.40	8.10

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	02/02/12	Checked By: bfs
Sample ID:	Roll #22388.56 (GT-009)	14 01
Description:	Black, nonwoven geotextile	GT-015

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs
1	334
2	359
3	332
4	294
5	373
6	348
7	399
8	336
9	313
10	326
11	339
12	309
13	315
14	375
15	350
Average	340
Standard Deviation	28.1
Coefficient of Variation, %	8.26

Comments:

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	01/02/12	Checked By: jdt
Sample ID:	Roll #22388.56 (GT-0	6T-015
Description:	Black, nonwoven geot	extile 61-013

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	26.0	881
2	23.9	810
3	24.0	813
4	23.7	804
5	23.5	796
Average	24.2	821
Standard Deviation	1.00	34.0

Comments:

Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Engineering	Science
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	02/01/12	Checked By: jdt
Sample ID:	Roll #22388.111 (G	
Sample Description:	Black, nonwoven ger	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		our do odo onp

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	185	322	
2	186	303	
3	192	296	
4	180	273	
5	178	298	
6	193	303	
7	167	335	
8	179	366	
9	213	362	
10	211	334	
Average	188	319	
Standard Deviation	14.5	30,1	
Coefficient of Variation, %	7.70	9.44	

Comments:

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.11	1 (GI-010) AT 01/	
Description:	Black, nonwove	Black, nonwoven geotextile GT-016	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:

Instron 1000

Testing Speed:

12 in/min

Grip Separation:

3 in

Grips:

Curtis "Geo" Grip

Maximum Obtainable Load:

2500 lb

Padding: Condition:

dry

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	646	124	691	117
2	614	127	747	120
3	604	126	670	117
4	590	127	697	117
5	538	124	626	127
6	560	130	636	134
7	618	128	734	123
8	587	127	727	123
9	606	127	650	120
10	640	131	660	117
Average	600	127	684	122
Standard Deviation	33.4	2.23	42.2	5.54
Coefficient of Variation, %	5.57	1.76	6.18	4.56

Comments:

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	02/02/12	Checked By: bfs	
Sample ID:	Roll #22388.111 (GT-010)	1-11	
Description:	Black, nonwoven geotextile	61-016	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		,

Specimen Number	Puncture Resistance, Ibs
1	378
2	292
3	324
4	337
5	397
6	339
7	338
8	328
9	317
10	306
11	363
12	406
13	312
14	363
15	288
Average	339
Standard Deviation	35.9
Coefficient of Variation, %	10.6

Comments:

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	01/02/12	Checked By: jdt
Sample ID:	Roll #22388.111 (GT-910)	W OT NIC
Description:	Black, nonwoven geotextile	· 01-016

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	27.0	915
2	27.9	946
3	26.5	898
4	24.9	845
5	27.6	934
Average	26.8	907
Standard Deviation	1.17	39.5

Comments:

Specimen Size, in: 4 inch x 8 inch

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: 10596 Tested By: bfs Test Date: 02/01/12 Checked By: jdt Sample ID: Roll #22388.221 (GI-011) Sample Description: Black, nonwoven geotextile

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		·

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	186	284	
2	205	229	
3	200	251	
4	218	253	
5	233	247	
6	162	258	
7	231	250	
8	183	259	
9	234	299	
10	197	242	
Average	205	257	
Standard Deviation	24.3	20.3	
Coefficient of Variation, %	11.8	7.91	

Comments:

Client;	Parsons Engineer	ing Science	
Project Name:	Geosynthetic Tes	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.121	(GI-011) AT-017	
Description:	Black, nonwoven	geotextile 61-011	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:

Instron 1000

Testing Speed:

12 in/min

Grip Separation:

3 in

Grips: Padding: Curtis "Geo" Grip

Maximum Obtainable Load:

2500 lb

Condition:

dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	587	127	686	137
2	586	127	664	130
3	542	117	606	124
4	553	134	663	120
5	550	119	555	116
6	549	130	770	120
7	581	123	668	130
8	503	129	592	144
9	556	123	551	130
10	463	117	637	126
Average	547	125	639	128
Standard Deviation	38.6	5.78	66.2	8.43
Coefficient of Variation, %	7.06	4.64	10.4	6.60

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	02/02/12	Checked By: bfs
Sample ID:	Roll #22388.221 (GT-011)6	AT 217
Description:	Black, nonwoven geotextile	61-011

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		12 11/111111

Specimen Number	Puncture Resistance, Ibs
1	377
2	308
3	286
4	316
5	320
6	313
7	338
8	403
9	360
10	404
11	502
12	373
13	350
14	358
15	292
Average	353
Standard Deviation	55.4
Coefficient of Variation, %	15.7

Comments:

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	01/02/12	Checked By: jdt
Sample ID:	Roll #22388.221 (GT-01-1)	AT ALT
Description:	Black, nonwoven geotextile	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	24.8	841
2	24.9	843
3	23.5	796
4	24.0	813
5	23.7	804
Average	24.2	819
Standard Deviation	0.63	21.5

Comments:

Specimen Size, in: 4 inch x 8 inch

Geonet Composite

Client:	Parsons Engineering	
Project:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX Project No.:	10596	
Test Date:	11/02/11	
Tested By:	bfs	
Checked By:	-jdt-	

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

60~

Sample ID	Spec. #	Density, g/cm ³
Roll #45391010022 (net portion only)	1	0.9504
Black hiplanar goocomposite	2	0.9504
Black, biplanar geocomposite	3	0.9507
	AVG.	0.9505

0,935

٧. کس

Sample ID	Spec. #	Density, g/cm³	
Roll #45391010130 (net portion only)	1	0.9528	
Black, biplanar geocomposite	2	0.9525	
	3	0.9524	
	AVG.	0.9526	

Comments:

Temperature:

23°C

Client:	Parsons Engineering	
Project:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX Project No.:	10596	
Test Date:	11/14/11	
Tested By:	bfs	
Checked By:	jdt	

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

603

Sample ID	Spec. #	Density, g/cm ³
Roll #45391010021 (net portion only)	1	0.9542
Black, biplanar geocomposite	2	0.9543
Black, Diplatial geocomposite	3	0.9543
	AVG	n 9543

0,935

60.7

Sample ID	Spec. #	Density, g/cm ³
Roll #45391010023 (net portion only)	1	0.9544
Black, biplanar geocomposite	2	0.9545
	3	0.9544
	AVG.	0.9544

Comments:

Temperature:

23°C

Client: Parsons Engineering Project: Geosynthetic Testing Project Location: Syracuse, NY Tested By: ad GTX Project No.: 10596 Test Date: 11/01/11 Checked By: bfs 60-1 Sample ID: Roll #45391010022 Description: Black, biplanar geocomposite

Hydraulic Transmissivity - ASTM D 4716

Specimen Length, in:

12

Specimen Width, in:

12

Boundary Conditions

(bottom to top): steel plate/geocomposite/soil/steel plate

Direction of Flow:

Machine Direction

Effluent Water Temperature, °C:

18.9

Normal Compressive Stress, psf	Seating Time,	Hydraullc Gradient	Transmissivity, m²/sec	Unit	Flow
P-1				gal/min/ft	gal/hr/ft
3000	0.25	0.1	1.1E-03	0.5	32
3000	0.25	0.1	1.1E-03	0.5	32
3000	0.25	0.1	1-1E-03	0.5	32
		Average	1.1E-03	0.5	32

Notes:

<2x10-3~3/5

Roll removed from site

FAIL

See

45391010021

4391010023

Client:	Parsons Engine	ering	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	bfs
Test Date:	11/02/11	Checked By:	jdt
Sample ID:	Roll #45391010022 (Net portion only)		GD-1
Sample Decription:	Black, bi-planar geocomposite		

Nominal Thickness of Geotextiles and Geomembranes by ASTM D 5199

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 63-65 g
Presser Foot: 0.25 in. diameter Loading Time: 5 seconds

Measurement Number	Thickness, mils
1	377
2	374
3	367
4	359
5	361
6	383
7	383
8	399
9	399
10	394
11	390
12	373
13	378
14	374
15	371
16	382
17	380
18	371
19	377
20	379
Average	379
Standard Deviation	10.6
Coefficient of Variation, %	2.81

Comments:

>200 mils

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	ad
Test Date:	11/01/11	Checked By:	bfs
Sample ID:	Roll #45391010022 (geotextile portion only)		
Description:	Black, bi-planar g	geocomposite	

Apparent Opening Size of a Geotextile by ASTM D 4751

		Bead S	lize		
Specimen Mass, g Specimen Mass, g (before/after Number treating)	Sieve Number (U.S. Standard Size)	Diameter, mm	Passing, %	Size for 5% Passing, mm	
1	30.21/30.18	120-140	0.106	10.3	0.113
30.21/30.18	80-100	0.120	0.18	0.220	
· · · · · ·	22 10/22 17	170-200	0.075	8.0	0.088
2	2 32.19/32.17	120-140	0.106	0.68	0.066
3	31.54/31.5	120-140	0.106	24.1	0.117
J	31.34/31.3	80-100	0.120	0.80	0.117
4	29.23/29.19	120-140	0.106	78.5	0.119
7	29.23/29.19	80-100	0.120	1.60	0.119
5	34.15/34.1	120-140	0.106	11.46	0.114
,	37,13/34.1	80-100	0.120	0.12	0.114

Average AOS = O_{95} : 0.110 $\leq O(2)$ Average Sieve Number: 100	Average AOS = O ₉₅ :	0.110 < 0,2 1	Average Sieve Number:	100
--	---------------------------------	---------------	-----------------------	-----

Comments:

Shaker Type -

CE Tyler Ro-Tap seive shaker Model SS-8R

Client:	Parsons Engineering Science Geosynthetic Testing		
Project Name:			
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	10/31/11	Checked By: bfs	
Sample ID:	Roll #45391010022 (textile portion only) GO-		
Sample Description:	Black, bi-planar geocomposite		

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 1 in Grips: Curtis "Geo" Grip
Condition: dry

	Maximum Tear Strength, lb		
Specimen Number	Machine Direction	Cross Machine Direction	
1	135	150	
2	116	145	
3	96.9	129	
4	102	195	
5	113	164	
6	90.7	144	
7	121	130	
8	154	146	
9	157	151	
10	146	169	
Average	123	152 /	
Standard Deviation	23.8	19.6	
Coefficient of Variation, %	19.4	12.9	

>75

Comments:

Client:	Parsons Engineeri	Parsons Engineering Science	
Project Name:	Geosynthetic Test	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	10596 Tested By: bfs	
Test Date:	10/31/11	10/31/11 Checked By: jdt	
Sample ID:	Roll #45391010022 (textile portion only) CO-\		
Description:	Black, bi-planar geocomposite		

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	10.6	360
2	11.0	374
3	10.7	364
4	10.7	364
5	10.4	352
Average	10.7 > 8	363
Standard Deviation	0.23	7.85

Comments:

Specimen Size, In: 4 inch x 8 inch

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	ad
Test Date:	11/01/11	Checked By:	bfs
Sample ID:	Roll #45391010130 (to	extile portion only)	60-2
Description:	Black, bi-planar geocor	mposite	

Apparent Opening Size of a Geotextile by ASTM D 4751

		Bead S	lize		
Specimen Mass, g Specimen (before/after Number treating)	Sieve Number (U.S. Standard Size)	Diameter, mm	Passing, %	Size for 5% Passing, mm	
1	32.16/32.11	120-140	0.106	70.1	0.119
	33.33, 33.33	80-100	0.120	0.30	0.115
2	30/29.93	120-140	0.106	10.1	0.113
	30/23.33	80-100	0.120	0.10	0.113
3	30.79/30.75	120-140	0.106	20.8	0.117
	30.79/30.73	80-100	0.120	0.28	
4	32.54/32.5	120-140	0.106	5.1	0.106
-	32.34/32.3	80-100	0.120	0.02	
5	5 32.29/32.25	120-140	0.106	7.44	0.111
J	32.23/32.23	80-100	0.120	0.20	0.111

Average AOS = O ₉₅ :	0.113 ≤ 0.21 ~~	Average Sieve Number:	100
---------------------------------	-----------------	-----------------------	-----

Comments:

Shaker Type -

CE Tyler Ro-Tap seive shaker Model SS-8R

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Test	ing
Project Location:	Syracuse, NY	
GTX #:	10596 Tested By: ad	
Test Date:	10/31/11 Checked By: bfs	
Sample ID:	Roll #45391010130 (textile portion only) (公って	
Sample Description:	Black, bi-planar geocomposite	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 1 in Grips: Curtis "Geo" Grip
Condition: dry

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	120	128	
2	148	148	
3	141	154	
4	107	179	
5	143	165	
6	142	130	
7	137	195	
8	118	155	
9	136	140	
10	107	123	
Average	130	152 J	
Standard Deviation	15.2	23.0	
oefficient of Variation, %	11.7	15.2	

Comments:

Client:	Parsons Engine	ering	
Project Name:	Geosynthetic To	esting	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	bfs
Test Date:	11/02/11	Checked By:	jdt
Sample ID:	Roll #4539101	0130 (Net portion only)	40-2
Sample Decription:	Black, bi-plana	geocomposite	

Nominal Thickness of Geotextiles and Geomembranes by ASTM D 5199

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 63-65 g

Presser Foot: 0.25 in. dlameter Loading Time: 5 seconds

Measurement Number	Thickness, mils
1	379
2	382
3	371
4	370
5	355
6	372
7	362
8	352
9	356
10	377
11	360
12	361
13	359
14	367
15	366
16	378
17	376
18	365
19	372
20	353
Average	367 <i>J</i>
Standard Deviation	9.11
Coefficient of Variation, %	2.48

Comments:

> 200 mil

Client:	Parsons Engineering	9
Project Name:	Geosynthetic Testin	g
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	10/31/11	Checked By: jdt
Sample ID:	Roll #45391010130	(textile portion only) &
Description:	Black, bi-planar geocomposite	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	11.6	394
2	11.6	392
3	11.1	375
4	11.2	381
5	11.4	388
Average	11.4 >8	386
Standard Deviation	0.23	7.7

Comments:

Specimen Size, in: 4 inch x 8 inch

Client: Parsons Engineering Project: Geosynthetic Testing Project Location: Syracuse, NY GTX Project No.: 10596 Tested By: ad Test Date: 11/01/11 Checked By: bfs Sample ID: 69-2 Roll #45391010130 Description: Black, biplanar geocomposite

Hydraulic Transmissivity - ASTM D 4716

Specimen Length, in:

12

Specimen Width, in:

12

Boundary Conditions

(bottom to top): steel plate/geocomposite/soil/steel plate

Direction of Flow:

Machine Direction

Effluent Water Temperature, °C:

18.9

Normal Compressive Stress, psf	Seating Time, Hydraulic Gradient		Transmissivity, m²/sec	Unit Flow	
				gal/min/ft	gal/hr/ft
3000	0.25	0.1	3.1E-03	1.5	88
3000	0.25	0.1	3.1E-03	1.5	88
3000	0.25	0.1	3.1E-03	1.5	88
		Average	3.1E-03	1.5	88

Notes:

Client:	Parsons Engineer	ing		
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596 Tested By: bfs			
Test Date:	11/10/11 Checked By: jdt			
Sample ID:	Roll #45391010021 (net portion only) (くつ・ろ			
Sample Decription:	Black, bi-planar geocomposite			

Nominal Thickness of Geotextiles and Geomembranes by ASTM D 5199

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 63-65 g
Presser Foot: 0.25 in. diameter Loading Time: 5 seconds

Measurement Number	Thickness, mils		
1	371		
2	377		
3	361		
4	371		
5	375		
6	364		
7	396		
8	368		
9	367		
10	373		
11	370		
12	368		
13	371		
14	382		
15	365		
16	370		
17	369		
18	370		
19	371		
20	370		
Average	371 🗸		
Standard Deviation	7.11		
Coefficient of Variation, %	1.91		

Comments:

005 <

Client:	Parsons Engineering		
Project:	Geosynthetic Testing	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX Project No.:	10596	Tested By: ad	
Test Date:	11/09/11	Checked By: bfs	
Sample ID:	Roll #45391010021	(-0-3	
Description:	Black, biplanar geoco	Black, biplanar geocomposite	

Hydraulic Transmissivity - ASTM D 4716

Specimen Length, in:

12

Specimen Width, in:

12

18.8

Boundary Conditions

(bottom to top): steel plate/geocomposite/soil/steel plate

Direction of Flow:

Machine Direction

Effluent Water Temperature, °C:

Normal Seating Unit Flow Transmissivity, Hydraulic Compressive Stress, Time, Gradient m²/sec hours psf gal/hr/ft gal/min/ft 3000 0.25 0.1 2.2E-03 1.0 61 3000 0.25 0.1 2.2E-03 1.0 61 3000 0.25 0.1 2.2E-03 1.0 61 Average 2.2E-03 1.0 61

Notes:

Client:	Parsons Engine	ering	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	bfs
Test Date:	11/10/11	Checked By:	jdt
Sample ID:	Roll #45391010	0023 (net portion only)	CD-CI
Sample Decription:	Black, bi-planar geocomposite		

Nominal Thickness of Geotextiles and Geomembranes by ASTM D 5199

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 63-65 g

Presser Foot: 0.25 in. diameter Loading Time: 5 seconds

Measurement Number	Thickness, mils
1	393
2	372
3	367
4	370
5	390
6	375
7	373
8	374
9	373
10	392
11	386
12	381
13	374
14	369
15	369
16	371
17	378
18	367
19	371
20	373
Average	376 ~
Standard Deviation	7.91
Coefficient of Variation, %	2.10

Comments:

002 K

Client:	Parsons Engineering		
Project:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX Project No.:	10596	Tested By: ad	
Test Date:	11/09/11	Checked By: bfs	
Sample ID:	Roll #45391010023	60-4	
Description:	Black, biplanar geocomposite		

Hydraulic Transmissivity - ASTM D 4716

Specimen Length, in:

12

Specimen Width, in:

12

Boundary Conditions

(bottom to top): steel plate/geocomposite/soil/steel plate

Direction of Flow:

Machine Direction

Effluent Water Temperature, °C:

18.4

Normal Compressive Stress, psf	Seating Time, hours	Time, Gradient m²/sec		Unit	Unit Flow	
ps.	1104.5	**		gal/min/ft	gal/hr/ft	
3000	0.25	0.1	2.3E-03	1.1	64	
3000	0.25	0.1	2.3E-03	1.1	64	
3000	0.25	0.1	2.3E-03	1.1	64	
		Average	2.3E-03	1.1	64	

Notes:

72x10-3 m 2/5

APPENDIX E

Installer's Certificate of Acceptance of Subgrade Surface

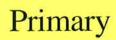
- East Basin
- West Basin

CERTIFICATE OF ACCEPTANCE SUBGRADE SURFACE

I	NSTALLER		PROJECT
NAME: C	henango Contracting	NAME:	SCA Phase I (East Basin)
ADDRESS: 29 Arbutus Road			
Johnson City, NY 13790		LOCATI	ON: 522 Gerelock Road
			Camillus, NY 13209
INSTALLER		3	
AUTHORIZED			
REPRESENTATIVE:	Charlie Parks	OWNER	R: Honeywell / Parsons
		L	and the state of t
I, The undersigned, d	uly authorized representative of		Chenango Contractors
do hereby accept the	surface on which the geosynthetics	s will be ins	talled and shall be responsible for
maintaining the suitab	ility of this surface, in accordance	with the pro	pject specifications. (i.e., The contractor
shall not install the ge	osynthetics until the subgrade surf	ace is acce	eptable. Installation of the
geosynthetics will be	considered acceptance of the subg	rade.)	
	10-00-00-00-00-00-00-00-00-00-00-00-00-0	OTUED	
PRIMARY:	SECONDARY: X	OTHER	
DATE	PANEL NOS.		SIGNATURE
10312011	PANELS 1-11		Char about
11-1-2011	BNEC 12-43		Alm a Part
11 Z-ZoH	PANKLS 44-68		Al al
71 - VOI	/ JAKE) 1.T. V.A.		Christian Committee Commit
	t .		
			V
		ve vouseennoodii	

CERTIFICATE OF ACCEPTANCE SUBGRADE SURFACE

l l	NSTALLER	PROJECT
NAME: C	henango Contracting	NAME: SCA Phase I (West Basin)
ADDRESS:	29 Arbutus Road	
Johnson City, NY 13790		LOCATION: 522 Gerelock Road
-		Camillus, NY 13209
INSTALLER		0-000-01-00-00
AUTHORIZED		V
REPRESENTATIVE:	Charlie Parks	OWNER: Honeywell / Parsons
I The undersigned of	luly authorized representative of	Chenango Contractors
do hereby accept the	surface on which the geosynthetics	s will be installed and shall be responsible for
maintaining the suitat	pility of this surface, in accordance	with the project specifications. (i.e., The contractor
-	•	ace is acceptable. Installation of the
•	considered acceptance of the subg	
geodynarioaco war be	ocholaci da accopianico ci allo cabg	1445.7
PRIMARY:	SECONDARY: X	OTHER:
DATE	PANEL NOS.	SIGNATURE
DATE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
11-8-2111	Parties 1 - Be	the attent
11 9 3011	P 71 - 71	the a there
	1.7.774.6.5	
	ļ	
	·····	
	1	
	T	


APPENDIX F

Geomembrane Panel Placement Monitoring Logs

- East Basin
- West Basin

East Basin

- Primary
- Secondary

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Primai	ry / Secondary: Primary		Se	ries: 3 Mate	rial Type: gn	ol .	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
1	7110583-443557-11	3/28/2012	8:30	East Basin	22.5	293	DWH
2	7110583-443557-11	3/28/2012	8:45	East Basin	22.5	190	DWH
3	7110583-443569-11	3/28/2012	9:00	East Basin	22.5	106	DWH
4	7110583-443569-11	3/28/2012	9:55	East Basin	22.5	28.5	DWH
5	7110583-443569-11	3/28/2012	10:00	East Basin	22.5	29	DWH
6	7110583-443569-11	3/28/2012	10:05	East Basin	22.5	29.5	DWH
7	7110583-443569-11	3/28/2012	10:10	East Basin	22.5	30	DWH
8	7110583-443569-11	3/28/2012	10:11	East Basin	22.5	30.5	DWH
9	7110583-443569-11	3/28/2012	10:12	East Basin	22.5	31	DWH
10	7110583-443569-11	3/28/2012	10:16	East Basin	22.5	31	DWH
11	7110583-443569-11	3/28/2012	10:19	East Basin	22.5	31.5	DWH
12	7110583-443569-11	3/28/2012	10:22	East Basin	22.5	32	DWH
13	7110583-443569-11	3/28/2012	10:25	East Basin	22,5	33	DWH
14	7110583-443569-11	3/28/2012	10:27	East Basin	22.5	34	DWH
15	8210664-443792-11	3/28/2012	10:55	East Basin	22.5	16	DWH
16	8210664-443792-11	3/28/2012	11:00	East Basin	22.5	23	DWH
17	8210664-443792-11	3/28/2012	11:02	East Basin	4	14	DWH
18	8210664-443792-11	3/28/2012	12:44	East Basin	22.5	299	DWH
19	8210664-443792-11	3/28/2012	13:00	East Basin	22.5	114.5	DWH
20	7110583-443676-11	3/28/2012	13:18	East Basin	22.5	186	DWH
21	7110583-443676-11	3/28/2012	13:44	East Basin	22.5	303	DWH
22	8210664-443683-11	3/28/2012	14:12	East Basin	22.5	306.5	DWH
23	8210664-443683-11	3/28/2012	14:50	East Basin	22.5	192	DWH
24	7110583-443559-11	3/28/2012	15:01	East Basin	22.5	116	DWH
·25	7110583-443559-11	3/28/2012	15:37	East Basin	22.5	309.5	DWH
26	7110583-443559-11	3/28/2012	15:43	East Basin	22.5	62	DWH
27	7110583-443673-11	3/28/2012	16:00	East Basin	22.5	250	DWH
28	7110583-443673-11	3/28/2012	16:20	East Basin	22.5	248	DWH
29	8210664-443682-11	3/28/2012	16:45	East Basin	22.5	65	DWH
30	8210664-443682-11	4/2/2012	13:16	East Basin	22.5	314	DWH
31	8210664-443682-11	4/2/2012	13:30	East Basin	22.5	111.5	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: <u>GJ4706</u>

Location: Camillus, New York

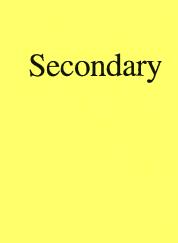
TaskNo: <u>07</u>

Prima	ry / Secondary: Primary		Ser	ies: 3 Mater	ial Type: gn	าไ	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
32	7110583-443677-11	4/2/2012	13:46	East Basin	22.5	204	DWH
33	7110583-443677-11	4/2/2012	14:00	East Basin	22.5	277	DWH
34	7110583-443562-11	4/2/2012	14:17	East Basin	22.5	39	DWH
35	7110583-443562-11	4/2/2012	14:27	East Basin	22.5	320	DWH
36	7110583-443562-11	4/2/2012	14:50	East Basin	22.5	126	DWH
37	7110583-443679-11	4/2/2012	15:00	East Basin	22.5	196	DWH
38	7110583-443679-11	4/2/2012	15:15	East Basin	22.5	288	DWH
39	7110583-443563-11	4/2/2012	15:20	East Basin	22.5	34	DWH
40	7110583-443678-11	4/12/2012	8:05	East Basin	22.5	273.5	DWH
41	8210664-443790-11	4/12/2012	8:35	East Basin	22.5	53.5	DWH
42	8210664-443790-11	4/12/2012	9:35	East Basin	22.5	329	DWH
43	8210664-443790-11	4/12/2012	9:45	East Basin	22.5	100	DWH
44	8210664-443787-11	4/12/2012	10:00	East Basin	22.5	230	DWH
45	8210664-443787-11	4/12/2012	10:15	East Basin	22.5	271	DWH
46	7110583-443570-11	4/12/2012	10:24	East Basin	22.5	62	DWH
47	7110583-443570-11	4/12/2012	10:40	East Basin	22.5	239	DWH
48	7110583-443570-11	4/12/2012	11:06	East Basin	22.5	54.5	DWH
49	7110583-443570-11	4/12/2012	11:10	East Basin	22.5	54	DWH
50	7110583-443570-11	4/12/2012	11:14	East Basin	22.5	37	DWH
51	7110583-443570-11	4/12/2012	11:20	East Basin	22.5	37	DWH
52	8210664-443786-11	4/12/2012	11:36	East Basin	22.5	54.5	DWH
53	8210664-443786-11	4/12/2012	11:40	East Basin	22.5	55.5	DWH
54	8210664-443786-11	4/12/2012	12:40	East Basin	22.5	54	DWH
55	8210664-443786-11	4/12/2012	12:43	East Basin	22.5	48	DWH
56	8210664-443786-11	4/12/2012	12:51	East Basin	22.5	27	DWH
57	8210664-443786-11	4/12/2012	12:53	East Basin	22.5	20	DWH
58	8210664-443786-11	4/12/2012	12:56	East Basin	22.5	28	DWH
59	8210664-443786-11	4/12/2012	12:58	East Basin	22.5	22	DWH
60	8210664-443786-11	4/12/2012	13:00	East Basin	22.5	21	DWH
61	8210664-443786-11	4/12/2012	14:04	East Basin	22.5	45	DWH
62	8210664-443786-11	4/12/2012	14:07	East Basin	22.5	33	DWH

Geosyntec[>]

consultants

Panel Placement Log


Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Primary	y / Secondary: Primary		Series	s: 3 Mate	Material Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
63	8210664-443786-11	4/12/2012	14:12	East Basin	22.5	26	DWH
64	8210664-443786-11	4/12/2012	14:15	East Basin	22.5	22	DWH
65	8210664-443797-11	4/12/2012	14:20	East Basin	22.5	98	DWH
66	8210664-443797-11	4/12/2012	14:29	East Basin	22.5	21	DWH
67	8210664-443797-11	4/12/2012	14:47	East Basin	22.5	26	DWH
68	8210664-443797-11	4/12/2012	14:50	East Basin	22.5	10	DWH
69	8210664-443797-11	4/12/2012	14:34	East Basin	22.5	36	DWH
70	8210664-443797-11	4/12/2012	14:57	East Basin	22.5	28.5	DWH
71	8210664-443797-11	4/12/2012	15:01	East Basin	14	27	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

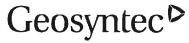
TaskNo: 07

Primary / Secondary: Secondary			Sei	ries: 2 Mater	rial Type: gn	nl l	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA II
1	8201499-102158789	10/31/2011	9:20	East Basin	22	323	DWF
2	8201499-102158789	10/31/2011	9:35	East Basin	22	175	DWI
3	8201507-102158904	10/31/2011	9:43	East Basin	22	146.5	DWF
4	8201507-102158904	10/31/2011	9:50	East Basin	22	319.5	DWF
5	8201507-102158904	10/31/2011	10:05	East Basin	22	35.5	DWF
6	8201499-102158811	10/31/2011	10:44	East Basin	22	283.5	DWF
7	8201499-102158811	10/31/2011	10:56	East Basin	22	224.5	DWI
8	8201500-102158839	10/31/2011	11:28	East Basin	22	92	DWI
9	8201500-102158839	10/31/2011	11:56	East Basin	22	313.5	DWF
10	8201500-102158839	10/31/2011	15:06	East Basin	22	86	DWI
11	8201499-102158798	10/31/2011	15:30	East Basin	22	226.5	DWF
12	8201499-102158798	11/1/2011	8:25	East Basin	22	276	DWI
13	8201500-102158813	11/1/2011	8:35	East Basin	22	35	DW
14	8201500-102158813	11/1/2011	8:48	East Basin	22	309.5	DWF
15	8201500-102158813	11/1/2011	8:58	East Basin	22	150.5	DWF
16	8201499-102158775	11/1/2011	9:10	East Basin	22	156.5	DWI
17	8201499-102158775	11/1/2011	9:42	East Basin	22	305	DWI
18	8201499-102158775	11/1/2011	9:50	East Basin	22	32	DWF
19	8201499-102158780	11/1/2011	10:01	East Basin	22	273	DWF
20	8201499-102158780	11/1/2011	10:15	East Basin	22	233	DWF
21	8201507-102158890	11/1/2011	10:25	East Basin	22	70	DWŁ
22	8201507-102158890	11/1/2011	10:35	East Basin	22	300	DWI
23	8201507-102158890	11/1/2011	10:45	East Basin	22	113	DWI
24	8201500-102158854	11/1/2011	10:58	East Basin	22	185	DWI
25	8201500-102158854	11/1/2011	11:17	East Basin	22	295	DWF
26	8201494-102158626	11/1/2011	13:00	East Basin	22	292	DWI
27	8201494-102158626	11/1/2011	13:08	East Basin	22	216	DW
28	8201507-102158883	11/1/2011	13:20	East Basin	22	41.5	DWI
29	8201507-102158883	11/1/2011	13:25	East Basin	22	40.5	DWI
30	8201507-102158883	11/1/2011	13:30	East Basin	22	31	DWF
31	8201500-102158852	11/1/2011	13:40	East Basin	22	31	DWF

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)


Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

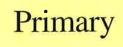
	ry / Secondary: Secondary		Ser	ries: 2 Mater	Material Type: gml			
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA II	
32	8201500-102158852	11/1/2011	13:45	East Basin	22	26	DWH	
33	8201500-102158852	11/1/2011	13:48	East Basin	22	24.5	DWH	
34	8201500-102158852	11/1/2011	13:54	East Basin	22	24	DWH	
35	8201507-102158900	11/1/2011	14:07	East Basin	22	24	DWH	
36	8201507-102158900	11/1/2011	14:10	East Basin	22	23.5	DWH	
37	8201507-102158900	11/1/2011	14:13	East Basin	22	23	DWH	
38	8201507-102158900	11/1/2011	14:18	East Basin	22	23.5	DWH	
39	8201507-102158885	11/1/2011	14:32	East Basin	22	24	DWH	
40	8201507-102158885	11/1/2011	14:36	East Basin	22	24.5	DWH	
41	8201507-102158885	11/1/2011	14:42	East Basin	22	25	DWH	
42	8201500-102158815	11/1/2011	15:15	East Basin	22	325	DWH	
43	8201500-102158815	11/1/2011	15:42	East Basin	22	179	DWH	
44	8201507-102158905	11/2/2011	9:23	East Basin	22	148.5	DWH	
45	8201507-102158905	11/2/2011	9:45	East Basin	22	328	DWH	
46	8201507-102158896	11/2/2011	10:16	East Basin	22	143	DWH	
47	8201507-102158896	11/2/2011	10:36	East Basin	22	23.5	DWH	
48	8201507-102158896	11/2/2011	10:38	East Basin	22	26	DWH	
49	8201507-102158896	11/2/2011	10:40	East Basin	22	33.5	DWH	
50	8201507-102158896	11/2/2011	10:42	East Basin	22	44.5	DWH	
51	8201507-102158896	11/2/2011	10:44	East Basin	22	26	DWH	
52	8201507-102158896	11/2/2011	10:46	East Basin	22	27	DWH	
53	8201500-102158863	11/2/2011	10:57	East Basin	22	23	DWH	
54	8201500-102158863	11/2/2011	11:00	East Basin	22	52	DWH	
55	8201500-102158863	11/2/2011	11:01	East Basin	22	52	DWH	
56	8201507-102158901	11/2/2011	11:05	East Basin	22	51.5	DWH	
57	8201507-102158901	11/2/2011	11:07	East Basin	22	51.5	DWH	
58	8201494-102158630	11/2/2011	11:25	East Basin	22	33	DWH	
59	8201494-102158630	11/2/2011	11:41	East Basin	22	113	DWH	
60	8201494-102158630	11/2/2011	11:42	East Basin	22	10.5	DWH	
61	8201494-102158630	11/2/2011	11:44	East Basin	22	10.5	DWH	
62	8201494-102158630	11/2/2011	11:46	East Basin	22	21	DWH	

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706


Location: Camillus, New York

TaskNo: 07

Primary / Secondary: Secondary			Series	S: 2 Mate	Material Type: gml			
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID	
63	8201494-102158630	11/2/2011	12:40	East Basin	22	45	DWH	
64	8201494-102158630	11/2/2011	12:45	East Basin	22	29.5	DWH	
65	8201494-102158630	11/2/2011	12:50	East Basin	22	30.5	DWH	
66	8201494-102158630	11/2/2011	12:55	East Basin	22	22	DWH	
67	8201494-102158630	11/2/2011	13:00	East Basin	22 .	20	DWH	
68	8201494-102158630	11/2/2011	13:02	East Basin	22	6	DWH	

West Basin

- Primary
- Secondary

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: <u>GJ4706</u>

Location: Camillus, New York

TaskNo: <u>07</u>

Primar	ry / Secondary: Primary		Seri	es: 5 Mat	erial Type: gn	nl	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
1	7110583-443563-11	4/5/2012	8:35	Wast Basin	22.5	363	DWH
2	7110583-443563-11	4/5/2012	8:50	Wast Basin	22.5	40	DWH
3	7110583-443563-11	4/5/2012	8:53	Wast Basin	22.5	30.5	DWH
4	8210664-443785-11	4/5/2012	9:01	Wast Basin	22.5	259.5	DWH
5	8210664-443785-11	4/5/2012	9:15	Wast Basin	22.5	235.5	DWH
6	8210664-444101-11	4/5/2012	9:25	Wast Basin	22.5	236.5	DWH
7	8210664-444101-11	4/5/2012	9:25	Wast Basin	22.5	31.5	DWH
8	8210664-444101-11	4/5/2012	9:38	Wast Basin	22.5	174.5	DWH
9	8210664-444101-11	4/5/2012	9:45	Wast Basin	22.5	23	DWH
10	7110583-443558-11	4/5/2012	9:58	Wast Basin	22.5	153	DWH
11	7110583-443558-11	4/5/2012	10:07	Wast Basin	22.5	140	DWH
12	7110583-443558-11	4/5/2012	10:10	Wast Basin	22.5	26	DWH
13	7110583-443558-11	4/5/2012	10:15	Wast Basin	22.5	78.5	DWH
14	7110583-443558-11	4/5/2012	10:17	Wast Basin	9	6	DWH
15	7110583-443558-11	4/5/2012	10:23	Wast Basin	22.5	69.5	DWH
16	7110583-443560-11	4/5/2012	10:27	Wast Basin	22.5	44.5	DWH
17	7110583-443560-11	4/5/2012	10:30	Wast Basin	22.5	28	DWH
18	7110583-443560-11	4/5/2012	10:32	Wast Basin	22.5	9,5	DWH
19	7110583-443560-11	4/5/2012	10:35	Wast Basin	22.5	6	DWH
20	7110583-443560-11	4/5/2012	10:27	Wast Basin	22.5	23.5	DWH
21	7110583-443560-11	4/5/2012	10:43	Wast Basin	22.5	27	DWH
22	7110583-443560-11	4/5/2012	10:46	Wast Basin	22.5	29	DWH
23	7110583-443560-11	4/5/2012	10:50	Wast Basin	22.5	30	DWH
24	7110583-443560-11	4/5/2012	10:58	Wast Basin	22.5	31	DWH
25	7110583-443560-11	4/5/2012	11:12	Wast Basin	22.5	31	DWH
26	7110583-443560-11	4/5/2012	11:14	Wast Basin	22.5	31	DWH
27	7110583-443560-11	4/5/2012	11:18	Wast Basin	22.5	31.5	DWH
28	7110583-443560-11	4/5/2012	11:21	Wast Basin	22.5	32.5	DWH
29	7110583-443560-11	4/5/2012	11:24	Wast Basin	22.5	34	DWH
30	7110583-443560-11	4/5/2012	11:27	Wast Basin	22.5	35	DWH
31	8210664-444102-11	4/5/2012	12:40	Wast Basin	22.5	34.5	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

	ry / Secondary: Primary		Seri	es: 5 Mate	rial Type: gn	nl	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
32	8210664-444102-11	4/5/2012	12:45	Wast Basin	22,5	34.5	DWH
33	8210664-444102-11	4/5/2012	12:48	Wast Basin	22.5	35.5	DWH
34	8210664-444102-11	4/5/2012	12:52	Wast Basin	22.5	35.5	DWH
35	8210664-444102-11	4/5/2012	12:55	Wast Basin	22.5	34	DWH
36	8210664-444102-11	4/5/2012	12:58	Wast Basin	22.5	32	DWH
37	8210664-444102-11	4/5/2012	13:02	Wast Basin	22.5	22	DWH
38	8210664-444102-11	4/5/2012	13:05 i	Wast Basin	11	13.5	DWH
39	8210664-444102-11	4/5/2012	13:10	Wast Basin	22.5	223.5	DWH
40	7110583-443567-11	4/5/2012	13:23	Wast Basin	22.5	135	DWH
41	7110583-443567-11	4/5/2012	13:37	Wast Basin	22.5	314	DWH
42	7110583-443567-11	4/5/2012	13:40	Wast Basin	22,5	18	DWH
43	7110583-443565-11	4/5/2012	14:00	Wast Basin	22.5	277.5	DWH
44	7110583-443565-11	4/5/2012	14:20	Wast Basin	22.5	202.5	DWH
45	7110583-443678-11	4/5/2012	14:30	Wast Basin	22.5	74	DWH
46	7110583-443678-11	4/5/2012	14:40	Wast Basin	22.5	24.5	DWH
47	7110583-443678-11	4/5/2012	14:43	Wast Basin	11	19	DWH
48	7110583-443678-11	4/5/2012	14:46	Wast Basin	22.5	31	DWH
49	7110583-443678-11	4/5/2012	14:50	Wast Basin	22.5	31	DWH
50	7110583-443678-11	4/5/2012	14:55	Wast Basin	22.5	31	DWH
51	8210664-443797-11	4/13/2012	8:12	West Basin	22,5	150	DWH
52	8210664-443797-11	4/13/2012	8:15	West Basin	22.5	47	DWH
53	8210664-443789-11	4/13/2012	8:42	West Basin	22.5	36	DWH
54	8210664-443789-11	4/13/2012	8:46	West Basin	22.5	39	DWH
55	8210664-443789-11	4/13/2012	8:49	West Basin	22.5	30.5	DWH
56	8210664-443789-11	4/13/2012	8:52	West Basin	22.5	52	DWII
57	8210664-443789-11	4/13/2012	9:00	West Basin	22.5	42.5	DWH
58	8210664-443789-11	4/13/2012	9:04	West Basin	22.5	67.5	DWH
59	8210664-443789-11	4/13/2012	9:07	West Basin	4.5	31	DWH
60	8210664-443789-11	4/13/2012	9:08	West Basin	22.5	72	DWH
61	8210664-443789-11	4/13/2012	9:11	West Basin	22.5	74.5	DWH
62	7110583-443568-11	4/13/2012	11:00	West Basin	22.5	58	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Primar	Primary / Secondary: Primary			es: 5 Mater	Material Type: gml			
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID	
63	7110583-443568-11	4/13/2012	11:06	West Basin	22.5	50.5	DWH	
64	7110583-443568-11	4/13/2012	11:10	West Basin	22.5	31.5	DWH	
65	7110583-443568-11	4/13/2012	11:12	West Basin	4.5	18	DWH	
66	7110583-443568-11	4/13/2012	11:15	West Basin	22.5	57	DWH	
67	7110583-443568-11	4/13/2012	11:23	West Basin	22.5	44.5	DWH	
68	7110583-443568-11	4/13/2012	11:26	West Basin	22.5	34	DWH	
69	7110583-443568-11	4/13/2012	11:30	West Basin	22.5	30	DWH	
70	7110583-443568-11	4/13/2012	11:40	West Basin	22.5	20	DWH	
71	7110583-443568-11	4/13/2012	11:42	West Basin	22.5	25	DWH	
72	7110583-443568-11	4/13/2012	11:46	West Basin	22.5	37	DWH	
73	7110583-443568-11	4/13/2012	12:50	West Basin	22.5	26.5	DWH	
74	7110583-443568-11	4/13/2012	13:01	West Basin	7	16	DWH	
75	7110583-443568-11	4/13/2012	13:05	West Basin	4	41.5	DWH	

Secondary

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase l Cell

Primar	y / Secondary: Secondary		Serie	es: 4 Mat	Material Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA II
1	8201500-102158814	11/8/2011	9:40	West Basin	22	282	DWH
2	8201500-102158814	11/8/2011	9:57	West Basin	22	219	DWH
3	8201500-102158871	11/8/2011	10:08	West Basin	22	77	DWH
4	8201500-102158871	11/8/2011	10:20	West Basin	22	310	DWH
5	8201500-102158871	11/8/2011	10:55	West Basin	22	101	DWH
6	8201499-102158810	11/8/2011	11:10	West Basin	: 22	221	DWH
7	8201499-102158810	11/8/2011	11:25	West Basin	22	288	DWH
8	8201507-102158893	11/8/2011	11:30	West Basin	22	40	DWH
9	8201507-102158893	11/8/2011	11:45	West Basin	22	296.5	DWH
10	8201507-102158893	11/8/2011	12:54	West Basin	22	150	DWH
11	8201500-102158838	11/8/2011	13:00	West Basin	22	123.5	DWH
12	8201500-102158838	11/8/2011	13:13	West Basin	22	244.5	DWH
13	8201500-102158838	11/8/2011	13:20	West Basin	22	104	DWH
14	8201499-102158812	11/8/2011	13:26	West Basin	22	113	DWH
15	8201499-102158812	11/8/2011	13;36	West Basin	22	180.5	DWH
16	8201499-102158812	11/8/2011	13:47	West Basin	22	146.5	DWH
17	8201499-102158812	11/8/2011	13:50	West Basin	22	29.5	DWH
18	8201507-102158892	11/8/2011	13:55	West Basin	22	87.5	DWH
19	8201507-102158892	11/8/2011	14:00	West Basin	22	86.5	DWH
20	8201507-102158892	11/8/2011	14:04	West Basin	22	59	DWH
21	8201507-102158892	11/8/2011	14:06	West Basin	22	34.5	DWH
22	8201507-102158892	11/8/2011	14:07	West Basin	22	11	DWH
23	8201507-102158892	11/8/2011	14:35	West Basin	22	25.5	DWH
24	8201507-102158892	11/8/2011	14:38	West Basin	22	22	DWH
25	8201507-102158892	11/8/2011	14:40	West Basin	22	9.5	DWH
26	8201507-102158892	11/8/2011	14:45	West Basin	22	26.5	DWH
27	8201507-102158892	11/8/2011	14:48	West Basin	22	26.5	DWH
28	8201507-102158879	11/8/2011	14:53	West Basin	22	27	DWH
29	8201507-102158879	11/8/2011	15:00	West Basin	22	28	DWH
30	8201507-102158879	11/8/2011	15:05	West Basin	22	28	DWH
31	8201500-102158859	11/9/2011	7:35	West Basin	22	30	DWH

Friday, June 22, 2012 Page 1 of 3

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: <u>07</u>

Prima	ry / Secondary: Secondary		Sea	ries: 4 Mater	rial Type: gn	nl	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
32	8201500-102158859	11/9/2011	7:39	West Basin	22	32	DWH
33	8201500-102158859	11/9/2011	7:43	West Basin	22	31.5	DWH
34	8201507-102158902	11/9/2011	7:55	West Basin	22	30.5	DWH
35	8201507-102158902	11/9/2011	7:58	West Basin	22	29.5	DWH
36	8201507-102158902	11/9/2011	8:02	West Basin	22	28.5	DWH
37	8201507-102158879	11/9/2011	8:08	West Basin	22	28.5	DWH
38	8201500-102158853	11/9/2011	8:21	West Basin	22	29.5	DWH
39	8201500-102158853	11/9/2011	8:26	West Basin	22	30.5	DWH
40	8201500-102158853	11/9/2011	8:34	West Basin	22	31.5	DWH
41	8201507-102158895	11/9/2011	8:47	West Basin	22	24	DWH
42	8201507-102158895	11/9/2011	8:50	West Basin	22	34	DWH
43	8201507-102158895	11/9/2011	8:55	West Basin	22	22	DWH
44	8201507-102158895	11/9/2011	9:00	West Basin	22	7	DWH
45	8201507-102158895	11/9/2011	9:02	West Basin	22	8	DWH
46	8201507-102158887	11/9/2011	9:09	West Basin	22	30	DWH
47	8201507-102158887	11/9/2011	9:15	West Basin	22	30	DWH
48	8201507-102158878	11/9/2011	9:20	West Basin	22	30	DWH
49	8201499-102158782	11/9/2011	10:00	West Basin	22	39.5	DWH
50	8201499-102158782	11/9/2011	10:15	West Basin	22	172	DWH
51	8201499-102158782	11/9/2011	10:51	West Basin	22	238	DWH
52	8201500-102158872	11/9/2011	10:52	West Basin	22	36.5	DWH
53	8201500-102158872	11/9/2011	10:53	West Basin	11	16	DWH
54	8201500-102158872	11/9/2011	10:58	West Basin	22	47	DWH
55	8201500-102158872	11/9/2011	11:02	West Basin	22	23	DWH
56	8201500-102158872	11/9/2011	11:06	West Basin	22	11	DWH
57	8201500-102158872	11/9/2011	11:08	West Basin	22	11	DWH
58	8201500-102158872	11/9/2011	11:12	West Basin	22	34	DWH
59	8201500-102158872	11/9/2011	11:14	West Basin	21	11.5	DWH
60	8201500-102158872	11/9/2011	11:16	West Basin	19	4	DWH
61	8201500-102158872	11/9/2011	11:25	West Basin	22	38.5	DWH
62	8201500-102158872	11/9/2011	11:27	West Basin	22	8	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Prima	ry / Secondary: Secondary		Series:	4 Mater	ial Type: gn	ıl	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
63	8201500-102158872	11/9/2011	13:15	West Basin	22	49	DWH
64	8201500-102158872	11/9/2011	13:20	West Basin	22	50.5	DWH
65	8201500-102158872	11/9/2011	13:25	West Basin	22	49	DWH
66	8201494-102158634	11/9/2011	13:41	West Basin	22	44.5	DWH
67	8201494-102158634	11/9/2011	13:48	West Basin	22	29.5	DWH
68	8201494-102158634	11/9/2011	13:53	West Basin	22	28.5	DWH
69	8201494-102158634	11/9/2011	13:58	West Basin	22	28	DWH
70	8201507-102158884	11/9/2011	14:14	West Basin	22	20.5	DWH
71	8201507-102158884	11/9/2011	14:15	West Basin	22	5	DWH
72	8201507-102158884	11/9/2011	14:18	West Basin	22	30	DWH
73	8201507-102158884	11/9/2011	14:23	West Basin	22	29.5	DWH
74	8201507-102158884	11/9/2011	14:29	West Basin	22	24	DWH
75	8201507-102158884	11/9/2011	14:30	West Basin	22	4	DWH
76	8201507-102158884	11/9/2011	14:32	West Basin	22	5.5	DWH
Νι	umber of Panels: 76	-1		Approx. Area (sq.	ft). 109	184.5	

APPENDIX G

Geomembrane Trial Seam Logs

- Calibration of Field Tensiometer
- Fusion
- Extrusion

CalSource, Inc. 1005 West Fayette St Suite 4D Syracuse, NY 13204 866-895-8648 calsource.com

CERTIFICATE OF CALIBRATION

ISSUED TO	EQUIPMENT INFORMATION
CHENANGO CONTRACTING 29 ARBUTUS ROAD JOHNSON CITY NY 13790 CUSTOMER PO NUMBER: MIKE-021312	ASSET NUMBER NAL-0802 MANUFACTURER 'LASTIC WELDING TECHNOLOGIE MODEL NUMBER AL-0102 DESCRIPTION DYNAMOMETER SERIAL NUMBER NAL-0802
TEST	RESULTS
CERTIFICATE NUMBER 308845 AS RECEIVED IN TOLERANCE AS RETURNED PASS LAB TEMPERATURE 68.0 F LAB HUMIDITY 39.5 %	PROCEDURE 33K6-4-1756-1 INTERVAL 12 MONTHS CALIBRATION DATE 3/16/2012 CALIBRATION DUE DATE 3/16/2013 TECHNICIAN BREANNE M WENDT
COM	AMENTS

CALIBRATION STANDARDS

-	ASSET NUMBER	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	DESCRIPTION	CAL DATE	CAL DUE
	CAL-00056	RICE LAKE WEIGHING	N/A	125E THRU 125U	WEIGHT SET	4/19/2011	4/19/2012
	CAL-00162	OMEGA	ITHX-SD	1280668	TEMP/RH LOGGER	9/15/2011	9/15/2012
	CAL-00178	CDI	2000-303-0	260	SOLB WEIGHT HANGER	3/29/2011	3/29/2012

CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9001, ISO/IEC 17025, ISO/TS 16949, ANSI/NCSL Z540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above.

NO EXCEPTIONS **EXCEPTIONS AS NOTED** PROCEED WITH WORK RESUBMIT SUBMIT CERTIFIED PRINTS PARSONS 446199 CLIENTIJOB NO. CONTRACT. BY ACTION TAKEN HEREON DOES NOT SUPERSEDE REQUIREMENTS OF APPLICABLE DESIGN DRAWINGS, SPECIFICATIONS, ORDERS, CODES OR REGULATIONS, OR RELIEVE THE CONTRACTOR OR SUPPLIER FROM

RESPONSIBILITY FOR ERRORS OR OMISSIONS.

3/16/2012

Mar 22 2012

Tensiometer

ID Number	NAL-0802	
Certificate Number	308845	
Technician	Breanne M Wendt	
Date	March 16, 2012	

Force(lbs.):

Range:	0-500 lbs.	 Accuracy -	+/- 1% of ind.

Nominal	Minimum	As Found	As Left	Maximum
50	50	50		51
150	149	151		152
250	248	250		253
350	347	348		354
450	445	448		455

Notes:

Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Tensiometer Description: NAL-0802

Material Type

gml : 2

Peel Inside:

91 ppi

Shear:

120 ppi

Peel Outside:

91 ppi

Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		Te	est Resuli	s		QA
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
100	10/31/2011	9:00	W-39	Vs	S/S	750	8.5	146-140	138-133	247-226	PPI	P	DWH
101	10/31/2011	9:05	W-39	VS	T/T	750	7.5	136-140		213-218	PPI	Р	DWH
102	10/31/2011	9:20	W-2	KP	S/S	365	8.5	156-153	126-139	232-235	PPl	Р	DWH
103	10/31/2011	9:50	W-8	TS	S/S	380	7	117-113	124-119	224-219	PPI	Р	DWH
104	10/31/2011	13:05	W-8	TS	S/S	380	7	132-136	137-124	209-224	PPI	P	DWH
105	10/31/2011	13:06	W-39	VS	S/S	750	8.5	141-142	135-139	210-212	PPI	Р	DWH
106	10/31/2011	13:10	W-39	VS	T/T	750	7.5	146-150	139-137	210-190	PPI	Р	DWH
107	10/31/2011	13:10	W-2	KP	S/S	365	8.5	144-132	165-140	241-227	PPI	Р	DWH
108	10/31/2011	15:00	W-8	TS	T/T	380	6.5	136-156	154-139	197-195	ppi	Р	DWH
109	11/1/2011	8:20	W-8	TS	S/S	380	7	138-135	138-143	234-226	PPI	P	DWH
110	11/1/2011	8:25	W-2	KP	S/S	365	7	136-154	133-143	239-239	PPI	Р	DWH
111	11/1/2011	8:30	W-39	VS	S/S	750	8	151-154	138-155	232-236	PPI	P	DWH
112	11/1/2011	8:35	W-39	VS	T/T	750	7	144-142	127-119	228-236	PPI	P	DWH
113	11/1/2011	13:00	W-8	TS	S/S	380	7	117-126	124-111	195-197	PPI	P	DWH
114	11/1/2011	13:05	W-8	TS	T/T	380	6.5	133-142	132-126	189-194	PPI	P	DWH
115	11/1/2011	13:10	W-2	KP	S/S	365	7	134-132	135-138	205-208	PPI	P	DWH
116	11/1/2011	13:15	W-39	VS	S/S	750	8	117-119	150-134	203-199	PPI	P	DWH
117	11/1/2011	13:20	W-39	VS	S/T	750	7	116-113	134-141	173-203	PPI	P	DWH
118	11/1/2011	13:25	W-39	VS	T/T	750	7.0	114-111	128-132	188-202	PPl	P	DWH
119	11/2/2011	8:05	W-2	KP	S/S	365	7	157-141	136-146	247-231	PPI	P	DWH
120	11/2/2011	8:10	W-8	TS	S/S	380	7.5	135-145	115-126	214-211	PPI	P	DWH
121	11/2/2011	8:12	W-8	TS	T/T	380	6.5	132-137	149-130	212-204	PPI	P	DWH
122	11/2/2011	8:20	W-39	VS	S/S	750	8	133-141	130-130	233-231	PPI	Р	DWH
123	11/2/2011	8:25	W-39	VS	S/T	750	7	146-135	148-156	222-216	PPI	P	DWH
124	11/2/2011	13:00	W-8	TS	S/S	380	7.5	118-119	123-123	196-200	PPI	P	DWH
125	11/2/2011	13:02	W-8	TS	T/T	380	6.5	141-133	124-130	180-182	PPI	P	DWH
126	11/2/2011	13:20	W-39	VS	S/S	750	8	125-123	127-127	201-200	PPI	P	DWH
127	11/2/2011	13:25	W-39	VS	S/T	750	7	166-153	145-150	193-200	PPI	P	DWH
128	11/2/2011	14:00	W-2	TS	S/S	380	7.5	137-149	137-135	211-214	PPI	P	DWH
129	11/2/2011	14:02	W-2	TS	T/T	380	6.5	139-140	133-136	181-185	PPI	P	DWH
130	11/8/2011	8:20	W-39	VS	S/S	750	8.5	129-136	125-103	205-191	PPI	P	DWH
131	11/8/2011	8:21	W-39	VS	T/T	750	7	153-145			PPI	P	DWH
132	11/8/2011	8:25	W-2	KP	S/S	375	8	149-139	144-121	219-219	PPI	P	DWH
133	11/8/2011	10:10	W-8	TS	S/S	380	7.5	118-116	119-126	182-182	PPI	Р	DWH

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

Tensiometer Description: NAL-0802

Material Type gml : 2

Peel Inside: 91

91 ppi

Shear: 120 ppi

Peel Outside: 91 ppi

Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		Te	st Result	s		QA
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
134	11/8/2011	10:12	W-8	TS	Т/Т	380	6.5	133-141	150-144	178-178	PPI	P	DWH
135	11/8/2011	12:30	W-2	KP	S/S	375	8	113-118	118-125	209-205	PPI	Р	DWH
136	11/8/2011	13:40	W-39	VS	S/S	750	8.5	121-120	121-104	184-180	PPI	P	DWH
137	11/8/2011	13:45	W-39	VS	T/T	750	7	125-129	134-142	172-173	PPI	Р	DWH
138	11/8/2011	14:10	W-8	TS	S/S	380	7.5	118-132	116-112	176-176	PPI	P	DWH
139	11/8/2011	14:15	W-8	TS	T/T	380	6.5	117-117	130-118	168-168	PPl	P	DWH
140	11/9/2011	7:30	W-8	TS	S/S	380	8	130-139	121-138	205-207	PPI	P	DWH
141	11/9/2011	7:32	W-8	TS	T/T	380	7	135-138	136-133	186-195	PPI	P	DWH
142	11/9/2011	7:35	W-39	VS	S/S	750	8.5	114-127	130-145	193-215	PPI	P	DWH
143	11/9/2011	7:38	W-39	VS	T/T	750	7	170-170	139-150	206-194	PP1	P	DWH
144	11/9/2011	7:38	W-2	KP	S/S	375	8	138-141	126-143	207-211	PPI	P	DWH
145	11/9/2011	13:00	W-39	VS	S/S	750	8.5	129-125	139-135	191-186	PPI	P	DWH
146	11/9/2011	13:01	W-39	VS	T/T	750	7	126-134	143-152	186-188	PPI	P	DWH
147	11/9/2011	13:02	W-2	KP	S/S	375	7	114-128	125-131	196-196	PPI	P	DWH
148	11/9/2011	13:10	W-8	TS	S/S	380	8	107-113	125-115	177-180	PPl	P	DWH
149	11/9/2011	13:15	W-8	TS	T/T	380	7	99-106	109-117	159-166	PPI	P	DWH
150	12/20/2011	9:20	W-2	TS	S/S	380	7	138-163	138-165	223-234	ppi	р	AR
151	12/20/2011	13:00	W-2	TS	S/S	380	6.8	149-143	142-136	190-197	ppi	р	AR
152	12/22/2011	9:00	W-2	TS	S/S	385	7	158-157	164-150	240-243	ppi	р	AR

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:

91 ppi

Shear:

120 ppi

Peel Outside:

91 ppi

Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		T	est Resul	ts		QA
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
153	3/28/2012	8:45	W-9	VS	S/S	365	7	136-138	141-134	234-235	PPI	Р	DWH
154	3/28/2012	8:45	W-9	VS	T/T	365	6.5			200-218	PPI	P	DWH
155	3/28/2012	9:00	W-5	AS	S/S	365	7			219-218	PPI	P	DWH
156	3/28/2012	9:00	W-5	AS	T/T	365	6			214-229	PPI	P	DWH
157	3/28/2012	10:00	W-10	TS	S/S	370	7				PPI	P	DWH
158	3/28/2012	10:00	W-10	TS	T/T	370	6		-	191-183	PPI	P	DWH
159	3/28/2012	13:20	W-9	VS	S/S	365	7			185-190	PPl	P	DWH
160	3/28/2012	13:20	W-9	VS	T/T	365	6.5			187-182	PPI	P	DWH
161	3/28/2012	14:00	W-5	AS	S/S	365	7			207-210	PPI	P	DWH
162	3/28/2012	14:00	W-5	AS	T/T	365	6	127-121		178-197	PPI	P	DWH
163	3/28/2012	15:00	W-10	TS	S/S	370	7	121-131		192-196	PPI	P	DWH
164	3/28/2012	15:00	W-10	TS	T/T	370	6	145-139	142-141		PPI	P	DWH
165	3/30/2012	13:25	W-9	VS	S/S	365	7	135-120		211-206	PPI	P	DWH
166	3/30/2012	13:25	W-9	VS	T/T	365	6	150-149		218-209	PPI	P	DWH
167	3/30/2012	13:40	W-10	TS	S/S	370	7	126-131		214-210	PPI	P	DWH
168	3/30/2012	13:40	W-10	TS	T/T	370	6	113-123	113-140	173-173	PPI	P	DWH
169	3/30/2012	13:40	W-5	AS	S/S	365	7	131-151		214-215	PPI	P	DWH
170	3/30/2012	13:40	W-5	AS	T/T	365	6	153-117	141-133		PPI	P	DWH
171	3/30/2012	13:45	W-11	KC	S/S	375	7			185-201	PPI	P	DWH
172	3/30/2012	13:45	W-11	KC	T/T	375	6.5	112-111	156-133	195-195	PPI	P	DWH
173	4/5/2012	8:45	W-9	VS	S/S	365	7		121-139		PPI	P	DWH
174	4/5/2012	8:45	W-9	VS	T/T	365	6		139-154		PPI	P	DWH
175	4/5/2012	8:50	W-10	TS	S/S	370	7			219-217	PPI	P	DWH
176	4/5/2012	8:50	W-10	TS	T/T	370	6			232-229	PPI	P	DWH
177	4/5/2012	9:00	W-11	VC	S/S	375	8.5			211-223	PPI	P	DWH
178	4/5/2012	9:00	W-11	VC	T/T	375	6.5			229-225	PPI	P	DWH
179	4/5/2012	10:30	W-9	VS	S/S	365	7	141-119	91-101	200-202	PPI		DWH
180	4/5/2012	10:30	W-10	TS	S/S	370	7			205-201	PPI		DWH
181	4/5/2012	10:30	W-11	VC	S/S	375	8.5			200-201	PPI		DWH
182	4/5/2012	11:45	W-5	AS	S/S	365	7			248-236	PPI		DWH
183	4/5/2012	11:45	W-5	AS	T/T	365	6			243-240	PPI		DWH
184	4/5/2012	12:40	W-10	TS	S/S	370	7			206-204	PPI		DWH
185	4/5/2012	12:40	W-10	TS	T/T	370	6			206-205	PPI	_	DWH
186	4/5/2012	12:45	W-9	VS	S/S	365	7	139-125			PPI		DWH

consultants

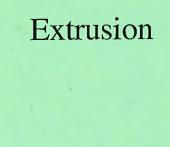
Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: <u>GJ4706</u> Description: Construction Quality Assurance for Onondaga SCA Phase 1 Cell

TaskNo: 07


120 ppi

Tensiometer Description: NAL-0802

Material Type gml : 6 Peel Inside: 91 ppi Shear:

> Peel Outside: 91 ppi

Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		Te	est Result	's		QA
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
187	4/5/2012	12:45	W-9	VS	T/T	365	6	118-150	117-132	210-205	PPI	P	DWH
188	4/5/2012	12:55	W-11	VC	S/S	375	8.5	127-128	128-118	212-212	PPI	Р	DWH
189	4/5/2012	12:55	W-11	VC	T/T	375	6.5	153-155	120-132	206-212	PPI	Р	DWH
190	4/12/2012	8:25	W-10	TS	T/T	370	6	97-126	125-152	167-177	PPl	Р	DWH
191	4/12/2012	8:35	W-5	AS	S/S	365	7	127-126	109-117	202-200	PPI	P	DWH
192	4/12/2012	8:35	W-5	AS	T/T	365	6	152-121	145-143	201-164	PPI	Р	DWH
193	4/12/2012	9:00	W-9	VS	S/S	365	7	117-106	108-109	203-195	PPI	P	DWH
194	4/12/2012	9:00	W-9	VS	T/T	365	6	163-160	182-162		PPI	P	DWH
195	4/12/2012	10:10	W-11	TS	S/S	375	7	110-107			PPI	P	DWH
196	4/12/2012	10:10	W-11	TS	T/T	375	6	129-119	131-133		PPI	P	DWH
197	4/12/2012	12:10	W-9	VS	S/S	365	7	112-113			PPI	P	DWH
198	4/12/2012	12:10	W-9	VS	T/T	365	6	125-133	151-129	165-168	PPI	P	DWH
199	4/12/2012	12:44	W-5	AS	S/S	365	7	112-117	102-130		PPI	P	DWH
200	4/12/2012	12:44	W-5	AS	T/T	365	6	105-128	120-124		PPI	P	DWH
201	4/12/2012	12:44	W-5	AS	S/T	365	6	129-98	118-98	182-179	PPI	P	DWH
202	4/12/2012	14:10	W-11	TS	S/S	375	7	102-91	103-104		PPI	P	DWH
203	4/13/2012	8:50	W-9	VS	S/S	365	7	131-131	131-146		PPI	P	DWH
204	4/13/2012	8:50	W-9	VS	T/T	365	7	132-151	136-147		PPI	P	DWH
205	4/13/2012	8:50	W-5	AS	S/S	365	7	126-119	105-107	186-181	PPI	Р	DWH
206	4/13/2012	8:50	W-5	AS	T/T	365	6	136-117	146-128	173-160	PPI	P	DWH
207	4/13/2012	8:50	W-5	AS	S/T	365	6	100-130	112-135		PPI	P	DWH
208	4/13/2012	9:10	W-14	TS	S/S	370	7	106-105	108-112		PPI	P	DWH
209	4/13/2012	9:10	W-14	TS	T/T	370	6	132-138	164-139		PPI	P	DWH
210	4/13/2012	10:30	W-9	VS	S/T	365	6.5	128-124	118-116		PPI	P	DWH
211	4/13/2012	13:10	W-14	TS	S/S	370	7				PPI	Р	DWH
212	4/13/2012	13:10	W-14	TS	T/T	370	6		116-116		PPI	P	DWH
213	4/13/2012	13:15	W-5	AS	S/S	365	7		106-130		PPI	P	DWH
214	4/13/2012	13:15	W-5	AS	T/T	365	6		116-142		PPI	P	DWH
215	4/13/2012	13:15	W-5	AS	S/T	365	6	98-119	121-130		PPI	Р	DWH
216	4/13/2012	13:35	W-9	VS	S/S	365	7		114-123		PPI	P	DWH
217	4/13/2012	13:35	W-9	VS	T/T	365	6		141-119		PPI	P	DWH

consultants

Trial Seam Log - Extrusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Tensiometer Description: NAL-0802

Material Type

gml : 2

Peel:

78 ppi

Shear:

120 ppi

		J				,,,	bb.		Dittar.	120	ppi		
Trial Seam No	Date	Time	Mach	Oper	Mat	Extr	usion		Test Res	ults		14	QA II
Seum No			ID	ID	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No	
052	11/2/2011	14:15	MX-5	LV	T/T	500	500	152-150	186-186	PPI	P		DWH
053	11/3/2011	8:30	MX-8	VS	T/T	500	500	137-138	204-213	PPI	Р		DWH
054	11/3/2011	8:45	MX-5	LV	T/T	500	500	119-121	204-210	PPI	Р		DWH
055	11/3/2011	12:45	MX-5	LV	T/T	500	500	141-148	180-205	PPI	Р	12	DWH
056	11/3/2011	12:45	MX-8	VS	T/T	500	500	132-129	177-173	PPI	Р		DWH
057	11/4/2011	8:30	MX-8	VS	T/T	535	500	147-144	215-225	PPI	Р	ŝ	DWH
058	11/7/2011	8:00	MX-8	VS	T/T	535	500	149-162	230-208	PPI	P		DWH
059	11/7/2011	12:45	MX-8	VS	T/T	535	500	130-143	200-196	PPI	Р	I .	DWH
060	11/9/2011	15:40	MX-14	CP	T/T	465	500	137-130	225-218	PPI	Р		DWH
061	11/10/2011	8:00	MX-5	LV	T/T	500	500	145-130	203-201	PPI	Р		DWH
062	11/10/2011	8:00	MX-8	VS	T/T	535	500	140-142	210-189	PPI	Р		DWH
063	11/10/2011	12:45	MX-8	VS	T/T	535	500	136-151	200-204	PPI	Р		DWH
064	11/10/2011	12:50	MX-5	LV	Т/Т	500	500	111-124	204-184	PPI	Р		DWH
065	11/11/2011	8:00	MX-8	VS	T/T	535	500	131-135	216-224	PPI	Р		DWH
066	11/11/2011	8:00	MX-5	KP	T/T	550	500	129-151	210-218	PPI	Р		DWH
067	11/14/2011	8:00	MX-8	VS	T/T	535	500	125-131	206-201	PPI	Р		DWH
068	11/14/2011	8:00	MX-5	KP	Т/Т	535	500	139-143	202-203	PPI	Р		DWH
069	11/15/2011	8:00	MX-8	VS	T/T	535	500	131-141	205-207	PPI	Р		DWH
070	11/15/2011	8:30	MX-5	KP	T/T	535	500	138-135	215-210	PPI	Р		DWH
071	11/15/2011	12:40	MX-5	KP	T/T	535	500	187-167	176-205	PPI	Р		DWH
072	11/15/2011	13:45	MX-8	VS	T/T	535	500	110-138	187-210	PPI	Р	i	DWH
073	11/22/2011	9:00	MX-5	KP	T/T	500	500	152-152	230-232	PPl	P		DWH
074	12/13/2011	14:00	MX-8	LV	T/T	500	500	90-83	217-219	PPI	Р		DWH
075	12/14/2011	9:30	MX-8	LV	T/T	500	500	109-101	215-214	PPI	Р		DWH
076	12/20/2011	9:15	MX-14	VC	T/T	550	525	109-140	216-218	PPI	Р		AR
077	12/20/2011	12:45	MX-14	VC	T/T	550	525	142-140	220-219	PPI	Р		AR
078	12/20/2011	13:00	MX-8	VS	T/T	550	550	150-142	221-218	PPI	Р		AR
079	12/22/2011	9:05	MX-19	MB	T/T	425	525	114-140	221-204	PPI	Р		AR
080	12/22/2011	9:00	MX-8	VS	Т/Т	550	535	113-131	212-194	PPI	P		AR
081	12/22/2011	13:00	MX-19	MB	T/T	550	525	120-106	190-205	PPI	P		AR
	12/22/2011	13:00	MX-8	VS	T/T	550	535	108-118	200-210	PPI	Р		AR
	3/27/2012	8:00	MX-16	KC	T/T	550	550	135-115	245-252	PPI	P		DWH

Geosyntec[>]

consultants

Trial Seam Log - Extrusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase 1 Cell

Tensiometer Description: NAL-0802

Peel:

Tensioneter Description: NAL-080

Material Type gml: 6

78 ppi

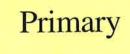
Shear:

ProjNo: GJ4706

120 ppi

TaskNo: 07

Trial Seam No	Date	Time	Mach	Oper	Mat	Extri	usion		Test Res	ults		Retest	QA ID
seam No			ID	1D	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No	
084	3/28/2012	13:35	MX-16	CP	T/T	450	495	145-132	168-171	PPI	Р		DWH
085	3/30/2012	8:15	MX-16	VS	T/T	500	500	128-140	189-190	PPI	P		DWH
086	4/2/2012	8:30	MX-16	VS	T/T	500	500	155-154	189-216	PPI	Р		DWH
087	4/2/2012	10:30	MX-16	VS	T/T	500	500	119-124	198-196	PPJ	Р		DWH
088	4/2/2012	12:45	MX-16	VS	T/T	500	500	142-131	185-191	PPI	P		DWH
089	4/3/2012	8:30	MX-16	VS	T/T	500	500	138-146	224-214	PPJ	Р		DWH
090	4/3/2012	10:00	MX-16	VS	T/T	500	500	119-121	178-191	PPI	Р		DWH
091	4/3/2012	12:45	MX-16	VS	T/T	500	500	135-128	187-190	PPI	P	-	DWH
092	4/4/2012	9:42	MX-16	VS	T/T	500	500	147-142	203-207	PPI	Р		DWH
093	4/6/2012	9:10	MX-16	VS	T/T	500	500	151-163	212-210	PPI	Р		DWH
094	4/6/2012	13:40	MX-16	VS	T/T	500	500	140-136	181-176	PPI	Р		DWH
095	4/9/2012	8:15	MX-16	VS	T/T	500	500	140-133	212-216	PPI	P		DWH
096	4/9/2012	10:30	MX-16	VS	T/T	500	500	150-137	191-198	PPI	P		DWH
097	4/9/2012	12:45	MX-16	VS	T/T	500	500	138-151	196-192	PPI	P	_	DWH
098	4/10/2012	8:30	MX-16	VS	Т/Т	500	500	158-165	220-209	PPI	P		DWH
099	4/10/2012	12:40	MX-16	VS	T/T	500	500	149-140	221-204	PPI	P		DWH
100	4/13/2012	9:20	MX-12	VC	T/T	500	500	126-129	188-196	PPI	P		DWH
101	4/13/2012	13:30	MX-18	VC	T/T	475	500	128-130	196-186	PPI	P	-	DWH
102	4/16/2012	8:00	MX-16	VS	T/T	500	500	134-122	171-178	PPI	P		DWH
103	4/16/2012	9:00	MX-18	LV	T/T	475	500	120-118	171-173	PPI	P		DWH
104	4/16/2012	13:00	MX-18	LV	T/T	475	500	130-131	156-162	PPI	P		DWH
105	4/16/2012	14:45	MX-16	BTK	T/T	500	450	135-123	137-138	PPI	P		DWH
106	4/17/2012	8:00	MX-18	LV	T/T	500	500	128-163	192-189	PPI	P		DWH
107	4/17/2012	12:50	MX-18	LV	T/T	500	500	115-158	141-182	PPI	P		DWH
108	4/18/2012	8:05	MX-18	LV	T/T	500	500	112-136	230-230	PPI	P		DWH
109	4/18/2012	8:05	MX-16	VS	T/T	500	500	134-147	201-196	PPI	P		DWH
110	4/18/2012	12:40	MX-16	VS	T/T	500	500	136-147	168-178	PPl	P		DWH
111	4/18/2012	12:45	MX-18	LV	T/T	500	500	120-135	208-209	PPI	P		DWH
112	4/19/2012	8:10	MX-16	VS	T/T	500	500	134-139	209-223	PPI	P		DWH
	5/16/2012	13:20	MX-16	VC	T/T	425	475	115-119	174-169	PPI	P		DWH
114	5/17/2012	8:20	MX-16	VC	T/T	475	500	123-122	161-164	PPJ	P		DWH
115	5/17/2012	9:30	MX-18	CAP	T/T	475	475	142-141	168-168	PPI	P		DWH
116	5/17/2012	12:40	MX-18	CAP	Т/Т	475	475	128-140	164-169	PPI	P		DWH
117	5/17/2012	12:50	MX-16	VC	T/T	475	500	130-124	165-168	PPI	P		DWH


APPENDIX H

Geomembrane Production Seam and Non-Destructive Test Logs

- East Basin
- West Basin

East Basin

- Primary
- Secondary

Geosyntec[>]

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706 Location: Camillus, New York TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Specifications: Seam Pressure: 25-30 PSI 3 lb loss Material Type gml : 6 Vacuum Box: 5 PSI 20 Sec

Primary / Secondary: Primary Series: 3

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
3/28/2012	9:15	W-9	VS	F	3-002-003-0-22.5	22.5	DWH	0-22.5	30-29	MAB	P	AT OK	DWH
3/28/2012	9:25	W-9	VS	F	3-001-003-0-105	105	DWH	0-105	30-30	MAB	P	AT OK	DWH
3/28/2012	10:04	W-5	AS	F	3-004-005-0-27	27	DWH	0-27	30-28	MAB	P	AT OK	DWH
3/28/2012	10:06	W-9	VS	F	3-001-002-0-193	193	DWH	0-193	30-30	MAB	P	AT OK	DWH
3/28/2012	10:19	W-5	AS	F	3-005-006-29-0	29	DWH	0-29	30-30	MAB	P	AT OK	DWH
3/28/2012	10:25	W-10	TS	F	3-008-009-32-0	32	DWH	0-32	30-29	MAB	P	AT OK	DWH
3/28/2012	10:30	W-5	AS	F	3-006-007-32-0	32	DWH	0-322	30-29	MAB	P	AT OK	DWH
3/28/2012	10:37	W-10	TS	F	3-009-010-32-0	32	DWH	0-32	30-30	MAB	Р	AT OK	DWH
3/28/2012	10:40	W-5	AS	F	3-007-008-32-0	32	DWH	0-32	30-29	MAB	Р	AT OK	DWH
3/28/2012	10:45	W-9	VS	F	3-013-014-36-0	36	DWH	0-36	30-29	MAB	Р	AT OK	DWH
3/28/2012	10:50	W-10	TS	F	3-010-011-33-0	33	DWH	0-33	30-30	MAB	P	AT OK	DWH
3/28/2012	10:55	W-5	AS	F	3-011-012-34-0	34	DWH	0-34	30-27	MAB	P	AT OK	DWH
3/28/2012	11:00	W-10	TS	F	3-012-013-34-0	34	DWH	0-34	30-30	MAB	P	AT OK	DWH
3/28/2012	11:10	W-9	VS	F	3-001-016-32-0	32	DWH	0-32	30-30	MAB	P	AT OK	DWH
3/28/2012	11:25	W-9	VS	F	3-016-017-12-0	12	DWH :	0-12	30-30	MAB	P	AT OK	DWH
3/28/2012	11:35	W-9	VS	F	3-015-017-0-4	4	DWH	0-4	CAPPED	AS	P	VT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

Series: 3

Production Seam					Location			Nondestructive Test						
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID	
3/28/2012	11:37	W-9	VS	F	3-015-016-26-0	26	DWH	26-0	30-27	MAB	P	AT OK	DWH	
3/28/2012	11:38	W-5	AS	F	3-001-014-22-0	22	DWH	0-22	30-29	MAB	P	AT OK	DWH	
3/28/2012	12:30	W-5	AS	F	3-001-013-23-0	23	DWH	0-23	30-30	MAB	P	AT OK	DWH	
3/28/2012	12:40	W-5	AS	F	3-001-012-23-0	23	DWH	0-23	30-27	MAB	Р	AT OK	DWH	
3/28/2012	12:40	W-10	TS	F	3-002-018-192-0	192	DWH	0-192	30-30	MAB	Р	AT OK	DWH	
3/28/2012	12:50	W-5	AS	F	3-001-011-23-0	23	DWH	23-0	30-30	MAB	P	AT OK	DWH	
3/28/2012	13:02	W-5	AS	F	3-001-010-22-0	22	DWH	0-22	30-28	MAB	P	AT OK	DWH	
3/28/2012	13:20	W-5	AS	F	3-001-008-23-0	23	DWH	0-23	30-29	MAB	P	AT OK	DWH	
3/28/2012	13:20	W-10	TS	F	3-003-018-106-0	106	DWH	0-106	30-30	MAB	P	AT OK	DWH	
3/28/2012	13:25	W-5	AS	F	3-001-007-23-0	23	DWH	0-23	30-30	MAB	P	AT OK	DWH	
3/28/2012	13:30	W-5	AS	F	3-001-006-23-0	23	DWH	0-23	30-30	MAB	P	AT OK	DWH	
3/28/2012	13:30	W-9	VS	F	3-019-020-0-22	22	DWH	0-22	30-28	MAB	P	AT OK	DWH	
3/28/2012	13:34	W-5	AS	F	3-001-005-22-0	22	DWH	0-22	30-30	MAB	P	AT OK	DWH	
3/28/2012	13:36	W-9	VS	F	3-018-019-112-0	112	DWH	0-112	30-30	MAB	P	AT OK	DWH	
3/28/2012	13:41	W-5	AS	F	3-001-004-22-0	22	DWH	0-22	30-29	MAB	P	AT OK	DWH	
3/28/2012	13:48	W-5	AS	F	3-001-009-23-0	23	DWH	0-23	30-30	MAB	Р	AT OK	DWH	

Geosyntec[>]

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gm! : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Drimora

Series: 3

Production Seam					Location			Nondestructive Test						
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL	
3/28/2012	13:51	W-9	VS	F	3-018-020-0-188	188	DWH	0-188	30-30	MAB	Р	AT OK	DWH	
3/28/2012	14:05	W-10	TS	F	3-019-021-114-0	114	DWH	0-114	30-29	MAB	Р	AT OK	DWH	
3/28/2012	14:30	W-10	TS	F	3-020-021-186-0	186	DWH	0-186	30-30	MAB	Р	AT OK	DWH	
3/28/2012	14:30	W-10	TS	F	3-021-022-300-0	300	DWH	0-300	30-30	MAB	Р	AT OK	DWH	
3/28/2012	14:53	W-5	AS	F	3-022-023-187-0	187	DWH	0-187	30-30	MAB	Р	AT OK	DWH	
3/28/2012	15:07	W-10	TS	F	3-023-024-0-22	22	DWH	0-22	30-30	MAB	Р	AT OK	DWH	
3/28/2012	15:22	W-5	AS	F	3-022-024-116-0	116	DWH	0-116	30-30	MAB	P	AT OK	DWH	
3/28/2012	15:35	W-10	TS	F	3-023-025-192-0	192	DWH	0-192	30-30	MAB	Р	AT OK	DWH	
3/28/2012	15:45	W-5	AS	F	3-004-015-28-0	28	DWH	0-28	30-29	MAB	P	AT OK	DWH	
3/28/2012	15:59	W-5	AS	F	3-001-015-7-0	7	DWH	0-7	30-30	MAB	Р	AT OK	DWH	
3/28/2012	16:00	W-10	TS	F	3-024-025-116-0	116	DWH	0-116	30-30	MAB	P	AT OK	DWH	
3/28/2012	16:00	W-9	VS	F	3-025-026-58-0	58	DWH	0-58	30-30	MAB	Р	AT OK	DWH	
3/28/2012	16:10	W-9	VS	F	3-026-027-0-22.5	22.5	DWH	0-22.5	30-27	MAB	P	AT OK	DWH	
3/28/2012	16:25	W-9	VS	F	3-025-027-250-0	250	DWH	0-250	30-30	MAB	P	AT OK	DWH	
3/28/2012	16:34	W-5	AS	F	3-026-028-63-0	63	DWH	0-63	30-29	MAB	P	AT OK	DWH	
3/28/2012	16:45	W-5	AS	F	3-027-028-185-0	185	DWH	0-185	30-29	MAB	Р	AT OK	DWH	

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	uctive Test			
Date	Time	Mach. IL	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
3/28/2012	16:45	W-10	TS	F	3-028-029-0-22	22	DWH	0-22	30-29	MAB	P	AT OK	DWH
3/28/2012	17:00	W-10	TS	F	3-027-029-65-0	65	DWH	0-65	30-30	MAB	P	AT OK	DWH
3/30/2012	13:45	W-9	VS	F	3-028-030-248-0	248	DWH	0-248	30-30	AS	Р	AT OK	DWH
3/30/2012	14:11	W-10	TS	F	3-031-032-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
3/30/2012	14:16	W-9	VS	F	3-029-030-65-0	65	DWH	0-65	30-30	AS	P	AT OK	DWH
3/30/2012	14:25	W-10	TS	F	3-030-031-108-0	108	DWH	0-108	30-29	AS	Р	AT OK	DWH
3/30/2012	14:30	W-5	AS	F	3-033-034-0-22.5	22.5	DWH	0-22,5	30-28	AS	P	AT OK	DWH
3/30/2012	14:32	W-11	KC	F	3-031-033-109-0	109	DWH	0-109	30-30	AS	P	AT OK	DWH
3/30/2012	14:45	W-10	TS	F	3-030-032-205-0	205	DWH	0-205	30-30	AS	Р	AT OK	DWH
3/30/2012	14:45	W-5	AS	F	3-033-035-278-0	278	DWH	0-278	30-30	AS	Р	AT OK	DWH
3/30/2012	14:50	W-11	KC	F	3-032-033-164-0	164	DWH	0-164	30-30	AS	P	AT OK	DWH
3/30/2012	15:00	W-9	VS	F	3-035-036-122-0	122	DWH	0-122	30-30	AS	P	AT OK	DWH
3/30/2012	15:15	W-11	KC	F	3-032-034-40-0	40	DWH	0-40	30-30	AS	P	AT OK	DWH
3/30/2012	15:15	W-9	VS	F	3-036-037-0-22.5	22.5	DWH	22.5	30-30	AS	Р	AT OK	DWH
3/30/2012	15:20	W-10	TS	F	3-036-038-122-0	122	DWH	0-122	30-30	AS	Р	AT OK	DWH
3/30/2012	15:21	W-9	VS	F	3-035-037-196-0	196	DWH	0-196	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
3/30/2012	15:27	W-5	AS	F	3-034-035-40-0	40	DWH	0-40	30-30	AS	P	AT OK	DWH
3/30/2012	15:30	W-11	KC	F	3-037-038-159-0	159	DWH	0-159	30-30	AS	P	AT OK	DWH
3/30/2012	15:35	W-11	KC	F	3-037-039-37-0	37	DWH	0-37	30-30	AS	Р	AT OK	DWH
3/30/2012	15:40	W-5	AS	F	3-038-039-0-22.5	22.5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
4/12/2012	8:46	W-10	TS	F	3-040-041-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
4/12/2012	9:15	W-5	AS	F	3-038-040-266-0	266	DWH	0-266	30-30	AS	Р	AT OK	DWH
4/12/2012	9:45	W-9	VS	F	3-040-042-274-0	274	DWH	0-274	30-30	AS	P	AT OK	DWH
4/12/2012	10:00	W-5	AS	F	3-038-041-20-0	20	DWH	0-20	30-30	AS	P	AT OK	DWH
4/12/2012	10:03	W-5	AS	F	3-039-041-34-0	34	DWH	0-34	30-30	AS	P	AT OK	DWH
4/12/2012	10:19	W-5	AS	F	3-042-043-103-0	103	DWH	0-103	30-27	AS	P	AT OK	DWH
4/12/2012	10:20	W-9	VS	F	3-041-042-54-0	54	DWH	0-54	30-30	AS	P	AT OK	DWH
4/12/2012	10:20	W-11	TS	F	3-043-044-0-22.5	22.5	DWH	0-22.5	30-27	AS	P	AT OK	DWH
4/12/2012	10:24	W-9	VS	F	3-048-049-0-54	54	DWH	0-54	30-27	AS	P	AT OK	DWH
4/12/2012	10:35	W-9	VS	F	3-045-046-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
4/12/2012	10:38	W-5	AS	F	3-042-044-227-0	227	DWH	0-227	30-29	AS	P	AT OK	DWH
4/12/2012	10:40	W-11	TS	F	3-043-045-105-0	105	DWH	0-105	30-29	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary: Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID		Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/12/2012	10:45	W-9	VS	F	3-045-047-243-0	243	DWH	0-243	30-30	AS	Р	AT OK	DWH
4/12/2012	10:55	W-11	TS	F	3-044-045-163-0	163	DWH	0-163	30-30	AS	P	AT OK	DWH
4/12/2012	11:20	W-11	TS	F	3-044-046-62-0	62	DWH	0-62	30-30	AS	P	AT OK	DWH
4/12/2012	11:34	W-9	VS	F	3-050-051-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
4/12/2012	11:35	W-5	AS	F	3-049-050-0-36	36	DWH	0-36	30-30	AS	P	AT OK	DWH
4/12/2012	11:40	W-5	AS	F	3-049-051-0-18	18	DWH	0-18	30-30	AS	P	AT OK	DWH
4/12/2012	11:45	W-11	TS	F	3-050-052-0-38	38	DWH	0-38	30-30	AS	P	AT OK	DWH
4/12/2012	11:45	W-9	VS	F	3-052-053-0-55	55	DWH	0-55	30-30	AS	P	AT OK	DWH
4/12/2012	11:50	W-11	TS	F	3-051-052-0-16	16	DWH	0-16	30-28	AS	P	AT OK	DWH
4/12/2012	12:45	W-11	TS	F	3-053-054-0-52	52	DWH	0-52	30-30	AS	P	AT OK	DWH
4/12/2012	13:05	W-11	TS	F	3-054-055-0-52	52	DWH	0-52	30-30	AS	P	AT OK	DWH
4/12/2012	13:10	W-9	VS	F	3-056-057-0-34	34	DWH	0-34	30-30	AS	P	AT OK	DWH
4/12/2012	13:12	W-5	AS	F	3-056-058-0-34	34	DWH	0-34	30-30	AS	P	AT OK	DWH
4/12/2012	13:20	W-11	TS	F	3-058-059-0-22.5	22.5	DWH	0-22.5	30-29	AS	P	AT OK	DWH
4/12/2012	13:22	W-5	AS	F	3-055-057-0-23	23	DWH	0-23	30-30	AS	Р	AT OK	DWH
4/12/2012	13:25	W-5	AS	F	3-055-056-0-21	21	DWH	0-21	30-28	AS	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Specifications:

gml : 6

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Material Type

Primary

Series: 3

Seam Pressure: 25-30 PSI 3 lb loss

	Produ	ction Seam			Locatio	n			Nondestri	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/12/2012	13:25	W-11	TS	F	3-059-060-0-16	16	DWH	0-16	30-30	AS	P	AT OK	DWH
4/12/2012	13:35	W-1 I	TS	F	3-047-060-0-19	19	DWH	0-19	30-30	AS	P	AT OK	DWH
4/12/2012	13:38	W-5	AS	F	3-047-048-21-0	21	DWH	0-21	30-30	AS	P	AT OK	DWH
4/12/2012	13:42	W-5	AS	F	3-047-049-23-0	23	DWH	0-23	30-30	AS	P	AT OK	DWH
4/12/2012	13:47	W-5	AS	F	3-047-051-23-0	23	DWH	0-23	30-29	AS	P	AT OK	DWH
4/12/2012	13:51	W-5	AS	F	3-047-052-22-0	22	DWH	0-22	30-30	AS	P	AT OK	DWH
4/12/2012	13:55	W-5	AS	F	3-047-053-23-0	23	DWH	0-23	30-27	AS	P	AT OK	DWH
4/12/2012	13:59	W-5	AS	F	3-047-054-22-0	22	DWH	0-22	30-30	AS	P	AT OK	DWH
4/12/2012	14:03	W-5	AS	F	3-047-055-23-0	23	DWH	0-23	30-30	AS	Р	AT OK	DWH
4/12/2012	14:07	W-5	AS	F	3-047-056-14-0	14	DWH	0-14	30-30	AS	P	AT OK	DWH
4/12/2012	14:10	W-9	VS	F	3-046-061-0-58	58	DWH	0-58	30-29	AS	P	AT OK	DWH
4/12/2012	14:11	W-5	AS	F	3-047-058-25-0	25	DWH	0-25	30-30	AS	P	AT OK	DWH
4/12/2012	14:13	W-5	AS	F	3-047-059-25-0	25	DWH	0-25	30-30	AS	P	AT OK	DWH
4/12/2012	14:20	W-11	TS	F	3-062-064-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
4/12/2012	14:32	W-5	AS	F	3-063-065-0-26	26	DWH	0-26	30-30	AS	Р	AT OK	DWH
4/12/2012	14:40	W-9	VS	F	3-061-065-0-45	45	DWH	0-45	30-30	VC	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml: 6

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n		17	Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/12/2012	14:43	W-5	AS	F	3-065-066-0-35	35	DWH	0-35	30-29	VC	P	AT OK	DWH
4/12/2012	14:49	W-11	TS	F	3-063-064-0-32	32	DWH	0-32	30-30	AS	P	AT OK	DWH
4/12/2012	14:52	W-11	TS	F	3-062-065-0-31	31	DWH	0-31	30-30	AS	P	AT OK	DWH
4/12/2012	14:55	W-5	AS	F	3-067-068-0-16	16	DWH	0-16	30-30	VC	P	AT OK	DWH
4/12/2012	14:59	W-11	TS	F	3-061-062-0-23	23	DWH	0-23	30-30	VC	P	AT OK	DWH
4/12/2012	15:05	W-9	VS	F	3-067-069-36-0	36	DWH	0-36	30-29	AS	P	AT OK	DWH
4/12/2012	15:09	W-9	VS	F	3-069-070-0-31	31	DWH	0-31	30-30	AS	P	AT OK	DWH
4/12/2012	15:14	W-5	AS	F	3-066-068-0-20	20	DWH	0-20	30-29	VC	P	AT OK	DWH
4/12/2012	15:18	W-5	AS	F	3-066-067-0-16	16	DWH	0-16	30-30	VC	P	AT OK	DWH
4/12/2012	15:20	W-9	VS	F	3-065-071-0-33	33	DWH	0-33	30-30	AS	P	AT OK	DWH
4/12/2012	15:21	W-5	AS	F	3-065-067-0-13	13	DWH	0-13	30-30	VC	P	AT OK	DWH
4/12/2012	15:25	W-5	AS	F	3-065-069-0-25	25	DWH	0-25	30-29	VC	Р	AT OK	DWH
4/12/2012	15:30	W-9	VS	F	3-048-071-0-33	33	DWH	0-33	30-27	AS	Р	AT OK	DWH
4/12/2012	15:32	W-5	AS	F	3-070-071-0-36	36	DWH	0-36	30-30	AS	P	AT OK	DWH
4/12/2012	15:36	W-9	VS	F	3-048-065-0-22	22	DWH	0-22	30-30	AS	P	AT OK	DWH
4/12/2012	15:40	W-5	AS	F	3-045-064-0-20	20	DWH	0-20	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Drimary

Series: 3

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/12/2012	15:40	W-9	VS	F	3-047-063-0-21	21	DWH	0-21	30-30	AS	Р	AT OK	DWH
4/12/2012	15:45	W-5	AS	F	3-045-062-0-8	8	DWH	0-8	30-28	AS	P	AT OK	DWH
4/12/2012	15:47	W-5	AS	F	3-046-062-0-17	17	DWH	0-17	30-28	AS	Р	AT OK	DWH

Total Length Fusion: 8473

Total Length Extrusion: 0

Comments:

Secondary

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gm1 : 2

Specifications: Seam Pressure: 25-30 PS1 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary: Secondary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
10/31/2011	9:50	W-39	VS	F	2-002-003-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
10/31/2011	10:05	W-39	VS	F	2-001-002-176-0	176	DWH	0-176	30-30	ВН	P	AT OK	DWH
10/31/2011	10:35	W-39	VS	F	2-001-003-147-0	147	DWH	0-147	30-30	ВН	Р	AT OK	DWH
10/31/2011	10:35	W-8	TS	F	2-002-004-174-0	174	DWH	0-174	30-30	ВН	P	AT OK	DWH
10/31/2011	10:40	W-2	KP	F	2-004-005-36-0	36	DWH	0-36	30-30	ВН	Р	AT OK	DWH
10/31/2011	10:53	W-2	KP	F	2-004-006-283-273	10	DWH	273-283	30-30	ВН	Р	AT OK	DWH
10/31/2011	11:25	W-39	VS	F	2-005-006-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
10/31/2011	11:31	W-8	TS	F	2-003-004-146-0	146	DWH	0-146	30-27	ВН	Р	AT OK	DWH
10/31/2011	13:33	W-2	KP	F	2-004-006-273-165	108	DWH	165-273	30-30	ВН	Р	AT OK	DWH
10/31/2011	13:45	W-8	TS	F	2-005-007-35-0	35	DWH	0-35	30-30	ВН	Р	AT OK	DWH
10/31/2011	13:48	W-8	TS	F	2-006-007-191-0	191	DWH	0-191	30-30	ВН	Р	AT OK	DWH
10/31/2011	13:55	W-39	VS	F	2-007-008-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
10/31/2011	14:05	W-2	KP	F	2-004-006-165-152	13	DWH	152-165	CAPPED	ВН	Р	VT OK	DWH
10/31/2011	14:08	W-2	KP	F	2-004-006-152-0	152	DWH	0-152	30-27	ВН	Р	AT OK	DWH
10/31/2011	14:20	W-8	TS	F	2-006-008-93-0	93	DWH	0-93	30-30	ВН	P	AT OK	DWH
10/31/2011	14:42	W-39	VS	F	2-007-009-223-0	223	DWH	0-223	30-30	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gm1 : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
10/31/2011	15:15	W-8	TS	F	2-010-011-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
10/31/2011	15:20	W-39	VS	F	2-008-009-91-0	91	DWH	0-91	30-30	ВН	P	AT OK	DWH
10/31/2011	15:40	W-8	TS	F	2-009-010-87-0	87	DWH	0-87	30-30	вн	P	AT OK	DWH
10/31/2011	15:45	W-39	VS	F	2-009-011-140-0	140	DWH	0-140	30-30	ВН	Р	AT OK	DWH
10/31/2011	15:50	W-8	TS	F	2-009-011-226-140	86	DWH	140-226	30-30	ВН	P	AT OK	DWH
11/1/2011	8:50	W-2	KP	F	2-013-014-34-0	34	DWH	0-34	30-30	ВН	P	AT OK	DWH
11/1/2011	8:55	W-2	KP	F	2-012-014-276-0	276	DWH	0-276	30-30	ВН	P	AT OK	DWH
11/1/2011	9:00	W-39	VS	F	2-012-013-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	9:06	W-8	TS	F	2-010-013-37-0	37	DWH	0-37	30-30	ВН	P	AT OK	DWH
11/1/2011	9:10	W-8	TS	F	2-010-012-48-0	48	DWH	0-48	30-30	ВН	P	AT OK	DWH
11/1/2011	9:10	W-39	VS	F	2-014-015-151-0	151	DWH	0-151	30-30	ВН	P	AT OK	DWH
11/1/2011	9:20	W-8	TS	F	2-011-012-227-0	227	DWH	0-227	30-30	ВН	P	AT OK	DWH
11/1/2011	9:34	W-39	VS	F	2-015-016-0-22	22	DWH	0-22	30-28	ВН	P	AT OK	DWH
11/1/2011	9:40	W-39	VS	F	2-014-016-157-0	157	DWH	0-157	30-30	ВН	Р	AT OK	DWH
11/1/2011	10:07	W-8	TS	F	2-015-017-153-0	153	DWH	0-153	30-30	ВН	Р	AT OK	DWH
11/1/2011	10:18	W-39	VS	F	2-018-019-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/1/2011	10:23	W-2	KP	F	2-017-018-32-0	32	DWH	0-32	30-30	ВН	. Р	AT OK	DWH
11/1/2011	10:30	W-2	KP	F	2-017-019-273-0	273	DWH	0-273	30-30	ВН	P	AT OK	DWH
11/1/2011	10:30	W-39	VS	F	2-018-020-32-0	32	DWH	0-32	30-30	ВН	Р	AT OK	DWH
11/1/2011	10:34	W-8	TS	F	2-016-017-156-0	156	DWH	0-156	30-30	ВН	P	AT OK	DWH
11/1/2011	10:35	W-39	VS	F	2-019-020-201-0	201	DWH	0-201	30-30	ВН	Р	AT OK	DWH
11/1/2011	11:09	W-39	VS	F	2-020-021-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/1/2011	11:10	W-8	TS	F	2-020-022-232-0	232	DWH	0-232	30-30	ВН	! P	AT OK	DWH
11/1/2011	11:12	W-39	VS	F	2-019-021-72-0	72	DWH	0-72	30-30	ВН	P	AT OK	DWH
11/1/2011	11:20	W-2	KP	F	2-022-023-113-0	113	DWH	0-113	30-30	ВН	Р	AT OK	DWH
11/1/2011	11:32	W-2	KP	F	2-022-024-186-0	186	DWH	0-186	30-30	ВН	Р	AT OK	DWH
11/1/2011	11:35	W-39	VS	F	2-023-024-0-22	22	DWH	0-22	30-29	ВН	P	AT OK	DWH
11/1/2011	11:45	W-8	TS	F	2-021-022-69-0	69	DWH	0-69	30-30	ВН	Р	AT OK	DWHO
11/1/2011	11:45	W-39	VS	F	2-023-025-110-0	110	DWH	0-110	30-28	ВН	Р	AT OK	DWH
11/1/2011	12:00	W-39	VS	F	2-024-025-185-0	185	DWH	0-185	30-30	ВН	P	AT OK	DWH
11/1/2011	13:35	W-8	TS	F	2-025-026-293-0	293	DWH	0-293	30-28	ВН	: P	AT OK	DWH
11/1/2011	13:40	W-2	KP	F	2-026-027-217-0	217	DWH	0-217	30-29	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/1/2011	13:55	W-39	VS	F	2-028-029-0-41	41	DWH	0-41	30-28	ВН	P	AT OK	DWH
11/1/2011	14:04	W-39	VS	F	2-030-031-31-0	31	DWH	0-31	30-30	ВН	P	AT OK	DWH
11/1/2011	14:13	W-2	KP	F	2-032-033-25-0	25	DWH	0-25	30-30	ВН	P	AT OK	DWH
11/1/2011	14:20	W-2	KP	F	2-033-034-24-0	24	DWH	0-24	30-30	ВН	P	AT OK	DWH
11/1/2011	14:22	W-8	TS	F	2-036-037-23-0	23	DWH	0-23	30-27	ВН	P	AT OK	DWH
11/1/2011	14:25	W-8	VS	F	2-029-030-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/1/2011	14:27	W-39	VS	F	2-029-031-0-22	22	DWH	0-22	30-29	ВН	P	AT OK	DWH
11/1/2011	14:27	W-2	KP	F	2-034-035-24-0	24	DWH	0-24	30-30	ВН	Р	AT OK	DWH
11/1/2011	14:30	W-8	TS	F	2-037-038-23-0	23	DWH	0-23	30-30	ВН	P	AT OK	DWH
11/1/2011	14:34	W-2	KP	F	2-035-036-24-0	24	DWH	0-24	30-30	ВН	Р	AT OK	DWH
11/1/2011	14:35	W-39	VS	F	2-026-028-23-0	23	DWH	0-23	30-28	ВН	Р	AT OK	DWH
11/1/2011	14:37	W-8	TS	F	2-038-039-24-0	24	DWH	24-0	30-30	ВН	Р	AT OK	DWH
11/1/2011	14:39	W-39	VS	F	2-026-029-20-0	20	DWH	0-20	30-30	ВН	Р	AT OK	DWH
11/1/2011	14:42	W-39	VS	F	2-026-030-31-0	31	DWH	0-31	30-28	ВН	Р	AT OK	DWH
11/1/2011	14:51	W-2	KP	F	2-039-040-24-0	24	DWH	0-24	30-30	ВН	P	AT OK	DWH
11/1/2011	14:55	W-39	VS	F	2-027-028-20-0	20	DWH	0-20	30-28	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/1/2011	14:57	W-8	TS	F	2-040-041-25-0	25	DWH	0-25	30-30	ВН	P	AT OK	DWH
11/1/2011	15:00	W-39	VS	F	2-028-032-24-0	24	DWH	0-24	30-30	ВН	P	AT OK	DWH
11/1/2011	15:20	W-39	VS	F	2-027-041-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:22	W-39	VS	F	2-027-040-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:25	W-39	VS	F	2-027-039-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:29	W-39	VS	F	2-027-038-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:32	W-39	VS	F	2-027-037-0-22	22	DWH	0-22	30-30	BH	P	AT OK	DWH
11/1/2011	15:36	W-39	VS	F	2-027-036-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:40	W-39	VS	F	2-027-035-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:43	W-39	VS	F	2-027-034-0-22	22	DWH	0-22	30-30	BH	P	AT OK	DWH
11/1/2011	15:44	W-2	KP	F	2-042-043-179-0	179	DWH	0-179	30-30	ВН	P	AT OK	DWH
11/1/2011	15:45	W-39	VS	F	2-027-033-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/1/2011	15:50	W-39	VS	F	2-027-032-0-22	22	DWH	0-22	30-27	ВН	P	AT OK	DWH
11/1/2011	16:00	W-8	TS	F	2-001-042-323-152	171	DWH	152-323	30-29	ВН	P	AT OK	DWH
11/1/2011	16:20	W-39	VS	F	2-001-042-152-0	152	DWH	0-152	30-28	ВН	P	AT OK	DWH
11/2/2011	9:33	W-2	KP	F	2-042-044-150-0	150	DWH	0-150	30-30	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secor dary

	Produ	ction Seam			Locatio	חי			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/2/2011	9:35	W-8	TS	F	2-043-044-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/2/2011	10:00	W-8	TS	F	2-043-045-180-0	180	DWH	0-180	30-30	BH	P	AT OK	DWH
11/2/2011	10:20	W-39	VS	F	2-045-046-250-0	250	DWH	0-250	30-30	ВН	Р	AT OK	DWH
11/2/2011	10:26	W-8	TS	F	2-044-045-148-0	148	DWH	0-148	30-30	ВН	Р	AT OK	DWH
11/2/2011	10:43	W-2	KP	F	2-047-048-24-0	24	DWH	0-24	30-30	ВН	P	AT OK	DWH
11/2/2011	10:50	W-2	KP	F	2-048-049-28-0	28	DWH	0-28	30-30	ВН	P	AT OK	DWH
11/2/2011	11:00	W-2	KP	F	2-049-050-0-41	41	DWH	0-41	30-30	ВН	P	AT OK	DWH
11/2/2011	11:00	W-8	TS	F	2-050-051-0-48	48	DWH	0-48	30-30	ВН	P	AT OK	DWH
11/2/2011	11:09	W-39	VS	F	2-054-055-0-52	52	DWH	0-52	30-28	ВН	P	AT OK	DWH
11/2/2011	11:13	W-8	TS	F	2-052-053-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/2/2011	11:15	W-39	KP	F	2-052-054-0-27	27	DWH	0-27	30-30	ВН	P	AT OK	DWH
11/2/2011	11:20	W-2	KP	F	2-053-054-0-25	25	DWH	0-25	30-30	ВН	Р	AT OK	DWH
11/2/2011	11:20	W-39	VS	F	2-055-056-0-52	52	DWH	0-52	30-30	ВН	P	AT OK	DWH
11/2/2011	11:30	W-2	KP	F	2-056-057-51-0	51	DWH	0-51	30-30	ВН	Р	AT OK	DWH
11/2/2011	11:31	W-8	TS	F	2-051-052-0-27	27	DWH	0-27	30-30	ВН	Р	AT OK	DWH
11/2/2011	11:35	W-8	TS	F	2-051-053-0-24	24	DWH	0-24	30-30	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
11/2/2011	13:28	W-8	TS	F	2-060-061-29-0	29	DWH	0-29	CAPPED	ВН	Р	VT OK	DWH
11/2/2011	14:00	W-39	VS	F	2-057-058-0-36	36	DWH	0-36	30-30	ВН	P	AT OK	DWH
11/2/2011	14:00	W-2	TS	F	2-059-060-20-0	20	DWH	0-20	30-29	ВН	P	AT OK	DWH
11/2/2011	14:10	W-39	VS	F	2-046-060-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/2/2011	14:12	W-39	VS	F	2-058-064-30-0	30	DWH	0-30	30-28	ВН	P	AT OK	DWH
11/2/2011	14:20	W-2	TS	F	2-059-064-0-22	22	DWH	0-22	30-27	ВН	P	AT OK	DWH
11/2/2011	14:22	W-2	TS	F	2-058-059-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/2/2011	14:30	W-2	TS	F	2-064-065-29-0	29	DWH	0-29	30-30	BH	P	AT OK	DWH
11/2/2011	14:32	W-39	VS	F	2-057-059-0-16	16	DWH	0-16	30-30	ВН	P	AT OK	DWH
11/2/2011	14:35	W-39	VS	F	2-046-059-0-26	26	DWH	0-26	30-30	BH	P	AT OK	DWH
11/2/2011	14:39	W-39	VS	F	2-046-057-0-22	22	DWH	0-22	30-29	BH	P	AT OK	DWH
11/2/2011	14:42	W-39	VS	F	2-046-056-0-22	22	DWH	0-22	30-28	ВН	P	AT OK	DWH
11/2/2011	14:45	W-39	VS	F	2-046-055-0-22	22	DWH	0-22	30-30	BH	P	AT OK	DWH
11/2/2011	14:49	W-39	VS	F	2-046-054-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/2/2011	14:50	W-2	TS	F	2-065-066-32-0	32	DWH	0-32	30-30	BH	P	AT OK	DWH
11/2/2011	14:52	W-39	VS	F	2-046-053-0-22	22	DWH	0-22	30-29	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary: Secondary

	Produ	ction Seam			Locatio	ก			Nondestra	uctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-SeamI-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/2/2011	14:56	W-39	VS	F	2-046-050-0-25	25	DWH	0-25	30-30	ВН	P	AT OK	DWH
11/2/2011	14:59	W-39	VS	F	2-046-049-0-27	27	DWH	0-27	30-30	ВН	P	AT OK	DWH
11/2/2011	15:05	W-39	VS	F	2-046-048-0-20	20	DWH	0-20	30-30	ВН	Р	AT OK	DWH
11/2/2011	15:10	W-39	VS	F	2-046-047-0-45	45	DWH	0-45	30-30	ВН	Р	AT OK	DWH
11/2/2011	15:10	W-2	TS	F	2-059-067-37-0	37	DWH	0-37	30-30	ВН	Р	AT OK	DWH
11/2/2011	15:33	W-39	VS	F	2-061-062-24-0	24	DWH	0-24	30-30	ВН	Р	AT OK	DWH
11/2/2011	15:35	W-39	VS	F	2-059-062-21-0	21	DWH	0-21	30-30	ВН	P	AT OK	DWH
11/2/2011	15:40	W-2	TS	F	2-066-067-21-0	21	DWH	0-21	30-30	ВН	Р	AT OK	DWH
11/2/2011	15:42	W-2	TS	F	2-067-068-23-0	23	DWH	0-23	30-30	ВН	P	AT OK	DWH
11/2/2011	15:45	W-39	VS	F	2-059-063-37-0	37	DWH	0-37	30-30	ВН	P	AT OK	DWH
11/2/2011	15:45	W-2	TS	F	2-066-068-12-0	12	DWH	0-12	30-30	ВН	P	AT OK	DWH
11/2/2011	15:55	W-39	VS	F	2-045-063-0-36	36	DWH	0-36	30-30	ВН	P	AT OK	DWH
11/2/2011	16:05	W-39	VS	F	2-045-062-48-62	14	DWH	48-62	30-30	ВН	Р	AT OK	DWH
11/2/2011	16:06	W-39	VS	F	2-045-061-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/2/2011	16:10	W-2	TS	F	2-059-066-0-8	8	DWH	0-8	30-27	ВН	P	AT OK	DWH
11/2/2011	16:12	W-2	TS	F	2-059-065-0-21	21	DWH	0-22	30-30	BH	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

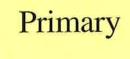
Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

Series: 2

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
11/2/2011	16:15	W-39	VS	F	2-062-063-21-0	21	DWH	0-21	30-30	ВН	P	AT OK	DWH


Total Length Fusion: 8511

Total Length Extrusion: 0

Comments:

West Basin

- Primary
- Secondary

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Drimary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
4/5/2012	9:10	W-9	VS	F	5-001-004-0-254	254	DWH	0-254	30-30	AS	P	AT OK	DWH
4/5/2012	9:30	W-10	TS	F	5-004-005-0-235	235	DWH	0-235	30-28	AS	P	AT OK	DWH
4/5/2012	9:36	W-11	VC	F	5-005-006-0-236	236	DWH	0-236	30-30	AS	P	AT OK	DWH
4/5/2012	9:46	W-9	VS	F	5-002-004-0-22.5	22,5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
4/5/2012	10:03	W-10	TS	F	5-003-004-0-25	25	DWH	0-25	30-30	AS	P	AT OK	DWH
4/5/2012	10:07	W-10	TS	F	5-002-003-0-15	15	DWH	0-15	30-29	AS	P	AT OK	DWH
4/5/2012	10:07	W-11	VC	F	5-003-006-0-14	14	DWH	0-14	CAPPED	AS	P	VT OK	DWH
4/5/2012	10:07	W-9	VS	F	5-006-008-0-177	177	DWH	0-177	30-30	AS	P	AT OK	DWH
4/5/2012	10:13	W-11	VC	F	5-007-008-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
4/5/2012	10:20	W-10	TS	F	5-003-005-0-22.5	22.5	DWH	0-22,5	30-29	AS	į P	AT OK	DWH
4/5/2012	10:20	W-9	VS	F	5-006-007-0-53	53	DWH	0-53	30-29	AS	Р	AT OK	DWH
4/5/2012	10:22	W-11	VC	F	5-012-013-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWF
4/5/2012	10:25	W-10	TS	F	5-022-023-0-30	30	DWH	0-30	30-30	AS	P	AT OK	DWF
4/5/2012	10:31	W-10	TS	F	5-010-011-0-150	150	DWH	0-150	30-30	AS	Р	AT OK	DWH
4/5/2012	10:33	W-5	VC	F	5-011-013-0-76	76	DWH	0-76	30-30	AS	P	AT OK	DWF
4/5/2012	10:45	W-9	VS	F	5-008-010-0-150	150	DWH I	0-150	30-30	AS	P	AT OK	DWI

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/5/2012	10:50	W-10	TS	F	5-009-010-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
4/5/2012	10:50	W-11	VC	F	5-011-012-0-50	50	DWH :	0-50	30-30	AS	Р	AT OK	DWH
4/5/2012	10:50	W-11	VC	F	5-014-015-0-10	10	DWH	0-10	30-30	AS	Р	AT OK	DWH
4/5/2012	10:54	W-1 I	VC	F	5-013-015-0-75	75	DWH	0-75	30-30	AS	Р	AT OK	DWH
4/5/2012	11:00	W-10	TS	F	5-009-011-0-5	5	DWH	0-5	30-28	AS	P	AT OK	DWH
4/5/2012	11:05	W-9	VS	F	5-008-009-0-25	25	DWH	0-25	30-28	AS	P	AT OK	DWH
4/5/2012	11:08	W-11	VC	F	5-016-017-0-39	39	DWH	0-39	30-30	AS	P	AT OK	DWH
4/5/2012	11:10	W-10	TS	F	5-015-016-0-63	63	DWH	0-63	30-30	AS	P	AT OK	DWH
4/5/2012	11:14	W-11	VC	F	5-017-018-0-20	20	DWH	0-20	30-29	AS	Р	AT OK	DWH
4/5/2012	11:17	W-9	VS	F	5-024-025-0-30	30	DWH	0-30	30-30	AS	P	АТ ОК	DWH
4/5/2012	11:20	W-11	VC	F	5-013-014-0-3	3	DWH	0-3	CAPPED	AS	P	AT OK	DWH
4/5/2012	11:21	W-11	VC	F	5-012-014-78-88	10	DWH	78-88	30-30	AS	P	AT OK	DWH
4/5/2012	11:25	W-9	VS	F	5-025-026-0-30	30	DWH	0-30	30-30	AS	P	AT OK	DWH
4/5/2012	11:26	W-9	VS	F	5-026-027-0-30	30	DWH	0-30	30-30	AS	Р	AT OK	DWH
4/5/2012	11:28	W-9	VS	F	5-007-009-0-19	19	DWH	0-19	30-29	AS	P	AT OK	DWH
4/5/2012	11:29	W-11	VC	F	5-020-021-0-24	24	DWH	0-24	30-30	AS	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	in			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
4/5/2012	11:35	W-10	TS	F	5-023-024-0-30	30	DWH	0-30	30-30	AS	P	AT OK	DWH
4/5/2012	11:36	W-11	VC	F	5-021-022-0-29	29	DWH	0-29	30-30	AS	P	AT OK	DWH
4/5/2012	11:42	W-5	AS	F	5-028-029-0-35	35	DWH	0-35	30-30	AS	Р	AT OK	DWH
4/5/2012	11:45	W-9	VS	F	5-027-028-0-31	31	DWH	0-31	30-30	AS	Р	AT OK	DWH
4/5/2012	11:50	W-11	VC	F	5-019-020-0-15	15	DWH	0-15	30-29	AS	P	AT OK	DWH
4/5/2012	12:51	W-5	AS	F	5-029-030-0-35	35	DWH	0-35	30-30	AS	P	AT OK	DWH
4/5/2012	13:00	W-5	AS	F	5-030-031-0-36	36	DWH	0-36	30-29	AS	Р	AT OK	. DWH
4/5/2012	13:09	W-5	AS	F	5-031-032-0-35	35	DWH	0-35	30-30	AS	P	AT OK	DWH
4/5/2012	13:18	W-5	AS	F	5-032-033-0-36	36	DWH	0-36	30-30	AS	Р	AT OK	DWH
4/5/2012	13:28	W-5	AS	F	5-033-034-0-37	37	DWH	0-37	30-28	AS	P	AT OK	DWH
4/5/2012	13:30	W-10	TS	F	5-014-024-0-9	9	DWH	0-9	30-30	AS	P	AT OK	DWH
4/5/2012	13:30	W-5	VS	F	5-039-040-0-22.5	22.5	DWH	0-22.5	30-29	AS	P	AT OK	DWH
4/5/2012	13:31	W-11	VC	F	5-018-019-0-25	25	DWH	0-25	30-30	AS	P	AT OK	DWH
4/5/2012	13:33	W-10	TS	F	5-012-024-0-15	15	DWH	0-15	30-30	AS	P	AT OK	DWH
4/5/2012	13:34	W-10	TS	F	5-012-025-0-22	22	DWH	0-22	30-30	AS	P	AT OK	DWH
4/5/2012	13:35	W-11	VC	F	5-017-020-0-20	20	DWH	0-20	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

Material Type

gmi: 6

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
4/5/2012	13:36	W-10	TS	F	5-012-026-0-6	6	DWH	0-6	30-30	AS	P	AT OK	DWH
4/5/2012	13:38	W-10	TS	F	5-011-026-0-18	18	DWH	0-18	30-30	AS	P	AT OK	DWH
4/5/2012	13:38	W-11	VC	F	5-017-021-0-10	10	DWH	0-10	30-30	AS	P	AT OK	DWH
4/5/2012	13:40	W-10	TS	F	5-011-027-0-22	22	DWH	0-22	30-29	AS	P	AT OK	DWH
4/5/2012	13:41	W-9	VS	F	5-001-040-0-134	134	DWH	0-134	30-28	AS	PI	AT OK	DWH
4/5/2012	13:42	W-10	TS	F	5-009-028-0-23	23	DWH	0-23	30-27	AS	P	AT OK	DWH
4/5/2012	13:42	W-11	VC	F	5-016-021-0-13	13	DWH	0-13	CAPPED	AS	P	VT OK	DWH
4/5/2012	13:44	W-10	TS	F	5-009-029-0-19	19	DWH	0-19	30-30	AS	P	AT OK	DWH
4/5/2012	13:45	W-11	VC	F	5-016-022-0-21	21	DWH	0-21	30-30	AS	P	AT OK	DWH
4/5/2012	13:45	W-5	AS	F	5-040-041-0-134	134	DWH	0-134	30-30	AS	P	AT OK	DWH
4/5/2012	13:46	W-10	TS	F	5-007-030-0-23	23	DWH	0-23	30-29	AS	P	AT OK	DWH
4/5/2012	13:48	W-10	TS	F	5-007-031-0-11	11	DWH	0-11	30-30	AS	P	AT OK	DWH
4/5/2012	13:49	W-11	VC	F	5-015-023-0-16	16	DWH	0-16	30-30	AS	P	AT OK	DWH
4/5/2012	13:50	W-10	TS	F	5-006-031-0-11	11	DWH	0-11	30-30	AS	Р	AT OK	DWH
4/5/2012	13:50	W-11	VC	F	5-014-023-0-6	6	DWH	0-6	30-30	AS	Р	AT OK.	DWH
4/5/2012	13:52	W-10	TS	F	5-006-032-0-27	27	DWH	0-27	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
4/5/2012	13:54	W-10	TS	F	5-003-033-0-19	19	DWH	0-19	30-30	AS	P	AT OK	DWH
4/5/2012	13:56	W-10	TS	F	5-003-034-0-19	19	DWH	0-19	30-29	AS	Р	AT OK	DWH
4/5/2012	13:58	W-10	TS	F	5-002-035-0-23	23	DWH	0-23	30-30	AS	Р	AT OK	DWH
4/5/2012	13:58	W-5	AS	F	5-039-041-0-186	186	DWH	0-186	30-30	AS	Р	AT OK	DWH
4/5/2012	14:00	W-9	VS	F	5-001-039-0-229	229	DWH	0-229	30-30	AS	P	AT OK	DWH
4/5/2012	14:00	W-10	TS	F	5-002-036-0-19	19	DWH	0-19	30-30	AS	P	AT OK	DWH
4/5/2012	14:00	W-5	AS	F	5-042-044-0-13	13	DWH	0-13	30-30	AS	P	AT OK	DWH
4/5/2012	14:02	W-10	TS	F	5-001-037-0-23	23	DWH	0-23	30-30	AS	Р	AT OK	DWH
4/5/2012	14:04	W-10	TS	F	5-001-038-0-18	18	DWH	0-18	30-30	AS	P	AT OK	DWH
4/5/2012	14:15	W-10	TS	F	5-034-035-0-34	34	DWH	0-34	30-30	AS	P	AT OK	DWH
4/5/2012	14:22	W-10	TS	F	5-035-036-0-33	33	DWH	0-33	30-29	AS	Р	AT OK	DWH
4/5/2012	14:28	W-11	VC	F	5-036-037-0-31	31	DWH	0-31	30-28	AS	Р	AT OK	DWH
4/5/2012	14:33	W-11	VC	F	5-037-038-0-8	8	DWH	0-8	30-29	AS	P	AT OK	DWH
4/5/2012	14:40	W-9	VS	F	5-041-043-0-270	270	DWH	0-270	30-30	AS	P	AT OK	DWH
4/5/2012	14:41	W-11	VC	F	5-039-046-0-18	18	DWH	0-18	30-28	AS	P	AT OK	DWH
4/5/2012	14:41	W-5	AS	F	5-042-043-0-22	22	DWH	0-22	30-29	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produc	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/5/2012	14:46	W-11	VC	F	5-046-047-0-18	18	DWH	0-18	30-27	AS	P	AT OK	DWH
4/5/2012	14:47	W-11	VC	F	5-039-047-0-20	20	DWH	0-20	30-29	AS	P	AT OK	DWH
4/5/2012	14:47	W-5	AS	F	5-044-045-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	АТ ОК	DWH
4/5/2012	14:52	W-11	VC	F	5-046-048-0-30	30	DWH	0-30	30-30	AS	Р	AT OK	DWH
4/5/2012	14:56	W-5	AS	F	5-043-045-0-74	74	DWH	0-74	30-30	AS	P	AT OK	DWH
4/5/2012	14:57	W-11	VC	F	5-041-042-0-31	31	DWH	0-31	30-30	AS	P	AT OK	DWH
4/5/2012	14:58	W-11	VC	F	5-041-048-0-13	13	DWH	0-13	30-28	AS	Р	AT OK	DWH
4/5/2012	15:00	W-11	VC	F	5-042-048-0-9	9	DWH	0-9	30-28	AS	P	AT OK	DWH
4/5/2012	15:00	W-5	AS	F	5-043-044-0-203	203	DWH	0-203	30-28	AS	Р	AT OK	DWH
4/5/2012	15:01	W-11	VC	F	5-048-049-0-31	31	DWH	0-31	30-30	AS	P	AT OK	DWH
4/5/2012	15:03	W-11	VC	F	5-042-049-0-20	20	DWH	0-20	30-28	AS	P	AT OK	DWH
4/5/2012	15:05	W-11	VC	F	5-044-049-0-3	3	DWH	0-3	30-28	AS	P	AT OK	DWH
4/5/2012	15:09	W-11	VC	F	5-049-050-0-33	33	DWH	0-33	30-28	AS	P	AT OK	DWH
4/5/2012	15:10	W-11	VC	F	5-041-046-0-17	17	DWH	0-17	30-30	AS	P	AT OK	DWH
4/5/2012	15:11	W-11	VC	F	5-044-050-0-20	20	DWH	0-20	30-30	AS	P	AT OK	DWH
4/5/2012	21:40	W-9	VS	F	5-001-002-0-62	62	DWH	0-62	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sed ment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/13/2012	9:05	W-9	VS	F	5-044-051-0-30	30	DWH	0-30	30-30	AS	P	AT OK	DWH
4/13/2012	9:16	W-5	AS	F	5-044-051-30-172	142	DWH	30-172	30-30	AS	Р	AT OK	DWH
4/13/2012	9:36	W-14	TS	F	5-060-061-74-0	74	DWH	0-74	30-30	AS	P	AT OK	DWH
4/13/2012	9:41	W-5	AS	F	5-050-053-28-0	28	DWH	0-28	30-29	AS	P	AT OK	DWH
4/13/2012	9:50	W-9	VS	F	5-052-056-52-0	52	DWH	0-52	30-30	AS	P	AT OK	DWH
4/13/2012	9:50	W-14	TS	F	5-058-060-70-0	70	DWH	0-70	30-30	AS	Р	AT OK	DWH
4/13/2012	9:53	W-5	AS	F	5-053-054-36-0	36	DWH	0-36	30-28	AS	Р	AT OK	DWH
4/13/2012	10:00	W-9	VS	F	5-056-057-57-0	57	DWH	0-57	30-30	AS	Р	AT OK	DWH
4/13/2012	10:08	W-5	AS	F	5-054-055-32-0	32	DWH	0-32	30-30	AS	P	AT OK	DWH
4/13/2012	10:10	W-14	TS	F	5-057-059-32-0	32	DWH	0-32	30-29	AS	Р	AT OK	DWH
4/13/2012	10:15	W-9	VS	F	5-052-054-13-0	13	DWH	0-13	30-30	AS	P	AT OK	DWH
4/13/2012	10:16	W-9	VS	F	5-052-055-29-0	29	DWH	0-29	30-30	AS	P	AT OK	DWH
4/13/2012	10:25	W-14	TS	F	5-057-058-33-0	33	DWH	0-33	30-30	AS	P	AT OK	DWH
4/13/2012	10:27	W-5	AS	F	5-051-053-0-21	21	DWH	0-21	30-30	AS	P	AT OK	DWH
4/13/2012	10:29	W-14	TS	F	5-058-059-32-0	32	DWH	0-32	30-30	AS	P	AT OK	DWH
4/13/2012	10:31	W-5	AS	F	5-051-054-0-15	15	DWH	0-15	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

<u>A)</u>

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	η			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
4/13/2012	10:35	W-9	VS	F	5-051-052-0-24	24	DWH	0-24	30-30	AS	P	AT OK	DWH
4/13/2012	10:40	W-9	VS	F	5-051-056-0-24	24	DWH	0-24	30-30	AS	P	AT OK	DWH
4/13/2012	10:45	W-9	VS	F	5-051-057-0-12	12	DWH	0-12	30-30	AS	P	AT OK	DWH
4/13/2012	10:48	W-9	VS	F	5-051-058-0-24	24	DWH	0-24	30-30	AS	P	AT OK	DWH
4/13/2012	10:54	W-9	VS	F	5-051-060-0-22	22	DWH	0-22	30-30	AS	P	AT OK	DWH
4/13/2012	10:59	W-9	VS	F	5-051-061-0-22	22	DWH	0-22	30-30	AS	P	AT OK	DWH
4/13/2012	11:07	W-5	AS	F	5-045-062-0-54	54	DWH	0-54	30-30	AS	P	AT OK	DWH
4/13/2012	11:10	W-14	TS	F	5-063-064-45-0	45	DWH	0-45	30-30	AS	P	AT OK	DWH
4/13/2012	11:15	W-9	VS	F	5-062-063-0-30	30	DWH	0-30	30-30	AS	P	AT OK	DWH
4/13/2012	11:17	W-5	AS	F	5-062-063-30-56	26	DWH	30-56	30-30	BTK	P	AT OK	DWH
4/13/2012	11:20	W-14	TS	F	5-064-065-18-0	18	DWH	0-18	30-30	AS	P	AT OK	DWH
4/13/2012	11:26	W-9	VS	F	5-066-067-57-0	57	DWH	0-57	30-29	ВТК	P	AT OK	DWH
4/13/2012	11:33	W-5	AS	F	5-063-068-0-44	44	DWH	0-44	30-30	BTK	P	AT OK	DWH
4/13/2012	13:06	W-9	VS	F	5-067-072-0-32	32	DWH	0-32	30-30	AS	P	AT OK	DWH
4/13/2012	13:15	W-9	VS	F	5-066-073-39-0	39	DWH	0-39	30-27	AS	P	AT OK	DWH
4/13/2012	13:22	W-9	VS	F	5-063-071-0-25	25	DWH	0-25	30-30	BTK	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary: Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	Seam/No Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
4/13/2012	13:30	W-14	TS	F	5-063-067-0-10	10	DWH	0-10	30-29	BTK	P	AT OK	DWH
4/13/2012	13:30	W-9	VS	F	5-069-070-0-20	20	DWH	0-20	30-30	BTK	P	AT OK	DWH
4/13/2012	13:30	W-14	TS	F	5-073-074-0-16	16	DWH	0-16	30-30	AS	P	AT OK	DWH
4/13/2012	13:34	W-14	TS	F	5-063-066-0-25	25	DWH	0-25	30-28	BTK	Р	AT OK	DWH
4/13/2012	13:41	W-14	TS	F	5-064-066-0-10	10	DWH	0-10	30-30	AS	Р	AT OK	DWH
4/13/2012	13:45	W-9	VS	F	5-072-075-0-32	32	DWH	0-32	30-30	BTK	P	AT OK	DWH
4/13/2012	13:50	W-14	TS	F	5-064-073-24-0	24	DWH	0-24	30-30	AS	Р	AT OK	DWH
4/13/2012	13:55	W-14	TS	F	5-065-074-18-0	18	DWH	0-18	30-30	AS	Р	AT OK	DWH
4/13/2012	13:56	W-5	AS	F	5-062-069-0-23	23	DWH	0-23	30-30	BTK	P	AT OK	DWH
4/13/2012	14:01	W-5	AS	F	5-063-069-0-28	28	DWH	0-28	30-30	BTK	P	AT OK	DWH
4/13/2012	14:05	W-14	TS	F	5-067-068-0-25	25	DWH	0-25	30-29	BTK	Р	AT OK	DWH
4/13/2012	14:06	W-5	AS	F	5-070-071-0-30	30	DWH	0-30	30-30	BTK	P	AT OK	DWH
4/13/2012	14:13	W-14	TS	F	5-068-075-0-4	4	DWH	0-4	CAPPED	AS	P	VT OK	DWH
4/13/2012	14:24	W-5	AS	F	5-061-063-17-0	- 17	DWH	0-17	30-30	AS	P	AT OK	DWH
4/13/2012	14:29	W-5	AS	F	5-061-068-8-0	8	DWH	0-8	30-30	AS	P	AT OK	DWH
4/13/2012	14:31	W-5	AS	F	5-061-075-42-0	42	DWH	0-42	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

Series: 5

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test				
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID	
4/13/2012	14:32	W-14	TS	F	5-068-072-0-24	24	DWH	0-24	30-30	AS	P	AT OK	DWH	
4/13/2012	14:40	W-9	VS	F	5-045-069-0-23	23	DWH	0-23	30-30	AS	P	AT OK	DWH	
4/13/2012	14:44	W-9	VS	F	5-044-070-0-27	27	DWH	0-27	30-30	AS	Р	AT OK	DWH	
4/13/2012	14:45	W-9	VS	F	5-051-071-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH	
4/13/2012	14:50	W-9	VS	F	5-051-063-0-13	13	DWH	0-13	30-30	AS	P	AT OK	DWH	

Total Length Fusion: 6094

Total Length Extrusion: 0

Comments:

Secondary

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n		DWH 0-220 30-30 BH DWH 0-220 30-30 BH DWH 0-22 30-30 BH DWH 0-65 30-30 BH DWH 0-80 30-30 BH					
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/8/2011	10:03	W-39	VS	F	4-001-002-0-220	220	DWH	0-220	30-30	ВН	P	AT OK	DWH
11/8/2011	10:25	W-2	KP	F	4-002-004-0-220	220	DWH	0-220	30-30) BH	Р	AT OK	DWH
11/8/2011	10:36	W-39	VS	F	4-002-003-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/8/2011	10:40	W-39	VS	F	4-001-003-0-65	65	DWH	0-65	30-30	ВН	P	AT OK	DWH
11/8/2011	11:00	W-2	KP	F	4-003-004-0-80	80	DWH	0-80	30-30	ВН	P	AT OK	DWH
11/8/2011	11:10	W-39	VS	F	4-005-006-0-22	22	DWH	0 22	30-30	ВН	Р	AT OK	DWH
11/8/2011	11:12	W-8	TS	F	4-004-006-0-221	221	DWH	0-221	30-30	ВН	Р	AT OK	DWH
11/8/2011	11:35	W-2	KP	F	4-006-007-0-221	221	DWH	0-221	30-30	ВН	P	AT OK	DWH
11/8/2011	11:46	W-8	TS	F	4-004-005-0-89	89	DWH	0-89	30-30	ВН	Р	AT OK	DWH
11/8/2011	11:48	W-39	VS	F	4-007-009-0-290	290	DWH	0-290	30-30	ВН	P	AT OK	DWH
11/8/2011	12:01	W-2	KP	F	4-005-007-0-64	64	DWH	0-64	30-30	ВН	P	AT OK	DWH
11/8/2011	12:02	W-8	TS	F	4-007-008-0-22	22	DWH	0-22	30-30	BH	P	AT OK	DWH
11/8/2011	12:10	W-2	KP	F	4-005-008-0-40	40	DWH	0-40	30-28	ВН	Р	AT OK	DWH
11/8/2011	12:29	W-39	VS	F	4-008-009-0-10	10	DWH	0-10	30-30	ВН	Р	AT OK	DWH
11/8/2011	13:05	W-8	TS	F	4-010-011-0-22	22	DWH	0-22	30-29	ВН	Р	AT OK	DWH
11/8/2011	13:25	W-8	TS	F	4-009-011-0-124	124	DWH	0-124	30-30	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: <u>07</u>

Material Type

gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	Seam/No Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
11/8/2011	13:30	W-2	KP	F	4-011-012-0-123	123	DWH	0-123	30-30	ВН	Р	AT OK	DWH
11/8/2011	13:41	W-8	TS	F	4-009-010-0-166	166	DWH	0-166	30-30	ВН	Р	AT OK	DWH
11/8/2011	13:50	W-2	KP	F	4-010-012-0-132	132	DWH	0-132	30-30	ВН	P	AT OK	DWH
11/8/2011	14:00	W-39	VS	F	4-013-014-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:06	W-39	VS	F	4-012-014-0-114	114	DWH	0-114	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:16	W-8	TS	F	4-014-015-0-112	112	DWH	0-112	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:16	W-2	KP	F	4-015-016-0-165	165	DWH	0-165	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:20	W-39	VS	F	4-012-013-0-121	121	DWH	0-121	30-30	ВН	P	AT OK	DWH
11/8/2011	14:36	W-8	TS	F	4-013-015-0-93	93	DWH	0-93	30-30	BH	Р	AT OK	DWH
11/8/2011	14:47	W-39	VS	F	4-016-018-0-90	90	DWH	0-90	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:50	W-2	KP	F	4-018-019-0-90	90	DWH .	0-90	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:55	W-39	VS	F	4-016-017-0-45	45	DWH!	0-45	30-30	ВН	Р	AT OK	DWH
11/8/2011	14:55	W-8	TS	F	4-017-018-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:03	W-2	KP	F	4-017-019-0-10	10	DWH	0-10	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:07	W-2	KP	F	4-024-025-25-0	25	DWH	0-25	30-28	ВН	P	AT OK	DWH
11/8/2011	15:10	W-8	TS	F	4-019-020-0-75	75	DWH	0-75	30-30	ВН	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary ...

	Produ	ction Seam			Locatio	Length (ft.) QA ID (ft.) Location Detail Oper. 25 DWH 0-25 30-30 BH 25 DWH 0-25 30-28 BH 25 DWH 0-25 30-30 BH 50 DWH 0-50 30-28 BH 25 DWH 0-25 30-30 BH 25 DWH 0-25 30-30 BH 22 DWH 0-22 30-30 BH 25 DWH 0-25 30-30 BH 25 DWH 0-25 30-30 BH 24 DWH 0-24 30-30 BH 4 DWH 0-4 CAPPED LV							
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-SeamI-Seam2-Begin-End		QA ID	Location	Detail	Oper.	Result	Action	QA II
11/8/2011	15:10	W-39	VS	F	4-027-028-25-0	25	DWH	0-25	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:14	W-2	KP	F	4-023-024-25-0	25	DWH	0-25	30-28	ВН	P	AT OK	DWH
11/8/2011	15:16	W-39	VS	F	4-028-029-25-0	25	DWH	0-25	30-30	ВН	P	AT OK	DWH
11/8/2011	15:25	W-8	TS	F	4-020-021-0-50	50	DWH	0-50	30-28	⊮ ВН	Р	AT OK	DWH
11/8/2011	15:26	W-2	KP	F	4-023-026-25-0	25	DWH	0-25	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:26	W-39	VS	F	4-029-030-25-0	25	DWH	0-25	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:36	W-8	TS	F	4-021-022-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:36	W-2	KP	F	4-026-027-25-0	25	DWH	0-25	30-30	ВН	P	AT OK	DWH
11/8/2011	15:45	W-39	VS	F	4-022-025-0-24	24	DWH	0-24	30-30	ВН	P	AT OK	DWH
11/8/2011	15:50	W-39	VS	F	4-022-024-0-4	4	DWH	0-4	CAPPED	LV	P	VT OK	DWH
11/8/2011	15:51	W-39	VS	F	4-021-024-0-18	18	DWH	0-18	30-30	ВН	Р	AT OK	DWH
11/8/2011	15:56	W-39	VS	F	4-021-023-0-15	15	DWH	0-15	30-30	ВН	P	AT OK	DWH
11/8/2011	15:58	W-39	VS	F	4-020-023-0-5	5	DWH	0-5	30-30	ВН	P	AT OK	DWH
11/8/2011	15:59	W-39	VS	F	4-020-026-0-24	24	DWH	0-24	30-30	ВН	P	AT OK	DWH
11/8/2011	16:02	W-39	VS	F	4-020-027-0-4	4	DWH	0-4	CAPPED	LV	P	VT OK	DWH
11/8/2011	16:03	W-39	VS	F	4-019-027-0-18	18	DWH	0-18	30-30	ВН	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/8/2011	16:07	W-39	VS	F	4-019-028-0-19	19	DWH	0-19	30-30	ВН	Р	AT OK	DWH
11/8/2011	16:09	W-39	VS	F	4-017-028-0-4	4	DWH	0-4	CAPPED	LV	P	VT OK	DWH
11/8/2011	16:09	W-39	VS	F	4-017-029-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/8/2011	16:15	W-39	VS	F	4-017-030-0-11	11	DWH	0-11	30-27	ВН	P	AT OK	DWH
11/8/2011	16:19	W-39	VS	F	4-016-030-0-11	11	DWH	0-11	30-28	ВН	P	AT OK	DWH
11/9/2011	8:25	W-2	KP	F	4-033-034-32-0	32	DWH	0-32	30-30	ВН	P :	AT OK	DWH
11/9/2011	8:30	W-8	TS	F	4-030-031-28-0	28	DWH	0-28	30-30	ВН	P	AT OK	DWH
11/9/2011	8:30	W-39	VS	F	4-036-037-27-0	27	DWH	0-27	30-30	ВН	Р	AT OK	DWH
11/9/2011	8:33	W-8	TS	F	4-031-032-31-0	31	DWH	0-31	30-30	ВН	Р	AT OK	DWH
11/9/2011	8:37	W-2	KP	F	4-034-035-32-0	32	DWH	0-32	30-30	ВН	P	AT OK	DWH
11/9/2011	8:40	W-39	VS	F	4-037-038-28-0	28	DWH	0-28	30-30	ВН	Р	AT OK	DWH
11/9/2011	8:45	W-8	TS	F	4-032-033-32-0	32	DWH	0-32	30-30	BH	P	AT OK	DWH
11/9/2011	9:01	W-2	KP	F	4-038-039-28-0	28	DWH	0-28	30-30	ВН	P	AT OK	DWH
11/9/2011	9:10	W-8	TS	F	4-043-044-14-0	14	DWH	0-14	30-30	ВН	P	AT OK	DWH
11/9/2011	9:13	W-2	KP	F	4-039-040-31-0	31	DWH	0-31	30-30	ВН	P	AT OK	DWH
11/9/2011	9:30	W-8	TS	F	4-042-043-20-0	20	DWH	0-20	30-30	ВН	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/9/2011	9:33	W-2	KP	F	4-040-041-31-0	31	DWH	0-31	30-30	ВН	P	AT OK	DWH
11/9/2011	9:33	W-8	TS	F	4-042-044-14-0	14	DWH	0-14	30-30	ВН	Р	AT OK	DWH
11/9/2011	9:44	W-39	VS	F	4-041-045-16-0	16	DWH	0-16	30-28	ВН	P	AT OK	DWH
11/9/2011	9:45	W-2	KP	F	4-047-048-31-0	31	DWH	0-31	30-30	ВН	Р	AT OK	DWH
11/9/2011	9:48	W-2	KP	F	4-035-036-32-0	32	DWH	0-32	30-30	ВН	P	AT OK	DWH
11/9/2011	9:50	W-8	TS	F	4-043-046-31-0	31	DWH	0-31	30-30	ВН	р	AT OK	DWH
11/9/2011	9:51	W-2	KP	F	4-046-047-31-0	31	DWH	0-31	30-30	ВН	P	AT OK	DWH
11/9/2011	9:55	W-39	VS	F	4-041-042-19-0	19	DWH	0-19	30-27	ВН	Р	AT OK	DWH
11/9/2011	9:57	W-39	VS	F	4-042-045-19-0	19	DWH	0-19	30-29	ВН	P	AT OK	DWH
11/9/2011	10:20	W-39	VS	F	4-001-050-0-182	182	DWH	0-182	30-30	ВН	Р	AT OK	DWH
11/9/2011	10:45	W-8	TS	F	4-001-049-30-0	30	DWH	0-30	30-30	ВН	P	AT OK	DWH
11/9/2011	11:00	W-8	TS	F	4-001-053-0-11	11	DWH	0-11	CAPPED	LV	P	VT OK	DWH
11/9/2011	11:00	W-2	KP	F	4-054-061-47-0	47	DWH	0-47	30-29	ВН	P	AT OK	DWH
11/9/2011	11:05	W-8	TS	F	4-049-051-30-0	30	DWH	0-30	30-30	ВН	P	AT OK	DWH
11/9/2011	11:12	W-39	VS	F	4-056-057-30-0	30	DWH	0-30	30-30	ВН	P	AT OK	DWH
11/9/2011	11:15	W-8	TS	F	4-053-055-0-23	23	DWH	0-23	30-30	ВН	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test				
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL	
11/9/2011	11:20	W-2	KP	F	4-051-052-49-0	49	DWH	0-49	CAPPED	LV	P	VT OK	DWH	
11/9/2011	11:21	W-39	VS	F	4-055-056-0-23	23	DWH	0-23	30-30	BH	P	AT OK	DWH	
11/9/2011	11:22	W-39	VS	F	4-051-057-0-27	27	DWH	0-27	30-30	ВН	P	AT OK	DWH	
11/9/2011	11:30	W-8	TS	F	4-049-053-0-28	28	DWH	0-28	30-30	ВН	P	AT OK	DWH	
11/9/2011	11:35	W-2	KP	F	4-058-059-24-0	24	DWH	0-24	30-30	BH	P	AT OK	DWH	
11/9/2011	11:40	W-39	VS	F	4-051-062-0-22	22	DWH	0-22	30-30	BH	P	AT OK	DWH	
11/9/2011	I 1:50	W-2	KP	F	4-054-058-49-0	49	DWH	0-49	30-30	BH	P	AT OK	DWH	
11/9/2011	13:15	W-39	VS	F	4-061-062-0-28	28	DWH	0-28	30-30	BH	P	AT OK	DWH	
11/9/2011	13:25	W-39	VS	F	4-062-063-0-18	18	DWH	0-18	30-27	BH	P	AT OK	DWH	
11/9/2011	13:27	W-39	VS	F	4-061-063-30-0	30	DWH	0-30	30-29	BH	P	AT OK	DWH	
11/9/2011	13:33	W-2	KP	F	4-063-064-50-0	50	DWH	0-50	30-30	BH	P	AT OK	DWH	
11/9/2011	13:36	W-8	TS	F	4-052-058-32-0	32	DWH	0-32	30-30	BH	P	ATOK	DWH	
11/9/2011	13:40	W-39	VS	F	4-064-065-51-0	51	DWH	0-51	30-30	BH	P	AT OK		
11/9/2011	13:41	W-8	TS	F	4-052-059-24-19	5	DWH	19-24	CAPPED	LV	P		DWH	
11/9/2011	13:50	W-2	KP	F	4-065-066-48-0	48	DWH	0-48	30-30	BH	<u> </u>	VT OK	DWH	
11/9/2011	13:55	W-8	TS	F	4-059-060-19-0	19	DWH	0-19	30-30	ВН	P	AT OK	DWH	

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

	Produ	ction Seam			Locatio	n			Nondestru	uctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/9/2011	14:00	W-39	VS	F	4-048-067-31-0	31	DWH	0-31	30-30	ВН	P	AT OK	DWH
11/9/2011	14:05	W-39	VS	F	4-067-068-30-0	30	DWH	0-30	30-30	ВН	Р	AT OK	DWH
11/9/2011	14:10	W-8	TS	F	4-052-060-19-0	19	DWH	0-19	30-30	BH	P	AT OK	DWH
11/9/2011	14:15	W-39	VS	F	4-068-069-30-0	30	DWH	0-30	30-27	ВН	P	AT OK	DWH
11/9/2011	14:25	W-39	VS	F	4-070-071-11-0	11	DWH	0-11	30-28	ВН	P	AT OK	DWH
11/9/2011	14:25	W-2	KP	F	4-070-072-30-0	30	DWH	0-30	30-30	ВН	P	AT OK	DWH
11/9/2011	14:35	W-2	KP	F	4-072-073-30-0	30	DWH	0-30	30-30	ВН	P	AT OK	DWH
11/9/2011	14:36	W-8	TS	F	4-051-054-0-26	26	DWH	0-26	30-30	ВН	P	AT OK	DWH
11/9/2011	14:36	W-39	VS	F	4-069-070-16-0	16	DWH	0-16	30-30	ВН	P	AT OK	DWH
11/9/2011	14:38	W-39	VS	F	4-069-071-11-0	11	DWH	0-11	30-30	ВН	P	AT OK	DWH
11/9/2011	14:40	W-2	KP	F	4-074-075-8-0	8	DWH	0-8	30-30	ВН	P	AT OK	DWH
11/9/2011	14:48	W-39	VS	F	4-066-074-30-0	30	DWH	0-30	30-30	ВН	P	AT OK	DWH
11/9/2011	14:50	W-8	TS	F	4-051-055-0-31	31	DWH	0-31	30-30	ВН	P	AT OK	DWH
11/9/2011	14:50	W-39	VS	F	4-074-076-12-0	12	DWH	0-12	30-30	ВН	P	AT OK	DWH
11/9/2011	14:55	W-8	TS	F	4-073-075-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:00	W-2	KP	F	4-073-074-29-0	29	DWH	0-29	30-30	ВН	P	AT OK	DWH

Geosyntec^o

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Specifications:

gml : 2

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Material Type

Secondary

Series: 4

Seam Pressure: 25-30 PSI 3 lb loss

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
11/9/2011	15:10	W-8	TS	F	4-001-055-0-22	22	DWH	0-22	30-29	ВН	P	AT OK	DWH
11/9/2011	15:10	W-39	VS	F	4-066-076-12-0	12	DWH	0-22	30-27	ВН	P	AT OK	DWH
11/9/2011	15:12	W-8	TS	F	4-001-056-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:24	W-8	TS	F	4-050-057-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:30	W-39	VS	F	4-016-031-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:35	W-39	VS	F	4-016-032-0-5	5	DWH	0-5	30-30	BH	P	AT OK	DWH
11/9/2011	15:36	W-39	VS	F	4-015-032-0-17	17	DWH	0-17	30-30	ВН	P	AT OK	DWH
11/9/2011	15:40	W-39	VS	F	4-015-033-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:44	W-39	VS	F	4-015-034-0-4	4	DWH	0-4	CAPPED	LV	P	VT OK	DWH
11/9/2011	15:45	W-39	VS	F	4-013-034-0-18	18	DWH	0-18	CAPPED	LV	P	VT OK	DWH
11/9/2011	15:45	W-8	TS	F	4-051-065-0-21	21	DWH	0-21	30-30	ВН	Р	AT OK	DWH
11/9/2011	15:47	W-8	TS	F	4-051-064-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:48	W-39	VS	F	4-013-035-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:49	W-8	TS	F	4-051-063-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	15:52	W-39	VS	F	4-012-036-0-22	22	DWH	0-22	30-30	ВН	Р	AT OK	DWH
11/9/2011	15:58	W-39	VS	F	4-012-037-0-14	14	DWH	0-14	30-30	ВН	Р	AT OK	DWH

Geosyntec D

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gml : 2

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

Series: 4

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach, ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/9/2011	16:00	W-39	VS	F	4-010-037-0-8	8	DWH	0-8	30-30	ВН	Р	AT OK	DWH
11/9/2011	16:08	W-39	VS	F	4-010-038-0-22	22	DWH	0-22	30-28	ВН	P	AT OK	DWH
11/9/2011	16:15	W-39	VS	F	4-010-039-0-6	6	DWH	0-6	CAPPED	LV	P	VT OK	DWH
11/9/2011	16:15	W-8	TS	F	4-051-075-0-23	23	DWH	0-23	30-30	ВН	P	AT OK	DWH
11/9/2011	16:16	W-39	VS	F	4-009-039-0-15	15	DWH	0-15	30-30	ВН	P	AT OK	DWH
11/9/2011	16:17	W-8	TS	F	4-051-074-0-12	12	DWH	0-12	30-27	ВН	P	AT OK	DWH
11/9/2011	16:19	W-39	VS	F	4-009-040-0-12	12	DWH	0-12	30-30	ВН	P	AT OK	DWH
11/9/2011	16:19	W-8	TS	F	4-051-066-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	16:21	W-39	VS	F	4-008-040-209-226	17	DWH	209-226	30-30	ВН	P	AT OK	DWH
11/9/2011	16:24	W-39	VS	F	4-008-041-0-9	9	DWH	0-9	30-30	ВН	P	AT OK	DWH
11/9/2011	16:28	W-39	VS	F	4-008-042-0-15	15	DWH	0-15	30-30	ВН	P	AT OK	DWH
11/9/2011	16:29	W-39	VS	F	4-005-042-0-6	6	DWH	0-6	30-27	ВН	P	AT OK	DWH
11/9/2011	16:30	W-39	VS	F	4-005-043-0-10	10	DWH	0-10	30-28	ВН	P	AT OK	DWH
11/9/2011	16:34	W-39	VS	F	4-005-046-0-9	9	DWH	0-9	CAPPED	LV	P	VT OK	DWH
11/9/2011	16:35	W-39	VS	F	4-004-046-0-16	16	DWH	0-16	30-30	ВН	P	AT OK	DWH
11/9/2011	16:35	W-8	TS	F	4-051-070-0-12	12	DWH	0-12	30-30	ВН	P	AT OK	DWH

Geosyntec D

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Material Type

gm! : 2

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Secondary

Series: 4

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
11/9/2011	16:37	W-8	TS	F	4-051-072-0-22	22	DWH	0-22	30-30	ВН	P	AT OK	DWH
11/9/2011	16:38	W-39	VS	F	4-004-047-0-9	9	DWH	0-9	30-30	ВН	Р	AT OK	DWH
11/9/2011	16:39	W-39	VS	F	4-003-047-0-12	12	DWH	0-12	30-30	ВН	Р	AT OK	DWH
11/9/2011	16:40	W-39	VS	F	4-003-048-0-15	15	DWH	0-15	30-30	ВН	P	AT OK	DWH
11/9/2011	16:42	W-39	VS	F	4-001-048-0-7	7	DWH	0-7	30-29	ВН	P	AT OK	DWH
11/9/2011	16:44	W-39	VS	F	4-001-067-0-19	19	DWH	0-19	30-30	ВН	P	AT OK	DWH
11/9/2011	16:49	W-39	VS	F	4-050-067-0-3	3	DWH	0-3	CAPPED	LV	P	VT OK	DWH
11/9/2011	16:50	W-39	VS	F	4-050-068-0-24	24	DWH	0-24	30-27	ВН	P	AT OK	DWH
11/9/2011	16:52	W-8	TS	F	4-051-069-0-18	18	DWH	0-18	30-28	ВН	P	AT OK	DWH
11/9/2011	16:56	W-8	TS	F	4-050-069-0-4	4	DWH	0-4	CAPPED	LV	P	VT OK	DWH
11/9/2011	22:48	W-2	KP	f	4-050-051-0-164	164	DWH	0-164	30-30	ВН	p	AT OK	DWH

Total Length Fusion: 6087

Total Length Extrusion: 0

Comments:

APPENDIX I

Geomembrane Destructive Seam Test Logs and Laboratory Test Results

- East Basin
- West Basin

East Basin

- Primary
- Secondary

Primary

Geosyntec D

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

5MS East Basin

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: 78

Shear: <u>120</u>

			e: 6	erialTyp	Mat				ries: 3	Sei		у	Primar	ondary:	y / Seco	Primar
	Re test			1	Test Data							le Data	Samp			
2	1			Unit	Shear	eel	Pe		Date	Oper		ion	Locat		Weld	Samp
		ID	(F/F)	ppi/psi		Outside	Inside		Samp	ID	ID	Dist. (ft.)	Seam	Type	Туре	No
	·	DWH	P	PPI	172	139	113	Lab	3/28/2012	VS	W-9	140 W	1-2	D	F	3-001
		DWH	P	PPI	213	116	145	Field								
-		DWH	P	PPI	164	119	114	Lab	3/28/2012	TS	W-10	15 S	9-10	D	F	3-002
		DWH	P	PPI	187	114	135	Field						-		
		DWH	Р	PPI	157	133	139	Lab	3/28/2012	AS	W-5	4 E	1-9	D	F	3-003
		DWH	Р	PPI	189	123	133	Field								
-	-	DWH	Р	PPI	164	142	134	Lab	3/28/2012	VS	W-9	6 N	19-20	D	F	3-004
		DWH	P	PPI	189	130	134	Field								
. A 7	-	DWH	Р	PPI	174	119	122	Lab	3/28/2012	AS	W-5	16 E	23-22	D	F	3-005
		DWH	P	PPI	180	133	108	Field								
:-:	127	DWH	Р	PPI	174	129	124	Lab	3/28/2012	TS	W-10	90 E	24-25	D	F	3-006
		DWH	Р	PPI	199	126	126	Field								
3-007	3-007A	DWH	F	PPI	157	3	93	Lab	3/28/2012	VS	MX-16	181 E	20-Patch	S	E	3-007
		DWH	P	PPI	166	·	91	Field								
		DWH	P	PPI	166	*	115	Lab	4/4/2012	VS	MX-16	94 E	24-Patch	S	Е	3-007A
		DWH	P	PPI	183	**	108	Field								
30	3-007B1	DWH	F	PPI	161		110	Lab	4/4/2012	VS	MX-16	4 N	19-Patch	S	Е	3-007B
		DWH	P	PPI	190	3.0	112	Field								
-	(**)	DWH	P	PPI	172		110	Lab	4/9/2012	VS	MX-16	5 N	18 Patch	S	Е	3-007B1
		DWH	P	PPI	140	· .	110	Field								
	-	DWH	Р	PPI	172	124	123	Lab	3/28/2012	AS	W-5	179 E	27-28	D	F	3-008
-		DWH	Р	PPI	161	117	125	Field								

Geosyntec[>]

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York Description: Construction Quality Assurance for Onondaga SCA Phase I Cell ProjNo: GJ4706

TaskNo: 07

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: <u>120</u>

Extrusion:

Peel: 78

Shear: 120

Primar	y / Sec	ondary:	Prima	гу		Se	eries: 3				Ma	terialTyp	e: 6			
			Samp	le Data							Test Data	a			Re test	Re tes
Samp No		Track	Loca	tion	Mach	Oper	Date		Po	eel	Shear	Unit	Result	-	1	2
TYU	Туре	Туре	Seam	Dist. (ft.)	ID .	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
3-009	F	D	29-30	48 E	W-9	VS	4/2/2012	Lab	112	125	166	PPI	р	DWH	-	-
								Field	115	121	108	PPI	P	DWH		
3-010	F	D	30-32	109 E	W-10	TS	4/2/2012	Lab	125	135	171	PPI	Р	DWH		-
								Field	142	140	207	PPI	Р	DWH	k	
3-011	F	D	32-33	110 E	W-11	KC	4/2/2012	Lab	117	125	168	PPi	Р	DWH	·	
								Field	146	114	198	PPI	Р	DWH	'	
3-012	F	D	33-35	164 E	W-5	AS	4/2/2012	Lab	126	130	168	PP]	Р	DWH	•	
								Field	142	124	202	PPI	Р	DWH		
3-013	F	D	36-38	65 E	W-10	TS	4/2/2012	Lab	137	115	166	PPI	P	DWH	-	741
								Field	111	123	203	PP1	Р	DWH	11	-
3-014	F	D	38-40	8 E	W-5	AS	4/13/2012	Lab	128	120	165	PPI	Р	DWH	-	
								Field	108	106	140	PPI	Р	DWH		-
3-015	F	D	40-42	53 E	W-9	VS	4/13/2012	Lab	116	127	169	PP1	Р	DWH	141	
								Field	104	105	143	PPJ	Р	DWH		
3-016	F	D	42-44	165 E	W-5	AS	4/13/2012	Lab	140	134	176	PPJ	P	DWH	(0)	
								Field	113	117	152	PP1	Р	DWH		
3-017	F	D	43-45	188 E	W-11	TS	4/13/2012	Lab	111	114	176	PPI	Р	DWH		
								Field	103	104	152	PPI	Р	DWH		
3-018	F	D	47-54	6 W	W-5	AS	4/13/2012	Lab	130	113	171	PPI	Р	DWH		(2.5)
								Field	100	118	147	PPI	Р	DWH	*	
3-019	F	D	53-54	27 N	W-11	TS	4/13/2012	Lab	119	121	177	PPI	Р	DWH	-	(4)
								Field	114	111	152	PPI	Р	DWH		-

Geosyntec >

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: 120

Primary / Secondary:

Primary

Series: 3

MaterialType: 6

			Samp	le Data							Test Data	a			Re test	Re test
Samp	1500	Track	Loca	tion	Mach	100	Date	- 95.11.551		Peel Shear			Result		1	2
No	Туре	Туре	Seam	Dist. (ft.) ID ID Samp Inside Outside ppi/p	ppi/psi	(P/F)	ID									
3-020	F	D	50-51	8 W	W-9	VS	4/13/2012	Lab	161	158	170	PPI	P	DWH	-	
				Ţ11				Field	123	126	153	PPI	P	DWH		

Comments:

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: Report #: Checked By: Page: 1 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane:

60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Testing Machine: Testing Speed: Instron 1123 2 in/min

Seaming Method:

Dual Hot Wedge Weld

Grips:

ATS pneumatic

Specimen Size:

1 in x 8 in

Sample ID: Seam ID: DS-3-001 001/002

Machine ID: Welder ID: W-9 VS

Date Sampled:

03/28/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	111	(catalog)	SE1	146		SE1	171	>50%	upper
2	110	3555	SE1	126	-	SE1	169	>50%	upper
3	1117		SE1	144	-	SE1	174	>50%	upper
4	113		SE1	142	***	SE1	171	>50%	upper
5	115		SE1	137		SE1	175	>50%	both
Average	313	242	767	139	200		172		CHE

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science	
Project Name:	Onondaga SCA Phase I II	
Project Location:	Camillus, NY	
Installer:	202	
GTX #:	11670	
Test Date:	04/03/12	
Tested By:	ad	Report #: 1

Page:

2 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Checked By:

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min **Dual Hot Wedge Weld** Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-002 Machine ID: W-10 Seam ID: 009/010 Welder ID: TS Date Sampled: 03/28/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	118		SE1	126	(***)	SE1	164	>50%	upper
2	109		SE1	125		SE1	160	>50%	upper
3	111	252	SE1	115	1 2 2 2 2 2	SE1	164	>50%	upper
4	114	958	SE1	114		SE1	163	>50%	upper
,5	117	111	SE1	113		SE1	168	>50%	upper
Average	114	***	***	119			164		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: Report #: Checked By: Page: 3 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-3-003
 Machine ID:
 W-5

 Seam ID:
 001/009
 Welder ID:
 AS

 Date Sampled:
 03/28/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	141		SE1	140	75.T	SE1	154	>50%	upper
2	142		SE1	123		SE1	157	>50%	upper
3	137	####.	SE1	144	***	SE1	155	>50%	upper
4	141	1225	SE1	137	555	SE1	157	>50%	upper
5	135	:: :	SE1	123	-	SE1	163	>50%	upper
Average	139		(mine	133	OBBE:	(***	157	***	1202

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II

Project Location: Camillus, NY

Installer: GTX #:

Test Date:

11670 04/03/12

Tested By: Checked By: ad jdt

Report #: Page:

4 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Testing Speed:

Specimen Size:

Instron 1123 2 in/min

Seaming Method:

Dual Hot Wedge Weld

Grips:

ATS pneumatic 1 in x 8 in

Sample ID: Seam ID:

DS-3-004 019/020

Machine ID: Welder ID:

W-9 VS

Date Sampled:

03/28/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	132	207	SE1	143		SE1	167	>50%	upper
2	130	7444	SE1	135	***	SE1	158	>50%	upper
3	133		SE1	140		SE1	167	>50%	upper
4	133	14 m	SE1	150	(555)	SE1	161	>50%	upper
5	141		SE1	142	***	SE1	166	>50%	upper
Average	134	SAE.	***	142	(888)		164	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: ad Report #: Checked By: jdt 5 of 13 Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

Sample ID: DS-3-005 Machine ID: W-5

022/024 Welder ID: AS
Date Sampled: 03/28/12

Peel Strength Shear Strength Weld A Weld B Specimen Seam Failure Seam **Failure** Elongation, Rupture lb./in lb./in lb./in Separation, % Separation, % Type Mode Number Type 1 128 SE1 123 SE1 174 >50% lower 2 117 SE1 119 SE1 172 >50% both 3 126 SE1 SE1 >50% 120 177 lower 4 119 SE1 117 SE1 171 >50% lower 5 118 SE₁ 116 SE1 176 >50% lower Average 122 119 174

Comments:

Seam ID:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I II		
Project Location:	Camillus, NY		
Instalier:	表表於		
GTX #:	11670		
Test Date:	04/03/12		
Tested By:	ad	Report #:	1
Checked By:	jdt	Page:	6 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-3-006
 Machine ID:
 W-10

 Seam ID:
 024/025
 Welder ID:
 TS

 Date Sampled:
 03/28/12

			Shear Strength						
	Weld A					Weld B			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	126	1222	SE1	127		SE1	177	>50%	both
, 2	122		SE1	123	***	SE1	173	>50%	upper
3	129		SE1	126		SE1	175	>50%	upper
4	127	122	SE1	130		SE1	170	>50%	upper
5	117	(666)	SE1	140	жен	SE1	174	>50%	upper
Average	124		7.7.7	129		***	174		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: ad Report #: Checked By: jdt Page: 7 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: Fillet Extrusion Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-007 Machine ID: 16 Seam ID: 020/PATCH Welder ID: MX Date Sampled: 03/30/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	73		AD-WLD		555		145	<50%	AD-WLD	
2	84		AD-WLD	the same			142	<50%	AD-WLD	
3	96	784:	AD-WLD	:944:		HEE	158	<50%	AD-WLD	
4	113		SE1	***	555		169	>50%	upper	
5	100	***	SE1	1999	221		171	>50%	upper	
Average	93	\T.T.		***	(MAKE)	(WEE)	157	202		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/05/12 Tested By: ad Report #: Checked By: jdt 1 of 2 Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Fillet Extrusion Weld Seaming Method: ATS pneumatic Grips: Specimen Size: 1 in x 8 in Sample ID: DS-3-007A Machine ID: 16 Seam ID: 024/PATCH Welder ID: MX Date Sampled:

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	96		SE3	***	1886		168	>50%	upper	
2	118		SE3	(#.) •	(See all and a second		164	>50%	upper	
3	133	***	SE3			(HAR)	166	>50%	upper	
4	122		SE3	:857f	***		165	>50%	upper	
5	108		SE3			NAMES!	169	>50%	upper	
Average	115				(***		166	-	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/05/12 Tested By: Report #: 2 Checked By: jdt Page: 2 of 2

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: Fillet Extrusion Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-007B Machine ID: 16

Seam ID: 014/PATCH Welder ID: MX
Date Sampled: ---

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	126	***	SE3		377		174	>50%	upper	
2	115	(222)	SE3				172	>50%	upper	
3	109	1222	AD-WLD				114	<50%	AD-WLD	
4	81	Vessi	AD-WLD		-11-	***	171	>50%	upper	
5	116	0###0	SE3	242	242		173	>50%	upper	
Average	110	***	(600)	***	-200	920	161	. SE	4.44	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: ad Report #: Page: Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: **Dual Hot Wedge Weld** ATS pneumatic Grips: Specimen Size: 1 in x 8 in Sample ID: DS-3-008 Machine ID: W-5

Seam ID: 027/028 Welder ID: AS
Date Sampled: 03/30/12

		Peel Strength									
		Weld A			Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	126	555	SE1	122	***	SE1	174	>50%	upper		
2	112	(444)	SE1	128	-	SE1	171	>50%	upper		
3	128	энэ.	SE1	121	***	SE1	173	>50%	upper		
4	114	***	SE1	129	***	SE1	170	>50%	upper		
5	133	(444)	SE1	121	1642	SE1	172	>50%	upper		
Average	123	(MATE	(278)	124		***	172	355			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 04/03/12
Tested By: ad Report #: 1

Date Sampled:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

jdt

Checked By:

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: Dual Hot Wedge Weid Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-009 Machine ID: W-9 Seam ID: 029/030 Welder ID: VS

Peel Strength Shear Strength Weld A Weld B Failure Specimen Seam Seam Failure Elongation, Rupture lb./in lb./in lb./in Number Separation, % Separation, % Type Type Mode 114 1 SE1 126 SE1 167 >50% upper 2 117 SE1 123 SE₁ 165 >50% upper 3 110 SE1 119 SE₁ 167 >50% upper 112 SE1 133 SE₁ 164 >50% upper 5 105 SE₁ 126 SE₁ 166 >50% upper Average 112 125 166

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPF) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

9 of 13

Page:

04/02/12

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II

Project Location: Camillus, NY

Installer: GTX #:

11670

idt

Test Date: Tested By: 04/03/12

Checked By:

Report #: Page: 10 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Testing Machine: Testing Speed:

Instron 1123 2 in/min

Seaming Method:

Dual Hot Wedge Weld

Grips:

ATS pneumatic

Specimen Size:

1 in x 8 in

Sample ID: Seam ID:

DS-3-010

Machine ID: Welder ID:

W-10 TS

030/032

Date Sampled:

04/02/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	127		SE1	131	***	SE1	172	>50%	both	
2	128	***	SE1	134	***	SE1	170	>50%	upper	
3	122	***	SE1	141		SE1	172	>50%	both	
4	123	***	SE1	137		SE1	168	>50%	both	
5	123	HOT:	SE1	133	***	SE1	173	>50%	lower	
Average	125		777	135			171	***	HEN:	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 04/03/12 Test Date: Tested By: ad Report #: Checked By: jdt 11 of 13 Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Instron 1123 Upper Geomembrane: Testing Machine: Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-011

 Sample ID:
 DS-3-011
 Machine ID:
 W-11

 Seam ID:
 032/033
 Welder ID:
 KC

 Date Sampled:
 04/02/12

			Peel St	rength					
		Weld A		Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	116		SE1	125		SE1	169	>50%	upper
2	113		SE1	122		SE1	166	>50%	upper
3	116	404	SE1	122		SE1	169	>50%	upper
4	124	***	SE1	123		SE1	165	>50%	upper
5	118		SE1	133		SE1	168	>50%	upper
Average	117	HHH	***	125	1999	***	.168		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I Π Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: Report #: ad Checked By: 12 of 13 idt Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: Testing Speed: 2 in/min 60 mil AGRU microspike HDPE Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in W-5 Machine ID: Sample ID: DS-3-012 AS Seam ID: 033/035 Welder ID: Date Sampled: 04/02/12

	Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	131	###	SE1	126		SE1	169	>50%	upper
2	124		SE1	131	224	SE1	167	>50%	upper
3	126	***	SE1	129		SE1	170	>50%	upper
4	120	***	SE1	133	27.77	SE1	166	>50%	upper
5	131	And the same	SE1	132		SE1	171	>50%	upper
Average	126		***	130	***		168		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/03/12 Tested By: ad Report #: Checked By: jdt Page: 13 of 13

Date Sampled:

04/02/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Upper Geomembrane: Testing Machine: Instron 1123 Lower Geomembrane: 60 mll AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: **Dual Hot Wedge Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-013 Machine ID: W-10 Seam ID: 036/038 Welder ID: TS

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	140	***	SE1	117	energy energy	SE1	166	>50%	upper	
2	134		SE1	111	***	SE1	164	>50%	upper	
3	141		SE1	114		SE1	167	>50%	upper	
4	137		SE1	116	242	SE1	164	>50%	upper	
5	132		SE1	116	***	SE1	167	>50%	upper	
Average	137	222	222	115			166			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: 11670 GTX #: 04/17/12 Test Date: Report #: Tested By: 1 of 7 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-3-014
 Machine ID:
 W-5

 Seam ID:
 034/OLD
 Welder ID:
 AS

 Date Sampled:
 04/13/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	141	201	SE1	117	(444)	SE1	167	>50%	upper	
2	137	teres and the same of the same	SE1	133	((##(#))	SE1	166	>50%	upper	
3	116	.55f	SE1	129		SE1	166	>50%	upper	
4	125		SE1	129		SE1	161	>50%	upper	
5	122	***	SE1	135	(APP)	SE1	163	>50%	upper	
Average	128	355	-A15"	129		-	165	222	202	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science								
Project Name:	Onondaga SCA Phase I II								
Project Location:	Camillus, NY								
Installer:									
GTX #:	11670								
Test Date:	04/17/12	2000							
Tested By:	ad	Report #:	5						
Checked By:	bfs	Page:	2 of 7						

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

Sample ID: DS-3-015

Machine ID: W-9

 Sample ID:
 DS-3-015
 Machine ID:
 W-9

 Seam ID:
 040/042
 Welder ID:
 VS

 Date Sampled:
 04/13/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	ib./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	116	пли	SE1	122	###.	SE1	171	>50%	upper	
2	113		SE1	127	225	SE1	166	>50%	upper	
3	116	***	SE1	132	***	SE1	170	>50%	upper	
4	118	***	SE1	129		SE1	168	>50%	upper	
5	115	***	SE1	125	942	SE1	171	>50%	upper	
Average	116	855	***	127	***		169	:=:=	(888)	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/17/12 Tested By: Report #: 3 of 7 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-3-016
 Machine ID:
 W-5

 Seam ID:
 042/044
 Welder ID:
 AS

 Date Sampled:
 04/13/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	141		SE1	135	2051	SE1	177	>50%	both	
2	127	HH#	SE1	116	ere:	SE1	175	>50%	upper	
3	143	(exe.)	SE1	144	***	SE1	177	>50%	both	
4	145		SE1	139	2027	SE1	172	>50%	lower	
5	144	(444)	SE1	134	***:	SE1	178	>50%	lower	
Average	140		30000	134	100		176			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science			
Project Name: Project Location:	Onondaga SCA Phase I II Camillus, NY			
Installer:				
GTX #:	11670			
Test Date:	04/17/12			
Tested By:	ad	Report #:	5	
Checked By:	bfs	Page:	4 of 7	

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-017 Machine ID: W-11 Seam ID: 043/046 Welder ID: TS Date Sampled: 04/13/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	110		SE1	117		SE1	177	>50%	lower	
2	106		SE1	114	15.75	SE1	175	>50%	both	
3	113	242	SE1	117		SE1	177	>50%	lower	
4	112		SE1	113		SE1	173	>50%	lower	
5	113		SE1	110		SE1	177	>50%	lower	
Average	111		444	114	<u>u-zec</u>	222	176	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPF) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Onondaga SCA Phase I II Project Name: Camillus, NY Project Location: Installer: GTX #: 11670 04/17/12 Test Date: Report #: Tested By: ad Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: 60 mil AGRU microspike HDPE Upper Geomembrane: Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE ATS pneumatic **Dual Hot Wedge Weld** Grips: Seaming Method: 1 in x 8 in Specimen Size: Machine ID: W-5 Sample ID: DS-3-018

 Sample ID:
 DS-3-018
 Machine ID:
 W-5

 Seam ID:
 047/054
 Welder ID:
 AS

 Date Sampled:
 04/13/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	132	***	SE1	106	-	SE1	170	>50%	both	
2	134		SE1	111	See 1	SE1	171	>50%	lower	
3	121		SE1	113	***	SE1	172	>50%	lower	
4	132		SE1	129	(555)	SE1	169	>50%	lower	
5	131		SE1	104	***	SE1	172	>50%	lower	
Average	130	244		113	***	(ese	171			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I II		
Project Location:	Camillus, NY		
Installer:	(2772):		
GTX #:	11670		
Test Date:	04/17/12		
Tested By:	ad	Report #:	5
Checked By:	bfs	Page:	6 of 7

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: **Dual Hot Wedge Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-3-019 W-11 Machine ID: Seam ID: 053/054 Welder ID: TS Date Sampled: 04/13/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	119	(exe	SE1	126	1000	SE1	178	>50%	lower	
2	118	(*****	SE1	124	ART.	SE1	177	>50%	both	
3	122	2245	SE1	122	- American	SE1	179	>50%	both	
4	117		SE1	114		SE1	173	>50%	lower	
5	117	3888	SE1	120		SE1	177	>50%	both	
Average	119	-202	HAR	121	TEN .		177		222	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/17/12 Tested By: ad Report #: Checked By: Page: 7 of 7

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-3-020
 Machine ID:
 W-9

 Seam ID:
 050/051
 Welder ID:
 VS

eam ID: 050/051 weider ID: v5

Date Sampled: 04/13/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	159		SE1	162	***	SE1	169	>50%	both	
2	162	575	SE1	161		SE1	170	>50%	both	
3	165		SE1	165		SE1	170	>50%	both	
4	164		SE1	151	***	SE1	168	>50%	both	
5	156	355	SE1	149	202	SE1	172	>50%	both	
Average	161			158			170	2000	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Secondary

Geosyntec >

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS East Basin

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: <u>120</u>

Primar	y / Sec	ondary:	Secon	dary		Se	ries: 2		MaterialType: 2							
			Samp	le Data] [Test Dat	a			Re test	
Samp		Track	Loca	tion	Mach	Oper	Date		Peel		Shear	Unit	Result		I I	2
No	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside Outside		ppi/psi	(P/F)	ID			
2-001	F	D	1-2	147 E	W-39	VS	11/2/2011	Lab	149	162	186	PPI	Р	DWH	-	-
	4							Field	140	176	203	PPI	P	DWH		
2-002	F	D	4-6	240 E	W-2	KP	11/2/2011	Lab	127	139	187	PPI	P	DWH	-	
	-							Field	144	150	209	PPI	Р	DWH		
2-003	F	D	7-9	29 E	W-39	VS	11/2/2011	Lab	138	147	187	PPI	P	DWH		٠
							113	Field	132	131	205	PPI	P	DWH		
2-004	F	D	9-10	20 E	W-8	TS	11/2/2011	Lab	141	136	190	PPI	P	DWH	٠	-
								Field	167	131	212	PPI	Р	DWH		
2-005	F	D	11-12	20 E	W-8	TS	11/2/2011	Lab	142	137	186	PPl	Р	DWH		•
								Field	154	146	216	PPI	P	DWH		
2-006	F	D	12-14	62 E	W-2	KP	11/2/2011	Lab	151	145	187	PPI	Р	DWH		
	7							Field	153	140	210	PPI	P	DWH		
2-007	F	D	14-16	100 E	W-39	VS	11/2/2011	Lab	145	141	188	PPI	Р	DWH		:
								Field	141	145	210	PPI	P	DWH		
2-008	F	D	16-17	140 E	W-8	TS	11/2/2011	Lab	140	139	184	PPI	P	DWH	-	
								Field	137	152	213	PPI	Р	DWH		
2-009	F	D	17-19	189 E	W-2	КР	11/2/2011	Lab	137	133	183	PPI	P	DWH		
								Field	137	137	199	PPI	P	DWH		
2-010	F	D	19-20	162 E	W-39	VS	11/2/2011	Lab	140	141	185	PPI	Р	DWH		
			'					Field	155	130	209	PPI	Р	DWH		
2-011	F	D	22-23	87 E	W-2	КР	11/2/2011	Lab	132	135	184	PPI	Р	DWH		
								Field	148	138	189	PPI	P	DWH		

Geosyntec[>]

consultants

Destructive Test Log

Project: Onondaga-Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: <u>120</u>

Primary / Secondary:

Secondary

Series: 2

MaterialType: 2

			Samp	le Data							Test Data	a				t Re test
Samp		Track	Loca	tion	Mach	Oper	Date		P	eel	Shear	Unit	Result		1	2
No	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
2-012	F	D	25-26	219 E	W-8	TS	11/2/2011	Lab	136	152	194	PPI	Р	DWH		-
								Field	167	130	209	PPI	Р	DWH		
2-013	F	D	27-37	10 E	W-39	VS	11/2/2011	Lab	149	152	183	PPJ	Р	DWH	-	
								Field	148	146	190	PPI	P	DWH		
2-014	F	D	1-42	74 E	W-39	VS	11/3/2011	Lab	135	128	182	PPI	Р	DWH	7-5	
								Field	127	142	198	PPI	Р	DWH		****
2-015	F	D	42-43	20 E	W-2	KP	11/3/2011	Lab	132	144	189	PPI	Р	DWH	•	
								Field	146	133	196	PPI	Р	DWH		
2-016	F	D	43-45	69 E	W-8	TS	11/3/2011	Lab	143	142	186	PP1	Р	DWH	-	-
								Field	137	130	192	PPl	P	DWH		
2-017	F	D	45-46	171 E	W-39	VS	11/3/2011	Lab	157	136	189	PPI	Р	DWH	-	•
								Field	151	151	201	PPI	P	DWH).**I	
2-018	F	D	53-54	12 N	W-2	KP	11/3/2011	Lab	129	146	185	PPI	P	DWH	-	-
		,			-			Field	139	127	207	PPI	Р	DWH		
2-019	F	D	46-55	10 E	W-39	VS	11/3/2011	Lab	140	135	182	PPI	Р	DWH	36	
		*						Field	131	131	194	PPI	P	DWH		

Comments:

Client: Parsons Engineering Science Geosynthetic Testing Project Name: Project Location: Syracuse, NY Installer: 10596 GTX #: Test Date: 11/03/11 Report #: 18 ad Tested By: 1 of 13 Page: bfs Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: 60 mil textured HDPE Upper Geomembrane: Testing Speed: 2 in/min 60 mil textured HDPE Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: 1 in x 8 in Specimen Size: Machine ID: W39 DS-2-001 Sample ID:

 Sample ID:
 DS-2-001
 Machine ID:
 W39

 Seam ID:
 1/2
 Welder ID:
 VS

 Date Sampled:
 11/01/11

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	143	###	SE1	160	444	SE1	185	>50%	upper	
2	137	mas.	SE1	160		SE1	182	>50%	upper	
3	156		SE1	162	(Sec. 1977)	SE1	187	>50%	upper	
4	144	222	SE1	165	***	SE1	185	>50%	upper	
5	162	200	SE1	162	***	SE1	190	>50%	upper	
Average	149	NAME:	446	162	(698)	:335P):	186	112	520	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Tested By: ad Report #: Checked By: bfs Page: 2 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-002 W239 Machine ID: Seam ID: 4/6 Welder ID: KP Date Sampled: 11/01/11

**			Peel St	rength							
		Weld A			Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	129	222	SE1	140	444	SE1	186	>50%	both		
2	127	S RNH	SE1	136	***	SE1	188	>50%	upper		
3	126		SE1	139	(242	SE1	189	>50%	upper		
4	128	SHOWN	SE1	138	***	SE1	184	>50%	upper		
5	126	:555	SE1	142	: ###	SE1	189	>50%	upper		
Average	127	375		139	1255	াত্য	187	***			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
Installer:	was:			
GTX #:	10596			
Test Date:	11/03/11			
Tested By:	ad	Report #:	18	
Checked By	bfs	Page	3 of 13	

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil textured HDPE Testing Machine: Upper Geomembrane: 2 in/min 60 mil textured HDPE Testing Speed: Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: Machine ID: W39 Sample ID: DS-2-003 VS Welder ID: 7/9 Seam ID: Date Sampled: 11/01/11

			Peel Strength						
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	135		SE1	155	***	SE1	187	>50%	upper
2	132	-11	SE1	158	- 	SE1	184	>50%	upper
3	138	290	SE1	167		SE1	188	>50%	upper
4	144	212	SE1	129	leye	SE1	185	>50%	upper
5	141	255	SE1	128	***	SE1	192	>50%	upper
Average	138		***	147			187	755	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Tested By: ad Report #: 18 Checked By: bfs Page: 4 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-004 Machine ID: W-8 Seam ID: 9/10 Welder ID: TS Date Sampled: 11/01/11

			Peel St	rength							
		Weld A			Weld B			Shear Streng	th		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	142		SE1	134	-	SE1	190	>50%	upper		
2	144		SE1	132	***	SE1	188	>50%	upper		
3	141	3888	SE1	142	(MAN)	SE1	192	>50%	upper		
4	138	***	SE1	141	***	SE1	187	>50%	both		
5	142	***	SE1	131	7775)	SE1	192	>50%	lower		
Average	141	201		136	•••		190				

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:	***		
GTX #:	10596		
Test Date:	11/03/11		
Tested By:	ad	Report #:	18
Checked By:	bfs	Page:	5 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Machine: 2 in/min 60 mil textured HDPE Testing Speed: Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: 1 in x 8 in Specimen Size: Machine ID: W-8 Sample ID: DS-2-005 Welder ID: TS Seam ID: 11/12 11/01/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	149	575	SE1	142		SE1	184	>50%	lower
2	142	200	SE1	134		SE1	187	>50%	lower
3	130		SE1	131	Service .	SE1	189	>50%	lower
4	143	222	SE1	139	***	SE1	184	>50%	lower
5	144		SE1	137	***	SE1	189	>50%	lower
Average	142	***	***	137	(exe		186	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Syracuse, NY Project Location: Installer: GTX #: 10596 Test Date: 11/03/11 Tested By: ad Report #: 18 Checked By: bfs Page: 6 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-006 Machine ID: W2 Seam ID: 12/14 Welder ID: KΡ Date Sampled: 11/01/11

			Peel St	rength					
		Weld A			Weld B			Shear Strength	
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	160	0 1007 5	SE1	141		SE1	187	>50%	lower
2	160	10 M 10	SE1	139	1555	SE1	186	>50%	lower
3	142		SE1	141	***	SE1	189	>50%	lower
4	143	State of	SE1	153	7 <u>222</u>	SE1	183	>50%	lower
5	152	WAT.	SE1	150		SE1	188	>50%	lower
Average	151	***	***	145	***	(888)	187	11112	N+44

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Report #: Tested By: Page: 7 of 13 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-2-007
 Machine ID:
 W39

 Seam ID:
 14/16
 Welder ID:
 VS

 Date Sampled:
 11/01/11

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	144	***	SE1	140		SE1	185	>50%	lower
2	144	***	SE1	138	(555)	SE1	188	>50%	lower
3	148	***	SE1	137	1557.V	SE1	191	>50%	lower
4	144		SE1	132		SE1	186	>50%	lower
5	146	mes.	SE1	159	<u> </u>	SE1	189	>50%	lower
Average	145	3		141	-	***	188		iena

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Tested By: ad Report #: Checked By: bfs Page: 8 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil textured HDPE Upper Geomembrane: Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-008 Machine ID: W-8 Seam ID: 16/17 Welder ID: TS Date Sampled: 11/01/11

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	145	(wew)	SE1	140	***	SE1	185	>50%	lower
2	138		SE1	141		SE1	183	>50%	lower
3	139	(###)	SE1	137	***	SE1	185	>50%	lower
4	140	2555	SE1	140	1888	SE1	181	>50%	lower
5	139	/ 575 .)	SE1	139		SE1	184	>50%	lower
Average	140		••••	139	(500)	0 223 0	184	555	377

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Englneering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Report #: Tested By: ad 9 of 13 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

Sample ID: DS-2-009 Machine ID: W-2

 Sample ID:
 DS-2-009
 Machine ID:
 W-2

 Seam ID:
 17/19
 Welder ID:
 KP

 Date Sampled:
 11/01/11

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	138	***	SE1	133	***	SE1	184	>50%	lower	
2	136	TATE:	SE1	131	***	SE1	183	>50%	lower	
3	138	TATE:	SE1	138		SE1	184	>50%	lower	
4	136	•••	SE1	132	-	SE1	180	>50%	lower	
5	136	uwe:	SE1	132	***	SE1	183	>50%	lower	
Average	137	444	***	133	(max)	***	183	HEE:	•••	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Tested By: ad Report #: Checked By: bfs Page: 10 of 13

Date Sampled:

11/01/11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Testing Speed: Lower Geomembrane: 60 mil textured HDPE 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic 1 in x 8 in Specimen Size: Sample ID: DS-2-010 Machine ID: W39 Seam ID: 19/20 Welder ID: VS

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	139	244	SE1	144	***	SE1	183	>50%	lower
2	138	***	SE1	139	(=v=)	SE1	186	>50%	lower
3	143	(Max	SE1	142	(***)	SE1	187	>50%	lower
4	145	537	SE1	140	1000	SE1	182	>50%	lower
5	137	1555	SE1	139		SE1	186	>50%	lower
Average	140	344	***	141	(41) 6	1227	185	7.77	375

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:	1555		
GTX #:	10596		
Test Date:	11/03/11		
Tested By:	ad	Report #:	18
Checked By:	bfs	Page:	11 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Machine: Testing Speed: 2 in/min 60 mil textured HDPE Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: 1 in x 8 in Specimen Size: W-2 DS-2-01 1 Machine ID: Sample ID: Welder ID: ΚP Seam ID: 22/23 Date Sampled: 11/01/11

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	146	444	SE1	135	***	SE1	186	>50%	lower
2	138		SE1	131	***	SE1	184	>50%	lower
3	126	***	SE1	139	0.00	SE1	186	>50%	lower
4	125	.eee	SE1	138	***	SE1	181	>50%	lower
5	124	inter.	SE1	132	***	SE1	185	>50%	lower
Average	132	***		135	2027		184	244	Serve

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/03/11 Tested By: ad Report #: Checked By: bfs Page: 12 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Testing Speed: Lower Geomembrane: 60 mil textured HDPE 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-012 Machine ID: W-8 Seam ID: 25/26 Welder ID: TS 11/01/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	I ID://III 6 6. —			lb./in	Seam Separation, %	Failure Type	lb./in	lb./in Elongation, %	
1	157	(4 <u>444</u>)	SE1	142	***	SE1	193	>50%	lower
2	129		SE1	156		SE1	194	>50%	upper
3	131	(898)	SE1	154		SE1	196	>50%	upper
4	130	N. W.	SE1	151	(New Control	SE1	192	>50%	upper
5	131	Zere.	SE1	155	***	SE1	195	>50%	upper
Average	136	***		152	(total	Page 1	194	275	555

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:	The second secon		
GTX #:	10596		
Test Date:	11/03/11		
Tested By:	ad	Report #:	18
Checked By:	bfs	Page:	13 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: 60 mil textured HDPE Upper Geomembrane: Testing Speed: 2 in/min Lower Geomembrane: 60 mil textured HDPE Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W39-8 DS-2-013 Sample ID:

 Sample ID:
 DS-2-013
 Machine ID:
 W39-8

 Seam ID:
 27/37
 Welder ID:
 VTS

 Date Sampled:
 11/01/11

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	151	SEE	SE1	151	(Mark)	SE1	183	>50%	upper	
2	148		SE1	149	-	SE1	183	>50%	upper	
3	152	MAX	SE1	155		SE1	185	>50%	both	
4	154	***	SE1	150	***	SE1	181	>50%	both	
5	141	ann.	SE1	153		SE1	184	>50%	both	
Average	149		5201	152	-	(A)	183		(neir	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/04/11 Tested By: ad Report #: 16 Checked By: bfs/njh Page: 1 of 6

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-14 Machine ID: W-8 Seam ID: Welder ID: TS

 Sample ID:
 DS-2-14
 Machine ID:
 W-8

 Seam ID:
 1/42
 Welder ID:
 TS

 Date Sampled:
 11/02/11

			Peel St	rength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	ib./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138	222	SE1	129		SE1	182	>50%	both
2	130	EHE	SE1	126		SE1	183	>50%	upper
3	136	WHE	SE1	128	(Tabada)	SE1	183	>50%	both
4	134	***	SE1	131	***	SE1	180	>50%	upper
5	136	***	SE1	128	***	SE1	184	>50%	both
Average	135	225	Ann.	128	***	***	182	1555	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: 10596 GTX #: Test Date: 11/04/11 ad Report #: 16 Tested By: 2 of 6 Checked By: bfs/njh

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil textured HDPE Testing Machine: Upper Geomembrane: 2 in/min Testing Speed: 60 mil textured HDPE Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: 1 in x 8 in Specimen Size: W-2 Machine ID:

 Sample ID:
 DS-2-15
 Machine ID:
 W-2

 Seam ID:
 42/43
 Welder ID:
 KP

 Date Sampled:
 11/03/11

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	131		SE1	147	(See a)	SE1	184	>50%	lower
2	131	222	SE1	143		SE1	189	<50%	BRK
3	137	***	SE1	138	(株本金)	SE1	192	>50%	lower
4	131	***	SE1	145	The late of	SE1	187	>50%	lower
5	131	***	SE1	149	2500	SE1	191	>50%	lower
Average	132		S###0	144	white.	222	189	444	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/04/11 Tested By: ad Report #: Checked By: bfs/njh

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mll textured HDPE Testing Speed: 2 in/min Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-2-16 Machine ID: W-8 Seam ID: 43/45 Welder ID: TS Date Sampled: 11/03/11

			Peel St	rength					
		Weld A			Weld B		Shear Streng	th	
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	145		SE1	139	Here.	SE1	183	>50%	lower
2	144	225	SE1	147		SE1	187	>50%	lower
3	144	you:	SE1	147	222	SE1	187	>50%	lower
4	140	***	SE1	138	144	SE1	183	>50%	lower
5	141	***	SE1	140	444)	SE1	188	>50%	lower
Average	143		***	142	***	***	186		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:	***		
GTX #:	10596		
Test Date:	11/04/11		
Tested By:	ad	Report #:	16
Checked By:	bfs/njh	Page:	4 of 6

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: Upper Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Lower Geomembrane: 60 mil textured HDPE ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: 1 in x 8 in Specimen Size: Machine ID: W-39 DS-2-17 Sample ID: ٧S Welder ID: Seam ID: 45/46 11/03/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	143		SE1	126	2222	SE1	186	>50%	lower
2	156	282	SE1	125	-	SE1	190	>50%	both
3	163	and a	SE1	148	196493	SE1	192	>50%	both
4	164	***	SE1	141	948	SE1	186	>50%	lower
5	159		SE1	142	(988)	SE1	191	>50%	lower
Average	157			136	(678)	/.===s	189		222

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/04/11 Tested By: Report #: 16 ad 5 of 6 Checked By: bfs/njh Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 60 mil textured HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in W-2 Sample ID: DS-2-18 Machine ID: Seam ID: 53/54 Welder ID: ΚP 11/03/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			th	
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	137		SE1	141	100	SE1	184	>50%	lower
2	127	1555	SE1	141	**************************************	s SE1	185	>50%	lower
3	131	.007	SE1	149	***	SE1	187	>50%	lower
4	125		SE1	152	<u> </u>	SE1	184	>50%	lower
5	124		SE1	147	益 益益)	SE1	188	>50%	lower
Average	129	(Mage)	New:	146	44041	494)	185	2000	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:	***		
GTX #:	10596		
Test Date:	11/04/11		
Tested By:	ad	Report #:	16
Checked By:	bfs/njh	Page:	6 of 6

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

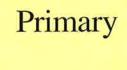
 Sample ID:
 DS-2-19
 Machine ID:
 W-39

 Seam ID:
 46/55
 Welder ID:
 VS

 Date Sampled:
 11/03/11

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	men lb./in Seam F		Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	133	PART .	SE1	136		SE1	181	>50%	lower
2	146		SE1	136	79-1	SE1	184	>50%	lower
3	140		SE1	127	Vere :	SE1	183	>50%	both
4	137	Tables	SE1	139	***	SE1	177	>50%	both
5	141	(444)	SE1	139	***	SE1	184	>50%	lower
Average	140	(***)	((e)eye);	135	TOT.	***	182		(222)

Comments:


Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

West Basin

- Primary
- Secondary

Geosyntec[▷]

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

TaskNo: 07

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

SMS WEST BASIN

Test Regs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: 78

Shear: 120

MaterialType: 6 Series: 5 Primary / Secondary: Primary Re test Re test Test Data Sample Data Shear Unit Result QA Peel Weld Track Location Mach Oper Date Samp ppi/psi (P/F) ID ID Samp ID No Type Type Seam Dist. Outside Inside (ft.) DWH F D 43-45 13 W W-5 AS 4/6/2012 Lab 125 118 169 PPI 5-001 P DWH 122 118 202 PPI Field F D 41-43 50 W W-9 VS 4/6/2012 Lab 129 134 173 PPI DWH 5-002 DWH P 140 128 205 PPI Field 4/6/2012 134 127 178 PPI Р DWH D 4-5 74 W W-10 TS Lab 5-003 P DWH 147 201 PPI Field DWH PPI P W-11 ٧C 4/6/2012 130 133 171 5-004 F D 5-6 106 W Lab DWH PPI Field 128 131 210 DWH PPI Р 32 W VS 4/6/2012 Lab 126 133 168 5-005 F D 8-10 PPI Р DWH 200 143 Field DWH PPI 5-006 F D 3-5 105 N W-10 TS 4/6/2012 Lab 144 133 174 DWH PPI P 159 204 Field 164 PPI P DWH 162 F D 46-48 22 NE W-11 VC 4/6/2012 Lab 136 131 5-007 PPI DWH 191 Field 132 127 PPI P DWH 163 4/6/2012 122 138 5-008 F 33-34 24 S W-5 AS Lab 134 189 PPI DWH Field 118 DWH 127 169 5-009 D 27-28 16 NW W-9 VS 4/6/2012 Lab 133 DWH 138 202 122 Field DWH 168 PPI P 4/6/2012 145 145 5-010 F 11-26 10 W W-10 TS Lab 120 198 PPI P DWH 155 Field

4/16/2012

114

124

Lab

Field

120

123

166

176

PPI

PPI

P

DWH

DWH

F

D

44-51

112 E

W-5

AS

5-011

Geosyntec[>]

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: 120

Primary / Secondary:

Primary

Series: 5

MaterialType: 6

			Samp	le Data							Test Dat	a			Re test	Re test
Samp		Track	Loca	tion	Mach	_	Date		Po	zel	Shear		Result	- 1	1	2
No	Туре	Type	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
5-012	F	D	51-57	4 E	W-9	VS	4/16/2012	Lab	140	129	172	PPI	Р	DWH		
								Field	118	140	174	PPI	Р	DWH		
5-013	F	D	58-60	34 N	W-14	TS	4/16/2012	Lab	145	123	165	PPI	Р	DWH	-	
								Field	130	117	173	PPI	P	DWH		
5-014	F	D	52-56	38 N	W-9	VS	4/16/2012	Lab	122	125	169	PPI	Р	DWH	ŗ.	-
					111-11-11			Field	112	116	183	PPI	Р	DWH		

Comments:

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer:

GTX #: 11670 Test Date: 04/10/12

Tested By: ad Report #: 3
Checked By: idt Page: 1 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

Sample ID: DS-5-001 Machine ID: 5

Seam ID: 43/45 Welder ID: AS
Date Sampled: 04/06/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	127	-	SE1	117		SE1	170	>50%	lower	
2	120	need:	SE1	126	***	SE1	168	>50%	lower	
3	126	(SARS)	SE1	118	***	SE1	171	>50%	lower	
4	132		SE1	112		SE1	166	>50%	lower	
5	122	***	SE1	120	404	SE1	169	>50%	lower	
Average	125			(500)			169			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/10/12 Tested By: ad Report #: Checked By: jdt Page: 2 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-5-002
 Machine ID:
 9

 Seam ID:
 41/43
 Welder ID:
 VS

 Date Sampled:
 04/06/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	130	***	SE1	128	MAN.	SE1	173	>50%	lower	
2	117	AWA:	SE1	131	3.4	SE1	174	>50%	upper	
3	144		SE1	142		SE1	176	>50%	both	
4	125		SE1	128		SE1	170	>50%	lower	
5	131	(MAN)	SE1	141		SE1	173	>50%	lower	
Average	129	S###C		67-10	(MACE)	(app)	173	202		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer: GTX #:

11670

Test Date: Tested By: 04/10/12

Checked By:

jdt

Report #: Page:

3 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane:

60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Testing Machine: Testing Speed:

Specimen Size:

Instron 1123 2 in/min

Seaming Method:

Dual Hot Weld

Grips:

ATS pneumatic

DS-5-003

Machine ID: Welder ID:

10 TS

Sample ID: Seam ID:

4/5

Date Sampled:

04/06/12

1 in x 8 in

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	130	***	SE1	116	\$45F	SE1	178	>50%	both	
2	125	***	SE1	127	***	SE1	176	>50%	both	
3	144		SE1	137	7.75	SE1	179	>50%	lower	
4	144		SE1	120	<u>EEE</u> s	SE1	175	>50%	lower	
5	127	inen.	SE1	135	1888	SE1	181	>50%	lower	
Average	134		***	163-5		5550 (5)	178	.5.0.F.	-557	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/10/12 Tested By: ad Report #: Checked By: Page: 4 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: **Dual Hot Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-004 Machine ID: 11 Seam ID: 5/6 Welder ID: VC Date Sampled: 04/06/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	122	222	SE1	138	***	SE1	170	>50%	both	
2	130	-	SE1	129	1200	SE1	170	>50%	upper	
3	135		SE1	137	***	SE1	173	>50%	upper	
4	129		SE1	127		SE1	169	>50%	upper	
5	132		SE1	135	-	SE1	173	>50%	upper	
Average	130	nee	<	18-66	***	***	171	1222	222	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) Interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Camillus, NY

Project Location:

Installer: GTX #:

11670 Test Date: 04/10/12

Tested By: Checked By: jdt

Report #: Page:

5 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: **Dual Hot Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in

Sample ID: DS-5-005 Machine ID: Seam ID: 8/10 Welder ID: VS

> Date Sampled: 04/06/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	120		SE1	140		SE1	171	>50%	lower	
2	117	NEEDS:	SE1	133		SE1	168	>50%	lower	
3	127	-	SE1	139		SE1	168	>50%	lower	
4	136	***	SE1	132	<u> </u>	SE1	165	>50%	lower	
5	130	(MAK)	SE1	125		SE1	166	>50%	lower	
Average	126		0555 g	16:49			168	2000		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%, Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/10/12 Tested By: ad Report #: Checked By: jdt Page: 6 of 10

Date Sampled:

04/06/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Lower Geomembrane: Testing Speed: 2 in/min Seaming Method: **Dual Hot Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-006 Machine ID: 10 Seam ID: 3/5 Welder ID: TS

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	141	777	SE1	153	***	SE1	174	>50%	upper	
2	153	252	SE1	153		SE1	170	>50%	upper	
3	139	mm#)	SE1	148		SE1	176	>50%	upper	
4	144	THE	SE1	153	***	SE1	173	>50%	upper	
5	143		SE1	161	mat.	SE1	177	>50%	upper	
Average	144	***	<	1668	222		174	STIC		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPF) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 04/10/12
Tested By: ad Report #: 3

Page:

7 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Checked By:

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mll AGRU microspike HDPE Testing Speed: 2 in/mln Seaming Method: **Dual Hot Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-007 Machine ID: 11 Seam ID: 46/48 Welder ID: VC Date Sampled: 04/06/12

			Peel St	rength			Shear Strength		
		Weld A			Weld B				
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	134	****	SE1	149		SE1	162	>50%	upper
2	133	(*** *********************************	SE1	122		SE1	160	>50%	upper
3	139	***	SE1	138		SE1	163	>50%	upper
4	137		SE1	127		SE1	160	>50%	upper
5	136	10.00	SE1	119		SE1	163	>50%	upper
Average	136	344	<	1(55	STEE.	5 70 0	162	HHR	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/10/12 Tested By: ad Report #: Checked By: Page: 1 of 1

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Fillet Extrusion Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-5-007B1
 Machine ID:
 16

 Seam ID:
 18/PATCH
 Welder ID:
 VS

 Date Sampled:
 04/10/12

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	96	***	SE3		***		173	>50%	lower	
2	106	***	SE3	설립함			170	>50%	lower	
3	133	1333	SE3		***	***	171	>50%	lower	
4	116		SE3				171	>50%	lower	
5	102		SE3	444		-0111	175	>50%	lower	
Average	110	555	***		***		172	04440	202	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/10/12 Tested By: ad Report #: Checked By: jdt Page: 8 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Lower Geomembrane: 2 in/min Testing Speed: **Dual Hot Weld** Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-008 5 Machine ID: Seam ID: 33/34 AS Welder ID: Date Sampled: 04/06/12

			Peel St	rength						
		Weld A		Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	122	***	SE1	143	227	SE1	165	>50%	lower	
2	131	242	SE1	133	204	SE1	162	>50%	lower	
3	122		SE1	141	***	SE1	162	>50%	lower	
4	117		SE1	141	2000 2000 2000	SE1	162	>50%	lower	
5	117	444	SE1	136		SE1	165	>50%	lower	
Average	122		5	(694	MAR	HEA	163	(exe)	(900)	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) Interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/10/12 Tested By: ad Report #: Checked By: jdt Page: 9 of 10

Date Sampled:

04/06/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: Dual Hot Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-009 Machine ID: Seam ID: 27/28 Welder ID; VS

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./In	Elongation, %	Rupture Mode	
1	140		SE1	132	***	SE1	171	>50%	upper	
2	124		SE1	133	***	SE1	168	>50%	upper	
3	134	***	SE1	138		SE1	168	>50%	upper	
4	136		SE1	118.	A00001	SE1	166	>50%	upper	
5	133	200	SE1	118	(***)	SE1	170	>50%	upper	
Average	133	(MAN)	3	16-39	0.222	***	169	per.	Serve	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer: --GTX #: 11670

Test Date: 04/10/12
Tested By: ad

 Tested By:
 ad
 Report #: 3

 Checked By:
 jdt
 Page: 10 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Machine: Testing Speed: Instron 1123 2 in/min

Seaming Method:

Dual Hot Weld

Grips:

ATS pneumatic

Specimen Size:

1 in x 8 in

Sample ID: Seam ID: DS-5-010 11/26

Machine ID: Welder ID: 10 TS

Date Sampled:

04/06/12

			Peel St	rength						
		Weld A		Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	146	***	SE1	145	***	SE1	172	>50%	lower	
2	146		SE1	144	· man	SE1	169	>50%	lower	
3	148	1222	SE1	162	***	SE1	167	>50%	lower	
4	143	Here	SE1	151	(exe	SE1	163	>50%	lower	
5	140	555	SE1	143	ene.	SE1	169	>50%	lower	
Average	145	1222	5	1645	***	***	168	TOTAL .		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/18/12 Tested By: ad Report #: 6 Checked By: bfs Page: 1 of 4

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-5-011
 Machine ID:
 W-5

 Seam ID:
 44/51
 Welder ID:
 AS

 Date Sampled:
 04/16/12

			Peel St	rength			Shear Strength		
		Weld A			Weld B				
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	111	122	SE1	127	(777)	SE1	168	>50%	upper
2	111	No.	SE1	114		SE1	163	>50%	upper
3	114		SE1	128	(198	SE1	165	>50%	upper
4	110	222	SE1	113	***	SE1	164	>50%	upper
5	125		SE1	116	***	SE1	168	>50%	upper
Average	114	TET		120	388	***	166	(Hereic	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY

Installer: GTX #: 11670

Test Date: 04/18/12 Tested By: ad

Report #: Checked By: bfs Page: 2 of 4

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: 1 in x 8 in

Specimen Size:

W-9 DS-5-012 Sample ID: Machine ID:

Welder ID: ٧S Seam ID: 51/57 Date Sampled: 04/16/12

Specimen Number	Peel Strength								
	Weld A			Weld B			Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	139	***	SE1	144	34344	SE1	174	>50%	upper
2	138	7.77	SE1	140	-	SE1	169	>50%	upper
3	141		SE1	122		SE1	174	>50%	upper
4	141		SE1	117	, marin	SE1	170	>50%	upper
5	143	##E	SE1	122	377	SE1	174	>50%	upper
Average	140			129	1222	1221	172	(244)	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Englneering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 04/18/12
Tested By: ad Report #: 6

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

bfs

Checked By:

peel & shear destructive test

60 mil AGRU microspike HDPE Upper Geomembrane: Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-013 Machine ID: W-14 Seam ID: 58/60 Welder ID: TS Date Sampled: 04/16/12

Specimen Number	Peel Strength									
	Weld A			Weld B			Shear Strength			
	lb./in	Seam , Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	144		SE1	118	***	SE1	170	>50%	lower	
2	141		SE1	114		SE1	164	>50%	upper	
3	154	(444)	SE1	133	50 (10 to 10	SE1	164	>50%	lower	
4	143	ette:	SE1	129	(mater)	SE1	161	>50%	lower	
5	143	***	SE1	123	***	SE1	165	>50%	lower	
Average	145		***	123		200	165		1840	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

3 of 4

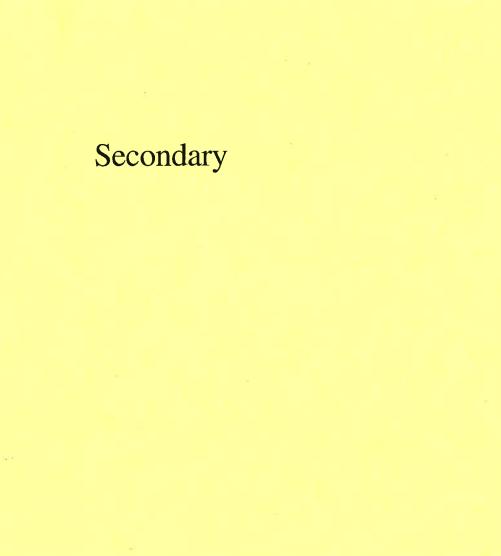
Page:

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 04/18/12 Tested By: ad Report #: Checked By: bfs Page: 4 of 4

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Instron 1123 Testing Machine: Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Seaming Method: **Dual Hot Wedge Weld** Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS-5-014 Machine ID: W-9 Seam ID: 52/56 Welder ID: VS Date Sampled: 04/16/12


Specimen Number	Peel Strength									
	Weld A			Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	135	222	SE1	125		SE1	172	>50%	lower	
2	132	***	SE1	126	***	SE1	168	>50%	lower	
3	115		SE1	132	555	SE1	168	>50%	lower	
4	120	000	SE1	124	202	SE1	165	>50%	lower	
5	109	3555	SE1	121	***	SE1	170	>50%	lower	
Average	122	and a		125			169		1353	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Geosyntec D

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell 1

TaskNo: 07

SMS West Basin

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: 120

Primar	y / Sec	ondary:	Secon	idary		Se	eries: 4				Ma	terialTyp	e: 2			
			Samp	ole Data] [Test Data	a			Re test	Re test
Samp	1	Track	Loca	tion	Mach	Oper	Date	1 1	Pe	eel	Shear	Unit	Result		1	2
No	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
4-001	F	D	1-2	103 W	W-39	vs	11/8/2011	Lab	142	137	187	ppi	P	DWH		727
								Field	124	138	199	PPI	Р	DWH		
4-002	F	D	4-6	181 W	W-8	TS	11/8/2011	Lab	142	145	205	ppi	P	DWH		
								Field	134	144	213	PPI	р	DWH	-	
4-003	F	D	6-7	135 W	W-2	КР	11/8/2011	Lab	150	139	196	ppi	Р	DWH	[·	343
	11						N	Field	134	133	215	PPI	Р	DWH		
4-004	F	D	11-12	46 W	W-2	КР	11/8/2011	Lab	142	143	197	ppi	Р	DWH	-	340
								Field	154	133	206	PP)	Р	DWH		
4-005	F	D	12-13	12 W	W-39	VS	11/8/2011	Lab	146	120	201	ppi	Р	DWH		
	ē.						"	Field	151	121	204	PPI	Р	DWH		
4-006	F	D	14-15	52 W	W-8	TS	11/8/2011	Lab	145	152	198	ррі	Р	DWH	-	3.≇3
								Field	139	153	216	PPI	Р	DWH		
4-007	F	D	26-27	14 SE	W-2	KP	11/9/2011	Lab	132	143	182	ppi	Р	DWH		700
								Field	151	145	211	PPI	Р	DWH	3	
4-008	F	D	19-28	5 SW	W-39	VS	11/9/2011	Lab	151	146	176	ppi	Р	HWD	120	(Z)
								Field	122	144	199	PPI	Р	DWH		
4-009	F	D	35-36	21 SE	W-2	KP	11/9/2011	Lab	146	133	196	ppi	Р	DWH	(ē)	.e.
								Field	143	137	205	PPI	Р	DWH		
4-010	F	D	9-40	5 S	W-39	VS	11/9/2011	Lab	148	152	183	ppi	F	DWH	4-010 A	4-010 B
								Field	156	144	199	PPI	Р	DWH		
I-010 A	F	D	8-40	12 W	W-39	VS	11/17/2011	Lab	151	144	185	ppi	Р	DWH	•	24.
		•						Field	156	158	229	PPI	Р	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706

Location: Camillus, New York

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: 120

Primary / Secondary:

Secondary

Series: 4

MaterialType: 2

			Samp	le Data							Test Dat	a			Re test	Re test
- 17	i u	Track	Loca	tion	Mach	Oper	Date		Po	eel	Shear		Result		1	2
	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
В	F	D	9-39	8 E	W-39	VS	11/17/2011	Lab	143	146	180	ppi	Р	DWH		
								Field	161*	159	223	PPI	Р	DWH		
T	F	D	43-46	23 E	W-8	TS	11/9/2011	Lab	138	137	191	ppi	Р	DWH		
								Field	141	124	207	PPI	Р	DWH		
T	F	D	48-67	15 E	W-39	VS	11/9/2011	Lab	144	143	186	ppi	Р	DWH		-
								Field	146	152	219	PP1	Р	DWH		
Ī	F	D	65-66	19 N	W-2	КР	11/9/2011	Lab	140	145	190	ppi	P	DWH		3
								Field	142	137	213	PPI	Р	DWH		
I	F	D	51-65	12 W	W-8	TS	11/9/2012	Lab	146	144	185	ppi	Р	DWH	•	-
					.,,			Field	150	145	208	PPI	Р	DWH		

Comments:

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:	(man)		
GTX #:	10596		
Test Date:	11/16/11		
Tested By:	bfs	Report #:	20
Checked By:	jdt	Page:	1 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Machine: Testing Speed: 2 in/min Lower Geomembrane: 60 mil textured HDPE Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in West Sediment W-39 Machine ID: Sample ID: DS-4-1 2017 lines Welder ID: VS Seam ID: 1/2 Date Sampled: 11/08/11

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	148		SE1	132		SE1	186	>50%	upper
2	143	777	SE1	149	***	SE1	189	>50%	upper
3	144		SE1	132	<u> 202</u> 0	SE1	191	>50%	upper
4	136	202/	SE1	132		SE1	184	>50%	upper
5	138	(22.52)	SE1	142	444	SE1	188	>50%	upper
Average	142	: HAR:	(APE)	137	egra)	***	187	***	(****

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Geosynthetic Testing

Project Location: Syracuse, NY

Installer: GTX #:

10596

Test Date:

11/16/11

Tested By: Checked By: bfs jdt Report #: Page:

2 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-4-2
 Machine ID:
 W-8

 Seam ID:
 4/6
 Welder ID:
 TS

Seam ID: 4/6 Welder ID: 15

Date Sampled: 11/08/11

			Peel St	Strength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	136	希腊	SE1	143	242	SE1	206	>50%	lower	
2	130	14441 14441	SE1	145	***	SE1	201	>50%	lower	
3	141	***	SE1	152	***	SE1	207	>50%	lower	
4	148	***	SE1	145		SE1	201	>50%	lower	
5	155	***	SE1	139	1000	SE1	207	>50%	lower	
Average	142	05550	(277)	145	No.	-	205	ши	1224	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Report #: 20 Tested By: bfs 3 of 14 Checked By: jdt Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil textured HDPE Testing Machine: Instron 1123 Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil textured HDPE Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: 1 in x 8 in Specimen Size: Sample ID: DS-4-3 Machine ID: W-2 Seam ID: 6/7 Welder ID: ΚP Date Sampled: 11/08/11

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	147	202	SE1	142	1200	SE1	195	>50%	lower	
2	152	***	SE1	138	(=0.4)	SE1	196	>50%	lower	
3	160		SE1	137	C ara E	SE1	198	>50%	lower	
4	150		SE1	139		SE1	193	>50%	lower	
5	143	TAT.	SE1	139		SE1	197	>50%	lower	
Average	150	377		139	2021	1222	196	202		

Comments

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Tested By: Report #: Checked By: jdt Page: 4 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Machine: 60 mil textured HDPE Lower Geomembrane: Testing Speed: 2 in/min Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: 1 in x 8 in Specimen Size: W-2 Sample ID: DS-4-4 Machine ID: Seam ID: 11/12 Welder ID: KΡ Date Sampled: 11/08/11

			Peel St	ength						
		Weld A			Weld B			Shear Strengt	th	
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	132	***	SE1	132		SE1	200	>50%	upper	
2	133	(686)	SE1	149	1999	SE1	196	>50%	BRK	
3	139	(555)	SE1	146		SE1	199	>50%	upper	
4	145	***	SE1	144		SE1	194	>50%	upper	
5	160	***	SE1	142	in a	SE1	198	>50%	upper	
Average	142	2 <u>22</u> 1	(2123)	143	-	222	197	12.04	Seese!	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
Installer:			
GTX #:	10596		
Test Date:	11/16/11		
Tested By:	bfs	Report #:	20
Checked By:	jdt	Page:	5 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Machine: 60 mil textured HDPE 2 in/min Testing Speed: Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: W-39 Machine ID: Sample ID: DS-4-5 VS Seam ID: Welder ID: 12/13 Date Sampled: 11/08/11

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	149		SE1	121		SE1	200	>50%	upper
2	143		SE1	117	(Mary)	SE1	203	>50%	upper
3	147	52/66	SE1	119	Charles and Charles	SE1	202	>50%	lower
4	144		SE1	121	(General)	SE1	198	>50%	upper
5	146	:292	SE1	119	-	SE1	203	>50%	upper
Average	146	SHOWN.	2656	120	News:	***	201		1525

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Tested By: Report #: bfs Checked By: 6 of 14 jdt Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Machine ID: W-8 Sample ID: DS-4-6 Seam ID: 14/15 Welder ID: TS Date Sampled: 11/08/11

			Peel St	rength							
		Weld A			Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	135	***	SE1	152	HEE!	SE1	198	>50%	lower		
2	143		SE1	147		SE1	193	>50%	lower		
3	148	0000 **** 2000	SE1	155		SE1	200	>50%	lower		
4	153	222	SE1	155	222	SE1	195	>50%	lower		
5	148	222	SE1	149	***	SE1	207	>50%	lower		
Average	145	Marie)	4445	152	N44		198		***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Report #: bfs Tested By: 7 of 14 Checked By: Page: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil textured HDPE Testing Machine: Instron 1123 Upper Geomembrane: Testing Speed: 2 in/min 60 mil textured HDPE Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in W-2 Sample ID: DS-4-7 Machine ID: Seam ID: 26/27 Welder ID: KΡ 11/09/11 Date Sampled:

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	136	242	SE1	144	***	SE1	182	>50%	upper	
2	129	***	SE1	147	(2002)	SE1	182	>50%	upper	
3	133	MARK	SE1	144	555	SE1	184	>50%	upper	
4	129	555	SE1	142	(550)	SE1	180	>50%	upper	
5	134	207	SE1	137		SE1	184	>50%	upper	
Average	132		-22	143	: 222 01	-	182	222	N-H	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: ---GTX #: 10596 Test Date: 11/16/11 Tested By: bfs Report #: 8 of 14 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil textured HDPE Upper Geomembrane: Testing Speed: 2 in/min Lower Geomembrane: 60 mil textured HDPE Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: W-39 DS-4-8 Machine ID: Sample ID: VS Welder ID: Seam ID: 19/28 Date Sampled: 11/08/11

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	156	202	SE1	150	==:	SE1	173	>50%	lower	
2	152		SE1	139		SE1	178	>50%	lower	
3	151	222	SE1	144	SHE	SE1	178	>50%	lower	
4	144		SE1	141	***	SE1	172	>50%	lower	
5	152	***	SE1	154	***	SE1	176	>50%	lower	
Average	151	₹##:	***	146			176			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Report #: bfs Tested By: 9 of 14 Page: Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil textured HDPE Testing Machine: Instron 1123 Upper Geomembrane: Testing Speed: 2 in/min 60 mil textured HDPE Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Machine ID: W-2 Sample ID: DS-4-9 Seam ID: 35/36 Welder ID: KΡ 11/10/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	145	***	SE1	137	***	SE1	194	>50%	upper
2	145		SE1	133	***	SE1	195	>50%	upper
3	147	555	SE1	131	(2002)	SE1	200	>50%	lower
4	147		SE1	131	***	SE1	194	>50%	upper
5	147	A77	SE1	134		SE1	198	>50%	upper
Average	146		-DAY	133			196	223	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Tested By: bfs Report #: 10 of 14 Checked By: jdt Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic 1 in x 8 in Specimen Size: Sample ID: DS-4-10 W-39 Machine ID: Seam ID: 9/40 Welder ID: VS 11/10/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	155		SE1	156	***	SE1	184	>50%	upper
2	145	100%	AD	156	244	SE1	184	>50%	upper
3	163	Here	SE1	145	***	SE1	182	>50%	lower
4	142	ವ ರ್ಷಕ ರ	SE1	140	#55E2	SE1	182	>50%	lower
5	136	50%	AD-BRK	165	5552	SE1	182	>50%	upper
Average	148	(See a)		152	777		183	277	(455)

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/18/11 Tested By: Report #: Checked By: jdt Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Machine: 60 mil textured HDPE 2 in/min Lower Geomembrane: Testing Speed: Dual Hot Wedge Weld Seaming Method: ATS pneumatic Grips: Specimen Size: 1 in x 8 in Sample ID: DS-4-10A Machine ID: W-39 Seam ID: VS 8/40 Welder ID: Date Sampled: 11/17/11

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	160		SE1	154		SE1	183	>50%	lower
2	157	515	SE1	143		SE1	187	>50%	both
3	147		SE1	140	(<u>Alber</u>)	SE1	187	>50%	upper
4	142	(mali	SE1	146	1949	SE1	184	>50%	both
5	149		SE1	135	(March)	SE1	183	>50%	upper
Average	151	***	***	144	(max)	***	185	***	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/18/11 Tested By: Report #: Checked By: jdt Page: 2 of 2

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil textured HDPE Testing Machine: Instron 1123 Lower Geomembrane: 2 in/min 60 mil textured HDPE Testing Speed: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: 1 in x 8 in Specimen Size: W-39 Sample ID: DS-4-10B Machine ID: Seam ID: 9/39 Welder ID: ٧S Date Sampled: 11/17/11

			Peel St						
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138	1499	SE1	144		SE1	180	>50%	lower
2	135		SE1	144	(9998)	SE1	179	>50%	upper
3	138	981 1 888	SE1	144	States	SE1	183	>50%	lower
4	161	1000	SE1	150	(१ (कस् रि)	SE1	176	>50%	upper
5	143	The state of the s	SE1	148	Mana)	SE1	182	>50%	upper
Average	143	- Arman	1000	146	Series (180	222	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Report #: 20 Tested By: bfs 11 of 14 Checked By: jdt Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil textured HDPE Upper Geomembrane: Testing Speed: 2 in/min Lower Geomembrane: 60 mil textured HDPE Dual Hot Wedge Weld Grlps: ATS pneumatic Seaming Method: 1 in x 8 ln Specimen Size: Sample ID: DS-4-11 Machine ID: W-8 Seam ID: 43/46 Welder ID: TS Date Sampled: 11/10/11

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	139	***	SE1	134		SE1	191	>50%	upper
2	142	(***)	SE1	136	***	SE1	189	>50%	lower
3	133	***	SE1	125		SE1	190	>50%	upper
4	136	ংলক্র	SE1	150	######################################	SE1	190	>50%	upper
5	137	3505/)	SE1	144	70.5	SE1	194	>50%	upper
Average	138	-		137	222		191	212	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Tested By: bfs Report #: Checked By: Page: 12 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil textured HDPE Testing Speed: 2 in/min Lower Geomembrane: 60 mil textured HDPE Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic 1 in x 8 in Specimen Size: W-39 Sample ID: DS-4-12 Machine ID: VS Seam ID: Welder ID: 48/67 11/10/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	146	2012	SE1	122		SE1	186	>50%	upper
2	139	202	SE1	145		SE1	185	>50%	upper
3	141		SE1	149	***	SE1	190	>50%	upper
4	144	***	SE1	147		SE1	185	>50%	upper
5	148	WHT:	SE1	153		SE1	187	>50%	lower
Average	144	***		143	573		186		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Report #: Tested By: bfs 13 of 14 Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: Upper Geomembrane: 60 mll textured HDPE 60 mil textured HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in DS-4-13 Machine ID: W-2 Sample ID: Welder ID: ΚP Seam ID: 65/66 11/10/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138	***	SE1	137	HAR:	SE1	192	>50%	lower
2	142		SE1	143	W4W	SE1	188	>50%	lower
3	145		SE1	147		SE1	192	>50%	lower
4	133	***	SE1	150	***	SE1	188	>50%	lower
5	140	(Pere)	SE1	146		SE1	192	>50%	lower
Average	140	-		145	7.7.5		190	300	(**

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Geosynthetic TestIng Project Location: Syracuse, NY Installer: GTX #: 10596 Test Date: 11/16/11 Report #: Tested By: bfs Checked By: Page: 14 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil textured HDPE Testing Machine: Upper Geomembrane: 2 in/min Lower Geomembrane: 60 mil textured HDPE Testing Speed: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: 1 in x 8 in Specimen Size: W-8 DS-4-14 Machine ID: Sample ID: Welder ID: TS Seam ID: 51/65 11/10/11 Date Sampled:

			Peel St	rength					
		Weld A			Weld B			Shear Strengt	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	146		SE1	147	222	SE1	181	>50%	upper
2	145	<u> </u>	SE1	139	***	SE1	190	>50%	upper
3	144	454	SE1	142	445	SE1	182	>50%	upper
4	147	***	SE1	151	***	SE1	184	>50%	upper
5	151	****	SE1	139	***	SE1	188	>50%	upper
Average	146	are:	755	144	ARA	222	185	177.7	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

APPENDIX J

Geomembrane Repair Summary Logs

- East Basin
- West Basin

East Basin

- Primary
- Secondary

Primary

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No	1 - 11		Location				Size		Welde	er I.D.	QA .		Non-Destr	uctive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
3/30/2012	3-001		С	15-16-17		0-4		4	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-002		P	4-15		1 S		2	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-003		P	1-15-16		ATT		3	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-004		P	1-4-15		ATT		2	2		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-005		P	1-4-5		ATT		2	2		MX-16	CAP	DWH	4/4/2012	AS	Р	VT OK	DWH
3/28/2012	3-006		P	1-5-6		ATT		3	2		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-007		P	1-6		6 E		2	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-008		P	1-6-7		AT T		2	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-009		P	1-7		9 E		3	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-010	-	P	1-7-8		AT T		3	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-011		P	1-8		6 E		3	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-012		P	1-8-9		AT T		2	1		MX-16	CAP	DWH	4/4/2012	AS	P	VTOK	DWH
3/30/2012	3-013	3-003	P	1-9		4 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-014		P	1-9		13 E		2	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-015		P	1-9-10		ATT		11	2		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-016	1	P	1-10-11	-	AT T		2	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York:

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
3/28/2012	3-017		P	1-11-12		ATT		2	2		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-018		P	1-12		16 E		2	1		- MX-16	CAP	DWH	4/4/2012	AS	Р	VT OK	DWH
3/28/2012	3-019		P	1-12-13		ATT		2	2		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-020		P	1-13		10 E		10	2		MX-16	CAP	DWH	4/4/2012	AS	Р	VT OK	DWH
3/28/2012	3-021		P	1-13-14		ATT		9	2		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-022		S	14-AT		287-290		3	3		MX-16	CAP	DWH	4/4/2012	AS	Р	VT OK	DWH
3/30/2012	3-023		S	18-AT		1 E		22.5	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-024		S	29-AT	6.1	1 E		22.5	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-025	3-002	P	9-10		15 S		5	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
3/30/2012	3-026		P	8-9		5 S		4	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
3/28/2012	3-027		P	1-2-3		ATT		2	1	-	MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-028	3-001	P	1-2		150 W		5	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
3/28/2012	3-029		P	2-3-18		ATT		1	1		MX-16	CAP	DWH	4/4/2012	AS	P	VT OK	DWH
3/28/2012	3-030		P	18-19-20		ATT		2	2		MX-16	CAP	DWH	4/4/2012	AS	Р	VT OK	DWH
4/2/2012	3-031		P	18-19		111 E		18	1		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
3/30/2012	3-032	3-004	P	19-20		6 N		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Dest	ructive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.,)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
3/30/2012	3-033		P	19-20-21		ATT		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-034		С	22-24		93 E		6	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-035	3-005	P	22-23		17 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-036		P	21-22-23		187 E		22.5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-037	3-006	P	24-25		90 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-038		P	23-24-25		AT T		3	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-039		P	22-23-24		AT T		2	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-040		P	23-25		189 E		11	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-041		P	25-26-27		AT T		3	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-042	3-007	P	20-Patch		182 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-043		P	27-28-29		AT T		2	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-044		P	26-27-28	7	AT T		2	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-045		S	28-AT		51 E		22.5	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-046		P	25-26		188 E		10	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-047		P	19-21		113 E		1	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-048		P	2-18		189 E		2	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary:

Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/2/2012	3-049		P	12-13		1 S		1	1		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/2/2012	3-050		P	9-10		1 S		1	1		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/2/2012	3-051		S	24-AT	-	1 E		22.5	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
3/30/2012	3-052	3-008	P	27-28		179 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-053		P	28-29-30		ATT		4	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-054		P	30-31		108 E		10	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-055		P	31-33		109 E		10	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-056		P	30-31-32		ATT		2	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-057		P	32-33-34		ATT		2	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/3/2012	3-058		P	31-32-33		ATT		2	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/2/2012	3-059		P	33-35		273 E		16	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-060		P	33-34-35		ATT		3	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-061		S	35-AT		322 E		22.5	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-062		P	35-36-37		ATT		4	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/2/2012	3-063		P	37-38-39	1	ATT		4	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/3/2012	3-064		P	36-37-38		ATT		5	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/3/2012	3-065	3-009	P	28-30		48 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-066	3-010	P	30-32		109 E		5	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/3/2012	3-067	3-011	P	32-33		110 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/3/2012	3-068	3-012	P	33-35		164 E		5	2		MX-16	VS	DWH	4/4/2012	AS	Р	VT OK	DWH
4/3/2012	3-069	3-013	P	36-38		65 E		5	2		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/16/2012	3-070		С	19-20-21		ATT		9	3		MX-16	VS	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-071	3-007B	P	19-Patch		4 N		5	2		MX-16	VS	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-072		С	19-20		4 N		6	4		MX-16	VS	DWH	4/17/2012	втк	P	VT OK	DWH
4/16/2012	3-073	3-007B1	P	18-Patch		5 N		5	2		MX-16	VS	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-074	3-007A	P	24-Patch		94 E	======	5	2		MX-16	VS	DWH	4/17/2012	BTK	P	VT OK	DWH
4/13/2012	3-075		P	65-66-67		ATT		1	1		MX-18	VC	DWH	4/13/2012	VC	Р	VT OK	DWH
4/13/2012	3-076		P	65-67-69		AT T		2	1		MX-18	VC	DWH	4/13/2012	VC	Р	VT OK	DWH
4/13/2012	3-077		P	65-69-70-71		ATT		3	1		MX-18	VC	DWH	4/13/2012	VC	Р	VT OK	DWH
4/13/2012	3-078		P	62-63-64-65		AT T		2	2		MX-18	VC	DWH	4/13/2012	VC	P	VT OK	DWH
4/13/2012	3-079		P	63-64		28 SW		1	1		MX-18	VC	DWH	4/13/2012	VC	P	VT OK	DWH
4/13/2012	3-080		P	61-62-65		ATT		2	2		MX-18	VC	DWH	4/13/2012	VC	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary Series: 3

Repair	Repair	DS No			Location				Size		Weld	er I.D.	QA		Non-Desti	ructive T	esting	
Date	1D		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/16/2012	3-081		P	38-39-41		ATT		3	1	T I	MX-18	LV	DWH	4/17/2012	BTK	Р	VT OK	DWH
4/16/2012	3-082		P	38-40-41		ATT		3	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-083	3-014	P	38-40		8 E		5	2		MX-18	LV	DWH	4/17/2012	втк	P	VT OK	DWH
4/16/2012	3-084	3-015	P	40-42		53 E		5	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-085		P	40-41-42		ATT		2	2		MX-18	LV	DWH	4/17/2012	ВТК	P	VT OK	DWH
4/16/2012	3-086		P	41-42		19 E		3	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-087		P	42-44		19 E		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-088		В		42	21 E	3 N	9	4		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-089		В	42-44		21 E		9	4		MX-18	LV	DWH	4/17/2012	втк	P	VT OK	DWH
4/16/2012	3-090		В		44	21 E	6 S	9	4		MX-18	LV	DWH	4/17/2012	BTK	Р	VT OK	DWH
4/17/2012	3-091		В		44	21 E	10 S	9	4		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-092		P		44	30 E	6 S	1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/17/2012	3-093	3-016	P	42-44		170 E		5	3		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/17/2012	3-094		P	42-43-44		ATT		7	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/17/2012	3-095		P	42-43		130 E		1	1		MX-18	LV	DWH	4/17/2012	втк	P	VT OK	DWH
4/17/2012	3-096	3-017	P	43-45		188 E		5	2		MX-18	LV	DWH	4/17/2012	ВТК	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No			Location				Size		Weld	er I.D.	QA		Non-Dest	ructive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/17/2012	3-097		P	43-44-45		ATT		1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-098		P	44-45-46		ATT		1	1		MX-18	LV	DWH	4/17/2012	BTK	Р	VT OK	DWH
4/16/2012	3-099		P	44-46		16 E		3	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-100		Р	46-61-62		ATT		4	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-101		P	45-46-62	1.	ATT		3	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	ĎWН
4/16/2012	3-102		P	45-62-64		ATT		1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-103		P	45-47-63-64		ATT		7	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/17/2012	3-104		P	59-60		1 N		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/17/2012	3-105		P	47-59-60		AT T		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-106		P	47-58-59		ATT		3	1		MX-16	BTK	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-107		P	47-56-58		AT T		2	1		MX-16	BTK	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-108		P	47-55-56		ATT		3	I		MX-16	BTK	DWH	4/17/2012	BTK	P	VT OK	DWH
4/3/2012	3-109		S	36-AT		124 E		13	1		MX-16	VS	DWH	4/4/2012	AS	P	VT OK	DWH
4/16/2012	3-110		P	55-56		10 N		3	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-111		P	55-56-57		AT T		3	1		MX-18	LV	DWH	4/17/2012	BTK	Р	VT OK	DWH
4/16/2012	3-112		P	55-57		1 N		1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VTOK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York;

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair Date	Repair ID	DS No	Repair		Location				Size		Weld	er LD.	QA		Non-Destr	uctive T	esting	
Diue	ID.		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	₹ ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/16/2012	3-113		P	53-54		1 N		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-114		P	54-55		18 N		4	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-115		P	47-54-55	10.000	AT T		3	2		MX-16	BTK	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-116	3-018	P	47-54		6 W		5	2		MX-16	BTK	DWH	4/17/2012	ВТК	P	VT OK	DWH
4/16/2012	3-117		P	47-53-54		ATT		1	1		MX-18	LV	DWH	4/17/2012	ВТК	P	VTOK	DWH
4/16/2012	3-118	3-019	P	53-54		26 N		5	2		MX-18	LV	DWH	4/17/2012	BTK	P	VTOK	DWH
4/16/2012	3-119		P	47-52-53		AT T		1	1		MX-18	LV	DWH	4/17/2012	ВТК	P	VT OK	DWH
4/16/2012	3-120		P		52	37 N	7 E	1	1		MX-18	LV	DWH	4/17/2012	ВТК	P	VT OK	DWH
4/16/2012	3-121		P		52	44 N	7 E	1	1		MX-18	LV	DWH	4/17/2012	втк	P	VTOK	DWH
4/16/2012	3-122		P		52	52 N	7 E	1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VTOK	DWH
4/16/2012	3-123		P	47-51-52		ATT		2	1		MX-18	LV	DWH	4/17/2012	втк	P	VTOK	DWH
4/17/2012	3-124		P	50-51-52		ATT		6	2		MX-18	LV	DWH	4/17/2012	BTK	Р	VT OK	DWH
4/16/2012	3-125	3-020	P	50-51		14 E		5	2		MX-18	LV	DWH	4/17/2012	втк	P	VT OK	DWH
4/16/2012	3-126		P	49-50-51		AT T		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-127		P	49-50		1 N		1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VTOK	DWH
4/16/2012	3-128		P	47-49-51		AT T		1	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	r I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/16/2012	3-129		P	47-48-49		AT T		2	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-130		P	47-48-63-65		ATT		3	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-131		P	48-65-71		ATT		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-132		P	70-71		19 N		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
5/14/2012	3-133		В		67	1 N	5 W	6	4		MX-16	AS	DWH	6/14/2012	BS	р	VT OK	DWH
4/17/2012	3-134		P	66-67-68		AT T		1	1		MX-18	LV	DWH	4/17/2012	втк	P	VT OK	DWH
4/17/2012	3-135		P	66-68		13 E		2	1		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/17/2012	3-136		P	66-68		1-7		7	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH
4/16/2012	3-137		Р	40-42		268 E		2	2		MX-18	LV	DWH	4/17/2012	BTK	P	VT OK	DWH

Secondary

Geosyntec D

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary Series: 2

Repair Date	Repair ID	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/3/2011	2-001		P	29-30-31		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-002		P	26-29-30		AT T		3	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-003		P	26-28-29		AT T		3	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-004		P	26-27-28		AT T		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-005		P	27-28-32		AT T		3	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VTOK	DWH
11/3/2011	2-006		P	27-32-33		AT T		3	2		MX-5	LV	DWH	11/15/2011	ВН	Р	VT OK	DWH
11/3/2011	2-007		P	27-33		4 W		4	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-008		P	27-33-34		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-009		P	27-34-35		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-010		P	27-35-36		АТТ		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-011		P	27-36-37	13	AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-012	2-013	P	27-37		10 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-013		P	27-37-38		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-014		P	27-38-39		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-015		P	27-39-40		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-016		P	27-40-41		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York ProjNo: GJ4706 TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary Series: 2

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive 7	Testing	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/3/2011	2-017		P	27-41		19 E		2	1		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-018		P	26-27		216 E		1	1		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-019	2-012	P	25-26		219 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-020		Р	23-24-25		AT T		3	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-021		P	23-25		110 E		1	1		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-022		P	22-23		114 E		1	1		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-023	2-011	P	22-23		87 E		5	2		MX-5	LV	DWH	I 1/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-024		P	22-23-24		AT T		3	2		MX-5	LV	DWH	11/7/2011	ВН	P	VTOK	DWH
11/3/2011	2-025		P	22-24		22 E		4	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-026		P	20-21-22		AT T		2	1		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-027		P	18-19-20		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-028	2-010	P	19-20		162 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-029		P	20-21		6 N		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VTOK	DWH
11/3/2011	2-030		P	19-20-21		AT T		4	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-031		P	17-19		19 E		6	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-032	2-009	P	17-19		189 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location Camillus, New York ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary Series: 2

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/4/2011	2-033		P	17-18-19	T	AT T	-	3	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-034		P	17-18		33 E		8	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-035		P	15-16		150 E		2	1		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-036		P	15-16-17		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-037	2-008	P	16-17		140 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-038	2-007	P	14-16		100 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-039	1	P	14-15-16		AT T		3	1		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-040		Р	12-13-14		AT T		2	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-041	2-006	Р	12-14		62 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-042		Р	12-14		5 E		3	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/4/2011	2-043		P	11-12		5 E		2	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/4/2011	2-044	2-005	P	11-12		20 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-045		Р	10-11-12		AT T		2	1		MX-5	LV	DWH	11/15/2011	TS	Р	VT OK	DWH
11/3/2011	2-046		Р	10-12-13		AT T		2	1		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-047		P	9-10		84 E		2	I		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-048	2-004	P	9-10		20 E		5	2		MX-5	LV	DWH	11/7/2011	ВН	P	VT OK	DWH

Geosyntec (*)

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

Series: 2

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary

Repair Date	Repair ID	DS No	Repair		Location				Size	-	Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/3/2011	2-049		P	9-10-11		AT T		3	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/4/2011	2-050		P	9-11		145 E		3	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/4/2011	2-051		P	7-8-9		AT T		2	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VTOK	DWH
11/4/2011	2-052	2-003	P	7-9		29 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-053		P	7-9		207 E		3	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-054		P	5-7	1	3 E		3	1		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-055		P	5-6-7		AT T		2	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/4/2011	2-056		P	6-7-8		AT T		6	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-057		С	4-6		162 E		19	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-058	2-002	P	4-6		240 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-059		P	4-6		271 E		3	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-060		P	4-5-6		AT T		9	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-061		P	2-3-4		AT T		3	2	ĺ	MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-062		P	1-2-3		AT T		3	1		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-063	2-001	P	1-2		147 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-064		P	1-42		323 E		1	1		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH

Geosyntec D

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary Series: 2

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	<i>Dia.</i> (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/3/2011	2-065		P	1-42		152 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-066		P	1-42		97 E		3	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-067		P	1-42		30 E		8	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/7/2011	2-068		В		42	24 E	8 N	6	4		MX-8	VS	DWH	11/7/2011	KP	Р	VT OK	DWH
11/7/2011	2-069		В		42	24 E	3 N	6	4		MX-8	VS	DWH	11/7/2011	KP	P	VT OK	DWH
11/7/2011	2-070		В	42-44	1	24 E		6	4		MX-8	VS	DWH	11/7/2011	KP	Р	VT OK	DWH
11/7/2011	2-071		В		44	24 E	5 S	6	4		MX-8	VS	DWH	11/7/2011	KP	P !	VT OK	DWH
11/3/2011	2-072		P	42-43-44		AT T		6	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/4/2011	2-073		P	42-43		177 E		2	1		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-074		P	43-44-45		ATT		3	2		MX-8	VS	DWH	11/7/2011	BH	Р	VT OK	DWH
11/3/2011	2-075		P		18	20 E	10 S	2	2		MX-5	LV	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/4/2011	2-076	2-014	P	1-42		74 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-077	2-015	P	42-43		20 E		5	2		MX-8	VS	DWH	11/7/2011	вн	Р	VT OK	DWH
11/3/2011	2-078	2-016	Р	43-45		69 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-079	2-017	P	45-46		171 E		4	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-080	2-018	P	53-54		12 N		5	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH

Geosyntec (>

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary:

Secondary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	<i>Dia.</i> (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/3/2011	2-081	2-019	P	46-55		10 E		5	2		MX-8	VS	DWH	11/4/2011	вн	P	VT OK	DWH
11/3/2011	2-082		P	45-63		1 E		1	1	(MX-8	VS	DWH	11/7/2011	ВН	Р	VT OK	DWH
11/3/2011	2-083		Р	45-62-63		AT T		3	2		MX-8	VS	DWH	11/3/2011	ВН	Р	VT OK	DWH
11/3/2011	2-084		P	45-61-62		AT T		2	1		MX-8	VS	DWH	11/3/2011	вн	Р	VT OK	DWH
11/4/2011	2-085		С	60-61		0-27		27	2		MX-8	VS	DWH	11/3/2011	ВН	P	VT OK	DWH
11/3/2011	2-086		С	46-60		0-12		12	2		MX-8	VS	DWH	11/3/2011	вн	P	VT OK	DWH
11/3/2011	2-087		Р	46-47-48		AT T		3	1		MX-8	VS	DWH	11/4/2011	вн	Р	VT OK	DWH
11/3/2011	2-088		P	46-48-49		AT T		3	3		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-089		P	46-49-50		AT T		7	2		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH
11/3/2011	2-090		Р	46-50-51-53		AT T		3	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-091		P	50-51		45 SE		6	3		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/3/2011	2-092		Р	51-52-53		AT T		3	2		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH
11/3/2011	2-093		Р	52-53-54		AT T		2	2		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH
11/3/2011	2-094		P	46-53-54		АТТ		2	1		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-095		P	46-54-55		AT T		2	1		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH
11/3/2011	2-096		Р	46-55-56		AT T		2	2		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH

Geosyntec D

consultants

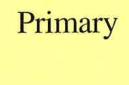
Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07


Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/3/2011	2-097		Р	55-56		7 N		14	2		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH
11/3/2011	2-098		P	46-56-57		AT T		2	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-099		P	46-57-59		AT T		2	1		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-100		P	57-58-59		AT T		4	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/4/2011	2-101		Р	46-59-60		AT T		3	3		MX-8	VS	DWH	11/4/2011	ВН	Р	VT OK	DWH
11/4/2011	2-102		P	58-59-64		AT T		3	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-103		P	59-60-61-62		AT T		5	2		MX-8	VS	DWH	11/3/2011	ВН	P	VT OK	DWH
11/3/2011	2-104		P	59-64-65		AT T		4	3		MX-8	VS	DWH	11/3/2011	вн	P	VT OK	DWH
11/3/2011	2-105		P	59-65-66		AT T		3	2		MX-8	VS	DWH	11/3/2011	ВН	Р	VT OK	DWH
11/3/2011	2-106		P	59-66-67		AT T		6	2		MX-8	VS	DWH	11/3/2011	ВН	P	VT OK	DWH
11/3/2011	2-107		P	59-62-63		AT T		4	2		MX-8	VS	DWH	11/3/2011	ВН	P	VT OK	DWH
11/3/2011	2-108		Р	62-63		21 S		2	1		MX-8	VS	DWH	11/3/2011	ВН	P	VT OK	DWH
11/3/2011	2-109		P	62-63		6 S		2	1		MX-8	VS	DWH	11/3/2011	ВН	P	VT OK	DWH
11/3/2011	2-110		P	66-67-68		AT T		3	2		MX-8	VS	DWH	11/4/2011	ВН	P	VT OK	DWH
11/3/2011	2-111		P	67-68		1 E		5	2		MX-8	VS	DWH	11/7/2011	ВН	P	VT OK	DWH
11/4/2011	2-112		P	45-46	1	240 E		8	2		MX-8	VS	DWH	11/15/2011	TS	P	VT OK	DWH

West Basin

- Primary
- Secondary

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/6/2012	5-001		P	18-19		1 W		1	1	*****	MX-16	VS	DWH	4/9/2012	AS	P	VT OK	DWH
4/6/2012	5-002		P	17-18-19-20		AT T		6	2		MX-16	VS	DWH	4/9/2012	i AS	Р	VT OK	DWH
4/6/2012	5-003		P	17-20-21	4	AT T		2	2		MX-16	VS	DWH	4/9/2012	AS	Р	VT OK	DWH
4/6/2012	5-004		С	16-17-21-22		AT T		15	2		MX-16	VS	DWH	4/9/2012	AS	P	VT OK	DWH
4/6/2012	5-005		P	15-16-22-23		AT T		5	2		MX-16	VS	DWH	4/9/2012	AS	Р	VT OK	DWH
4/6/2012	5-006		P	14-15-23		AT T		3	2		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/6/2012	5-007		С	12-13-14-15		AT T		5	2		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/6/2012	5-008		P	14-23-24		ATT		2	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/6/2012	5-009		P	12-14-24		ATT		3	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/6/2012	5-010		P	12-24-25		AT T		3	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/6/2012	5-011		Р	12-25-26		AT T		3	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/6/2012	5-012		P	11-12-26		AT T		3	3		MX-16	VS	DWH	4/9/2012	AS	Р	VT OK	DWH
4/6/2012	5-013		P	11-26-27		ATT		5	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/6/2012	5-014		P	9-10-11		AT T		2	2	}	MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/6/2012	5-015		P	9-11-27-28		AT T		5	3		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/6/2012	5-016		P	9-28-29		AT T		2	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH

Geosyntec D

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft,)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	- ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/9/2012	5-017		P	7-9-29-30		AT T		5	2		MX-16	VS	DWH	4/9/2012	ВТК	P	VT OK	DWH
4/9/2012	5-018		P	7-30		9 SW		I	1		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-019		P	7-30-31		AT T		2	2		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/9/2012	5-020		Р	6-7-31		AT T		2	-1		MX-16	VS	DWH	4/9/2012	ВТК	Р	VT OK	DWH
4/9/2012	5-021		P	6-31-32		AT T		3	2		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/9/2012	5-022		С	3-5-6-33		AT T		15	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-023		P	6-32-33		AT T		3	T		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-024		P	3-33-34		AT T		2	1		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-025		P	2-3-34-35		АТТ		. 11	2		MX-16	VS	DWH	4/9/2012	ВТК	Р	VT OK	DWH
4/9/2012	5-026		Р	2-35-36		AT T		2	1		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-027	i i	P	1-2-36-37		AT T		6	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-028		Р	1-37		19 W		3	2		MX-16	VS	DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-029		P	1-37-38		AT T		1	1		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/9/2012	5-030		Р	I-38		1 E		2	1		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/9/2012	5-031		Р	13-15	Ĭ	1 W		1	1		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/9/2012	5-032		P	11-13		1 W		1	1		MX-16	VŠ	DWH	4/10/2012	BTK	Р	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Repair Date	Repair ID	DS No	Repair Type –		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive 7	esting	
			1JPC	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/9/2012	5-033		P	6-8		1 W		1	1		MX-16	VS	DWH	4/10/2012	ВТК	Р	VT OK	DWH
4/9/2012	5-034		P	5-6		1 W		1	1		MX-16	VS	-	4/10/2012	BTK	P	VTOK	DWH
4/6/2012	5-035		P	11-12-13		AT T		2	2		MX-16	VS		4/10/2012	BTK	P	VTOK	DWH
4/6/2012	5-036		P		12	25 W	2 N	2	1		MX-16	VS	DWH	4/9/2012	BTK	P	VTOK	DWH
4/6/2012	5-037	5-010	P	11-26		10 W		5	2		MX-16	VS	DWH	4/9/2012	BTK	P	VTOK	DWH
4/6/2012	5-038		P	11-27		13 SW		2	1		MX-16	VS	DWH	4/9/2012	BTK	P	VTOK	_
4/6/2012	5-039	5-009	P	27-28		16 NW		5	2		MX-16	VS	DWH	4/9/2012	BTK	Р		DWH
4/6/2012	5-040		P	8-9-10		AT T		2	1		MX-16	VS	DWH	4/9/2012	BTK		VTOK	DWH
4/9/2012	5-041		P	7-8-9		ATT		2	1		MX-16	VS	DWH		BTK	P	VTOK	DWH
4/6/2012	5-042		P	6-7-8		ATT		2	2		MX-16	VS	DWH			P	VT OK	DWH
4/9/2012	5-043	5-006	P	3-5		10 S		5	2	_	MX-16	VS		4/9/2012	BTK	P	VTOK	DWH
4/9/2012	5-044		P	3-4-5		ATT		4	2		MX-16		DWH	4/9/2012	BTK	Р	VT OK	DWH
4/9/2012	5-045	5-008	P	33-34	1	24 SE		5	2			VS	DWH	4/9/2012	BTK	P	VT OK	DWH
4/9/2012	5-046		P	2-3-4		ATT		2	1		MX-16	VS	DWH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BTK	P	VT OK	DWH
4/9/2012	5-047		P	1-2-4		ATT		- 1	1		MX-16	VS	DWH		BTK	P	VT OK	DWH
4/9/2012	5-048		P	36-37				2			MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH
	3 0 10	L	1	JU-J /	1	1 S		3	1		MX-16	VS	DWH	4/9/2012	BTK	P	VT OK	DWH

Geosyntec D

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair Date	Repair ID	DS No	Repair Type		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Dute	12		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/9/2012	5-049		P	39-46-47	T	ATT		3	1		MX-16	VS	DWH	4/10/2012	ВТК	P	VT OK	Town
4/9/2012	5-050		P	39-41-46		AT T		2	2		MX-16	VS	DWH	4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-051	5-007	P	46-48		22 NE		5	2		MX-16	VS	DWH	4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-052		P	41-46-48		AT T		6	2		MX-16	VS		4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-053		P	41-42-48		AT T		3	1		MX-16	VS	DWH	4/10/2012	BTK	Р	VTOK	DWH
4/9/2012	5-054		P	42-48-49		AT T		2	1		MX-16	VS		4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-055		P	42-44-49		AT T		3	2		MX-16	VS	DWH	4/10/2012	BTK	Р	VT OK	DWH
4/9/2012	5-056		P	44-49-50		ATT		6	2		MX-16	VS		4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-057		P	42-43-44		AT T		2	1		MX-16	VS	DWH	4/10/2012	BTK	Р	VT OK	DWH
4/9/2012	5-058		Р	41-42-43		AT T		2	1		MX-16	VS	DWH	4/10/2012	BTK	Р	VT OK	DWH
4/9/2012	5-059		P	1-39-40		AT T		2	I		MX-16	VS	_	4/10/2012	BTK	Р	VT OK	DWH
4/9/2012	5-060		P	39-40-41		ATT		2	1		MX-16	VS	DWH	4/10/2012	BTK	Р	VTOK	DWH
4/6/2012	5-061	5-005	P	8-10		34 W		5	2		MX-16	VS	J	4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-062	5-004	P	5-6		107 W		5	2		MX-16	VS	-	4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-063	5-003	P	4-5		74 W		5	2		MX-16	VS	DWH	4/10/2012	BTK	P	VT OK	DWH
4/9/2012	5-064	5-002	P	41-43		50 W		5	2		MX-16	VS	DWH	4/10/2012	BTK	P	VTOK	DWH

Geosyntec !>

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: <u>GJ4706</u>

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair Date	Repair ID	DS No	1000		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive 7	esting	
Duit			Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/9/2012	5-065	5-001	P	43-45	- 0	15 W		5	2		MX-16	VS	DWH	4/10/2012	BTK	Р	VTOK	DWH
4/9/2012	5-066		Р	43-44-45		AT T		3	2		MX-16	VS	DWH	4/10/2012	BTK	Р	VT OK	DWH
4/9/2012	5-067		P	43-44		117 W		3	1	-	MX-16	VS	DWH	4/10/2012	BTK	P	VTOK	DWH
4/9/2012	5-068		P	43-45		1 W		1	1		MX-16	VS	DWH	4/10/2012	ВТК	P	VT OK	DWH
4/18/2012	5-069		P	45-62-69		AT T		5	2		MX-18	LV	DWH	4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-070		P	44-45-69-70		AT T		5	2		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-071		P	44-51-70-71		AT T		6	3		MX-16	VS	_	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-072		P	44-51		27 W		9	2		MX-16	VS	_	4/18/2012	AS	P	VT OK	DWH
5/17/2012	5-073	5-011	P	44-51		112 W		5	2		MX-16	VS	DWH	4/18/2012	AS	Р	VT OK	DWH
4/17/2012	5-074		P	44-50-51-53		AT T		12	3		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/17/2012	5-075		P	51-53-54		AT T		2	2		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/17/2012	5-076		P	51-52-54		AT T		5	2		MX-18	LV	DWH	4/18/2012	AS	Р	VT OK	DWH
4/17/2012	5-077		P	52-54-55		АТТ		2	2		MX-18	LV	DWH	4/18/2012	AS	Р	VT OK	DWH
4/18/2012	5-078		P	52-55		19 N		2	1		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-079	5-014	P	52-56		38 N		5	2		MX-18	LV	DWH	4/18/2012	AS	P	VTOK	DWH
4/17/2012	5-080		P	51-52-56		AT T		3	2		MX-18	LV		4/18/2012	AS	Р	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: <u>07</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft,)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/17/2012	5-081		P	51-56-57		ATT		2	1		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/17/2012	5-082	5-012	P	51-57		4 E		5	2		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/17/2012	5-083		P	51-57-58		AT T		3	1		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-084		P	57-58-59		AT T		6	2		MX-18	LV	DWH	4/18/2012	AS	Р	VT OK	DWH
4/18/2012	5-085	5-013	P	58-60		34 N		5	2		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-086		P	51-58-60		AT T		3	1		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-087		P	51-60-61		AT T		3	2		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-088		Р	51-61-63		AT T		4	3		MX-16	VS	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-089		P	51-63-71		AT T		6	4		MX-16	VS	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-090		P	61-63-68		AT T		3	1		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-091		С	61-68-72-75		AT T		8	3		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/18/2012	5-092		С	61-72-75		13 N		11	3		MX-18	LV	DWH	4/18/2012	AS	Р	VT OK	DWH
4/18/2012	5-093		S	75-AT		1 N		4	1		MX-18	LV	DWH	4/18/2012	AS	Р	VT OK	DWH
4/18/2012	5-094		P	67-68-72		AT T		6	4		MX-18	LV	DWH	4/18/2012	AS	P	VT OK	DWH
4/19/2012	5-095		В		62	30 W	6 N	18	4		MX-16	VS	DWH	4/20/2012	VS	P	VT OK	DWH
4/19/2012	5-096		В		62	30 W	3 N	18	4		MX-16	VS	-	4/20/2012	VS	Р	VT OK	DWH

Geosyntec (>

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location; Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Primary

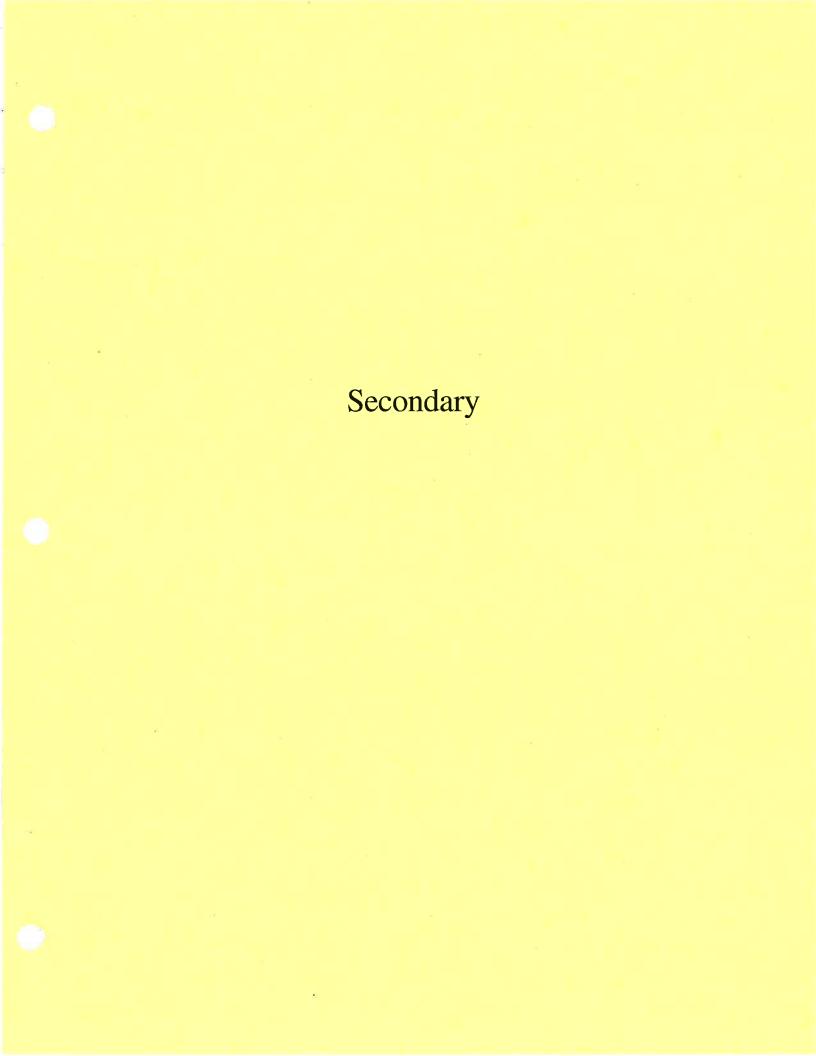
Repair Date	Repair ID	DS No	Repair Type		Location				Size		Welde	er I.D.	QA		Non-Desti	uctive T	esting	
			Type	Seam	Panel	Distance (ft,)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
4/19/2012	5-097		В	62-63		30 W		18	4		MX-16	VS	DWH	4/20/2012	VS	Р	VT OK	DWH
4/19/2012	5-098		В		63	30 W	3 N	18	4		MX-16	VS	-	4/20/2012	VS	P	VTOK	
4/18/2012	5-099		P	64-65-73-74		AT T		2	2		MX-18	LV	-	4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-100		P	66-73		1 N		1	1	-	MX-18	LV		4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-101		P		55	19 SW	2 SE	1	I		MX-18	LV		4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-102		P	51-71		9 S		3	1		MX-16	VS	_	4/18/2012	AS	p	VTOK	DWH
4/18/2012	5-103		P	64-66-73		AT T		4	2		MX-18	LV		4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-104		P	63-69-70-71		ATT		6	3		MX-18	LV	-	4/18/2012	AS	P	VT OK	DWH
4/13/2012	5-105		P	63-69		12 W		3	1		MX-18	VC		4/18/2012	AS	p	VTOK	DWH
4/13/2012	5-106		P	63-69		8 W		2	1		MX-18	VC		4/18/2012	AS	P	VTOK	DWH
4/13/2012	5-107		P	62-63-69		ATT		2	1		MX-18	VC		4/18/2012	AS	P	VTOK	DWH
4/13/2012	5-108		P	63-66		12 W		2	1		MX-18	VC	-	4/18/2012	AS	P	VTOK	DWH
4/13/2012	5-109		P	63-66-67		ATT		1	1		MX-18	VC		4/18/2012	AS	P	VTOK	DWH
4/13/2012	5-110		P	63-67-68		ATT		4	2		MX-18	VC	1	4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-111		P	63-66		10 N		3	2		MX-16	VS		4/18/2012	AS	P	VTOK	DWH
4/18/2012	5-112		Р	63-64-66		AT T		3	2		MX-16	VS	-	4/18/2012	AS	P	VTOK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)


Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Repair	Date ID Type		Location				Size		Welde	r I.D.	QA		Non-Destr	uctive T	esting		
Juc	ID	Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
/20/2012	5-113	В		66	3 N	6 W	7	4		MX-16	VS	DWH	4/20/2012	VS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary

Repair	Repair	DS No	F 2	76	Location				Size		Welde	er I.D.	QA		Non-Destr	ructive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
1/15/2011	4-001		P	58-59		1 N		1	1		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
1/10/2011	4-002		P	52-58-59-60		ATT		6	4		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-003		С	51-52		0-49		49	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-004		P	49-51		1 W		1	1		MX-5	KP	DWH	11/14/2011	KP	Р	VT OK	DWH
1/14/2011	4-005		P	49-51		25 W		1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-006		В		51	28 W	4 S	13	4		MX-8	VS	DWH	11/15/2011	KP	р	VT OK	DWH
1/14/2011	4-007		В	49-51		28 W		13	4		MX-8	VS	DWH	11/15/2011	KP	p	VT OK	DWH
1/14/2011	4-008		В		49	28 W	5 N	13	4		MX-8	VS	DWH	11/15/2011	KP	р	VT OK	DWH
1/14/2011	4-009	T	В		49	28 W	10 N	13	4		MX-8	VS	DWH	11/15/2011	KP	p	VT OK	DWH
1/10/2011	4-010	1	P	54-61	-	17 N		4	2		MX-5	LV	DWH	11/15/2011	LV	P	VTOK	DWH
1/10/2011	4-011		P	54-61		27 N		4	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-012		P	51-62-63		АТТ		5	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-013		P	61-62-63		AT T		3	2		MX-5	LV	DWH	11/14/2011	KP	P	VTOK	DWH
1/10/2011	4-014		P	51-63-64		ATT		2	1		MX-5	LV	DWH	11/14/2011	KP	P	VTOK	DWH
11/10/2011	4-015		P	51-64-65		AT T		4	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
11/15/2011	4-016	4-014	P	51-65		12 W		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706 Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary Series: 4

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
1/10/2011	4-017		F	51-65-66		AT T		3	3		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-018	4-013	P'	65-66		34 N		6	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-019	4-013	F F	65-66		19 N		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
1/10/2011	4-020		F	66-74-76		AT T		2	2		MX-5	LV	DWH	11/14/2011	KP	P	VTOK	DWH
1/10/2011	4-021		F.	51-66-74		ATT		2	1		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-022		F	51-74-75		AT T		3	1		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-023		F	73-74-75		AT T		3	2		MX-5	LV	DWH	11/14/2011	KP	P	VTOK	DWH
1/10/2011	4-024		F	73-75		8 W		2	1		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-025		F	51-72-73-75		AT T		7	3		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-026		F	51-70-72		ATT		4	2		MX-5	LV	DWH	11/15/2011	LV	P	VT OK	DWH
1/10/2011	4-027		P P	51-69-70		AT T		5	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-028		F	69-70-71		ATT		1	1		MX-5	LV	DWH	11/15/2011	LV	P	VT OK	DWH
1/11/2011	4-029		C	50-51-68-69		AT T		15	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/11/2011	4-030		F	1-50-67-68		ATT		4	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-031		F	50-51		58 W		3	ì		MX-5	LV	DWH	11/14/2011	KP	Р	VT OK	DWH
1/10/2011	4-032		F	50-51-57		ATT		3	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH

TaskNo: 07

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Desti	ructive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
1/10/2011	4-033		P	1-50-56-57		AT T		16	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-034		P	1-55-56		ATT		2	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-035		C	1-49-53-55		ATT	(29	2		MX-5	LV	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-036		P	1-49		2 W		2	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/10/2011	4-037		P		1	95 W	5 S	1	1		MX-5	LV	DWH	11/15/2011	LV	P	VT OK	DWH
11/15/2011	4-038	4-001	P	1-2		103 W		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
11/11/2011	4-039		P	1-2-3		AT T		2	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
11/11/2011	4-040		P	1-67-48		ATT		2	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/11/2011	4-041		P	1-3-48		AT T		2	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-042	4-012	P	48-67		15 E		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
1/11/2011	4-043	130	P	3-47-48		AT T		2	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
11/11/2011	4-044		P	3-4-47		AT T		2	1		MX-5	KP	DWH	11/14/2011	KP	Р	VT OK	DWH
11/11/2011	4-045		P	4-46-47		AT T		2	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/11/2011	4-046		P	2-3-4		AT T		2	1		MX-5	KP	DWH	11/14/2011	KP	P	VTOK	DWH
11/15/2011	4-047	4-002	P	4-6		181 W		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
11/14/2011	4-048		P	4-5-6		ATT		2	1	-	MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Secliment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
1/11/2011	4-049		F	4-5-43-46		ATT		8	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-050	4-011	F F	43-46		23 E		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
1/14/2011	4-051		F	42-43-44	-	ATT		2	2	10000	MX-8	VS	DWH	11/14/2011	KP	P	VTOK	DWH
1/11/2011	4-052		F	5-42-43		ATT		2	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/11/2011	4-053		F	5-8-42		ATT		1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-054		F	5-8		14 E		4	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-055		F	5-8		26 E		4	2		MX-5	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-056		F	5-7-8		ATT		2	1		MX-8	VS	DWH	11/14/2011	KP	Р	VT OK	DWH
1/14/2011	4-057		F	5-6-7		AT T		3	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-058	4-003	F	6-7		135 W		5	2		MX-8	VS	DWH	11/15/2011	LV	Р	VT OK	DWH
1/14/2011	4-059		F	6-7		1 W		1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-060		F	7-9		1 W		2	1		MX-5	KP	DWH	11/14/2011	KP	Р	VT OK	DWH
1/14/2011	4-061		F	7-8-9		ATT		2	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-062		F	8-9-40		ATT		I.	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-063		F	8-40-41	-	ATT		2	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-064		P	8-41-42		ATT		2	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary

Repair Date	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Dest	ructive T	esting	
Dinc	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
1/14/2011	4-065		P	41-42-45		ATT		3	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-066		P	39-40		3 SE		4	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-067	4-010	P	9-40		5 S		5	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-068		P	9-39-40		ATT		1	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-069		С	9-10-38-39		ATT		9	9		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-070		P	38-39		18 SE		1	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-071		P	10-37-38		ATT		3	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-072		P	37-38		18 S		3	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/11/2011	4-073		P	9-10-11		ATT		2	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-074		P	11-12	1	1 W		2	Ī		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-075	4-004	P	11-12		46 W		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
1/11/2011	4-076		P	10-11-12		ATT		2	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-077		P	10-12-37		ATT		2	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-078		P	12-36-37		ATT		2	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-079	4-009	P	35-36		21 SE		5	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/15/2011	4-080		P	12-13-35-36	1	AT T		4	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York ProjNo: GJ4706 TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary: Secondary Series: 4

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Desti	ructive 7	esting	=
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft,)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
1/15/2011	4-081	4-005	P	12-13		12 W		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VT OK	DWH
1/11/2011	4-082		P	12-13-14		ATT		2	2		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-083		P	12-14		1 W	-	2	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-084	4-006	P	14-15		52 W		5	2		MX-8	VS	DWH	11/15/2011	LV	P	VTOK	DWH
1/11/2011	4-085		P	13-14-15		AT T		3	2		MX-8	VS	DWH	11/14/2011	KP	P	VTOK	DWH
1/15/2011	4-086		P	13-34-35		ATT		2	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/15/2011	4-087		P	13-15-33-34		AT T		7	2	4	MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/15/2011	4-088		P	15-32-33		ATT		3	2		MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH
1/15/2011	4-089		P	15-16-32		AT T		2	1		MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH
1/15/2011	4-090		P	16-31-32		ATT		2	1		MX-5	KP	DWH	11/15/2011	LV	P	VTOK	DWH
1/14/2011	4-091		P	15-16		1 W		3	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-092		P		18	58 W	10 N	1	1		MX-5	KP	DWH	11/14/2011	KP	Р	VT OK	DWH
1/14/2011	4-093		P		18	66 W	10 N	1	1		MX-5	KP	DWH	11/14/2011	KP	Р	VTOK	DWH
1/14/2011	4-094		P		18	73 W	10 N	1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-095		P		18	80 W	10 N	1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-096		P	16-17-18	4.0	AT T		3	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706

TaskNo: 07

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

Primary / Secondary:

Secondary

Repair Date	Repair	DS No	0.00 Te com		Location				Size		Weld	er I.D.	QA.		Non-Destr	ructive 7	esting	
	ID		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/15/2011	4-097		P	16-30-31		ATT		3	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
11/15/2011	4-098		P	16-17-30		ATT		3	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
11/15/2011	4-099		P	17-29-30	3 2000	ATT		3	2	* *****	MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/15/2011	4-100		C	17-19-28-29		AT T		5	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/14/2011	4-101		P	17-18-19		ATT		2	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-102	4-008	P	19-28		5 SW		5	2		MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH
1/15/2011	4-103		P	19-27-28		ATT		1	1		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/14/2011	4-104		Р	19-20		1 W		2	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-105		C	19-20-26-27		ATT		4	2	-	MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/15/2011	4-106	4-007	P	26-27	-	14 SE		5	2		MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH
1/15/2011	4-107		P	20-23-26		ATT		2	2		MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH
1/15/2011	4-108		P	20-21-23		ATT		3	2	******	MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH
1/14/2011	4-109		P	20-21		1 W		1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/14/2011	4-110		P	22-25		3 W		6	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
1/15/2011	4-111		С	21-22-24-25	1	ATT		6	2		MX-5	KP	DWH	11/15/2011	LV	P	VT OK	DWH
1/15/2011	4-112		P	21-23-24		ATT		3	2		MX-5	KP	DWH	11/15/2011	LV	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

РгојNо: <u>GJ4706</u>

TaskNo: 07

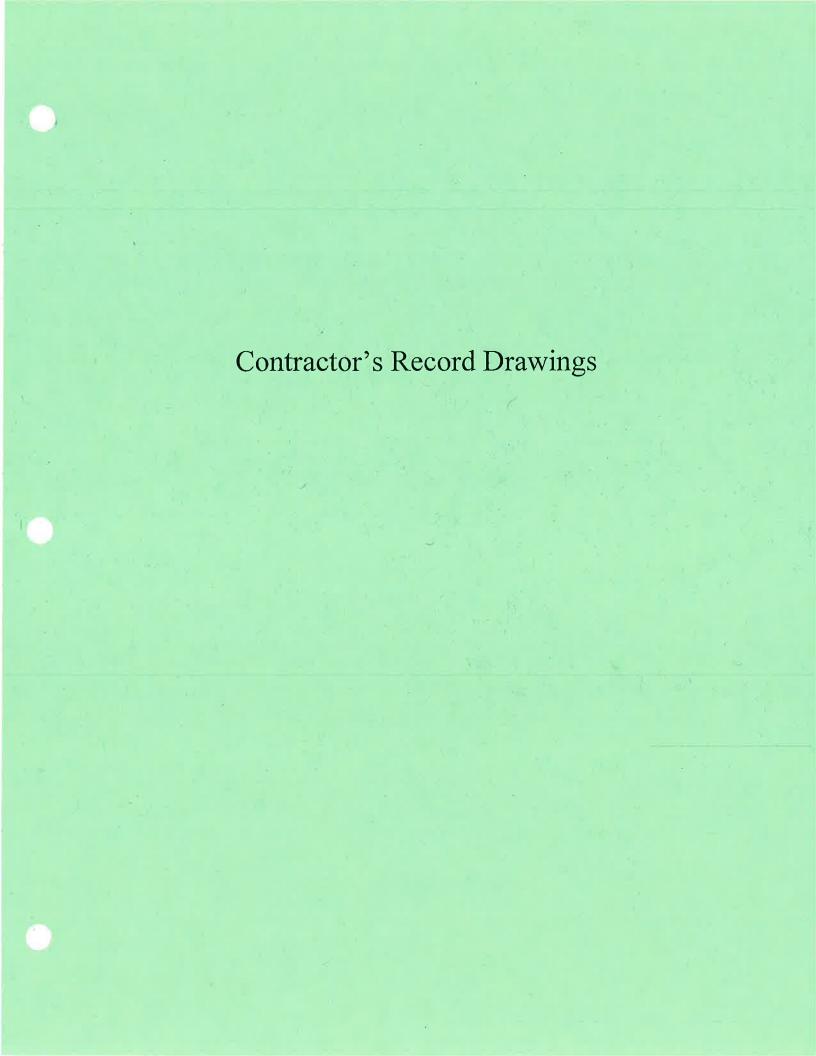
Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

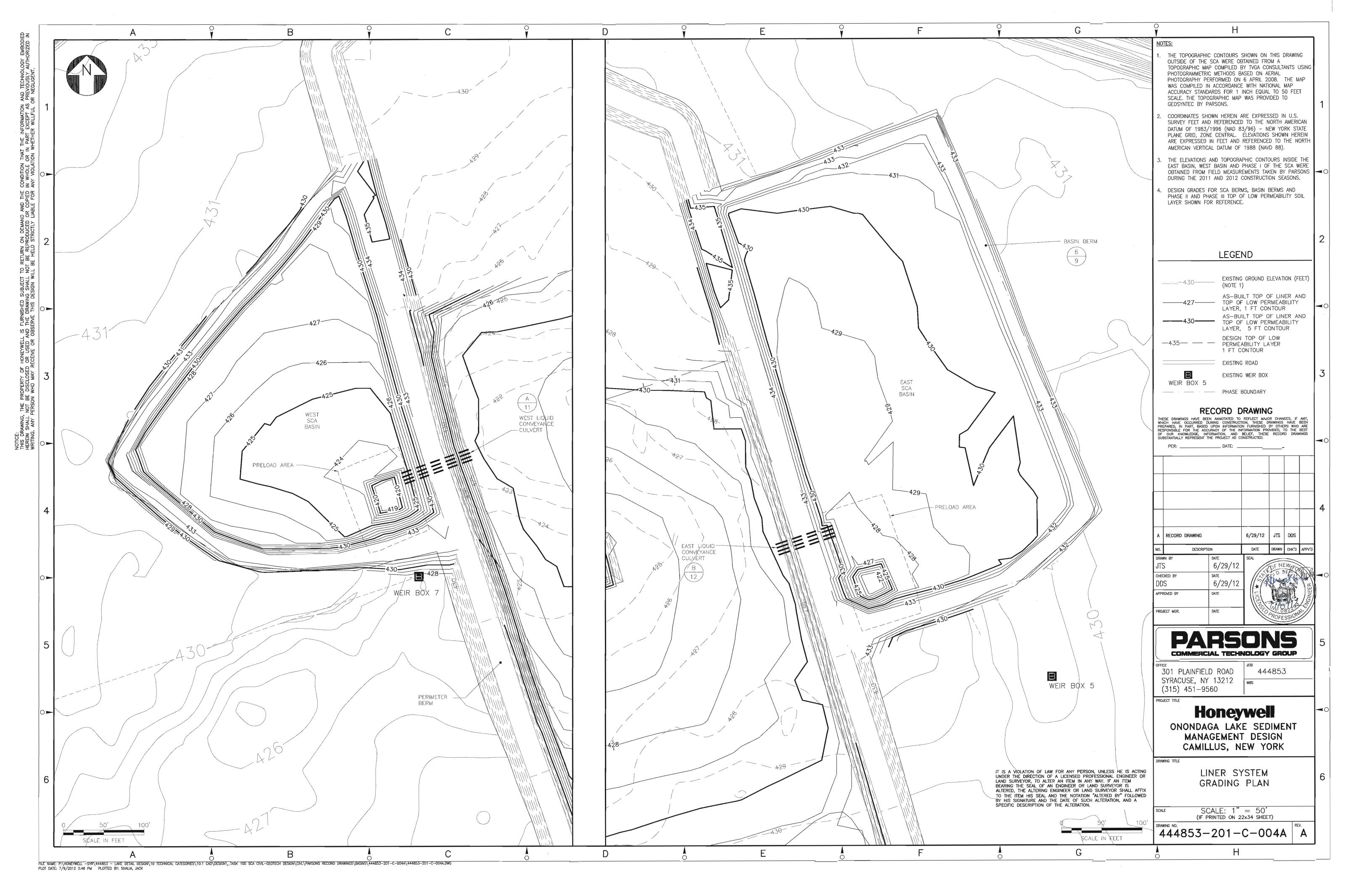
Primary / Secondary:

Secondary

Series: 4

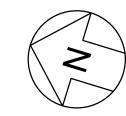
Repair	Repair	DS No			Location				Size		Weld	er I.D.	QA		Non-Dest	ructive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/14/2011	4-113		F		7	225 W	6 S	2	2		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
11/14/2011	4-114		P	37-38		23 S		2	1		MX-8	VS	DWH	11/14/2011	KP	P	VT OK	DWH
11/14/2011	4-115		P	9-11		1 W		1	1		MX-5	KP	DWH	11/14/2011	KP	P	VT OK	DWH
11/15/2011	4-116		F	59-60		1 N		1	1		MX-8	VS	DWH	11/15/2011	KP	P	VT OK	DWH
11/22/2011	4-117	4-010 A	P	8-40		12 W		5	2		MX-5	KP	DWH	11/22/2011	ВН	P	VT OK	DWH
1/22/2011	4-118		C	8-9-39-40		91-225 W		34	2		MX-5	KP	DWH	11/22/2011	ВН	P	VT OK	DWH
11/22/2011	4-119	4-010 B	P	9-39		8 E		5	2		MX-5	KP	DWH	11/22/2011	ВН	P	VT OK	DWH
11/10/2011	4-120		P	49-51-53-55		ATT		4	2		MX-5	LV	DWH	11/10/2011	MAB	P	VT OK	DWH
11/10/2011	4-121		P	51-55-56-57		ATT		5	2		MX-5	LV	DWH	11/10/2011	MAB	P	VT OK	DWH
11/10/2011	4-122		P	51-54-61-62		ATT		5	2		MX-5	LV	DWH	11/10/2011	MAB	P	VT OK	DWH


Tuesday, July 03, 2012


Page 8 of 8

APPENDIX K

Record Drawings


- Contractor's Record Drawing
- Geomembrane Panel Layout and Seam Repair/Destructive Sample Location Drawings



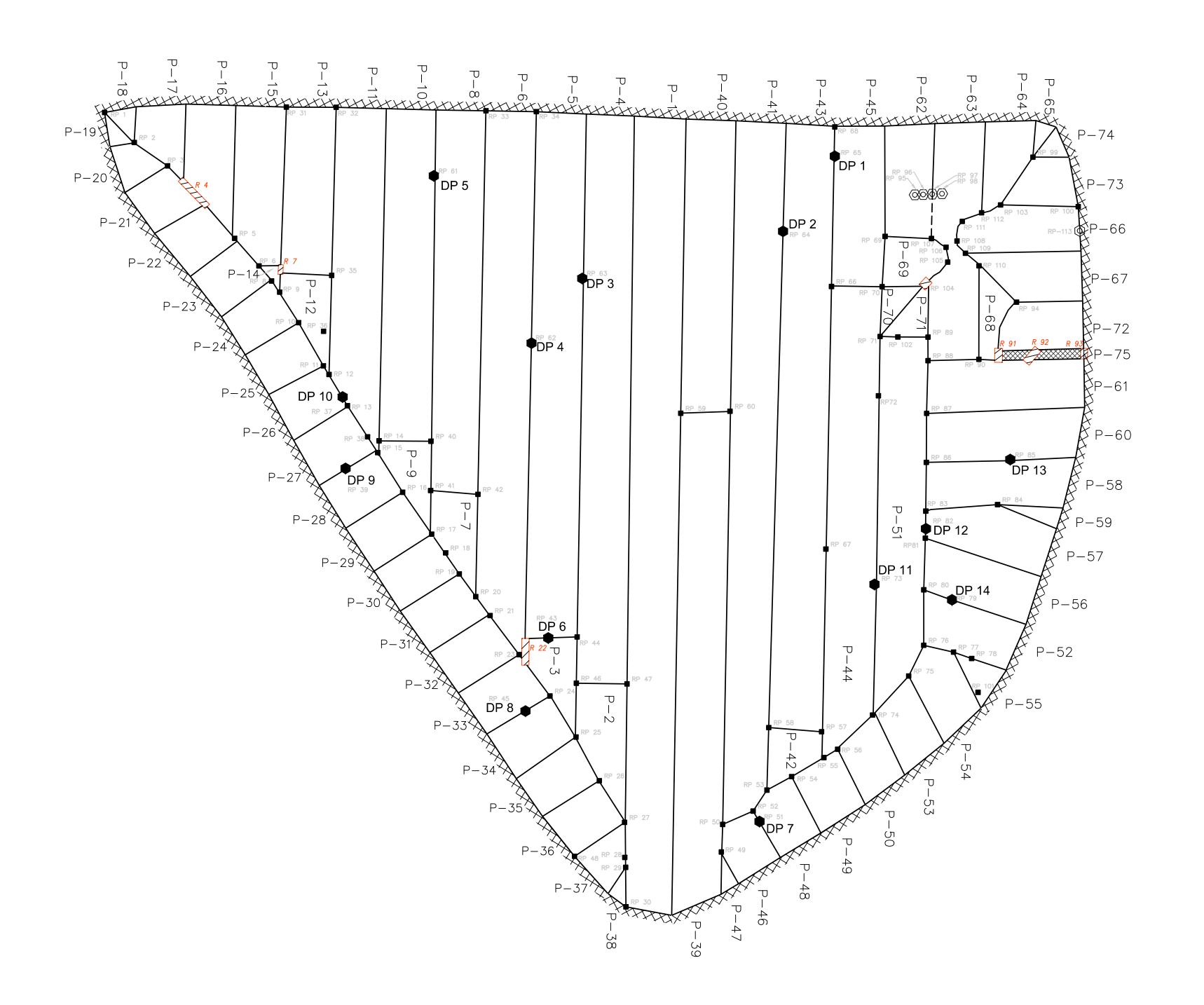
Geomembrane Panel Layout and Seam Repair/Destructive Sample Location Drawings

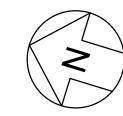
©	PIPE PENETRATION
P-3	GEOMEMBRANE PANEL
■ RP 1	PATCH REPAIR
♠ DP 1	DESTRUCTIVE SAMPLE (PASS)
DP 2 O	DESTRUCTIVE SAMPLE (FAIL)
	CAPPED SEAM
	LINER SEAM
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ANCHOR TRENCH
	SKIRT REPAIR

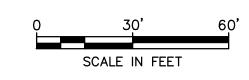
- 1. PANEL LOCATIONS BASED ON FIELD SURVEYS CONDUCTED BY PARSONS FIELD PERSONNEL USING GLOBAL POSITION SYSTEM (GPS) DURING THE INSTALLATION. PANELS ARE SHOWN AS MEASURED BY THE SURVEY (I.E. TWO DIMENSIONS).
- 2. PASSING DESTRUCTIVE SEAM SAMPLE DP-4 IS LOCATED ON A FUSION BUTT SEAM. DESTRUCTIVE SEAM SAMPLE DP-7 FAILED ON A NEARBY EXTRUSION WELD REPAIR AS DID DP-7B LOCATED ON THE DP-4 REPAIR. THE FAILING EXTRUSION WELD WAS CAPPED BETWEEN PASSING SAMPLES DP-7A AND DP-7B1.

EAST BASIN PRIMARY GEOMEMBRANE PANEL DRAWING ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA, SEDIMENT MANAGEMENT SYSTEM CAMILLUS, NEW YORK

Geosyn	tec D
•	


ACTON, MA


consultants

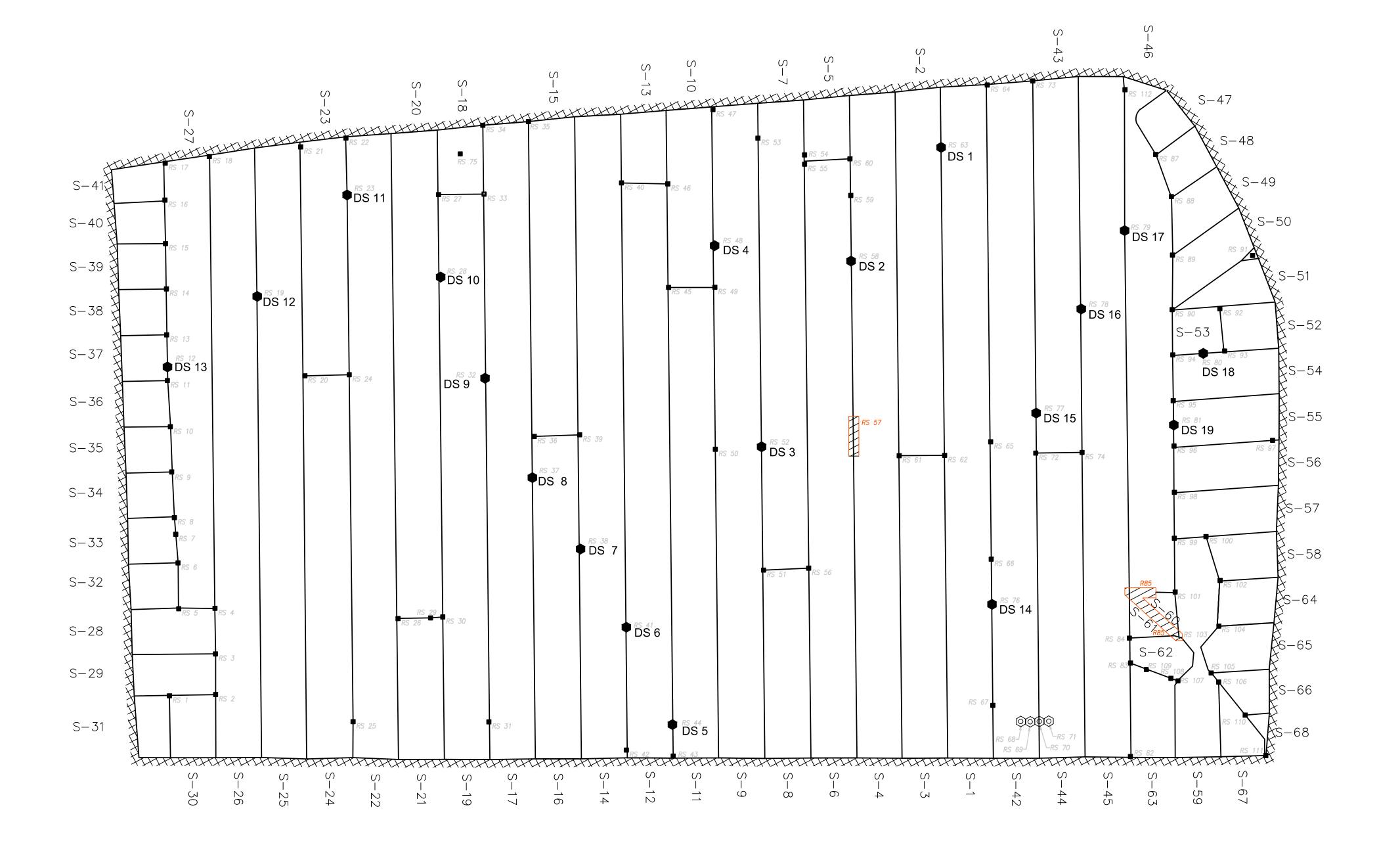

2012 JULY SCALE: AS SHOWN DATE:

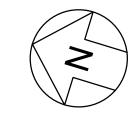
GJ4706B FILE NO. PROJECT NO. DOCUMENT NO.

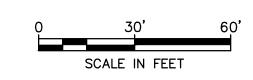
1 of 4 FIGURE NO.

©	PIPE PENETRATION
P-3	GEOMEMBRANE PANEL
■ RP 1	PATCH REPAIR
● DP 1	DESTRUCTIVE SAMPLE (PASS)
DP 2 O	DESTRUCTIVE SAMPLE (FAIL)
	CAPPED SEAM
	LINER SEAM
******	ANCHOR TRENCH
***************************************	SKIRT REPAIR

1. PANEL LOCATIONS BASED ON FIELD SURVEYS CONDUCTED BY PARSONS FIELD PERSONNEL USING GLOBAL POSITION SYSTEM (GPS) DURING THE INSTALLATION. PANELS ARE SHOWN AS MEASURED BY THE SURVEY (I.E. TWO DIMENSIONS).


WEST BASIN PRIMARY GEOMEMBRANE PANEL DRAWING ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA, SEDIMENT MANAGEMENT SYSTEM CAMILLUS, NEW YORK


Geosyntec consultants


ACTON, MA

2012 JULY SCALE: AS SHOWN DATE:

GJ4706B FILE NO. PROJECT NO. 2 of 4 FIGURE NO. DOCUMENT NO.

	LLOLIND
©	PIPE PENETRATION
P-3	GEOMEMBRANE PANEL
■ RP 1	PATCH REPAIR
● DP 1	DESTRUCTIVE SAMPLE (PASS)
DP 2 O	DESTRUCTIVE SAMPLE (FAIL)
	CAPPED SEAM
	LINER SEAM
************	ANCHOR TRENCH
	SKIRT REPAIR

NOTES

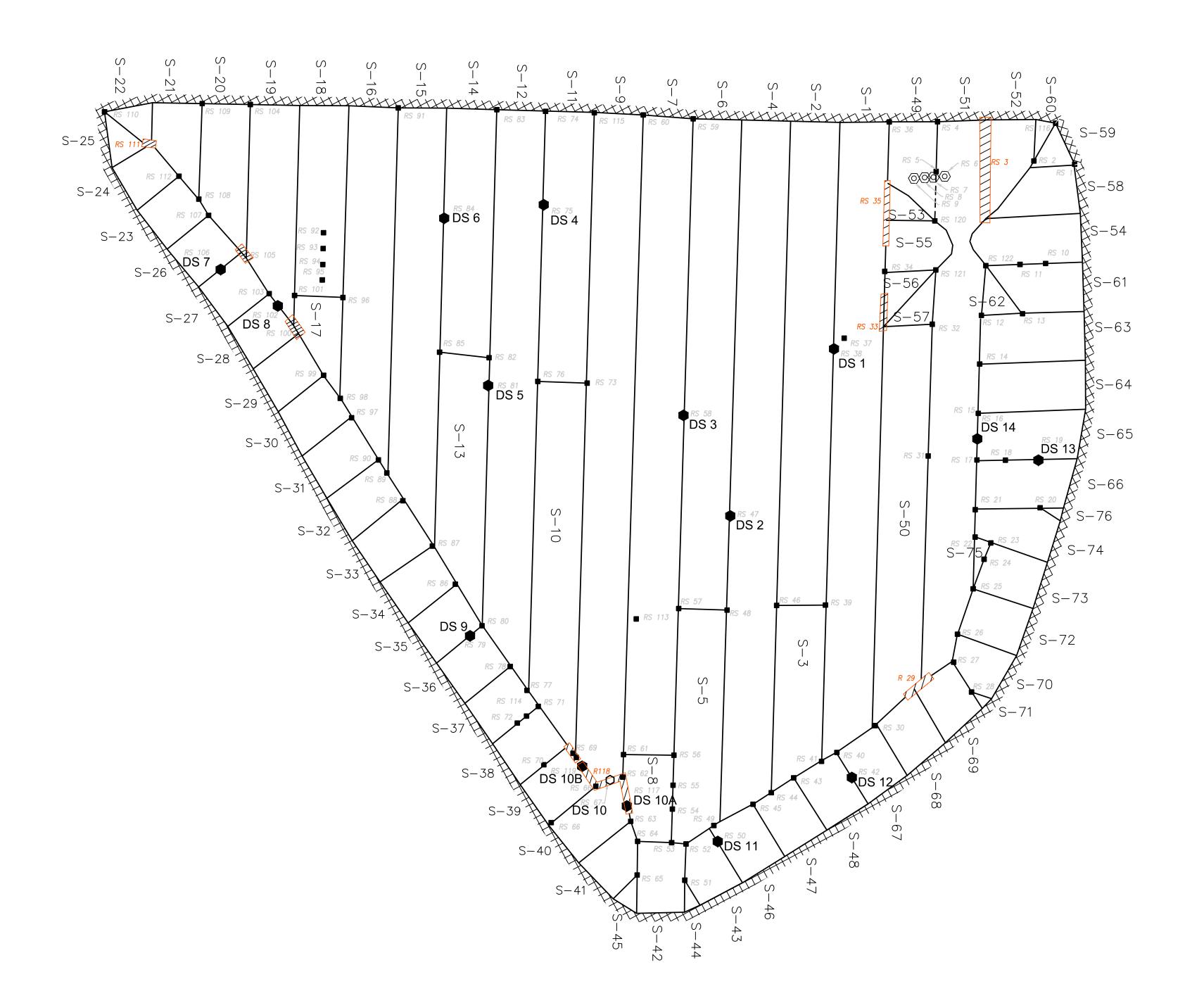
 PANEL LOCATIONS BASED ON FIELD SURVEYS CONDUCTED BY PARSONS FIELD PERSONNEL USING GLOBAL POSITION SYSTEM (GPS) DURING THE INSTALLATION. PANELS ARE SHOWN AS MEASURED BY THE SURVEY (I.E. TWO DIMENSIONS).

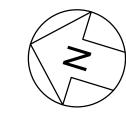
EAST BASIN SECONDARY

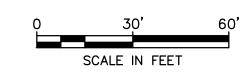
GEOMEMBRANE PANEL DRAWING

ONONDAGA LAKE SEDIMENT CONSOLIDATION

AREA, SEDIMENT MANAGEMENT SYSTEM


CAMILLUS, NEW YORK


Geosyntec >
consultants


ACTON, MA

DATE: 2012 JULY SCALE: AS SHOWN PROJECT NO. GJ4706B FILE NO.

DOCUMENT NO. FIGURE NO. 3 of 4

©	PIPE PENETRATION
P-3	GEOMEMBRANE PANEL
■ RP 1	PATCH REPAIR
● DP 1	DESTRUCTIVE SAMPLE (PASS)
DP 2 O	DESTRUCTIVE SAMPLE (FAIL)
	CAPPED SEAM
	LINER SEAM
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ANCHOR TRENCH
	SKIRT REPAIR

NOTES

 PANEL LOCATIONS BASED ON FIELD SURVEYS CONDUCTED BY PARSONS FIELD PERSONNEL USING GLOBAL POSITION SYSTEM (GPS) DURING THE INSTALLATION. PANELS ARE SHOWN AS MEASURED BY THE SURVEY (I.E. TWO DIMENSIONS).

WEST BASIN SECONDARY
GEOMEMBRANE PANEL DRAWING
ONONDAGA LAKE SEDIMENT CONSOLIDATION
AREA, SEDIMENT MANAGEMENT SYSTEM
CAMILLUS, NEW YORK

Geosyntec consultants

DATE:

DOCUMENT NO.

ACTON, MA

2012 JULY SCALE: AS SHOWN

PROJECT NO. GJ4706B FILE NO.

FIGURE NO. 4 of 4