APPENDIX F

DREDGE AND CAP DESIGN PLANS
DREDGE PLAN DEVELOPMENT APPENDIX

ONONDAGA LAKE

Prepared for

Honeywell

Prepared by
Anchor QEA, LLC
Parsons

March 2012

John R. Verduin, III, P.E.
New York State Professional Engineer
License No. 082890-01

Date: March 1, 2012

It is a violation of law for any person, unless he is acting under the direction of a licensed professional engineer, to alter this item in any way. If this item bearing the seal of an engineer is altered, the altering engineer shall affix to this item his seal and the notation "altered by" followed by his signature and the date of such alteration, and a specific description of the alteration.
TABLE OF CONTENTS

1 INTRODUCTION .. 1

2 DEVELOPMENT OF DREDGING AND CAPPING BOUNDARIES .. 2

3 DEVELOPMENT OF DREDGE PRISM AND CAP DESIGN .. 5
 3.1 General Dredge Prism and Capping Thickness Development Assumptions and Procedures . 9
 3.2 Remediation Area-specific Dredge Prism and Cap Design Development 12
 3.2.1 Remediation Area A and Ninemile Creek Spits ... 14
 3.2.2 Remediation Area B and Wastebed 1-8 Connected Wetland 16
 3.2.3 Remediation Area C ... 16
 3.2.4 Remediation Area D ... 18
 3.2.5 Remediation Area E ... 21
 3.2.6 Remediation Area F ... 24
 3.2.7 Outboard Area .. 24

4 REFERENCES ... 26

List of Tables

Table 1 Summary of Lake Surface Area Gains and Loses
Table 2 Summary of Cap Thicknesses and Dredge Volume - Remediation Area A
 (SMU 4)
Table of Contents

Table 3 Summary of Cap Thicknesses and Dredge Volume - Remediation Area B (SMU 3)
Table 4 Summary of Cap Thicknesses and Dredge Volume - Remediation Area C (SMU 2)
Table 5 Summary of Cap Thicknesses and Dredge Volume - Remediation Area D (SMU 7, 12 [ILWD])
Table 6 Summary of Cap Thicknesses and Dredge Volume - Remediation Area E (SMU 6/7)
Table 7 Summary of Cap Thicknesses - Remediation Area F (SMU 5)
Table 8 Summary of Cap Thicknesses and Dredge Volume - Outboard Area

List of Attachments

Attachment A Onondaga Lake Capping, Dredging, Habitat and Profundal Zone (SMU 8) Final Design – Dredging and Capping Plans
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSQV</td>
<td>bioaccumulation-based sediment quality value</td>
</tr>
<tr>
<td>Civil 3D</td>
<td>Auto Desk’s Civil 3D software</td>
</tr>
<tr>
<td>CQAP</td>
<td>Construction Quality Assurance Plan</td>
</tr>
<tr>
<td>H:V</td>
<td>horizontal to vertical</td>
</tr>
<tr>
<td>ILWD</td>
<td>in-lake waste deposit</td>
</tr>
<tr>
<td>IRM</td>
<td>Interim Remedial Measure</td>
</tr>
<tr>
<td>Lake</td>
<td>Onondaga Lake</td>
</tr>
<tr>
<td>lbs/ft²</td>
<td>pounds per square foot</td>
</tr>
<tr>
<td>Metro</td>
<td>Metropolitan Syracuse Wastewater Treatment Plant</td>
</tr>
<tr>
<td>mg/kg</td>
<td>milligrams per kilogram</td>
</tr>
<tr>
<td>MNR</td>
<td>monitored natural recovery</td>
</tr>
<tr>
<td>NAD83</td>
<td>North American Datum of 1983</td>
</tr>
<tr>
<td>NAVD88</td>
<td>North American Vertical Datum of 1988</td>
</tr>
<tr>
<td>NYSCC</td>
<td>New York State Canal Corporation</td>
</tr>
<tr>
<td>NYSDEC</td>
<td>New York State Department of Environmental Conservation</td>
</tr>
<tr>
<td>NYSDOT</td>
<td>New York State Department of Transportation</td>
</tr>
<tr>
<td>PDI</td>
<td>pre-design investigation</td>
</tr>
<tr>
<td>PECQ</td>
<td>probable effects concentration quotient</td>
</tr>
<tr>
<td>ROD</td>
<td>Record of Decision</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SMU</td>
<td>Sediment Management Unit</td>
</tr>
<tr>
<td>TIN</td>
<td>triangulated irregular network</td>
</tr>
<tr>
<td>WB</td>
<td>Wastebed</td>
</tr>
<tr>
<td>WBB/HB</td>
<td>Wastebed B/Harbor Brook</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

This report describes the basis of design and procedures used to define the dredge prism (i.e., horizontal and vertical extents of required dredging) and capping areas for the Onondaga Lake (Lake) remediation project. The Dredging Plan drawings presented herein consist of the dredge prisms and capping areas for remediation areas A, B, C, D, E, F, Ninemile Creek Spits, Wastedbed (WB) 1-8 connected wetland and the Wastedbed B/Harbor Brook (WBB/HB) Outboard Area. A summary description of these areas is provided below (see Drawing D-1 for remediation area locations):

- Remediation Area A and Ninemile Creek Spits – Mouth of Ninemile Creek (Sediment Management Unit [SMU] 4 and adjacent impacted areas in SMU 3 and SMU 5) plus the Ninemile Creek Spits
- Remediation Area B and WB 1-8 Connected Wetland – Adjacent to WB 1-8 (SMU 3) plus the WB 1-8 connected wetland
- Remediation Area C – Offshore of the New York State Department of Transportation (NYSDOT) Turnaround Area and the Willis/Semet Interim Remedial Measure (IRM) barrier wall exclusive of in-lake waste deposit (ILWD) (SMU 2 exclusive of the ILWD)
- Remediation Area D – ILWD (SMU 1 and adjacent portions of SMU 2 and SMU 7 where ILWD is present)
- Remediation Area E – Southwestern end of the Lake (SMU 6 and SMU 7 exclusive of the ILWD)
- Remediation Area F – Small areas of impacted sediment north of Remediation Area A and on northern shore (SMU 5)
- WBB/HB Outboard Area – Mouth of Harbor Brook and region between the barrier wall and Remediation Area D and Remediation Area E

The remainder of this report is organized as follows:

- Section 2 – Development of dredging and capping boundaries
- Section 3 – Development of the dredge prism and cap design (including both general assumptions and procedures as well as remediation area-specific assumptions)
2 DEVELOPMENT OF DREDGING AND CAPPING BOUNDARIES

The lateral extents of the remediation areas (including both dredging and capping remedial actions) were established using data obtained from individual cores (Parsons 2007, 2008, 2009a, 2011a, 2011b, 2012). Specifically, the remediation area boundaries in non-ILWD areas (outside of Remediation Area D) in waters less than 20 feet (6 meters) were drawn from core to core based on the analytical results from pre-design investigation (PDI) sampling locations (Phases I through VII) where the sediment cleanup criteria (i.e., mean probable effects concentration quotient [PECQ] of less than 1 and a mercury concentration of less than 2.2 milligrams per kilogram [mg/kg]) were not exceeded at any depth. Remediation area boundaries between 20 feet (6 meters) and 30 feet (9 meters) were drawn from core to core where the sediment cleanup criteria were not exceeded in the top 1 foot of sediment. Due to the depth of overlying water in these areas, existing sediments are stable even under a 100-year storm event in water depths from 20 to 30 feet (6 to 9 meters) in Remediation Area A, Remediation Area B, Remediation Area C, Remediation Area D, and Remediation Area F, and would be expected to see only minor disturbances in Remediation Area E, as documented in Appendix D. This demonstrates that deeper impacted sediments would not be exposed even under extreme events (e.g., 100-year storm). Therefore, determination of remediation area boundaries in these deep water areas is appropriate based on consideration of the top 1 foot of sediment. These areas are also net depositional, as discussed in Section 4.1.7 of the Final Design Report; therefore, the thickness of clean surface sediments in these areas will increase over time. In Remediation Area D, boundaries in the 20 ft. (6 meters) and 30 ft. (9 meters) water depth were drawn from point to point based on sampling locations where the sediment cleanup criteria were not exceeded at any depth. Section 3 and Appendix A of the Final Design Report provide additional details pertaining to development of the remediation area boundaries.

Within the remediation areas, the remedy was subdivided into two categories:

1. Elevation-based dredging, which will be followed by capping
2. Capping without prior dredging to isolate impacted sediments (i.e., “capping only”)

Elevation-based dredging will be performed in select areas to prevent loss of Lake surface area after the cap is placed and/or to meet a specific post-capping elevation based on habitat considerations. In
addition, elevation-based dredging will be performed in Remediation Area D to achieve the 2-meter average removal and 1-meter hot spot removals as specified in the Record of Decision (ROD).

In most areas of the Lake, sufficient dredging will be completed up to the shoreline (surface elevation of 362.5 feet) to ensure placement of the full-thickness cap all the way to the shoreline or to the edge of the wetland being restored. As a result, the removal prisms typically extend inland of the shoreline in order to accommodate suitable dredge cut slopes; however, this is not feasible along certain portions of the shoreline due to limitations such as potential impacts to shoreline utilities or structures or stability considerations, resulting in minor losses of lake surface area. These losses are more than offset by localized gains in Lake surface area resulting in the other shoreline completion areas. Table 1 presents a summary of Lake surface area “gains” and “losses” as a result of the dredging and capping activities.

Table 1
Summary of Lake Surface Area Gains and Losses

<table>
<thead>
<tr>
<th>Remediation Area</th>
<th>Gains</th>
<th>Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.2 acres</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.1 acres</td>
<td>0.1 acres</td>
</tr>
<tr>
<td>C</td>
<td>0.3 acres</td>
<td>0.7 acres</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.3 acres</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.9 acres</td>
<td>0.8 acres</td>
</tr>
</tbody>
</table>
Furthermore, elevation-based dredging will be performed in Remediation Area D to achieve the 2-meter average removal and 1-meter hot spot removal specified in the ROD.
3 DEVELOPMENT OF DREDGE PRISM AND CAP DESIGN

The lateral and vertical extents of elevation-based dredging areas in remediation areas A, B, C, E, Ninemile Creek Spits, WBB/HB Outboard Area, and WB 1-8 connected wetlands are largely driven by habitat considerations. The Draft Remedial Design Elements for Habitat Restoration (Parsons 2009b; Habitat Plan) identifies 14 habitat modules targeted for inclusion in the restoration of the Lake and adjacent shoreline. Habitat modules are areas with specific physical characteristics suitable for various representative species, and are defined by three basic habitat parameters: water depth, substrate type, and water energy as described in the Habitat Plan. Habitat modules presented in the Habitat Plan (including module name, target water depth, and substrate type) within the Lake are summarized below (Parsons 2009c).

- Module 1 – Deep water (20 to 30 feet water depth). Sand substrate. Low to medium energy.
- Module 2A – Mid-water depth (7 to 20 feet). Sand/fine gravel substrate. Low to medium energy.
- Module 2B – Mid-water depth (7 to 20 feet). Coarse gravel/gravely cobble substrate. High energy.
- Module 3A – Shallow water (2 to 7 feet). Sand/fine gravel substrate. Low energy.
- Module 4A – Floating aquatics wetland (1 to 3 feet). Organics/fines/sand substrate. Very low energy.
- Module 5A – Non-persistent emergent wetland (0.5 to 2 feet). Organics/fines/sand substrate. Low energy.
- Module 5B – Shoreline shallows/limited emergent wetland (0.5 to 2 feet). Gravel substrate. High energy.
- Module 6A – Persistent emergent wetland (1 foot above water to 1 foot deep). Organics/fines/sand substrate. Low energy.
- Module 6B – On shore to shallows/limited emergent wetland (1 foot above water to 1 foot deep). Coarse gravel/sand substrate. High energy.
- Module 8A – Shoreline/riparian areas/successional fields (greater than 1 foot above water). Topsoil/sand substrate. Low energy.
- Module 8B – Shoreline/riparian areas/shrub-scrub or forested (greater than 1 foot above water). Topsoil/sand substrate. High energy.
• Module 9A – Inland wetlands not associated with the Lake/emergent wetland (water level varies). Topsoil/sand substrate. Low energy.
• Module 9B – Inland wetlands not associated with the Lake/forested wetland (water level varies). Topsoil/sand substrate. High energy.

The vertical extent of dredging (e.g., dredging elevation \(E \)) was computed for the elevation-based dredging areas using the equation below.

\[
E = WL - T_c - WD + \Delta H
\]

Each of the equation parameters is described below.

• **Project water level** (\(WL \)) – The project water level was set at 362.5 feet North American Vertical Datum of 1988 (NAVD88) to meet habitat objectives focused on the sensitivity of plant communities in the nearshore areas of the Lake. This elevation of 362.5 feet NAVD88 was selected for the design, as it represents the average lake level during the aquatic plant growing season (see Section 3.3 of the Draft Final Design Report).

• **Estimated cap thickness** (\(T_c \)) – The estimated cap thickness consists of the sum of the minimum thicknesses for up to four layers of the cap (i.e., mixing layer, chemical isolation layer, erosion protection layer, and habitat layer), plus an over-placement allowance for each layer (tables 2 through 8). For the estimated dredge areas to be completed in 2012, the maximum anticipated capping over-placement was assumed for each cap layer within habitat modules 5 and 6 (i.e., modules containing sensitive aquatic vegetation dependent on a tight water depth tolerance) in portions of Remediation Areas C and D. These areas will be used to demonstrate the remedial contractor’s cap placement abilities. For the remainder of the remediation areas to be completed after 2012, the mean capping over-placement was assumed to account for the remedial contractor’s anticipated ability to meet such tolerances based on demonstrated cap placement experience at other sites (see Section 4.3.4 of Final Design Report). Verification of construction tolerances during the first year of capping in portions of Remediation Area C and Remediation Area D will be used to confirm that mean over-placement design in habitat modules 5 and 6 is appropriate. The capping over-placement will be further evaluated as part of an adaptive management program throughout the remedy.
The four cap layers are described below:

− Mixing layer thickness is conservatively assumed to be 0.25 feet (see Section 4.1 of the Final Design Report).

− Chemical isolation layer thickness is a minimum of 1 foot (in accordance with the ROD). In some portions of the Lake, cap amendments including pH amendment (e.g., siderite) and/or activated carbon will be integrated into the caps to meet ROD objectives, as detailed in Appendix B and Section 4.1.4 of the Final Design Report. With the exception of caps over certain utilities and cultural resources, and portions of the Outboard Area, the chemical isolation layer will be placed completely below an elevation of 360.5 feet NAVD88 to protect against ice scour.

− Erosion protection layer thickness is sized according to the results of Appendix D of the Final Design Report. The minimum stable particle size and thickness are typically based on the wind-induced waves during a 100-year event. The minimum erosion protection layer thickness will be 1 foot within the Lake and 4.5 inches (0.375 feet) in the adjacent Ninemile Creek spits, WB 1-8 connected wetland, and WBB/HB Outboard Area. To prevent loss of protectiveness due to ice scour, a minimum thickness of 0.5 feet of erosion protection material will be below an elevation of 360.5 feet NAVD88 in the Lake and the adjacent Ninemile Creek Spits and WB 1-8 connected wetland. With the exception of caps over certain utilities and cultural resources, and portions of the Outboard Area, the minimum 0.5 feet of erosion protection material below elevation 360.5 feet was not considered a requirement due to the following:

• Transitioning into the wetlands that are above Lake surface; therefore, not practical to meet

• The Outboard Area will be vegetated and will have a minimum of 2 feet of erosion protection/habitat material overlying the chemical isolation layer; therefore, providing significant buffering from any ice scour

• Ice evaluation is conservative; the potential for impact due to ice scour is low and will be addressed, if necessary, as part of Cap Monitoring and Maintenance Plan

− Habitat layer thickness is based on a minimum habitat layer for a specific water depth, as defined in the Habitat Plan and Section 4.3 of the Final Design Report.
• **Target water depth (WD)** – In general, the target post-capping water depth in areas within the lake that will be dredged was assumed to be the shallowest water depth within a habitat module (excluding habitat module 6 where the water depth was set to zero), as defined in the Habitat Plan, and summarized in tables 1 through 6. The target water depth was assumed to be the shallowest target water depth in the module to minimize the effect of settlement on changing the habitat module, while still resulting in a post-construction elevation that will be within the targeted habitat range for that module immediately following cap placement. For example, Module 5A has a target water depth ranging from 0.5 to 2 feet (tables 1 through 6). The dredging elevation was developed based on the shallowest water depth in this habitat module (0.5 feet). The post-capping water depths for the Ninemile Creek Spits, WBB/HB Outboard Area, and WB 1-8 connected wetlands were also developed based on habitat considerations, as detailed in Section 4.3.5 of the Design Report.

• **Settlement (ΔH)** – Settlement refers to the compressing of sediments due to an increase in the stress (i.e., the added weight of a cap) on those sediments. The change in stress is a function of the thickness/load removed by initial dredging (if any) and the thickness/load of the applied cap. If the sediment is subjected to a net increase in stress/load (e.g., the increase in load resulting from the placement of the cap more than offsets the reduction in load from the removal of dredge material), some settlement could occur. The amount and rate of settlement are dependent on the compressibility and permeability of the sediments. For fine-grained sediments like those in the Lake, this settlement typically occurs over a period of several months to many years and will gradually slow over time. Appendix E of the Final Design Report provides additional details of long-term settlement predictions. Although settlement was accounted for in estimating long-term, post-construction surface elevations for habitat planning, it was assumed to be zero (ΔH = 0) when determining dredging elevations. This way, dredge depths could be planned deep enough to meet habitat elevation goals, without relying on predicted settlements. When incorporating predicted settlement, portions of the habitat module would attain average or deeper water depths.

Cross-sections in remediation areas A, B, C, D, E, Ninemile Creek Spits, WBB/HB, and WB 1-8 illustrate the development of the dredging elevation by including the existing ground surface, removal limit, and proposed cap elevations at construction (see Dredging and Capping Plan). Based
Development of Dredge Prism and Cap Design

on anticipated over-placement tolerances, and taking into consideration over-dredging that will likely occur in order to achieve required minimum dredge cuts, the required shown cap surface and minimum dredge cuts for shallow water modules 5 and 6 anticipated to be dredged in the first dredging season are based on total cap thicknesses inclusive of maximum cap over-placements. This applies to portions of Remediation Areas C and D. It is anticipated that this is a conservative approach and that the first year of construction will demonstrate that target cap elevations can be met based on dredge cuts developed using average over-placements for each layer. Therefore, dredge cuts developed for the areas anticipated to be dredged in subsequent dredging season are based on total cap thicknesses inclusive of mean over-placements for each cap layer. Modifications to the dredge prisms for subsequent years will be made as necessary based on the results of the first year, subject to NYSDEC approval.

In general, the elevation post-construction for all habitat modules deeper than 3 feet will reflect a mean cap thickness following construction, prior to the effects of settlement. During construction of the shallow water caps (habitat modules with the tightest acceptance criteria [6, 5, and 4]), if the final elevation is below the acceptable lower limit, the thickness of the final habitat layer will be increased such that the final elevation of the cap surface is within the elevation targeted for the given habitat module.

3.1 General Dredge Prism and Capping Thickness Development Assumptions and Procedures

In addition to defining the lateral and vertical extents of the dredge prism, general assumptions or procedures that were globally applied during dredge prism development include the following:

- **Project datum** – Horizontal survey information is referenced to the New York State Plane Feet North American Datum of 1983 (NAD83), Central Zone. All elevations are referenced to the NAVD88.
- **Shoreline** – The project boundary along the shoreline was defined by the project water level of 362.5 feet NAVD88.
- **Bathymetry (e.g., existing ground)** – A bathymetric survey was conducted by CR
Environmental, Inc. in 2005 and is documented in *Lake Phase I Pre-design Investigation Geophysical Survey Report* (CR Environmental, Inc. 2007). This bathymetric survey formed the basis of the existing bathymetry presented in the dredge plans. An additional bathymetric and topographic nearshore survey was completed in July 2011 by Thew Associates, PLLC, in the area along the CSX Railroad within Remediation Area E.

- **Transition between shoreline and dredging** – Sufficient dredging will typically be completed up to the shoreline to allow placement of the cap without losing lake surface area (see drawing D-31). In areas not contiguous with adjacent wetland remediation, the dredge prism was designed with a 5 horizontal to 1 vertical (5H:1V) slope from the bottom of the dredge cut (e.g., toe of slope) to the daylight line along the upland of the shoreline. Minor exceptions to this approach are identified under the discussion pertaining to individual remediation areas. Nearshore geotechnical data, including in situ vane shear testing and laboratory strength testing, was collected as part of the Phase V PDI. These Phase V data indicate that steeper slopes (steeper than 5H:1V) may be stable in some shoreline areas; therefore, additional evaluations and/or adaptive management may be used during construction to refine shoreline dredge slopes such that they are stable, yet minimize upland disturbance.

- **Transition between dredging elevations/cuts** – A slope of 5H:1V was designed to transition between two different target dredging elevations/cuts (see drawing D-31).

- **Transition between elevation-based dredging areas and sediments outside remediation area boundary** – In areas where elevation-based dredging is planned away from the shoreline, the bottom of the dredging prism was set at the required elevation along the remediation area boundary (see drawing D-31). The slope of the dredge cut was extended into the sediment outside of the remediation area boundary.

- **Transition between elevation-based dredging and cap-only areas** – In areas where the elevation-based dredging boundary is planned to abut a cap-only boundary, the dredge prism was set at the required elevation within the elevation-based dredging area, and the slope of the dredge cut was extended into the cap-only area (see drawing D-31).

- **Minimum dredge cut** – A minimum dredge cut of 0.5 feet was used within the dredge prism to maintain efficient production rates and minimize low solids contents in the dredge slurry.
In addition to defining the specific thickness of the caps, general assumptions or procedures that were globally applied during the capping cross section development include the following:

- **Transition between shoreline and cap** – As described above, sufficient dredging will typically be completed up to the shoreline to allow placement of the cap without losing lake surface area (see drawing D-31). The full cap thickness will be placed from the lake to the shoreline (defined as 362.5 feet NAVD88). At the dredge slope, the erosion protection layer will extend up the dredge slope to protect the exposed slope from erosive forces (see drawing D-31). In select areas (e.g., contiguous with wetland remediation and near the NYSDOT Turnaround Area), a modified shoreline transition will be necessary. These shoreline transitions are discussed in Section 3.2 under each remediation area.

- **Transition between capping elevations** – A slope of 5H:1V was designed to transition between two different target capping elevations/cap thicknesses.

- **Transition between capping areas and sediments outside remediation area boundary** – In areas where capping is planned away from the shoreline (e.g., junction between remediation area and SMU-8), the full cap thickness was applied along the remediation area boundary and sloped at 5H:1V into the adjacent sediments.

The in situ dredged material volume associated with the design of the dredge prism was calculated using Auto Desk’s Civil 3D software (Civil 3D). A three-dimensional surface was created in AutoCAD v. 2011 for both the existing bathymetry and the required dredge prism, accounting for design side slopes. These surfaces each consisted of a set of contiguous, non-overlapping triangles known as a triangulated irregular network (TIN). Using Civil 3D, the volume between these two TINs was calculated to represent the required dredge volume.

An allowable over-dredge surface was developed by lowering the required dredge prism by 0.5 feet in elevation, and over-dredge allowance volume was computed using this surface for remediation areas A, B, C, and E. The dredging elevation in water depths less than 3 feet in Remediation Area D is also based on a minimum required elevation to achieve a target post-capping water depth; therefore, an estimated removal volume associated with over-dredging is included for this area. However, the overall dredge plan in the ILWD is based on the ROD-required removal volume equal to an average...
of 2 meters, plus hot spots. Therefore, the removal in the remainder of the ILWD will be to the specified target elevation plus or minus 0.5 feet such that the final removal volume achieves the ROD-specified goal of a volume equal to a 2-meter average removal, plus the volume of hot spots. Details regarding how achievement of the 2-meter average removal will be ensured during construction (i.e., that the amount of overcut is equal to or greater than the amount of undercut within each SMU portion of the ILWD) will be provided in the Construction Quality Assurance Plan (CQAP).

Target post-capping elevations in the adjacent wetlands being dredged as part of the Lake remediation (Ninemile Creek Spits, WB 1-8, and WBB/HB) were not developed as maximum elevations; rather, they were developed as the ideal elevations with some expectation of variability around these elevations. Therefore, post-capping target elevations will be met in these areas plus or minus 6 inches. Thus, the target dredge elevations were established based on an assumption of mean over-placement of each cap layer, and the dredging will be specified to meet target dredge cuts plus or minus 6 inches. As a result, no over-dredging is included in these areas.

3.2 Remediation Area-specific Dredge Prism and Cap Design Development

In addition to the general assumptions and procedures outlined above, each remediation area contained dredge and cap design nuances (e.g., dredge cut thickness, habitat considerations) that are specific to that remediation area. In light of the complex design, tables 1 through 6 were developed in conjunction with the habitat work group as a tool to guide the dredging and capping design for each remediation area. Each remediation area-specific table includes the following:

- Targeted habitat modules
- Location inside or outside of the surf zone (as defined as the approximate depth of the breaking wave during a 100-year event [see Appendix D of the Final Design Report])
- Proposed remediation (elevation-based dredging, or capping only)
- Chemical isolation components, including a mixing layer, chemical isolation layer including pH and/or activated carbon amendments where indicated, an assumed mean over-placement allowance (maximum over-placement allowance for habitat modules 5 and 6 in portions of...
Remediation Area C and Remediation Area D scheduled for dredging in 2012), and the mean total layer thickness (maximum total layer thickness for habitat modules 5 and 6 in portions of Remediation Area C and Remediation Area D scheduled for dredging in 2012)

- Erosion protection/habitat layer components, including a minimum erosion protection/habitat layer based on the results of Appendix D of the Final Design Report (excluding the adjacent wetland areas described below), an assumed mean over-placement allowance (maximum over-placement allowance for habitat modules 5 and 6 in portions of Remediation Area C and Remediation Area D scheduled for dredging in 2012), and the mean total layer thickness (maximum total layer thickness for habitat modules 5 and 6 in portions of Remediation Area C and Remediation Area D scheduled for dredging in 2012). Due to cap design requirements, the minimum erosion protection/habitat layer thickness was set at 1 foot in all areas excluding the adjacent wetland areas (Ninemile Creek Spits, WB 1-8 connected wetlands, and WBB/HB Outboard Area) where a minimum erosion protection layer was set at 4.5 inches (0.375 feet) and a minimum habitat layer was set at 19.5 inches (1.625 feet). For the wetland areas, the dredge elevations are based on the total thickness with combined average over-placements of 23 inches for the habitat substrate and 9 inches for the erosion protection substrate (along with the thicknesses of the mixing and isolation layers with average over-placements) to achieve the post-capping target elevations for the wetlands (with up to 1 m additional removals in the Outboard Area hot spots).

- Additional habitat layer components, including a dedicated minimum habitat layer (in addition to the erosion protection layer), an assumed mean over-placement allowance, and the mean total layer thickness

- Total minimum cap thickness

- Assumed total mean over-placement allowance for all layers

- Total mean cap thickness

- Assumed total maximum over-placement allowance for all layers

- Total maximum cap thickness

- Top of cap elevation

- Water depth from cap surface

- Dredging volume computations including total area, dredge volume based on the dredge prism, over-dredge volume estimate (assuming 6 inches across the total dredge area excluding Remediation Area D and the adjacent wetlands discussed above), and total dredge volume
The dredge depths were largely developed to achieve the desired post-construction habitat objectives and elevations. It is Honeywell’s objective to continually monitor the progress of the construction, allowing continued project implementation enhancement on cap and dredge tolerances. This continuous monitoring can lead to design assumption revisions, allowing the project construction schedule and final effectiveness to be optimized. As such, adaptive management will be used during the remedial construction to refine components of the dredge prism design with an overall objective of continuous optimization of the project.

An area-by-area summary of unique dredge prism components is provided below.

3.2.1 Remediation Area A and Ninemile Creek Spits

Remediation Area A is approximately 86 acres and is located off the mouth of Ninemile Creek (drawings D-2 to D-3 and D-13 to D-15 show plan views and cross-sections of Remediation Area A). Remediation Area A contains both elevation-based dredging and capping-only areas. Additionally, the dredge prism for the adjacent spits along the mouth of Ninemile Creek and the removal of the connected emergent wetlands have been integrated into the Remediation Area A dredge prism.

Remediation Area A contains four habitat modules (modules 6A, 5A, 4A, and 3A) where elevation-based dredging will occur near the shoreline. Target dredge elevations were assigned based on target water depths, presence of amended cap material, and mean cap thickness, as shown in Table 2.

Dredge prism design along the SYW 10 wetland west of Ninemile Creek and along a small portion of the steep bank east of Ninemile Creek allows for a 1-foot dredge depth at the shoreline, and extends to mean cap thickness at a 5H:1V into the Lake (see Drawing D-31). The dredge cut rises at a 5H:1V from the shoreline into SYW 10. This design provides for minimizing the disturbance of the SYW 10.
mature forested wetland by the dredge. The groundwater collection trench will be located outside of the eastern half of Remediation Area A along the shoreline dredge boundary.

Three unique capping situations occur within or near Remediation Area A: 1) the shoreline transition near SYW 10 wetland and the steep bank east of Ninemile Creek; 2) shoreline stabilization/enhancement; and 3) offset of capping/shoreline stabilization area near cultural resources. As described above, the dredge prism design along the SYW 10 wetland west of Ninemile Creek and along the steep bank east of Ninemile Creek allows for a 1-foot dredge depth at the shoreline. The cap transitions in these areas differ from the typical shoreline transition, whereas the erosion protection layer extends up the slope with a minimum 1-foot erosion protection layer at the shoreline rather than a full cap (see drawing D-31). The modified shoreline transition is located primarily within the restored wetland, and includes a habitat layer thickness of at least 1 ft. over the entire area except for approximately 0.05 acres.

Additionally, material will be placed along a portion of the surf zone of SMU 3 to address erosion of Solvay waste material along the shoreline of WB 1-8. Shoreline stabilization material consisting of a graded, bank-run gravel material will be placed at an average thickness of approximately 1.5 feet from existing elevation 365 feet to 362.5 feet (upland from the shoreline). Shoreline stabilization material consisting of coarse gravel will be placed at an average thickness of approximately 6 inches from elevation 362.5 feet to 360 feet (within the lake). Drawing D-32 depicts the shoreline stabilization features.

Four cultural resources were identified within the northern basin of the lake: two resources within Remediation Area A and two resources between Remediation Areas A and B. As described in Section 7.3 of the Final Design Report, a 10-foot offset where capping will not occur has been incorporated near cultural resources A-20 (rock scow) and A-22 (Pleasant View Resort Pier). Two identical spud barges, A17-1 and A17-2, are located between Remediation Areas A and B within the shoreline stabilization area. To avoid impacts to the spud barges, the shoreline stabilization will be completed up to these features, but not within their bounds.
3.2.2 Remediation Area B and Wastebed 1-8 Connected Wetland

Remediation Area B is approximately 19 acres and is located offshore of WB 1-8 (drawings D-4 and D-16 show plan views and cross-sections of Remediation Area B). Within Remediation Area B, there are two elevation-based dredging areas (Module 5B and Module 3A) where elevation-based dredging will occur near the shoreline. The target dredge elevations are shown in Table 3.

Nearshore sediment dredging in this area is relatively shallow, and no sensitive structures are located along the shoreline. However, as discussed in Section 3.4 of the Final Design Report, a groundwater collection trench will be installed along the shoreline as part of the WB 1-8 IRM. The groundwater collection trench will be located outside of the Remediation Area B dredge boundary.

The removal prism for the WB 1-8 connected wetland area was developed adjacent to the Remediation Area B dredge prism and alongside the IRM collection trench. Material above and below the water table within the connected wetland area will be removed as part of the Lake design.

Similar to Remediation Area A, shoreline stabilization/enhancement material will be placed along a portion of the surf zone of SMUs 3 and 4 to address erosion of Solvay waste material along the shoreline of WB 1-8.

3.2.3 Remediation Area C

Remediation Area C is approximately 24 acres and is located offshore of the NYSDOT Turnaround Area and the Willis/Semet IRM barrier wall exclusive of ILWD (drawings D-5 and D-17 to D-18 show plan views and cross-sections of Remediation Area C). Remediation Area C contains three habitat modules (modules 6B, 5B, and 3B) where elevation-based dredging will occur near the shoreline. Target dredge elevations were assigned based on target water depths and maximum cap thickness for habitat modules 5B and 6B to be dredged in 2012 as shown in Table 4. All areas
scheduled for dredging to occur after 2012 were designed based on target water depths and mean cap thickness.

Shoreline stability in this area is of particular concern due to the proximity of shoreline utilities and existing steep slopes. The dredge prism along the shoreline east of the NYSDOT Turnaround Area was modified to prevent impacting the existing utilities and barrier wall along the shoreline. A 10-foot offset (daylight slope of dredge cut was moved 10 feet outboard of existing shoreline) was incorporated into the design for the length of shoreline where a force-main parallels the shoreline. A barrier wall is present for a portion of this length. In this area, the cap will be placed such that the full cap thickness is placed over the dredge slope and existing ground (see Drawing D-17, Section 13).

The NYSDOT Turnaround Area is located on top of hard slag waste material, which was deposited in the Lake by industrial processes not associated with Honeywell or its predecessors. Removal of shoreline material is not included due to the extremely hard nature of this material and to facilitate future development of this area as a boat launch. Since the NYSDOT Turnaround Area has a steep slope (on the order of 2H:1V) present on the northeastern side, a modified cap will be placed over the steep slope. The modified cap includes a chemical isolation layer that extends to the shoreline, as well as an armor layer over the whole slope. The armor stone will extend from elevation 362.5 feet down to the base of the steep slope at approximately elevation 340 feet and include an armor stone toe berm as depicted on Drawing D-32.

East of the NYSDOT Turnaround Area, the post-capping water depth was developed specifically to facilitate recreational boat traffic in the vicinity of the future boat launch. Additionally, the stone size of the erosion protection layer was increased from fine gravel (suitable for protection from wind-wave forces) to coarse gravel taking into consideration the potential for significant boat traffic in this area.
Three active outfalls discharge near the proposed capping areas within Remediation Area C. These outfalls include the Tributary 5A outlet, Westside Pumping Station outlet, and the former I-690 outfall. Proposed dredging and capping occurs outside of the delineated scour pads (see Drawing D-5); however, dredging and capping activities near these active outfalls will be executed such that they do not impact the active outfalls. An appropriate offset from these outfalls will be established to prevent damage during construction in conjunction with the construction contractor and the New York State Department of Environmental Conservation (NYSDEC) based on field conditions and observations. Scour protection at the outfalls will be replaced in-kind, as necessary (see Drawing D-32).

As with remediation areas A and B, shoreline stabilization/enhancement material will be placed along a portion of the surf zone of SMU 3 to address erosion of Solvay waste material along the shoreline of WB 1-8. The dredge and cap boundary was adjusted to accommodate the groundwater collection trench located west of the NYSDOT Turnaround Area along WB 1-8 where the trench is near the proposed inland wetland.

3.2.4 Remediation Area D

Remediation Area D is approximately 99 acres and is comprised of SMU 1 and the ILWD portions of SMUs 2 and 7 (see drawings D-6 to D-8 and D-19 to D-22). The dredging requirements in Remediation Area D are based on the ROD-required, 2-meter-average dredge cut within former SMUs 1, 2, and 7. Additional dredging (beyond the 2-meter average dredge cut) of 3.3 feet (1 meter) is proposed at seven hot spot locations (A through G) where remaining sediment concentrations exceeded the ROD-specified hot spot criteria in the 1-meter interval below the initial dredge depth. The details pertaining to the development of the general dredge depths in each SMU and hot spot areas is presented in Appendix G of the Final Design Report. Remediation Area D contains three habitat modules (modules 6A, 5A, and 3B) where elevation-based dredging will occur near the shoreline. Table 5 presents the targeted habitat modules that will be incorporated into the dredge prism.
The shoreline of the western third of Remediation Area D consists of the exposed sheetpile barrier wall installed in 2008 as part of the Willis/Semet IRM. Dredging design and implementation in this area will consider potential stability issues associated with the wall, as well as ensure dredging operations and shoreline support activities do not subject the sheetpile wall to excessive stress and compromise structural integrity that could lead to potential damage and safety risks. The dredge prism for Remediation Area D will include a 10-foot offset along the barrier wall, with a 5H:1V slope extending from the toe of the dredge prism up to the barrier wall.

In addition to the dredging offset near the barrier, dredging offsets will also occur near utilities. There are seven utilities present within Remediation Area D. Section 7.2 of the Final Design Report provides detailed descriptions of these utilities and how they are incorporated into the dredging and capping design. A summary of dredging and capping offsets and design modifications are provided herein.

- Two cooling water intakes (84-inch-diameter and 72-inch-diameter pipes) are located in the SMU 2 portion of Remediation Area D (Drawing D-5). Sufficient dredging will be completed over these pipelines in the nearshore area to allow cap placement without loss of lake surface area. Once outside of the dredging zone, a 10-foot offset was applied to the two cooling water intakes.
- Three water inlet pipes (42-, 30-, and 16-inch diameter) are located near the western boundary of SMU 1 within Remediation Area D (Drawing D-6). These pipelines are believed to be below the bottom of the dredge cut or only slightly extend into the dredge area and, therefore, will not impact dredging activities.
- A 60-inch diameter diffuser pipeline bisects the middle of SMU 1 within Remediation Area D (Drawing D-6). The pipeline originally lay on the lake bottom; however, it is currently under the sediment from the shoreline to approximately 500 feet offshore. The remaining section of pipeline and diffuser (which runs perpendicular to the pipe) rises above the sediment, with the diffuser portion of the pipeline pile-supported on a structure of unknown detail and condition. To avoid undermining and potential collapse of the pipeline, the dredge cut adjacent to the pipe will be offset by 10 feet.
- The Metropolitan Syracuse Wastewater Treatment Plant (Metro) Deepwater Outfall (72-inch outer diameter) is located at the edge of SMU 7 within Remediation Area D (Drawing D-9).
To avoid having an adverse effect on the pipeline and outfall, a buffer zone will be established such that dredging will be offset approximately 25 feet from the outfall and pipeline. The final approach for capping of the area over the pipeline is currently under development and will be included in a design addendum subsequent to the Final Design.

The remaining valve structure components associated with the 72-inch cooling water intake will be left in place. This structure is comprised of heavy gauge metal and is not expected to represent a potential contaminant pathway. In order to provide an extra level of conservatism, a modified cap design, including an additional 1-ft. thickness of chemical isolation material, will be placed above and around this valve structure. The area of this modified cap will be 25 ft. x 25 ft., and is shown on Drawing D-5.

Two active outfalls discharge onto the proposed dredging and capping areas within Remediation Area D. These outfalls include the 48-inch stormwater outlet and Metro deepwater outfall (see Section 3.2.5 for further details). Based on a scour protection assessment presented in Appendix D of the Final Design Report, a scour pad will be incorporated into the cap near the 48-inch stormwater outlet and will be constructed as shown in the typical detail of the outfall scour protection on Drawing D-32. The scour protection will be constructed with the NYSDOT Standard Specification for Medium Stone Filling.

Adjacent to Remediation Area D are two additional capping areas: Remediation Area D addendum area and the SMU 8 thin layer cap area. The Remediation Area D addendum area is approximately 6 acres and will receive a cap consistent in composition as the Remediation Area D habitat module 1 cap (see Table 5).

A thin-layer cap will be placed in portions of SMU 8 (15 acres) adjacent to Remediation Area D. Thin-layer capping is required in areas of SMU 8 where the mean PECQ exceeds 1 in the top 4 centimeters, and where monitored natural recovery (MNR) is not predicted to meet the mercury
criteria required by the ROD (probably effects concentration of 2.2 mg/kg at each location, and bioaccumulation-based sediment quality value (BSQV) of 0.8 mg/kg on an area-wide basis) within 10 years following the completion of upland source control and dredging and capping in the littoral zone. The minimum thickness of the thin-layer cap is 4 cm (approximately 2 inches). Based on constructability considerations, the mean thickness of the thin-layer cap with over-placement will be approximately 5 inches.

3.2.5 Remediation Area E

Remediation Area E is approximately 183 acres and is located at the southwestern end of the lake (drawings D-8 to D-11 and D-22 to D-29 show plan views and cross-sections of Remediation Area E). Remediation Area E contains three habitat modules (modules 6B, 5B, and 3B) where elevation-based dredging will occur near the shoreline. Target dredge elevations were assigned based on target water depths and mean cap thickness, as shown in Table 6.

A fourth elevation-based dredging area has been designed for the navigation channel that extends from Onondaga Creek into the Lake (see Drawing D-10). The navigation channel is authorized by the State of New York. Based on information from the New York State Canal Corporation (NYSCC), the dredge prism was developed with a post-capping water depth of 16 feet (an authorized depth of 14 feet plus 2 feet below authorized dredge depth to prevent dredge-induced damage to the cap associated with future navigational dredging), and a 5H:1V side slope. An erosion protection layer consisting of 3-inch stone with a minimum erosion layer thickness of 1 foot was assumed for two purposes: 1) the larger stone will serve as an indicator layer for future navigational dredging; and 2) to protect the side slopes inside the surf zone (e.g., approximately 7 feet). As the habitat substrate is also gravely cobbles in the channel, the total thickness of the erosion/habitat layer in the channel is 1 foot. Although the bottom of the channel is outside of the surf zone, a portion of the side slopes is subjected to erosive wind-wave forces within the surf zone; therefore, the larger stone size to resist wind-waves was applied to the entire channel. The dredge and cap design within the in-lake portion of the channel will be reviewed with NYSCC and any required modifications will be addressed in a Design Addendum subject to NYSDEC approval.
The shoreline adjacent to the southern portion of Remediation Area E is dominated by an active rail line, which is directly adjacent to the shoreline. Design and implementation of dredging and capping (9 acres out of the 183 acres within Remediation Area E) in this area will consider potential stability limitations associated with the presence of the rail line. A 150-foot offset from the shoreline was incorporated into the dredge prism design for this Final Design to indicate the area that is being evaluated due to the potential stability concerns in this area during dredging. Capping and dredging plans will be developed for this area as part of a design addendum subsequent to the Final Design.

Similar to Remediation Area D, a thin-layer cap will be placed in portions (12 acres) of SMU 8 adjacent to Remediation Area E (see drawings D-10 and D-11).

Remediation Area E also contains the deepwater outfall owned by Metro (see drawing D-9). This pipe passes through Remediation Area E (including the 150-foot shoreline stability area where the remedial design approach has not been determined) and discharges at the boundary between remediation areas D and E. To avoid having an adverse effect on the pipeline and outfall, a buffer zone will be established such that dredging will be offset approximately 25 feet from the outfall and pipeline. The final approach for capping of the area over the pipeline and adjacent to its discharge, including any consideration of potential scour, is currently under development and will be included in a design addendum subsequent to the Final Design.

Also located in Remediation Area E are the Metro storm water discharge and shoreline treated effluent outfall. These utilities are located in the area impacted by potential stability concerns due to the shoreline railroad tracks in this area, and the remedial approach in this area is under development. The remedial approach in the vicinity of these utilities will be determined following determination of the overall remedial approach in this area.
The final utility is an 8-inch-diameter cast-iron pipe previously owned by Sun Oil and abandoned in the early 1900s (see Drawings D-8 and D-9). Visual inspection of the pipeline in 2011, indicated the pipeline was disintegrating and in poor condition (see Section 7.2.2.12 of the Final Design Report). As the pipeline is relatively small and is on or near the sediment surface, it will be removed prior to any dredging or capping activities.

As described in Section 7.3 of the Final Design Report, the Syracuse Maritime Historic District is a proposed National Register district located almost entirely within Remediation Area E and is composed of 16 cultural resource targets. The 16 targets were broken into three groups: wooden watercrafts, marine structures, and rock mounds and piles. Descriptions of these targets are provided in Section 7.3; revisions to dredging and/or capping associated with these targets are described below.

- **Wooden watercrafts:** Seven wooden watercraft (A3, A4-1, A4-2, A12, A35, A53, and A55) were identified within the Syracuse Maritime Historic District (see Drawings D-9, D-10, and D-11). To avoid adverse effect on the vessel remnants, a 25-foot offset where dredging will not occur will be placed around these wooden watercrafts. A modified cap will be placed over the targets. The modified cap for Remediation Area E cultural resources will be made up of a minimum 1-foot chemical isolation layer consisting of gravelly sand (including granular activated carbon [GAC] where required) and a minimum 1-foot habitat/erosion protection layer consisting of gravelly cobble. Using these minimum thicknesses, and including a 3-inch mixing layer and average capping over-placements, an average 3-foot cap will be placed over these targets. A typical modified cap for Remediation Area E cultural resources is provided in Drawing D-32.

- **Marine infrastructure:** Six areas of marine infrastructure include: A1/A2 (Salina Pier), A38 (iron pier), A45 (concrete breakwater), A7 (piling clumps), A72 (piling clumps), and A73 (bulkhead). To avoid an adverse effect on the piers, dredging will be offset 25 feet from targets A1/A2 and A38 (see Drawing D-11). The modified cap for Remediation Area E cultural resources will be installed over the offset area and pier remnants, where possible. Anomaly A45, a concrete breakwater, is situated southeast of the entrance to the Syracuse Inner Harbor (see Drawing D-9). Sediments will be dredged to within approximately 10 feet of the breakwater and a modified cap for Remediation Area E cultural resources will be placed over the area. Two sets of piling clumps (A7 and A72) and a bulkhead consisting of 7
pilings (A73) are located entirely within the dredge and cap zone. The bulkhead A73 will be removed prior to dredging/capping. The fate of the piling will be addressed in a Design Addendum subject to NYSDEC approval.

- **Rock mounds and piles:** Three rock mounds and piles, A34, A75, and A76, are located within or near Remediation Area E (see Drawings D-10 and D-11). The rock mound and piles appear to lack intentional design and have limited research potential. Targets A34 and A75 lie entirely within the dredge and cap zone. Given their limited historical significance and research potential, these features will be removed prior to capping. A76 is adjacent to but just outside the remediation area boundary. This rock pile will be marked and a work zone buffer will be established around it to ensure it is not adversely impacted by vicinity construction activities.

A buried wooden canal boat (A33) is also located within Remediation Area E outside of the Syracuse Maritime Historic District in the cap-only area. To avoid adverse effect on the vessel remnants and because this feature is in an area where concentrations are relatively low, this area will remain uncapped (with a 25-foot buffer), as it will likely meet criteria in the future via natural recovery processes (particularly burial) and will present minimal environmental risk in the interim.

3.2.6 Remediation Area F

Remediation Area F is approximately 0.6 acres and comprises two small areas of impacted sediment north of Remediation Area A (Drawings D-12 show plan view of Remediation Area F). These impacted areas are located in SMU 5. Remediation Area F contains two habitat modules (5A and 3A) where capping will occur. The mean cap thickness for habitat modules 5A and 3A are shown in Table 7.

3.2.7 Outboard Area

The WBB/HB Outboard Area is approximately 16 acres and is located at the southwestern end of the Lake between the Willis/Semet IRM barrier wall and remediation areas D and E (drawings D-6 and
D-8 and D-19 to D-23 show plan views and cross-sections of Outboard Area. The Outboard Area contains four habitat modules (modules 9B, 6A, 5A, and 3A) where elevation-based dredging will occur throughout. Target dredge elevations were assigned based on habitat considerations to promote pike spawning assuming mean cap thicknesses, as shown in Table 8.

Additional dredging (beyond the target dredge elevations to meet habitat objectives) of 3.3 feet (1 meter) is proposed at six hot spot locations (OB1 through OB6) where remaining sediment concentrations exceeded the ROD-specified hot spot criteria. Hot spots OB4 and OB6 will be backfilled following dredging to achieve required elevations for Habitat Module 9B. Additional material will also be placed in hot spots OB1 and OB2 to transition from 1 foot of material over the barrier wall into the hot spot (see Sections 20 and 22 on Drawing D-20).
4 REFERENCES

<table>
<thead>
<tr>
<th>TABLES</th>
<th></th>
</tr>
</thead>
</table>

Table 2

Summary of Cap Thicknesses and Dredge Volume

Remediation Area A

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (±4 ft)</th>
<th>Remediation Area</th>
<th>Base Dredging Elevation (ft)</th>
<th>Top Cap Dredging Elevation (ft)</th>
<th>Water Depth from Cap Surface (ft)</th>
<th>Mean Total Cap Thickness (ft)</th>
<th>Material Type</th>
<th>Mean Over-Placement (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES AND ASSUMPTIONS:

- **OVERDREDGE**
 - Overdredge (OD) volume includes 6 inches of dredged material.

- **OVER PLACEMENT**
 - Assumed 10 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.

- **EROSION PROTECTION**
 - Mixing layer is 0.25 feet to be conservative and includes pH or GAC amendment where pH or GAC amendment is present in the chemical isolation layer.
 - Shoreline elevation:
 - CI = chemical isolation
 - GAC = granular activated carbon

- **CAPPING**
 - pH amendment, GAC amendment, sand-only chemical isolation, habitat/erosion protection outside the surf zone, and additional habitat material.
 - Minimum cap thicknesses assume no wave placement.

- **SITTLMENT**
 - No settlement was conservatively assumed for calculating dredging volumes.

SHORELINE STABILIZATION
- Sediments from 1.5 feet of water depth (1.125 ft to 1.0 ft) to 6.0 feet (1.0 ft and below) are added to the existing high and low water level conditions.
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement for 1.5 feet of water depth.

Habitat layer
- Minimum cap thicknesses assume no wave placement.

Habitat Module
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Erosion Protection
- Mixing layer is 0.25 feet to be conservative and includes pH or GAC amendment where pH or GAC amendment is present in the chemical isolation layer.
- Shoreline elevation:
 - CI = chemical isolation
 - GAC = granular activated carbon

Capping
- pH amendment, GAC amendment, sand-only chemical isolation, habitat/erosion protection outside the surf zone, and additional habitat material.
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.

Shoreline Stabilization
- Estimated 20 year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.
- Minimum cap thicknesses assume no wave placement.

Notes and Assumptions:

- 0-3.4 feet = coarse gravel
 - 0.13 ft stone 0.25 ft thick

Additional Habitat Layer
- Minimum cap thicknesses assume no wave placement.

Settlement
- No settlement was conservatively assumed for calculating dredging volumes.
Summary of Cap Thicknesses and Dredge Volume

Remediation Area B

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (2.4 feet)</th>
<th>Remediation Area</th>
<th>Dredging Elevation (ft)</th>
<th>Top Cap Elevation (ft)</th>
<th>Water Depth from Cap Surface (ft)</th>
<th>Mean Cap Thickness (ft)</th>
<th>Assumed Mean Over-Placement (ft)</th>
<th>Minimum Additional Habitat Material (ft)</th>
<th>Assumed Total Mean Over-Placement (ft)</th>
<th>Assumed Total Minimum Cap Thickness (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (-1 to -10 ft)</td>
<td>Inside Elevation-Based Dredging & AC</td>
<td>356.125</td>
<td>360.50</td>
<td>2.0</td>
<td>4.375</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
</tr>
<tr>
<td>2A (-10 to -20 ft)</td>
<td>Outside Elevation-Based Dredging & AC</td>
<td>353.75</td>
<td>358.25</td>
<td>3.25</td>
<td>4.375</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
</tr>
<tr>
<td>3A (-2 to -6 ft)</td>
<td>Inside Elevation-Based Dredging & AC</td>
<td>356.125</td>
<td>360.50</td>
<td>2.0</td>
<td>4.375</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Notes and Assumptions:
- **SUMMARY**
 - GAC = granular activated carbon
 - CI = chemical isolation
 - AC = amended cap
 - WB 1-8 = Wastebeds 1 through 8
- **GEOLOGY**
 - Shoreline elevations
- **CAPPING**
 - Mixing layer is 0.25 feet to be conservative and includes pH or GAC amendment where pH or GAC amendment is present in the chemical isolation layer.
- **EROSION PROTECTION**
 - Shoreline area loss 0.35 ft.
- **OVERPLACEMENT**
 - Capping for water depths less than 4 ft is based on a 100 year wind/wave analysis by Anchor QEA.
 - Capping for water depths less than 6 ft is based on habitat modules and includes habitat/erosion protection material based on a 100 year wind/wave analysis by Anchor QEA.
 - Capping for water depths less than 6 ft is based on habitat modules and includes habitat/erosion protection material based on a 100 year wind/wave analysis by Anchor QEA.
 - Over-Placement is based on a 100 year wind/wave analysis by Anchor QEA.
 - Over-Placement is based on a 100 year wind/wave analysis by Anchor QEA.
 - Over-Placement is based on a 100 year wind/wave analysis by Anchor QEA.

Assumptions:
- **SHORELINE STABILIZATION**
 - Assumed a 0.25 ft mean over placement for pH amendment, GAC amendment, habitat/erosion protection material, and additional habitat in water depths of 4 ft or greater.
 - Assumed a 0.75 ft mean over placement for pH amendment, GAC amendment, habitat/erosion protection material, and additional habitat in water depths of 4 ft or greater.
 - Assumed a 1.125 ft mean over placement for pH amendment, GAC amendment, habitat/erosion protection material, and additional habitat in water depths of 4 ft or greater.
 - Assumed a 2.25 ft mean over placement for pH amendment, GAC amendment, habitat/erosion protection material, and additional habitat in water depths of 4 ft or greater.

SETTLEMENT
- No settlement was conservatively assumed for determining dredging elevations.
Table 4
Summary of Cap Thicknesses and Dredge Volume

Remediation Area C

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (A / B feet)</th>
<th>Remediation Area</th>
<th>Dredging Elevation (ft)</th>
<th>Top Cap Elevation (ft)</th>
<th>Water Depth from Cap Surface (ft)</th>
<th>Mean Cap Thickness (ft)</th>
<th>Minimum Erosion Protected Habitat Layer (ft)</th>
<th>Assumed Mean Over-Placement (ft)</th>
<th>Mean Total Layer Thickness (ft)</th>
<th>Material Type</th>
<th>Minimum Additional Habitat Material (ft)</th>
<th>Assumed Mean Over-Placement (ft)</th>
<th>Mean Total Layer Thickness (ft)</th>
<th>Material Type</th>
<th>Total Minimum Cap Thickness (ft)</th>
<th>Assumed Total Mean Over-Placement (ft)</th>
<th>Assumed Total Maximum Over-Placement (ft)</th>
<th>Total Maximum Cap Thickness (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes and Assumptions:

- **GENERAL**
 - GAC = granular activated carbon
 - CI = chemical isolation layer
 - AC = amended cap

- **CROSSINGS**
 - Shoreline Protection:
 - This area is assumed to be vulnerable to erosion based on the results of the wind/wave analysis by Anchor QEA.

- **IMPACTS:**
 - Water depth is 3 to 5 feet based on 2010 lake level and water depth at 2 feet based on 2013 lake level.
 - Maximum allowable cap placement thickness is 3.5 feet (Online Table 2.13b)

- **Erosion Protection:**
 - Assumed mean over-placement for pH amendment, GAC amendment, and additional habitat material based on a 100 year wind/wave analysis by Anchor QEA.

- **Habitat Layer**
 - Assumed 10-year storm event from wind/wave analysis by Anchor QEA to define water depth to address ongoing resuspension of Solvay Waste nearshore.

- **Over Placement**
 - Assumed three layers of over placement for Modules 3A, 2A, and 3B (-4 to -7 ft).

- **Settlement**
 - No settlement was conservatively assumed for determining dredging elevations.
Table 5
Summary of Cap Thicknesses and Dredge Volume

Remediation Area D

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Elevation (ft)</th>
<th>Remodel Area</th>
<th>Dredging Volume Estimate</th>
<th>Total Mean Cap Thickness (ft)</th>
<th>Total Mean Over-Placement (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (-30 ft +)</td>
<td>AC</td>
<td></td>
<td>1,969,761</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>2A (-7 to -10 ft)</td>
<td>AC</td>
<td></td>
<td>1,184,247</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2A (-10 to -20 ft)</td>
<td>AC</td>
<td></td>
<td>8,945,892</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>3B (-4 to -7 ft)</td>
<td>Outside Amended Cap Only</td>
<td></td>
<td>291,822</td>
<td>3.75</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Notes and Assumptions:

- **GENERAL**
 - GAC = granular activated carbon
 - CI = chemical isolation
 - AC = amended cap
 - pH = mean cap thickness

- **DREDGING**
 - Mixing layer is 0.25 ft to be conservative and include pH or GAC amendment where pH or GAC amendment is present in the chemical isolation layer. AC is amended cap area.

- **SHELTER:**
 - Surf zone is 2.4 ft based on wave analysis conducted by Anchor QEA.
 - GAC assumed for habitat depth based on wave analysis conducted by Anchor QEA.

- **OVERDREDGE VOLUME**
 - Overdredge volume is for module 5 & 6, covering approximately 2.7 acres.
 - No settlement was conservatively assumed for determining dredging elevations.

- **EROSION PROTECTION**
 - Maximum anticipated cap placement was assumed for each cap layer within habitat modules that had to be capped in 2012 (i.e., modules containing sensitive aquatic vegetation and protected species on day water depth tolerances).
 - Four layers of over placement for Modules 1, 2A, and 3B (-4 to -7 ft).
Table 6
Summary of Cap Thicknesses and Dredge Volume

Remediaion Area E

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (±25 ft)</th>
<th>Remediaion Area</th>
<th>Dredge Volume Estimate (cy)</th>
<th>Total Dredge Volume (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (±25 ft)</th>
<th>Remediaion Area</th>
<th>Dredge Volume Estimate (cy)</th>
<th>Total Dredge Volume (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes and Assumptions:

GENERAL
- GAC = granular activated carbon
- CI = chemical isolation
- No work is assumed for a 300 ft exclusion area where stability is an issue due to the presence of the railroad tracks being evaluated.

DREDGING
- Mean elevation above MSL:
 - 1.5 ft below mean low tide
 - 1.5 ft below mean low tide

CAYSWAY
- Mining area is 0.25 feet to be conservative and includes GAC amendment where GAC amendment is present in the chemical isolation layer.
- Material (Shale) cap is 0.25 feet to be conservative and includes GAC amendment where GAC amendment is present in the chemical isolation layer.
- Surf clay below or 1.5 feet below mean low tide is based on a 300 yr wave/sediment analysis by Apex QMS.
- Surf clay below or 1.5 feet below mean low tide is based on a 300 yr wave/sediment analysis by Apex QMS.
- Mean elevation above MSL:
 - 1.5 ft below mean low tide
 - 1.5 ft below mean low tide

EROSION PROTECTION
- Mean total cap thickness:
 - 1.5 ft below mean low tide
 - 1.5 ft below mean low tide

REMAKING
- No fence is conservatively assumed for determining dredging elevations.
Table 7
Summary of Cap Thicknesses

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (ft)</th>
<th>Remediation Area</th>
<th>Top-Cap Elevation (ft)</th>
<th>Water Depth from Cap Surface (ft)</th>
<th>Mean Cap Thickness (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A (-10 to -20 ft)</td>
<td>Outside Cap Only</td>
<td>NA</td>
<td>352.50</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>2A (-7 to -10 ft)</td>
<td>Outside Cap Only</td>
<td>NA</td>
<td>355.50</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>3A (-3 to -7 ft)</td>
<td>Outside Cap Only</td>
<td>NA</td>
<td>358.50</td>
<td>3.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes and Assumptions:

GENERAL
- C = chemical isolation
- CI = chemical isolation - Grainsize for water depths 4 to 30 ft are based on a 100 yr wind/wave analysis by Anchor QEA for Remediation Area A.

CAPPING
- Mixing layer is 0.25 feet to be conservative.

EROSION PROTECTION
- Assumed two layers of over placement for Module 3B.
- Remediation Area F is outside of the surf zone.
- Erosion protection requirements for S95 are as follows (based on 50:1 slope):
 - 3.4-6.5 ft = fine gravel
 - 6.5-8.5 ft = coarse sand
 - 8.5-30.5 ft = medium sand
- Erosion protection requirements for S108 were not computed, but were estimated to be as follows (based on 50:1 slope):
 - 20.5-30.5 feet = medium sand

REMOVAL
- Overdredge volume includes 6 inches of dredged material

OVER PLACEMENT
- Assumed a 0.25 ft mean over placement for sand-only chemical isolation and habitat/erosion protection in water depths greater than 3 ft.
- Assumed one layer of over placement for Module 2.

SETTLEMENT
- No settlement was conservatively assumed for determining dredging elevations.

Habitat Layer
- Habitat for water depths 4 to 30 ft is based on a 100 yr wind/wave analysis by Anchor QEA for Remediation Area A.

Over Placement
- Assumed a 0.25 ft mean over placement for sand-only chemical isolation and habitat/erosion protection in water depths greater than 3 ft.
- Assumed one layer of over placement for Module 2.

Erosion Protection
- No erosion was conservatively assumed for determining dredging elevations.
Summary of Cap Thicknesses and Dredge Volume

Wasted B/Outboard Area

<table>
<thead>
<tr>
<th>Habitat Module</th>
<th>Location of Surf Zone (Ft)</th>
<th>Relative Area</th>
<th>Erosion Protection/Habitat Layer</th>
<th>Minimum Erosion/Habitat Protection Layers Thickness (Ft)</th>
<th>Mean Erosion/Habitat Protection Layers Thickness (Ft)</th>
<th>Minimum Chemical Isolation Layer Thickness (Ft)</th>
<th>Mean Chemical Isolation Layer Thickness (Ft)</th>
<th>Assumed Additional Over Placement Thickness (Ft)</th>
<th>Mean Total Material Type Thickness (Ft)</th>
<th>Mean Total Material Type Placement (Ft)</th>
<th>Material Type</th>
<th>Assumed Total Mean Over Placement (Ft)</th>
<th>Total Mean Over Placement (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A (Shoreline Upland) AC (West/Center)</td>
<td>(-0.5 to -2 ft)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>8A (Shoreline Upland) AC (West/Center)</td>
<td>(-0.5 to -2 ft)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>5A (-0.5 to -2 ft)</td>
<td>AC (West/Center)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>6A (+1 to -1 ft)</td>
<td>AC (West/Center)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>8A (Shoreline Upland) GAC (East)</td>
<td>(-0.5 to -2 ft)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>5A (-0.5 to -2 ft)</td>
<td>GAC (East)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>6A (+1 to -1 ft)</td>
<td>GAC (East)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
<tr>
<td>9B (+1 to +0.5 ft)</td>
<td>AC (West/Center)</td>
<td>Inside</td>
<td>Elevation-Based Dredging & GAC</td>
<td>6.50</td>
<td>6.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.25</td>
<td>6.75</td>
<td>Coarse Gravel</td>
<td>6.75</td>
<td>6.75</td>
<td>Inside</td>
</tr>
</tbody>
</table>

Table 8

Notes and Assumptions:

GENERAL:
- GAC = granular activated carbon
- CI = chemical isolation
- AC = amended cap

DREDGING
- Shoreline elevation:
 - Near shore dredging in additional 1 meter.

OVER PLACEMENT
- Net over placement for dredging: 0.25 ft.

CAPPING
- Mean grain size: 2.5 ft.

SEDIMENT/PROTECTION
- The Wasted B/Outboard Area is located in the surf zone.
- The erosion protection requirement is coarse grain (0.18 ft) over 2.5 ft.

HABITAT LAYER
- Grainsize for water depths less than 4 ft are based on habitat modules and include habitat/erosion protection material based on a 100 yr wind/wave analysis by Anchor QEA.
- Habitat substrate from the shoreline to 25 ft offshore will be targeted along Remediation Areas D and the Wasted B/Outboard Area.

OVER PLACEMENT
- Assumed a 0.25 ft mean over placement for pH amendment, GAC amendment, and additional habitat material overlaying the erosion protection.
- Assumed three layers of over placement for Modules 5A East, 6A East, and 8A East.
- Assumed four layers of over placement for Modules 3A West/Center, 5A West/Center, 6A West/Center, 8A West/Center, and 9B West/Center.

SETTLEMENT
- No settlement was conservatively assumed for determining dredging elevations.
ATTACHMENT A
ONONDAGA LAKE CAPPING, DREDGING, HABITAT AND PROFUNDAL ZONE (SMU 8) FINAL DESIGN – DREDGING AND CAPPING PLANS
ONONDAGA LAKE CAPPING, DREDGING, HABITAT AND PROFUNDAL ZONE (SMU 8) FINAL DESIGN
DREDGING AND CAPPING PLANS
ONONDAGA LAKE CAPPING, DREDGING, HABITAT AND PROFUNDAL ZONE (SMU 8)
FINAL DESIGN
REMEDIAION AREA E
DREDGING AND CAPPING PLAN

THE DREDGING AND CAPPING DESIGN ASSOCIATED WITH THE NAVIGATIONAL CHANNEL MAY BE MODIFIED BASED ON ADDITIONAL CONSULTATION WITH THE NEW YORK STATE CANAL CORPORATION AND WILL BE REVISED AS APPROPRIATE IN A COST-EFFECTIVE MANNER PRIOR TO REVIEW AND APPROVAL, BY NYSDEC.

THE TECHNICAL ANALYSIS INDICATES THAT THE DREDGING WITHIN APPROXIMATELY 180 FT. OF THE SHORELINE COULD RESULT IN AN UNACCEPTABLE FACTOR OF SAFETY FOR THE EXISTING 60' TIEBACK RETAINING WALL. FOR THIS AREA WILL BE DEVELOPED AS PART OF A DESIGN APPROACH SUBSEQUENT TO THE FINAL DESIGN.

LIMITS OF CULTURAL RESOURCE WIL BE MARKED WITH FLOAT BULBS TO AVOID IMPACTS DURING CONSTRUCTION ACTIVITIES. DREDGING WILL BE COMPUTED UP TO A 20 FT BUFFER ZONE. BUFFER ZONE WILL BE LEFT UNDREDGED.

A MODIFIED CAP WILL BE PLACED OVER THE CULTURAL RESOURCE FEATURE.

BUCKHEADS WILL BE REMOVED PRIOR TO DREDGING AND CAPPING ACTIVITIES.

A MODIFIED CAP WILL BE PLACED OVER THE CULTURAL RESOURCE FEATURE.

LEGEND

LIMITS OF DREDGING AND CAPPING
LIMITS OF CAP ONLY
THIN LAYER CAP

PROJECT BASELINE
EXISTING CONTOUR
PROPOSED DREDGING CONTOUR
SHORELINE ELEV. 3-24.5
REMEDIAION AREA BOUNDARY

CROSS SECTION LOCATION AND DESIGNATION

NOTE:
SCALE IN FEET
NOTE: SEE B-000-D-00 FOR GENERAL NOTES AND LEGEND.

ANCHOR QEA
PARSONS COMMERCIAL TECHNOLOGY GROUP
301 Placid Road, Suite 250
Syracuse, New York 13212

002990
D-10
12 OF 34
NOTES:
1. SEE SHEET D-13 FOR GENERAL NOTES AND LEGEND.
2. WATER LEVEL, 300.3 FT NAVD 88 IS THE AVERAGE LAKE LEVEL DURING AQUATIC PLANT GROWING SEASON.
3. THE TYPICAL DREDGING AND CAPPING SLOPE FOR EDGES AND TRANSMISSIONS IS 1H:1V.
4. CAP THICKNESS AND ELEVATION ARE BASED ON MAXIMUM DIVER PLACEMENT WITHOUT SETTLEMENT CONSIDERATIONS FOR HABITAT MODULES 5 AND 6 IN PORTIONS OF REMEDIATION AREAS C AND D CORRESPONDING TO THE FIRST YEAR OF CAPPING. CAP THICKNESS AND ELEVATION ARE BASED ON MAXIMUM DIVER PLACEMENT WITHOUT SETTLEMENT FOR ALL REMAINING AREAS.

ONONDAGA LAKE CAPPING, DREDGING, HABITAT AND PROFUNDAL ZONE (SMU 8)
FINAL DESIGN
REMEDIATION AREA A
DREDGING AND CAPPING CROSS SECTIONS 4 & 5
ONONDAGA LAKE CAPping, DREDGING, HABITAT AND PROFUNDAL ZONE (SMU 8) FINAL DESIGN
REMEDiation AREA E DREDGING AND CAPping CROSS SECTIONS 29, 30, & 31

D25

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS HE IS ACTUALLY UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER ANY ENGINEER'S MARKS OR SIGNATURE. THE ALTERATION OF ANY ENGINEER'S MARKS OR SIGNATURES IS PUNISHABLE BY A FINE UP TO THE AMOUNT OF $10,000 OR BY IMPRISIONMENT OR BOTH, AS PROVIDED BY SECTION 7117 OF THE NEW YORK STATE PENAL LAW. HE ENGINEER'S MARKS OR SIGNATURES AND THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION, MUST BE INCLUDED IN THE ALTERED DOCUMENTS.

PROJECT MANAGER: T. GORDON, P.E.
NOTES:
1. SEE SHEET D-29 FOR GENERAL NOTES AND LEGEND.
2. WATER LEVEL, AFTER IT WOULD BE THE AVERAGE LAKE LEVEL DURING AQUATIC PLANT GROWING SEASON.
3. THE TYPICAL DREDGING AND CAPPING SLOPE FOR EDGES AND TRANSITIONS IS 1:3:1.
4. CAP THICKNESS AND ELEVATION ARE BASED ON MAXIMUM SETTLEMENT CONSIDERATIONS.
5. HABITAT MODULES 5 AND 8 IN PORTIONS OF REMEDIAL AREA C AND D CORRESPONDING TO THE FIRST YEAR OF SETTLEMENT.
6. THICKNESS AND ELEVATION ARE BASED ON MEAN OVERPLACEMENT WITHOUT SETTLEMENT FOR ALL REMAINING AREAS.