APPENDIX K: SEDIMENT MANAGEMENT AND SUPERNATANT TREATMENT COST ESTIMATES

Prepared for:

HONEYWELL

101 Columbia Road P.O. Box 2105 Morristown, NJ 07962

Prepared by:

PARSONS

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 (315) 451-9560 Fax (315) 451-9570

November 2004

TABLE OF CONTENTS

Page

SECTION K.2 ON-SITE SEDIMENT MANAGEMENT K.2-1 K.2.1 SCA Construction K.2-1 K.2.2 Material Transfer and Operation of the SCA K.2-3 K.2.2.1 Option 1 Material Transfer and Operation of the SCA K.2-3 K.2.2.2 Option 3 Material Transfer and Operation of the SCA K.2-4 K.2.3 SCA Closure K.2-4 K.2.4 Long-Term Operation and Maintenance of SCA K.2-4 K.2.5 Summary of On-site Sediment Management Costs K.2-5 K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation in an SCA K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation K.2-5 K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3-1 K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2 K.3.2 Off-site Sediment Management for Dredging/Sediment K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2	SECTION K.1	DREDGING/SEDIMENT MANAGEMENT SYSTEMS	K.1-1
K.2.2 Material Transfer and Operation of the SCA K.2-3 K.2.2.1 Option 1 Material Transfer and Operation of the SCA K.2-3 K.2.2.2 Option 3 Material Transfer and Operation of the SCA K.2-4 K.2.3 SCA Closure K.2-4 K.2.4 Long-Term Operation and Maintenance of SCA K.2-4 K.2.5 Summary of On-site Sediment Management Costs K.2-5 K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation in an SCA K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation in an SCA K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3-1 K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2	SECTION K.2	ON-SITE SEDIMENT MANAGEMENT	K.2-1
K.2.2.1 Option 1 Material Transfer and Operation of the SCA K.2.3 K.2.2.2 Option 3 Material Transfer and Operation of the SCA K.2-4 K.2.3 SCA Closure K.2-4 K.2.4 Long-Term Operation and Maintenance of SCA K.2-4 K.2.5 Summary of On-site Sediment Management Costs K.2-5 K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation K.2-5 K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation K.2-5 K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3-1 K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2	K.2.1 SCA	Construction	K.2-1
K.2.4 Long-Term Operation and Maintenance of SCA K.2-4 K.2.5 Summary of On-site Sediment Management Costs K.2-5 K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation K.2-5 K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation K.2-5 K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3-1 K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2	K.2.2.1	Option 1 Material Transfer and Operation of the SCA	K.2-3
K.2.5 Summary of On-site Sediment Management Costs K.2-5 K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation K.2-5 K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation K.2-5 K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2	K.2.3 SCA	Closure	K.2-4
K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation K.2-5 in an SCA K.2-5 K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation K.2-5 K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3-1 K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2	K.2.4 Long	-Term Operation and Maintenance of SCA	K.2-4
K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation K.2-5 in an SCA K.2-5 K.2.5.3 On-site Consolidation Options Summary K.2-6 SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT K.3-1 K.3.1 Off-site Sediment Management for Dredging/Sediment K.3-1 Management Option 2 K.3-1 K.3.1.1 Bulkhead and Process Area Construction K.3-1 K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2		, .	K.2-5
in an SCA	K.2.5.2		K.2-5
SECTION K.3 OFF-SITE SEDIMENT MANAGEMENT			K.2-5
 K.3.1 Off-site Sediment Management for Dredging/Sediment Management Option 2	K.2.5.3	On-site Consolidation Options Summary	K.2-6
Management Option 2	SECTION K.3	OFF-SITE SEDIMENT MANAGEMENT	K.3-1
K.3.1.1 Bulkhead and Process Area Construction			
K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out K.3-2			
K 3.7 Ott-site Sediment Management for Dredging/Sediment			K.3-2
Management Option 4			
K.3.2.2 Mechanical Dewatering System Construction			
K.3.2.3 Wethanical Dewatering System Operation			

Honeywell

TABLE OF CONTENTS(CONTINUED)

Page

K.3.3 Off-site Transportation and Disposal K.3.3.1 Off-site Transportation and Disposal Summary	
K.3.3.2 Detailed Evaluation of Transportation Options (Trucking versus Rail)	K.3-6
K.3.4 Summary of Off-site Sediment Management	K.3-9
SECTION K.4 SUPERNATANT TREATMENT FOR THE ON-SITE MANAGEMENT OPTION	K.4-1
K.4.1 Influent Flow Rates	K.4-1
K.4.2 Supernatant Water Treatment Options	K.4-1
K.4.3 Process Configuration and Unit Sizing	K.4-2
K.4.4 Supernatant Water Treatment Costs	K.4-4
SECTION K.5 SEDIMENT MANAGEMENT COST SUMMARY	K.5-1
SECTION K.6 REFERENCES	K.6-1

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES

- Table K.1Hydraulic Slurry Characteristics for One 14-Inch Hydraulic Dredge
- Table K.2SCA Volume Requirements
- Table K.3SCA Construction Costs
- Table K.4SCA Operation Costs
- Table K.5SCA Capping Costs
- Table K.6SCA Long-Term Operation and Maintenance Costs
- Table K.7On-site Sediment Management Cost and Duration Summary
- Table K.8Bulkhead and Process Area Construction Costs
- Table K.9Offload, Solidification, and Load-out Costs
- Table K.10Process Area Construction Costs
- Table K.11Mechanical Separation System Construction Costs
- Table K.12Mechanical Separation System Operation Costs
- Table K.13Solidification and Loadout Costs
- Table K.14Off-site Trucking Transportation and Disposal Costs
- Table K.15Trucking Transportation Cost Analysis
- Table K.16Off-site Trucking Transportation and Disposal Costs by Volume
- Table K.17Off-site Rail Transportation and Disposal Costs
- Table K.18Option 2 Off-site Sediment Management Cost and Duration Summary

Table K.19Option 4 - Off-site Sediment Management Cost and Duration Summary

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES (CONTINUED)

Table K.20	Option 2 versus Option 4 - Off-site Sediment Management Cost Summary					
Table K.21	Construction Cost Estimate for Enhanced Primary Treatment					
Table K.22	Construction Cost Estimate for Enhanced Primary Treatment with Multimedia Filtration					
Table K.23	Construction Cost Estimate for Advanced Treatment					
Table K.24	Construction Cost Estimate for Enhanced Primary Treatment with Organics Removal					
Table K.25	Operation and Maintenance Cost Estimate					
Table K.26	Supernatant Treatment Cost Summary					
Table K.27	Summary of Sediment Management Costs					

SECTION K.1

DREDGING/SEDIMENT MANAGEMENT SYSTEMS

To evaluate various lake-wide remediation options, the feasibility study (FS) writers considered dredging and sediment management systems in a holistic approach. Four dredging and sediment management options were evaluated:

Option 1: Hydraulic Dredging and On-site Consolidation in an SCA

Option 2: Mechanical Dredging and Off-site Disposal

Option 3: Mechanical Dredging and On-site Consolidation in an SCA

Option 4: Hydraulic Dredging and Off-site Disposal

For options with hydraulic dredging, it is assumed that 14-inch hydraulic dredges would work 16 hours per day, five days per week. At a flow velocity of 10 feet per second (fps), a slurry solids content of 10 percent (weight of solids/weight of slurry), and a dredging efficiency of 70 percent, this would result in an average *in situ* removal rate of 150 cubic yards per hour (CY/hr), or 2,400 *in situ* CY per day, for each dredge. Table K.1 presents the geotechnical characteristics of the hydraulic slurry. The number of hydraulic dredges assumed for each onsite and off-site volume scenario is discussed in Subsections K.2.2 and K.3.2.

For options with mechanical dredging, it is assumed that one 6-CY clamshell bucket dredge would work 16 hrs per day, five days per week. Based on an average mid-range production rate of 130 CY/hr (see Appendix L, dredging issues), average daily production is an *in situ* dredged sediment volume of 2,100 CY. Off-site disposal is limited to this lower rate due to constraints on trucking and landfill acceptance. The feasibility and costs of each of the dredging and sediment management options are discussed in the following sections. A summary of the costs for on-site sediment management is made in Section K.2.5, and a summary of the costs for off-site sediment management is made in Section K.3.4.

SECTION K.2

ON-SITE SEDIMENT MANAGEMENT

On-site sediment management would involve transferring the sediments to a sediment consolidation area (SCA). For dredging/sediment management Option 1, the sediments would be pumped to the SCA, which would be used for solids separation as well as consolidation. For dredging/sediment management Option 3, the sediments would be trucked to the SCA after solidification, and no solids separation would be required. Although the method of transfer of sediments to the SCA would be different for Options 1 and 3, the SCA construction, closure, and long-term operation and maintenance are similar. The use of the SCA for solids separation process. Because the extra volume needed for solids separation in Option 1 is small relative to the volume needed for solids consolidation, the size of the SCA is not substantially different between Options 1 and 3.

The design, operation, and management of the SCA for the Onondaga Lake work are described in Appendix L, dredging issues. The following sections describe the costs for the processes for on-site sediment management for Option 1 and Option 3. The relevant portions of on-site management for Options 1 and 3 are discussed in Section K.2.5, where the most appropriate on-site management option is selected.

The cost of on-site sediment management is grouped into the following major tasks:

- SCA construction
- Transfer of dredged material to the SCA and SCA operation
- SCA closure
- Long-term operation and maintenance

The basis of the costs for each of these major tasks is described below.

K.2.1 SCA CONSTRUCTION

For the FS, four sediment dredging volumes were evaluated: 100,000 CY, 500,000 CY, 1,000,000 CY, and 10,000,000 CY. Potential sites for the SCA were evaluated in Section 4.12 of the FS, and Wastebed 13 was selected for the on-site consolidation feasibility analysis.

The FS team prepared a conceptual design of the SCA based on the available data for evaluating the feasibility of on-site consolidation. The size and configuration of the SCA were designed by the steps described in *Engineering and Design – Confined Disposal of Dredged Material* (U.S. Army Corps of Engineers, 1987) to ensure successful operation and that the

facility is protective of human health and the environment. Size of the SCA is determined by minimum area for settling, minimum water volume for settling, and storage for dredged sediments. A volume estimate for the SCA based on bulking of the dredged sediment as determined in settling tests (Harrington Engineering & Construction, Inc., 2003) is presented in Table K.2. Conceptual-level sizing and cost estimates for construction of SCAs sized for the noted dredging volumes are presented in Table K.3. It should be noted that the volume estimates and subsequent sizing calculations are based on limited data, specifically two data points from the Harrington study. The data used in developing Tables K.2 and K.3 are not assumed to be representative of all dredging areas, but are the best available site-specific information. Predesign activities would include collecting samples representative of all dredging areas and settleability testing to develop information for the design of the SCA.

The available geotechnical data for the materials in the wastebeds indicate that some soil stabilization and/or pre-loading may have to be performed on the existing wastebed materials. The need for stabilization and/or pre-loading would be determined through pre-design geotechnical investigations. For the purpose of the FS, costs for preloading the entire consolidation area, i.e., the fill area, and stabilization through deep soil mixing under 25 percent of the dike area are assumed in the cost estimates. Pre-design activities would include geotechnical investigations and preparation of specific stabilization recommendations.

The SCA would be constructed on top of the existing wastebed material using 3:1 (horizontal to vertical) dikes with imported soil. Internal dikes may be needed in the SCA to lengthen the water flow path and reduce short-circuiting; two have been included in the cost estimates. For the three smaller sediment volumes, a dike height of 14 feet (ft) (4.3 meters [m]) is assumed. For the 10,000,000 CY sediment volume, the dikes are assumed to be 50 ft (15 m) high to accommodate the large volume of sediment in one area. The estimates do not consider excavation into the existing wastebed materials and regrading the excavated sediment into dikes.

The actual size and configuration, e.g., dike height v. footprint, of the SCA will be determined during design. The dike heights described above were selected based on the four comparative dredge volumes (100,000 CY, 500,000 CY, 1,000,000 CY and 10,000,000 CY) for development of cost information for use in comparing lake-wide remediation alternatives. The actual dike height and SCA footprint will be made to optimize the SCA design for the selected remedy and resulting anticipated dredge volume.

For the evaluation of lake-wide alternatives, a geomembrane layer was included in the conceptual SCA construction and attendant cost estimate; however, it is anticipated that the appropriate remedial design for the SCA would be determined as part of the pre-design investigation and design process. The decision would be based on a predesign geotechnical investigation of the wastebeds and use of U. S. Army Corps of Engineers (USACE) and U. S. Environmental Protection Agency (USEPA) guidance documents. The geotechnical investigation would include stability testing (bearing capacity) and permeability testing.

The cost estimate assumes that a 2-ft (0.6-m) thick sand drainage and leachate collection layer would be constructed on the bed of the SCA. Piping would be installed within the sand dewatering layer to provide drainage during sediment consolidation.

The cost estimates include all phases of engineering, design, and construction management required for design and construction of a SCA. The cost estimates also include oversight and quality assurance and quality control (QA/QC), in accordance with USEPA guidance and New York State regulations, and installation of monitoring wells spaced 200 ft apart around the perimeter of the SCA.

K.2.2 MATERIAL TRANSFER AND OPERATION OF THE SCA

K.2.2.1 Option 1 Material Transfer and Operation of the SCA

For Option 1 – Hydraulic Dredging and On-site Consolidation in an SCA, dredged sediments are hydraulically transferred to the SCA; this process requires piping, pumps, and labor to operate the pumps and inspect the pipelines. One booster pump, with an operator, is required approximately every mile of pipeline. In addition, a full-time crew to inspect the pipeline is anticipated.

During dredging, it is expected that the SCA would require 24-hour-per-day staffing with at least one person. It is expected that continuous air monitoring would also be required at the SCA. Operation of the SCA would consist of monitoring and directing the dredge slurry inflow, communicating with the dredge crew as necessary, and monitoring and controlling the outflow.

The thickness of the dredged material layer would increase with time until the dredging operation is completed. Operation of the SCA would continue after dredging while the settled solids consolidate. As deposition occurs in the early stages of SCA operation, the permeability of the material would rapidly decease, in essence forming a very low-permeability layer on the bottom of the SCA.

Costs for transfer of material and operation of the SCA depend on the duration of the dredging. The cost estimates assume that one dredge would be used for the 100,000 CY dredge volume, two dredges would be used for the 500,000 and 1,000,000 CY dredge volumes, and four dredges would be used for the 10,000,000 CY dredge volume. Assuming each dredge removes 150 CY/hr for a 16-hour work day, five-day work week, and a seven-month (30-week) dredging season results in the following dredging durations for each scenario:

<u>Scenario</u>	No. of Dredges	Duration (weeks)
100,000 CY	1	9
500,000 CY	2	21
1,000,000 CY	2	42
10,000,000 CY	4	209

Table K.4 presents estimated costs for the SCA operation. Water collected from the SCA would be pumped to the water treatment system for treatment and disposal. Water treatment costs are discussed in Section K.4 of this appendix.

K.2.2.2 Option 3 Material Transfer and Operation of the SCA

For Option 3 – Mechanical Dredging and On-site Consolidation in an SCA, dredged sediments are transferred to the SCA via trucking; this process is discussed in Subsection K.2.5.2.

K.2.3 SCA CLOSURE

The SCA would be capped when dredging is completed and the consolidation process has progressed far enough that the settled material has sufficient strength for cap construction. It is estimated that the SCA can be capped within one year of completion of dredging.

The SCA would be capped with the following, from bottom to top:

- A sloped sand layer to provide foundation and a gradient to the edges of the SCA
- 1.5-ft (0.5-m) thick soil layer
- 0.5-ft (.15-m) thick topsoil layer

The need for geomembrane and geocomposite layers in the cap would be evaluated after the geotechnical testing and during design of the SCA. The cost estimates do not include costs for installation of geomembrane and geocomposite drainage layers. Oversight and QA/QC, in accordance with USEPA guidance and New York State regulations, would be required during SCA cap construction.

Detailed estimates of SCA closure cap construction for each scenario are presented in Table K.5.

K.2.4 LONG-TERM OPERATION AND MAINTENANCE OF SCA

Post-closure operation and maintenance of the SCA is estimated for 30 years. Operation of the SCA would involve monthly inspections. Quarterly groundwater sampling is assumed for

the first five years and biennial sampling from six to 30 years from closure. The cost of the operation and maintenance of the SCA depends on the size of the SCA and the number of monitoring wells around the perimeter. The average annual operation and maintenance costs of the SCA are presented in Table K.6.

K.2.5 SUMMARY OF ON-SITE SEDIMENT MANAGEMENT COSTS

K.2.5.1 Option 1 – Hydraulic Dredging and On-site Consolidation in an SCA

Table K.7 presents a summary of the on-site sediment management costs and dredging durations for each of the four volume scenarios (100,000 CY, 500,000 CY, 1,000,000 CY, and 10,000,000 CY) performed with Option 1. The on-site sediment management costs in Table K.7 are arranged by the five treatment options evaluated for the SCA supernatant. The assumptions and costs associated with supernatant treatment are discussed in Section K.4 of this appendix.

K.2.5.2 Option 3 – Mechanical Dredging and On-site Consolidation in an SCA

An evaluation of this dredging and sediment management combination can be made by an overview of the costs elements; a detailed cost comparison is not needed. Mechanical dredging with on-site consolidation would include all of the major cost elements in Option 1 plus an added cost for the more expensive mechanical dredging and additional cost elements, including solidification and trucking of the dredged sediments to the SCA.

Cost of Dredging

The unit cost for hydraulic dredging of the 13 lake-wide alternatives (which range in volume from 196,000 to 10,850,000 cubic yards) ranges from \$8 to \$10 per cubic yard of *in situ* sediment, as shown in (Appendix F) Tables F.2, F.4, F.6, and F.8. The cost of mechanical dredging is described here for comparison. Each shift of the mechanical dredging crew, described in Appendix L, consists of:

On dredge:

- 1 captain
- 2 clam operators
- 2 mates
- 2 deck hands

On support vessel (tug):

• 2 deck hands

At off-loading facility:

- 2 offload operators
- 2 offload deck hands
- 1 mechanical
- 1 supervisor

Daily equipment costs include the rental, operation, and supplies for the dredge, tug, containment barges, offload equipment, and transport equipment.

Also from Appendix L (dredging issues), the production rate of a 3-CY bucket mechanical dredge is between 50 to 80 CY/hr, and the production rate of a 6-CY bucket mechanical dredge is between 100 to 160 CY/hr. Using the crew described above and an average production rate of 130 CY/hr to reflect the use of a 6-CY dredge, the cost of mechanical dredging is calculated at \$20 per CY versus \$8 to \$10 per CY for hydraulic. Therefore, mechanical dredging is estimated to cost more per cubic yard than hydraulic dredging.

Additional Cost Elements

Since the sediments would be mechanically dredged in this scenario, pumping the slurry to the SCA (as in the hydraulic dredge scenario, Option 1) is not possible. The sediments would have to be dewatered, solidified, and then trucked to the on-site SCA. These cost elements, not needed in Option 1, are considerably more expensive than pumping the slurry. Although Option 3 requires less water treatment than Option 1 (since mechanical dredging collects less water than hydraulic dredging), the costs for barge offloading, solidification, load-out, and trucking to the SCA are considerably more expensive than water treatment for the higher-volume scenarios. Per Table K.7 the costs for advanced water treatment for the four volume scenarios range from \$28M to \$105M. Per Table K.18, the costs for offloading barges, solidification, and load-out for the four volume scenarios range from \$22M to \$325M. The cost for offloading barges, solidification, and load-out becomes greater than advanced water treatment for scenarios with dredging volumes 500,000 cubic yards and larger.

K.2.5.3 On-site Consolidation Options Summary

Based on the above evaluation, Option 1 - Hydraulic Dredging and On-site Consolidation in an SCA represents the most cost effective dredging and sediment management system using onsite consolidation. Option 3 - Mechanical Dredging and On-site Consolidation in an SCA is more expensive than Option 1 because it uses a more expensive dredging method and incurs more costs for sediment management.

SECTION K.3

OFF-SITE SEDIMENT MANAGEMENT

Off-site sediment management would be associated with dredging/sediment management Option 2 – Mechanical Dredging and Off-site Disposal or Option 4 – Hydraulic Dredging and Off-site Disposal. Sediment management for each of these two options is discussed in the following sections.

K.3.1 OFF-SITE SEDIMENT MANAGEMENT FOR DREDGING/SEDIMENT MANAGEMENT OPTION 2

For dredging/sediment management Option 2 – Mechanical Dredging and Off-site Disposal, sediment from the mechanical dredge must be solidified prior to placement in trucks for transport off site. The off-site option assumes that one mechanical (6-CY clamshell bucket) dredge would be used for all sediment volume scenarios. The dredge production rate is assumed at 130 CY/hr. Solidification required for transportation and off-site disposal is assumed to require the addition of lime at a rate of 10 percent.

The following tasks are needed to implement this scenario:

- Construction of the bulkhead off-loading area
- Construction of the processing area, including cover system and water transfer system
- Off-loading dredged sediments and transfer to the processing area
- Solidification with lime (10 percent) and load-out of the stabilized sediment into trucks
- Transport to and disposal at off-site commercial non-hazardous waste landfill

The costs for major tasks in this process are described below.

K.3.1.1 Bulkhead and Process Area Construction

The bulkhead off-loading area was assumed to be a sheet pile retaining wall located southeast of the causeway, adjacent to Wastebed B. Dredged sediment transfer barges would carry sediment from the dredge to this area for off-loading with a clamshell bucket crane. The bulkhead off-loading area would have a haul road exiting to the process area located on Wastebed B. The cost to construct a 500-ft-long by 70-ft-deep sheet pile wall was included in the estimate.

The process area is assumed to be asphalt-lined, sloping from its center to the edges. The use of asphalt would create a durable and relatively impermeable layer for operation of process/solidification equipment. Other materials could be used in place of asphalt, but

additional maintenance would be required. The process area would be constructed by grading and soil import for site preparation followed by finish grading and application of asphalt paving. An estimated 20-acre paved area is included in the cost estimate. Additionally, approximately five acres of the area would be covered to allow temporary storage and/or solidification of the sediment in inclement weather and to segregate non-contact runoff/stormwater from the contaminated material.

The handling of the sediment at the process area would generate a small amount of contaminated water. Flow is estimated to be 50 gallons per minute (gpm), and it is assumed this water would be treated in the Willis Avenue/Semet Ponds groundwater treatment plant. The water would be collected through catch basins and pipes around the perimeter of the covered area. Collected water would be conveyed to a transfer pump station and use the infrastructure constructed for the Harbor Brook/Wastebed B interim remediation measure (IRM), which will include a groundwater containment/collection and transfer system. Actual facility requirements, such as whether a separate transfer line would be used, would be determined during the design of the Harbor Brook/Wastebed B IRM. For this FS, it was assumed that a piping system and package pump station would be required, with an installed cost of \$50,000.

For this FS, it was assumed that the incremental treatment operation and management (O&M) cost would be flow-proportional to the cost for advanced treatment as estimated for the on-site consolidation option, described in Section K.4 of this appendix. The incremental O&M cost is estimated at \$130,000 per year, or \$0.018 per gallon treated.

Non-contact runoff would be collected and diverted to the lake through a separate storm water collection system.

A detailed cost estimate for construction of the bulkhead and process area is presented in Table K.8.

K.3.1.2 Barge Offloading, Sediment Solidification, and Load-out

Offloading from sediment transport barges and truck transport to the process area is addressed as part of the offloading, solidification, and load-out costs in Table K.9. As described above, approximately 2,100 CY/day would be dredged and transferred to the process area. A crane equipped with a clamshell bucket would be staged at the bulkhead to remove the dredged sediment from the barges and place it in trucks.

The solidification activities were estimated based on the assumption that the fine-grained sediments could be solidified with addition and mixing of 10 percent lime by volume. It is estimated that solidification would increase the daily volume of the sediment from 2,100 CY to 2,400 CY. The solidification agent type and volume would be determined in the remedial design stage. Lime would be mixed into the sediments by two mixing crews. In addition, one front-end loader would be required to support both mixing crews by moving lime and other materials, and

by assisting with loading solidified material out to trucks. Each mixing crew would consist of a bulldozer, a front-end loader, and a water truck. This crew would also load each day's mixed material into trucks for off-site disposal. It is assumed that these two crews combined can solidify the daily volume of sediments.

Management and quality control would consist of a full-time superintendent and two engineers (one field engineer and one laboratory engineer). It is assumed that the solidified material would only be tested for pass/fail of the paint filter liquid test. Table K.9 presents a detailed cost estimate for offloading, solidification, and load-out.

K.3.2 OFF-SITE SEDIMENT MANAGEMENT FOR DREDGING/SEDIMENT MANAGEMENT OPTION 4

For dredging/sediment Option 4 – Hydraulic Dredging and Off-site Disposal, sediment from the hydraulic dredge must be dewatered and solidified prior to placement in trucks for off-site disposal. As opposed to Option 1 – Hydraulic Dredging and On-site Consolidation in an SCA and as estimated for Option 3 – Mechanical Dredging and On-site Consolidation in an SCA, the number of hydraulic dredges is limited to one dredge for all volume scenarios, due to constraints on trucking and landfill acceptance.

The following tasks are needed to implement this scenario:

- Construction of the processing area, including cover system and water transfer system
- Construction of a mechanical dewatering system
- Operation of the mechanical dewatering system
- Solidification with lime (10 percent) and load-out of the stabilized sediment into trucks
- Transport to and disposal at off-site commercial non-hazardous waste landfill

The costs for major tasks in this process are described below.

K.3.2.1 Process Area Construction

The process area is the same as described for Option 2 in Subsection K.3.1.1, since approximately the same volume of sediment would require solidification. However, the bulkhead for barge unloading included in the costs for Option 2 is not included, since it is assumed that the hydraulically-dredged sediments can be transferred to the process area in this scenario at minimal cost. The process area is assumed to be an asphalt-lined area that slopes from its center to the edges. The use of asphalt over the process area would create a durable and relatively impermeable layer for operation of process/solidification equipment. Other materials could be used in place of asphalt, but additional maintenance would be required. The process area would be constructed by grading and soil import for site preparation followed by finish grading and application of asphalt paving. An estimated 20-acre paved area is included in the

cost estimate. Additionally, approximately five acres of the area would be covered to allow temporary storage and/or solidification of the sediment in inclement weather and to segregate non-contact runoff/stormwater from the contaminated material.

A detailed cost estimate for construction of the process area is presented in Table K.10.

K.3.2.2 Mechanical Dewatering System Construction

As discussed in Appendix L, dredging issues, hydraulic dredging requires large volumes of water to dilute the *in situ* sediments to a hydraulically transportable density. For Option 4, a mechanical process removes that water from the sediments. A preliminary design of a mechanical dewatering system to operate at 4,500 gpm continuous flow for 24 hours a day discussed below.

The mechanical dewatering system consists of the following equipment:

Equalization Tanks: A seven-million-gallon tank with mixers would be constructed to provide for equalization capacity to accommodate surge flows from the dredging operation.

Hydrocyclone: The hydrocyclone would separate sand from the slurry. The hydrocyclone system would consist of the hydrocyclone, the classifier, a feed pump, and a slurry pump.

Primary Clarifier: The primary clarifier would remove fines from the slurry.

Belt Filter Press: The belt filter press would be used to remove water from the sludge separated by the primary clarifier. The system would be skid mounted and includes slurry feed pump, emulsion polymer feed system, air compressor, belt wash booster pump, and controls in the skid.

Additional tanks: Additional tanks would be required to store sludge and water from the belt filter press and decant water from the primary clarifier.

Additional equipment: Additional equipment would include pumps (solids transfer pumps and decant water pumps), piping and fittings, and electrical and instrumentation.

A detailed cost estimate for construction of the mechanical dewatering system is presented in Table K.11.

K.3.2.3 Mechanical Dewatering System Operation

Costs for mechanical dewatering system operation include polymer usage, electrical power, and labor. Costs, estimated at \$0.00021 per gallon, are presented in Table K.12. Water collected from the mechanical separation system would be pumped to the water treatment system for treatment and disposal. Water treatment costs are discussed in Section K.4 of this appendix.

K.3.2.4 Sediment Solidification and Load-out

It is assumed that the hydraulically-dredged sediments can be transferred to the process area in this scenario at minimal cost. The solids portion of the sediments would be separated from water as described in Subsections K.3.2.2 and K.3.2.3; however, it is estimated that the sediments would require solidification to be suitable for off-site transportation and disposal. The solidification activities were estimated based on the assumption that the fine-grained sediments could be solidified with addition and mixing of 10 percent lime by volume. It is estimated that addition of lime would increase the daily volume of the sediment from 2,100 CY to 2,400 CY. The solidification agent type and volume would be determined in the remedial design stage. Lime would be mixed into the sediments by two mixing crews. In addition, one front-end loader would be required to support both mixing crews by moving lime and other materials and by assisting with moving solidified material to trucks. Each mixing crew would consist of a bulldozer, a front-end loader, and a water truck. This crew would also load each day's mixed material into trucks for off-site disposal. It is assumed that these two crews combined can solidify the daily volume of sediments.

Management and quality control would consist of a full-time superintendent and two engineers (one field engineer and one laboratory engineer). It is assumed that the solidified material would only be tested for pass/fail of the paint filter liquid test. Table K.13 presents a detailed cost estimate for solidification and load-out.

K.3.3 OFF-SITE TRANSPORTATION AND DISPOSAL

K.3.3.1 Off-site Transportation and Disposal Summary

Table K.14 presents five potential off-site disposal locations for sediment removed from Onondaga Lake. These locations were selected based on proximity to the site and available capacity. The table includes location information, transportation and disposal costs, and current capacities. Table K.15 provides the basis for the transportation costs in Table K.16.

Because of landfill capacity issues, the selected off-site disposal facility depends on the removal volume. In addition, because of permitted daily rates for off-site facilities, it is assumed herein that the dredge production rate would have an upper bound of 2,100 *in situ* cubic yards per day, which corresponds to approximately 2,400 CY (3,400 tons) of solidified sediment. It should be noted that the ability of a facility to accept sediment from Onondaga Lake in the future was based on current daily capacity, total available capacity (permitted and/or constructed), and current committed capacity (if available). In addition, the ability of a facility to commit a substantial portion of its capacity over extended periods was considered when evaluating how many facilities might be required for a given removal volume.

For sediment dredging volumes of 100,000 CY, 500,000 CY, and 1,000,000 CY, it is assumed that 50 percent of the sediment would go to High Acres Landfill and 50 percent would go to Niagara Falls / Pine Avenue Landfill. The use of these two landfills is based on current

available daily capacity along with transportation and disposal costs for each landfill. The combined estimated cost for transportation and disposal for these volume scenarios is \$63 per ton.

For dredging 10,000,000 CY of sediment, in-state landfills surveyed currently do not have sufficient capacity to accept the total volume of sediment anticipated under this scenario. Therefore, it is assumed that 50 percent of the sediment would be transported to American Landfill and 50 percent would go to Atlantic Waste Disposal. American Landfill in Waynesburg, Ohio, currently has 8,500,000 CY of total capacity; however, they have a permit pending for an additional 85,000,000 CY. Atlantic Waste Disposal in Waverly, Virginia, currently has total capacity of 104,000,000 CY. The average transportation and disposal cost for this scenario, based on a 50/50 split, is \$98 per ton.

A summary of the total transportation and disposal costs for the four volume scenarios is provided in Table K.16. The estimate assumes truck transportation of sediment to the noted landfills. A detailed evaluation of trucking versus rail transportation is provided below. The evaluation concludes that trucking is a more economical transportation method. The actual transportation method would be selected by the dredging contractor, as transportation is very market-sensitive and the contractor may be able to develop a transportation concept that favors rail shipping at the time of implementation.

K.3.3.2 Detailed Evaluation of Transportation Options (Trucking versus Rail)

Access to Existing Rail Lines

There are several rail lines adjacent to or in the immediate area of Onondaga Lake. An active CSX rail line passes near the edge of Wastebed B; however, no spur is located in the area between the existing rail line and the lakeshore. Wastebed B was identified as the staging/solidification location for the off-site disposal option because of its proximity to the lakeshore. A construction estimate of approximately \$60 to \$100 per linear foot of spur was obtained from US Ecology, Inc.

There are several potential issues associated with the installation of a spur in this location that could impact its viability and cost. The geotechnical properties of Wastebed B are not fully known. However, given that the area is comprised mostly of Solvay waste, additional investigation of the area and/or structural considerations for the railroad spur would likely be necessary, potentially increasing the cost of installation considerably and decreasing the feasibility. In addition, the installation of a spur would need to be approved by CSX. Since the line near Wastebed B is an active line, any potential interruption of current rail traffic would need to be carefully coordinated with CSX to obtain a permit and their cooperation. Additionally, the spur would need to regotiate access rights and rights-of-way with all

interested property owners. Costs for these activities were not included in the current cost estimate.

Rail spurs currently exist on the Matlow property, immediately adjacent to the Linden Chemicals and Plastics OU-1 Site, and at the Solvay Paper Company, located on Milton Avenue in Solvay, New York. A spur also exists, or previously existed, on the Willis Avenue Plant Site. A preliminary assessment of the feasibility of using these spurs indicated that it may be possible to negotiate their use. However, again, costs associated with negotiations and any fees involved were not included in this estimate.

Rail Infrastructure Requirements

To use rail for offsite disposal, the dredged material must be transported to a rail loading area. Since this area does not currently exist, one would need to be constructed, along with necessary infrastructure. The rail loading area would require sufficient area to allow the staging of rail cars, stockpiling of dredged materials, and loading of rail cars. A design would be required to determine the track length required to stage the rail cars for loading and the area required for containment and loading of stockpiled dredged material.

It was assumed that it would be difficult and costly to negotiate the access rights needed to construct a rail spur on Wastebed B and that it would be more economical to use one of the existing spurs. This would require the dredged material to be transported from the dredge site to a material handling facility, where it would be dried and loaded onto trucks for transport to the potential rail loading area. It was estimated that this double handling would increase the off-site disposal costs by an estimated \$8 per CY.

The estimated cost associated with construction of a rail spur, loading facility, and decontamination area for the Hudson River PCBs Project was nearly \$1,000,000. This cost was not estimated for Onondaga Lake, since even without the cost of this necessary rail infrastructure, trucking was determined to be more cost effective, as described below.

Transportation and Disposal Cost Evaluation

Several facilities across the United States were considered for off-site disposal of dredged materials. Primary selection was based on proximity to the site and available capacity, as described in Subsection 4.12.2 of the FS.

After primary selection, the cost of transportation and disposal by truck and by rail were calculated for each facility. Costs for transportation by rail were only calculated for those facilities that have the capability to accept rail loads in gondolas, as opposed to intermodal containers. A typical gondola rail car has a capacity of 100 tons, while a rail car carrying intermodal containers has a capacity of only 75 tons. Additionally, intermodal containers would

have to be trucked to the disposal facility from a nearby rail yard. Costs for transportation by truck are presented in Table K.15 and costs for transportation by rail are presented in Table K.17.

The ability to accept waste by rail in this manner is a limiting factor for selection of potential landfills. Of the "local" landfills, only Pine Avenue Landfill in Niagara Falls indicated they could receive waste by rail. Further investigation of train availability indicated current potential service by one or two trains per week. Thus, to utilize this facility would require construction of a significant rail car demurrage facility at the loading point (as noted, assumed to be Wastebed B). For this FS, it was assumed that this is not a practical concept due to space limitations and uncertainty of the subsurface material stability. Accordingly, for the FS, it is assumed that no local facilities are available for rail transport of waste. It should be noted that it may be possible for a waste broker to arrange a more frequent rail service that could service the Pine Avenue Landfill and this transportation method can be revisited at the time of implementation bidding, if off-site disposal is ultimately selected as part of the lake-wide remedy. However, the uncertainties involved in the rail service and thus required demurrage facilities preclude assumed use of rail transport to a local landfill in the FS evaluations.

Disposal costs were obtained directly from the disposal facilities. Trucking costs were based on information provided by Tonawanda Tank Transport, Inc. In general, trucking costs were estimated at \$3 per loaded mile, including a 10% fuel surcharge, and \$50 linear charge per load. This equaled an average cost of transportation of approximately \$0.18 per ton-mile.

Rail transportation costs are, in all cases, a negotiated price. There are several factors that can impact the negotiations, including volume of material hauled, hauling distance, loading and unloading facilities, and other factors (e.g., potential for hauling alternate materials on the return trip). Due to the uncertainties of these factors at this stage of the project, estimated rail costs are of limited accuracy until engaging in actual negotiations. In addition, many rail carriers that were contacted declined to provide any pricing at this time. One preliminary quote was obtained for rail transportation to Pine Avenue Landfill. Therefore, in the absence of quotes for other facilities, an estimated cost of \$0.06 per ton-mile was obtained from similar projects using rail transportation. The resulting rail costs were comparable to the \$55 per ton estimate provided in the Hudson River PCBs Reassessment RI/FS Phase 3 Report prepared by TAMS for the USEPA in December 2000. On a per mile transported cost basis (for long distances), rail is approximately 1/3 the cost of truck transport. However, the next step of the evaluation was to calculate the total transportation cost considering haul distance along with the cost of infrastructure and loading to compare costs on a common basis.

Table K.17 shows the estimated transportation and disposal costs for disposal facilities known to have direct rail offloading capabilities. The quoted cost for rail transport to Pine Avenue Landfill was higher than the estimated trucking cost. The estimated costs for transportation and disposal at the EQ-Wayne Disposal Inc. facility in Belleville, Michigan, and at the Lee County Landfill in Bishopville, South Carolina, are comparable to trucking and disposal

to one of the three local facilities, and comparable to the Hudson River PCBs Project. However, the rail costs do not include the cost of the rail infrastructure requirements. With these additional costs, the two lowest overall cost transportation and disposal options remain trucking to two local facilities.

K.3.4 SUMMARY OF OFF-SITE SEDIMENT MANAGEMENT

Table K.18 presents a summary of the costs for off-site management via Option 2 - Mechanical Dredging and Off-site Disposal of the dredged sediments for the four volumes evaluated: 100,000 CY, 500,00 CY, 1,000,000 CY, and 10,000,000 CY. Dredging durations associated with these four volumes are also provided in the table.

Table K.19 presents a summary of the costs for off-site management via Option 4 - Hydraulic Dredging and Off-site Disposal of the dredged sediments for the four volumes evaluated: 100,000 CY, 500,00 CY, 1,000,000 CY, and 10,000,000 CY. Dredging durations associated with these four volumes are also provided in the table.

Table K.20 compares the total costs for sediment management for Option 2 versus Option 4. For the example volumes between 100,000 and 1,000,000 cubic yards, Option 2 is the most cost-effective dredging and sediment management combination for off-site disposal. Costs for Options 2 and 4 become closer on a percentage basis with increasing dredged volume.

SECTION K.4

SUPERNATANT TREATMENT FOR THE ON-SITE MANAGEMENT OPTION

This section describes the cost of treatment of supernatant resulting from on-site consolidation of sediments in a SCA. This evaluation considers five levels of treatment.

K.4.1 INFLUENT FLOW RATES

For the one-dredge scenario (100,000 CY, on-site SCA), the average dredge work day (16 hr) dredging rate is 150 CY per hour, based on a one-dredge crew. As presented in Table K.1, the amount of water in the slurry per CY of sediment dredged is estimated at 1,295 gallons per CY. Therefore, the one-dredge scenario generates approximately 3,109,000 gallons of water per day.

For the two-dredge scenarios (500,000 and 1,000,000 CY, on-site SCA), the average dredge work day (16 hr) dredging rate is 300 CY per hour, based on a two-dredge crew. As presented in Table K.1, the amount of water in the slurry per CY of sediment dredged is estimated at 1,295 gallons per CY. Therefore, the two-dredge scenario generates approximately 6,218,000 gallons of water per day.

For the four-dredge scenario (10,000,000 CY, on-site SCA), the average dredge work day (16 hr) dredging rate is 600 CY per hour, based on a four-dredge crew. As presented in Table K.1, the amount of water in the slurry per CY of sediment dredged is estimated at 1,295 gallons per CY. Therefore, the four-dredge scenario generates approximately 12,435,000 gallons of water per day.

The water treatment options discussed below were evaluated for a flow rate of 4,500 gpm to be treated on a 24-hour basis, or a daily capacity of 6,480,000 gallons. For the four-dredge (10,000,000 CY) scenario, the 4,500 gpm treatment systems presented in the estimates must be sized up by a factor of two to a 9,000 gpm system capable of treating 12,960,000 gallons per day. The six-tenths rule, a commonly-used industry standard that incorporates the efficiency of size, was used to calculate the cost of constructing this system. The rule applies an exponential six-tenths (0.60) to the multiple of increased flow, in this case 2.0, to yield a cost factor for the expanded system, in this case 1.52. This calculation is valid for the capital costs only.

K.4.2 SUPERNATANT WATER TREATMENT OPTIONS

The five considered treatment levels/options are described below. The actual treatment train will be based on information collected during pre-design sampling and treatability testing and established effluent limits.

- **Option A: Primary Treatment:** This treatment consists of primary solids removal in a SCA. Details regarding a SCA are provided in Section K.2 of this appendix. Cost information is not included for this treatment option.
- **Option B: Enhanced Primary Treatment:** This treatment train consists of primary treatment plus addition of flocculant and clarification for further suspended solids removal.
- **Option C: Enhanced Primary Treatment with Multimedia Filtration:** This treatment train consists of enhanced primary treatment plus multimedia filtration for further suspended solids removal and partial volatile organic compounds (VOCs) removal.
- **Option D: Advanced Treatment:** This treatment train consists of enhanced primary treatment with multimedia filtration plus air stripping and granular activated carbon (GAC) treatment for additional VOC removal. This option would include pH adjustment for chemical precipitation prior to the flocculation/clarification process to maximize mercury removal. Evaluation of an advanced treatment option in the pre-design treatability testing stage will include consideration of the sulfide precipitation method, as well as other mercury removal technologies.
- **Option E: Enhanced Primary Treatment Plus Organics Removal:** This treatment option is focused on practical achievement of organics removal. The treatment train consists of enhanced primary treatment plus GAC treatment for additional VOC removal. Option E would provide a level of anticipated effluent quality between Options C and D. However, for clarity, this option is not shown between Options C and D as Options A through D build sequentially on a common treatment train.

The following subsections describe the process configuration and unit sizing and treatment efficiencies.

K.4.3 PROCESS CONFIGURATION AND UNIT SIZING

The supernatant water treatment system is designed to operate at 4,500 gpm continuous flow for 24 hours a day. Two treatment trains, each sized for 2,250 gpm, are proposed for all five options to treat this flow. Each of the proposed treatment steps are discussed below in more detail.

SCA (all options): SCA requirements are described in Section K.2 of this appendix. The SCA is designed with sufficient capacity to allow a detention time of 36 hours, which would allow heavier solids to settle out. The SCA would also act as an equalization basin.

Tanks and Pumps (all options): Several storage and pumping steps are envisioned, as provided in the process schematic. However, the actual number of these steps cannot be determined until a hydraulic profile is developed, which would depend on the topography of that

area. In general, centrifugal pumps are assumed for the liquid service, and positive displacement type pumps (e.g., diaphragm pumps) are assumed for solids service.

Rapid Mix Tank/Flocculator (Options B, C, D, and E): A flocculation/clarification step following the initial solids removal would remove finer particulates and other insoluble particulates. The flocculation step is often accomplished in a secondary settling basin constructed within a SCA. This configuration would be evaluated during SCA design. However, for this evaluation and cost estimate, it is assumed that a coagulant and a flocculant would be added at the rapid mix/flocculator tank. The chemical addition is intended to flocculate colloidal solids and finer particulates in the secondary clarifier following rapid mixing and flocculation.

In the advanced treatment option (Option D), a pH adjustment step was included prior to rapid mixing to raise pH to the level where soluble metals (including mercury) would form an insoluble hydroxide that can be precipitated for additional removal.

Secondary Clarifier (Options B, C, D, and E): As noted above, secondary clarification may be performed in a secondary basin within the SCA. However for this cost estimate, flocs generated via the previous step would be settled using an inclined plate clarifier. The inclined plate clarifier would be sized between 0.25 gpm/ft^2 and 0.5 gpm/ft^2 hydraulic loading rates. Removed solids would be returned to the SCA.

Multimedia Filters (Options C and D): Filtration would be included to further remove particulates. Multimedia filters, which incorporate activated carbon, are recommended to facilitate removal of VOCs, total suspended solids (TSS), and mercury in a single step. Two units operating in parallel would allow continuous operation during backwashing. The multimedia filters would provide some adsorption of the organic compounds, although not to the degree provided by carbon absorption vessels.

Air Stripper (Option D): The effluent from the filters would be stripped for further removal of the VOCs. No information is available on the expected influent ammonia concentrations in the samples that were provided as representative samples. For this conceptual design, it is assumed that ammonia treatment would not be required, and also that treatment of the stripper off-gases would not be required. This is based on the assumption that the Syracuse area is not a non-attainment area for VOCs.

GAC Adsorption (Options D and E): These units are included for additional VOC and mercury removal. Two units would be operated in parallel to allow continuous operation during change out. Each unit would consist of two 10-ft diameter adsorbers, each containing approximately 10,000 pounds of GAC. It is expected that the media inside the units would need to be changed once a year.

Option E – Enhanced Primary Treatment plus Organics Removal may need a sand filter ahead of GAC adsorption. This filtration process is not included in the cost estimate for this process.

Final Effluent Discharge (All Options): Two final effluent holding tanks are provided. In case any off-specification water is produced, one of the two tanks can be used as a holding tank to recycle the water back to the front of the plant for further treatment. It is assumed that no pH adjustment of the final effluent would be needed, as the effluent pH is expected to be less than 9.

Site Preparation and Area Paving (All Options): It is assumed that the plant would be located at a field site, so the entire area would be paved. The process units would be skid mounted and would be above grade; hence the area paving would provide secondary containment by means of berms. It is assumed that no contamination would be encountered during site preparation and excavation that would require any special handling or disposal. Any required clearing or grubbing is assumed to be addressed in the construction of the SCA.

Electrical and Instrumentation (All Options): It is assumed that power would be available in the proposed plant area and that a new substation would not be required. The level of instrumentation could vary greatly, depending on client preference and the need to control the process. It is assumed that the instrumentation required would be consistent with a normal wastewater treatment facility, with a combination of field-mounted and locally controlled instruments and some remote capabilities.

K.4.4 SUPERNATANT WATER TREATMENT COSTS

Capital costs associated with construction of the supernatant water treatment systems are presented in Tables K.21 through 24. These costs were developed by scaling up 2,000 gpm systems to 4,500 gpm systems using the six-tenths rule (see Subsection K.4.1). In developing these costs, Parsons used vendor quotes for major equipment items, estimating guides, and professional judgment based on design and construction of similar systems for line items such as piping, electrical, and instrumentation. In addition to an internal review of the proposed treatment options and cost estimates, Parsons had O'Brien & Gere Engineers, Inc. of East Syracuse review the information.

The capital costs for the 9,000 gpm treatment system (for the 10,000,000 CY volume scenario) were estimated by applying the sixth-tenths rule to the 4,500 gpm system construction costs. Operating costs for the water treatment systems are provided in Table K.25.

A major cost element for the operation of the advanced treatment system is the caustic to raise the pH for metals precipitation. If metals removal to this level is not required, the operating cost for the advanced treatment system would be significantly reduced.

Table K.26 presents a summary of supernatant treatment costs, including construction and operating costs.

SECTION K.5

SEDIMENT MANAGEMENT COST SUMMARY

Table K.27 presents a summary of the estimated sediment management costs for options 1 (Hydraulic Dredging and On-site Consolidation in an SCA), 2 (Mechanical Dredging and Off-site Disposal), and 4 (Hydraulic Dredging and Off-site Disposal). Option 3 was demonstrated to be not cost effective in Section K2.5.2. Option 1 is the most cost-effective sediment management option.

SECTION K.6

REFERENCES

Harrington Engineering and Construction, Inc. 2003. 2002 Settling Study, Onondaga Lake. Chesterton, Indiana.

U.S. Army Corps of Engineers. 1987. Engineering and Design – Confined Disposal of Dredged Material. Publication EM 1110-2-5027, CECW-EH-D.

APPENDIX K

TABLES

TABLE K.1HYDRAULIC SLURRY CHARACTERISTICSFOR ONE 14-INCH HYDRAULIC DREDGE

Parameter	Unit	Value	
Water Content In Situ		100.0%	Input from Settling Study
Gs of Solids		2.48	Input from Settling Study
Ps of Slurry (Ws / Wt)		10.0%	Assumed Input
Dredge Size	in	14	Assumed Input
Pumping Velocity	fps	10	Assumed Input
Efficiency of Dredging		70%	Assumed Input
Slurry Volume Rate	gpm	4,798	Unit Conversion
Slurry Volume Rate w/efficiency factor	gpm	3,358	Slurry Volume Rate * Efficiency
Slurry Volume Rate	cf/hr	38,485	Area * Velocity
Slurry Density	pcf	66.4	Function of Gs of solids and Ps of Slurry
Slurry Mass Rate	lb/hr	2,553,840	Flow Rate in CF/HR * Density
Solids Mass Rate	lb/hr	255,384	Slurry Mass Rate * Ps
Solids Volume Rate	cf/hr	1,650	Unit Conversion
Solids Volume Rate	ga/hr	12,344	Unit Conversion
Solids Volume Rate	gpm	206	Unit Conversion
Water Mass Rate	lb/hr	2,298,456	Slurry Mass Rate - Solids Mass Rate
Water Volume Rate	cf/hr	36,834	Unit Conversion
Water Volume Rate	ga/hr	275,520	Unit Conversion
Water Volume Rate	gpm	4,592	Unit Conversion
In Situ Total Mass Rate	lb/hr	510,768	Solid Mass Rate + Solids Mass Rate * Water
			Content of In Situ
In Situ Density	pcf	88.9	Function of Gs of Solids and Water Content of
			of In Situ
In Situ Volume Rate	cf/hr	5,743	In Situ Total Mass Rate/ Insitu Density
In Situ Removal	cy/hr	213	Unit Conversion
Water per CY In Situ	ga/cy	1,295	Water Mass Rate / In Situ Removal
Actual In Situ Removal Rate	cy/hr	149	Efficiency * In Situ Removal Rate

TABLE K.2SCA VOLUME REQUIREMENTS

Property	In Situ	SCA ⁽²⁾
Volume (CY)	100,000	127,675
Water Content (%) (Ww/Ws)	100% ⁽¹⁾	139%
Specific Gravity of Solids	2.48 ⁽¹⁾	2.48 ⁽¹⁾
Void Ratio	2.5	3.5 ⁽¹⁾
Unit Weight (PCF)	88.8	83.2
Total Weight (TN)	119,880	143,324
Water Weight (TN)	59,940	83,384
Water Volume (Mgal)	14,369	19,989
Solids Weight (TN)	59,940	59,940
Weight Percent Solids (%) (Ws/Wt)	50.0%	

Notes:

(1) from Settling Tests, Harrington Engineering & Construction, Inc., January 2003

(2) hydraulically-dredged bulked in situ sediment in SCA

Honeywell

TABLE K.3a							
SCA CONSTRUCTION COSTS - 100,00	0 CY DREDGE VOLUME						

				Unit Pı	rices				Cost		
Construct SCA	12	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Construction											
Project Manager	504	HR	134				67,536	0	C	0 0	67,536
Superintendent	1,008	HR	100				100,800	0	C	0	100,800
Operator	9,072	HR	40				359,523	0	C	0 0	359,523
Laborer	2,016	HR	28				56,146	0	C	0 0	56,146
Engineer	1,008	HR	68				68,544	0	C	0 0	68,544
Survey Crew	403	HR				126	0	0	C	50,630	50,630
D6 Bulldozer	2,016	HR		41			0	83,200	C	0 0	83,200
330 Excavator	2,016	HR		58			0	115,940	C	0 0	115,940
815 Compactor	2,016	HR		30			0	61,387	C	0 0	61,387
Dump Truck	2,016	HR		54			0	109,126	C	0 0	109,126
Water Truck	1,008	HR		16			0	15,684	C	0 0	15,684
Fuel	45,360	GA			1.5		0	0	68,040	0	68,040
Soil	125,138	CY			7.31		0	0	914,756	0	914,756
Per Diem	2,822	DY	109				307,642	0	C	0 0	307,642
Finish Grading											
Superintendent	97	HR	100				9,703	0	C	0	9,703
Operator	194	HR	40				7,691	0	C) 0	7,691
Laborer	97	HR	28				2,702	0	C	0 0	2,702
815 Compactor	97	HR		30			0	2,955	C	0 0	2,955
140G Motor Grader	97	HR		41			0	3,959	C	0 0	3,959
Fuel	970	GA			1.5		0	0	1,455	i 0	1,455
Per Diem	68	DY	109				7,403	0	C	0 0	7,403

Honeywell

TABLE K.3aSCA CONSTRUCTION COSTS - 100,000 CY DREDGE VOLUME

					Unit Pr	ices				Cost		
Construct SCA (continued)		1	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Liner System, from bottom to top												
Geomembrane		0	SF				0.60	0	0	0	0	0
Superintendent		313	HR	100				31,309	0	0	0	31,309
Operator		626	HR	40				24,815	0	0	0	24,815
Laborer		313	HR	28				8,720	0	0	0	8,720
815 Compactor		313	HR		30			0	9,534	0	0	9,534
D6 Bulldozer		313	HR		41			0	12,921	0	0	12,921
Per Diem		219	DY	109				23,889	0	0	0	23,889
Sand		39,136	CY			7.31		0	0	286,084	0	286,084
HDPE Pipe		500	LF			13.81		0	0	6,905	0	6,905
Freight		1	LS			1,000.0		0	0	1,000	0	1,000
Gravel Road		2,995	LF			39.15		0	0	117,260	0	117,260
					-		-					
Monitoring Wells		15	EA				5135.38	0	0	0	77,031	77,031
					-		-					
TOTAL								1,076,423	414,706	1,395,501	127,661	3,014,290
Overhead	10%							107,642	41,471	139,550	12,766	301,429
G&A, Profit	8%							94,725	36,494	122,804	11,234	265,258
TOTAL								1,278,790	492,671	1,657,855	151,661	3,580,977

Remedial Design (4%) 143,239

Construction Management (4%) 143,239

Project Management (3%) 107,429

Contingency (25%) 993,721

Total 4,968,605

Honeywell

TABLE K.3aSCA CONSTRUCTION COSTS - 100,000 CY DREDGE VOLUME

Basis of Estimate: DIKE CONSTRUCTION					
Location	perimeter (LF)	Volume (cy)	Source		
office area:	na	2,000	plug		
laydown yard:	na	2,000	plug		
SCA:	2,995	80,758			
two interior dikes:	1,498	40,379			
	Total Volume:	125,138	су		
		dike height:	14		
area per If of height shown above with 3	:1 side slopes and	10' wide top:	728	cf/lf	
Fill	can be placed at	1000	CY per day		
The	refore, duration is	126	DA =	1008	HR =
	CREW DEFINITION	ON			
Item	Number	Usage	Duration	Total HRs	
Project Manager	1	0.5	1,008	504	
Superintendent	1	1	1,008	1,008	
Operator		1	1,008	9,072	
Laborer		1	1,008		
Engineer		1	1,008	,	
Surveyor		0.2	1,008		
D6 Bulldozer		1	1,008		
330 Excavator	2	1	1,008		

6 MO

2.19.1001		•	.,	.,
Surveyor	2	0.2	1,008	403
D6 Bulldozer	2	1	1,008	2,016
330 Excavator	2	1	1,008	2,016
815 Compactor	2	1	1,008	2,016
Dump Truck	2	1	1,008	2,016
Water Truck	1	1	1,008	1,008

	Item	# people	w/e factor	Dur in DA	Total DA
per	diem	16	1.4	126	2,822

FINISH GRADING

CREW DEFINITION										
Item	Number	Usage	Duration HRs	Total HRs						
Superintendent	1	1	97	97						
Operator	2	1	97	194						
Laborer	1	1	97	97						
815 Compactor	1	1	97	97						
140G Motor Grader	1	1	97	97						

Item	# people	w/e factor	Dur in DA		Total DA
per diem	4	1.4		12	68

Honeywell

TABLE K.3a SCA CONSTRUCTION COSTS - 100,000 CY DREDGE VOLUME

12 AC

Basis of Estimate (continued):

LINER SYSTEM

CREW DEFINITION										
Item	Number	Usage	Duration HRs	Total HRs						
Superintendent	1	1	313	313						
Operator	2	1	313	626						
Laborer	1	1	313	313						
815 Compactor	1	1	313	313						
D6 Bulldozer	1	1	313	313						

Item	# people	w/e factor	Dur in DA	Total DA
per diem	4	1.4	39	219

n

0

geosynthetics in liner? area of geosynthetics:

MONITORING WELLS	Assumed	500	LF of piping needed for leachate collection
MONITORING WELLS	Perimeter	2,995	LF
	assume one Monitoring Well every	200	LF of perimeter
	Therefore,	15	Monitoring Wells are needed

Honeywell

TABLE K.3a SCA CONSTRUCTION COSTS - 100,000 CY DREDGE VOLUME

					Unit Pr	ces				Cost		
Preloading		1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Preloading												
Project Manager		49	HR	134				6,590	0	0	0	6,590
Superintendent		492	HR	100				49,177	0	0	0	49,177
Operator		984	HR	40				38,978	0	0	0	38,978
Laborer		492	HR	28				13,696	0	0	0	13,696
Engineer		492	HR	68				33,441	0	0	0	33,441
Survey Crew		49	HR				126	0	0	0	6,175	6,175
D6 Bulldozer		492	HR		41			0	20,295	0	0	20,295
Water Truck		492	HR		16			0	7,652	0	0	7,652
Fuel		4,918	GA			1.5		0	0	7,377	0	7,377
Per Diem		683	DY	109				74,469	0	0	0	74,469
Soil		122,943	CY			7.31		0	0	898,716	0	898,716
TOTAL								216,350	27,947	906,093	6,175	1,156,566
Overhead	10%							21,635	2,795	90,609	618	115,657
G&A, Profit	8%							19,039	2,459	79,736	543	101,778
TOTAL								257,024	33,202	1,076,438	7,336	1,374,000

Remedial Design (4%) 54,960

Construction Management (4%) 54,960

Project Management (3%) Contingency (25%) 41,220

381,285

Total 1,906,425

Preloading

Basis of Estimate:

oaung				
	preload:	502,950	SF	
	sediment depth:	7	FT	
	Volume of Preload Soil:	122,943	CY	
	Rate of Import:	2,000	CY/DA	based on pr
	# Days of Import:	61	DA	
	Hours of Import:	492	HR	

practical limit of truck traffic

	CREW DEFINIT	ION		
Item	Number	Usage	Duration	Total HRs
Project Manager	1	0.1	492	49
Superintendent	1	1	492	492
Operator	2	1	492	984
Laborer	1	1	492	492
Engineer	1	1	492	492
Surveyor	2	0.05	492	49
D6 Bulldozer	1	1	492	492
Water Truck	1	1	492	492
	0	1	492	0
	0	1	492	0

lte	em	# people	w/e factor	Dur in DA		Total DA
per die	em	8	1.4		61	683

Honeywell

TABLE K.3aSCA CONSTRUCTION COSTS - 100,000 CY DREDGE VOLUME

				Unit Prices Cost								
Stabilization under Dikes		1.00	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Subgrade Stabilization												
Dry Soil Mixing		139,815	CY				27.06	0	0	0	3,783,381	3,783,381
TOTAL								0	0	0	3,783,381	3,783,381
Overhead	10%							0	0	0	378,338	378,338
G&A, Profit	8%							0	0	0	332,938	332,938
TOTAL								0	0	0	4,494,657	4,494,657

Basis of Estimate:

DIKE SUBGRADE STABILIZATION

301,999 SF, from SCA sizing calc 25.0% based on estimate from Hayward Baker 50 FT based on approximate denth of materials in Wa

Percentage dry soil mixed: Depth of Mixing: Volume of Mixing:

dike bottom area:

50 FT, based on approximate depth of materials in Wastebeds 139,815 CY
 Remedial Design (4%)
 179,786

 Construction Management (4%)
 179,786

 Project Management (3%)
 134,840

 Contingency (25%)
 1,247,267

 Total
 6,236,336

Honeywell

TABLE K.3b
SCA CONSTRUCTION COSTS - 500,000 CY DREDGE VOLUME

				Unit Pr	ices				Cost		
Construct SCA	40	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Construction											
Project Manager	896	HR	134				120,064	0	C	0 0	120,064
Superintendent	1,792	HR	100				179,200	0	C	0	179,200
Operator	16,128	HR	40				639,153	0	C	0	639,153
Laborer	3,584	HR	28				99,814	0	C	0	99,814
Engineer	1,792	HR	68				121,856	0	C	0	121,856
Survey Crew	717	HR				126	0	0	C	90,009	90,009
D6 Bulldozer	3,584	HR		41			0	147,912	C	0	147,912
330 Excavator	3,584	HR		58			0	206,116	C	0	206,116
815 Compactor	3,584	HR		30			0	109,133	C	0	109,133
Dump Truck	3,584	HR		54			0	194,002	C	0	194,002
Water Truck	1,792	HR		16			0	27,884	C	0	27,884
Fuel	80,640	GA			1.5	5	0	0	120,960	0 0	120,960
Soil	223,116	CY			7.31		0	0	1,630,976	0	1,630,976
Per Diem	5,018	DY	109				546,918	0	C	0 0	546,918
Finish Grading											
Superintendent	316	HR	100				31,621	0	C	0 0	31,621
Operator	632	HR	40				25,063	0	C	0	25,063
Laborer	316	HR	28				8,806	0	C	0 0	8,806
815 Compactor	316	HR		30			0	9,629	C	0 0	9,629
140G Motor Grader	316	HR		41	1		0	12,901	C	0	12,901
Fuel	3,162	GA			1.5	5	0	0	4,743	0	4,743
Per Diem	221	DY	109			1	24,127	0	C	0	24,127

Honeywell

TABLE K.3b SCA CONSTRUCTION COSTS - 500,000 CY DREDGE VOLUME

					Unit P	rices				Cost		
Construct SCA (continued)		1	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
						-						
Liner System, from bottom to top												
Geomembrane		0	SF				0.60	0	0	C	0	0
Superintendent		1,020	HR	100)			102,030	0	C	0	102,030
Operator		2,041	HR	4()			80,869	0	C	0	80,869
Laborer		1,020	HR	28	3			28,415	0	C	0	28,415
815 Compactor		1,020	HR		30			0	31,068	C	0	31,068
D6 Bulldozer		1,020	HR		41			0	42,108	C	0	42,108
Per Diem		714	DY	109)			77,849	0	C	0	77,849
Sand		127,537	CY			7.31		0	0	932,298	0	932,298
HDPE Pipe		500	LF			13.81		0	0	6,905	0	6,905
Freight		1	LS			1,000.0		0	0	1,000	0	1,000
Gravel Road		5,418	LF			39.15		0	0	212,103	0	212,103
Monitoring Wells		28	EA				5135.38	0	0	C	143,791	143,791
TOTAL								2,085,785	780,751	2,908,986	233,799	6,009,321
Overhead	10%							208,579	78,075	290,899	23,380	600,932
G&A, Profit	8%							183,549	68,706	255,991	20,574	528,820
TOTAL								2,477,913	927,533	3,455,875	277,753	7,139,074

Remedial Design (4%) 285,563

Construction Management (4%) 285,563

Project Management (3%) 214,172

Contingency (25%) 1,981,093

Total 9,905,465

Honeywell

TABLE K.3b SCA CONSTRUCTION COSTS - 500,000 CY DREDGE VOLUME

11 MO

Basis of Estimate: DIKE CONSTRUCTION

KE CONSTRUCTION						
	Location	perimeter (LF)	Volume (cy)	Source		
	office area:	na	2,000	plug		
	laydown yard:	na	2,000	plug		
	SCA:	5,418	146,077			
	two interior dikes:	2,709	73,039			
		Total Volume:	223,116	су		
			dike height:		14	
area per If of height s	hown above with 3:	1 side slopes and	10' wide top:		728 cf/lf	
	Fill c	an be placed at	1000	CY per day		
		efore, duration is	224	DA =		1792 HR =

CREW DEFINITION Usage Item Number Duration Total HRs Project Manager 0.5 896 1 1,792 Superintendent 1 1 1,792 1,792 Operator 9 1 1,792 16,128 Laborer 2 1,792 3,584 1 1,792 1,792 Engineer 1 1 Surveyor 2 0.2 1,792 717 3,584 D6 Bulldozer 2 1 1,792 330 Excavator 2 1 1,792 3,584 815 Compactor 2 1 1,792 3,584 2 3,584 Dump Truck 1 1,792 Water Truck 1 1,792 1,792 1

FINISH GRADING

area:	1,721,755	SF
area:	40	AC
production per day:	1	AC
Number days:	40	DA
HRs per day:	8	HR
Total HR:	316	HR

C	REW DEFINITIO	N		
Item	Number	Usage	Duration HRs	Total HRs
Superintendent	1	1	316	316
Operator	2	1	316	
Laborer	1	1	316	316
815 Compactor	1	1	316	316
140G Motor Grader	1	1	316	316

Item	# people	w/e factor	Dur in DA	Total DA
per diem	4	1.4	40	221

Honeywell

TABLE K.3b SCA CONSTRUCTION COSTS - 500,000 CY DREDGE VOLUME

AC

Basis of Estimate (continued):

LINER SYSTEM

Area from "Volume Sheet":	1,721,755	SF =	40
Sand layer depth	2	FT	
Sand volume	127,537	CY	
Placement Rate:	1,000	CY/DA	
# days:	128	DA	
HR/DA:	8	HR	
Total HRs:	1,020	HR	

CREW DEFINITION										
Item	Number	Usage	Duration HRs	Total HRs						
Superintendent	1	1	1,020	1,020						
Operator	2	1	1,020	2,041						
Laborer	1	1	1,020	1,020						
815 Compactor	1	1	1,020	1,020						
D6 Bulldozer	1	1	1,020	1,020						

Γ	Item	# people	w/e factor	Dur in DA	Total DA
	per diem	4	1.4	128	714

n 0

5,418

200

28

geosynthetics in liner?	
area of geosynthetics:	

Assumed 500

MONITORING WELLS

Perimeter assume one Monitoring Well every Therefore, LF LF of perimeter Monitoring Wells are needed

LF of piping needed for leachate collection

Honeywell

TABLE K.3b SCA CONSTRUCTION COSTS - 500,000 CY DREDGE VOLUME

					Unit Pr	ices				Cost		
Preloading		1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Preloading												
Project Manager		248	HR	134				33,262	0	0	0	33,262
Superintendent		2,482	HR	100				248,227	0	0	0	248,227
Operator		4,965	HR	40				196,745	0	0	0	196,745
Laborer		2,482	HR	28				69,131	0	0	0	69,131
Engineer		2,482	HR	68				168,795	0	0	0	168,795
Survey Crew		248	HR				126	0	0	0	31,170	31,170
D6 Bulldozer		2,482	HR		41			0	102,443	0	0	102,443
Water Truck		2,482	HR		16			0	38,624	0	0	38,624
Fuel	2	24,823	GA			1.5		0	0	37,234	0	37,234
Per Diem		3,472	DY	109				378,448	0	0	0	378,448
Soil	6	20,568	CY			7.31		0	0	4,536,355	0	4,536,355
TOTAL								1,094,609	141,068	4,573,589	31,170	5,840,435
Overhead	10%							1094,009	141,008			584,043
G&A. Profit								,	,	,	, , ,	,
	8%							96,326	,	,		513,958
TOTAL								1,300,395	167,588	5,433,423	37,030	6,938,437

Basis of Estimate:

Preloading

preload:	1,675,535	SF
sediment depth:	10	FT
Volume of Preload Soil:	620,568	CY
Rate of Import:	2,000	CY/DA
# Days of Import:	310	DA
Hours of Import:	2,482	HR

based on practical limit of truck traffic

C	REW DEFINITIO	N		
Item	Number	Usage	Duration	Total HRs
Project Manager	1	0.1	2,482	248
Superintendent	1	1	2,482	2,482
Operator	2	1	2,482	4,965
Laborer	1	1	2,482	2,482
Engineer	1	1	2,482	2,482
Surveyor	2	0.05	2,482	248
D6 Bulldozer	1	1	2,482	2,482
Water Truck	1	1	2,482	2,482
	0	1	2,482	0
	0	1	2,482	0

Γ	Item	# people	w/e factor	Dur in DA		Total DA
	per diem	8	1.4		310	3,472

Remedial Design (4%)277,537Construction Management (4%)277,537Project Management (3%)208,1537

Contingency (25%) 1,925,416 Total 9,627,081

Honeywell

Basis of Estimate:

DIKE SUBGRADE STABILIZATION

TABLE K.3b

SCA CONSTRUCTION COSTS - 500,000 CY DREDGE VOLUME

					Unit Pri	ices				Cost		
Stabilization under Dikes		1.00	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Subgrade Stabilization												
Dry Soil Mixing		241,689	CY				27.06	0	0	0	6,540,096	6,540,096
						•						
TOTAL								0	0	0	6,540,096	6,540,096
Overhead	10%							0	0	0	654,010	654,010
G&A, Profit	8%							0	0	0	575,528	575,528
TOTAL								0	0	0	7,769,634	7,769,634

Remedial Design (4%) 310,785

Construction Management (4%) 310,785

Project Management (3%) 233,089

Contingency (25%) 2,156,073

Total 10,780,367

dike bottom area: Percentage dry soil mixed: Depth of Mixing: Volume of Mixing: 522,048 SF, from SCA sizing calc

25.0% based on estimate from Hayward Baker

50 FT, based on approximate depth of materials in Wastebeds 241,689 CY

Honeywell

				Unit Pr	ices				Cost		
Construct SCA	80 AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL	
Dike Construction											
Project Manager	1,248	HR	134				167,232	0	0	0	167,232
Superintendent	2,496	HR	100				249,600	0	0	0	249,600
Operator	22,464	HR	40				890,248	0	0	0	890,248
Laborer	4,992	HR	28				139,027	0	0	0	139,027
Engineer	2,496	HR	68				169,728	0	0	0	169,728
Survey Crew	998	HR				126	0	0	0	125,369	125,369
D6 Bulldozer	4,992	HR		41			0	206,020	0	0	206,020
330 Excavator	4,992	HR		58			0	287,090	0	0	287,090
815 Compactor	4,992	HR		30			0	152,006	0	0	152,006
Dump Truck	4,992	HR		54			0	270,217	0	0	270,217
Water Truck	2,496	HR		16			0	38,838	0	0	38,838
Fuel	112,320	GA			1.5	5	0	0	168,480	0	168,480
Soil	311,905	CY			7.31		0	0	2,280,026	0	2,280,026
Per Diem	6,989	DY	109				761,779	0	0	0	761,779
Finish Grading											
Superintendent	636	HR	100				63,606	0	0	0	63,606
Operator	1,272	HR	40				50,414	0	0	0	50,414
Laborer	636	HR	28				17,714	0	0	0	17,714
815 Compactor	636	HR		30	1		0	19,368	0	0	19,368
140G Motor Grader	636	HR		41	1		0	25,951	0	0	25,951
Fuel	6,361	GA		l .	1.5	5	0	0	9,541	0	9,541
Per Diem	445	DY	109	1	1	1	48,532	0	0	0	48,532

TABLE K.3c SCA CONSTRUCTION COSTS - 1,000,000 CY DREDGE VOLUME

Honeywell

				Unit P	rices				Cost		
Construct SCA (continued)	1	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Liner System, from bottom to top									1		
Geomembrane	0	SF				0.60	0		0 0	0	0
Superintendent	2,052	HR	100				205,236	() 0	0	205,236
Operator	4,105	HR	40				162,670	(0 0	0	162,670
Laborer	2,052	HR	28				57,158	(0 0	0	57,158
815 Compactor	2,052	HR		30			0	62,494	4 O	0	62,494
D6 Bulldozer	2,052	HR		41			0	84,701	0	0	84,701
Per Diem	1,437	DY	109				156,595	(0 0	0	156,595
Sand	256,545	CY			7.31		0	0	1,875,347	0	1,875,347
HDPE Pipe	500	LF			13.81		0	(6,905		6,905
Freight	1	LS			1,000.0)	0	(1,000	0	1,000
Gravel Road	7,613	LF			39.15	5	0) (298,050	0	298,050
Monitoring Wells	39	EA				5135.38	0) () 0	200,280	200,280
TOTAL							3,139,542	1,146,686	6 4,639,349	325,649	9,251,226
Overhead	10%						313,954	114,669	463,935	32,565	925,123
G&A, Profit	8%						276,280	100,908	408,263	28,657	814,108
TOTAL							3,729,776	1,362,263	5,511,547	386,871	10,990,456

TABLE K.3c SCA CONSTRUCTION COSTS - 1,000,000 CY DREDGE VOLUME

Remedial Design (4%) 439,618

Construction Management (4%) 439,618

Project Management (3%) 329,714 Contingency (25%)

3,049,852 Total 15,249,258

Honeywell

TABLE K.3c SCA CONSTRUCTION COSTS - 1,000,000 CY DREDGE VOLUME

16 MO

Basis of Estimate:					
DIKE CONSTRUCTION					
Location	perimeter (LF)	Volume (cy)	Source		
office are	a: na	2,000	plug		
laydown ya	rd: na	2,000	plug		
SC	A: 7,613	205,270			
two interior dike	s: 3,807	102,635			
	Total Volume:	311,905	су		
		dike height:	14		
area per If of height shown above with	3:1 side slopes and	d 10' wide top:	728	cf/lf	
	ill can be placed at		CY per day		
Т	herefore, duration is	312	DA =	2496	HR =
					ı -
Ite	m Number	Usage	Duration	Total HRs	
Project Manag		0.5	2,496	1,248	
Superintende		1	2,496		
Opera		1	2,496		
Labo		1	2,496		
Engine	er 1	1	2,496	2,496	
Survey		0.2	2,496		
D6 Bulldoz	er 2	1	2,496	4,992	
330 Excava	or 2	1	2,496	4,992	
815 Compac	or 2	1	2,496	4,992	
Dump Tru	ck 2	1	2,496	4,992	
Water Tru	ck 1	1	2,496	2,496	
	0	1	2,496	0	
	0	1	2,496	0	

FINISH GRADING

area:	3,463,363	SF
area:	80	AC
production per day:	1	AC
Number days:	80	DA
HRs per day:	8	HR
Total HR:	636	HR

(CREW DEFINITIC	N		
Item	Number	Usage	Duration HRs	Total HKS
Superintendent	1	1	636	636
Operator	2	1	636	1,272
Laborer	1	1	636	636
815 Compactor	1	1	636	636
140G Motor Grader	1	1	636	636

Item	# people	w/e factor	Dur in DA	Total DA
per diem	4	1.4	80	445

Honeywell

TABLE K.3c SCA CONSTRUCTION COSTS - 1,000,000 CY DREDGE VOLUME

80 AC

Basis of Estimate (continued):

LINER SYSTEM

CREW DEFINITION								
Item	Number	Usage	Duration HRs	Total HRs				
Superintendent	1	1	2,052	2,052				
Operator	2	1	2,052	4,105				
Laborer	1	1	2,052	2,052				
815 Compactor	1	1	2,052	2,052				
D6 Bulldozer	1	1	2.052	2.052				

Item	# people	w/e factor	Dur in DA	Total DA
per diem	4	1.4	257	1,437

n 0

500

geosynthetics in liner?	
area of geosynthetics:	

Assumed

MONITORING WELLS

Perimeter 7,613 assume one Monitoring Well every 200 Therefore, 39

LF LF of perimeter Monitoring Wells are needed

LF of piping needed for leachate collection

Honeywell

			Unit Prices				Cost				
Preloading	1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Preloading											
Project Manager	503	HR	134				67,449	0	0	0	67,449
Superintendent	5,033	HR	100				503,349	0	0	0	503,349
Operator	10,067	HR	40				398,954	0	0	0	398,954
Laborer	5,033	HR	28				140,183	0	0	0	140,183
Engineer	5,033	HR	68				342,277	0	0	0	342,277
Survey Crew	503	HR				126	0	0	0	63,206	63,206
D6 Bulldozer	5,033	HR		41			0	207,732	0	0	207,732
Water Truck	5,033	HR		16			0	78,321	0	0	78,321
Fuel	50,335	GA			1.5		0	0	75,502	0	75,502
Per Diem	7,045	DY	109				767,883	0	0	0	767,883
Soil	1,258,372	CY			7.31		0	0	9,198,699	0	9,198,699
TOTAL							2,220,095	286,053	9,274,202	63,206	11,843,555
Overhead	10%						222,009	28,605	927,420	6,321	1,184,356
G&A, Profit	8%						195,368	25,173	816,130	5,562	1,042,233
TOTAL							2,637,473	339,831	11,017,752	75,088	14,070,144

 TABLE K.3c

 SCA CONSTRUCTION COSTS - 1,000,000 CY DREDGE VOLUME

Basis of Estimate:

Preloading

preload:	3,397,604	SF	
sediment depth:	10	FT	
Volume of Preload Soil:	1,258,372	CY	
Rate of Import:	2,000	CY/DA	based on practical limit of truck traffic
# Days of Import:	629	DA	
Hours of Import:	5,033	HR	

	CREW DEFINITIC	N							
Item	Item Number Usage Duration Total								
Project Manager	1	0.1	5,033	503					
Superintendent	1	1	5,033	5,033					
Operator	2	1	5,033	10,067					
Laborer	1	1	5,033	5,033					
Engineer	1	1	5,033	5,033					
Surveyor	2	0.05	5,033	503					
D6 Bulldozer	1	1	5,033	5,033					
Water Truck	1	1	5,033	5,033					
	0	1	5,033	0					
	0	1	5,033	0					
Item	# people	w/e factor	Dur in DA	Total DA					

Remedial Design (4%) 562,806

Construction Management (4%) 562,806 Project Management (3%) 422,104

Contingency (25%) 3,904,465

Total 19,522,324

Honeywell

TABLE K.3c SCA CONSTRUCTION COSTS - 1,000,000 CY DREDGE VOLUME

					Unit Pr	ices		Cost				
Stabilization under Dikes		1.00	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Subgrade Stabilization												
Dry Soil Mixing		337,227	CY				27.06	0	C	0	9,125,352	9,125,352
TOTAL								0	C	0	9,125,352	9,125,352
Overhead	10%							0	C	0	912,535	912,535
G&A, Profit	8%							0	C	0	803,031	803,031
TOTAL								0	C	0	10,840,918	10,840,918

Basis of Estimate:

DIKE SUBGRADE STABILIZATION

stabilization under dikes?: dike bottom area: Percentage dry soil mixed: Depth of Mixing: Volume of Mixing: у (y/n)

728,409 SF, from SCA sizing calc 25.0% based on estimate from Hayward Baker 50 FT, based on approximate depth of materials in Wastebeds 337,227 CY

Remedial Design (4%) 433,637 Construction Management (4%) 433,637 Project Management (3%) 325,228 Contingency (25%) 3,008,355 Total 15,041,774

Honeywell

TABLE K.3d	
SCA CONSTRUCTION COSTS - 10,000,000 CY DREDGE VOLUM	Е

			Unit Prices				Cost				
Construct SCA	160	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Construction											
Project Manager	20,616	HR	134				2,762,544	0	0	0	2,762,544
Superintendent	41,232	HR	100				4,123,200	0	0	0	4,123,200
Operator	371,088	HR	40		1		14,706,217	0	0	0	14,706,217
Laborer	82,464	HR	28				2,296,622	0	0	0	2,296,622
Engineer	41,232	HR	68		1		2,803,776	0	0	0	2,803,776
Survey Crew	16,493	HR				126	0	0	0	2,071,001	2,071,001
D6 Bulldozer	82,464	HR		41			0	3,403,289	0	0	3,403,289
330 Excavator	82,464	HR		58			0	4,742,505	0	0	4,742,505
815 Compactor	82,464	HR		30			0	2,511,029	0	0	2,511,029
Dump Truck	82,464	HR		54			0	4,463,776	0	0	4,463,776
Water Truck	41,232	HR		16			0	641,570	0	0	641,570
Fuel	1,855,440	GA			1.5		0	0	2,783,160	0	2,783,160
Soil	5,154,000	CY			7.31		0	0	37,675,739	0	37,675,739
Per Diem	115,450	DY	109				12,584,006	0	0	0	12,584,006
Finish Grading											
Superintendent	1,279	HR	100				127,868	0	0	0	127,868
Operator	2,557	HR	40		1		101,348	0	0	0	101,348
Laborer	1,279	HR	28		1		35,611	0	0	0	35,611
815 Compactor	1,279	HR		30			0	38,936	0	0	38,936
140G Motor Grader	1,279	HR		41			0	52,170	0	0	52,170
Fuel	12,787	GA			1.5		0	0	19,180	0	19,180
Per Diem	895	DY	109				97,563	0	0	0	97,563

Honeywell

TABLE K.3d								
SCA CONSTRUCTION COSTS - 10,000,000 CY DREDGE VOLUME								

					Unit P	rices				Cost		
Construct SCA (continued)		1	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Liner System, from bottom to top				1					1	1	<u>г г</u>	
Geomembrane		0	SF				0.60	0	0	0	0	0
Superintendent		4,126	HR	100			0.00	412,588	0	0	0	412,588
Operator		8,252	HR	40				327,017	0	0	0	327,017
Laborer		4,126	HR	28				114,906	0	0	0	114,906
815 Compactor		4,126	HR		30			0	125,633	0	0	125,633
D6 Bulldozer		4,126	HR		41			0	170,275		0	170,275
Per Diem		2,888	DY	109				314,805	0	0	0	314,805
Sand	:	515,735	CY			7.31		0	0	3,770,025	0	3,770,025
HDPE Pipe		500	LF			13.81		0	0	6,905	0	6,905
Freight		1	LS			1,000.0		0	0	1,000	0	1,000
Gravel Road		11,587	LF			39.15		0	0	453,651	0	453,651
Monitoring Wells		58	EA				5135.38	0	0	0	297,852	297,852
TOTAL								40,808,074	16,149,183	44,709,660	2,368,853	104,035,771
Overhead	10%			•				4,080,807	1,614,918	4,470,966	236,885	10,403,577
G&A, Profit	8%							3,591,111	1,421,128	3,934,450	208,459	9,155,148
TOTAL								48,479,992	19,185,230	53,115,076	2,814,197	123,594,496

Remedial Design (4%) 4,943,780

Construction Management (4%) 4,943,780

Project Management (3%) 3,707,835 Contingency (25%) 34,297,473

Total 171,487,363

Honeywell

TABLE K.3d SCA CONSTRUCTION COSTS - 10,000,000 CY DREDGE VOLUME

258 MO

Basis of Estimate:						
DIKE CONSTRUCTION						
	Location	perimeter (LF)	Volume (cy)	Source		
	office area:	na	2,000	plug		
	laydown yard:	na	2,000	plug		
	SCA:	11,587	3,433,333			
	two interior dikes:	5,794	1,716,667			
		Total Volume:	E 1E1 000	<u></u>		
		Total volume:	5,154,000	су		
			dike height:		50	
area per lf of height s	hown above with 3:1	1 side slopes and	0		00 cf/lf	
	Fill c	an be placed at	1000	CY per day		
	There	efore, duration is	5154	DA =		41232 HR =

CREW DEFINITION										
Item	Number	Usage	Duration	Total HRs						
Project Manager	1	0.5	41,232	20,616						
Superintendent	1	1	41,232	41,232						
Operator	9	1	41,232	371,088						
Laborer	2	1	41,232	82,464						
Engineer	1	1	41,232	41,232						
Surveyor	2	0.2	41,232	16,493						
D6 Bulldozer	2	1	41,232	82,464						
330 Excavator	2	1	41,232	82,464						
815 Compactor	2	1	41,232	82,464						
Dump Truck	2	1	41,232	82,464						
Water Truck	1	1	41,232	41,232						
	0	1	41,232	0						
	0	1	41,232	0						

FINISH GRADING

area:	6,962,427	SF
area:	160	AC
production per day:	1	AC
Number days:	160	DA
HRs per day:	8	HR
Total HR:	1,279	HR

CREW DEFINITION									
Item	Number	Usage	Duration HRs	Total HRs					
Superintendent	1	1	1,279	1,279					
Operator	2	1	1,279	2,557					
Laborer	1	1	1,279	1,279					
815 Compactor	1	1	1,279	1,279					
140G Motor Grader	1	1	1,279	1,279					

ltem	# people	w/e factor	Dur in DA	Total DA
per diem	4	1.4	160	895

Honeywell

TABLE K.3d SCA CONSTRUCTION COSTS - 10,000,000 CY DREDGE VOLUME

Basis of Estimate (continued):

LINER SYSTEM

Area from "Volume Sheet":	6,962,427	SF =	160 AC
Sand layer depth	2	FT	
Sand volume	515,735	CY	
Placement Rate:	1,000	CY/DA	
# days	516	DA	
HR/DA	: 8	HR	
Total HRs	4,126	HR	

CREW DEFINITION									
Item	Number	Usage	Duration HRs	Total HRs					
Superintendent	1	1	4,126	4,126					
Operator	2	1	4,126	8,252					
Laborer	1	1	4,126	4,126					
815 Compactor	1	1	4,126	4,126					
D6 Bulldozer	1	1	4,126	4,126					

ſ	ltem	# people	w/e factor	Dur in DA	Total DA
	per diem	4	1.4	510	5 2,888

n

geosynthetics in liner? area of geosynthetics:

0

Assumed

500 LF of piping needed for leachate collection

MONITORING WELLS

- LF Perimeter 11,587 assume one Monitoring Well every 200 Therefore, 58
 - LF of perimeter Monitoring Wells are needed

Honeywell

TABLE K.3d							
SCA CONSTRUCTION COSTS - 10,000,000 CY DREDGE VOLUME							

			Unit Prices			Cost					
Preloading	1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Preloading											
Project Manager	4,681	HR	134				627,266	0	0	0	627,266
Superintendent	46,811	HR	100				4,681,086	0	0	0	4,681,086
Operator	93,622	HR	40				3,710,229	0	0	0	3,710,229
Laborer	46,811	HR	28				1,303,683	0	0	0	1,303,683
Engineer	46,811	HR	68				3,183,139	0	0	0	3,183,139
Survey Crew	4,681	HR				126	0	0	0	587,804	587,804
D6 Bulldozer	46,811	HR		41			0	1,931,884	0	0	1,931,884
Water Truck	46,811	HR		16			0	728,377	0	0	728,377
Fuel	468,109	GA			1.5	5	0	0	702,163	0	702,163
Per Diem	65,531	DY	109				7,142,901	0	0	0	7,142,901
Soil	11,702,716	CY			7.31	1	0	0	85,546,852	0	85,546,852
TOTAL							20,648,303	2,660,261	86,249,015	587,804	110,145,383
Overhead	10%		•				2,064,830	266,026	8,624,901	58,780	11,014,538
G&A, Profit	8%						1,817,051	234,103	7,589,913	51,727	9,692,794
TOTAL							24,530,184	3,160,390	102,463,830	698,311	130,852,715

Remedial Design (4%) 5,234,109

Construction Management (4%) 5,234,109

Project Management (3%) 3,925,581

Contingency (25%) 36,311,628

Total 181,558,142

Basis of Estimate:	

Preloading

preload:	6,868,985	SF	based on practical limit of truck traffic
sediment depth:	46	FT	
Volume of Preload Soil:	11,702,716	CY	
Rate of Import:	2.000	CY/DA	
# Days of Import: Hours of Import:	2,000 5,851 46,811	DA HR	

CREW DEFINITION									
Item	Number	Usage	Duration	Total HRs					
Project Manager	1	0.1	46,811	4,681					
Superintendent	1	1	46,811	46,811					
Operator	2	1	46,811	93,622					
Laborer	1	1	46,811	46,811					
Engineer	1	1	46,811	46,811					
Surveyor	2	0.05	46,811	4,681					
D6 Bulldozer	1	1	46,811	46,811					
Water Truck	1	1	46,811	46,811					
	0	1	46,811	0					
	0	1	46,811	0					
Item	# people	w/e factor	Dur in DA	Total DA					

Honeywell

TABLE K.3d SCA CONSTRUCTION COSTS - 10,000,000 CY DREDGE VOLUME

				Unit Prices					Cost		
Stabilization under Dikes	1.00	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Dike Subgrade Stabilization											
Dry Soil Mixing	1,682,53	9 CY				27.06	(0 0) (45,529,514	45,529,514
TOTAL							(0 0) (45,529,514	45,529,514
Overhead	10%						(0 0) (4,552,951	4,552,951
G&A, Profit	8%						(0) (4,006,597	4,006,597
TOTAL							(0) (54,089,062	54,089,062

Basis of Estimate:

DIKE SUBGRADE STABILIZATION

 Remedial Design (4%)
 2,163,562

 Construction Management (4%)
 2,163,562

 Project Management (3%)
 1,622,672

 Contingency (25%)
 15,009,715

 Total
 75,048,574

dike bottom area: Percentage dry soil mixed: Depth of Mixing: Volume of Mixing: 3,634,285 SF, from SCA sizing calc
25.0% based on estimate from Hayward Baker
50 FT, based on approximate depth of materials in Wastebeds
1,682,539 CY

Honeywell

TABLE K.4aSCA OPERATION COSTS - 100,000 CY DREDGE VOLUME

				Unit Prices				Cost				
Transfer to CDF		100,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Pumping												
Booster Pump		2,233	HR		26			0	58,938	0	0	58,938
Fuel		11,167	GA			1		0	0	11,167	0	11,167
Operator		2,233	HR	41				91,902	0	0	0	91,902
Inspection of the pipeline												
Laborer		667	HR	30				20,227	0	0	0	20,227
Superintendent		167	HR	100				16,667	0	0	0	16,667
Pickup Truck		333	HR		5			0	1,667	0	0	1,667
Dive Team		667	HR	294				195,833	0	0	0	195,833
Skiff		333	HR		2			0	667	0	0	667
per diem		117	DY	109				12,753	0	0	0	12,753
TOTAL								337,381	61,271	11,167	0	409,819
Overhead	10%							33,738	6,127	1,117	0	40,982
G&A, Profit	8%							29,690	5,392	983	0	36,064
TOTAL								400,809	72,790	13,266	0	486,865

Basis of Estimate:

Booster Pumps

Longest length = Booster pump neede every	31,433 5,280	LF LF
Therefore,	5	booster pumps needed
	667	HR per booster pump
	0.7	use factor
	2,233	Total HR booster pumps

Pipeline Inspection

100 000			
100,000	CY		
150	CY/HR		
667	HR		
#	Factor	Duration	Total HRs
2	0.5	667	667
0.5	0.5	667	167
1	0.5	667	333
2	0.5	667	667
1	0.5	667	333
	150 667 # 2 0.5 1	150 CY/HR 667 HR # Factor 2 0.5 0.5 0.5 1 0.5 2 0.5	150 CY/HR 667 HR # Factor Duration 2 0.5 667 0.5 0.5 667 1 0.5 667 2 0.5 667

Item	# People	W/E Factor	Dur in DA	Total DA
Per Diem	2	1.4	42	117

 Remedial Design (4%)
 19,475

 Construction Management (4%)
 19,475

 Project Management (3%)
 14,606

 Contingency (25%)
 135,105

 Total
 675,525

Honeywell

TABLE K.4a	
SCA OPERATION COSTS - 100,000 C	CY DREDGE VOLUME

					Unit Pri	ces				Cost		
Operation of CDF		1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Booster Pump		667	HR		26			0	17,593	0	0	17,593
Fuel		3,334	GA			1		0	0	1,667	0	1,667
Operator		667	HR	41				27,433	0	0	0	27,433
Laborer		667	HR	30				20,227	0	0	0	20,227
Pickup Truck		667	HR		5			0	3,333	0	0	3,333
Hg Test - Air		250	EA				433	0	0	0	108,250	108,250
VOCs - Air		250	EA				142	0	0	0	35,453	35,453
TOTAL								47,660	20,927	1,667	143,703	213,956
Overhead	10%							4,766	,	167	14,370	21,396
G&A, Profit	8%							4,194	1,842	147	12,646	18,828
TOTAL								56,620	24,861	1,980	170,719	254,180

Basis of Estimate:

						Construction Management (4%)	10,167
Volume to be dredged:	100,000	CY				Project Management (3%)	7,625
Dredging production rate:	150	CY/HR				Contingency (25%)	70,535
Duration	667	HR =	83	SHIFTS =	9 WEEKS	Total	352,674
# Air tests per shift:	3						
Total # Air Samples:	250	EA					

Remedial Design (4%) 10,167

Honeywell

TABLE K.4b SCA OPERATION COSTS - 500,000 CY DREDGE VOLUME

					Unit Pri	ces				Cost			
Transfer to CDF		500,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL	
								0	0	0	0	0	
Pumping													
Booster Pump		5,583	HR		26			0	147,344	0	0	147,344	
Fuel		27,917	GA			1		0	0	27,917	0	27,917	
Operator		5,583	HR	41				229,754	0	0	0	229,754	
Inspection of the pipeline													
Laborer		1,667	HR	30				50,567	0	0	0	50,567	
Superintendent		417	HR	100				41,667	0	0	0	41,667	
Pickup Truck		833	HR		5			0	4,167	0	0	4,167	
Dive Team		1,667	HR	294				489,583	0	0	0	489,583	
Skiff		833	HR		2			0	1,667	0	0	1,667	
per diem		582	DY	109				63,482	0	0	0	63,482	
TOTAL								875,052	153,178	27,917	0	1,056,147	
Overhead	10%			•				87,505	15,318	2,792	0	105,615	
G&A, Profit	8%							77,005	13,480	2,457	0	92,941	
TOTAL								1,039,562	181,975	33,165	0	1,254,702	

Basis of Estimate:

Booster Pumps

Longest length =	31,433	LF
Booster pump neede every	5,280	LF
Therefore,	5	booster pumps needed
	1,667	HR per booster pump
	0.7	use factor
	5,583	Total HR booster pumps

Pipeline Inspection

Volume to be dredged:	500,000	CY		
Dredging production rate:	300	CY/HR		
Duration	1,667	HR		
ltem	#	Factor	Duration	Total HRs
Laborer	2	0.5	1,667	1,667
Superintendent	0.5	0.5	1,667	417
Pickup Truck	1	0.5	1,667	833
Dive Team	2	0.5	1,667	1,667
Skiff	1	0.5	1,667	833

Iten	n # People	W/E Factor	Dur in DA	Total DA
Per Dien	า 2	1.4	208	582

 Remedial Design (4%)
 50,188

 Construction Management (4%)
 50,188

 Project Management (3%)
 37,641

 Contingency (25%)
 348,180

 Total
 1,740,899

Honeywell

TABLE K.4b SCA OPERATION COSTS - 500,000 CY DREDGE VOLUME

				Unit Pri	ces				Cost		
Operation of CDF	1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
							0	0	0	0	0
Booster Pump	1,667	HR		26			0	43,983	0	0	43,983
Fuel	8,333	GA			1		0	0	8,333	0	8,333
Operator	1,667	HR	41				68,583	0	0	0	68,583
Laborer	1,667	HR	30				50,567	0	0	0	50,567
Pickup Truck	1,667	HR		5			0	8,333	0	0	8,333
Hg Test - Air	624	EA				433	0	0	0	270,192	270,192
VOCs - Air	624	EA				142	0	0	0	88,489	88,489
TOTAL							119,150	52,317	8,333	358,681	538,481
Overhead 10	0%						11,915	5,232	833	35,868	53,848
G&A, Profit	3%						10,485	4,604	733	31,564	47,386
TOTAL							141,550	62,152	9,900	426,114	639,716
Basis of Estimate: Remedial Construction Mana						Design (4%)	25,589 25,589				
Volume to be dredge Dredging production ra Durat	te: 300	CY CY/HR HR =	208	SHIFTS =	21	WEEKS			roject Manag		19,191 177,521 887,606

P:\Honeywell -SYR\741627\NOV FINAL FS\Appendix K\Tables K.1-K.27 11-30-04.xls November 30, 2004

Air tests per shift:

Total # Air Samples:

3

624

ΕA

Honeywell

TABLE K.4c
SCA OPERATION COSTS - 1,000,000 CY DREDGE VOLUME

				Unit Prices					Cost		
Transfer to CDF	1,000,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
							0	0	0	0	0
Pumping											
Booster Pump	11,167	HR		26			0	294,688	0	0	294,688
Fuel	55,833	GA			1		0	0	55,833	0	55,833
Operator	11,167	HR	41				459,508	0	0	0	459,508
Inspection of the pipeline											
Laborer	3,333	HR	30				101,133	0	0	0	101,133
Superintendent	833	HR	100				83,333	0	0	0	83,333
Pickup Truck	1,667	HR		5			0	8,333	0	0	8,333
Dive Team	3,333	HR	294				979,167	0	0	0	979,167
Skiff	1,667	HR		2			0	3,333	0	0	3,333
per diem	1,168	DY	109				127,268	0	0	0	127,268
TOTAL							1,750,410	306,355	55,833	0	2,112,598
Overhead	10%		•				175,041	30,636	5,583	0	211,260
G&A, Profit	8%						154,036	26,959	4,913	0	185,909
TOTAL							2,079,487	363,950	66,330	0	2,509,767

Basis of Estimate: Booster Pumps

Longest length =	31,433	LF
Booster pump neede every	5,280	LF
Therefore,	5	booster pumps needed
	3,333	HR per booster pump
	0.7	use factor
	11,167	Total HR booster pumps

Pipeline Inspection

1,000,000	CY		
: 300	CY/HR		
n 3,333	HR		
n #	Factor	Duration	Total HRs
r 2	0.5	3,333	3,333
t 0.5	0.5	3,333	833
: 1	0.5	3,333	1,667
n 2	0.5	3,333	3,333
1	0.5	3,333	1,667
	300 3,333 # r 2 t 0.5 c 1	300 CY/HR 3,333 HR # Factor 2 0.5 t 0.5 1 0.5 2 0.5	300 CY/HR 3,333 HR # Factor Duration 2 0.5 3,333 t 0.5 0.5 3,333 1 0.5 3,333 2 0.5 3,333 2 0.5 3,333

Item	# People	W/E Factor	Dur in DA	Total DA
Per Diem	2	1.4	417	1,168

 Remedial Design (4%)
 100,391

 Construction Management (4%)
 100,391

 Project Management (3%)
 75,293

 Contingency (25%)
 696,460

 Total
 3,482,302

Honeywell

					Unit Pri	ces				Cost		
Dperation of CDF		1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	
Booster Pump		3,333	HR		26			0	87,967	0	0	87,9
Fuel		16,667	GA			1		0	0	16,667	0	16,6
Operator		3,333	HR	41				137,167	0	0	0	137,1
Laborer		3,333	HR	30				101,133	0	0	0	101,1
Pickup Truck		3,333	HR		5			0	16,667	0	0	16,6
Hg Test - Air		1,251	EA				433	0	0	0	541,683	541,6
VOCs - Air		1,251	EA				142	0	0	0	177,404	177,4
TOTAL								238,300	104,633	16,667	719,087	1,078,6
Overhead	10%			*				23,830	10,463	1,667	71,909	107,8
G&A, Profit	8%							20,970	9,208	1,467	63,280	94,9
TOTAL								283,100	124,304	19,800	854,276	1,281,4
Basis of Estimate:										Remedial I	Design (4%)	51,2
									Constru	uction Manag		51,2
Volumo	to be dredged:	1 000 000	CV						П	raiaat Manag	(20/)	20

TABLE K.4c
SCA OPERATION COSTS - 1,000,000 CY DREDGE VOLUME

is of Estimate	:						Remedial Design (4%)	51,259
							Construction Management (4%)	51,259
	Volume to be dredged:	1,000,000	CY				Project Management (3%)	38,444
Dr	edging production rate:	300	CY/HR				Contingency (25%)	355,611
	Duration	3,333	HR =	417	SHIFTS =	42 WEEKS	Total	1,778,054
	# Air tests per shift:	3						
	Total # Air Samples:	1251	EA					

Honeywell

TABLE K.4d SCA OPERATION COSTS - 10,000,000 CY DREDGE VOLUME

			Unit Prices					Cost			
Transfer to CDF	10,000,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
							0	0	0	0	0
Pumping											
Booster Pump	55,833	HR		26			0	1,473,442	0	0	1,473,442
Fuel	279,167	GA			1		0	0	279,167	0	279,167
Operator	55,833	HR	41				2,297,542	0	0	0	2,297,542
Inspection of the pipeline											
Laborer	16,667	HR	30				505,667	0	0	0	505,667
Superintendent	4,167	HR	100				416,667	0	0	0	416,667
Pickup Truck	8,333	HR		5			0	41,667	0	0	41,667
Dive Team	16,667	HR	294				4,895,833	0	0	0	4,895,833
Skiff	8,333	HR		2			0	16,667	0	0	16,667
Per Diem	2,918	DY	109				318,018	0	0	0	318,018
TOTAL							8,433,727	1,531,775	279,167	0	10,244,668
Overhead	10%		•				843,373	153,178	27,917	0	1,024,467
G&A, Profit	8%						742,168	134,796	24,567	0	901,531
TOTAL							10,019,267	1,819,749	331,650	0	12,170,666

Basis of Estimate:

Booster Pumps

Longest length =	31,433	LF
Booster pump needed every	5,280	LF
Therefore,	5	booster pumps needed
	16,667	HR per booster pump
	0.7	Use factor
	55,833	Total HR booster pumps

Pipeline Inspection

Volume to be dredged: Dredging production rate: Duration	10,000,000 600 16,667	CY CY/HR HR		
Item	#	Factor	Duration	Total HRs
Laborer	2	0.5	16,667	16,667
Superintendent	0.5	0.5	16,667	4,167
Pickup Truck	1	0.5	16,667	8,333
Dive Team	2	0.5	16,667	16,667
Skiff	1	0.5	16,667	8,333

lte	m	# People	W/E Factor	Dur in DA	Total DA
Per Die	m	2	1.4	1042	2,918

Remedial Design (4%) 486,827 Construction Management (4%) 486,827

Project Management (3%) 365,120 Contingency (25%)

3,377,360 Total 16,886,799

Honeywell

TABLE K.4d
SCA OPERATION COSTS - 10,000,000 CY DREDGE VOLUME

					Unit Pric	ces				Cost		
Operation of CDF		1	LS	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Booster Pump	1	6,667	HR		26			0	439,833	0	0	439,833
Fuel	8	3,333	GA			1		0	0	83,333	0	83,333
Operator	1	6,667	HR	41				685,833	0	0	0	685,833
Laborer	1	6,667	HR	30				505,667	0	0	0	505,667
Pickup Truck	1	6,667	HR		5			0	83,333	0	0	83,333
Hg Test - Air	(6,250	EA				433	0	0	0	2,706,250	2,706,250
VOCs - Air		6,250	EA				142	0	0	0	886,313	886,313
TOTAL								1,191,500	523,167	83,333	3,592,563	5,390,563
Overhead	10%							119,150	52,317	8,333	359,256	539,056
G&A, Profit	8%							104,852	46,039	7,333	316,146	474,370
TOTAL								1,415,502	621,522	99,000	4,267,964	6,403,988

Basis of Estimate:						Remedial Design (4%)	256,160
						Construction Management (4%)	256,160
Volume to be dredged:	10,000,000	CY				Project Management (3%)	192,120
Dredging production rate:	600	CY/HR				Contingency (25%)	1,777,107
Duration	16,667	HR =	2,083	SHIFTS =	209 WEEKS	Total	8,885,534
# Air tests per shift:	3						
Total # Air Samples:	6250	EA					

Honeywell

				Unit Pr	ices				Cost		
Construct Cap over SCA	12	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
sand	48,920	CY			7		0	0	357,605	0	357,605
GCL	0	SF				0.65	0	0	0	0	C
geomembrane	0	SF				0.60	0	0	0	0	0
geocomposite	0	SF				0.49	0	0	0	0	C
soil	29,352	CY			7		0	0	214,563	0	214,563
topsoil	9,784	CY			22		0	0	214,563	0	214,563
D6 Bulldozer	360	HR		41			0	14,857	0	0	14,857
330 Excavator	360	HR		58			0	20,704	0	0	20,704
140G Motor Grader	18	HR		41			0	734	0	0	734
815 Compactor	360	HR		30			0	10,962	0	0	10,962
Water Truck	360	HR		16			0	5,602	0	0	5,602
Tractor and Disc	360	HR		13			0	4,500	0	0	4,500
Project Manager	36	HR	134				4,824				4,824
Superintendent	360	HR	100				36,000				36,000
Operator	1,440	HR	40				57,067				57,06
Per Diem	378	DY	109				41,202				41,202
Fuel	13,500	GA			1.5		0	0	20,250	0	20,250
TOTAL							139,093	57,359		0	1,003,43
Overhead	10%						13,909			0	100,343
G&A, Profit	8%						12,240			0	88,302
TOTAL							165,243	68,142	958,694	0	1,192,07

TABLE K.5a SCA CAPPING COSTS - 100,000 CY DREDGE VOLUME

Remedial Design (4%) 47,683

Construction Management (4%)47,683Project Management (3%)35,762Contingency (25%)330,802

Total 1,654,010

Basis of Estimate:	SCA s	urface area	a: 528,336 \$	SF
			area (SF)	volume (CY)
SCA Cap consists of	2.5 foot thick foundatio	n layer	528,336	48,920
	GCL		0	
	geomembrane		0	
	geocomposite		0	
	1.5 foot thick soil layer		528,336	29,352
	0.5 foot thick topsoil la	yer	528,336	9,784
		TOTAL		88,056
	Crew can install	2000	cy per day	
	Duration =	45	DY =	360 HR

	CREW DEFINIT	ION		
Item	Number	Usage	Duration	Total HRs
Project Manager	1	0.1	360	36
Superintendent	1	1	360	360
Operator	4	1	360	1,440
D6 Bulldozer	1	1	360	360
330 Excavator	1	1	360	360
140G Motor Grader	1	0.05	360	18
815 Compactor	1	1	360	360
Water Truck	1	1	360	360
Tractor and Disc	1	1	360	360

Item	# people	w/e factor	Dur in DA	Total DA
per diem	6	1.4	45	378

Labor for geosynthetics is included in subcontract price

Honeywell

				Unit Prices						Cost		
Construct Cap over SCA		40	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
sand	15	9,422	CY			7		0	0	1,165,373	0	1,165,373
GCL		0	SF				0.65	0	0	0	0	0
geomembrane		0	SF				0.60	0	0	0	0	0
geocomposite		0	SF				0.49	0	0	0	0	0
soil	9	5,653	CY			7		0	0	699,224	0	699,224
topsoil	3	1,884	CY			22		0	0	699,224	0	699,224
D6 Bulldozer	1	,152	HR		41			0	47,543	0	0	47,543
330 Excavator	1	,152	HR		58			0	66,252	0	0	66,252
140G Motor Grader		58	HR		41			0	2,350	0	0	2,350
815 Compactor	1	,152	HR		30			0	35,078	0	0	35,078
Water Truck	1	,152	HR		16			0	17,925	0	0	17,925
Tractor and Disc	1	,152	HR		13			0	14,400	0	0	14,400
Project Manager		115	HR	134				15,437				15,437
Superintendent	1	,152	HR	100				115,200				115,200
Operator	4	,608	HR	40				182,615				182,615
Per Diem	1	,210	DY	109				131,846				131,846
Fuel	43	3,200	GA			1.5		0	0	64,800	0	64,800
TOTAL								445,098	183,548	2,628,621	0	3,257,267
Overhead	10%							44,510	18,355	262,862	0	325,727
G&A, Profit	8%							39,169	16,152	231,319	0	286,639
TOTAL								528,777	218,055	3,122,801	0	3,869,633

TABLE K.5b SCA CAPPING COSTS - 500,000 CY DREDGE VOLUME

Remedial Design (4%) 154,785

Construction Management (4%) 154,785

Project Management (3%) 116,089 Contingency (25%) 1,073,823

Total 5,369,116

Basis of Estimate:	SCA s	urface area	a: 1,721,755 \$	SF
			area (SF)	volume (CY)
SCA Cap consists of	2.5 foot thick foundatio	n layer	1,721,755	159,422
	GCL		0	
	geomembrane		0	
	geocomposite		0	
	1.5 foot thick soil layer		1,721,755	95,653
	0.5 foot thick topsoil lag	yer	1,721,755	31,884
		TOTAL		286,959
	Crew can install	2000	cy per day	
	Duration =	144	DY =	1152 HR

	CREW DEFINITI	ON		
Item	Number	Usage	Duration	Total HRs
Project Manager	1	0.1	1,152	115
Superintendent	1	1	1,152	1,152
Operator	4	1	1,152	4,608
D6 Bulldozer	1	1	1,152	1,152
330 Excavator	1	1	1,152	1,152
140G Motor Grader	1	0.05	1,152	58
815 Compactor	1	1	1,152	1,152
Water Truck	1	1	1,152	1,152
Tractor and Disc	1	1	1,152	1,152

Item	# people	w/e factor	Dur in DA	Total DA
per diem	6	1.4	144	1,210

Labor for geosynthetics is included in subcontract price

Honeywell

				Unit Prices						Cost		
Construct Cap over SCA		80	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
sand	3	20,682	CY			7		0	0	2,344,184	0	2,344,184
GCL		0	SF				0.65	0	0	0	0	0
geomembrane		0	SF				0.60	0	0	0	0	0
geocomposite		0	SF				0.49	0	0	0	0	0
soil	1	92,409	CY			7		0	0	1,406,510	0	1,406,510
topsoil	l	64,136	CY			22		0	0	1,406,510	0	1,406,510
D6 Bulldozer		2,312	HR		41			0	95,416	0	0	95,416
330 Excavator		2,312	HR		58			0	132,963	0	0	132,963
140G Motor Grader		116	HR		41			0	4,716	0	0	4,716
815 Compactor		2,312	HR		30			0	70,400	0	0	70,400
Water Truck		2,312	HR		16			0	35,975	0	0	35,975
Tractor and Disc		2,312	HR		13			0	28,900	0	0	28,900
Project Manager		231	HR	134				30,981				30,981
Superintendent		2,312	HR	100				231,200				231,200
Operator		9,248	HR	40				366,498				366,498
Per Diem		2,428	DY	109				264,608				264,608
Fuel		86,700	GA			1.5		0	0	130,050	0	130,050
TOTAL								893,287		5,287,255		6,548,913
Overhead	10%							89,329	36,837	528,725	0	654,891
G&A, Profit	8%	_						78,609	32,417	465,278	0	576,304
TOTAL								1,061,225	437,625	6,281,258	0	7,780,109

 TABLE K.5c

 SCA CAPPING COSTS - 1,000,000 CY DREDGE VOLUME

Buolo of Estimate.	SCA s	a: 3,463,363	SF	
2010			area (SF)	volume (CY)
SCA Cap consists of	2.5 foot thick foundatio GCL	n layer	3,463,363 0	320,682
	geomembrane	0		
	geocomposite		0	
	1.5 foot thick soil layer		3,463,363	192,409
	0.5 foot thick topsoil lag	3,463,363	64,136	
		TOTAL		577,227
	Crew can install	2000	cy per day	
	Duration =	289	DY =	2312 HR

Item	Number	Usage	Duration	Total HRs
	Number			
Project Manager		0.1	2,312	23
Superintendent	1	1	2,312	2,31
Operator	4	1	2,312	9,24
D6 Bulldozer	1	1	2,312	2,31
330 Excavator	1	1	2,312	2,31
140G Motor Grader	1	0.05	2,312	11
815 Compactor	1	1	2,312	2,31
Water Truck	1	1	2,312	2,31
Tractor and Disc	1	1	2,312	2,31

Item	# people	w/e factor	Dur in DA	Total DA
per diem	6	1.4	289	2,428

Labor for geosynthetics is included in subcontract price

Basis of Estimate:

Remedial Design (4%)	311,204
Construction Management (4%)	311,204
Project Management (3%)	233,403

Contingency (25%) 2,158,980 Total 10,794,901

Honeywell

				Unit Prices				Cost				
Construct Cap over SCA		160	AC	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
sand	6	44,669	CY			7		0	0	4,712,532	0	4,712,532
GCL		0	SF				0.65	0	0	0	0	0
geomembrane		0	SF				0.60	0	0	0	0	0
geocomposite		0	SF				0.49	0	0	0	0	0
soil	3	86,802	CY			7		0	0	2,827,519	0	2,827,519
topsoil	1:	28,934	CY			22		0	0	2,827,519	0	2,827,519
D6 Bulldozer		4,648	HR		41			0	191,823	0	0	191,823
330 Excavator		4,648	HR		58			0	267,306	0	0	267,306
140G Motor Grader		232	HR		41			0	9,482	0	0	9,482
815 Compactor		4,648	HR		30			0	141,532	0	0	141,532
Water Truck		4,648	HR		16			0	72,323	0	0	72,323
Tractor and Disc		4,648	HR		13			0	58,100	0	0	58,100
Project Manager		465	HR	134				62,283				62,283
Superintendent		4,648	HR	100				464,800				464,800
Operator	1	8,592	HR	40				736,801				736,801
Per Diem		4,880	DY	109				531,964				531,964
Fuel	1	74,300	GA			1.5		0	0	261,450	0	261,450
TOTAL								1,795,848	740,566	10,629,020	0	13,165,434
Overhead	10%							179,585				1,316,543
G&A, Profit	8%							158,035	65,170	935,354	0	1,158,558
TOTAL								2,133,467	879,792	12,627,276	0	15,640,535

TABLE K.5d SCA CAPPING COSTS - 10,000,000 CY DREDGE VOLUME

625,621

Remedial Design (4%) Construction Management (4%) Project Management (3%) Contingency (25%) 625,621 469,216 4,340,248 Total

21,701,242

	SCA s	SCA surface area: 6,962,427				
			area (SF)	volume (CY)		
SCA Cap consists of	2.5 foot thick foundatio	n layer	6,962,427	644,669		
	GCL	0				
	geomembrane	0				
	geocomposite	0				
	1.5 foot thick soil layer	6,962,427	386,802			
	0.5 foot thick topsoil lay	6,962,427	128,934			
		TOTAL		1,160,405		
	Crew can install	2000	cy per day			
	Duration =	581	DY =	4648 HR		

Number 1 1 4 1	Usage 0.1 1 1 1	Duration 4,648 4,648 4,648 4,648 4,648	4,648 18,592
1 1 4 1	0.1 1 1 1	4,648 4,648	
1 4 1	1 1 1	4,648	18,592
4	1 1		
1	1	4,648	4,648
1	1	4,648	4,648
1	0.05	4,648	232
1	1	4,648	4,648
1	1	4,648	4,648
1	1	4,648	4,648
	1 1 1	1 1 1 1 1 1	1 1 4,648 1 1 4,648 1 1 4,648 1 1 4,648

per diem 6 1.4 581 4.880	Ite	em	# people	w/e factor	Dur in DA	Total DA
	per die	m	6	1.4	581	4,880

Labor for geosynthetics is included in subcontract price

Basis of Estimate:

P:\Honeywell -SYR\741627\NOV FINAL FS\Appendix K\Tables K.1-K.27 11-30-04.xls November 30, 2004

TABLE K.6a

SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 100,000 CY DREDGE VOLUME

					Unit Pri	ces				Cost		
O&M for SCA - 1st 5 years		1.00	YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Engineer		320	HR	68				21,760				21,760
Laborer		960	HR	30				29,126				29,126
Soil		400	CY			8		0	0	3,032	0	3,032
Pickup Truck		320	HR		5			0	4,800	0	0	4,800
Metals - water		72	EA				146.14	0	0	0	10,522	10,522
VOCs - Water		72	EA				64.95	0	0	0	4,676	4,676
Sulfides - Water		72	EA				11.91	0	0	0	858	858
Sampling Supplies		4	WK			200		0	0	800	0	0 800
TOTAL								50,886	4,800	3,832	16,056	75,574
Overhead	10%							5,089	,	,	,	7,557
G&A, Profit	8%							4,478	422	337	1,413	6,651
TOTAL								60,453	5,702	4,552	19,075	89,782

Basis of Estimate:

Honeywell

Monthly sampling for

- HR per person per event
- 4 Events per YR
- Monitoring wells are to be constucted 15

Labor

Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	4	320
Laborer	3	80	4	960
Pickup Truck	2	40	4	320

40

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	15	1.2	4	72
VOCs - Water	15	1.2	4	72
Sulfides - Water	15	1.2	4	72

Assume an area for cap repair:

Cap repair area:	0.5	AC
Cap repair depth:	0.5	FT
Cap repair volume:	400	CY

Remedial Design (4%)	3,591
----------------------	-------

Construction Management (4%) 3,591

Project Management (3%) 2,693 Contingency (25%)

24,915

Total 124,573

TABLE K.6a

SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 100,000 CY DREDGE VOLUME

					Unit Pri	ces		Cost				
O&M for SCA - Remaining 25 years	1	.00	YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Engineer	1	60	HR	68				10,880				10,880
Laborer	4	80	HR	30				14,563				14,563
Pickup Truck	1	60	HR		5			0	4,800	0	0	4,800
Metals - water	:	36	EA				146.14	0	0	0	5,261	5,261
VOCs - Water	:	36	EA				64.95	0	0	0	2,338	2,338
Sulfides - Water	:	36	EA				11.91	0	0	0	429	429
Sampling Supplies		2	WK			200		0	0	400	0	400
TOTAL								25,443	4,800	400	8,028	38,671
Overhead	10%							2,544	480	40	803	3,867
G&A, Profit	8%							2,239	422	35	706	3,403
TOTAL								30,227	5,702	475	9,537	45,941

Basis of Estimate:

Honeywell

Bi-annual sampling for

HR per person per event

Events per YR

15 Monitoring wells are to be constucted

Labor

Labor				
Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	2	160
Laborer	3	80	2	480
Pickup Truck	2	40	2	160

40

2

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	15	1.2	2	36
VOCs - Water	15	1.2	2	36
Sulfides - Water	15	1.2	2	36

Remedial Design (4%) 1,838

Construction Management (4%) 1,838

Project Management (3%) 1,378

Contingency (25%) 12,749

Total 63,744

Honeywell

TABLE K.6b

SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 500,000 CY DREDGE VOLUME

				Unit Prices					Cost		
O&M for SCA - 1st 5 years	1.00) YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Engineer	320	HR	68				21,760				21,760
Laborer	960	HR	30				29,126				29,126
Soil	400	CY			8		0	0	3,032	0	3,032
Pickup Truck	320	HR		5			0	4,800	0	0	4,800
Metals - water	135	EA				146.14	0	0	0	19,729	19,729
VOCs - Water	135	EA				64.95	0	0	0	8,768	8,768
Sulfides - Water	135	EA				11.91	0	0	0	1,608	1,608
Sampling Supplies	4	WK			200		0	0	800	0	800
				-							
TOTAL							50,886	4,800	3,832	30,105	89,623
Overhead	10%						5,089	480	383	3,011	8,962
G&A, Profit	8%						4,478	422	337	2,649	7,887
TOTAL							60,453	5,702	4,552	35,765	106,473

Basis of Estimate:

Monthly sampling for

- HR per person per event
- 4 Events per YR
- 28 Monitoring wells are to be constucted

Labor

Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	4	320
Laborer	3	80	4	960
Pickup Truck	2	40	4	320

40

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	28	1.2	4	135
VOCs - Water	28	1.2	4	135
Sulfides - Water	28	1.2	4	135

Assume an area for cap repair:

Cap repair area:	0.5	AC
Cap repair depth:	0.5	FT
Cap repair volume:	400	CY

Remedial Design (4%)	4,259
	4 0 5 0

Construction Management (4%)4,259Project Management (3%)3,194

Contingency (25%) 29,546

Total 147,731

Honeywell

TABLE K.6b

SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 500,000 CY DREDGE VOLUME

					Unit Prices					Cost		
O&M for SCA - Remaining 25 years	1	.00	YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Engineer		60	HR	68				10,880				10,880
Laborer	4	180	HR	30				14,563				14,563
Pickup Truck		60	HR		5			0	4,800	0	0	4,800
Metals - water		68	EA				146.14	0	0	0	9,938	9,938
VOCs - Water		68	EA				64.95	0	0	0	4,417	4,417
Sulfides - Water		68	EA				11.91	0	0	0	810	810
Sampling Supplies		2	WK			200		0	0	400	0	400
TOTAL								25,443	4,800	400	15,164	45,807
Overhead	10%							2,544		40	1,516	
G&A, Profit	8%							2,239	422	35	1,334	4,031
TOTAL								30,227	5,702	475	18,015	54,419

Basis of Estimate:

Bi-annual sampling for

HR per person per event

Events per YR

Monitoring wells are to be constucted

Labor

24.5 0.				
Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	2	160
Laborer	3	80	2	480
Pickup Truck	2	40	2	160

40

2

28

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	28	1.2	2	68
VOCs - Water	28	1.2	2	68
Sulfides - Water	28	1.2	2	68

Remedial Design (4%) 2,177

Construction Management (4%) 2,177

Project Management (3%) 1,633

Contingency (25%) 15,101

Total 75,506

O&M for SCA - 1st 5 years

Honeywell

Engineer	32	0 HI	8 6	3			21,760				21,760
Laborer	96	0 HI	3)			29,126				29,126
Soil	40	0 C`	<i>'</i>		8		0	0	3,032	0	3,032
Pickup Truck	32	0 HI	2	5	;		0	4,800	0	0	4,800
Metals - water	18	8 E/	۱			146.14	0	0	0	27,474	27,474
VOCs - Water	18	8 E/	1			64.95	0	0	0	12,211	12,211
Sulfides - Water	18	8 E/	۱			11.91	0	0	0	2,239	2,239
											0
Sampling Supplies	4	W	(200		0	0	800	0	800
TOTAL							50,886	4,800	3,832	41,924	101,442
Overhead	10%						5,089	480	383	4,192	10,144
G&A, Profit	8%						4,478	422	337	3,689	8,927
TOTAL							60,453	5,702	4,552	49,806	120,514

Basis of Estimate:

Monthly Sampling for

HR per person per event

YR

4 Events per YR

39 Monitoring wells are to be constucted

Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	4	320
Laborer	3	80	4	960
Pickup Truck	2	40	4	320

40

1.00

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	39	1.2	4	188
VOCs - Water	39	1.2	4	188
Sulfides - Water	39	1.2	4	188

Assume an area for cap repair:

Cap repair area:	0.5	AC
Cap repair depth:	0.5	FT
Cap repair xolume:	400	CY

Subcont

TOTAL

Cost

Materials

TABLE K.6c

Labor

SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 1,000,000 CY DREDGE VOLUME

Equipment

Unit Prices

Materials

Subcont

Labor

Equipment

PA	RSO	NS

Remedial Design (4%) 4,821

Construction Management (4%) 4,821 Project Management (3%) 3,615

Contingency (25%) 33,443

Total 167,213

Honeywell

TABLE K.6c SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 1,000,000 CY DREDGE VOLUME

					Unit Prie	ces				Cost		
O&M for SCA - Remaining 25 years	1	.00	YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Engineer	1	60	HR	68				10,880				10,880
Laborer	4	80	HR	30				14,563				14,563
Pickup Truck	1	60	HR		5			0	4,800	0	0	4,800
Metals - water	1	94	EA				146.14	0	0	0	13,737	13,737
VOCs - Water	1	94	EA				64.95	0	0	0	6,105	6,105
Sulfides - Water		94	EA				11.91	0	0	0	1,120	1,120
Sampling Supplies		2	WK			200		0	0	400	0	400
TOTAL								25,443	4,800	400	20,962	51,605
Overhead	10%							2,544	480	40	2,096	5,161
G&A, Profit	8%							2,239	422	35	1,845	4,541
TOTAL								30,227	5,702	475	24,903	61,307

Basis of Estimate:

Bi-annual sampling for

HR per person per event

Events per YR

Monitoring wells are to be constucted

Labor

Euso				
Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	2	160
Laborer	3	80	2	480
Pickup Truck	2	40	2	160

40

2

39

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	39	1.2	2	94
VOCs - Water	39	1.2	2	94
Sulfides - Water	39	1.2	2	94

Remedial Design (4%) 2,452

Construction Management (4%) 2,452 Project Management (3%)

1,839 Contingency (25%)

17,013 Total

85,063

Honeywell

TABLE K.6d

SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 10,000,000 CY DREDGE VOLUME

					Unit Pri	ces				Cost		
O&M for SCA - 1st 5 years		1.00	YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Engineer		320	HR	68				21,760				21,760
Laborer		960	HR	30				29,126				29,126
Soil		400	CY			8		0	0	3,032	0	3,032
Pickup Truck		320	HR		5			0	4,800	0	0	4,800
Metals - water		279	EA				146.14	0	0	0	40,773	40,773
VOCs - Water		279	EA				64.95	0	0	0	18,121	18,121
Sulfides - Water		279	EA				11.91	0	0	0	3,323	3,323
												0
Sampling Supplies		4	WK			200		0	0	800	0	800
TOTAL								50,886	4,800	3,832	62,217	121,735
Overhead	10%							5,089	480	383	6,222	12,174
G&A, Profit	8%							4,478	422	337	5,475	10,713
TOTAL								60,453	5,702	4,552	73,914	144,622

Basis of Estimate:

Monthly Sampling for

HR per person per event

4 Events per YR

58 Monitoring wells are to be constucted

Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	4	320
Laborer	3	80	4	960
Pickup Truck	2	40	4	320

40

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	58	1.2	4	279
VOCs - Water	58	1.2	4	279
Sulfides - Water	58	1.2	4	279

Assume an area for cap repair:

Cap repair area:	0.5	AC
Cap repair depth:	0.5	FT
Cap repair volume:	400	CY

Remedial Design (4%) 5,785

Construction Management (4%) 5,785

Project Management (3%) 4,339

Contingency (25%) 40,133

Total 200,663

Honeywell

TABLE K.6d SCA LONG-TERM OPERATION AND MAINTENANCE COSTS - 10,000,000 CY DREDGE VOLUME

					Unit Pri	ces				Cost		
O&M for SCA - Remaining 25 years	1	.00	YR	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
								0	0	0	0	0
Engineer		60	HR	68				10,880				10,880
Laborer	4	180	HR	30				14,563				14,563
Pickup Truck		60	HR		5			0	4,800	0	0	4,800
Metals - water		40	EA				146.14	0	0	0	20,460	20,460
VOCs - Water		40	EA				64.95	0	0	0	9,093	9,093
Sulfides - Water		40	EA				11.91	0	0	0	1,667	1,667
Sampling Supplies		2	WK			200		0	0	400	0	400
TOTAL								25,443	4,800	400	31,220	61,863
Overhead	10%							2,544	480	40	3,122	6,186
G&A, Profit	8%							2,239	422	35	2,747	5,444
TOTAL								30,227	5,702	475	37,089	73,493

Basis of Estimate:

Bi-annual sampling for

HR per person per event

Events per YR

Monitoring wells are to be constucted

Labor

Position	Number	HR per event	event/YR	HR per YR
Engineer	1	80	2	160
Laborer	3	80	2	480
Pickup Truck	2	40	2	160

40

2

58

Analytical

Item	Number Wells	QC factor	event/YR	Total
Metals - water	58	1.2	2	140
VOCs - Water	58	1.2	2	140
Sulfides - Water	58	1.2	2	140

Remedial Design (4%) 2,940

Construction Management (4%) 2,940 Project Management (3%)

2,205 Contingency (25%) 20,394

Total

101,972

TABLE K.7aON-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARYPRIMARY WATER TREATMENT

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
SCA Area (AC)	12	40	80	160
Capital Costs				
Construct SCA	13,111,366	30,312,913	49,813,356	428,094,078
SCA Operation	1,028,199	2,628,505	5,260,356	25,772,333
SCA Capping	1,654,010	5,369,116	10,794,901	21,701,242
Primary Water Treatment System	0	0	0	0
Water Treatment per 1,000 gallon	0.05	0.05	0.05	0.05
Total Gallons to be Treated (at 1,295 ga/cy)	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Water Treatment Costs	6,475	32,375	64,750	647,500
Dismantle Water Treatment System	0	0	0	0
Operating Costs			I	
Annual SCA Long-Term O&M (1st Five Years)	124,573	147,731	167,213	200,663
Discount Factor	4.100	4.100	4.100	4.100
Net Present Value	510,750	605,696	685,572	822,716
Annual SCA Long-Term O&M (Remaining 25 Years)	63,744	75,506	85,063	101,972
Discount Factor	8.309	8.309	8.309	8.309
Net Present Value	529,655	627,392	706,804	847,301
Tatal On Cita Carlingard Management Ocata	40.040.455	20 575 000		477 005 474
Total On-Site Sediment Management Costs	16,840,455	39,575,998	67,325,738	477,885,171
Costs per In Situ Cubic Yard	168	79	67	48
Duration				
Number of Dredge Crews	1	2	2	4
Dredge Rate (150 CY/HR Per Dredge Crew)	150	300	300	600
Duration (DA)	42	104	208	1,042
Duration (MO)	2	5	10	52
Duration (YR)	0.3	0.7	1.5	7.4

TABLE K.7b ON-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARY ENHANCED PRIMARY WATER TREATMENT

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
SCA Area (AC)	12	40	80	160
Capital Costs				
Construct SCA	13,111,366	30,312,913	49,813,356	428,094,078
SCA Operation	1,028,199	2,628,505	5,260,356	25,772,333
SCA Capping	1,654,010	5,369,116	10,794,901	21,701,242
Enhanced Primary Water Treatment System	7,732,538	7,732,538	7,732,538	11,720,335
Water Treatment per 1,000 gallon	0.40	0.40	0.40	0.40
Total Gallons to be Treated (at 1,295 ga/cy)	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Water Treatment Costs	51,800	259,000	518,000	5,180,000
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs				
Annual SCA Long-Term O&M (1st Five Years)	124,573	147,731	167,213	200,663
Discount Factor	4.100	4.100	4.100	4.100
Net Present Value	510,750	605,696	685,572	822,716
Annual SCA Long-Term O&M (Remaining 25 Years)	63,744	75,506	85,063	101,972
Discount Factor	8.309	8.309	8.309	8.309
Net Present Value	529,655	627,392	706,804	847,301
Total On-Site Sediment Management Costs	25,618,318	48,535,160	76,511,525	495,138,006
Costs per In Situ Cubic Yard	256	97	77	50
Duration				
Number of Dredge Crews	1	2	2	4
Dredge Rate (150 CY/HR Per Dredge Crew)	150	300	300	600
Duration (DA)	42	104	208	1,042
Duration (MO)	2	5	10	52
Duration (YR)	0.3	0.7	1.5	7.4

TABLE K.7c

ON-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARY ENHANCED PRIMARY WATER TREATMENT WITH MULTIMEDIA FILTRATION

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
SCA Area (AC)	12	40	80	160
Capital Costs				
Construct SCA	13,111,366	30,312,913	49,813,356	428,094,078
SCA Operation	1,028,199	2,628,505		25,772,333
SCA Capping	1,654,010	5,369,116	10,794,901	21,701,242
Enhanced Primary Water Treatment w/ MMF System	12,968,963	12,968,963	12,968,963	19,657,271
Water Treatment per 1,000 gallon	0.57	0.57	0.57	0.57
Total Gallons to be Treated (at 1,295 ga/cy)	129,500,000	647,500,000		12,950,000,000
Water Treatment Costs	73,815	369,075	738,150	7,381,500
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs				
Annual SCA Long-Term O&M (1st Five Years)	124,573	147,731	167,213	200,663
Discount Factor	4.100	4.100	4.100	4.100
Net Present Value	510,750	605,696		822,716
Annual SCA Long-Term O&M (Remaining 25 Years)	63,744	75,506	85,063	101,972
Discount Factor	8.309	8.309		8.309
Net Present Value	529,655	627,392	706,804	847,301
Total On-Site Sediment Management Costs	30,876,758	53,881,660	, ,	505,276,443
Costs per In Situ Cubic Yard	309	108	82	51
Duration				
Number of Dredge Crews	1	2	2	4
Dredge Rate (150 CY/HR Per Dredge Crew)	150	300	300	600
Duration (DA)	42	104	208	1,042
Duration (MO)	2	5	10	52
Duration (YR)	0.3	0.7	1.5	7.4

TABLE K.7d ON-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARY ADVANCED WATER TREATMENT

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
SCA Area (AC)	12	40	80	160
Capital Costs				
Construct SCA	13,111,366	30,312,913	49,813,356	428,094,078
SCA Operation	1,028,199	2,628,505	5,260,356	25,772,333
SCA Capping	1,654,010	5,369,116	10,794,901	21,701,242
Advanced Water Treatment System	26,237,625	26,237,625	26,237,625	39,768,803
Water Treatment per 1,000 gallon	4.98	4.98	4.98	4.98
Total Gallons to be Treated (at 1,295 ga/cy)	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Water Treatment Costs	644,910	3,224,550	6,449,100	64,491,000
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs				
Annual SCA Long-Term O&M (1st Five Years)	124,573	147,731	167,213	200,663
Discount Factor	4.100	4.100	4.100	4.100
Net Present Value	510,750	605,696	685,572	822,716
Annual SCA Long-Term O&M (Remaining 25 Years)	63,744	75,506	85,063	101,972
Discount Factor	8.309	8.309	8.309	8.309
Net Present Value	529,655	627,392	706,804	847,301
Total On-Site Sediment Management Costs	44,716,515	70,005,798	100,947,713	582,497,474
Costs per In Situ Cubic Yard	447	140	101	58
Duration				
Number of Dredge Crews	1	2	2	4
Dredge Rate (150 CY/HR Per Dredge Crew)	150	300	300	600
Duration (DA)	42	104	208	1,042
Duration (MO)	2	5	10	52
Duration (YR)	0.3	0.7	1.5	7.4

TABLE K.7eON-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARY
ENHANCED PRIMARY WITH ORGANICS REMOVAL

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
SCA Area (AC)	12	40	80	160
Capital Costs				
Construct SCA	13,111,366	30,312,913	49,813,356	428,094,078
SCA Operation	1,028,199	2,628,505	5,260,356	25,772,333
SCA Capping	1,654,010	5,369,116	10,794,901	21,701,242
Enhanced Primary with Organics Removal	11,373,338	11,373,338	11,373,338	17,238,756
Water Treatment per 1,000 gallon	0.57	0.57	0.57	0.57
Total Gallons to be Treated (at 1,295 ga/cy)	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Water Treatment Costs	73,815	369,075	738,150	7,381,500
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs				
Annual SCA Long-Term O&M (1st Five Years)	124,573	147,731	167,213	200,663
Discount Factor	4.100	4.100	4.100	4.100
Net Present Value	510,750	605,696	685,572	822,716
Annual SCA Long-Term O&M (Remaining 25 Years)	63,744	75,506	85,063	101,972
Discount Factor	8.309	8.309	8.309	8.309
Net Present Value	529,655	627,392	706,804	847,301
Total On-Site Sediment Management Costs	29,281,133	52,286,035	80,372,475	502,857,927
Costs per In Situ Cubic Yard	293	105	80	50
Duration				
Number of Dredge Crews	1	2	2	4
Dredge Rate (150 CY/HR Per Dredge Crew)	150	300	300	600
Duration (DA)	42	104	208	1,042
Duration (MO)	2	5	10	52
Duration (YR)	0.3	0.7	1.5	7.4

Honeywell

TABLE K.8
BULKHEAD AND PROCESS AREA CONSTRUCTION COSTS

			Unit Prices				Cost				
Construct Process Area and Bulkhead			Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Site Preparation for Process Area											
Project Manager	50	HR	134				6,700	0	0	0	6,700
Superintendent	100	HR	100				10,000	0	0	0	10,000
Operator	900	HR	41				37,035	0	0	0	37,035
Laborer	200	HR	30				6,068	0	0	0	6,068
Engineer	100	HR	68				6,800	0	0	0	6,800
Surveyor	40	HR	30				1,191	0	0	0	1,191
D6 Bulldozer	200	HR		39			0	,	0	0	7,706
330 Excavator	200	HR		49			0	-)	0	0	9,742
815 Compactor	200	HR		30			0	6,000	0	0	6,000
Dump Truck	200	HR		51			0	-, -	0	0	10,148
Water Truck	100	HR		25			0	,	0	0	2,500
Fuel	4,500	GA			1		0	0	4,500	0	4,500
Per Diem	255	DY	109				27,773	0	0	0	27,773
Process Area Liner System, from bottom to to	р										
Finish Grading	871,200	SF				0.10	0	0	0	87,120	87,120
Asphalt Paving	871,200	SF				1.10	0	0	0	958,320	958,320
Process Area Cover											
Temporary Structure	217,800	SF			19		0	0	4,138,200	0	4,138,200
Structure Consultant	1,168	HR	100		-		116,800	0	0	0	116,800
Superintendent	1,168	HR	100				116,800	0	0	0	116,800
Operator	3,504	HR	41				144,190	0	0	0	144,190
Laborer	16,352	HR	30				496,120	0	0	0	496,120
Crane	1,168	HR	150				175,200	0	0	0	175,200
Manlift	3,504	HR	25				87,600	0	0	0	87,600
Scissors Lifts	1,168	HR	20				23,360	0	0	0	23,360
Per Diem	3,884	DA	109				423,312	0	0	0	423,312
Drainage Control System											
Drainge Control System	1	LS				50,000	0	0	0	50,000	50,000
Connection to Willis Ave GW System	1	LS		•		50,000	0	0	0	50,000	50,000
Bulkhead											
Sheetpiling	35,000	SF				41	0	0	0	1,435,000	1,435,000
Soil	1,852	CY			7.58		0	-	-	0	14,038
Front End Loader	80	HR		23			0	10,148	0	0	10,148
Dump Truck	80	HR		51			0		0	0	10,148
Operator	160	HR	41				37,035	0	0	0	37,035
Finish Grading	25,000	SF				0.10	0	0	0	2,500	2,500
Asphalt Paving	25,000	SF				1.10	0	0	0	27,500	27,500

Honeywell

TABLE K.8PROCESS AREA CONSTRUCTION COST

			Unit Prices						Cost		
Construct Process Area and Bulkhead (co	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL		
						•					
Approach Dredging											
Dredging	18,519	CY				25.00	0	0	0	462,975	462,975
Material Transport and Handling	18,519	CY				18.34	0	0	0	339,670	339,670
Offsite Transportation and Disposal	29,816	TN				63.00	0	0	0	1,878,382	1,878,382
TOTAL							1,715,984	56,392	4,156,738	5,291,467	11,220,581
Overhead 10%	%						171,598	5,639	415,674	529,147	1,122,058
G&A, Profit 89	%						151,007	4,962	365,793	465,649	987,411
TOTAL							2,038,589	66,994	4,938,205	6,286,262	13,330,050

Remedial Design (4%) 533,202

Construction Management (4%) 533,202

Project Management (3%) 399,901

Contingency (25%) 3,699,089

Total 18,495,444

Basis of Estimate:

Area of Process Area is based on	10	cells, each of	1.5	acres uncovered and	0.50 acres covered,
for a tota	l area of	20 acres =		871,200 sf	
and a co	vered area of	5 acres =		217,800 sf	

SITE PREPARATION

Estimated duration for clear and grub and rough grading is 100 HR

	CREW DEFINITI	ON		
Item	Number	Usage	Duration	Total HRs
Project Manager	1	0.5	100	50
Superintendent	1	1	100	100
Operator	9	1	100	900
Laborer	2	1	100	200
Engineer	1	1	100	100
Surveyor	2	0.2	100	40
D6 Bulldozer	2	1	100	200
330 Excavator	2	1	100	200
815 Compactor	2	1	100	200
Dump Truck	2	1	100	200
Water Truck	1	1	100	100
	0	1	100	0
	0	1	100	0

Item	# People	W/E Factor	Dur in DA	Total DA
Per Diem	14	1.4	13	255

Honeywell

TABLE K.8 PROCESS AREA CONSTRUCTION COST

Basis of Estimate (continued):

Dasis of Estimate (continued).								
LINER SYSTEM								
A	rea from	"Volume Sheet":	653,400	SF				
COVER CONSTRUCTION								
A	rea to be	5	AC =	217,8	00 SF			
Р	roductio	1500	SF/DA					
D	uration:	146	DA =	11	68 HR			
			ON					
	Item	Number	Usage	Duration	Tota	al HRs		
Structure Co	nsultant	1	1	1,1	68	1,168		
	tendent	1	1	1,1		1,168		
	Operator	3	1	1,1		3,504		
	Laborer	14	1	1,1		16,352		
	Crane Manlift	1 3	<u>1</u> 1	1,1		1,168 3,504		
Soiss	ors Lifts	3	1	1,1		1,168		
0035			1	1,1	00	1,100		
Г	Item	# People	W/E Factor	Dur in DA	To	otal DA		
P	er Diem	19	1.4	1	46	3,884		
•		for a total area of	action of	35,000	SF	vido by	10 ET a	lean must be backfilled behind shoetniling
A		triangular cross s cross sectional are			20 FT v 00 SF	wide by	10 FT deep must be backfilled behind sheetpiling	
		results in a volun			52 CY			
		-11-1-	50	ET				
А	ssume th	at a strip Length:	50 500	LF	be pave	ea benina bu	iknead to provid	le footing for crane and trucks
		Area:	25,000	SF				
APPROACH DREDGING								
	ssume ar	n approach	500	FT long by		100 FT	wide and	10 FT deep needs to be dredged
		for a volume of	18,519	CY				
D	redge un	it cost is assumed	d to be		25 \$/Cì	Y based on e	stimated includ	ed in Appendix F
		andling and transp		ocess Area is			18.34 base	ed on data in Table 9 of this appendix
C	ffsite Tra	nsporation and D	isposal is	\$	63 per	Table 16 of t	his appendix	
		edged Volume =	18,519	CY	·		••	
		dified Volume of	21,297	CY	ner '	Table 9 of th	is annendiv	
	301	At	1.4	TN/CY			his appendix	
	T L		00.040		por			

The disposal weight is 29,816 TN/CY

Operator

Pickup Truck

Laborer Front End Loader

TOTAL

TOTAL

Overhead

G&A, Profit

76,923

63,308 46,677

76,923

104,615

126,615

70,015

56,923

71,815

38,462

7,692

40,600

31,654

46,677

71,815

1,860,074

186,007

163,687

2,209,768

7,692

7,692

				Unit P	rices				Cost		
Solidification	100,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Offloading Barges											
Superintendent	769	HR	100				76,923				76,923
Operator	1,538	HR	41				63,308				63,308
Laborer	1,538	HR	30				46,677				46,67
Front End Loader	769	HR		23			0	17,954	0	0	17,954
Crane	769	HR		25			0	19,231	0	0	19,23 <i>°</i>
Pickup Truck	1,538	HR		5			0	7,692	0	0	7,692
Solidification											
Superintendent	769	HR	100				76,923				76,923
Engineer	1,538	HR	68				104,615				104,61
Operator	3,077	HR	41				126,615				126,61
Laborer	2,308	HR	30				70,015				70,01
Low-ground-pressure Dozer	1,538	HR		37			0	56,923	0	0	56,923
Front End Loader	3,077	HR		23			0	71,815	0	0	71,81
Water Truck	1,538	HR		25			0	38,462	0	0	38,46
Pickup Truck	1,538	HR		5			0	7,692	0	0	7,692
Booster Pump	1,538	HR		26			0	40,600	0	0	40,60
Lime	11,000	TN			70		0	0	773,960	0	773,96
Water Treatment at Willis GWTP	1,439,255	GA				0.018				25,907	25,90
Truck Loading for Offsite Disposal											
Superintendent	769	HR	100				76,923				76,923

41

30

23

5

TABLE K.9a OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 100,000 CY DREDGE VOLUME

Remedial Design (4%) 88,391

0

0

25,907

2,591

2,280

30,777

Construction Management (4%) 88,391

0

0

773,960

77,396

68,108

919,464

31,654

46,677

720,331

72,033

63,389

855,753

0

0

71,815

7,692

339,877

33,988

29,909

403,774

Project Management (3%) 66,293

> Contingency (25%) 613,211

> > Total 3,066,053

769

1,538

3,077

1,538

10%

8%

HR

HR

HR

HR

P:\Honeywell -SYR\741627\NOV FINAL FS\Appendix K\Tables K.1-K.27 11-30-04.xls November 30, 2004

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.9a

OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 100,000 CY DREDGE VOLUME

Basis of Estimate:

OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	769	HR or	
Volume dredged:	100,000	CY	

CREW DESCRIPTION							
Item	Number	Factor	HR per item	Total HR			
Superintendent	1	1	769	769			
Operator	2	1	769	1,538			
Laborer	2	1	769	1,538			
Front End Loader	1	1	769	769			
Crane	1	1	769	769			
Pickup Truck	2	1	769	1,538			

SOLIDIFICATION

Dredging production rate:	130	CY/HR =	
Dredging duration:	769	HR or	96 Shifts
Volume:	100,000	CY	
Lime addition rate:	10%	by volume	
Volume lime needed:	10,000	CY =	11,000 TN at

	1	.1	TN/CY
--	---	----	-------

Item	Number	Factor	HR per item	Total HR	
Superintendent	1	1	769	769	
Engineer	2	1	769	1,538	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	769	3,077	
Laborer	3	1	769	2,308	
Low-ground-pressure Dozer	2	1	769	1,538	1 dozer per mix crew
Front End Loader	4	1	769	3,077	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	769	1,538	1 water truck per mix crew
Pickup Truck	2	1	769	1,538	booster pumps for control of rain water
Booster Pump	2	1	769	1,538]

.....

96 Shifts

Assume

10% of the insitu water in the sediments is drained out and collected during solidification

T (1110

Volume: 100,000 CY Water Content: 100% Specific Gravity: 2.48 from Settling Tests Water Volume 71,264 CY Water Volume 1,439,255 GA

іскир ттиск

...

Honeywell

TABLE K.9a OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 100,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	100,000	CY	
Volume as solidified:	115,000		
Offloading duration:	769	HR or	96 Shifts

Item	Number	Factor	HR per item	Total HR]
Superintendent	1	1	769	769	
Operator	1	1	769	769	
Laborer	2	1	769	1,538	2 laborers for traffic control
Front End Loader	4	1	769	3,077	
Pickup Truck	2	1	769	1,538	

TABLE K.9b OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 500,000 CY DREDGE VOLUME

			Unit Prices					Cost				
Solidification	500,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL	
Offloading Barges												
Superintendent	3,846	HR	100				384,615				384,615	
Operator	7,692	HR	41				316,538				316,538	
Laborer	7,692	HR	30				233,385				233,385	
Front End Loader	3,846	HR		23			0	89,769	0	0	89,769	
Crane	3,846	HR		25			0	96,154	0	0	96,154	
Pickup Truck	7,692	HR		5			0	38,462	0	0	38,462	
Solidification												
Superintendent	3,846	HR	100				384,615				384,615	
Engineer	7,692	HR	68				523,077				523,077	
Operator	15,385	HR	41				633,077				633,077	
Laborer	11,538	HR	30				350,077				350,077	
Low-ground-pressure Dozer	7,692	HR		37			0	284,615	0	0	284,615	
Front End Loader	15,385	HR		23			0	359,077	0	0	359,077	
Water Truck	7,692	HR		25			0	192,308	0	0	192,308	
Pickup Truck	7,692	HR		5			0	38,462	0	0	38,462	
Booster Pump	7,692	HR		26			0	203,000	0	0	203,000	
Lime	55,000	TN			70		0	0	3,869,800	0	3,869,800	
Water Treatment at Willis GWTP	7,196,276	GA				0.018				129,533	129,533	
Truck Loading for Offsite Disposal												
Superintendent	3,846	HR	100				384,615				384,615	
Operator	3,846	HR	41				158,269				158,269	
Laborer	7,692	HR	30				233,385				233,385	
Front End Loader	15,385	HR		23			0		0	0	359,077	
Pickup Truck	7,692	HR		5			0	38,462	0	0	38,462	
TOTAL							3,601,654	1,699,385	3,869,800	129,533	9,300,371	
Overhead	10%		1				360,165	, ,	386,980	12,953	930,037	
G&A, Profit	8%						316,946	,	340,542	11,399	818,433	
TOTAL							4,278,765	2,018,869	4,597,322	153,885	11,048,841	

Remedial Design (4%) 441,954

Construction Management (4%) 441,954

Project Management (3%) 331,465

Contingency (25%) 3,066,053

Total 15,330,267

Honeywell

TABLE K.9b OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 500,000 CY DREDGE VOLUME

Basis of Estimate: OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	3,846	HR or	481 Shifts
Volume dredged:	500,000	CY	

CREW DESCRIPTION										
Item	Number	Factor	HR per item	Total HR						
Superintendent	1	1	3,846	3,846						
Operator	2	1	3,846	7,692						
Laborer	2	1	3,846	7,692						
Front End Loader	1	1	3,846	3,846						
Crane	1	1	3,846	3,846						
Pickup Truck	2	1	3,846	7,692						

SOLIDIFICATION

Dredging production rate: Dredging duration:	130 3,846	CY/HR = HR or	481 Shifts	
Volume:	500,000	CY		
Lime addition rate:	10%	by volume		
Volume lime needed:	50,000	CY =	55,000 TN at	1.1 TN/CY

Item	Number	Factor	HR per item	Total HR	
Superintendent	1	1	3,846	3,846	
Engineer	2	1	3,846	7,692	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	3,846	15,385	
Laborer	3	1	3,846	11,538	
Low-ground-pressure Dozer	2	1	3,846	7,692	1 dozer per mix crew
Front End Loader	4	1	3,846	15,385	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	3,846	7,692	1 water truck per mix crew
Pickup Truck	2	1	3,846	7,692	booster pumps for control of rain water
Booster Pump	2	1	3,846	7,692	

Assume

10% of the insitu water in the sediments is drained out and collected during solidification

Volume:500,000CYWater Content:100%Specific Gravity:2.48from Settling TestsWater Volume356,322CYWater Volume7,196,276GA

TABLE K.9b OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 500,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	500,000		
Volume as solidified:	575,000		
Offloading duration:	3,846	HR or	481 Shifts

Item	Number	Factor	HR per item	Total HR	Ī
Superintendent	1	1	3,846	3,846	I
Operator	1	1	3,846	3,846	I
Laborer	2	1	3,846	7,692	2 laborers for traffic control
Front End Loader	4	1	3,846	15,385	Ī
Pickup Truck	2	1	3,846	7,692	Ī

TABLE K.9c OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 1,000,000 CY DREDGE VOLUME

				Unit P	rices				Cost		
Solidification	1,000,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Offloading Barges											
Superintendent	7,692	HR	100				769,231				769,231
Operator	15,385	HR	41				633,077				633,077
Laborer	15,385	HR	30				466,769				466,769
Front End Loader	7,692	HR		23			0	179,538	0	0	179,538
Crane	7,692	HR		25			0	192,308	0	0	192,308
Pickup Truck	15,385	HR		5			0	76,923	0	0	76,923
Solidification											
Superintendent	7,692	HR	100				769,231				769,231
Engineer	15,385	HR	68				1,046,154				1,046,154
Operator	30,769	HR	41				1,266,154				1,266,154
Laborer	23,077	HR	30				700,154				700,154
Low-ground-pressure Dozer	15,385	HR		37			0	569,231	0	0	569,231
Front End Loader	30,769	HR		23			0	718,154	0	0	718,154
Water Truck	15,385	HR		25			0	384,615	0	0	384,615
Pickup Truck	15,385	HR		5			0	76,923	0	0	76,923
Booster Pump	15,385	HR		26			0	406,000	0	0	406,000
Lime	110,000	TN			70		0	0	7,739,600	0	7,739,600
Water Treatment at Willis GWTP	14,392,552	GA				0.018				259,066	259,066
Truck Loading for Offsite Disposal											
Superintendent	7,692	HR	100				769,231				769,231
Operator	7,692	HR	41				316,538				316,538
Laborer	15,385	HR	30				466,769				466,769
Front End Loader	30,769	HR		23			0	718,154	0	0	718,154
Pickup Truck	15,385	HR		5			0	76,923	0	0	76,923
TOTAL							7,203,308	3,398,769	7,739,600	259,066	18,600,743
Overhead	10%		1				720,331	339,877	773,960	25,907	1,860,074
G&A, Profit	8%						633,891	299,092	681,085	22,798	1,636,865
TOTAL	0.70						8,557,530	4,037,738	9,194,645	307,770	22,097,683
IUIAL							0,007,000	4,031,130	9,194,040	307,770	22,091,003

Remedial Design (4%) 883,907

Construction Management (4%) 883,907

Project Management (3%) 662,930

Contingency (25%) 6,132,107

Total 30,660,534

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.9c

OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 1,000,000 CY DREDGE VOLUME

Basis of Estimate: OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	7,692	HR or	962 Shifts
Volume dredged:	1,000,000	CY	

CREW DESCRIPTION									
Item	Number	Factor	HR per item	Total HR					
Superintendent	1	1	7,692	7,692					
Operator	2	1	7,692	15,385					
Laborer	2	1	7,692	15,385					
Front End Loader	1	1	7,692	7,692					
Crane	1	1	7,692	7,692					
Pickup Truck	2	1	7,692	15,385					

SOLIDIFICATION

Dredging production rate:	130	CY/HR =		
Dredging duration:	7,692	HR or	962 Shifts	
Volume:	1,000,000	CY		
Lime addition rate:	10%	by volume		
Volume lime needed:	100,000	CY =	110,000 TN at	1.1 TN/CY

Item	Number	Factor	HR per item	Total HR]
Superintendent	1	1	7,692	7,692	
Engineer	2	1	7,692	15,385	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	7,692	30,769	
Laborer	3	1	7,692	23,077	
Low-ground-pressure Dozer	2	1	7,692	15,385	1 dozer per mix crew
Front End Loader	4	1	7,692	30,769	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	7,692	15,385	1 water truck per mix crew
Pickup Truck	2	1	7,692	15,385	booster pumps for control of rain water
Booster Pump	2	1	7,692	15,385]

Assume

10% of the insitu water in the sediments is drained out and collected during solidification

Volume:1,000,000CYWater Content:100%Specific Gravity:2.48from Settling TestsWater Volume712,644CYWater Volume14,392,552GA

TABLE K.9c OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 1,000,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	1,000,000		
Volume as solidified:	1,150,000		
Offloading duration:	7,692	HR or	962 Shifts

Item		Number	Factor	HR per item	Total HR]
	Superintendent	1	1	7,692	7,692	
	Operator	1	1	7,692	7,692	
	Laborer	2	1	7,692	15,385	2 laborers for traffic control
	Front End Loader	4	1	7,692	30,769	
	Pickup Truck	2	1	7,692	15,385]

TABLE K.9d OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 10,000,000 CY DREDGE VOLUME

				Unit P	rices				Cost		
Solidification	10,000,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Offloading Barges											
Superintendent	76,923	HR	100				7,692,308				7,692,308
Operator	153,846	HR	41				6,330,769				6,330,769
Laborer	153,846	HR	30				4,667,692				4,667,692
Front End Loader	76,923	HR		23			0	1,795,385	0	0	1,795,385
Crane	76,923	HR		25			0	1,923,077	0	0	1,923,077
Pickup Truck	153,846	HR		5			0	769,231	0	0	769,231
Solidification											
Superintendent	76,923	HR	100				7,692,308				7,692,308
Engineer	153,846	HR	68				10,461,538				10,461,538
Operator	307,692	HR	41				12,661,538				12,661,538
Laborer	230,769	HR	30				7,001,538				7,001,538
Low-ground-pressure Dozer	153,846	HR		37			0	5,692,308	0	0	5,692,308
Front End Loader	307,692	HR		23			0	7,181,538	0	0	7,181,538
Water Truck	153,846	HR		25			0	3,846,154	0	0	3,846,154
Pickup Truck	153,846	HR		5			0	769,231	0	0	769,231
Booster Pump	153,846	HR		26			0	4,060,000	0	0	4,060,000
Lime	1,100,000	TN			70		0	0	77,396,000	0	77,396,000
Water Treatment at Willis GWTP	143,925,517	GA				0.018				2,590,659	2,590,659
Truck Loading for Offsite Disposal											
Superintendent	76,923	HR	100				7,692,308				7,692,308
Operator	76,923	HR	41				3,165,385				3,165,385
Laborer	153,846	HR	30				4,667,692				4,667,692
Front End Loader	307,692	HR		23			0	7,181,538	0	0	7,181,538
Pickup Truck	153,846	HR		5			0	769,231	0	0	769,231
TOTAL							72,033,077	33,987,692	77,396,000	2,590,659	186,007,429
Overhead	10%						7,203,308	3,398,769	7,739,600		18,600,743
G&A, Profit	8%						6,338,911	2,990,917	6,810,848		16,368,654
TOTAL							85,575,295	40,377,378	91,946,448	,	220,976,825

Remedial Design (4%) 8,839,073

Construction Management (4%) 8,839,073

Project Management (3%) 6,629,305

Contingency (25%) 61,321,069

Total 306,605,345

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.9d

OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 10,000,000 CY DREDGE VOLUME

Basis of Estimate: OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	76,923	HR or	9,615 Shifts
Volume dredged:	10,000,000	CY	

CREW DESCRIPTION									
Item	Number	Factor	HR per item	Total HR					
Superintendent	1	1	76,923	76,923					
Operator	2	1	76,923	153,846					
Laborer	2	1	76,923	153,846					
Front End Loader	1	1	76,923	76,923					
Crane	1	1	76,923	76,923					
Pickup Truck	2	1	76,923	153,846					

SOLIDIFICATION

Dredging production rate: Dredging duration: Volume:	130 76,923 10,000,000	CY/HR = HR or CY	9,615 Shifts	
Lime addition rate: Volume lime needed:	10% 1,000,000	by volume CY =	1,100,000 TN at	1.1 TN/CY

Item	Number	Factor	HR per item	Total HR	
Superintendent	1	1	76,923	76,923	
Engineer	2	1	76,923	153,846	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	76,923	307,692	
Laborer	3	1	76,923	230,769	
Low-ground-pressure Dozer	2	1	76,923	153,846	1 dozer per mix crew
Front End Loader	4	1	76,923	307,692	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	76,923	153,846	1 water truck per mix crew
Pickup Truck	2	1	76,923	153,846	booster pumps for control of rain water
Booster Pump	2	1	76,923	153,846	

Assume

of the insitu water in the sediments is drained out and collected during solidification

Volume:10,000,000CYWater Content:100%Specific Gravity:2.48from Settling TestsWater Volume7,126,437CYWater Volume143,925,517GA

10%

TABLE K.9d

OFFLOAD, SOLIDIFICATION, AND LOADOUT COSTS - 10,000,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	10,000,000		
Volume as solidified:	11,500,000		
Offloading duration:	76,923	HR or	9,615 Shifts

Item	Number	Factor	HR per item	Total HR	
Superintendent	1	1	76,923	76,923	
Operator	1	1	76,923	76,923	
Laborer	2	1	76,923	153,846	2 laborers for traffic control
Front End Loader	4	1	76,923	307,692	
Pickup Truck	2	1	76,923	153,846]

TABLE K.10 PROCESS AREA CONSTRUCTION COSTS

				Unit Prices				Cost			
Construct Process Area and Bulkhead			Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Site Preparation for Process Area											
Project Manager	50	HR	134				6,700	-	0	0	6,700
Superintendent	100	HR	100				10,000		0	0	10,000
Operator	900	HR	41				37,035	0	0	0	37,035
Laborer	200	HR	30				6,068	0	0	0	6,068
Engineer	100	HR	68				6,800	0	0	0	6,800
Surveyor	40	HR	30				1,191	0	0	0	1,191
D6 Bulldozer	200	HR		39			0	.,	0	0	7,706
330 Excavator	200	HR		49			0		0	0	9,742
815 Compactor	200	HR		30			0	6,000	0	0	6,000
Dump Truck	200	HR		51			0	10,148	0	0	10,148
Water Truck	100	HR		25			0	2,500	0	0	2,500
Fuel	4,500	GA			1		0	0	4,500	0	4,500
Per Diem	255	DY	109				27,773	0	0	0	27,773
Process Area Liner System, from bottom to top	0										
Finish Grading	871,200	SF				0.10	0	0	0	87,120	87,120
Asphalt Paving	871,200	SF				1.10	0	0	0	958,320	958,320
Process Area Cover											
Temporary Structure	217,800	SF			19		0	0	4,138,200	0	4,138,200
Structure Consultant	1,168	HR	100				116,800	0	0	0	116,800
Superintendent	1,168	HR	100				116,800		0	0	116,800
Operator	3,504	HR	41				144,190	0	0	0	144,190
Laborer	16,352	HR	30				496,120	0	0	0	496,120
Crane	1,168	HR	150				175,200	0	0	0	175,200
Manlift	3,504	HR	25				87,600	0	0	0	87,600
Scissors Lifts	1,168	HR	20				23,360	0	0	0	23,360
Per Diem	3,884	DA	109				423,312	0	0	0	423,312
Drainage Control System											
Drainge Control System	1	LS				50,000	0	0	0	50,000	50,000
Connection to Willis Ave GW System	1	LS				50,000	0	-	0	50,000	50,000
TOTAL							1,678,949	36,096	4,142,700	1,145,440	7,003,185
Overhead 10%			1				167.895	3,610	414,270	114,544	700,318
G&A, Profit 8%							147,748		364,558	100,799	616,280
TOTAL							1,994,591	42,882	4,921,528	1,360,783	8,319,784
							1,994,091	42,002	4,921,020	1,300,763	0,319,704

Remedial Design (4%) Construction Management (4%) 332,791

332,791

Project Management (3%) 249,594

Contingency (25%) 2,308,740

Total 11,543,700

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.10PROCESS AREA CONSTRUCTION COST

Basis of Estimate:

Area of Process Area is based or	n 10	cells, each of	1.5	acres uncovered and	0.50 acres covered,
fc	or a total area of	20 acres =		871,200 sf	
а	ind a covered area of	5 acres =		217,800 sf	

SITE PREPARATION

Estimated duration for clear and grub and rough grading is 100 HR

	CREW DEFINIT	ION		
Item	Number	Usage	Duration	Total HRs
Project Manager	1	0.5	100	50
Superintendent	1	1	100	100
Operator	9	1	100	900
Laborer	2	1	100	200
Engineer	1	1	100	100
Surveyor	2	0.2	100	40
D6 Bulldozer	2	1	100	200
330 Excavator	2	1	100	200
815 Compactor	2	1	100	200
Dump Truck	2	1	100	200
Water Truck	1	1	100	100
	0	1	100	0
	0	1	100	0

Item	# People	W/E Factor	Dur in DA	Total DA
Per Diem	14	1.4	13	255

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.10PROCESS AREA CONSTRUCTION COST

Basis of Estimate (continued):

LINER SYSTEM

Area from	"Volume Sheet":	653,400	SF					
COVER CONSTRUCTION								
Area to be covered:	5	AC =	217,800	SF				
Production Rate:	1500	SF/DA						
Duration:	146	DA =	1168	HR				
CREW DEFINITION								
Item	Number	Usage	Duration	Total HRs				
Structure Consultant	1	1	1,168	1,168				
Superintendent	1	1	1,168	1,168				
Operator	3	1	1,168	3,504				
Laborer	14	1	1,168	16,352				
Crane	1	1	1,168	1,168				
Manlift	3	1	1,168	3,504				
Scissors Lifts	1	1	1,168	1,168				

ltem	# People	W/E Factor	Dur in DA	Total DA
Per Diem	19	1.4	146	3,884

				Unit Costs (\$)		
			Material /	Labor /			
Process Unit / Item	Quantity	Units	Equipment	Installation	Total		otal Costs (\$)
Equalization Tank (7 MM Gallons) w/mixers	1	each	1,180,000	118,000	1,298,000	\$	1,298,000
Hydrocyclone							
Cyclone System	4	each	115,000	11,500	126,500	\$	506,000
(Hydrocyclone, Classifier, Feed Pump, Slurry Pump)							
Primary Clarifier	2	each	135,000	20,250	155,250	\$	310,500
Tanks							
Sludge Holding Tank (w/mixer)	2	each	113,870	17,080	130,950	\$	261,900
Decant Water Holding Tank	2	each	32,534	4,880	37,414	\$	74,800
					total	\$	336,700
Belt Filter Press (WX-3.0G)	8	each	265,000	26,500	291,500	\$	2,332,000
(skid mounted and includes slurry feed pump, emulsion							
polymer feed system, air compressor, belt wash booster							
pump and controls in the skid)							
Pumps	4	1	22.524	800	22.224	¢	122 227
Solids Transfer Pump	4	each	32,534	800	33,334	\$	133,337
Decant Water Pump	12	each	24,000	800	24,800 total	\$ \$	297,600 430,900
Piping				Suc	lotal	Þ	430,900
Carbon Steel Piping(lined, insulated and heat traced)	500	LF			488	\$	244,000
Misc. Yard Piping (20% of piping)	1	each	-	-	400	ֆ \$	49,000
wise. Fard Fiping (20% of piping)	1	Cach		lSub	total	\$	293,000
Fittings and Tie-ins (25% of subtotal piping)		each		Suc	lotai	\$	73,000
Valves (30% of Subtotal piping)		each				\$	88,000
varios (50% of Sabtoar piping)		euen		Sub	ototal	\$	161,000
Meters				Suc		-	,
Flowmeters	2	each	7,000	500	7,500	\$	15,000
				Sub	total	\$	15,000
Platforms, Ladders, Supports, etc.	1	each			50,000	\$	50,000
			G	rand SubTot	al	l	5,730,000
Electrical Costs (Lump Sum)						\$	350,000
Instrumentation (15% of Grand SubTotal)						\$	859,500
Cost for Two-2,250 GPM Trains						\$	6,939,500

TABLE K.11 MECHANICAL SEPARATION SYSTEM CONSTRUCTION COST

Remedial Design (4%) \$ 277,580.00

Construction Management (3%) \$ 277,580.00

Project Management (4%) \$ 208,185.00

Contingency (25%) \$ 1,925,711.3 Total \$

9,628,556

Flow rate: gpm

Polymer			Chemical Us	age Costs Per Year					\$ \$	15,000.00 <i>15,000</i>
Electrical				0						,
cost per kWhr	\$	0.06								
cost per hP	\$	0.000594								
			hP	Number	Cos	t/hr	cost/c	lay	cost/yr	
Equalization Tar	k Mixers		10	1	\$	0.01	\$	0.14	\$	52.03
Hydrocyclone			50	4	\$	0.12	\$	2.85	\$	1,040.69
Clarifier Mechan	ism		40	2	\$	0.05	\$	1.14	\$	416.28
Pumps			15	8	\$	0.07	\$	1.71	\$	624.41
Solids Transfer I	Pump	20	4	\$	0.05	\$	1.14	\$	416.28	
Decant Water Pu	imps		15	8	\$	0.07	\$	1.71	\$	624.41
Other electrical requ	irements (25	% of total)							\$	793.52
			Electrical Co	osts Per Year					\$	4,000
Labor										
Incremental number	of Personnel	l (Administrative	Operations.	Maintenance (Mech. &	z Elec))]	High 3
			-		- 2100))				\$	75,000
Average Annual Pay (includes benefits) per person Total Labor								ф \$	225,000	
									φ	225,000

TABLE K.12MECHANICAL SEPARATION SYSTEM OPERATION COST

 This Operating cost is based on 12 hrs per day, 365 days per year: min
 262800

 Notes:
 cost per gallon: \$
 0.00021

 1 The labor cost is based on the incomparison of cost per gallon: \$
 0.00021

1. The labor costs includes only the incremental number of personnel required to operate the CDF replacement equipment.

2. Electrical estimates are based on the hP and a conversion provided in literature by Gorman Rupp Pumps

4500

TABLE K.13a SOLIDIFICATION AND LOADOUT COSTS - 100,000 CY DREDGE VOLUME

					Unit P	rices				Cost		
Solidification	1	00,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Solidification												
				100				== ===				
Superintendent		769	HR	100				76,923				76,923
Engineer		1,538	HR	68				104,615				104,615
Operator		3,077	HR	41				126,615				126,615
Laborer		2,308	HR	30				70,015				70,015
Low-ground-pressure Dozer		1,538	HR		37			0	56,923	0	0	56,923
Front End Loader		3,077	HR		23			0	71,815	0	0	71,815
Water Truck		1,538	HR		25			0	38,462	0	0	38,462
Pickup Truck		1,538	HR		5			0	7,692	0	0	7,692
Booster Pump		1,538	HR		26			0	40,600	0	0	40,600
Lime	,	11,000	TN			70		0	0	773,960	0	773,960
Truck Loading for Offsite Disposal												
Superintendent		769	HR	100				76,923				76,923
Operator		769	HR	41				31,654				31,654
Laborer		1,538	HR	30				46,677				46,677
Front End Loader		3,077	HR		23			0	71,815	0	0	71,815
Pickup Truck		1,538	HR		5			0	7,692	0	0	7,692
TOTAL								533,423	295,000	773,960	0	1,602,383
Overhead	10%							53,342	29,500	77,396	0	160,238
G&A, Profit	8%							46,941	25,960	68,108	0	141,010
TOTAL								633,707	350,460	919,464	0	1,903,631

76,145

Remedial Design (4%) Construction Management (4%) 76,145

Project Management (3%) 57,109

Contingency (25%) 528,258

Total 2,641,288

P:\Honeywell -SYR\741627\NOV FINAL FS\Appendix K\Tables K.1-K.27 11-30-04.xls November 30, 2004

Booster Pump

Honeywell

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.13a SOLIDIFICATION AND LOADOUT COSTS - 100,000 CY DREDGE VOLUME

96 Shifts

Basis of Estimate:

OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	769	HR or	
Volume dredged:	100,000	CY	

	CREW DESCRIPTION								
Item		Number	Factor	HR per item	Total HR				
	Superintendent	1	1	769	769				
	Operator	2	1	769	1,538				
	Laborer	2	1	769	1,538				
	Front End Loader	1	1	769	769				
	Crane	1	1	769	769				
	Pickup Truck	2	1	769	1,538				

Number

2

SOLIDIFICATION

Item

Dredging production rate:	130	CY/HR =	
Dredging duration:	769	HR or	96 Shifts
Volume:	100,000	CY	
Lime addition rate:	10%	by volume	
Volume lime needed:	10,000	CY =	11,000 TN at

Factor

1

1.1 TN/CY

Superintendent	1	1	769	769	
Engineer	2	1	769	1,538	1 engineer for lab QC, or
Operator	4	1	769	3,077	
Laborer	3	1	769	2,308	
Low-ground-pressure Dozer	2	1	769	1,538	1 dozer per mix crew
Front End Loader	4	1	769	3,077	1 front end loader per mi
Water Truck	2	1	769	1,538	1 water truck per mix cre
Pickup Truck	2	1	769	1,538	booster pumps for contro

769

1,538

HR per item Total HR

one for field QC, and one for oversight

nix crew and 1 per loading crew rew

booster pumps for control of rain water

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.13a SOLIDIFICATION AND LOADOUT COSTS - 100,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	100,000	CY	
Volume as solidified:	115,000		
Offloading duration:	769	HR or	96 Shifts

Item	Number	Factor	HR per item	Total HR]
Superintendent	1	1	769	769	
Operator	1	1	769	769	
Laborer	2	1	769	1,538	2 laborers for traffic control
Front End Loader	4	1	769	3,077	
Pickup Truck	2	1	769	1,538	

TABLE K.13b SOLIDIFICATION AND LOADOUT COSTS - 500,000 CY DREDGE VOLUME

			Unit Prices					Cost			
Solidification	500,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
-											
Solidification											
Superintendent	3,846	HR	100				384,615				384,615
Engineer	7,692	HR	68				523,077				523,077
Operator	15,385	HR	41				633,077				633,077
Laborer	11,538	HR	30				350,077				350,077
Low-ground-pressure Dozer	7,692	HR		37			0	284,615	0	0	284,615
Front End Loader	15,385	HR		23			0	359,077	0	0	359,077
Water Truck	7,692	HR		25			0	192,308	0	0	192,308
Pickup Truck	7,692	HR		5			0	38,462	0	0	38,462
Booster Pump	7,692	HR		26			0	203,000	0	0	203,000
Lime	55,000	TN			70		0	0	3,869,800	0	3,869,800
Truck Loading for Offsite Disposal											
Superintendent	3,846	HR	100				384,615				384,615
Operator	3,846	HR	41				158,269				158,269
Laborer	7,692	HR	30				233,385				233,385
Front End Loader	15,385	HR		23			0	359,077	0	0	359,077
Pickup Truck	7,692	HR		5			0	38,462	0	0	38,462
TOTAL							2,667,115	1,475,000	3,869,800	0	8,011,915
Overhead	10%						266,712	147,500	386,980	0	801,192
G&A, Profit	8%						234,706	129,800	340,542	0	705,049
TOTAL							3,168,533	1,752,300	4,597,322	0	9,518,155

380,726

Remedial Design (4%) Construction Management (4%) 380,726

285,545 Project Management (3%)

Contingency (25%) 2,641,288

Total 13,206,441

ONONDAGA LAKE FEASIBILITY STUDY

Honeywell

TABLE K.13b SOLIDIFICATION AND LOADOUT COSTS - 500,000 CY DREDGE VOLUME

Basis of Estimate: OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	3,846	HR or	481 Shifts
Volume dredged:	500,000	CY	

CREW DESCRIPTION											
Item	Number	Factor	HR per item	Total HR							
Superintendent	1	1	3,846	3,846							
Operator	2	1	3,846	7,692							
Laborer	2	1	3,846	7,692							
Front End Loader	1	1	3,846	3,846							
Crane	1	1	3,846	3,846							
Pickup Truck	2	1	3,846	7,692							

SOLIDIFICATION

SOLIDIFICATION					
Dredging production rate:	130	CY/HR =			
Dredging duration:	3,846	HR or	481	Shifts	
Volume:	500,000	CY			
Lime addition rate:	10%	by volume			
Volume lime needed:	50,000	CY =	55,000	TN at	1.1 TN/CY
Item	Number	Factor	HR per item	Total HR	
Superintendent	1	1	3,846	3,846	
Engineer	2	1	3,846	7,692	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	3,846	15,385	
Laborer	3	1	3,846	11,538	
Low-ground-pressure Dozer	2	1	3,846	7,692	1 dozer per mix crew
Front End Loader	4	1	3,846	15,385	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	3,846	7,692	1 water truck per mix crew
Pickup Truck	2	1	3,846	7,692	booster pumps for control of rain water
Booster Pump	2	1	3,846	7,692]

APPENDIX K

TABLE K.13bSOLIDIFICATION AND LOADOUT COSTS - 500,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	500,000		
Volume as solidified:	575,000		
Offloading duration:	3,846	HR or	481 Shifts

Item	Number	Factor	HR per item	Total HR]
Superintend	ent 1	1	3,846	3,846	
Opera	tor 1	1	3,846	3,846	
Labo	rer 2	1	3,846	7,692	2 laborers for traffic control
Front End Load	ler 4	1	3,846	15,385	
Pickup Tru	ck 2	1	3,846	7,692]

TABLE K.13c SOLIDIFICATION AND LOADOUT COSTS - 1,000,000 CY DREDGE VOLUME

			Unit Prices				Cost				
Solidification	1,000,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Solidification											
Superintendent	7,692	HR	100				769,231				769,231
Engineer	15,385	HR	68				1,046,154				1,046,154
Operator	30,769	HR	41				1,266,154				1,266,154
Laborer	23,077	HR	30				700,154				700,154
Low-ground-pressure Dozer	15,385	HR		37			0	569,231	0	0	569,231
Front End Loader	30,769	HR		23			0	718,154	0	0	718,154
Water Truck	15,385	HR		25			0	384,615	0	0	384,615
Pickup Truck	15,385	HR		5			0	76,923	0	0	76,923
Booster Pump	15,385	HR		26			0	406,000	0	0	406,000
Lime	110,000	TN			70		0	0	7,739,600	0	7,739,600
Truck Loading for Offsite Disposal											
Superintendent	7,692	HR	100				769,231				769,231
Operator	7,692	HR	41				316,538				316,538
Laborer	15,385	HR	30				466,769				466,769
Front End Loader	30,769	HR		23			0	718,154	0	0	718,154
Pickup Truck	15,385	HR		5			0	76,923	0	0	76,923
TOTAL							5,334,231	2,950,000	7,739,600	0	16,023,831
Overhead	10%						533,423	295,000	773,960	0	1,602,383
G&A, Profit	8%						469,412	259,600	681,085	0	1,410,097
TOTAL							6,337,066	3,504,600	9,194,645	0	19,036,311

Remedial Design (4%) 761,452

Construction Management (4%) 761,452

Project Management (3%) 571,089

Contingency (25%) 5,282,576

Total 26,412,881

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.13c SOLIDIFICATION AND LOADOUT COSTS - 1,000,000 CY DREDGE VOLUME

Basis of Estimate: OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	7,692	HR or	962 Shifts
Volume dredged:	1,000,000	CY	

CREW DESCRIPTION										
Item Number Factor HR per item Total H										
Superintendent	1	1	7,692	7,692						
Operator	2	1	7,692	15,385						
Laborer	2	1	7,692	15,385						
Front End Loader	1	1	7,692	7,692						
Crane	1	1	7,692	7,692						
Pickup Truck	2	1	7,692	15,385						

SOLIDIFICATION

Dredging production rate: Dredging duration: Volume: Lime addition rate: Volume lime needed:	130 7,692 1,000,000 10% 100,000	CY/HR = HR or CY by volume CY =	962 Shifts 110,000 TN at		1.1 TN/CY
ltem	Number	Factor	HR per item	Total HR	1
Superintendent	1	1	7,692	7,692	
Engineer	2	1	7,692	15,385	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	7,692	30,769	
Laborer	3	1	7,692	23,077	
Low-ground-pressure Dozer	2	1	7,692	15,385	1 dozer per mix crew
Front End Loader	4	1	7,692	30,769	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	7,692	15,385	1 water truck per mix crew
Pickup Truck	2	1	7,692	15,385	booster pumps for control of rain water
Booster Pump	2	1	7,692	15,385	

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.13c SOLIDIFICATION AND LOADOUT COSTS - 1,000,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	1,000,000		
Volume as solidified:	1,150,000		
Offloading duration:	7,692	HR or	962 Shifts

Item	Number	Factor	HR per item	Total HR	1
Superintendent	1	1	7,692	7,692	92
Operator	1	1	7,692	7,692	
Laborer	2	1	7,692	15,385	
Front End Loader	4	1	7,692	30,769	1
Pickup Truck	2	1	7,692	15,385	1

TABLE K.13d SOLIDIFICATION AND LOADOUT COSTS - 10,000,000 CY DREDGE VOLUME

			Unit Prices					Cost			
Solidification	10,000,000	CY	Labor	Equipment	Materials	Subcont	Labor	Equipment	Materials	Subcont	TOTAL
Solidification											
Superintendent	76,923	HR	100				7,692,308				7,692,308
Engineer	153,846	HR	68				10,461,538				10,461,538
Operator	307,692	HR	41				12,661,538				12,661,538
Laborer	230,769	HR	30				7,001,538				7,001,538
Low-ground-pressure Dozer	153,846	HR		37			0	5,692,308	0	0	5,692,308
Front End Loader	307,692	HR		23			0	7,181,538	0	0	7,181,538
Water Truck	153,846	HR		25			0	3,846,154	0	0	3,846,154
Pickup Truck	153,846	HR		5			0	769,231	0	0	769,231
Booster Pump	153,846	HR		26			0	4,060,000	0	0	4,060,000
Lime	1,100,000	TN			70		0	0	77,396,000	0	77,396,000
Truck Loading for Offsite Disposal											
Superintendent	76,923	HR	100				7,692,308				7,692,308
Operator	76,923	HR	41				3,165,385				3,165,385
Laborer	153,846	HR	30				4,667,692				4,667,692
Front End Loader	307,692	HR		23			0	7,181,538	0	0	7,181,538
Pickup Truck	153,846	HR		5			0	769,231	0	0	769,231
TOTAL							53,342,308	29,500,000	77,396,000	0	160,238,308
Overhead	10%						5,334,231	2,950,000	7,739,600	0	16,023,831
G&A, Profit	8%						4,694,123	2,596,000	6,810,848	0	14,100,971
TOTAL							63,370,662	35,046,000	91,946,448	0	190,363,110

7,614,524

Remedial Design (4%) Construction Management (4%) 7,614,524

Project Management (3%) 5,710,893

Contingency (25%) 52,825,763

Total 264,128,814

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

TABLE K.13d SOLIDIFICATION AND LOADOUT COSTS - 10,000,000 CY DREDGE VOLUME

Basis of Estimate: OFFLOADING BARGES

Dredging production rate:	130	CY/HR	
Dredging duration:	76,923	HR or	9,615 Shifts
Volume dredged:	10,000,000	CY	

CREW DESCRIPTION									
Item	Number	Factor	HR per item	Total HR					
Superintendent	1	1	76,923	76,923					
Operator	2	1	76,923	153,846					
Laborer	2	1	76,923	153,846					
Front End Loader	1	1	76,923	76,923					
Crane	1	1	76,923	76,923					
Pickup Truck	2	1	76,923	153,846					

SOLIDIFICATION

 Dredging production rate:	130	CY/HR =		
Dredging duration:	76,923	HR or	9,615 Shifts	
Volume:	10,000,000	CY		
Lime addition rate:	10%	by volume		
Volume lime needed:	1,000,000	CY =	1,100,000 TN at	1.1 TN/CY

Item	Number	Factor	HR per item	Total HR]
Superintendent	1	1	76,923	76,923	
Engineer	2	1	76,923	153,846	1 engineer for lab QC, one for field QC, and one for oversight
Operator	4	1	76,923	307,692	
Laborer	3	1	76,923	230,769	
Low-ground-pressure Dozer	2	1	76,923	153,846	1 dozer per mix crew
Front End Loader	4	1	76,923	307,692	1 front end loader per mix crew and 1 per loading crew
Water Truck	2	1	76,923	153,846	1 water truck per mix crew
Pickup Truck	2	1	76,923	153,846	booster pumps for control of rain water
Booster Pump	2	1	76,923	153,846]

TABLE K.13d SOLIDIFICATION AND LOADOUT COSTS - 10,000,000 CY DREDGE VOLUME

Basis of Estimate (continued):

TRUCK LOADING FOR OFFSITE DISPOSAL

Offloading production rate:	150	CY/HR =	1500 CY/DA
Volume dredged:	10,000,000		
Volume as solidified:	11,500,000		
Offloading duration:	76,923	HR or	9,615 Shifts

Item	Number	Factor	HR per item	Total HR	
Superintende	nt 1	1	76,923	76,923	
Operat	or 1	1	76,923	76,923	
Labor	er 2	1	76,923	153,846	2 laborers for traffic control
Front End Load	er 4	1	76,923	307,692	
Pickup True	k 2	1	76,923	153,846	

TABLE K.14OFF-SITE TRUCKING TRANSPORTATION AND DISPOSAL COSTS

Disposal Facility	Owner	Location	Distance	Transportation	Disposal	Transportation	Daily Capacity	Total Capacity
				(Truck)	Nonhazardous	and Disposal		
			(miles)	(\$/ton)	(\$/ton)	(\$/ton)	(tons/day)	
High Acres Landfill	Waste Management	Fairport, NY	80	\$16	\$50	\$66	3,500	1.9 million CY constructed
							(2,700 committed	
							capacity)	
Niagara Falls/Pine Avenue	Allied Waste	Niagara Falls, NY	165	\$30	\$30	\$60		500,000 CY permitted; 1.8
							(1,700 committed	million CY pending approval
							capacity)	
CWM Chemical Services	Waste Management	Model City, NY	170	\$31	\$50	\$81	4,400	1.2 million CY constructed
							(1,000 committed	
							capacity)	
American Landfill	Waste Management	Waynesburg, OH	390	\$67	\$18	\$85	15,000	8.5 million CY currently
								permitted; 85 million CY
								pending approval
Atlantic Waste Disposal	Waste Management	Waverly, VA	525	\$89	\$22	\$111	15,000	104 million CY permitted
							(3,750 committed	capacity
							capacity)	

Notes:

1. Transportation costs (i.e., trucking) are based on information provided by Tonawanda Tank Transport, Inc.

2. Transportation costs (i.e., trucking) assume 1 hour demurrage fee (\$65 per hour) would be required for approximately 10% of the loads.

3. Disposal costs based on vendor quotes from Waste Management and Allied Waste.

4. Committed capacity is based on current amounts of waste material being received by the facility

TABLE K.15TRUCKING TRANSPORTATION COST ANALYSIS

	Facility Location	Distance	Rate @ \$3.00/	Per Load	Fuel	Liner Charge	Total per	Demurrage	Cost/Ton	Cost/Yard
			Loaded Mile		Surcharge	@ \$50 per	Load (\$/Load)	Cost ¹		
Company					@ 10%	Load		(\$/Load)		
High Acres Landfill	Fairport, NY	80	\$3.00	\$240.00	\$24.00	\$50.00	\$314.00	\$6.50	\$16	\$22
Niagara Falls/Pine Avenue	Niagara Falls, NY	165	\$3.00	\$495.00	\$49.50	\$50.00	\$594.50	\$6.50	\$30	\$42
Waste Management	Model City, NY	170	\$3.00	\$510.00	\$51.00	\$50.00	\$611.00	\$6.50	\$31	\$43
American Landfill	Waynesburg, OH	390	\$3.00	\$1,170.00	\$117.00	\$50.00	\$1,337.00	\$6.50	\$67	\$94
Atlantic Waste Disposal	Waverly, VA	525	\$3.00	\$1,575.00	\$157.50	\$50.00	\$1,782.50	\$6.50	\$89	\$125

Notes:

1. Demurrage cost assumes 1 hour demurrage fee (\$65 per hour) would be required for approximately 10% of the loads (i.e., \$6.50 per load).

2. Transportation costs (i.e., trucking) are based on information provided by Tonawanda Tank Transport, Inc. (Fall 2003).

3. 20 tons/load is assumed.

4. A unit weight of 1.4 tons/cubic yard is assumed.

TABLE K.16OFF-SITE TRUCKING TRANSPORTATION AND DISPOSAL COSTS BY VOLUME

Disposal Volume (<i>In Situ</i>) (cubic yards)	Disposal Volume (Dewatered/Solidified) (cubic yards)	Disposal Tons	Disposal Facilities and Percentage Used		Average Distance/Load (miles)	Average Transportation & Disposal Cost (\$/ton)	Total Transportation & Disposal Cost
100,000	115,000	404 000	High Acres Landfill 50% Falls/Pine Avenue 50%	Niagara	123	\$63	\$10,122,875
500,000	575,000		High Acres Landfill 50% Falls/Pine Avenue 50%	Niagara	123	\$63	\$50,614,375
1,000,000	1,150,000		High Acres Landfill 50% Falls/Pine Avenue 50%	Niagara	123	\$63	\$101,228,750
10,000,000	11,500,000	16 100 000	American Landfill 50% Waste Disposal 50%	Atlantic	458	\$98	\$1,577,598,750

Notes:

1. Transportation costs (i.e., trucking) are based on information provided by Tonawanda Tank Transport, Inc.

2. Transportation costs (i.e., trucking) assume 1 hour demurrage fee (\$65 per hour) would be required for approximately 10% of the loads.

3. Disposal costs based on vendor quotes from Waste Management and Allied Waste.

4. Assume density of 1.4 tons/cubic yard

TABLE K.17 OFF-SITE RAIL TRANSPORTATION AND DISPOSAL COSTS

Disposal Facility	Owner	Location	Distance (miles)	Transportation (Rail) (\$/ton)	Disposal Nonhazardous (\$/ton)	Transportation and Disposal (\$/ton)
Taylor	Allied Waste	Mauk, GA	1100	\$66	\$30	\$96
Lee County	Allied Waste	Bishopville, SC	800	\$48	\$30	\$78
EQ-Wayne Disposal Inc.	EQ Holdings, Inc.	Belleville, MI	450	\$27	\$33	\$60
Columbia Ridge Landfill	Waste Management	Arlington, OR	2660	\$160	\$50	\$210

Notes:

1. Transportation costs (i.e., rail) are based on estimated cost of \$0.06 per ton-mile or vendor quotes.

2. Disposal costs based on vendor quotes from Waste Management and Allied Waste.

TABLE K.18 OPTION 2 OFF-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARY

	100,000 CY	500,000 CY	1,000,000 CY	10,000,000 CY
Capital Costs				
Construct Process Area and				
Bulkhead	18,495,444	18,495,444	18,495,444	18,495,444
Offload Barges, Solidification, and				
Load Out	3,066,053	15,330,267	30,660,534	
T&D	10,122,875	50,614,375	101,228,750	1,577,598,750
Operating Costs				
none				
Total Off-Site Sediment Management	31,684,373	84,440,087	150,384,729	1,902,699,539
Costs per In Situ Cubic Yard	317	169	150	190
Duration				
Number of Dredge Crews	1	1	1	1
Dredge Rate (Per Dredge Crew)	130	130	130	130
Duration (DA)	48	240	481	4,808
Duration (MO)	2	12	24	240
Duration (YR)	0.3	1.7	3.4	34.3

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

Honeywell

TABLE K.19 OPTION 4 OFF-SITE SEDIMENT MANAGEMENT COST AND DURATION SUMMARY

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
Capital Costs				
Construct Process Area	11,543,700	11,543,700	11,543,700	11,543,700
Construct Mechanical Dewatering				
System	9,628,556	9,628,556	9,628,556	9,628,556
Mechanical Dewatering per 1,000				
gallon	0.21	0.21	0.21	0.21
Total Gallons to be Treated (at 1,295	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Mechanical Dewatering Costs	27,195	135,975	271,950	27,195
Advanced Water Treatment System	26,237,625	26,237,625	26,237,625	39,768,803
Water Treatment per 1,000 gallon	4.98	4.98	4.98	4.98
Total Gallons to be Treated (at 1,295	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Water Treatment Costs	644,910	3,224,550	6,449,100	64,491,000
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Solidification and Load Out	2,641,288	13,206,441	26,412,881	264,128,814
T&D	10,122,875	50,614,375	101,228,750	1,577,598,750
Operating Costs				
none				
Total Off-Site Sediment Management	61,846,149	115,591,222	182,772,563	1,968,186,818
Costs per In Situ Cubic Yard	618	231	183	197
Duration				
Number of Dredge Crews	1	1	1	1
Dredge Rate (Per Dredge Crew)	150	150	150	150
Duration (DA)	42	208	417	4,167
Duration (MO)	2	10	21	208
Duration (YR)	0.3	1.5	3.0	29.8

TABLE K.20OPTION 2 VERSUS OPTION 4OFF-SITE SEDIMENT MANAGEMENT COST SUMMARY

	100,000 CY	500,000 CY	1,000,000 CY	10,000,000 CY
Option 2				
Total Off-Site Sediment Management	31,684,373	84,440,087	150,384,729	1,902,699,539
Costs per In Situ Cubic Yard	317	169	150	190
Option 4				
Total Off-Site Sediment Management	61,846,149	115,591,222	182,772,563	1,968,186,818
Costs per In Situ Cubic Yard	618	231	183	197

TABLE K.21 CONSTRUCTION COST ESTIMATE FOR ENHANCED PRIMARY TREATMENT (4,500 GPM @ 24-HRS/DAY)

		0	Init Costs (\$)			
		Material /	Labor /			
Ouantity	Units			Total		Total Costs
2	each				\$	172,500
2	each	150,000		172,500	\$	345,000
		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,			,
2	each			20,000	\$	40,000
2	each			20,000	\$	40,000
					\$	80,000
2	each	100,000	15,000	115,000	\$	230,000
4	each	26,000	1,000	27,000	\$	108,000
3	each	20,000	800	20,800	\$	62,400
					\$	170,400
2,000	LF			250	\$	500,000
1	each				\$	100,000
					\$	600,000
	each				\$	150,000
	each				\$	180,000
					\$	330,000
2	each	1,000	500	1,500	\$	3,000
2	each	7,000	500	7,500		15,000
					\$	18,000
0	each	(Lump Sum)		40,000	\$	-
1.5	acre			125,000		187,500
						187,500
1	each			100,000	\$	100,000
		Gra	and SubTotal			2,230,000
					\$	750,000
					\$	446,000
					\$	3,426,000
			Total		\$	5,573,000
· · · · · ·	$ \begin{array}{c} 2\\ 2\\ 2\\ 4\\ 3\\ \hline 2,000\\ 1\\ \hline 2\\ 2\\ 2\\ \hline 0\\ 1.5\\ \hline \end{array} $	$\begin{array}{c ccc} 2 & each \\ 4 & each \\ 2,000 \\ 1 & EF \\ each \\ 2,000 \\ 1 & each \\ each \\ 2 & each \\ 2 & each \\ 2 & each \\ 1.5 & each \\ 2 &$	Quantity Units Equipment 2 each 75,000 2 each 150,000 2 each	Quantity Units Equipment Installation 2 each 75,000 11,250 2 each 150,000 22,500 2 each 100,000 15,000 2 each 20,000 15,000 4 each 26,000 1,000 4 each 20,000 1000 2,000 LF	$ \begin{array}{ c c c c c } \hline Quantity & Units & Equipment & Installation & Total \\ \hline 2 & each & 75,000 & 11,250 & 86,250 \\ \hline 2 & each & 150,000 & 22,500 & 172,500 \\ \hline 2 & each & 100,000 & 15,000 & 115,000 \\ \hline 2 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 3 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 27,000 \\ \hline 4 & each & 26,000 & 1,000 & 20,800 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 4 & each & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 5 & -4 & -4 & -4 & -4 \\ \hline 6 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4 \\ \hline 7 & -4 & -4 & -4 & -4$	Quantity Units Equipment Installation Total 2 each 75,000 11,250 86,250 \$ 2 each 150,000 22,500 172,500 \$ 2 each 20,000 \$ \$ \$ 2 each - 20,000 \$ \$ 2 each 100,000 15,000 115,000 \$ 4 each 26,000 1,000 27,000 \$ 4 each 20,000 \$ \$ \$ 2,000 LF 250 \$ \$ 2,000 LF \$ \$ \$ 2,000 LF \$ \$ \$ \$ 2,000 LF \$ \$ \$ \$ 2,000 LF \$ \$ \$ \$ 2 each 1,000 \$ \$ \$ 2 each 1,000

Remedial Design (4%)	\$ 222,920
Construction Management (3%)	\$ 222,920
Project Management (4%)	\$ 167,190
Contingency (25%)	\$ 1,546,508
Total	\$ 7,732,538

Note:

1. Cost for 1,000 GPM train, scaled to 2,250 GPM.

2. Estimate does not include providing for utilities, e.g. fire water system, air, nitrogen, power, etc. in a new area.

3. Estimate does not include costs for relocation, if any, of underground and aboveground utilities, demolition, closure, or remediation.

TABLE K.22CONSTRUCTION COST ESTIMATE FOR ENHANCEDPRIMARY TREATMENT WITH MULTI-MEDIA FILTRATION(4,500 GPM @ 24-hrs./day)

			U	(\$) (\$) (\$)		
			Material /	Labor /		
Process Unit / Item	Quantity	Units	Equipment	Installation	Total	Total Costs
Flocculator	2	each	75,000	11,250	86.250	\$ 172,500
Inclined Plate (Secondary) Clarifier	2	each	150,000	22,500	172,500	\$ 345,000
Multi-Media Filter (includes b/w pumps)	2	each	145,000	21,750	166,750	\$ 333,500
Tanks						,
Filter Feed Tank	2	each	70,000	10,500	80,500	\$ 161,000
Filter Effluent Tank	2	each	70,000	10,500	80,500	\$ 161,000
Effluent Holding Tank	2	each	100,000	15,000	115,000	\$ 230,000
C C					· · · ·	\$ 552,000
Chemical Feed System						
Polymer Feed System (Secondary Clarifier)	2	each			20,000	\$ 40,000
Alum Feed System (Secondary Clarifier)	2	each			20,000	\$ 40,000
				•		\$ 80,000
Pumps						
Pump from CDF to Flocculator	4	each	26,000	1,000	27,000	\$ 108,000
Clarifier Sludge Transfer Pump	3	each	20,000	800	20,800	\$ 62,400
Pump from Filter Fd Tk to MMF	4	each	26,200	1,000	27,200	\$ 108,800
Final Effluent Pump	4	each	26,200	800	27,000	\$ 108,000
						\$ 496,000
Piping						
Carbon Steel Piping(lined, insulated and heat traced)	3,500	LF			250	\$ 875,000
Misc. Yard Piping (20% of piping)	1	each				\$ 175,000
						\$ 1,050,000
Fittings and Tie-ins (25% of subtotal piping)		each				\$ 262,500
Valves (30% of subtotal piping)		each				\$ 315,000
						\$ 577,500
Meters						
pH Meters	4	each	1,000	500	1500	\$ 6,000
Flowmeters	4	each	7,000	500	7,500	\$ 30,000
						\$ 36,000
Site Preparation & Development						
Site Clearance + Grubbing	0	each	(Lump Sum)		40,000	\$ -
Area Paving & Foundations	2.50	acre			125,000	\$ 312,500
						\$ 312,500
Platforms, Ladders, Supports, etc.	1	each			125,000	\$ 125,000
			Gr	and SubTota	l	4,080,000
Electrical Costs (lump sum)						\$ 850,000
Instrumentation (20% of grand subtotal)						\$ 816,000
Cost for Two-1,000 GPM Train						\$ 5,746,000
Scale-Up to Two-2,250 GPM trains						\$ 9,347,000

Remedial Design (4%) \$ 373,880

Construction Management (3%) \$ 373,880

Project Management (4%) \$ 280,410

Contingency (25%) \$ 2,593,793

Total \$ 12,968,963

Note:

1. Cost and line sizing for 1,000 GPM train, scaled to 2,250 GPM.

2. Estimate does not include providing for utilities, e.g. fire water system, air, nitrogen, power, etc. in a new area.

3. Estimate does not include costs for relocation, if any, of underground and aboveground utilities, demolition, closure, or remediation.

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

Honeywell

TABLE K.23 CONSTRUCTION COST ESTIMATE FOR ADVANCED TREATMENT (4,500 GPM @ 24-HRS/DAY)

			1	Unit Costs (\$)		1	
			Material /	Labor /			
Process Unit / Item	Quantity	Units	Equipment	Installation	Total		Total Costs
Flocculator	2	each	75,000	11,250	86,250	\$	172,500
Inclined Plate (Secondary) Clarifier	2	each	150,000	22,500	172,500	\$	345,000
Multi-Media Filter (includes backwash pumps)	2	each	145,000	21,750	166,750	\$	333,500
Air Stripper system (includes blowers)	2	each	400,000	40,000	440,000	\$	880,000
GAC Filter Systems	6	each	135,000	13,500	148,500	\$	891,000
Tanks							
Filter Feed Tank	2	each	140,000	21,000	161,000	\$	322,000
Filter Effluent Tank	2	each	70,000	10,500	80,500	\$	161,000
Air Stripper Effluent Tank	2	each	70,000	10,500	80,500	\$	161,000
GAC Effluent Tank	2	each	70,000	10,500	80,500	\$	161,000
Effluent Holding Tank	2	each	100,000	15,000	115,000	\$	230,000
						\$	1,035,000
Chemical Feed System							
pH Adjustment System	4	each			100,000	\$	400,000
Polymer Feed System (Secondary Clarifier)	2	each			20,000	\$	40,000
Polymer Feed System (Filter Press)	2	each			20,000	\$	40,000
Alum Feed System (Secondary Clarifier)	2	each			20,000	\$	40,000
						\$	520,000
Pumps							
Pump from Filter Fd Tk to MMF	4	each	26,200	1,000	27,200	\$	108,800
Pump from MMF to Air Stripper	4	each	26,400	800	27,200	\$	108,800
GAC Influent Pump	4	each	35,000	800	35,800	\$	143,200
Final Effluent Pump	4	each	26,200	800	27,000	\$	108,000
Solids Pump	3	each	20,000	800	20,800	\$	62,400
						\$	531,200
Piping							
Carbon Steel Piping(lined, insulated and heat traced)	8,000	LF			250	\$	2,000,000
Misc. Yard Piping (20% of piping)	1	each				\$	400,000
						\$	2,400,000
Fittings and Tie-ins (25% of subtotal piping)		each				\$	600,000
Valves (30% of subtotal piping)		each				\$	720,000
						\$	1,320,000
Meters							
pH Meters	4	each	1,000	500	1,500	\$	6,000
Flowmeters	4	each	7,000	500	7,500	\$	30,000
						\$	36,000
Site Preparation & Development							
Site Clearance + Grubbing	0	each	(Lump Sum)		40,000	\$	-
Area Paving & Foundations	4	acre			125,000	\$	500,000
				_		\$	500,000
Platforms, Ladders, Supports, etc.	1	each			175,000	\$	175,000
			G	rand SubTot	al		9,140,000
Electrical Costs (lump sum)						\$	1.000.000
Instrumentation (20% of grand subtotal)						\$	1,828,000
Cost for Two-1.000 GPM Trains						\$	11.968.000
						\$,,
Scale-Up to Two-2,250 GPM trains						Э	18,910,000

Remedial Design (4%) \$ 756,400 756,400

Construction Management (3%) \$

Project Management (4%) \$ 567,300

Contingency (25%) \$ 5,247,525

Total \$ 26,237,625

Note:

1. Cost and line sizing for 1,000 GPM train, scaled to 2,250 GPM.

2. Estimate does not include providing for utilities, e.g. fire water system, air, nitrogen, power, etc. in a new area.

3. Estimate does not include costs for relocation, if any, of underground and aboveground utilities, demolition, closure, or remediation.

TABLE K.24 CONSTRUCTION COST ESTIMATE FOR ENHANCED PRIMARY TREATMENT PLUS ORGANICS REMOVAL (4,500 GPM @ 24-HRS/DAY)

			τ	Unit Costs (\$)			
			Material /	Labor /			
Process Unit / Item	Quantity	Units	Equipment	Installation	Total	То	al Costs (\$)
Flocculator	2	each	75,000	11,250	86,250	\$	172,500
Inclined Plate (Secondary) Clarifier	2	each	150,000	22,500	172,500	\$	345,000
GAC Filter Systems	6	each	135,000	13,500	148,500	\$	891,000
Tanks							
GAC Feed Tank	2	each	70,000	10,500	80,500	\$	161,000
Effluent Holding Tank	2	each	100,000	15,000	115,000	\$	230,000
				Subt	otal	\$	391,000
Chemical Feed System							
Polymer Feed System (Inclined Plate Clarifier)	2	each			20,000	\$	40,000
Alum Feed System (Inclined Plate Clarifier)	2	each			20,000	\$	40,000
Polymer Feed System (Filter Press)	0	each			20,000	\$	-
				Subt		\$	80,000
Pumps							,
Pump from CDF to Flocculator	4	each	26,200	1,000	27,200	\$	108,800
GAC Influent Pump	4	each	35,000	800	35,800	\$	143,200
Final Effluent Pump	4	each	26,200	800	27,000	\$	108,000
1				Subt		\$	360,000
Piping							<i>.</i>
Carbon Steel Piping(lined, insulated and heat traced)	2,500	LF			250	\$	625,000
Misc. Yard Piping (20% of piping)	1	each				\$	125,000
				Subtotal		\$	750,000
Fittings and Tie-ins (25% of subtotal piping)		each				\$	188,000
Valves (30% of Subtotal piping)		each				\$	225,000
				Subt	otal	\$	413,000
Meters							<i>.</i>
pH Meters	4	each	1,000	500	1,500	\$	6,000
Flowmeters	4	each	7,000	500	7,500	\$	30,000
				Subt	otal	\$	36,000
Site Preparation & Development							· · · ·
Site Clearance + Grubbing	0	each	(Lump Sum)		40,000	\$	-
Area Paving & Foundations	2	acre			125,000	\$	250,000
						\$	250,000
Platforms, Ladders, Supports, etc.	1	each			175,000	\$	175,000
	<u> </u>		G	rand SubTota	al		3,860,000
Electrical Costs (Lump Sum)						\$	750.000
Instrumentation (20% of Grand SubTotal)						\$	772,000
Cost for One-1,000 GPM Trains						\$	5,382,000
Scale-Up to Two-2,250 GPM trains						\$ \$	8,197,000
Scale-Op to 1 w0-2,250 GF WI trains						Φ	0,197,000

 Remedial Design (4%)
 \$
 327,880

 Construction Management (3%)
 \$
 327,880

 Project Management (4%)
 \$
 245,910

 Contingency (25%)
 \$
 2,274,668

 Total
 \$
 11,373,338

Note:

1. Cost and line sizing for 1,000 GPM train, scaled to 2,250 GPM.

2. Estimate does not include providing for utilities, e.g. fire water system, air, nitrogen, power, etc. in a new area.

3. Estimate does not include costs for relocation, if any, of underground and aboveground utilities, demolition, closure, or remediation.

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

Honeywell

		(-	,500 GF	wi e i	24-11		.)							
Chemical usage									Enh	anced + MMF				
				Advance	d				an	d Organics	Eı	nhanced		Primary
			Anie	onic	Cationic				Poly	mer & Alum	Polyn	ner & Alum	Poly	mer & Alun
	Caustic		Poly	mer	Polymer		Alum			Cost		Cost		Cost
	0.54		0.1		2.5		50	mg/L						
Flow 4,500 gpm	24.30	gpm	3.0		61.32		1226	kg/day						
17,034 L/min	12,772,080	gpy	6.1		134.91		2698	lb/day						
24,529,470 L/day		015	24		49243		984858	lb/yr						
, ,														
	0.72	\$/gal	1.	8	1.35		0.16	\$/lb						
	\$9,195,898		4,4		66,478		157,577	\$/yr	\$	230,000	\$	230,000	\$	
	+2,122,02,020				,			<i>47 J</i> 2	Ŧ		Ŧ		+	
	Chemical Usage	Costs Per Year				\$	9,424,38	5	\$	230,000	\$	230,000	\$	
Electrical														
cost per kWh \$ 0.0 cost per hP \$ 0.00059														
5 0.00039	4			Advance	d				Enh	anced + MMF	Eı	nhanced		Primary
ump	hP	Number	Cost/hr		cost/day	cost/yr								
Pump from Cyclone to Pri. Clarifier	20	2	\$		\$ 0.57	\$	208.1	4						
Pump from Filter Fd Tk to MMF	25	2	\$	0.03	\$ 0.71	\$	260.1	7						
Pump from MMF to Air Stripper	30	2	\$	0.04	\$ 0.86	\$	312.2	1						
GAC Influent Pump	35	2	\$		\$ 1.00	\$	364.2							
Effluent Pump	25	2	\$		\$ 0.71	\$	260.1							
Decant Water Pumps for Solids Tank	15	4	\$		\$ 0.86	\$	312.2	1						
Solids Transfer Pump	3	4	\$		\$ 0.17	\$	62.4							
Solids Pump	3	2	\$		\$ 0.09	\$	31.2							
Decant Water Pump	15	2	ŝ		\$ 0.43	\$	156.1							
Other electrical requirements (25% of total)	10	-	Ψ	0.02	φ 0.15	\$	491.7							
······································											_			
	Electrical Costs	Per Year				\$	2,45	9	\$	1,800	\$	1,200	\$	
GAC Filters					(¢	20.00		¢		é		¢	
Exchange out 3 beds of carbon every 30 days					(per month)	\$	30,00		\$	-	\$	-	\$	
	GCA Filtration(costs Per Year				\$	1,080,00		\$	-	\$	-	\$	
Multi-Media Filter (MMF)	MMF Filtration	Costs Per Year			per month)	\$ \$	6,75 243,00		\$	243,000	\$		\$	
Labor						Ŧ	,	-	Ŧ	,	Ŧ		<i>r</i>	
							Advanced		Enha	anced + MMF	Eı	nhanced		Primary
Total number of personnel (administrative, operation	s, maintenance (med	ch. & elec.))					12			10		8		0
Average annual pay (includes benefits) per person						\$	75,00	0	\$	75,000	\$	75,000	\$	
Fotal labor						\$	900,00	0	\$	750,000	\$	600,000	\$	
Analytical														
		Number/year	Cost/test											
Metals - Water (total) (10 per week with QC)		1	624	157.48		\$	98,27	0	\$	98,270	\$	98,270	\$	98,27
Sulfides - Water (10 per week with QC)			624	15.75		\$	9,82		\$	9,829		9,829	\$	9,82
TSS (10 per week with QC)			624	8.60		\$	5,36		\$	5,364		5,364		5,36
Surbidity - Water (10 per week with QC)			624	8.60		э \$	5,36		\$	5,364	\$	5,364	\$	5,30
Fotal Analytical			024	0.00		э \$	118,82		5 5	118,826	э \$	118,826		118,82
iotai Anaiyutai	Total Onen-the	Coata non s				چ \$	11,769,00		ې \$	1,344,000		950,000		118,82
Freatment Rate	Total Operating	; Costs per year				ð	11,769,00		\$	1,344,000 4,500		<u>950,000</u> 4,500	\$	4,5
Gallon per Year							2,365,200,0			2,365,200,000		4,500 ,365,200,000		2,365,200,00
Fotal Operating Costs per 1,000 Gallons								98	1	0.57	2	0.40		0.05
Total Operating Costs per 1,000 Ganons							4.	70		0.37		0.40		0.05

TABLE K.25 **OPERATIONS & MAINTENANCE COST ESTIMATE** (4,500 GPM @ 24-HRS/DAY)

Notes:

1.Caustic usage is based on the treatability report prepared by O'Brien & Gere for the Willis Avenue/Semet Tar beds IRM (groundwater). This said that 0.54 percent of 50% caustic solution was required to adjust the pH to 8.5 for solids precipitation.

2. Electrical estimates are based on the hP and a conversion provided in literature by Gorman Rupp Pumps

3. Carbon usage rate provided by GAC supplier.

ONONDAGA LAKE FEASIBILITY STUDY APPENDIX K

Honeywell

TABLE K.26a SUPERNATANT TREATMENT COST SUMMARY PRIMARY WATER TREATMENT

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
Capital Costs				
Construct Water Treatment System	0	0	0	C
Operation Water Treatment System per 1,000 Gallon	0.05	0.05	0.05	0.05
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Total Operation Water Treatment System	6,475	32,375	64,750	647,500
Dismantle Water Treatment System	0	0	0	0
Operating Costs				
none				
Total Supernatant Treatment Costs	6,475	32,375	64,750	647,500
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Costs per 1,000 Gallon	0.05	0.05	0.05	0.05

TABLE K.26bSUPERNATANT TREATMENT COST SUMMARYENHANCED PRIMARY WATER TREATMENT

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
Capital Costs				
Construct Water Treatment System	7,732,538	7,732,538	7,732,538	11,720,335
Operation Water Treatment System per 1,000 Gallon	0.40	0.40	0.40	0.40
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Total Operation Water Treatment System	51,800	259,000	518,000	5,180,000
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs	1			
none				
Total Supernatant Treatment Costs	8,784,338	8,991,538	9,250,538	17,900,335
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Costs per 1,000 Gallon	67.83	13.89	7.14	1.38

TABLE K.26c SUPERNATANT TREATMENT COST SUMMARY ENHANCED PRIMARY TREATMENT WITH MULTI-MEDIA FILTRATION

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
Capital Costs				
Construct Water Treatment System	12,968,963	12,968,963	12,968,963	19,657,271
Operation Water Treatment System per 1,000 Gallon	0.57	0.57	0.57	0.57
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Total Operation Water Treatment System	73,815	369,075	738,150	7,381,500
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs				
none				
Total Supernatant Treatment Costs	14,042,778	14,338,038	14,707,113	28,038,771
Gallons of Water per <i>In Situ</i> Cubic Yard (see Table K.1)	1,295	1,295		1,295
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Costs per 1,000 Gallon	108.44	22.14	11.36	2.17

TABLE K.26d SUPERNATANT TREATMENT COST SUMMARY ADVANCED WATER TREATMENT

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
Capital Costs				
Construct Water Treatment System	26,237,625	26,237,625	26,237,625	39,768,803
Operation Water Treatment System per 1,000 Gallon	4.98	4.98	4.98	4.98
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Total Operation Water Treatment System	644,910	3,224,550	6,449,100	64,491,000
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000
Operating Costs				
none				
Total Supernatant Treatment Costs	27,882,535	30,462,175	33,686,725	105,259,803
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000
Costs per 1,000 Gallon	215.31	47.05	26.01	8.13

TABLE K.26e SUPERNATANT TREATMENT COST SUMMARY ENHANCED PRIMARY TREATMENT PLUS ORGANICS REMOVAL

	100,000	500,000	1,000,000	10,000,000			
	CY	CY	CY	CY			
Capital Costs							
Construct Water Treatment System	11,373,338	11,373,338	11,373,338	17,238,756			
Operation Water Treatment System per 1,000 Gallon	0.57	0.57	0.57	0.57			
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295			
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000			
Total Operation Water Treatment System	73,815	369,075	738,150	7,381,500			
Dismantle Water Treatment System	1,000,000	1,000,000	1,000,000	1,000,000			
Operating Costs							
none							
Total Supernatant Treatment Costs	12,447,153	12,742,413	13,111,488	25,620,256			
Gallons of Water per In Situ Cubic Yard (see Table K.1)	1,295	1,295	1,295	1,295			
Total Gallons	129,500,000	647,500,000	1,295,000,000	12,950,000,000			
Costs per 1,000 Gallon	96.12	19.68	10.12	1.98			

TABLE K.27 SUMMARY OF SEDIMENT MANAGEMENT COSTS

	100,000	500,000	1,000,000	10,000,000
	CY	CY	CY	CY
On-Site Option 1				
Primary	16,840,455	39,575,998	67,325,738	477,885,171
Enhanced Primary	25,618,318	48,535,160	76,511,525	495,138,006
Enhanced Primary w/MMF	30,876,758	53,881,660	81,968,100	505,276,443
Advanced	44,716,515	70,005,798	100,947,713	582,497,474
Enhanced Primary w/OR	29,281,133	52,286,035	80,372,475	502,857,927
Off-Site Option 2	31,684,373	84,440,087	150,384,729	1,902,699,539
Off-Site Option 4	61,846,149	115,591,222	182,772,563	1,968,186,818