Prepared for

Honeywell

Honeywell International Inc.

301 Plainfield Road, Suite 330 Syracuse, New York 13212 and

Parsons

301 Plainfield Road, Suite 350 Syracuse, New York 13212

ONONDAGA LAKE BOTTOM PHASE II – SEDIMENT CONSOLIDATION AREA CONSTRUCTION

CONSTRUCTION QUALITY ASSURANCE (COA)
FINAL REPORT
ONONDAGA COUNTY,
TOWN OF CAMILLUS, NEW YORK

Prepared by

Geosyntec consultants

engineers | scientists | innovators

289 Great Road, Suite 105 Acton, Massachusetts 01720

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GJ4706B

April 2013

Prepared for

Honeywell International Inc.

301 Plainfield Road, Suite 330 Syracuse, New York 13212

Parsons

301 Plainfield Road, Suite 350 Syracuse, New York 13212

ONONDAGA LAKE BOTTOM PHASE II – SEDIMENT CONSOLIDATION AREA CONSTRUCTION CONSTRUCTION QUALITY ASSURANCE (COA) FINAL REPORT ONONDAGA COUNTY, TOWN OF CAMILLUS, NEW YORK

Prepared by

engineers | scientists | innovators

289 Great Road, Suite 105 Acton, Massachusetts 01720

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GJ4706B

April 2013

EXECUTIVE SUMMARY

Honeywell International Inc. (Honeywell) entered into a Consent Decree (United States District Court, Northern District of New York, 2007) (89-CV-815) with the New York State Department of Environmental Conservation (NYSDEC) to implement the selected remedy for Onondaga Lake as outlined in the Record of Decision (ROD) issued on 1 July 1 2005. Under the agreement, Honeywell is required to construct a sediment consolidation area (SCA) over Wastebed 13, located in the Town of Camillus, New York. The SCA is being constructed to accept sediments dredged from nearby Onondaga Lake (reference Figure 1, Site Location Map)

The SCA is being developed in several phases of construction, dependent of the area needed; they are numbered one through three. This Construction Quality Assurance (CQA) Final Report presents a summary of the Phase II area construction activities for the Onondaga Lake SCA. It is noted that a debris management area (DMA) is located in the western edge of Phase II and has been previously certified under a separate cover, dated 12 June 2012. Due to operational constraints, Phase II was subdivided into Phase IIA, the eastern portion, and Phase IIB, the western portion (reference Figure 2, Limits of Phase II). Phase IIB was certified under separate cover, dated 12 October 2012. The data contained within this report covers Phase II of construction. The construction activities discussed in this report include: (i) engineered fill; (ii) low-permeability soil layer; (iii) gravel drainage layer; and (iv) installation of geosynthetics (i.e., geotextile, and geomembrane liner). As appendices to the report, quality assurance/quality control (QA/QC) documentation is provided.

This report provides certification by an engineer, registered in the State of New York, that the area was constructed in accordance with the approved plans and specifications, and modifications approved by the Designer and NYSDEC. The test requirements for each of the major components of the lining system are summarized on the tables that follow.

TABLE 1
Geotechnical Laboratory Testing Summary
Honeywell / Parsons
Sediment Consolidation Area - Phase II
Camillus, NY

DESCRIPTION	TEST STANDARD	PROJECT SPECIFICATIONS	UNITS	FREQUENCY QUALITY CONTROL	FREQUENCY QUALITY ASSURANCE	ESTIMATED No. of QC TESTS REQUIRED (1)	No. of QA TESTS REQUIRED (1)	No. of QC TESTS PERFORMED	No. of QA TESTS PERFORMED (failures)
A. Engineered Fill - Perimeter Berm (refer	ence Tables A-1 & A-2 of	CQA Plan and Section 02200	0 of Sp	oecifications)					
Estimated CQA volume ⁽¹⁾ of less than:	1,700	cyd over an area of:	5	acres (per cyd)					
Estimated QC volume (1) of less than:	1,198	cyd		1					
a. Restricted Use Soil Cleanup Objectives (Reference RFI No. 1)	Table 375-6.8(b) NYSDEC Subpart 375	less than Industrial Standards	-	2,500	-	1	-	1	-
b. Soil Classification (Reference RFI Nos. 2 & 15)	ASTM D2487	SC, SM, ML, CL, GM, GC, or GW GPw/sand, GP-GM, GP-GM w/sand, SP-SM w/Gravel, or SW-SM w/Gravel	USCS	2,500	1 per 10 QC tests	1	1	12	1
c. Sieve Analysis	ASTM D422	remove visible rocks max. clod - 3 for 8-in thick lift max. 4 for 4-in thick lift max. 2	in.	2,500	1 per 10 QC tests	1	1	12	1
d. Standard Proctor	ASTM D698	_	lb/ft ³	2,500	1 per 10 QC tests	1	1	12	1
e. Atterberg Limits	ASTM D4318A	-	%	2,500	1 per 10 QC tests	1	1	11	1
f. Organic Content / Loss of Ignition	ASTM D2974	-	%	2,500	1 per 10 QC tests	1	1	12	1
g. Moisture Content	ASTM D2216	-2 to +2	%	2,500	1 per 10 QC tests	1	1	12	1
h. Nuclear Field Moisture/Density (FDT)	ASTM D3017/2922	≥ 95 R.C. (non-bridge lift)	%	NP	5 tests/acre	-	25	-	64
i. Sand Cone/Drive Cylinder	ASTM D1556/2937	≥ 95 R.C. (non-bridge lift)	%	NP	1 per 25 FDT	-	3	-	4
j. Thickness (Reference RFI Nos. 3 & 16)	visual	Bridge Lift: 22 to 26-in (loose) Typical Lift: 7 to 10-in (loose) Hand Compacted: 3 to 5-in (loose)	-	during construction	during construction	-	-	-	-
k. Survey	Record Drawings	+0.3% of designed slope along 50-ft edge	-	-	-	-	-	-	-
D 1 D 1 1 2 C 2 1 / 2	. T. 1	A DI	G • •	N					
B. Low Permeability Soil Layer (reference			-						
Estimated CQA volume (1) of less than:	57,500	cyd over an area of:	24.5	acres (per cyd)					
Estimated QC volume ⁽¹⁾ of less than:	51,071	cyd	ı	<u> </u>	l				
a. Restricted Use Soil Cleanup Objectives	Table 375-6.8(b) NYSDEC Subpart 375	less than Industrial Standards		1 per source	-	Reference Phase I CQA Final Report, Appendix C	-	-	-

B. Low Permeability Soil Layer (reference	e Tables A-1 & A-2 of CQ	A Plan and Section 02250 of	Specif	ications)					
Estimated CQA volume (1) of less than:	57,500	cyd over an area of:	24.5	acres (per cyd)					
Estimated QC volume (1) of less than:	51,071	cyd							
a. Restricted Use Soil Cleanup Objectives	Table 375-6.8(b) NYSDEC Subpart 375	less than Industrial Standards		1 per source	-	Reference Phase I CQA Final Report, Appendix C	-	-	-
b. Soil Classification									
(Reference FCF No. 2 - not		SC, SM, ML, or CL		2,500	1 per 10 QC tests	21	3	22	4
implemented)	ASTM D2487		USCS						
c. Sieve Analysis	ASTM D422	remove visible rocks >1-in 100% 1-in. 100-50% No. 200 sieve	in.	2,500	1 per 10 QC tests	21	3	23	4
d. Standard Proctor	ASTM D698	100-30% No. 200 sieve	lb/ft ³	5,000	1 per 10 QC tests	11	2	11	2
e. Atterberg Limits	ASTM D4318A	_	%	1,000	1 per 10 QC tests	52	6	52	10
f. Organic Content / Loss of Ignition	ASTM D2974	_	%	5,000	1 per 10 QC tests	11	2	11	4
g. Moisture Content	ASTM D2216	-3 to +3	%	1,000	1 per 10 QC tests	52	6	52	10
h. Permeability @3,000 psf/i≤30	ASTM D5084	≤ 10-6	cm/s	5,000	1 per 10 QC tests	11	2	11	2
i. Permeability- Shelby tubes	ASTM D5084	upper 6-in ≤ 10-6	cm/s	NP	1 test/acre top lift	-	25	-	28
		≥ 95 R.C. top 6-in			9 test/acre top lift	_	221	_	303 (12)
j. Nuclear Field Moisture/Density (FDT)		≥ 90 R.C. mid lifts	%	NP	9 test/acre/lift	_	100	_	115 (5)
k. Sand Cone/Drive Cylinder	ASTM D1556/2937	see above	%	NP	1 per 25 FDT	-	9	_	33
1. Interface Direct Shear (700, 2100, 3500 psf @ 0.004 in/min)	ASTM D5321	peak: 14.5 - 18.5 deg residual: 12 - 16 deg	-		1	-	-	1	
Thickness m. (Reference RFI No. 3 and FCF No. 3)	visual	Minimum: 12-in Top: 6-in must meet perm req. with desiccation cracks less than width of dime Bridge Lift: 10 to 14-in (loose) Typical Lift: 6 to 10-in (loose) Hand Compacted: 3 to 5-in (loose)	-	during construction scarify min. 2-in moisture condition	during construction	-	-	-	-
n. Survey	Top Surface: measure 50 by 50-ft grid thickness cals 100 by 100-ft grid (see Appx. N - Geot. Monit. Plan) For less than 18-in thick LP - install square steel plate and auger on 100 by 100-ft grid	+0.2% of designed slope along 50-ft edge	-	-	-	-	-	-	-

C. Gravel Drainage Layer (reference Table	les A-1 & A-2 of CQA Pla	n and Section 02300 of Specia	ficatio	ns)					
Estimated CQA volume (1) of less than:	46,800	cyd over an area of:	24.5	acres (per cyd)					
Estimated QC volume (1) of less than:	66,442	cyd							
a. Restricted Use Soil Cleanup Objectives	Table 375-6.8(b) NYSDEC Subpart 375	less than Industrial Standards		Reference FCF No.	-	-	-	-	-
b. Soil Classification	ASTM D2488	GW or GP	USCS	1,000	1 per 10 QC tests	67	5	74	9
c. Sieve Analysis (Reference RFI No. 17)	ASTM C136	100% +4-in. 0-5% No. 4 sieve 0-3% No. 200 sieve	in.	1,000	1 per 10 QC tests	67	5	74	9
d. Hydraulic Conductivity	ASTM D 2434	≥ 10	cm/s	2,500	1 per 10 QC tests	27	2	35	5
e. Interface Direct Shear (Reference RFI Nos. 12, 14 & 21)	ASTM D5321	peak: 14.5 - 18.5 deg residual: 12 - 16 deg	-		1	-	-	1	
Thickness f. (Reference FCF Nos. 1 & 7)	visual	Minimum: 12-in / 24-in under access roads	-	during construction	during construction	-	-	-	-
g. Survey	Record Drawings	+/-0.2% of designed slope along 50-ft edge	-	-	-	-	-	-	-

Notes:

- Based upon received volume during construction. Reference FCF No. 5 regarding QA test frequency reliant on volumes and Table 4.1 of Parsons' Contractor Quality Control Plan, Rev0.

 During construction CQA personnel tracked soil volumes by either obtaining volume from field personnel or the number of truck deliveries in a day. By using a conversion factor (e.g., 1.5 tons/cyd for soils and 1.6 tons/cyd for rock) estimates of loose volume was tracked on a daily basis. This tracked volume was used to obtain CQA samples.
- Parsons independently tracked volumes of soil deliveies that was used to collect QC samples.

 (2) First lift of LP soil is considered a bridge lift and not subjected to compaction requirement.
 - The lifts between the upper and bridge lifts are considered mid-lifts. Portions deeper than 3-ft below surface shall be less than 2-in dia., 50% or greater passing No. 200 sieve, and be classified as SC, SM, ML or CL. Reference FCF No. 2 for details.

Assume final lift and at least one mid-lift exist for the entire cell for FDT estimate.

- The LP soil sample shall be compacted at 95 percent and at approximately +3% of the maximum as determined by the standard Proctor compaction test. Reference Request For Information (RFI) and Field Change Form (FCF) for additional details.
 - NA-Not Applicable; NP-Not Provided; NR-Not Required

TABLE 2
Geosynthetic Laboratory Testing Summary
Honeywell / Parsons
Sediment Consolidation Area - Phase II
Camillus, NY

								MQC	QA	MQC	QA
	TEST	PROJECT		MQC TEST	MQC	QA TEST	QA	No. of TESTS	No. of TESTS		No. of TESTS
DESCRIPTION	STANDARD	SPECIFICATIONS	UNITS	FREQUENCY	UNIT	FREQUENCY	UNIT	REQUIRED (1)	REQUIRED (1)	PERFORMED	PERFORMED
											(failures)
A. Geomembrane (reference Part 4/	Table A-4 of CO	A Plan & Section 020)70 of S	pecifications)							(Tarraros)
Estimated area of less than:	•	sft to cover:		acres for Phase II	and DM	A		Assume 138 A	ı Agru America ı	olls, each roll 5	605 by 23-ft
53,287 lft seams welded See RFI No. 25 regarding four sacrificial go									omembrane ro		
a. Thickness	ASTM D5994	MARV 60	mil	50,000	SF	250,000	SF	33	7	138	7
b. Asperity Height	ASTM D7466	MARV 10	mil	50,000	SF	NR	-	33	-	138	-
c. Tensile Properties	ASTM D6693			50,000	SF	250,000	SF	33	7	40	7
Strength at Break	-Type IV	≥ 90 100	lb/in %								
Elongation at Break Strength at Yield		100 ≥ 126	% lb/in								
Elongation at Yield		≥ 120 12	%								
	ASTM D792A /	$\geq 0.940 \text{ (sheet)}$. 3	50,000	CE	250,000	QT.	22	7	40	7
d. Density/Specific Gravity	D1505	0.93 (resin)	g/cm ³	50,000	SF	250,000	SF	33	7	40	/
e. Melt Flow	ASTM D1238E	≤ 1.0	g/10 min	certify	-	-	-		-		-
f. (P. 6 PEN) 12	ASTM D1603 / 4218	2 to 3	%	50,000	SF	250,000	SF	33	7	40	7
(Reference RFI No. 13)		9 out of 10-Cat 1, 2									
g. Carbon Black Dispersion	ASTM D5596	10 out of 10-Cat 1, 2, 3	Cat.	50,000	SF	250,000	SF	33	7	40	7
h. Tear Resistance	ASTM D1004C	≥ 42	lb	50,000	SF	250,000	SF	33	7	40	7
i. Puncture Resistance	ASTM D4833	≥ 90	lb	NA	SF	250,000	SF	-	7	5	7
j. Oxidative Induction Time	ASTM D3895	MARV 100	min	batch	-	NR	-	4	-	40	-
k. Stress Crack Resistance	ASTM D5397	≥ 300	hrs	batch	_	NR	-	4	-	Certified 1500 hrs	-
Same Destruction Tasts (2)		(on smooth edges) fusion peel - 91								1500 IIIS	
1. Seam Destructive Tests (2) (see FCF No. 9)	ASTM D6392	extrusion peel - 78	ppi	NA	-	500	LF	-	107	-	114+27 (15)
(4.5.5.5.7)		fus./ext. shear - 120 weld 40 - 104 degrees									
m. Field Conditions	6-in above surface	wind 0 to 20 mph	F	_	_	_	-	_	_	_	_
		GRI GM9 below 32 deg									
n. Non-Destructive Tests	_	5 psi-Vacuum 25-30 (<u>+</u> 3) psi-Air	20-secs 5min	every seam		_	_	_	_	_	_
ii. Non-Destructive Tests		Leak Location Survey	-	every scam		_	_				_
O. Interface Friction Angle-Geosynthetic/Soil	ASTM D5321	See Spec. 02250					-	-	-	-	
Interface Friction Angle-Geosynthetic	ASTM D5321	peak: 14.5 - 18.5 deg			1		-	-	_	-	1
(Reference RFI No. 12, 14 & 21)		residual: 12 - 16 deg									
(Reference RF1100, 12, 14 & 21)								ll .			
B. Nonwoven Geotextile Cushion (re	eference Part 4/Ta	able A-5 of CQA Pla	n & Sec	ction 02074 of	Specifi	cations)					
Estimated area of less than:		sft, a total of	267		_		E240) a	and 7 rolls supp	olied by GSE (GEO-240E) 15	'X150'
a. Mass Per Unit Area	ASTM D5261	≥ 24	oz/yd²	90,000	SF	250,000	SF	14	5	55	6
b. Grab Strength	ASTM D4632	≥ 230	lb	90,000	SF	250,000	SF	14	5	55	6
c. Puncture Resistance	ASTM D4833	$\geq \frac{5,000}{250}$	lb	90,000	SF	250,000	SF	14	5	27	6
d. Trapezoidal Tear Strength UV Resistance	ASTM D4533	≥ 95	lb	90,000	SF	250,000	SF	14	5	55	6
e. (Reference FCF Nos. 6 and 11)	ASTM D4355	≥ 70	%	Batch	-	Certify	-	-	-	-	-
(Reference 1 Cr 1905, 0 and 11)											
		single thermal weld (6-in overlap seam Stitch									
f Sooming	ASTM D6193	Type 401 /		vional		vional					
f. Seaming	ASTM D6193	3-ft overlap of butt seams	-	visual	-	visual	-	_	_	-	-
		shingled in direction of fill placement)									
		-			1						
g. Interface Direct Shear	ASTM D5321	peak: 14.5 - 18.5 deg residual: 12 - 16 deg	-		1			-	-	1	
(Reference RFI Nos. 12, 14 & 21)		22 20 008									
, , ,	•				•						

Notes:

(1) Based upon the testing frequency presented in the Project Documents. Material quantities provided by Site.

Basic area is assumed to be: 24.5 acres or 1,067,220

ARV- Min. Average Value; NA-Not Applicable; NP-Not Provided; NR-Not Required

⁽²⁾ Assume geomembrane sheet width of 21 ft and destructive seam test frequency of 1 sample per 500 ft.

Trial seams were performed at the beginning of each seam period; min. 15-ft long with two & two samples tested in shear & peel, respectively.

⁽³⁾ Reference Request For Information (RFI) and Field Change Form (FCF) for additional details.

TABLE OF CONTENTS

EXE	CUTIV	VE SUM	IMARY	i								
1.	INT	INTRODUCTION										
	1.1		iew									
	1.2	Repor	t Organization	1								
2.	PRO)JECT I	DESCRIPTION	3								
3.	CONSTRUCTION QUALITY ASSURANCE PROGRAM											
	3.1	Scope	of Services	6								
		3.1.1	Overview	6								
		3.1.2	Review of Documents	6								
		3.1.3	Field CQA Operations	7								
		3.1.4	Final Report and Record Drawings	8								
	3.2	Person	nnel	8								
		3.2.1	Project Personnel	8								
4.	COI	CONSTRUCTION QUALITY ASSURANCE - EARTHWORK										
	4.1	Overv	iew	11								
	4.2	Soil Source Sampling Activities										
	4.3	Field I	Monitoring and Testing	14								
		4.3.1	General	14								
		4.3.2	Engineered Fill	16								
		4.3.3	Low-Permeability Soil Layer	17								
		4.3.4	Gravel Drainage Layer	19								
	4.4	Soil A	nchorage of Geosynthetics	21								
		4.4.1	General	21								
		4.4.2	Perimeter Anchor Trench	21								
5.	COI	NSTRU(CTION QUALITY ASSURANCE - GEOSYNTHETICS	22								
	5.1	5.1 General										
	5.2	2 CQA of Geomembrane										
		5.2.1	Conformance Testing and Documentation	23								
		5.2.2	Field Monitoring Activities	24								
		5.2.3	Nondestructive Testing	26								

TABLE OF CONTENTS (Continued)

	5.2.4	Destructive Seam Sample Testing	29
	5.2.5	5 Geomembrane Repairs	30
5	3 CQA	A of Geotextile	31
	5.3.1	Conformance Testing and Documentation	31
	5.3.2	2 Field Monitoring Activities	32
7. SU	U MMAI	RY AND CONCLUSIONS	33
FIGURE	S		
Figure 1 -	- Site Lo	ocation Map	
Figure 2 -	- Limits	of Phase II	
APPEND	DICES		
APPEND	IX A:	PHOTOGRAPHIC DOCUMENTATION	
APPEND	IX B:	FIELD REPORTS AND CORRESPONDENCE	
		• Request for Information	
		 Field Change Forms 	
		Weekly Field Reports	
APPEND	IX C:	ANALYTICAL SUMMARY OF FROM BORROW SOURCES (provided by Parsons)	
APPEND	IX D:	GEOTECHNICAL LABORATORY TEST RESULTS	
		• Engineered Fill – QC (provided by Parsons) / QA	
		• Low-Permeability Soil Layer – QC (provided by Parsons) / Q	ĮΑ
		 Gravel Drainage Layer – QC (provided by Parsons) / QA 	
APPEND	IX E:	IN-PLACE FIELD TEST RESULTS	
		Test Reference Grid Layout	
		As-Built Thickness Memorandum	
		Nuclear Gauge Standard Count Log The Count Lo	
		Engineered Fill – Field Density Tests / Drive Cylinders Law Permachility Layer – Field Density Tests / Drive Cylind Cylinders	امسم
		 Low-Permeability Layer – Field Density Tests / Drive Cylind 	EIS
APPEND	IX F:	MANUFACTURER'S QUALITY CONTROL DOCUMENTAT	'ION
		• Geomembrane – 60-mil / Sacrificial	
		 Geotextile 	

TABLE OF CONTENTS (Continued)

APPENDIX G: GEOSYNTHETIC CONFORMANCE TEST RESULTS

• Puncture Testing

Interface Friction Testing

Geomembrane

• Geotextile

APPENDIX H: INSTALLER'S CERTIFICATE OF ACCEPTANCE OF SUBGRADE

SURFACE

APPENDIX I: GEOMEMBRANE PANEL PLACEMENT MONITORING LOGS

APPENDIX J: GEOMEMBRANE TRIAL SEAM LOGS

• Calibration of Field Tensiometer

Fusion

Extrusion

APPENDIX K: GEOMEMBRANE PRODUCTION SEAM AND NON-

DESTRUCTIVE TEST LOGS

APPENDIX L: GEOMEMBRANE DESTRUCTIVE SEAM TEST LOGS AND

LABORATORY TEST RESULTS

APPENDIX M: REPAIR SUMMARY LOGS

APPENDIX N: GEOMEMBRANE LEAK LOCATION SURVEY

APPENDIX O: WELL DECOMMISSION LETTER (provided by Parsons)

APPENDIX P: RECORD DRAWINGS

• Contractor's Record Drawings

- Existing Site Conditions
- Subgrade
- Low Permeability Liner
- Geotextile Panel Layout
- Gravel Drainage Layer
- Geomembrane Panel Layout and Seam Repair/Destructive Sample Location Drawings

1. INTRODUCTION

1.1 Overview

This final report summarizes the Construction Quality Assurance (CQA) activities performed by Geosyntec Consultants (Geosyntec) of Acton, Massachusetts and Kennesaw, Georgia during construction of Phase II at the Honeywell International Inc. (Honeywell) Onondaga Lake Sediment Consolidation Area (SCA) in Camillus, Onondaga County, New York. Honeywell entered into a Consent Decree (CD) (United States District Court, Northern District of New York, 2007) (89-CV-815) with the New York State Department of Environmental Conservation (NYSDEC) to implement the selected remedy for Onondaga Lake as outlined in the Record of Decision (ROD) issued 1 July 2005. The following documents are appended to the CD: ROD, Explanation of Significant Differences (ESD), Statement of Work (SOW), and Environmental Easement and can be referenced for additional information.

The CQA activities performed by Geosyntec included monitoring of: (i) engineered fill construction; (ii) low-permeability soil layer construction; (iii) gravel drainage layer construction; and (iv) installation of geosynthetics (i.e., geotextile and geomembrane liner). The CQA activities were performed to confirm construction materials and procedures that were monitored were in compliance with the Subpart 360 Regulations, as required by NYSDEC Solid Waste Management.

This report was prepared for Mr. Larry Somer of Honeywell by Mr. Marcus Fountain, Mr. David Williams, Mr. Doug Hamilton, and Mr. Billy Carruth, and was reviewed by Mr. David Bonnett, P.E., all of Geosyntec.

1.2 Report Organization

This final report is organized as described below.

- A description of the project is provided in Section 2.
- A summary description of the CQA program is presented in Section 3.
- A description of the CQA monitoring and testing activities performed during the earthwork portion of the project is provided in Section 4.
- A description of the CQA monitoring and testing activities performed during the geosynthetics installation is provided in Section 5.

• A summary of the observations resulting from the CQA monitoring and testing activities performed by Geosyntec and a certification statement signed and sealed by a professional engineer registered in the State of New York are presented in Section 6.

Documentation and record drawings presenting the results of the CQA monitoring and testing activities performed by Geosyntec are contained in the appendices to this report. Construction quality control (QC) information provided by Parsons is also presented for completeness.

2. PROJECT DESCRIPTION

The Onondaga Lake is a 4.6 square mile (approximately 3,000 acre) lake located in central New York State, immediately northwest of the City of Syracuse. Honeywell is currently working on a sediment removal and lake remediation project to restore the lake. Parsons of Syracuse, New York and Geosyntec are members of the team assisting Honeywell in this effort. The remediation of the Onondaga Lake bottom is on the New York State Registry of Inactive Hazardous Waste Sites and is part of the Onondaga Lake National Priorities List site. As specified in the ROD [NYSDEC and USEPA, 2005], the major components of the remedy include construction of a hydraulic control system (consisting of a hydraulic barrier wall and a groundwater collection system); hydraulic dredging of contaminated sediments on the lakeside of the barrier wall; pumping of the dredge material to a sediment consolidation area (i.e., SCA); placing of the sediments within geotextile tubes for the purpose of dewatering in the SCA; and the collection and treatment of the decanted water through an on-site treatment facility.

The SCA is located on Wastebed 13, which encompasses approximately 163 acres. It is bordered to the north by Ninemile Creek and the CSX Railroad tracks; to the west by an Onondaga County Garage property and a former gravel excavation owned by Honeywell; and to the east and south by Wastebeds 12 and 14, respectively. (Reference Figure 1 – Site Location Map.) Wastebed 13 was originally designed as a settling basin for the disposal of Solvay waste and has recently been used by the State University of New York College of Environmental Science and Forestry (SUNY ESF) and Honeywell for willow/evapotranspiration cover pilot test plots. The SCA has been designed to provide long-term containment of the dredged sediment. The SCA has been designed to hold up to the ROD specified volume of 2,653,000 cubic yards (cyd) of dredged sediment.

The base liner system design of the SCA incorporates a single-composite liner system and other engineering controls that meet the requirements established in the New York State approved "Onondaga *Lake Sediment Consolidation Area (SCA) Civil and Geotechnical Final Design*", dated March 2011. The design of the SCA includes a centrally located 200 foot wide (east-west direction) sump corridor. The single-composite liner system consists of the following components (from top to bottom):

- 12-in thick (minimum) gravel drainage layer with 24-in minimum in traffic areas, having a minimum permeability of 10 cm/sec;
- 24 oz/syd nonwoven, needle-punched geotextile cushion;
- 60-mil thick textured high density polyethylene (HDPE) geomembrane liner;

- geosynthetic clay liner (GCL) in sump areas only;
- 12-in (minimum) outside of the sump corridor and 18-in thick (minimum) within the sump area of a low-permeability (LP) soil layer, the upper six inches of which requiring permeability not exceeding 1 x 10⁻⁶ cm/sec;
- varying thickness of low-permeability soil bridge lift over existing Solvay waste; and
- varying thickness of engineered fill along the perimeter.

The Phase II footprint has a rectangular configuration and is approximately 1,700-ft long (east-west) and approximately 700-ft wide (north-south). Phase I and future Phase III are located to the north. Two SCA basins have been constructed adjacent to the eastern and western extents of Phase I. These basins are considered part of the sediment management system (SMS) for the SCA. Construction details of the SMS basins was presented in an 11 July 2012 report. It is noted that a debris management area (DMA) is located in the western edge of Phase II and has been previously certified under a separate cover. Due to operational constraints, Phase II was subdivided into Phase IIA and Phase IIB along the crest line separating drainage to the east and west. Phase IIB, the western portion, was certified under separate cover on 12 October 2012. Reference Figure 2 – Limits of Phase II. The data presented within this report supplements the previous Phase II submittals.

The original design and construction drawings were prepared by Geosyntec and Parsons. Parsons performed construction of the majority of the Phase II earthwork components, including the engineered fill, low-permeability soil, and gravel drainage layers. The geosynthetics installer for the project was Chenango Contracting (Chenango or installer), of Johnson City, New York. Parsons retained THG Geophysics (THG) of Murrysville, Pennsylvania to conduct the liner integrity or leak location testing. The surveyor retained by Parsons for the project was Thew Associates (Thew) of Canton, New York. Thew performed initial site control and occasionally verified elevations. As required by the Phase II project documents, Parsons surveyed the required layers of the low-permeability soil and drainage layers and prepared certified record drawings. Parsons used global positioning system (GPS) based survey equipment to accomplish this task. Geosyntec provided the construction quality assurance (CQA) monitoring, testing, and documentation. A list of personnel involved in construction of Phase II is included in Section 3.2 of this report.

A list of the key construction activities and associated dates are provided below.

- Geosyntec arrived on site to observe earthwork construction associated with Phase II occurring within the 2012 construction season on 26 March 2012, when construction of the low-permeability soil layer resumed following the winter shutdown. A portion of the initial lift of the low-permeability soil layer was constructed during the 2011 construction season concurrent with Phase I construction.
- Geomembrane installation commenced on 15 May 2012.
- Gravel drainage layer placement began on 4 June 2012.
- Construction of Phase II was substantially completed on 14 November 2012.
- An inclinometer, referred to as SI-G1, was decommissioned (by others) in March 2013; Geosyntec monitored the repairs to the lining system conducted on 3 and 4 April 2013.

This Final Report pertains to construction of Phase II of the SCA, monitored by Geosyntec, which primarily occurred in 2012. However, due to the nature of the construction, activities overlapped and some information is included that is inter related to Phase I or the SMS construction. Reports generated during Phase I construction and submitted previously under separate cover contain some information regarding observations of the initial low-permeability soil layer placement activities occurring within that time period.

3. CONSTRUCTION QUALITY ASSURANCE PROGRAM

3.1 Scope of Services

3.1.1 Overview

The scope of CQA monitoring, testing, and documentation services performed by Geosyntec during Phase II construction included review of documents, field CQA operations, and preparation of this Final Report and record drawings. These are described in the following subsections.

3.1.2 Review of Documents

As previously noted, this final report summarizes the CQA activities performed by Geosyntec during Phase II construction. The CQA activities conducted by Geosyntec were intended to satisfy the requirements of the following documents:

- Permit Drawings entitled "Sediment Consolidation Area Final Design, Camillus, New York", dated July 2010, revised April 2011, prepared by Parsons and Geosyntec;
- "Construction Quality Assurance Plan, Onondaga Lake Sediment Consolidation Area (SCA) Final Design", prepared by Geosyntec, dated April 2011; and
- Specifications entitled "Onondaga Lake Sediment Consolidation Area (SCA) Final Design Submittal", prepared by Parsons and Geosyntec, dated April 2011.

Geosyntec reviewed the above documents for familiarity prior to the commencement of on-site CQA activities. During construction, clarifications of the project specifications and drawings were typically requested in the form of Request for Information (RFI). Changes to the design documents were handled through Construction Field Change Forms (FCF). The RFIs and FCFs were issued by the contractor with responses by the Designer. The FCFs were also signed by the Owner and the NYSDEC. The design changes were typically reviewed routinely during weekly progress meetings. Copies of the RFIs and FCFs relating to Phase II construction are provided in Appendix B.

A major change to the CQC and CQA testing program included the following:

• FCF No. 5: "in lieu of using the number of CQC samples, CQA sample frequency will be tied to the delivered volumes such that the test frequency shall become: volume of soil delivered to the site divided by CQC test frequency and divided by ten".

Reference to the various RFIs and FCFs are provided throughout the report in the various related sections as well as in the material tables found in the executive summary.

All of the above documents will be collectively referred to as the CQA Plan in this final report.

3.1.3 Field CQA Operations

The following activities were performed as part of Geosyntec's on-site CQA services:

- attending daily health and safety meetings;
- attending weekly progress meetings;
- maintaining photographic documentation of the construction;
- summarizing construction and CQA activities in weekly field reports;
- documenting construction progress and CQA activities in daily field reports;
- conducting field density tests of the engineered fill and low-permeability soil layer;
- collecting samples of soils and geosynthetics; and
- coordinating geomembrane as-built surveys.

Earthwork:

- collecting samples of soils considered for use as engineered fill (i.e., berms), low-permeability soil layer, and gravel drainage layer for testing at either an onsite or off-site geotechnical laboratory;
- reviewing and evaluating geotechnical laboratory test results for compliance with the requirements of the CQA Plan;
- visual monitoring of placement, grading, and compaction operations of the soil layers of the cell;
- visually monitoring site preparation; and
- selective monitoring perimeter berms.

Geosynthetics:

- monitoring and tracking the inventory of geosynthetic materials delivered to the site;
- collecting geosynthetic conformance samples from delivered rolls and forwarding samples to an off-site geosynthetics testing laboratory;
- collecting and reviewing geosynthetic manufacturers' certification documents (through contractor's submittals) and geosynthetic laboratory conformance test results for compliance with the requirements of the CQA Plan;
- monitoring installation of geosynthetic materials, including trial seaming, destructive and nondestructive sampling, and repair operations; and
- selective monitoring of the anchorage of the geosynthetics in the perimeter anchor trench.

During construction activities involving monitoring and/or testing, the observations made and results obtained by Geosyntec CQA personnel were compared to the CQA Plan. The construction manager, and/or the appropriate contractor were notified of deficiencies in construction practices and/or materials so the contractor or installer could implement the appropriate corrective actions. The corrective actions were monitored and/or tested by CQA personnel for compliance with the CQA Plan.

3.1.4 Final Report and Record Drawings

Record drawings and this Final CQA Report were prepared as the final task of the CQA program. During construction, CQA documentation of on-site activities was maintained by CQA personnel in Daily Field Reports (DFRs) and summarized in weekly reports. In addition, quality control (QC) certificates for the geosynthetic materials and as-built drawings were provided to Geosyntec for review. The weekly reports are included in the appendices to this report. CQA personnel also documented the results of on-site and off-site geotechnical testing conducted as part of the CQA program. Descriptions of the construction activities and the CQA documentation are presented in this Final CQA Report which contains the report text, summary tables, and Appendices A through P.

3.2 <u>Personnel</u>

3.2.1 Project Personnel

Senior personnel or representatives for the firms involved in the project are as follows:

Honeywell International Inc. (Owner)

• Larry Somer

New York State Department of Environmental Conservation (Regulatory Agency)

- Tom Annal
- Jim Christopher
- Bob Edwards
- Donald Hesler
- Marleiah O'Neal
- Timothy Larson
- Robert Phaneuf
- William Zeppetelli

Parsons and Geosyntec (Designer)

- Paul Blue
- Laura Brussel
- Xiaodong Huang
- David Steele
- John (Jay) Beech
- Ramachandran Kulasingam
- Joseph Sura
- Ming Zu

Geosyntec (CQA Consultant)

- David Bonnett
- Joshua Bullock
- John (Billy) Carruth
- Marcus Fountain
- Douglas Hamilton
- David Williams

Parsons (Earthwork Contractor)

- Adam Dorn
- Josh Hawley
- Dhana Hillenbrand
- Xiaodong Huang
- William Mathe
- Bill Moon

- Ron Prohaska
- Ken Sommerfield
- David Steele
- Al Steinhoff
- Sean Sullivan
- Scott Swift

Thew Associates (Surveyor)

• Michael Merithew

GeoTesting Express (Off-site Geotechnical Laboratory)

Mark Dobday

• Joe Tomei

SGI Testing Services, Inc. (Off-site Geotechnical Laboratory)

• Zehong Yuan

Chenango Contracting (Installer, senior personnel only)

• Matt Bilodeau

Rod Parker

Nick Brechko

• Charlie Parks

• Carl Burdick

Joe Randall

• Martin Bystrak

• Peter Ward

THG Geophysics Ltd (Leak Location Surveyor)

• Maggie Beird

• Peter Hutchison

Heather Kribos

• Simon Eydlin

4. CONSTRUCTION QUALITY ASSURANCE - EARTHWORK

4.1 Overview

As described in Section 3.1 of this report, several administrative activities were routinely performed by CQA personnel throughout the duration of construction. Many of these administrative activities were related to documenting overall construction status and progress. Other activities presented under general CQA services included monitoring of the related components and facilities for the construction project. Photographs of the construction were obtained on a regular basis and select photographs are presented in Appendix A. CQA personnel summarized the daily construction and CQA activities in weekly field reports. Weekly field reports are presented in Appendix B.

The contractor was responsible for performing general civil site work for the project. The work included site preparation (dewatering, excavating, relocating Solvay waste onsite, preparing subgrade, including clearing and grubbing); provision of imported fills (such as stockpiling, placing and compacting engineered fill and low-permeability soil layer, and screening and placing gravel drainage layer); establishment of infrastructure; and survey control associated with earthworks and as-built drawings.

As part of the site preparation that occurred in 2011, Parsons removed oversized and woody vegetation by various means, including manually and using compact track loader mounted with a Bradco or Caterpillar BR166 brush cutter, Caterpillar SG18 stump grinder, or a landscape rake (see RFI No. 10). NYSDEC along with CQA personnel would typically approve an area referred to using a grid layout. If areas required additional work, the area of concern was identified using survey flags. Once a grid area had been deemed suitable, the contractor was notified that the area was approved for placement of low-permeability material. The initial lift of low-permeability material was placed in 2011. Upon remobilization to the site in 2012, the previously placed material was observed and deficient areas were reworked by Parsons.

Geosyntec's CQA personnel visually monitored the construction of the various earthwork components. Different material types were used to construct the various components of the single-composite liner system. These materials included clay for the low-permeability soil layer, gravel for the gravel drainage layer, and engineered fill material for the perimeter berm. Various sources were pre-qualified to supply the soils by Parsons. The earthwork construction activities using these materials are described below.

- The perimeter berms were constructed using engineered fill material obtained from the Granby and Sennett sources or re-used from previous construction, placed and compacted initially in approximately 14-in thick (loose) bridge lift (that was not required to be tested) and subsequent in approximately 10-in thick (loose) lifts.
- The cell area was cleared and partially grubbed of vegetation, a bridge lift of low-permeability material was placed and compacted (that was not required to be tested) over the prepared subgrade with soils obtained from the Marcellus and Black Creek sources (note the Black Creek source was only used in 2011).
- The minimum 12-in thick low-permeability layer was constructed using 8- to 10-in thick lifts (loose) material obtained from the Marcellus source.
- The minimum 12-in thick gravel drainage layer was constructed in one lift using material obtained from the Granby, Lake Road, Amboy, Orin Delphi, Hayes Road, County Road 6 sources.

CQA personnel observed these earthwork construction activities and tested the soil materials to confirm that the material properties conformed to the CQA Plan, specific lift thicknesses were not exceeded, and compaction requirements were met. Geosyntec personnel also performed geotechnical soil tests during construction. The testing was performed either: (i) in-place; (ii) on-site; or (iii) off-site, at GeoTesting Express (GTX) in Acton, Massachusetts. The contractor was responsible for obtaining and testing QC samples. The geotechnical QC samples were tested by Atlantic Testing Laboratories Inc. (ATL) in Syracuse, New York or P-W Laboratories, Inc. (PW) in East Syracuse, New York. These laboratories also supported Parsons in various capacities such as collecting samples and monitoring borrow sources. The QC laboratory results are presented in Appendix D.

Variation exists between the soil quantities used for CQA and QC testing. Geosyntec used a conservative approach by basing CQA quantities on truck counts using an assumed volume per truckload that was agreed upon by Parsons. QC test frequencies were based upon actual weights of materials delivered, later converted to a volume. Due to the different approaches to managing the process, volumes presented as a basis for CQA testing and QC testing differ.

Separately, the contractor was required to perform analytical testing at each source at a minimum frequency of one representative composite sample per 2,500 cyd for engineered fill and one per source for low-permeability material. The sampling was

done internally by Parsons to ensure samples met the NYSDEC Subpart 375, Table 375-6.8(b). No new low-permeability sources were used so no additional testing was conducted in 2012 (see Phase I report for test results). The analytical testing from an engineered fill sample is presented in Appendix C.

During construction, the contractor was responsible for erecting and maintaining erosion and sediment (E&S) controls. The E&S controls that were installed included: silt fence, temporary soil diversion berms, and operation of a wheel wash located at the main entrance. Geosyntec field personnel were not actively engaged in monitoring E&S activities. However, recommendations were occasionally made in an effort to minimize potential damage to the single-composite lining system.

4.2 <u>Soil Source Sampling Activities</u>

Representative samples of engineered fill, low-permeability material, and drainage material were obtained from their respective sources and tested to verify conformance with the CQA Plan. Soils for the project were provided by Riccelli Enterprises, Inc. (Riccelli) of Syracuse, New York. Riccelli excavated and transported material from several sources to meet the needs of the project. The source and associated layer are listed below, followed by the common reference in parentheses.

Engineered Fill:

• Riccelli Syracuse Sand & Gravel, 489 County Rt 85, Granby, New York 13069 (Granby source)

Low-Permeability Soil:

• County Rt 174, Marcellus, New York (Marcellus source)

Drainage Gravel:

- Riccelli Syracuse Sand & Gravel, 489 County Rt 85, Granby, New York 13069 (Granby source)
- Lake Road Pit, Phelps, New York 14533 (Lake Road source)
- Amboy Pit, Finnerty Road, Amboy, New York 13493 (Amboy source)
- Oran Delphi / Kinsella, 2308 Oran Delphi Road, Malius, New York 13104 (Oran Delphi source)
- Hayes Road, 1850 Hayes Road, Geneva, New York 14456 (Hayes Road source)
- County Route 6 / Dendis, Geneva, New York 14456 (Route 6 source)

The geotechnical tests were performed to confirm that the following requirements were met.

- Engineered fill material used in construction classified as SC, SM, ML, CL, GM, or GW (reference RFI Nos. 2 and 15 for additional classifications for GP, SP and SW) according to the Unified Soil Classification Systems (USCS) when evaluated in accordance with ASTM D2487; had a nominal dimension less than 4 inches for 8 inches ± 2 inches thick loose lifts and 2 inches for 4 inches ± 1 inch thick loose lifts.
- Low-permeability soil material used in construction classified as SC, SM, ML, or CL according to the Unified Soil Classification Systems (USCS) when evaluated in accordance with ASTM D2487; had a maximum particle size of 1-in diameter and had not less than 50 percent of the particles, by weight, passing through the standard U.S. No. 200 standard sieve when evaluated in accordance with ASTM D422 (sieve analysis); and the hydraulic conductivity (i.e., permeability) requirement of the upper 6 inches was 1 x 10⁻⁶ cm/s or less, when evaluated in accordance with ASTM D5084.
- The material used in construction of the gravel drainage layer was classified as GW or GP according to the USCS when evaluated in accordance with ASTM D2487; had a nominal particle size of 4-in diameter, maximum of five percent and three percent passing the No. 4 and No. 200 sieves, respectively, when tested in accordance with ASTM C136/C117 (reference RFI No. 17 for maximum diameter acceptance); and the hydraulic conductivity requirement was 10 cm/s or greater when evaluated in general accordance with ASTM D2434. (Note that the test method was modified by the testing laboratories due to the 'oversized' particles contained in the gravel.)

A description of the geotechnical tests performed on placed materials and results of these tests are presented in the next section of this report. Details of construction of the perimeter termination trench for anchorage of the geosynthetic components of the single-composite liner are described in Section 4.4 of this report.

4.3 Field Monitoring and Testing

4.3.1 General

Geosyntec's CQA personnel monitored the placement of soil as described in Section 3.1.3. At times, several earthwork construction operations were conducted simultaneously in the Phase II area. When this occurred, the on-site personnel

monitored the operations considered most critical to the performance of the liner system. Potentially nonconforming or questionable practices observed by CQA personnel were brought to the attention of the concerned parties for review and correction.

As part of CQA activities, geotechnical testing was performed on each of the soil components of the Phase II single-composite liner system. Depending on the specific test, testing was performed either in-place, at the on-site laboratory, or off-site at GTX.

The following geotechnical tests were performed:

- In-place nuclear moisture/density tests were performed on compacted lifts of engineered fill, and low-permeability layer. The tests were performed in general accordance with ASTM D2922 and ASTM D3017.
- Standard Proctor compaction tests were conducted on the soils used for engineered fill and low-permeability layer. The tests were performed in general accordance with ASTM D698.
- Moisture content tests were performed on engineered fill and low-permeability soil material. The tests were performed in general accordance with ASTM D2216. On-site oven moisture content tests were occasionally run in general accordance with ASTM D2216 as a periodic check during construction.
- Particle-size distribution tests were conducted on engineered fill, low-permeability soil layer, and gravel drainage layer. The tests were performed in general accordance with ASTM D422 or C136/C117.
- Atterberg limits tests were conducted on the soils used for low-permeability material. The tests were performed in general accordance with ASTM D4318.
- Soil classification was performed on soils used for engineered fill, low-permeability soil layer, and gravel drainage layer in general accordance with ASTM D2487.
- Hydraulic conductivity tests were performed on the low-permeability and drainage material. The hydraulic conductivity tests on low-permeability soil material were conducted in accordance with ASTM D5084. The hydraulic conductivity test on granular material (i.e., gravel drainage material) was performed in general accordance with ASTM D2434. The test method for

granular materials was modified slightly by the testing laboratories to accommodate the larger particles contained in the gravel.

The results of the geotechnical laboratory tests are presented in Appendix D. The results of the in-place nuclear moisture/density tests are presented in Appendix E. A grid layout of the site, presented in Appendix E, was used to visually locate the in-place tests and sample locations. CQA personnel used the physical features, such as toe of slope to estimate the test locations. Since only visual positioning of test locations was used, the test and sample locations given in the appendices are approximate.

In 2012, Geosyntec mobilized a nuclear gauge (i.e., Troxler model 3440, Serial No. 28800) that was used to perform the moisture/density tests. Standard counts were performed daily prior to use of the gauge. These counts were recorded on a standard count log, which is presented in Appendix E. The accuracy of the nuclear gauge was checked periodically by comparing test results with results observed using the drive cylinder method (conducted in general accordance with ASTM D2937) and with moisture content tests (conducted in general accordance with ASTM D2216 or D4643).

The moisture results are presented along with the in-place moisture/density test results in Appendix D.

4.3.2 Engineered Fill

CQA personnel monitored the placement of the fill for perimeter berms when on-site. Geosyntec observed the placement of fill, and performed in-place testing of the material.

Construction of the perimeter berm consisted of the following activities:

- Engineered fill material was hauled directly from the Granby source or re-used from the Phase I construction and unloaded;
- Lifts of material were typically spread using Caterpillar D-5 or D-6 low ground pressure (LGP) bulldozers and were compacted using a Caterpillar CS56 smooth drum roller; and
- The surface of each lift was typically scarified with tracks of a bulldozer or disked prior to placement of subsequent lifts or layers.

Engineered fill was required to be compacted to a minimum relative compaction of 95 percent of the maximum dry unit weight at a moisture content ± 2 percent of the

optimum moisture content, as determined by the Standard Proctor compaction test method (ASTM D698). CQA personnel conducted in-place nuclear moisture/density tests at a frequency of 5 tests per acre (estimated one test per 200 feet of berm per lift along the perimeter berms). A total of 64 field moisture/density tests were performed, of which meet the minimum compaction requirement. Drive cylinder tests were periodically performed; a total of four tests were conducted. The results of the field moisture/density tests are presented in Appendix E.

In addition to the in-place density testing, grain-size distribution test, soil classification, and standard Proctor compaction tests were performed on the engineered fill material. The results of these geotechnical tests are presented in Appendix D.

4.3.3 Low-Permeability Soil Layer

After completing the removal of woody vegetation, CQA personnel observed the placement of the low-permeability soil layer. RFI No. 3 and FCF No. 3 provided topographic surveys of the subgrade and top of low-permeability soil layer. The difference between the layers determined the thickness of the low-permeability soil layer. The Specification (Section 2250 Part 3.02.B) allowed the first lift (referred to as a bridge lift) to be placed without compaction requirements in a 10 to 14-in thick (loose) lift. The intermediate lifts, placed in 6 to 10-in thick (loose) lifts, were required to be compacted to 90 percent of the maximum dry density at a moisture content $\pm 3\%$ of optimum moisture, as determined by the standard Proctor test (ASTM D698). The upper lift was to be compacted to 95 percent of the maximum dry density at a moisture content $\pm 3\%$ of optimum moisture, as determined by ASTM D698, and achieve a maximum permeability of 1 x 10^{-6} cm/s.

The construction sequence of the compacted low-permeability soil layer is described below.

- Low-permeability material was delivered directly from the Marcellus source. At the source, an excavator loaded the material into various sized on-road trucks. Trucks were weighed before being unloaded.
- The top surface of each lift was typically scarified with the tracks of a bulldozer or with a disk prior to placement of the subsequent lift.
- Low-permeability material was placed in appropriately 10 to 14-in for bridge lift and 6 to 10-in for other lifts. Typically the lifts were placed using Caterpillar D-5 or D-6 LGP bulldozers. Occasionally, laborers were used to manually remove rocks and roots from materials placed.

- After spreading, if necessary, water was added to increase the soil moisture content or if too wet, a tractor with a draw type disc harrow was used to mix the water, break up the clods or dry the material.
- Each lift of soil was compacted using a Caterpillar CS56 smooth drum or padfoot vibratory compactor.
- A Caterpillar D-5 or D-6 LGP bulldozer (equipped with GPS) was used to fine grade the low-permeability material. The final lift was rolled with a smooth drum roller (including an attachment on a compact loader) to seal the top surface of the compacted low-permeability soil liner in preparation for geosynthetics deployment.
- The contractor confirmed the final grade elevations using GPS methods.

Prior to deployment of the geosynthetics, the compacted low-permeability soil layer surface was visually observed by the installer and CQA personnel for surface cracks (e.g., less than the width of a dime) and greater than 1-in diameter particles. If drying or cracking of the surface was observed, the contractor was required to moisture condition and rework the affected area. Observed oversized particles were manually removed.

A series of tests were performed on the material used to construct the compacted low-permeability soil liner. Grain-size distribution tests, moisture-density relationships (i.e., Proctor tests) and remolded permeability tests were performed. In addition Atterberg limits tests were performed on the low-permeability liner material to classify the material. The geotechnical test results are presented in Appendix D.

Off-site geotechnical laboratory permeability tests were performed on thin-walled (i.e., Shelby) tube samples to confirm the material met the permeability criterion. Samples were obtained from the upper lift during cell construction. Tubes were obtained on a minimum one per acre basis for the final lift of installed LP soil liner. A total of 28 thin-walled tube sample pairs were removed from the compacted low-permeability layer. Samples were tested by the independent laboratory and all met the hydraulic conductivity criterion of 1×10^{-6} cm/s or less.

CQA personnel performed in-place nuclear moisture/density tests on a frequency of nine tests per acre for each lift above the bridge lift of the compacted low-permeability layer including the final lift. A total of 418 field moisture/density tests were performed by Geosyntec, 17 tests failed to meet the minimum compaction requirement of 95 or 90 percent. Failures were typically attributed to the material being too wet or to dry. In

each case of a failing test, the contractor reworked, removed and replaced, or recompacted the area represented by the failure before the area was retested by field personnel. This procedure was repeated until satisfactory moisture/density test results were obtained in each test location. Drive cylinder tests were periodically performed; a total of five tests were conducted along with 28 Shelby tubes. The results of the field moisture/density tests are presented in Appendix E. Moisture content samples, obtained periodically to verify the accuracy of the nuclear moisture/density gauge, indicated a correction was necessary. A moisture correction formula was developed for low-permeability materials by plotting the results of the moisture content tests to the nuclear gauge moisture content readings. Assuming a linear relationship, the formula was used to correct the nuclear gauge moisture readings. The correction formula was periodically updated as additional data was collected.

To verify that the minimum thickness was achieved, the contractor used various methods to measure the thickness in Phase II. The contractor surveyed the low-permeability layer on 50 foot grid pattern, performed thickness calculations on 100-ft grid pattern, and in areas with design thickness of less than 18 inches, installed 12-in square steel plates on a 100-ft grid pattern. Initially, a hand drill with a 24-in long drill bit was used to bore into the low-permeability soil. If the plate had not been reached at a depth of 24 inches, then a pointed rod was hammered down to the plate. Once the bit or rod had been driven to the steel plate, a mark was made on the bit or rod. The bit or rod was extracted and a measurement was made to determine the low-permeability soil layer thickness. The thickness verification results are presented in Appendix E.

Perforations in the low-permeability soil were filled with bentonite/soil material. The material was manually tamped into the perforations.

4.3.4 Gravel Drainage Layer

CQA personnel periodically monitored the placement of the gravel drainage material for the Phase II area. The 12-in thick (minimum) gravel drainage layer was constructed using material obtained from several sources, with the majority of material being provided by the Granby source supplemented by the Lake Road, Amboy, Oran Delphi, Hayes Road, and Route 6 sources. The construction sequence of gravel drainage was as follows:

• Gravel was screened and washed, as necessary, at the source (e.g., Turbo Chieftain 1400 power screener) and stockpiled at the quarry;

- Front-end loaders or tracked excavators loaded on-road live bottom trucks or end dump trucks at the source. Each truck was weighed and the trucks hauled the material to the cell area; and
- The gravel was either spread in one 12-in thick (minimum) lift using a Caterpillar D-5 or D-6 LGP bulldozer (equipped with GPS) or processed in-place through a flip screen attached to compact loader.

The contractor used spotters to assist with off-loading activities. The spotters would direct traffic to ensure trucks operated on greater than 2-ft thick minimum roads/ramps and occasionally reject loads with observed high fines content. A sacrificial geotextile was deployed under the gravel at access ramps. In long ramp areas of high traffic, the gravel was observed to have a higher fines content and therefore it was necessary to reprocess the material using a flip screen attachment equipped compact loader or removed and replaced with new material.

During placement of the gravel drainage layer, CQA personnel periodically monitored the contractor's activities to assure that the risk of damage to the underlying geosynthetics was minimized. CQA personnel also confirmed that the contractor operated bulldozers in areas where at least 1-ft thick layer of gravel was maintained over the geosynthetics, and that a minimum 2-ft thick layer of gravel was maintained over the geosynthetics in heavily trafficked areas.

During placement, discussions were held between parties regarding the fines content of the gravel. As indicated above, delivered loads containing high fines content were periodically observed and when observed, the load was rejected. Visits to the quarry confirmed that, on occasion, front-end loader operators were too aggressive by loading from the base of the stockpile (an area of fines accumulation) or fine grain material accumulated in the loading bucket (from previous loading operations) and were mixed in with the gravel.

Areas within the cell with observed high fines content were identified and were removed using low ground pressure equipment. The determination of these areas of concern was subjective (i.e., through observation). Results of the CQA tests indicated the fines content (by weight) was in compliance with the requirements of the CQA Plan. However, to mitigate observed pockets of fines, a mini-excavator (Caterpillar 307D) or a compact track loader (Caterpillar 299C) was used to excavate the area of concern and load low-ground pressure vehicles (i.e., Hydrema 912HM rubber tired vehicle) which typically transported the material to a stockpile area located west of Phase I.

Geosyntec had off-site laboratory geotechnical tests performed on the material used for the gravel drainage layer as part of the CQA activities during Phase II construction. Samples were obtained directly from the soil source and from the in-place material and typically included two to twelve 5-gallon sized buckets. GTX performed an off-site hydraulic conductivity tests and grain size distribution tests on representative samples. The laboratory test results are presented in Appendix D.

4.4 Soil Anchorage of Geosynthetics

4.4.1 General

Geosyntec CQA personnel periodically monitored the method of anchorage for the geosynthetic material around the Phase II perimeter. Along the north, the geosynthetic layers were tie-in to the Phase I geosynthetic layers. Along the remaining perimeter, the layers of geosynthetics were terminated in an anchor trench. Soil was subsequently placed and compacted in the trench to provide permanent anchorage of the single-composite liner system. Details of the anchoring are discussed below.

4.4.2 Perimeter Anchor Trench

As required by the CQA Plan, a permanent anchor trench was constructed around the southern, eastern and western perimeter of the Phase II construction area. The construction sequence of the perimeter anchor trench was as follows:

- a 2-ft deep by 2-ft wide (minimum) trench was excavated approximately 4-ft from the crest of slope of perimeter berm;
- the geosynthetic components were subsequently placed in and across the bottom
 of the anchor trench (including a sacrificial geomembrane) and ballasted with
 sandbags; and
- lifts of LP soil and/or engineered fill were placed over the geosynthetic materials and compacted.

The anchor trench backfill was compacted using various means including the bucket of an excavator and a vibratory plate tamper. No in-place tests were conducted on the material.

5. CONSTRUCTION QUALITY ASSURANCE - GEOSYNTHETICS

5.1 General

The following types of geosynthetic materials were deployed in Phase II:

- 60-mil thick textured HDPE geomembrane liner was installed over the low-permeability soil layer; and
- 24 oz/sy non-woven geotextile cushion was installed over the geomembrane liner.

Geosyntec CQA personnel monitored installation of geosynthetic components of the SCA. Field and laboratory tests were conducted to assure that the material properties were in compliance with construction documents and that prescribed installation procedures were followed. The specific geosynthetic monitoring and testing activities are described in the following subsections.

As part of the initial design, a hydrostatic puncture test was performed on a geosynthetic sandwich with gravel over an extended duration (e.g., minimum 50 hours) to verify that no puncture or holes were observed in the geomembrane after the application of a 5,000 lb/ft² normal stress. The tests were performed by SGI Testing Services, LLC (SGI) of Norcross, Georgia and were conducted in general accordance with ASTM D5514 (modified). Reference FCF Nos. 6 and 11 and Section 5.3 for additional details. The puncture test results are presented in Appendix G.

Interface direct shear testing was conducted on the liner system (i.e., gravel, geotextile cushion, geomembrane, and Marcellus LP soil). During construction the CQC and CQA requirements were modified to run one set of tests. The tests were performed by SGI, conducted in general accordance with ASTM D5321, under normal stresses of 700, 2,000, and 3,500 lb/ft². The peak and residual (or long-term) friction angles measured using the Marcellus low-permeability soil source indicated angles of 28 and 25 degrees, respectively; reference RFI Nos. 12 and 14 for additional details. The interface friction test results are presented in Appendix G.

Periodically during construction, temperatures fell below 40 degrees Fahrenheit (°F) and occasionally were below 32°F. As indicated in Geosynthetic Research Institute (GRI) Test Method GM9 – *Cold Weather Seaming Geomembranes*, the installation and seaming procedures were modified to take into consideration the colder temperatures (e.g., slower welding speeds) and increased moisture (e.g., panel edges were dried). However the installer did not use nor require moveable enclosures. The installer would

typically conduct his production welding well after sunrise and well before sunset. Trial welds were used to confirm a welder's ability to seam in the actual field conditions.

During seaming operations in the morning of 1 June 2012, light precipitation occurred periodically. Being at a critical location (i.e., adjacent to the highest elevation in the central portion of the cell), the installer completed deployment of the geomembrane (i.e., extend over past the high point) and seamed the deployed panels. After the installer non-destructively tested the seam, QC destructive samples were obtained. Based on passing results, Geosyntec marked out destructive seam samples on the required frequency, with additional samples obtained from the last four seams that were welded. See FCF No. 9 for further details.

5.2 CQA of Geomembrane

5.2.1 Conformance Testing and Documentation

A textured geomembrane was installed directly over the low-permeability layer. The geomembrane liner, Micro Spike[®], was supplied by Agru America Inc. (Agru) of Georgetown, South Carolina. A total of 138 rolls were produced for the project, totaling 1,602,870 ft² in area. A total of 132 rolls were delivered initially, totaling 1,533,180 ft² in area. Near the end of the installation, the installer delivered the additional six rolls (Nos. 312330 through 312335) along with four additional rolls (Nos. 424799, 425101 through 425103). These additional rolls were used as part of the sacrificial flap that was installed on the exposed portions of the perimeter berms. No conformance samples were obtained from these final four additional rolls; see RFI No. 26 for details.

Geomembrane conformance samples were taken from the 60-mil thick HDPE textured geomembrane rolls used to construct the lining system in the manufacturer's plant. A total of seven (7) conformance samples were obtained (not including one sample obtained for interface friction testing). The sample frequency of one sample per 228,981 ft² of produced material exceeds the minimum acceptable sample frequency of one sample per 250,000 ft² required by the CQA Plan. A total of 1,087,333 ft² was installed, as observed by CQA personnel.

The conformance test results for the 60-mil thick liner and the manufacturer's QC certificates were reviewed by CQA personnel and were found to be in compliance with the CQA Plan. The geomembrane manufacturer's QC documentation, including the resin and geomembrane certifications, and the conformance tests are presented in Appendix F and Appendix G, respectively.

5.2.2 Field Monitoring Activities

5.2.2.1 Delivery and On-Site Storage

Upon delivery to the site, geomembrane rolls were stored in an area located to the southeast of the construction area. The rolls were typically transported by a Caterpillar 299C compact track loader or a Caterpillar TL943 telehandler. CQA personnel periodically monitored the installer's delivery, unloading, and storage procedures to ensure that the material was handled in an appropriate manner. The CQA personnel also compared the roll numbers of the geomembrane rolls delivered to the manufacturer's bill of lading and maintained an inventory of delivered materials.

5.2.2.2 Deployment

Prior to geomembrane deployment, the surface of the LP soil barrier layer was visually checked for cracks and sharp objects. The installer signed certificates of acceptance of the subgrade surface, which are presented in Appendix H. The geomembrane rolls were lifted using a spreader bar attached to a tracked excavator or compact track loader. Prior to deployment and when needed, the surface of the low-permeability soil layer was prepared by pulling a weighted, chain link fence behind a four-wheel, low-ground pressure, all-terrain vehicle (ATV) or with a compact track loader with a smooth drum attachment.

During deployment, a 16 gauge, solid, type S wire was installed under geomembrane panels on approximately 200-ft centers. The installer connected one end with the existing Phase I wires and marked the south end of the wire for future reference for the leak location survey. Details of the leak location survey are provided in Section 5.2.3.2.

CQA personnel monitored the deployment of geomembrane panels. During deployment, the CQA personnel checked for the following:

- manufacturing defects;
- damage that may have occurred during shipment, storage, and handling; and
- damage resulting from installation activities, including damage as a consequence of panel placement, seaming operations, or weather.

If materials were observed to be damaged or deficient, the installer was notified and the damaged materials were either discarded or repaired. CQA personnel observed and documented the repair locations to verify compliance with the CQA Plan. Details of the

geomembrane panel placement were recorded by CQA personnel on panel placement logs, which are presented in Appendix I.

5.2.2.3 Trial Seams

Prior to production seaming, the installer prepared geomembrane trial seams for each technician using each piece of seaming equipment. Typically, either a Demtech Services Inc. Pro-Wedge or a Concord Geotech Services, LLC, welder was used. Additional trial seams were prepared every four to five hours or less during cold weather seaming. CQA personnel evaluated the trial seams as follows:

- trial seam samples in the beginning of the day were typically 15-ft long for fusion and 3 ft long for extrusion and over 12 in. wide;
- trial seams were welded under similar conditions as for seaming;
- test strips were cut from the trial seams at random locations across each trialseam weld using a manual die press; each strip was 1 in. wide and 6 in. long; and
- test strips were tested for seam strength using a calibrated field tensiometer; two of the weld test strips were tested two in peel and two were tested in shear; the passing criteria for the tests were as follows:

Fusion

- Peel tests a minimum bonded seam strength of 91 lb/in Film Tear Bond (FTB); and
- *Shear test* a minimum bonded seam strength of 120 lb/in.

Extrusion

- Peel test a minimum bonded seam strength of 78 lb/in FTB; and
- *Shear test* a minimum bonded seam strength of 120 lb/in.

A total of 289 trial seams were observed by CQA personnel during Phase II construction; 183 trial seams were made using double-track fusion (i.e., hot wedge) welders and 106 were made using extrusion welders. All of the trial welds meet the criteria above.

Trial seam samples were not archived. Details of the trial seams, including the trial seam test results, are presented in Appendix J. The calibration certificates for the tensiometers are also provided.

5.2.2.4 Production Seams

Geomembrane production seaming operations were monitored by CQA personnel. The majority of the geomembrane production seams were fabricated using double-track fusion welders. Seam repairs were made using hand-held extrusion welders. Rub sheets were periodically used during production seaming to provide a clean surface to weld over. During or after fabrication, the geomembrane seams were visually examined for workmanship and continuity. Geomembrane seaming logs are presented in Appendix K.

5.2.3 Nondestructive Testing

5.2.3.1 Scope

Nondestructive testing of geomembrane was periodically monitored by CQA personnel. Leak location survey was performed on the geomembrane liner. Spark test was conducted on temporary pipe boot. Geomembrane seams were nondestructively tested for continuity by the installer using the air pressure procedure for double-track fusion seams and the vacuum-box test procedure for extrusion-welded seams. Failed air-pressure test seams, if applicable, were capped and then retested using vacuum-box test methods after determining the failed seam length. Leaks identified using the vacuum-box method were repaired and retested as described in Section 5.2.5.

5.2.3.2 Leak Location Survey

As required by the CQA Plan, an electrical leak location method was used to survey the installed geomembrane liner. An independent contractor, THG Geophysics Ltd (THG) of Murrysville, Pennsylvania, conducted the surveys. The surveys were performed following ASTM D7703 - Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance System (water lance method) and ASTM D7007 - Standard Practices for Electrical Methods for Locating Leaks in Geomembranes Covered with Water or Earth Materials (dipole method).

On the exposed geomembrane on the east and west berms, the water lance method was performed by applying a 12 volt direct current to a flow of water between two electrodes.

After placement of the gravel drainage layer, THG re-mobilized several times to perform dipole method survey that involved establishing a direct current was between a stainless steel cathode (installed in the gravel) and the anode (16-gauge wire under the liner). Water was added, as needed, using a water truck or sprinkler. Anomalies in the potentiometric measurements caused by electrical current flowing through probable holes were monitored.

During surveys of the geomembrane liner, nine defects were positively identified. The contractor removed the overlying drainage gravel and geotextile in the identified areas and the geomembrane was observed by project personnel for obvious holes or tears. The located damage was repaired and vacuum-tested by the installer as described in Section 5.2.5. Resurvey of the repaired area and areas disturbed during rework of the gravel drainage layer was conducted.

5.2.3.3 Air Pressure Testing

Accessible double-track fusion seams were nondestructively tested using the air pressure test. The procedure used by the installer for air pressure testing was as follows:

- visually observe the integrity of the annulus of the section of seam being tested and isolating the section by sealing the ends using heat and pressure;
- insert the needle of a pressure test apparatus into the annulus at one end of the seam;
- inflate the annulus to a gauge pressure of a minimum 25 30 psi with an air pump and maintain the gauge pressure for at least five minutes;
- if the pressure loss exceeded 3-psi, or if the pressure did not stabilize, the faulty area was repaired in accordance with Section 5.2.5 of this report; and
- confirm airflow through the entire annulus by releasing the air from the seam at the opposite end from where the needle was inserted.

Nondestructive test results are presented with the production seam logs in Appendix K.

5.2.3.4 Vacuum-Box Testing

The vacuum-box was used by the installer to nondestructively test extrusion seams and repairs. The procedure used by the installer for vacuum testing was as follows:

- wet a strip of seam with a soapy solution;
- place the vacuum-box assembly over the wetted area, close the bleed valve and open the vacuum valve;
- force the box onto the sheet until 5-psi vacuum is observed;
- examine the seam through the viewing window for a period of approximately 20 seconds (when observed by CQA personnel) for the occurrence of air bubbles;
- remove the assembly and continue the process over the entire seam with a typical 3-in wide overlap; and
- record the location of any leaks.

If nondestructive testing indicated repairs were necessary, repairs were made in accordance with procedures presented in Section 5.2.5 of this report and vacuum testing was repeated. Vacuum test results are presented with the production seam logs and repair summary logs in Appendices K and L, respectively.

5.2.3.4 Spark Testing

Geomembrane boots were welded around pipe penetrations (e.g., inclinometer located in Phase II). A spark test was used to nondestructively test extrusion seams used to fabricate the pipe boots. The spark test requires a continuous copper wiring to be extrusion welded into the seam. An electric current is applied while a probe is passed next to the seam. Any seam discontinuity is detected by the generation of a spark passing between the wire and the probe. When a spark was observed, repairs were made and the seam re-tested. After being non-destructively tested, three stainless steel straps with neoprene gaskets were installed and the ends of the pipe penetration were sealed using a silicone sealant. The pipe boot for inclinometer, S1-G1, was later removed and repaired (see Section 5.2.5 for details).

5.2.4 Destructive Seam Sample Testing

5.2.4.1 Scope

In accordance with the CQA Plan, CQA personnel identified and collected geomembrane seam samples for destructive testing. The samples were tested in the field prior to being forwarded to the independent laboratory, GTX.

During Phase II construction, 114 geomembrane seam samples were taken initially from approximately 53,286 linear ft of production seams constructed. This corresponds to an approximate sample frequency of one per 467 linear ft of production seams. This frequency meets the minimum acceptable sample frequency of one per 500 linear ft of production seams, as required by the CQA Plan. Prior to the removal of the full seam sample, two geomembrane test strips were taken by the installer from either end of the destructive sample. Each strip was peel-tested in the field. If the peel samples exhibited passing results, the adjacent destructive seam sample was shipped to the laboratory for testing.

For a destructive seam sample to be considered as passing, the seam strength criteria, which are described in Section 5.2.4.3, had to be met.

5.2.4.2 Sampling Procedures

At each destructive seam sample location, a test sample measuring approximately 12 in. across the seam and 42 in. along the seam was obtained. The sample was divided into three pieces and distributed to: (i) the geosynthetics laboratory for testing, (ii) the installer, and (iii) for an on-site archive.

5.2.4.3 Test Results

Off-site laboratory testing of geomembrane seam samples was performed in accordance with the CQA Plan. At the testing laboratory (i.e., GTX), 1-in wide test specimens were removed from the destructive seam sample using a die press. On a calibrated tensiometer, five test specimens were peel-tested for adhesion strength. For fusion seams, peel tests were performed on both the inside and outside tracks. Additionally, five specimens were tested for shear strength. The seam strength acceptance/rejection criteria described in Section 5.2.2.3 were used to evaluate the destructive seam samples.

For Phase II, a total of 114 initial destructive sample locations were selected of which eight samples failed (DS Nos. 34, 49, 55, 72, 73, 88, 97, and 108). Several of these

failures were observed along the Phase I tie-in even though the installer took measures to clean the Phase I edge.

During testing operations, five samples (DS 49, 55, 88, 97 and 108) were observed to fail field-testing; while three original samples were noted to fail laboratory testing. In the case of failed samples, additional test strips were taken from the seam at locations approximately 10 ft from each side of the failing sample location. If the additional test strips had passing results, a full destructive seam sample was taken. If the samples did not pass, test strips were obtained at another location approximately 10 ft further from the failure, repeating until passing samples were obtained and the failing area was localized (an additional seven bounding samples initially failed in the laboratory). Once the bounds of the failing seam were determined, the entire seam length between the passing samples was repaired by the procedures described in the following subsection. For extended repairs (i.e., greater than 150-ft), a destructive sample was obtained from the repair. A total of four destructive samples were removed from capped areas (DS Nos. 49C, 72C, 97C, and 108C); all passed the seam strength acceptance/rejection criteria described in Section 5.2.2.3. The destructive seam test results and the panel layout drawings are presented in Appendix L and Appendix P, respectively.

5.2.5 Geomembrane Repairs

The repair procedures presented in this subsection were used by the installer to patch holes and tears, spot-extrude impact damage or other minor scratches. In the cases where patches or caps were used to repair the damaged geomembrane (i.e., small holes, tears, or on seams which failed nondestructive or destructive testing), an approximately 12-in wide capping strip was used.

During the repair or panel tie-in operations, the following procedures were implemented:

- technicians and seaming equipment used were required to pass trial welds;
- patches or caps extended at least 6-in beyond the edge of the defect and all corners were rounded; and
- repairs were vacuum tested and visually observed for continuity.

As previously mention, an existing inclinometer, SI-G1, had a temporary geomembrane boot installed. RFI-026 required that the inclinometer be decommissioned. At Parson's direction, ATL monitored the inclinometer's abandonment that required removal of the boot; see Appendix O for a copy of their report. On 3 and 4 April 2013, Geosyntec

monitored the repairs to the geomembrane and geotextile as well as placement of the gravel layer.

Seam and panel repair logs are presented in Appendix M. Complete panel layout drawings illustrating the location of seam and panel repairs are shown in the record drawings in Appendix P.

5.3 **CQA of Geotextile**

5.3.1 Conformance Testing and Documentation

A non-woven geotextile was used as a cushion between the gravel drainage layer and geomembrane liner. The majority of the non-woven geotextile (267 rolls of GE-240) was manufactured by Skaps of Athens, Georgia. At the end of the project additional geotextile (seven rolls of GSE NW24) was manufactured by GSE Lining Technology, LLC (GSE) of Kingstree, South Carolina. The needle-punched, non-woven geotextile has a nominal weight per unit area of 24-oz/yd².

A total of six (6) passing conformance samples were obtained (not including one sample obtained for interface friction testing) from the 274 rolls delivered; totaling 1,217,250 ft² in area. The sampling frequency of one sample per 202,875 ft² of material exceeds the minimum acceptable sample frequency of one per 250,000 ft² required by the CQA Plan.

During the design phase, a hydrostatic puncture test, ASTM D5514 (modified), was performed on a geosynthetic sandwich over a 55 hour duration to verify that no puncture or holes were observed in the geomembrane after the application of a 5,000 lb/ft² normal stress. During Phase II geotextile installation and prior to placement of the gravel drainage layer, the geotextile exposure exceeded the ultraviolet (UV) exposure requirement of fourteen days (reference Section 02710 Part 3.01.c). To confirm the now-woven geotextile would function as intended after exposure, an exposed geotextile sample was obtained and a similar hydrostatic puncture test, ASTM D5514 (modified), was performed to verify that no puncture or holes were observed in the geomembrane after the application of a 5,000 lb/ft² normal stress; see FCF Nos. 6 and 11 for details and Appendix G for results.

The conformance test results and the manufacturer's quality control (QC) letters and certificates were reviewed by CQA personnel and were found to be in compliance with the CQA Plan. The manufacturer's QC certificates and the results of the conformance tests were presented in Appendices F and G, respectively.

5.3.2 Field Monitoring Activities

5.3.2.1 Delivery and On-Site Storage

Upon delivery to the site, geotextile rolls were typically stored in an area located south of the construction area. The geotextile rolls were transported on site by a Caterpillar 299C compact loader or Caterpillar TL 943 telehandler. CQA personnel periodically monitored the delivery, unloading, and storage procedures to ensure that the material was handled in an appropriate manner. An inventory of delivered rolls was maintained by CQA personnel.

5.3.2.2 Deployment and Seaming

The non-woven geotextile was manually unrolled over the geomembrane liner. CQA personnel monitored the deployment of the non-woven geotextile rolls for manufacturing defects, damage that may have occurred during shipment, storage, and handling, and damage resulting from installation activities. If any materials were observed to be damaged, the installer was notified and the damaged materials were either discarded or repaired. CQA personnel observed repair locations to verify conformance with the requirements of the CQA Plan.

After deployment of the geotextile, CQA personnel observed that the installer overlapped geotextile panels a minimum of 4 to 6-in then used a wedge welder to seam the panels together. As a precaution prior to placement of gravel, tarpaulins were deployed over central and eastern portions of installed geotextile as ultra-violet protection. The temporary tarpaulins were ballasted with sand bags. The tarpaulins were re-located typically eastwards as gravel placement proceeded.

As required by the CQA Plan, Parsons prepared a geotextile panel layout. A copy of the panel layout is presented in Appendix P.

7. SUMMARY AND CONCLUSIONS

Observation of the construction of Phase II at the Onondaga Lake Sediment Consolidation Area was performed by Geosyntec during the period of 26 March to 14 November 2012 and 3 and 4 April 2013 for a repair. During this time, CQA personnel monitored the installation of the following components:

- earthwork (subgrade preparation, engineered fill, compacted low-permeability soil liner, and gravel drainage layer construction); and
- geosynthetics (geomembrane liner and geotextile cushion).

During construction of the above components, CQA personnel verified that conformance and CQA testing were performed on the construction materials at the frequencies required in the CQA Plan (as defined in Section 3.1.2 of this report), and that materials meeting the CQA Plan requirements were used. CQA personnel also verified that conditions or materials identified as not conforming to the CQA Plan were replaced, repaired, and/or retested, as described in this report.

The results of the CQA activities undertaken by Geosyntec as described in this report indicate that Phase II of the Onondaga Lake Sediment Consolidation Area was constructed in accordance with the Specifications, as well as the design clarification (i.e., RFIs and FCFs).

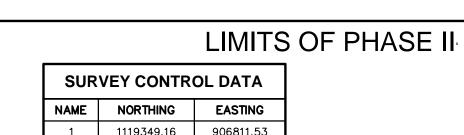
Marcus Fountain

CQA Manager

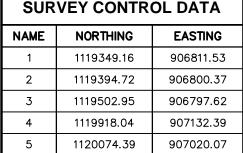
David J. Bonnett, P.E. CQA Engineer-of-Record

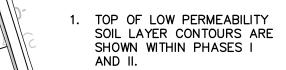
David J. Bound

New York PE #89889

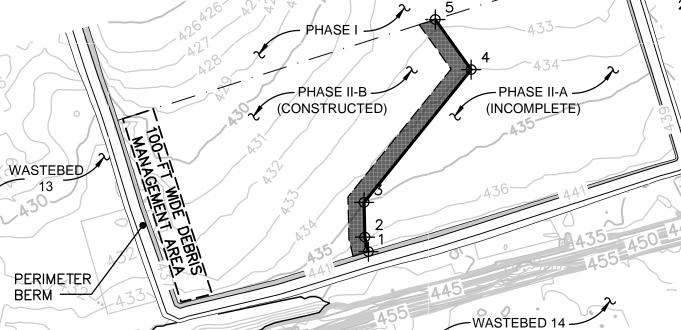

I, David J. Bonnett, certify that I am currently a New York State Registered Professional Engineer, who had primary responsibility to ensure implementation of the subject construction program, and that I certify that the Remedial Design Plans and Specifications were implemented and that construction activities were completed in substantial conformance with the approved NYSDEC approved Remedial Design and Specifications including modifications approved by the Designer and/or NYSDEC.

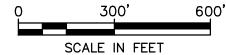
SITE LOCATION MAP




SOURCE: PARSONS MAP

Geosyntec consultants			KENNESAW, GA	
DATE:	May-12	SCALE:	NTS	_
PROJECT NO.	GJ4706B	FILE NO.	4706f001	
DOCUMENT NO.	-	FIGURE NO.	1	





NOTES:

WATER PRODUCED BY OPERATION OF PHASE II-B SHALL BE CONTROLLED TO PREVENT OVERFLOW INTO PHASE II-A

LEGEND

-430 - ELEVATION CONTOUR (FEET)

PHASE BOUNDARY

LIMIT OF PHASE II-B **CERTIFICATION**

50-FT OPERATIONAL **BUFFER**

CONTROL POINT

Geosyntec •
consultants

KENNESAW, GA

DATE:	Oct-12	SCALE:	AS SHOWN
PROJECT NO.	GJ4706B	FILE NO.	4706F001
DOCUMENT NO	GA120495	FIGURE NO.	2

GEOTUBES\CQA\PHASE -:\cadb\o\onondaga Lake\Permit\sca

II CERTIFICATION\DRAWINGS\4706F001

APPENDIX A

Photographic Documentation

Geosyntec^D

consultants

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 1: The Phase II LP soil material was placed using Caterpillar D6N dozers equipped with GPS guidance systems. The material was placed in multiple lifts to achieve a minimum thickness of 1-ft.

Photograph 2: A dozer and draw-type harrow was used to homogenize placed lifts of LP soil.

Geosyntec^D

consultants

PHOTOGRAPH LOG

PROJECT NAME: Onondaga Lake SCA Phase II PROJECT NO.: GJ4706B

CLIENT.: Honeywell FILE NAME: Photolog.pptx

Photograph 3: Placed lifts of LP soil were compacted using a CAT CS-56 vibratory roller.

Photograph 4: The surface of LP soil lifts were scarified approximately 2-in deep prior to placement of subsequent lift.

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 5: Water was added to the scarified surface, as necessary, to promote adhesion between the lifts of LP soil and to maintain the moisture content of the LP layer.

Photograph 6: An excavator was used to remove overburden along the Phase I tie-in.

Geosyntec^D

consultants

PHOTOGRAPH LOG

PROJECT NAME: Onondaga Lake SCA Phase II PROJECT NO.: GJ4706B

CLIENT.: Honeywell FILE NAME: Photolog.pptx

Photograph 7: The geomembrane in Phase I was rolled back and ballasted to facilitate access to the underlying LP soil to allow the Phase II LP soil to be keyed in.

Photograph 8: The LP soil layer in Phase I was trimmed to a shear face to ensure the minimum layer thickness was achieved along the tie-in.

Geosyntec^D

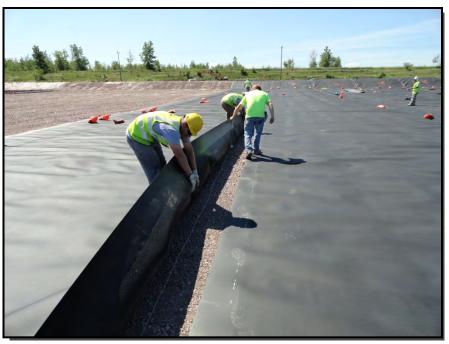
consultants

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT ·	Honeywell	FILE NAME: Photolog potx

Photograph 9: LP layer thickness verification was performed by Parsons using either a driven probe rod (shown) or a drill bit to contact steel plates.

Photograph 10: Additional geomembrane rolls were delivered to the site during construction of Phase II. The material was unloaded and stockpiled on-site using a telehandler.

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

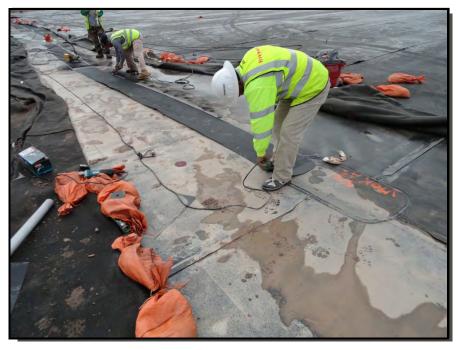

Photograph 11: The Phase I geomembrane was unfolded over the completed LP soil layer prior to welding a connection to the Phase II geomembrane.

Photograph 12: A compact track loader was used to deploy panels from rolls of 60-mil thick HDPE geomembrane.

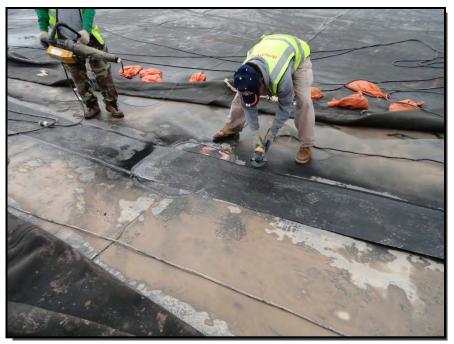
Geosyntec consultants

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 13: Deployed geomembrane panels were manually positioned to achieve the proper overlap for seaming.

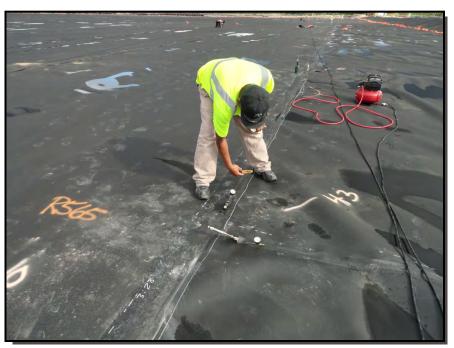

Photograph 14: Calibrated tensiometers were used to conduct field testing of trial welds and destructive samples.

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx


Photograph 15: Seams between adjacent geomembrane panels were constructed using fusion welding equipment.

Photograph 16: Repairs to the geomembrane were initially heat bonded to facilitate preparation for extrusion welding.

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx


Photograph 17: Electric powered grinders were used to abrade the surface of the geomembrane prior to extrusion welding.

Photograph 18: Hand-held extrusion welders were used to weld repairs.

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT ·	Honeywell	FILE NAME: Photolog poty

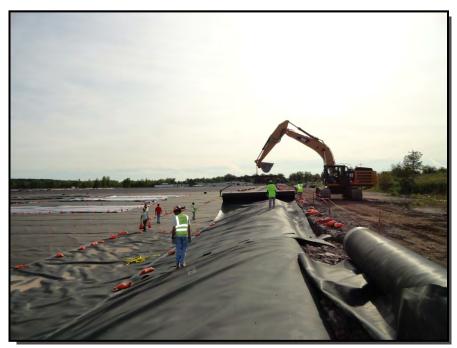
Photograph 19: Fusion welded seams were non-destructively tested using the air pressure test method.

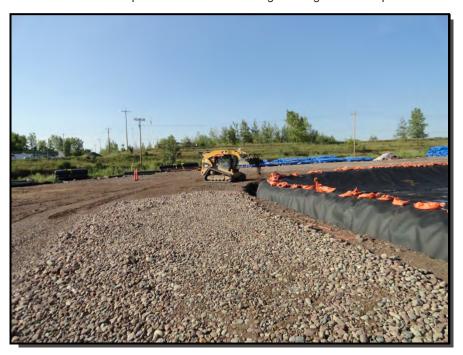
Photograph 20: Extrusion welds were non-destructive tested using the vacuum test method.

PHOTOGRAPH LOG

PROJECT NAME: Onondaga Lake SCA Phase II PROJECT NO.: GJ4706B

CLIENT.: Honeywell FILE NAME: Photolog.pptx


Photograph 21: A non-woven geotextile cushion (24 oz/syd) was deployed over the installed geomembrane. Adjacent geotextile panels were joined using a fusion welder.

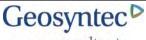

Photograph 22: The slopes of Phase II were leak tested using the water lance method prior to installation of a sacrificial geomembrane layer.

Geosyntec consultants


PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 23: Panels of the sacrificial geomembrane were deployed using an excavator equipped with a spreader bar. The rolls were suspended and unrolled along the length of the slope.

Photograph 24: The anchor trench was backfilled and compacted following placement of the sacrificial geomembrane. The backfill was placed in lifts.


1	PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
	CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 25: Temporary tarpaulins were used to cover areas of installed geotextile to minimize UV exposure. the tarpaulins were re-located with the placement of gravel.

Photograph 26: Two foot thick access roads were established inside the Phase II area on which trucks transporting drainage gravel used. After unloading, gravel was placed to a thickness of 1 ft using Caterpillar D6N LGP dozers.


PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 27: The tarpaulins covering the geotextile were removed as drainage gravel placement progressed.

Photograph 28: Sprinklers were used to apply water to the installed drainage gravel layer and underlying geosynthetics to facilitate electrical leak location surveying (ELLS).


PHOTOGRAPH LOG

PROJECT NAME: Onondaga Lake SCA Phase II PROJECT NO.: GJ4706B

CLIENT.: Honeywell FILE NAME: Photolog.pptx

Photograph 29: The ELLS was performed using the dipole method. The locations of data anomalies were excavated. Located holes were repaired, the gravel was reinstalled, and the area retested.

Photograph 30: A boot was installed around inclinometer SI-G1 in 2012 as a temporary measure. The inclinometer was abandoned in March 2013.

PROJECT NAME:	Onondaga Lake SCA Phase II	PROJECT NO.: GJ4706B
CLIENT.:	Honeywell	FILE NAME: Photolog.pptx

Photograph 31: Abandonment of inclinometer SI-G1 and removal of the associated boot left an approximately 6-in diameter hole within the geomembrane.

Photograph 32: Chenango mobilized to the SCA on 3 April 2013 to repair the hole at the former location of inclinometer SI-G1 by extrusion welding a patch. Parsons placed the gravel drainage layer after repairs were completed.

APPENDIX B

Field Reports and Correspondence

- Request For Information
- Field Change Forms
- Weekly Field Reports

Request For Information

301 Plainfield Road Suite 350, 3rd Floor

Syracuse, NY 13212

REQUEST FOR INFORMATION

No. 00002

TITLE:

Structural Fill Classification

DATE: 10/25/2010

PROJECT: HW SCA CONSTRUCTION

JOB: 446199

STARTED:

COMPLETED:

TO:

Attn: David Steele

PARSONS

301 Plainfield Road

Suite 350

Syracuse, NY 13212

Phone: 315-552-9736 Fax: 315-451-9570

RE

REOUIRED: 11/1/2010

WORK

SCHEDULE

COST

IMPACT: Unknown

IMPACT: Yes

IMPACT: No

REQUEST:

Can you please clarify if we would be able to use material that has been tested as GP w/sand on the berm work.

PROPOSED SOLUTION:

Earthwork specification 02200 2.01B gives the following allowable soil classification for use as structural fill (SC, SM, ML, CL, GM, GC, or GW). We have a readily available material that was tested as a GP w/sand results attached) that we would like to include for use as first 14" bridge lift over SOLW. Limited use of this material would only be allowed as first 14" bridge lift. All other subsequent lifts would follow the current specifications. We believe this type of material would greatly enhance the bridging capability when places as a 14" lift over the SOLW. We believe this material would give a more stable foundation to complete the berm construction and allow work to continue in Syracuse fall and early winter weather conditions.

ANSWER:

Dave Steele approved the proposed solution. He stated this would need to now go to Geosyntec since it would be a submittal change and would need their approval as well.

Geosyntec responded "Acceptable for use under the berms; use in other areas of the SCA will require prior approval"

Requested By:PARSONS	COMPLETED	
Signed:		
Mark Hoffmann		

REQUEST FOR INFORMATION RFI-002

Request

Information:
1. Estimated Cost Impact: Unknown
2. Estimated Schedule Impact: Would allow continuation of berm work in Syracuse fall and early winter weather conditions
3. Prepared By: Mark Hoffmann
4. Requested Response By: 10/29/10
 Written Description (attach sketches if applicable): Earthwork specification 02200 2.01B gives the following allowable soil classification for use as structural fill (SC, SM, ML, CL, GM, GC, or GW.
6. Subcontractor's Solution: We have a readily available material that was tested as a GP w/Sand (results attached) that we would like to include for use as first 14" bridge lift over SOLW. Limited use of this material would only be allowed as first 14" bridge lift. All other subsequent lifts would follow the current specifications. We believe this type of material would greatly enhance the bridging capability when placed as a 14" lift over the SOLW. We believe this material would give a more stable foundation to complete the berm construction and allow work to continue in Syracuse fall and early winter weather conditions.
7. Project Engineer's Response:
Attachment Sheets: ST3104SL-37-09-10 (2 pages)/
Subcontractor: Date: 10/22/10
Project Engineer: Date: 290-t-2010
Acceptable for use under beins-
Acceptable for use under berns- use in other was of SCA will require Drive approval, IFB.
and approval, TEB

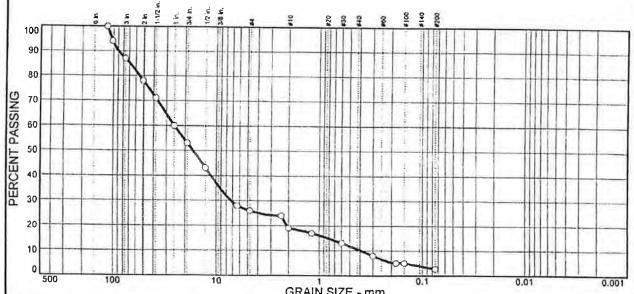
ATLANTIC TESTING LABORATORIES

Particle Size Distribution Report

Project: SCA Phase 1A

Report No.: ST3104SL-37-09-10

Client: Parsons Engineering of New York, Inc.


Date: 09-13-2010

Sample No: S72-SF10

Location: Stockpile

Source of Sample: Granby Quarry

Elev/Depth: ---

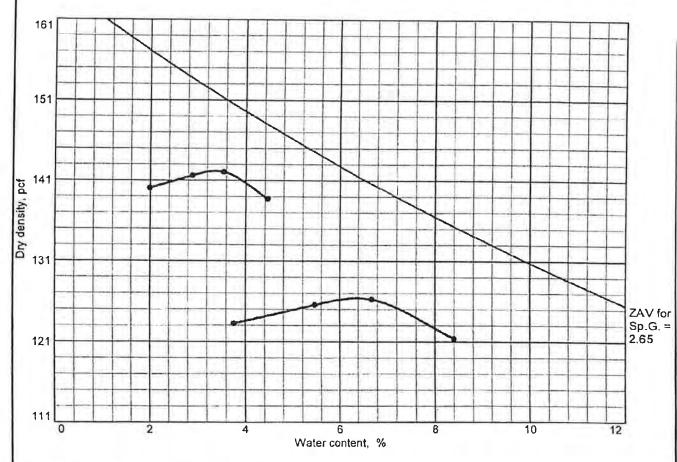
% COBBLES	W CORRIER	% GR	% GRAVEL		% SAND		% FINE	S
	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY	
13	34	27	7	8	8	3	*	

	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
4.5 in.	100		
			[
		n	
			0
	Š		
	5		ľ
#200			
	4.5 in. 4 in. 3 in. 2 in. 1.5 in. 1.0 in. 3/4 in. 1/2 in. 1/4 in. #48 #10 #16 #30 #80 #100	4.5 in. 100 4 in. 94 3 in. 87 2 in. 78 1.5 in. 71 1.0 in. 60 3/4 in. 53 1/2 in. 43 1/4 in. 28 #4 26 #8 24 #10 19 #16 17 #30 13 #50 8 #80 5 #100 5	4.5 in. 100 4 in. 94 3 in. 87 2 in. 78 1.5 in. 71 1.0 in. 60 3/4 in. 53 1/2 in. 43 1/4 in. 28 #4 26 #8 24 #10 19 #16 17 #30 13 #50 8 #80 5 #100 5

	Soil Description	
trace SILT/CL/ Structural Fill (AY	SAND; little COBBLES;
PL= NP	LL= NP	PI= NP
D ₈₅ = 68.7 D ₃₀ = 7.23 C _u = 65.10	D ₆₀ = 25.4 D ₁₅ = 0.822 C _c = 5.27	D ₅₀ = 16.8 D ₁₀ = 0.390
USCS= GP v	Classification v/ Sand AASH1	ro=
Sampled by A.	Remarks ASTM D 4318 and AS' Stanton on 09-02-10 Recieved Moisture = 5	

(no specification provided)

ATLANTIC TESTING LABORATORIES, LIMITED-


Reviewed by:

Date:

ATLANTIC TESTING LABORATORIES

COMPACTION TEST REPORT

Test specification: ASTM D 698-00 Method C Standard

Oversize correction applied to each point

Optimum moisture = 3.4 %

Location: Stockpile

Elev/	Classification		Received	8= 0	11	PI	DI	% >
Depth	USCS	AASHTO	Moist.	Sp.G.	LL.	FL	PI	3/4 in.
4.	GP w/ Sand	-	5,6	2.65	NP	NP	NP	47.0

CORRECTED TEST RESULTS **MATERIAL DESCRIPTION** Brown cm+f GRAVEL; some cm+f SAND; Maximum dry density = 142.2 pcf little COBBLES; trace SILT/CLAY

Report No.: ST3104SL-37-09-10 Client: Parsons Engineering of New York, Inc.

Project: SCA Phase IA

Sample No.: S72-SF10 Source of Sample:

Since this sample contained more than 30% plus 3/4" material, the Maximum Laboratory Dry Density and Optimum Moisture Content values may not be determined in strict accordance with ASTM D 698. Percent compaction determined by utilizing the Maximum Laboratory Dry Density may not be representative of compacted soil and should only be used as an indicator of percent compaction.

Remarks:

Dry Preparation

Rammer: Mechanical Specific Gravity: Assumed

Date: 09-13-2010

Reviewed by:

ASTM D 2216 and ASTM D 698 Sampled by A. Stanton on 09-02-10

Structural Fill (SF10)

ASTM D 2974 Percent Organic = 0.5%

REQUEST FOR INFORMATION

Phone: 315-552-9737

Fax: 315-457-9571

301 Plainfield Road Suite 350, 3rd Floor Syracuse, NY 13212

TITLE:

Subgrade Elevations

DATE:

4/14/2011

No. 00003

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

COMPLETED:

Suite 200

Kennesaw, GEORGIA 30144

REOUIRED: 4/15/2011

STARTED:

Phone: 678-202-9500 Fax: 404-267-1102

WORK

SCHEDULE

COST

IMPACT: No

IMPACT:

QUESTION:

IMPACT: Unknown

The Berm and Subgrade Grading Plan is +/- one (1) foot higher than the actual elevation measured in the field. This will have a significant cost impact for both the structural fill and the clay if built per current design plans. (Spec # 0220 and 02250) The SCA plans on starting clay placement Monday, April 25, 2011 and need resolution on this issues ASAP to support our project schedule.

PROPOSED SOLUTION:

ANSWER:

The following approach was discussed in the field:

Provide the northings, eastings, and elevations for points on a 50 ft grid across Phase I, and any high points between the grid points. From this information Geosyntec will prepare a contour drawing of the existing surface. We will provide a drawing with this surface for review and approval within two working days of receipt of the survey information.

Once approved we will prepare a revised top of clay layer within 2 to 3 working days of approval of the revised existing surface.

NOTE: Revised clay grades have been received from Geosyntec and the berms are to be built to the height (i.e., vertical distance between the ground and the top of the dike) shown in the design (elevation can be lower than design elevation). per Dave Steele (24 Jun 11)

equested By:PARSONS	Date:	4/14/2011	
Signed:			
Alan Steinhoff			

REQUEST FOR INFORMATION

301 Plainfield Road Suite 350

Phone: 315-552-9736 Fax: 315-451-9570

Syracuse, NY 13212

TITLE: Stripping Vegetation with Bulldozer

DATE:

7/13/2011

No. 00010

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: David Bonnett

GEOSYNTEC CONSULTANTS

STARTED:

COMPLETED:

REQUIRED: 7/20/2011

WORK IMPACT:

SCHEDULE IMPACT:

COST IMPACT:

QUESTION:

Is Geosyntec OK with stripping vegetation with a bulldozer (i.e., clearing and grubbing -although we may not completely grub)?

PROPOSED SOLUTION:

ANSWER:

The current method that involves manual and light equipment and the proposed method of using a low ground pressure bulldozer are acceptable. Clearing and grubbing operation shall not get too far in front of the clay placement operation.

After the stripping is complete, the area shall be observed by NYSDEC with CQC and CQA personnel to approve and record acceptable area.

'equested By:PARSONS	Date:	7/13/2011	
Signed:			
David Steele			

REQUEST FOR INFORMATION

301 Plainfield Road Suite 350

Phone: 315-552-9736 Fax: 315-451-9570 No. 00012

Page 1 of 1

Syracuse, NY 13212

TITLE:

Interface Friction Testing

DATE:

7/19/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: David Bonnett

GEOSYNTEC CONSULTANTS

STARTED:

COMPLETED:

REOUIRED: 7/25/2011

WORK **IMPACT:**

SCHEDULE **IMPACT:**

COST IMPACT:

QUESTION:

: Interface Friction Testing(Specification Section 02250 – Low Permeability Soil Layer)

To follow-up on coordination of interface direct shear (ASTM D5321) testing - Reference Specification Section 02250 Part 2.01.F.1:

The Contractor shall perform a minimum of one round of the following tests per borrow source, prior to material being delivered to the site:

1. Interface Direct Shear (ASTMD 5321)

The CQA Plan required one test per 10 CQC tests

PROPOSED SOLUTION:

ANSWER:

To streamline the process as well as a concern for the CQA Independent Testing Laboratory's ability to conduct a sandwich test, the following is proposed.

The project will require one interface direct shear per borrow source for the upper 12 to 18-in thick

low-permeability soil layer. Each test shall consist of testing the following cross-section, from top to bottom:

- •24-in thick gravel drainage layer from the Granby Pit
- •Geotextile cushion GSE NW24;
- •Geomembrane liner GSE HDT-060AE-BBB-B-WO; and
- •12-in LP soil layer two sources to date; Black Creek and Marcellus sources.

The clay shall be remolded to 95% of the maximum dry density as determined by the standard Proctor test (ASTM D698) at approximately 3% wet of the optimum moisture content.

Three points shall be performed at the following normal stresses: 700, 2,100, and 3,500 psf (similar to pre-design study). The test will be run at 0.004 in per minute.

The minimum sample size for soils is three 5 gallons buckets and for the geosynthetics, is a minimum of three wide by roll width

CO	MPLETED	
equested By:PARSONS	Date:	7/18/2011
gned:		
David Steele		
navera ®		

REQUEST FOR INFORMATION No. 00013

TITLE:

ASTM D4218 Testing

DATE:

7/22/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

STARTED:

COMPLETED:

Suite 200

Kennesaw, GEORGIA 30144

REQUIRED:

7/29/2011

Phone: 678-202-9500 Fax: 404-267-1102

WORK

SCHEDULE

COST

IMPACT: Unknown

IMPACT: Unknown

IMPACT:

Unknown

QUESTION:

Specification 02740 states HDPE Geomembrane Liner to be tested per ASTM D4218 for carbon black content. GSE manufcturer tested per ASTM D1603. As testing per ASTM D1603 also meets the required testing criteria Parsons requests that ASTM D1603 be used in place of ASTM D4218.

Drawings 444853-101-C-009 through 444853-101-C-012

PROPOSED SOLUTION:

Parsons proposes substituting ASTM D1603, which also meets specified requirements, for ASTM D4218.

ANSWER:

Proposed solution is acceptable.

COMPLETED

Requested By:PARSONS	Date:	7/22/2011	
Signed:			

GEOSYNTEC CONSULTANTS

REQUEST FOR INFORMATION No. 00014

TITLE:

Interface Friction Testing

DATE:

8/29/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: David Steele

PARSONS

STARTED:

301 Plainfield Road

COMPLETED:

Suite 350

Syracuse, NY 13212

Phone: 315-552-9736 Fax: 315-451-9570

REQUIRED:

9/5/2011

WORK

SCHEDULE

COST

IMPACT:

IMPACT: No

IMPACT:

No

Subcontractor:

GEOSYNTEC CONSULTANT David Bonnett

Architect:

QUESTION:

RFI SUBJECT(s): Interface Friction Testing (Specification Section 02250 - Low Permeability Soil Layer Part 2.01.F.1 and see RFI-11 for details)

QUESTION:

To confirm results meet the project requirements. The interface direct shear (ASTM D5321) tests were performed at the following normal stresses: 700, 2,100, and 3,500 psf and run at 0.004 in per minute. The results are attached for approval by the design engineer.

PROPOSED SOLUTION:

The results meet the intent of the design.

ANSWER:

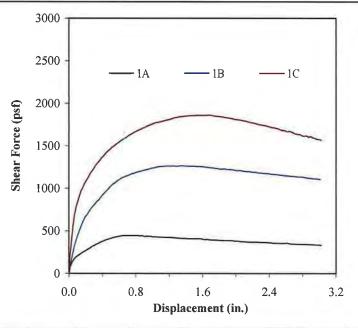
PER JAY BEECH 07 Sep 11

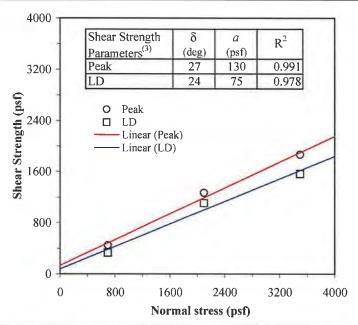
The results meet the intent of the design.

PER DAVID STEELS' email dated 01 Sep 11

I approve this RFI. We need to send to the Design Engineer for approval.

COMPLETED


GEOSYNTEC CONSULTANTS - ONONDAGA SCA PHASE 1 INTERFACE DIRECT SHEAR TESTING (ASTM D 5321)


Upper Shear Box: Drainage gravel nominally compacted/

GSE 240E (24 oz) nonwoven geotextile #130401943 with heart-treated side up/

GSE 60-mil textured HDPE geomembrane # 102158865/

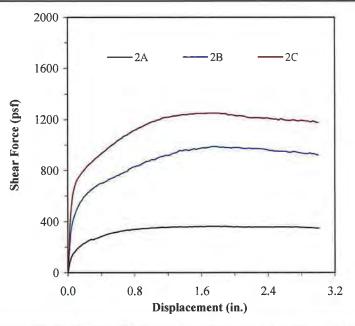
Lower Shear Box: Marcellus clay #LP-087compacted to approximately 95% of max standard Proctor density at 3% wet of OMC (OMC = 19.5%)

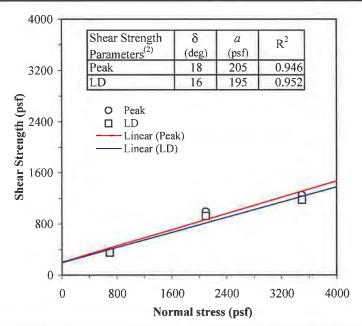
Test	Shear	Normal	Shear	Soa	king	Consol	idation	Dra	inage Gr	avel		Clay		G	CL	Shear S	Strength	Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	γ _d	ω_{i}	$\omega_{\rm f}$	$\gamma_{\rm d}$	ω _i	$\omega_{\rm f}$	$\omega_{\rm i}$	$\omega_{\rm f}$	τ_{P}	τ_{LD}	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
1A	12 x 12	700	0.004			700	24	1 3		10	102.8	21.7	20.5		(*)	447	332	(1)
1B	12 x 12	2100	0.004	* -	-2	2100	24	- •	1 - 1	6	102.5	22.1	20.1		-	1268	1107	(2)
1C	12 x 12	3500	0.004		-	3500	24	-	-	1.4	102.6	21.9	19.0	-		1862	1565	(2)

NOTES:

- (1) Sliding occurred at the interface between the geotextile and geomembrane
- (2) Sliding occurred at the interface between the geomembrane and clay.
- (3) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

	DATE OF REPORT:	7/31/2011	
	FIGURE NO.	C-1	_
	PROJECT NO.	SGI11017	
	DOCUMENT NO.		
3	FILE NO.		


GEOSYNTEC CONSULTANTS - ONONDAGA SCA PHASE 1 INTERFACE DIRECT SHEAR TESTING (ASTM D 5321)


Upper Shear Box: Drainage gravel nominally compacted/

GSE 240E (24 oz) nonwoven geotextile #130401943 with heart-treated side up/

GSE 60-mil textured HDPE geomembrane # 102158865/

Lower Shear Box: Black Creek clay #LP-088 compacted to approximately 95% of max standard Proctor density at 3% wet of OMC (OMC = 22%)

Test	Shear	Normal	Shear	Soa	king	Consol	idation	Dта	inage Gr	avel		Clay		G	CL	Shear S	trength	Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	γ _d	$\omega_{\rm i}$	$\omega_{\rm f}$	γ _d	ω_{i}	$\omega_{\rm f}$	ω_{i}	$\omega_{\rm f}$	τ_{P}	$ au_{LD}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
2A	12 x 12	700	0.004			700	24		-	-	97.1	24.7	23.4	19	9.6	363	349	(1)
2B	12 x 12	2100	0.004		-	2100	24		+	DIA:	97.4	24.4	23.7	(6)	+	989	923	(1)
2C	12 x 12	3500	0.004	-		3500	24		15		97.6	24.1	23.2		100	1249	1175	(1)

NOTES:

- (1) Sliding occurred at the interface between the geomembrane and clay.
- (2) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

DATE OF REPORT:	7/31/2011	
FIGURE NO.	C-2	
PROJECT NO.	SGI11017	
DOCUMENT NO.		
FILE NO.		

PARSONS

REQUEST FOR INFORMATION

No. 00015

301 Plainfield Road Suite 350

Syracuse, NY 13212

Phone: 315-552-9736 Fax: 315-451-9570

TITLE:

SF Classification

DATE:

9/6/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

STARTED:

1255 Roberts Boulevard NW

COMPLETED:

Suite 200

Kennesaw, GEORGIA 30144

REQUIRED:

9/13/2011

Phone: 678-202-9500 Fax: 404-267-1102

WORK

SCHEDULE

COST

IMPACT:

IMPACT:

IMPACT:

QUESTION:

Specification Section 02200-2.01B states:

"Soil materials used for engineered fill shall consist of relatively homogeneous natural soils free of materials, which, due to nature or size, are deleterious to he intended use. Unless otherwise specified herein, engineered fill shall classify as SC, SM, ML, CL, GM, GC, or GW according to the Unified Soil Classification System (per ASTM D 2487) or combinations of these materials. Classification shall be based on the results of soil conformance tests."

This RFI is to ask if materials can be used for SCA berm construction that that are relatively homogeneous natural soils free of deleterious materials and classify as the following:

- •GP w/Sand
- •GP-GM
- •GP-GM w/Sand
- •SP-SM w/Gravel
- •SW-SM w/Gravel

The following field observations are presented to justify acceptance of this material:

- 1) berms have held up to construction traffic, including loaded trucks, with minimal signs of deflection, and
- 2) berms have help up since fall of 2010 with minimal signs of erosion.

PROPOSED SOLUTION:

ANSWER:

PER JAY BEECH 08 Sep 11

The proposed materials may be used, with the restiction that the maximum particle size should be 4 inches. Erosion protection measures should be applied as necessary.

PARSONS

REQUEST FOR INFORMATION

No. 00016

301 Plainfield Road Suite 350 Syracuse, NY 13212

Phone: 315-552-9736 **Fax:** 315-451-9570

TITLE:

Elevations for East and West Berms

DATE:

10/17/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

STARTED:

COMPLETED:

Suite 200

Kennesaw, GEORGIA 30144

REQUIRED:

10/24/2011

Phone: 678-202-9500 Fax: 404-267-1102

WORK

SCHEDULE

COST

IMPACT:

IMPACT: No

IMPACT:

No

QUESTION:

Drawing C-006 shows the elevations for the top of the berms around the SCA. Drawing C-009 shows the height of the temporary berm to be 5.7 feet. The east and west berms of the SCA are being built 0.5 feet lower than the design to account for the land-based topography data (as discussed in Field Change Form #3). This RFI is to ask what elevations are required for the top of the east and west berms and the top of the temporary berm to provide the necessary containment during the period when only Phase I and II are in operation.

PROPOSED SOLUTION:

ANSWER:

- (1) The elevations of the East and West Berms vary along their profiles and must be sufficient for both water retention and installation of the perimeter drainage channel during closure. Geosyntec will review as appropriate when the as-built elevations are provided.
- (2) The temporary berm between Phases I and III shall have a minimum elevation of 434 ft msl.
- (3) The temporary berm between Phases I and II shall have a minimum elevation of 436 ft msl.

See attached file for more information

Geosyntec^D

consultants

REQUEST FOR INFORMATION (RFI) RESPONSE

ГО:	David Steele, Dhana Hillenbrand	Date: 7 Nov. 2011	Job No.: GJ4706			
ADDRESS:	Parsons	Sediment Consolidation Area (SCA) Phase I				
ADDRIGGS.	Gerelock Road					
	Syracuse, NY	Camillus, NY				

RFI No.: SCA-RFI-00016 Revision No.: 0 Date of RFI: 17 October 2011

RFI SUBJECT(s): Berm Elevations

QUESTIONS:

RFI-00016: This RFI is to ask what elevations are required for the Top of East and West Berms and the top of the temporary berm to provide the necessary containment during the period when only Phase I and II are in operation.

RESPONSES:

- (1) The elevations of the East and West Berms vary along their profiles and must be sufficient for both water retention and installation of the perimeter drainage channel during closure. Geosyntec will review as appropriate when the as-built elevations are provided.
- (2) The temporary berm between Phases I and III shall have a minimum elevation of 434 ft msl.

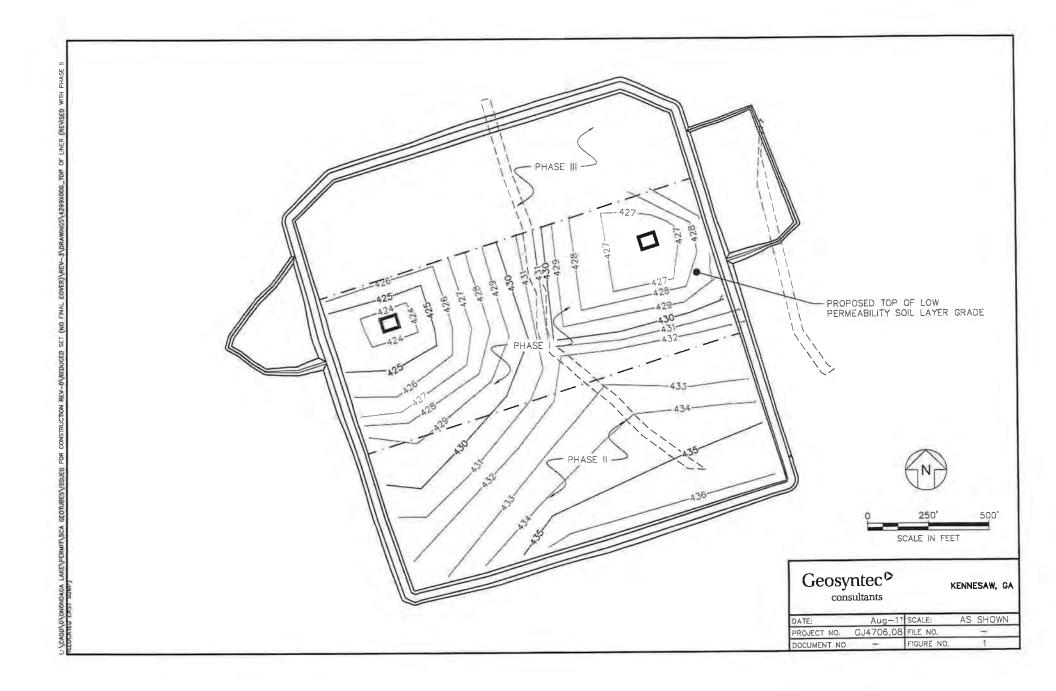
(3) The temporary berm between Phases I and II shall have a minimum elevation of 436 ft msl.

Prepared by

Date

Name: Joseph Sura

Date
Engineer-of-Record
Name: Jay Beech, P.E.


7 Nov. 2011

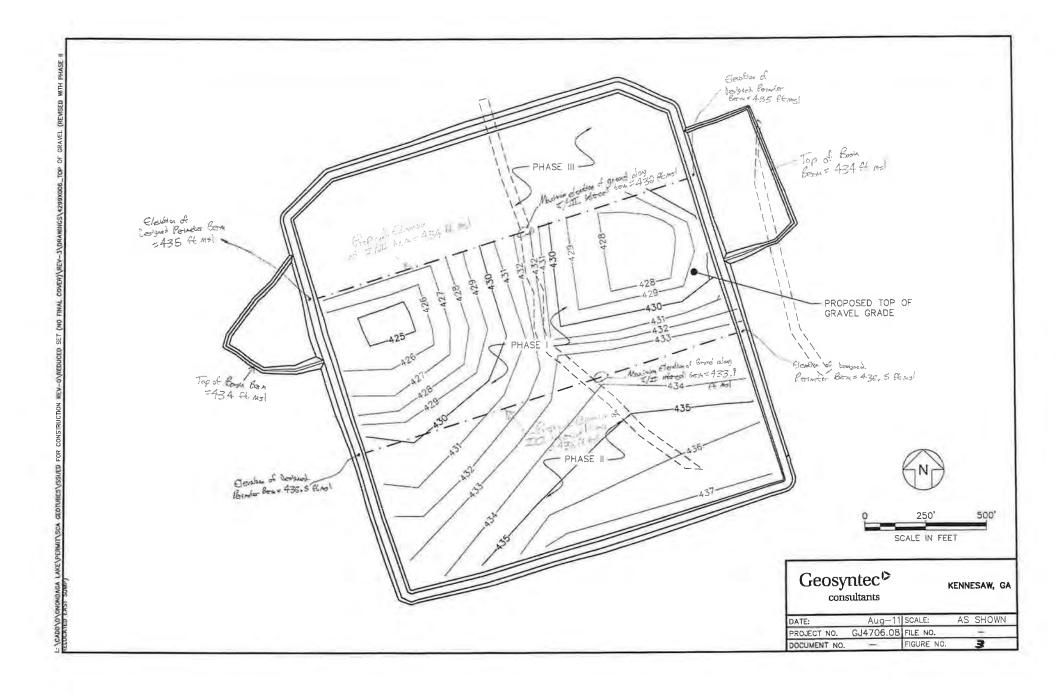
Name: Jay Beech, P.E.

7 Nov. 2011

Attachments

Original Analysis - Before survey bust, minimum berm elevation of 434 ft msl

Phase	Design Storm	Lowest Berr	m EL (ft msl)	Freeboard (ft.)			
1 11400	(24-hour)	West Area	East Area	West Area	East Area		
1	25-year	434.0	434.0	3.95	2.35		
1	100-year	434.0	434.0	3.65	2.15		
1 & 11	25-year	434.0	434.0	2.41	1.35		
1 & 11	100-year	434.0	434.0	1.40	1.06		
1, 11 & 111	25-year	434.0	434.0	0.86			


Revised Analysis - Includes survey bust, allows different minimum berm elevation

Phase	Design Storm	Lowest Berr	n EL (ft msł)	Freeboard (ft.)			
Thase	(24-hour)	West Area	East Area	West Area	East Area 2.14		
	25-year	434.0	434.0	3.69			
1	l 100-year		434.0	3.33	1.92		
II (Liner Only)	25-year	436	6.0	1.23			
II (Liner Only)	100-year	436	3.0	0.99			
1 & 11	25-year	434.0	434.0	1.88	1.13		
1 & 11	100-year	434.0	434.0	1.29 0.78			
1, 11 & 111	25-year	Not updated - Analyses can be performed if Phase III					

Notes:

- 1.) It is noted that the minimum height of the berm is considered to be 2 ft above the Top of Gravel. This results in a minimum berm elevation of 434 ft msl in Phase I and 436 ft msl in Phase II.
- 2.) The minimum freeboard requirement is considered to be 0.5 ft (6").

GEOSYNTEC CONSULTANTS

REQUEST FOR INFORMATION

No. 00017

COMPLETED

TITLE:

Gravel Drainage Grain Size

DATE:

12/8/2011

PROJECT: HW SCA CONSTRUCTION

JOB:

446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS

1255 Roberts Boulevard NW

Suite 200

Kennesaw, GEORGIA 30144

Phone: 678-202-9500 Fax: 404-267-1102

STARTED:

COMPLETED:

REQUIRED:

12/15/2011

WORK **IMPACT:**

SCHEDULE IMPACT:

COST IMPACT:

QUESTION:

Regarding Gravel Drainage Layer (Specification Section 02300-2.01.B and see FCF#1)

(i) To confirm the tested material properties of the gravel meets the intent of the project. The results from construction quality assurance (CQA) testing, specifically the grain size analysis (ASTM D422) tests, indicate oversized material was retained on the 4-in diameter sieve. See summary attached for detail.

(ii) To confirm the removal procedure to be used in the field to remove marginal material observed during gravel placement.

PROPOSED SOLUTION:

- (i) The material with oversized material meets the intent of the specification. The Contractor should avoid dumping gravel directly on the lining system using a maximum drop of less than 3-ft.
- (ii) During gravel placement operations, accumulation of fines has been observed. These areas have been delineated using high visibility sand bags. It appears fines become concentrated in high traffic areas (e.g., off access roads) or can become accumulated by the washing of fines through precipitation. These areas of concentrated fines will require removal.

Small low ground pressure equipment should be used to remove observed accumulated fines. The equipment bucket should be a straight edge with plastic, flexible rubber or similar material to avoid excessively sharp edges. The removal work should be coordinated with CQA personnel and a spotter should be present during removal activities to ensure no damage occurs to the existing lining system.

ANSWER:

- (i) The material with oversized material meets the intent of the specification. The Contractor should avoid dumping gravel directly on the lining system using a drop of less than 3-ft.
- (ii) During gravel placement operations, accumulation of fines has been observed. These areas have been delineated using high visibility sand bags. It appears fines become concentrated in high traffic areas (e.g., off access roads) or can become accumulated by the washing of fines through precipitation. These areas of concentrated fines will require removal.

nall low ground pressure equipment should be used to remove observed accumulated fines. The equipment oucket should be a straight edge with plastic, flexible rubber or similar material to avoid excessively sharp edges. The removal work should be coordinated with CQA personnel and a spotter should be present during removal activities to ensure no damage occurs to the existing lining system.

Detail Summary for SCA RFI 17

	TEST STANDARD	CLASSIFICATION (ASTM 02487)		HYDRAUUC CONDUCTIVIT (ASTM D2434						
	QA TEST FREQUENCY QA TEST REQUIRED		13.550 cyd 3	@ 18,000 cya						@25,000 cyd
SAMPLE No.	LOCATION	APPROX. VOLUME PLACED	(%)	PASSING 4-in, dia SIEVE (%)	PASSING 3-in, dia SIEVE (%)	PASSING 2-in dia SIEVE (%)	PASSING 1-in, dia, SIEVE (%)	PASSING NO 4 SIEVE (%)	PASSING NO 200 SIEVE (%)	PERMEABILIT (CM/S)
904	Spess		GW or GP	150	-		D-6		0 -3	2.10
t	On-site		g.e	100	78	35	3	0	0	
3.	Granby Source		GF	90	77	30	3	1	4	23.1
4	Granby Imported Gnd 1410 Granby Imported Gnd 09		GP GP	10.	74 54	48 29	4	2	0	14,6

consultants

REQUEST FOR INFORMATION (RFI) RESPONSE

TO:	David Steele an	d Dhana Hillenbra	and Date: 1 May 201	2 Job No.: GJ4706B
ADDRESS:	Parsons		Sediment Manage	ement System (SMS)
	522 Gerelock R	oad	Sediment Consol	idation Area (SCA)
	Camillus, NY 1	3031	Camillus, NY	
RFI No.: SCA	-RFI-0018	Revision N	Date of RFI: 24	April 2012
RFI SUBJEC	Γ: SCA Specificati	on Section 02710	– Geotextile Cushion	
	Part 3.02 and 303, v		otextile seams shall be over rea and sewn into place	lapped or seamed. Patches
PROPOSED F	RESPONSE:			
(i) During the of The 24 oz/syd p	design, geotextile pouncture strength o	performance tests f 250 pounds is ac	were performed and a 24 oxceptable per GRI-GT12(a).	z/syd material was chosen.
(ii) Heat bonding disturbing repair	ng of geotextile over irs during gravel pl	erlaps and patches acement.	is acceptable. The Contract	ctor shall take care to avoid
Prepared by		Date	Engineer-of-Record	Date
Name: Joseph	Sura	1 May 2012	Name: Jay Beech, P.E.	1 May 2012
Distribution:	✓ M. Fountain, Ge✓ David Bonnett,		Sura, Geosyntec 🔀 Ramacha	andran Kulasingam, Geosyntec

Attachments: GRI-GT12(a)

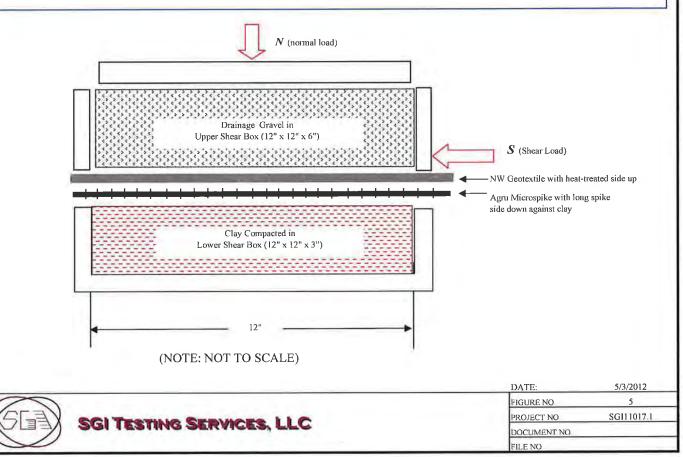
REQUEST FOR INFORMATION (RFI) RESPONSE

TO:	David Steele a	nd Dhana Hillenbra	and Dat	te: 1 May 2012	Job No.: GJ4706B				
ADDRESS:	Parsons		Sed	liment Manageme	ent System (SMS)				
	522 Gerelock I	Road	Sed	liment Consolidat	tion Area (SCA)				
	Syracuse, NY		Camillus, NY						
RFI No.: SCA	-RFI-00019	Revision N	o.: 0 Da	Date of RFI: 24 April 2012					
RFI SUBJEC	T: SCA Specificat	tion Section 07240	- Geomembra	ne					
	D792 used for		•		v substitution of the test cific gravity in place of				
PROPOSED 1	RESPONSE:								
The proposed	changes are accept	able.							
measured usin	g a water displac		n a gradient o	column. ASTM	For crystallinity. It can be D792 (Method B) and I GM-13.				
Prepared by		Date	Engineer-of	f-Record	Date				
Name: Joseph	Sura	1 May 2012	Name: Jay	Beech, P.E.	1 May 2012				
Distribution:	✓ M. Fountain, (✓ David Bonnet	•	Sura, Geosyntec	☐ Ramachand	Iran Kulasingam, Geosyntec				

Attachments: GRI GM-13

REQUEST FOR INFORMATION (RFI) RESPONSE

TO:	David Steele	e / Dhana Hillenbrand	Date: 9 May 2012	Date: 9 May 2012 Job No.: GJ4706					
ADDRESS:	Parsons		Sediment Consolida	ation Area (SCA)					
	Gerelock Ro	oad	Phase I						
	Syracuse, N	Y	Camillus, NY						
RFI No.: SCA	-RFI-00021	Revision No.: 0	Date of RFI: 9 May 2012						
		Friction Testing (Specifi 12 for details)	cation Section 02250 – Low	Permeability Soil Layer					
Part 2.01.F.1 a									
QUESTIONS To confirm res performed at the	ults meet the pr		e interface direct shear (AST 0, and 3,500 psf and run at 0 er.						
QUESTIONS To confirm res performed at the results are attace	ults meet the pr ne following not ched for approv	rmal stresses: 700, 2,100	0, and 3,500 psf and run at 0						
QUESTIONS To confirm res performed at the results are attace RESPONSES	ults meet the pr ne following not ched for approv	rmal stresses: 700, 2,100 al by the design enginee	0, and 3,500 psf and run at 0						
QUESTIONS To confirm res performed at the results are attace RESPONSES	ults meet the properties of the properties of the properties of the proventies of th	rmal stresses: 700, 2,100 al by the design enginee	0, and 3,500 psf and run at 0	,004 in per minute. The					
QUESTIONS To confirm res performed at the results are attace RESPONSES	ults meet the properties of the properties of the properties of the proventies of th	the design. May 4, 2012 Date	0, and 3,500 psf and run at 0						

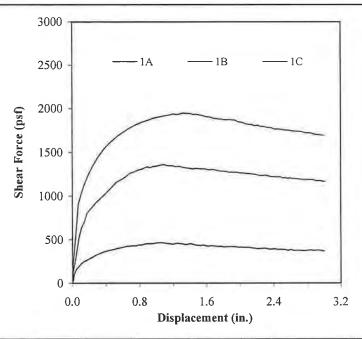

Attachments

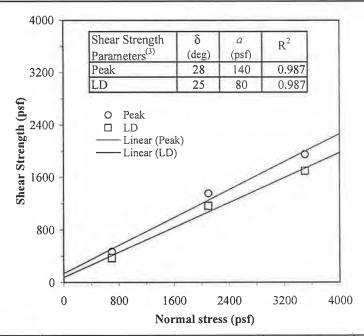
SGI Interface Shear Testing Results

David Bonnett, Geosyntec

SCHEMATIC DIAGRAM GEOSYNTEC CONSULTANTS - INTERFACE DIRECT SHEAR TESTING (ASTM D 5321) ONONDAGA SCA PHASE 1

The "sandwich" test, where GM and GT are not clamped, is to evaluate the shear strength of the weakest interface within the liner system. The weakest interface is the interface with the lowest PEAK shear strength within the 4-layer system.


GEOSYNTEC CONSULTANTS - ONONDAGA SCA PHASE 1 INTERFACE DIRECT SHEAR TESTING (ASTM D 5321)


Upper Shear Box: Drainage gravel nominally compacted/

SKAPS GE240 (24 oz) nonwoven geotextile #22388.166 with heart-treated side up/

Agru 60-mil Microspike HDPE geomembrane # 443563-11 with dull (short spike) side up/

Lower Shear Box: Marcellus clay #LP-103 compacted to approximately 95% of max standard Proctor density at 3% wet of OMC \(\chi_{max} = 113 \) pcf OMC = 17.5%)

Test	Shear	Normal	Shear	Soa	king	Consol	Consolidation		Drainage Gravel			Clay			GCL		Shear Strength	
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω_{i}	ω_{f}	γd	ω_{i}	$\omega_{\rm f}$	ωį	$\omega_{\rm f}$	$\tau_{\rm p}$	τ_{LD}	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
1A	12 x 12	700	0.004	4		700	24	TELL			107.4	20.4	4	-	*	464	369	(1)
1B	12 x 12	2100	0.004	-	-	2100	24	745	14	-	107.2	20.7	*			1355	1165	(1)
1C	12 x 12	3500	0.004	-		3500	24	0.81	•		107.7	20.1	*	luk-	= 9.	1949	1695	(1)

NOTES:

- (1) Sliding occurred at the interface between the geomembrane and clay.
- (2) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

SGI TESTING SERVICES, LLC

DATE OF REPORT:	5/3/2012	
FIGURE NO.	C-1	
PROJECT NO.	SG111017	
DOCUMENT NO.		
FILE NO.		

PARSONS

REQUEST FOR INFORMATION

No. 00024

301 Plainfield Road Suite 350 Syracuse, NY 13212

Phone: 315-552-9736 Fax: 315-451-9570

TITLE: Inclinometer DATE: 7/5/2012

PROJECT: HW SCA CONSTRUCTION

JOB: 446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS 1255 Roberts Boulevard NW

STARTED:

Suite 200

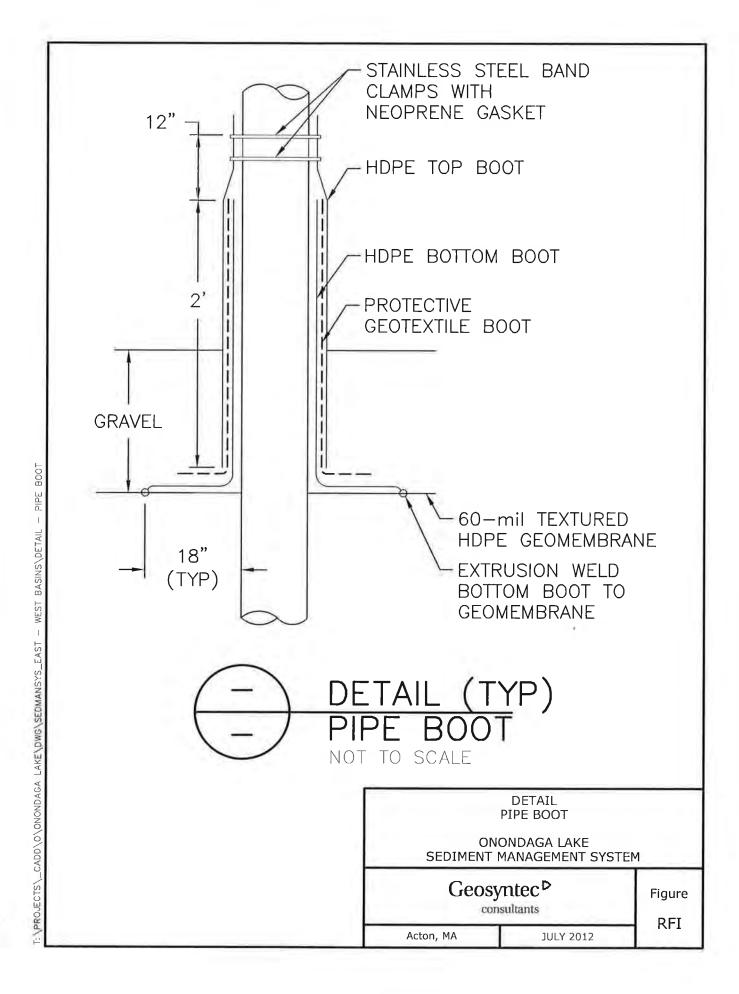
COMPLETED:

Kennesaw, GEORGIA 30144

Phone: 678-202-9500 Fax: 404-267-1102

REQUIRED: 7/12/2012

Five inclinometers have been installed as part of the SCA project; reference Drawing No. 444853-101-C-007. Note No. 7 on the drawing indicates SI-G1 and 2 were to be abandoned during construction of Phase II. SI-G1 has been left in place within Phase II in order to provide for some monitoring during initial geotube filling. SI-G1 will be abandoned at some point during the operational period of Phase 1 and Phase 2. When SI-G1 will be abandoned will be determined by the data collected and by operational considerations (e.g., access). SI-G2 was re-located outside of Phase I in the Phase III area. In anticipation of leaving SI-G1 in-place can a detail be provided to install a pipe penetration?


Requested By:PARSONS	Date:	7/5/2012
Signed:		
David Steele		

ANSWER:

The proposed pipe boot is acceptable. It is critical the bottom boot is free to move relative to the top boot (i.e., do not inadvertently clamp bottom boot to the pipe).

COMPLETED

Answered By: GEOSYNTEC CONSULTANTS	Date: 7/9/2012
Signed:	
John (Jay) Beech	

PARSONS

REQUEST FOR INFORMATION

No. 00025

301 Plainfield Road Suite 350 Syracuse, NY 13212

Phone: 315-552-9736 **Fax:** 315-451-9570

TITLE: Geomembrane

DATE: 7/5/2012

PROJECT: HW SCA CONSTRUCTION

JOB: 446199

TO:

Attn: John (Jay) Beech

GEOSYNTEC CONSULTANTS 1255 Roberts Boulevard NW

STARTED:

Suite 200

COMPLETED:

Kennesaw, GEORGIA 30144

REQUIRED: 7/12/2012

Phone: 678-202-9500 Fax: 404-267-1102

On 28 June 2012 to complete the Phase II installation, the installer, Chenango Contracting, re-delivered six rolls that had been initially produced for the project (roll Nos. 312330, 312331, 312332, 312333, 312334, and 312335). Another four rolls (Nos. 424799, 425101, 425102, and 425103) were also delivered. Chenango plans to utilize these extra four rolls to complete the sacrificial geomembrane on the sideslope (see Detail 4 on Drawing No. 444853-101-C-009).

Do these extra rolls need to be conformance sampled?			
Requested By:PARSONS	Date:	7/5/2012	
Signed:			
David Steele			

ANSWER:

Provided that the extra four rolls are used as sacrificial geomembrane and not part of the lining system, the manufacturer's quality control certificates indicating the material meets the intent of the Specification will be sufficient. No conformance tests will be required on the sacrificial geomembrane

Answered By: GEOSYNTEC CONSULTANTS	Date: 7/9/2012	
Signed:		
John (Jay) Beech		

REQUEST FOR INFORMATION (RFI) RESPONSE

David Steele, Dhana Hillenbrand	Date: Nov 21, 2012	Job No.: GJ4706
Parsons	Sediment Consolidati	on Area (SCA)
522 Gerelock Road	Phases I and II	
Syracuse, NY	Camillus, NY	
	Parsons 522 Gerelock Road	Parsons Sediment Consolidation 522 Gerelock Road Phases I and II

RFI No.: SCA-RFI-00026 Revision No.: 0 Date of RFI: November 20, 2012

RFI SUBJECT(s): Inclinometer abandonment (see Note 7 of Drawing 444853-101-C-007)

QUESTION: The time for abandonment of the inclinometer between Phases 1 and 2 (SI-G1) is coming close. What procedure and timing should be used for the inclinometer abandonment?

The following procedure is proposed:

- 1. Remove gravel to expose the geomembrane pipe boot.
- 2. Cut off the geosynthetics in an approximately 2-ft circle around the penetration.
- 3. Overdrill the casing down to a minimum depth of 15 ft.
- 4. Fill the casing hole with manually compacted backfill. The top 5 ft of the hole should be backfilled with a soil-bentonite mixture, lower depths can be backfilled with soil if preferred.
- 5. Repair the liner and geotextile.
- 6. Survey the patch location.

The following limitations should be noted:

- The equipment used to perform the overdrilling work should be LGP or tracked equipment to avoid damage to the gravel or underlying liner system. If this is not possible, a temporary access road will need to be constructed.
- This procedure involves liner repair work. Therefore, Geosyntec CQA personnel will need to be present to observe and document the liner repair work.
- The abandonment of SI-G1, located between Phases I and II, shall occur when necessary for geotextile tube placement in Phase II.
- Inclinometer SI-G2, located between Phases II and III, shall not be abandoned until work proceeds into Phase III.

PROPOSED RESPONSE:

The proposed procedure is acceptable. Geosyntec agrees with the noted limitations. Geosyntec CQA personnel will be available to observe and document the liner repair work during the abandonment procedure.

Prepared by
Name: Joseph Sura

21 November 2012

Engineer-of-Record
Name: Jay Beech, P.E.

21 Nov 2012

Field Change Forms

Project Number: 444853

SCA CONSTRUCTION CAMILLUS, NEW YORK

FIELD CHANGE FORM #3

Page I of 2

Date: 8/3/11

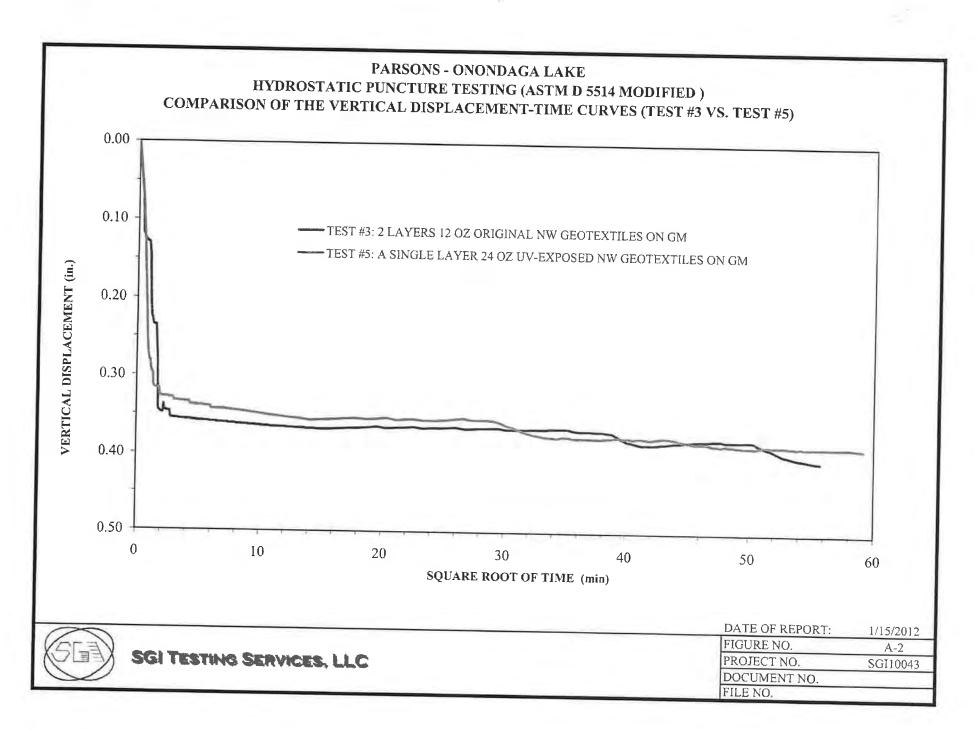
110ject Number: 444855 Date: 8/3/11
Construction Manager: Ken Sommerfield
Contractor: Parsons
You are hereby authorized and instructed to complete the following modifications to the approved Final Design:
The clay grading in the SCA design was based on topography of the site developed throug
aerial methods. Upon mobilization, land-based survey methods were used to re-evaluate the sit
topography. Two drawings showing revised subgrade and top of clay grading and limits of GC
(based on the land-based site topography) are attached. The revised clay grading and limits of
GCL meet the design and performance criteria defined in the SCA Final Design.
the service and performance which a control in the service in the
APPROVALS:
Design Engineer
Name:
J.F. Beech, Ph.D., P.E.
for a
Signature: D. S.
Date: 3 August 2011
Contractor Representative
David Steele, P.E.
Name: David Steele, P.E., Signature: David Alach
Date: 8/3/11
Owner
Name: Larry M. Somer
Signature: Im Amer
Date:
8/10/11
NYSDEC Representative Name:
IMOTHY J. LARSON
Signatur
Jimohyf
Date:
0/0/11

SCA CONSTRUCTION CAMILLUS, NEW YORK

FIELD CHANGE FORM #5

Page 1 of 1

Project Number:	444853	Date: 14 October 2011
Construction Manager:	Ken Sommerfield	1
Contractor:	Parsons	
You are hereby authorized a	nd instructed to compl	lete the following modifications to the approved Final Design:
control (CQC) soil sample to that conformance samples be frequency for soils be modif delivered volumes such that	esting frequency. The e collected typically lifed. In lieu of using the test frequency shall vered to the site divide	50/02300 Part 1.05 D set the minimum construction quality Construction Quality Assurance (CQA) Plan Table A-1 requires test per 10 CQC tests. It is proposed that the CQA sampling he number of CQC samples, CQA sample frequency will be tied to be be come: ed by CQC test frequency (presented in Spec Part 1.05.D for each
	r than on number of Co	n track material deliveries and sample as the appropriate QC samples (the number of which can be related to additional ing borrow investigations).
APPROVALS:		
Design Engineer		
Name:	DEELH	
	Buch	
Date: /4 0	U-2:11	
Contractor Representative		
Name: David	Steele	-1
Signature: Saut	Strele d Alecte	
Date:	oct/11	
Owner		
Name: Larry	M. Som	er
Signature: Just	Lower	
Date: 10/17/1	1	
NYSDEC Representative		
Name: Imouny	J. LANS	ia.
Signature:	DI_	
Date: 10/21/11		


SCA CONSTRUCTION CAMILLUS, NEW YORK

FIELD CHANGE FORM # 6

Page 1 of 1

	ra _{	36 1 01 1
Project Number:	444853	Date: 18 January 2012
Construction Manager:	Ken Sommerfield	
Contractor:	Parsons	
You are hereby authorized a	nd instructed to complete the	ne following modifications to the approved Final Design:
geotextiles from their opaque sample was collected on 6 Dour records, the geotextile hadays). The sample was teste attached. The results demonstrate the design intent (i.e., p	e cover, do not leave them of december 2011 from an area ad been deployed on 17 Sep d under the same condition strates that the sampled geo protect the underlying geom	3 Execution 3.01.C Placement states, "After unwrapping the exposed for a period in excess of 14 days". A geotextile clocated in the north-east corner of Phase I. According to extember 2011 (i.e., an exposure period of approximately 80 is as the original design test and the results of both tests are of textile can be exposed for at least 80 days at the site and embrane from being damaged by the drainage gravel). The dequate protection of the underlying geomembrane.
APPROVALS:		
Design Engineer	,	
Name:	· Bul	
Signature:	F. BEELH	
Date: /8	JAN 2012	
Contractor Representative		
Name:	id Alette	
Signature:	ind Aleite	
Date:	Jan 2012	
Owner		
Name: Larry	M. Somer	
Signature: They	buer	
Date: 20 Ja	n 2012	
NYSDEC Representative		
Name: Imount	J. LABON)
Signature Inolay		
Date: 2/1/12		

SCA CONSTRUCTION CAMILLUS, NEW YORK

FIELD CHANGE FORM # 9 Page 1 of 1

Project Number:	444853	Date: 30 June 2012
Construction Manager:	Ken Sommerfield	
Contractor:	Parsons	

You are hereby authorized and instructed to complete the following modifications to the approved Final Design:

Specification Section 3.04.C states: "In all cases geomembrane seam areas shall be dry and protected from wind. Do not seam geomembrane during periods of precipitation or if winds are in excess of 20 miles per hour."

Five welders were in operation the morning of June 1 (one for only a short period due to a mechanical failure) and they welded approximately 3,600 linear feet of seams in an effort to seal the geomembrane up to and beyond Phase II high point. The last weld of the day was started at 11:45 am. There were periods of precipitation during the morning on June 1. The seams were kept dry through the use of paper towels. All seams were non-destructively tested in accordance with the specifications and met the specified criteria. Seven destruct samples were taken from these seams and tested in a laboratory in accordance with the specifications and the CQAP. These seven samples did not show effects of precipitation. Six of the samples met the specified criteria. One of the seven samples did not meet the specified criteria; the cause appeared to be dirt on the seam. The extent of the unacceptable weld was defined by two additional destruct samples that passed the criteria and the seam in between was reconstructed. As an additional demonstration of these seams' suitability, an additional four destructive samples were collected from the last seam that the four primary welders performed that day, DS-111 through 114. These additional samples were tested and also passed the specified criteria.

The seams welded on 6/1 are considered acceptable.

FIELD CHANGE FORM #9 Page 2 of 2

APPROVALS:	
Design Engineer	
Name: J.F. BEECH	
Signature: Ot. Beach	
Date: 09 July 2012	
Contractor Representative	
Name:	
Signature: Carid Alah	
Date: 13 July 2012	
Owner	
Name: Larry M. Somer	
Signature: The Louis	
Date: 7/12/12	
NYSDEC Representative	
Name: Timorny J. LARS 2	
Sign ture .	
Signifum Como Como Como Como Como Como Como Co	
0[2]2	

Honeywell

SCA Construction Field Change Form

Field Change Form Number: 10 Originator: William Long

Date: 9/21/2012

Field Design Change:

Work Element: SCA

Construction Manager: Ken Sommerfield

Contractor: Parsons

You are hereby authorized and instructed to complete the following modifications to the approved Final Design:

The exemption from Part 375 chemical analysis as per DER-10, section 5.4c.5 may be applied to the SCA drainage gravel:

"The following material may be imported, without chemical testing, to be used as backfill beneath pavement, buildings or as part of the final site cover, provided that it contains less than 10% by weight material which would pass through a size 80 sieve and consists of:

- i. gravel, rock or stone, consisting of virgin material from a permitted mine or quarry; or
- ii. recycled concrete or brick from a DEC registered construction and demolition debris processing facility if the material conforms to the requirements of Section 304 of the New York State Department of Transportation Standard Specifications Construction and Materials Volume 1 (2002)."

The SCA drainage gravel specification requires less than 5% by weight material passing the #4 sieve; therefore, it meets the less than 10% by weight passing the #80 sieve required by DER-10

Honeywell

SCA Construction Field Change Form

Field Change Form Number: 10 Originator: William Long

		Date: 9/21/2012
Approval/Accept	tance:	
Design Engineer (Geosyntec):	Name: SBrill Date: 26 Sept 21/2	Signature: J FBEECH Time:
Contractor Representative (Parsons	Name: David Steele Date: 9/26/12	Signature: Dand Sleets Time: 0759
Owner (Honeywell):	Name: Larry M. Somer Date: 19/2/12	Signature: OPSO
Agency Representative (NYSDEC):	Name: //wowy/Acom-	Signature: June AM
Distribution: (list recipients her	re)	

SCA CONSTRUCTION CAMILLUS, NEW YORK

FIELD CHANGE FORM # 11

Page 1 of 2

Project Number:	444853	Date: 21 August 2012
Construction Manager:	Ken Sommerfield	
Contractor:	Parsons	

You are hereby authorized and instructed to complete the following modifications to the approved Final Design:

The SCA Specification Section 02710 – Geotextile Cushion, Part 3 – Execution, Paragraph 3.01.C – Placement states:

"After unwrapping the geotextiles from their opaque cover, do not leave them exposed for a period in excess of $14\ days$."

Field change form (FCF) Number 6, dated 18 January 2012, modified the UV exposure for the GSE 24 oz/sy non-woven geotextile previously used on the project to a period of 80 days. Additional material required to complete the project was purchased from SKAPS Industries, Inc. (SKAPS) of Athens, Georgia. The procurement of a different product necessitates repetition of the FCF process.

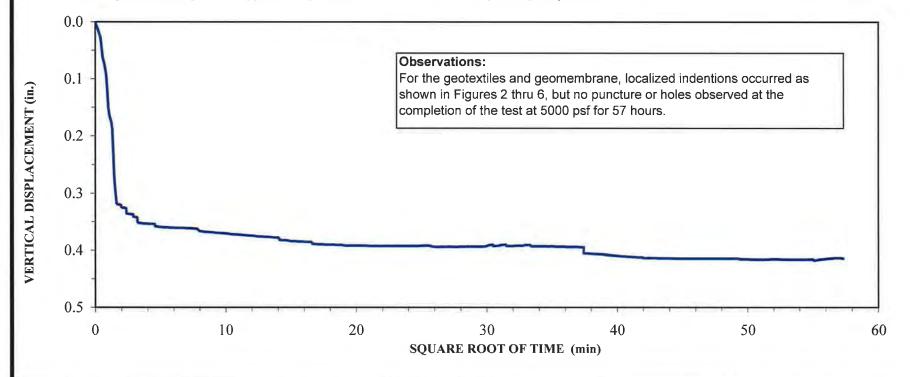
A geotextile sample was collected on 20 July 2012 from an area located in the southwest corner of Phase II. The material in this area was deployed on 25 May 2012, based on Geosyntec's CQA records. This correlates to an approximate exposure period of 56 days. This sample was forwarded to SGI Testing Services, LLC. (SGI) of Norcross, Georgia for testing.

SGI performed hydrostatic puncture testing (ASTM D5514, modified) under similar conditions as the original design test. Two tests were performed using gravel drainage layer material from each of the two current sources (i.e., Granby and Lake Road), SKAPS GE240 non-woven geotextile, and Agru America 60-mil thick high density polyethylene (HDPE) geomembrane. The results of the tests, attached to this FCF, indicate the SKAPS GE240 non-woven geotextile, with UV exposure up to and including 56 days, meets the design intent for geomembrane protection.

FIELD CHANGE FORM #11

Page 2 of 2

APPROVALS:	
Design Engineer	
Name: J.F.BEECH	
Signature: J. Beel	
Date: 120CTZV12	
Contractor Representative	
Name: David Steele	315 34
Signature: David Alsole	
Date: (0/18/12	
Owner	
Name: Larry M. Somer	
Signature: The Somer	
Date: 10/23/12	
NYSDEC Representative	
Name: Robert Edwards	
Signature: Police Charles	
Date: 10/23/12	


PARSONS - ONONDAGA LAKE HYDROSTATIC PUNCTURE TESTING (ASTM D 5514 MODIFIED (1))

8" thick Granby Pit stone nominally compacted at as-received moisture content/

Exposed SKAPS GE240 NWGT deployed 25 May 12 (recovered from the project site with non heat-treated side down)/

Agru 60-mil Microspike HDPE geomembrane with long spike side down (recovered from the project site) /

3" thick subgrade soil compacted to approximately 95% of max. standard Proctor dry density at optimum moisture content

Test	Test Specimen Size			Normal	Duration		Gravel		S	Subgrade So	il	
	Length	Width	Gravel	Subgrade Soil	Stress							_
			Thickness	Thickness			$\gamma_{\rm d}$	$\omega_{\rm i}$	$\omega_{ m f}$	γ _d	$\omega_{\rm i}$	$\omega_{ m f}$
No.	(in.)	(in.)	(in.)	(in.)	(psf)	(hours)	(pcf)	(%)	(%)	(pcf)	(%)	(%)
6	12.0	12.0	8.0	3.0	5000	58				94.4	19.2	

NOTE: localized strains of the deformed geomembrane not calculated.

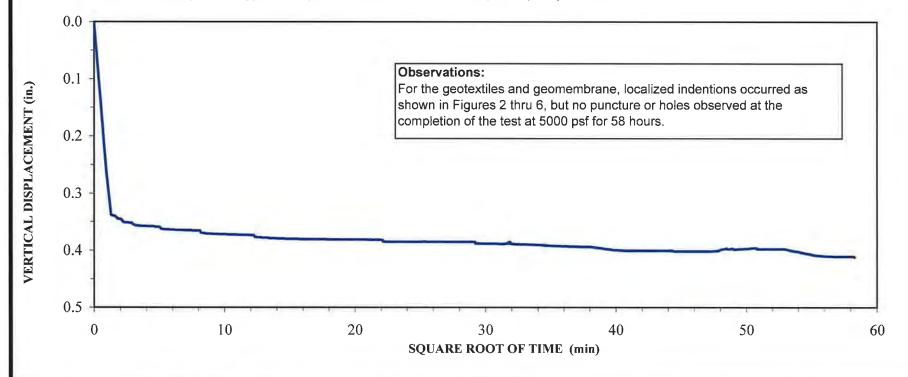
DATE OF REPORT: 8/9/2012

FIGURE NO. A-6

PROJECT NO. SGI10043

DOCUMENT NO.

FILE NO.


PARSONS - ONONDAGA LAKE HYDROSTATIC PUNCTURE TESTING (ASTM D 5514 MODIFIED (1))

8" thick Lake Road Pit stone nominally compacted at as-received moisture content/

Exposed SKAPS GE240 NWGT deployed 25 May 12 (recovered from the project site with non heat-treated side down)/

Agru 60-mil Microspike HDPE geomembrane with long spike side down (recovered from the project site) /

3" thick subgrade soil compacted to approximately 95% of max. standard Proctor dry density at optimum moisture content

Test	Test Specimen Size			Normal	Duration		Gravel		S	Subgrade So	iI	
	Length	Width	Gravel	Subgrade Soil	Stress							
1		1	Thickness	Thickness			$\gamma_{ m d}$	$\omega_{\rm i}$	$\omega_{ m f}$	$\gamma_{ m d}$	ω_{i}	$\omega_{ m f}$
No.	(in.)	(in.)	(in.)	(in.)	(psf)	(hours)	(pcf)	(%)	(%)	(pcf)	(%)	(%)
7	12.0	12.0	8.0	3.0	5000	58				93.7	18.5	

NOTE: localized strains of the deformed geomembrane not calculated.

DATE OF REPORT: 8/9/2012

FIGURE NO. A-7

PROJECT NO. SGI10043

DOCUMENT NO.

FILE NO.

Weekly Field Reports

WEEKLY FIELD REPORT

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200/300</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II/SMS WEE	K ENDING: April 1, 2012

This report is written for the period of 26 March through 01 April 2012. Geosyntec was on-site 5 days (181 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 21°F to a high of 64°F during the hours worked. A total of approximately 0.11 inches of rain were recorded between 28-29 March. Representatives of Geosyntec, Chenango Contractors, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday, 26 March. A visit to the Riccelli Enterprises quarry in Granby was conducted 30 March. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Parsons continued to dewater the East and West Basins.
- Parsons graded and compacted the existing Low Permeability (LP) soil at the eastern and western portions of Phase IIB.
- LP soil was hauled by trucks to site from the Marcellus Pit this week totaling approximately 5,848 cyd.
- Between 21-23 March, Parsons hauled and placed 3,336 cyd of LP soil along the northern portion of Phase II prior to Geosyntec mobilizing to site.
- LP soil was placed at the western portion of Phase IIB placed this week.
- Engineered Fill was placed at the western portion of the south perimeter berm. Geosyntec performed three field density testing (FDT) on Engineered Fill. The tests met the project requirements for relative compaction and moisture content.
- Parsons resumed placement of screened and washed Drainage Gravel material for the Phase IA sump from the Granby Pit. Operations were halted to investigate increase of fines content.
- Received volume of Drainage Gravel screened and hauled to date from Parsons. Three loads were calculated to be approximately 35 tons/load. Total to date in 2012 is estimated to be 105 tons, or 70 lcy the delivered material was placed in Phase I toward the Phase IA sump.

COPY TO: File	PER: Billy Carruth
· · · · · · · · · · · · · · · · · · ·	

WEEKLY FIELD REPORT

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200/300</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	- Phase I/Phase II/SMS WEEI	K ENDING: <u>April 1, 2012</u>

• Geosyntec obtained and shipped one sample of Low Permeability soil (LP-103) and one sample of Drainage Gravel (DG-013) for CQA testing.

GEOSYNTHETICS:

- Chenango worked three days this week in the East Basin installing double-sided geocomposite over secondary geomembrane and started installation of the primary geomembrane.
- Chenango successfully completed three passing extrusion trial seams and seven passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion repairs on secondary (anchor trench only) and on primary geomembrane at the East Basin.
- Chenango installed approximately 142,900 sft of double-sided geocomposite and installed approximately 121,500 sft of primary geomembrane at the East Basin.
- Approximately 5,840 lf of production seams were welded. Non-destructive testing of fusion seams was started. Eight destructive samples were marked to date by Geosyntec for removal and testing.

COPY TO: File	PER: Billy Carruth
•	

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	OING: <u>April 8, 2012</u>

This report is written for the period of 02 through 06 April 2012. Geosyntec was on-site 5 days (186 days total to date) to provide CQA services during construction of the SCA and geosynthetic deployment in the Sediment Management System (SMS). Temperatures generally ranged from a low of 25° F to a high of 53° F during the hours worked. Approximately 0.5-in of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were onsite throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Parsons continued to dewater the East and West Basins.
- Engineered Fill was placed and compacted along the western portion of the south perimeter berm. Field Density Testing (EF-004 to EF-006) was conducted on Engineered Fill by Geosyntec this week. All three FDT met the project requirements for relative compaction and moisture content.
- Parsons graded, moisture conditioned, and compacted Low Permeability (LP) soil material in west end of Phase II, lift 2 over existing LP layer. In addition Parson's placed LP soil at the northeast area of Phase II. Approximately 7,098 LCY of LP soil was hauled from the Marcellus Pit, placed, and compacted in Phase II.
- Approximately 1,538 LCY of Drainage Gravel material was hauled from the Granby Pit and stockpiled on site this week.
- Geosyntec obtained and shipped one sample of Low Permeability soil (LP-103) and one sample of Drainage Gravel (DG-013) last week for CQA conformance testing. Results are pending.
- Geosyntec obtained samples for Interface testing of materials in Phase II; Geotextile (GT-012), Geomembrane (GM-011) Low Permeability Clay (LP-104) and Drainage Gravel (DG-014). Results are pending.

COPY TO: File	PER: David Williams
	·

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: 200
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 8, 2012</u>

- Chenango worked five days this week in the East and West Basins installing doublesided geocomposite over secondary geomembrane and started installation of the primary geomembrane.
- Chenango successfully completed nine passing extrusion trial seams and seventeen passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion welded repairs on primary geomembrane at the East and West Basins.
- Chenango installed approximately 186,150 sf. of double-sided geocomposite in the East and West Basins.
- Chenango installed approximately 109,400 sf. of primary geomembrane at the West Basin.
- Chenango installed approximately 50,000 sf. of primary geomembrane at the East Basin.
- Approximately 4,360 lf. of production seams were welded. Non-destructive testing of fusion seams was completed.
- Thirteen destructive samples (DS 3-001 to DS 3-013) were obtained and shipped to GeoTesting Express (GTX) for testing. All destructive tests passed with the exception of DS 3-007. Additional destructive samples (DS 3-007A and DS 3-007B) were collected to delineate the failing area. DS 3-007B also failed to meet the project requirements. Geosyntec and Chenango will continue to delineate the failing area.
- Ten destructive samples (DS 5-001 through DS 5-010) were marked on the primary geomembrane deployed in the West Basin and are pending field testing before being forwarded to GTX.

COPY TO: File PER: David Wi	lliams
-----------------------------	--------

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK ENI	DING: <u>April 15, 2012</u>	

This report is written for the period of 9 April through 13 April 2012. Geosyntec was on-site 5 days (191 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 39° F to a high of 61° F during the hours worked. Less than 0.1 inch of rain was recorded this week. Representatives of Geosyntec, Chenango Contractors and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 5,117 LCY of Low Permeability (LP) soil was transported to the site from the Marcellus borrow source this week.
- Parsons graded, moisture conditioned, and compacted P soil material in Phase II.
- Approximately 922 LCY of Drainage Gravel material was transported to the site from the Granby borrow source this week. The material was stockpiled adjacent to Phase I.
- No Engineered Fill was placed this week.
- Field Density Testing (5-001 to 5-037) was conducted on placed LP soil material this week. Four of the 37 tests failed to meet the requirements of the layer. Three of the four failures were retested and met the project requirements. The retest of one failure is pending.
- Geosyntec obtained three samples of LP soil (LP-105 through LP-108) for CQA testing. Results for these samples are pending.
- Parsons placed Drainage Gravel in the Phase IA sump. Material was placed 8-in thick in the floor of the sump and 12-in thick over the side slopes of the sump. Completion of the Drainage Gravel in the Phase IA sump is pending installation of other components.

COPY TO: File	PER: David Williams
·	

PROJECT: Onondaga Lake Bottom Subsite Construction				
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_ TASK NO.: <u>200</u>		
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK EN	DING: <u>April 15, 2012</u>		

- Chenango worked five days this week in the East and West Basins installing primary geomembrane and 24 oz/sy non-woven geotextile.
- Chenango successfully completed seven (7) passing extrusion trial seams and 28 passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion welded repairs on primary geomembrane at the East and West Basins.
- Chenango installed approximately 30,000 sf. of primary geomembrane in the West Basin.
- Chenango installed approximately 70,000 sf. of primary geomembrane in the East Basin.
- Approximately 5,130 lf. of production seams were welded. Non-destructive testing of fusion seams was completed.
- One destructive samples (DS-007B1) was removed and shipped to GeoTesting Express for testing, Destructive sample DS-007B1 met the project requirements.
- Seven additional destructive samples are marked on primary geomembrane deployed in the East Basin, but have not been removed as of yet.
- Approximately 16,200 sf. of 24 oz/sy non-woven geotextile was installed in the East and West Basins.
- THG Geophysics conducted a leak location survey of the geomembrane in Phase I. No leaks have been identified to date. The leak location survey is incomplete and has been postponed until a significant rain event occurs in lieu of using a water truck to provide adequate moisture.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 22, 2012</u>	

This report is written for the period of 16 April through 20 April 2012. Geosyntec was on-site 5 days (196 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 33° F to a high of 84° F during the hours worked. No rainfall was recorded during the week. Representatives of Geosyntec, Chenango Contractors, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily. No incidents were reported.

EARTHWORK:

- Parsons graded, moisture conditioned, and compacted low-permeability (LP) soil in Phase II.
- Approximately 6,133 LCY of LP soil was imported from the Marcellus Pit this week. Material was transported, placed, and compacted in Phase II, western end of cell.
- Benching of the LP layer occurred along the Phase I and II tie-in.
- Field density tests (FDTs) 5-038 to 5-058 were conducted on the LP soil layer in Phase II for lifts requiring 90 percent of maximum dry density and ±3 percent of optimum moisture, as determined by ASTM D698. Three of these tests failed to meet the minimum project requirements and are pending retest.
- FDTs 6-001 to 6-038 were conducted on the LP soil layer final lift in Phase II. All of these tests meet or exceed the minimum project requirements.
- Geosyntec obtained 11 samples of LP soil material (LP-109 through LP-119) for CQA testing. Results are pending. Geosyntec also obtained 4 thin-walled (i.e., Shelby) tube samples (ST-029 through ST-032). Results of samples ST-029 through ST -031 meet or exceed the project's permeability requirements. Results for sample ST-032 are pending.
- No Engineered Fill was placed this week.
- Parsons placed Drainage Gravel in the Phase IB sump. Material was placed approximately 8-in thick in the sump floor and 12-in thick along the side slopes of the sump. Parsons plans to complete placement of the Drainage Gravel in the floor of the sump in Phase IA and IB upon completion of piping installation.
- Approximately 970 LCY of Drainage Gravel material was imported from the Granby Pit and stockpiled on-site this week.

COPY TO: File	PER: David Williams
COLI TO: THE	TER: Barra Williams

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_ TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 22, 2012</u>	

- Chenango worked five days this week performing detail work (e.g., pipe boot penetrations, repairs, non-destructive testing, etc.) on the primary liner system in the East and West Basins.
- Chenango successfully completed twelve passing extrusion trial seams prior to extrusion welding repair work this week.
- Eleven destructive samples (DS 3-013 through 3-020 and DS 5-011 through DS 5-014) were obtained and shipped to GeoTesting Express for testing. All destructive samples achieved the minimum project requirements.
- Approximately 545,905 sf. of 60-mil thick HDPE geomembrane was delivered and inventoried during the week.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>April 29, 2012</u>

This report is written for the period of 23 through 29 April 2012. Geosyntec was on-site 6 days (202 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 29° F to a high of 59° F during the hours worked. Approximately 1.36 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 117 LCY of Drainage Gravel material (+4 inches) were hauled from the Granby Pit for placement in Phase IA sump this week. Two of the loads received were rejected due to excessive fines content.
- Engineered Fill was placed in the West Basin along the western anchor trench this week.
- Test results were received for Low Permeability soil samples LP-106 through LP-108 and ST-032 from GeoTesting Express. These samples meet the minimum project specifications.
- Parsons placed an additional 4 inches of Drainage Gravel in the Phase IA sump floor, for a total thickness of 12 inches.
- Parsons fused segments of 12-in diameter SDR-11 perforated HDPE pipe and connected the segments to the risers in Phase IA and IB sumps.

- No activities were conducted by Chenango crew this week and
- Approximately 569,135 SF of 60-mil thick HDPE geomembrane was delivered and inventoried this week.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Constructi	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK ENI	DING: <u>May 5, 2012</u>

This report is written for the period of 30 April through 4 May 2012. Geosyntec was on-site five (5) days (207 days total to date) to provide CQA services during construction in the SCA. Temperatures generally ranged from a low of 29° F to a high of 81° F during the hours worked. Approximately 1 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 550 LCY of Low Permeability (LP) soil was imported this week from the Marcellus borrow source. Material was placed along the southern berm at the western end of Phase II and in the northwest corner of Phase II.
- Approximately 1,341 LCY of 4-inch maximum particle size Drainage Gravel was imported from the Granby borrow source and stockpiled on site. Parsons placed an additional 4 inches of Drainage Gravel (<4-inch) material in the Phase IB sump floor for a total of 12 inch thick layer.
- Approximately 1,079 LCY of Drainage Gravel material (4<12 inch) was imported from the Granby borrow source and placed in the Phase IA and IB sumps this week.
- Engineered Fill was placed in the East and West Basin anchor trenches this week, however, backfilling has not been completed.
- Parsons completed installation of 12-in diameter SDR-11 perforated HDPE lateral pipes and connection to the risers within the Phase IB sump.
- Parsons exposed and removed plywood placed along the southern limits of Phase I at former ramp locations.

- No activities were conducted by Chenango (CCI) this week due to wet conditions.
- Parsons crew exposed the geomembrane in an area approximately 10 feet square within Phase IB where an electrical leak location survey indicated a potential hole in the 60-mil thick HDPE geomembrane. CCI will vacuum test the extrusion welded patch located at the indicated area to determine location of the hole and make appropriate repair.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK END	DING: May 13, 2012

This report is written for the period of 7 through 11 May 2012. Geosyntec was on-site 5 days (212 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 42° F to a high of 71° F during the hours worked. Approximately 1.65 inches of rainfall were recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is provided below.

SAFETY:

• Safety meetings were held daily. No incidents were reported.

EARTHWORK:

- Approximately 1,733 LCY of Low Permeability (LP) soil were imported this week from the Marcellus borrow source. The imported material was placed in Phase II as it was received onsite. Importation efforts were delayed Tuesday through Friday due to wet site conditions. Lifts 2 and lift 3 were placed in Grids H through J this week.
- Geosyntec conducted a total of 41 FDTs on compacted LP soil in Phase II this week. Nine of the FDTs failed to achieve satisfactory results due to low moisture content. Geosyntec obtained LP soil samples LP-120 thru LP-127 for moisture content analysis and LP-128 and LP-129 for conformance testing.
- Approximately 289 LCY of 4 inch maximum diameter particle size Drainage Gravel were imported from the Granby borrow source this week and stockpiled on-site.
- Parsons crew used a compact loader with a flip screen attachment to process areas of excessive fines within the Drainage Gravel in the Phase I area.
- Parsons stockpiled material rejected during screening operations along the northern limits of Phase I for future use. Parsons has proposed the material as an alternate fill material for the construction of the Phase I/Phase III temporary berm.
- Parsons continued to pump stormwater from Phase IA and IB sumps.
- Parsons placed Engineered Fill in the West Basin anchor trench.
- Parsons crew pumped stormwater from the East Basin trapped between the primary and secondary geomembrane in the East Basin sump area. The four culverts require banding and caulking.

GEOSYNTHETICS:

No Geosynthetics activities were conducted this week due to wet site conditions.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>May 20, 2012</u>

This report is written for the period of 14 through 18 May 2012. Geosyntec was on-site 5 days (217 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 44° F to a high of 74° F during the hours worked. Approximately 0.01 inches of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. THG Geophysics on-site 14-16 May to conduct electrical leak location survey. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 9,817 LCY of Low Permeability (LP) soil were imported this week from the Marcellus borrow source. Parsons continued placement of LP soil within Phase II and also performed moisture conditioning and compaction of material placed previously. Parsons prepared the surface of the LP soil layer for geosynthetics in Grids E through I.
- Geosyntec conducted field density tests (FDTs) on compacted LP soil in Phase II. A total of 60 FDTs were performed this week, two of which failed to meet the minimum project requirements for moisture and/or compaction.
- Geosyntec obtained Shelby Tube samples ST-033 to ST-037 for CQA testing. Results were received for ST-033 to ST-035, which indicated acceptable values.
- Approximately 454 LCY of 4-in dia. Drainage Gravel was imported and stockpiled on site.
- Parsons crew stockpiled fill material along the northern limits of Phase I to be used in construction of Phase I containment berm.
- Parsons continued to use the flip screen attachment to remove excess fines from Drainage Gravel in Phase I.
- Parsons crew investigated four areas in Phase I for possible leaks in the geomembrane based on THG survey. Holes were located in each of the areas of the geomembrane within Phase I.

GEOSYNTHETICS:

• Chenango worked four days this week in Phase II installing geomembrane and worked one day on repairs in the East Basin.

COPY TO: File	PER: Billy Carruth

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: May 20, 2012

- Chenango successfully completed six passing extrusion trial seams and forty four passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of extrusion welded repairs on primary geomembrane at the East Basin and Phase II.
- Chenango installed approximately 354,900 square feet of primary geomembrane in Phase II
- Approximately 16,787 linear feet of production seams were welded. Non-destructive testing of fusion seams was started but not completed.
- Eleven destructive samples (DS-6-001 to 6-009 and 6-012 to 6-013) were removed and shipped to GeoTesting Express for testing. Thirty three destructive samples to date were marked on primary geomembrane deployed in Phase II, but all samples have not been removed or field tested yet.
- (THG Geophysics crew completed leak testing on the geomembrane liner system in Phase I; four leaks were detected to date that are scheduled to be repaired by Chenango next week.

COPY TO: File	PER: Billy Carruth
COL 1 10: 110	

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_ TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>May 27, 2012</u>

This report is written for the period of 21 through 27 May 2012. Geosyntec was on-site five days (222 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 54° F to a high of 86° F during the hours worked. 0.01 inches of rainfall was recorded this week, however, production was unaffected. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 12,167 LCY of Low Permeability (LP) soil was imported this week from the Marcellus borrow source. Parsons continued placement of LP soil within Phase II. Parsons also conducted moisture conditioning and compaction of material placed previously.
- Geosyntec conducted a total of 65 Field Density Tests (FDTs) on compacted LP soil this week. One FDT failed to meet project requirements initially, but passed upon retest.
- Geosyntec obtained Shelby Tube samples ST-038 to ST-044 for testing. Results were received for ST-036 to ST-042, which indicated the samples met the minimum project requirements for permeability.
- Approximately 1,382 LCY of Drainage Gravel (4 inch maximum particle size) were imported from the Granby borrow source and stockpiled on site.
- Removal of the eastern end of the existing haul road in Phase II was progressed.
- Areas within Phase I requiring additional remediation of the Drainage Gravel were identified. Geosyntec informed Parsons of the areas requiring additional work.
- Parsons crew stockpiled fill material along the northern limits of Phase I to be used in construction of the Phase I/III temporary berm.
- Parsons prepared the surface of the LP soil layer for geosynthetics in Grids J through L.

GEOSYNTHETICS:

• Chenango progressed installation of the 60-mil thick HDPE geomembrane and 24-oz/sy non-woven geotextile within Phase II.

COPY TO: File	PER: David Williams
COLI TO: THE	TER: Barra Williams

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK END	DING: May 27, 2012

- Chenango successfully complete ten passing extrusion trial seams and seventeen passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing on extrusion welds on repairs to geomembrane in Phase II.
- Chenango installed approximately 193,000 sf of geomembrane and 242,600 sf of 24 oz Geotextile in Phase II.
- Approximately 9,200 lf of production seams were constructed. Non-destructive testing of fusion seams is on-going.
- A total of 54 destructive sample locations have been marked on the primary geomembrane deployed in Phase II. A total of 32 destructive samples (DS-6-010 to 6-011 and 6-014 to 6-040 and DS-6-050 to DS-6-052) were removed and shipped to GeoTesting Express for laboratory testing. DS-6-034 failed to meet the minimum project requirements in the laboratory. Isolation of the failing area is pending.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: <u>Sediment Consolidation Area (SCA)</u>	– Phase I/Phase II WEEK ENI	DING: <u>June 3, 2012</u>

This report is written for the period of 29 May through 1 June 2012. Geosyntec was on-site 4 days (226 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 47° F to a high of 86° F during the hours worked. Approximately 0.61 inches of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were on-site Tuesday through Friday, following observance of Memorial Day. A weekly construction meeting was not held this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 4,067 LCY of Low Permeability (LP) soil were imported this week from the Marcellus borrow source. Parsons placed the material in Phase II concurrent with importation.
- Geosyntec conducted a total of 33 Field Density Tests (FDTs) on compacted LP soil in Phase II, all of which met the minimum project requirements.
- Geosyntec conducted a total of 8 FDTs on compacted Engineered Fill material along the northern haul road of Phase II, all of which met the minimum project requirements.
- Geosyntec obtained Shelby Tube samples ST-045 to ST-048 for conformance testing. Results were received for ST-043 to ST-046, which indicated the samples achieve the minimum project requirements. Results of ST-047 and ST-048 are pending.
- Approximately 681 LCY of Drainage Gravel (4 inch maximum particle size) were imported from the Granby borrow source and stockpiled on site this week. Parsons placed Drainage Gravel from the stockpile in the western end of Phase II (i.e., the Debris Management Area).
- Parsons crew completed removal of the existing haul road remaining in Phase II.
- Parsons crew stockpiled fill material along the northern limits of Phase I and began construction of the temporary Phase I/III northern berm this week. The material used for construction of the berm is off-spec, however, Parsons is seeking modification of the specifications through an RFI.

COPY TO: File	PER: David Williams
·	

PROJECT: Onondaga Lake Bottom Subsite Construction		
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA) – Phase I/Phase II WEEK ENDING: June 3, 2012		

- Chenango installed approximately 74,250 sf of primary geomembrane, 45,360 sf of sacrificial geomembrane, and 204,000 sf of 24 oz/sy non-woven geotextile in Phase II.
- Chenango successfully completed six passing extrusion trial seams and eight passing fusion trial seams prior to seaming and repair work this week.
- Chenango performed repairs and non-destructive testing of repairs on the Phase II geomembrane.
- Approximately 3,600 lf of production seams were welded. Non-Destructive testing of
 fusion seams was completed, except for seams welded on Friday. Seam construction on
 Friday was performed during periods of precipitation, contrary to the Project
 Specifications. Parsons was informed of the discrepancy and resolution is pending.
- A total of 54 original destructive sample locations have been marked to date; however, not all samples marked have been removed from the geomembrane for testing. Two of the original destructive samples collected to date (DS 6-034 and 6-049) failed to meet the minimum project requirements, necessitating five additional samples to isolate the failing areas.
- THG Geophysics was on site this week conducting electrical leak location surveying on the Phase II geomembrane along the west and northern interior berms and at Drainage Gravel areas in Phase I that were remediated. No leaks were detected.

CODITEC		PER: David Williams	
COL I IO.	T HC T	Ett. Buria II illianis	

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_ TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>June 10, 2012</u>

This report is written for the period of 4 through 8 June 2012. Geosyntec was on-site five days (227 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 50° F to a high of 73° F during the hours worked. Approximately 0.2 inches of rainfall was recorded this week causing delays in production at the beginning of the week. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. A weekly construction meeting was held Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported. A minor hydraulic leak occurred and was cleaned up.

EARTHWORK:

- Parsons crew completed removal of the existing haul road in Phase II.
- Parsons placed Engineered Fill along the northern haul road of Phase II.
- Geosyntec conducted a total of 13 FDTs (7-015 thru 7-027) on compacted Engineered Fill. No new material was received, as the contractor reused previously delivered material.
- Approximately 3,100 LCY of Low Permeability (LP) soil were imported this week from the Marcellus borrow source. Parsons continued placement of LP soil within Phase II.
 Parsons also conducted moisture conditioning and compaction of material placed previously.
- Geosyntec conducted a total of 17 Field Density Tests (FDTs) (6-201 thru 6-217) on compacted LP soil in Phase II, all of which met the minimum project requirements.
- Geosyntec obtained Shelby Tube samples ST-049 to ST-051. Results were received results for ST-047 and ST-048 which indicated the samples met the minimum project requirements for permeability.
- Approximately 1,279 LCY of Drainage Gravel (4 inch maximum particle size) were imported from the Granby borrow source and placed in western end of Phase II.
- Geosyntec obtained sample DG-016 from the Drainage Gravel for conformance testing and visited the Granby quarry to confirm suitable procedures are being performed to process and handle the gravel.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK END	DING: <u>June 10, 2012</u>

• Parsons crew completed construction of the temporary berm between Phase I and future Phase III.

- Chenango installed approximately 90,000 sf of primary geomembrane and 76,500 sf of 24 oz/sy non-woven geotextile in Phase II,
- Chenango installed geomembrane over the Phase I/III temporary intercell berm.
- Chenango completed repair to pipe boot on one of the eastern culverts to the basins.
- Chenango successfully completed eleven passing extrusion trial seams and nine passing fusion trial seams prior to seaming and repair work this week.
- Approximately 4,200 lf of production seams were constructed. Non-Destructive testing of fusion seams was completed, except for seams welded on 8 June 2012.
- Chenango performed repairs and non-destructive testing on extrusion welds on repairs to primary geomembrane in Phase II.
- A total of nine (9) destructive sample locations (DS 6-055 to 6-063) have been marked on the primary geomembrane deployed in Phase II. Results were received for destructive samples DS-049B1 and DS-049C indicating construction conforms to project specifications. A total of 63 original destructive samples have been collected to date in Phase II. Five additional samples have been required to isolate failing areas. One destructive sample has been obtained from a capped seam. Resolution of the seams welded 1 June 2012 is pending.
- The THG Geophysics Ltd was on site this week to conduct leak testing on the geomembrane in the west end of Phase II. The debris management area (DMA) was completed with no leaks detected. Operations of the DMA was initiated 8 June 2012.

COPY TO: File PER: David Wi	lliams
-----------------------------	--------

PROJECT: Onondaga Lake Bottom Subsite Construction		
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: June 17, 2012

This report is written for the period of 11 June through 15 June 2012. Geosyntec was on-site 5 days (232 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 54° F to a high of 91° F during the hours worked. Approximately 0.5 inch of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. Minimum site activities occurred Tuesday due to rain. A weekly construction meeting was held on Monday of this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,676 LCY of Low Permeability (LP) soil were imported from the Marcellus borrow source this week and placed in Phase II.
- Parsons processed the final lift of LP soil within Phase II.
- Geosyntec conducted a total of 68 field density tests (FDTs) on compacted LP soil in Phase II, all of which met the minimum project requirements.
- Geosyntec obtained Shelby Tube samples ST-052 to ST-055 for CQA testing. Results were received for ST-049 and ST-051 which indicated the samples achieve the minimum project requirements.
- Approximately 1,444 LCY of Drainage Gravel (4-in dia, maximum particle size) were imported from the Granby borrow source and placed in Phase II.
- Approximately 1,073 LCY of Engineered Fill were imported, ,placed, and compacted along the southern haul road of Phase II.
- Geosyntec conducted a total of 19 FDTs on Engineered Fill material along southern haul road of Phase II, all of which met minimum project requirements.
- Portions of the anchor trench were backfilled, including East Basin.

- Chenango installed approximately 119,700 sf of primary geomembrane in Phase II.
- Chenango successfully completed eleven passing extrusion trial seams and thirteen passing fusion trial seams prior to seaming and repair work this week.
- Approximately 5,700 lf of production seams were welded this week. Non-destructive testing of fusion seams was completed.

COPY TO: File	PER: David Williams
COLI TO: THE	TER: Barra Williams

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: June 17, 2012	

- Chenango performed repairs and non-destructive testing of repairs to primary geomembrane in Phase II and in East Basin.
- Chenango continued welding of temporary geomembrane flap along Phase I/III northern perimeter.
- Destructive sample DS-055 failed to meet project requirements necessitating four additional samples to isolate the failing area.
- Destructive seam samples DS 6-056 through 6-063 met minimum project specifications for both field and laboratory testing. DS 6-064 through 6-075 have passed field testing, however, laboratory results are pending. A total of 75 original samples have been collected to date from Phase II. A total of nine (9) additional samples have been required to date to isolate failing areas. One additional sample has been obtained from a cap repair of a failing area.

COPY TO: File PER: David Wi	lliams
-----------------------------	--------

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>June 24, 2012</u>

This report is written for the period of 16 through 22 June 2012. Geosyntec was on-site 5 days (237 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 67° F to a high of 93° F during the hours worked. Approximately 0.18 inches of rainfall was recorded this week. Representatives of Geosyntec, Chenango, and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday of this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 233 LCY of Low Permeability (LP) soil was imported this week from the Marcellus borrow source. Parsons placed the material in Phase II concurrent with importation. Placement of LP soil in Phase II was completed this week.
- Geosyntec conducted a total of 40 field density tests (FDTs) on compacted LP soil in Phase II, all of which met minimum project requirements.
- Geosyntec obtained Shelby tube sample ST-056 for conformance testing. Results were received for ST-052 and ST-056, which indicated the samples achieve the minimum project requirements.
- Approximately 1,757 LCY of Drainage Gravel (4 inch dia. maximum particle size) were imported from the Granby borrow pit and placed in the western end of Phase II.
- Results were received on conformance samples DG-016, which indicated the samples achieve the minimum project requirements.
- Parsons placed Engineered Fill (EF) along the southern haul road. Geosyntec conducted a total of five FDTs on compacted EF material along the western haul road of Phase II.
- Results were received on conformance samples EF-006, which indicated the samples achieve the minimum project requirements.

- Chenango installed approximately 268,500 sf of primary geomembrane this week completing the Phase II deployment on 21 June.
- Chenango successfully completed four passing extrusion trial seams and sixteen passing fusion trial seams prior to seaming and repair work this week.

COPY TO: Fi	1	PER: David Williams
COI I IO. <u>II</u>	1	TER. David Williams

PROJECT: Onondaga Lake Bottom Subsite Construction		
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>June 24, 2012</u>

- Chenango performed repairs and non-destructive testing on repairs to primary geomembrane in Phase II.
- Approximately 13,450 If of production seams were welded. Non-Destructive testing of fusion seams was completed.
- Thirteen destructive samples were marked and removed this week, laboratory test results indicate that all but four meet minimum project requirements. Fifteen destructive samples have been marked and pending removal. A total of 103 original destructive samples have been marked to date. A total of 11 additional samples have been collected to isolate failures. One sample has been obtained from a cap repair.
- THG Geophysics mobilized to site 22 June to perform geomembrane leak location survey of the southern interior slopes of Phase II.

COPY TO: File	PER: David Williams
COLI TO: THE	TER: Barra Williams

PROJECT: Onondaga Lake Bottom Subsite Construction		
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: <u>Sediment Consolidation Area (SCA)</u>	– Phase II WEEK ENDING: .	July 1, 2012

This report is written for the period of 23 June through 1 July 2012. Geosyntec was on-site 5 days (242 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 54°F to a high of 90°F during the hours worked. Approximately 0.02 inch of rainfall was recorded this week. Representatives of Geosyntec, Chenango Contracting, Inc., and Parsons were on-site throughout the week. A weekly construction meeting was held on Monday of this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Geosyntec conducted a total of 10 field density tests (FDTs) on re-used Engineered Fill (EF) material along the Phase II perimeter haul road/berm, all of which met minimum compaction requirements.
- Geosyntec obtained a sample of Drainage Gravel (DG-017) for conformance testing, results are pending.
- Approximately 1,197 LCY of Drainage Gravel (4–in maximum particle size) was imported and placed in western end of Phase II.

- Ten additional rolls of HDPE geomembrane were delivered of which six were being redelivered. The four additional rolls are to be used to complete the sacrificial flap (see RFI No. 25 for details).
- Chenango successfully completed eighteen passing extrusion trial seams prior to performing repair work this week.
- Chenango extrusion welded primary geomembrane repairs in Phase II and along the Phase I north.
- Chenango performed repairs and non-destructive testing on extrusion welds on repairs to primary geomembrane in Phase II and over the north berm this week.
- Thirty eight destructive samples were marked, removed, and field tested this week. A total of 114 original destructive samples have been removed and tested to date. Twenty

COPY TO: File	PER: David Williams/Doug Hamilton
COFT TO. FIRE	FER. David williams/Doug Hammon

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: J	uly 1, 2012

two additional samples have been required to isolate failures. Three additional destructive samples have been obtained from cap repairs to failing areas greater than 150-ft long. Four additional samples were obtained from Panels 111 through 121 which had been deployed 1 June 2012 (See FCF No. 9 for details).

• The THG Geophysics Ltd crew was on site Monday and Tuesday performing the Electrical Leak Location Survey (ELLS) on the interior berms for Phase II prior to placement of the sacrificial geomembrane layer. The work is not yet completed.

COPY TO: File PER: David Williams/Doug Hamilton

PROJECT: Onondaga Lake Bottom Subsite Constructi	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	_ /Phase II WEEK ENDING: _	July 8, 2012

This report is written for the period of 02 through 08 July 2012. Geosyntec was on-site 4 days (246 days total to date) to provide CQA services during construction in the SCA. Temperatures generally ranged from a low of 64° F to a high of 95° F during the hours worked. No rainfall was observed this week. Representatives of Geosyntec, Chenango Contracting, Inc., and Parsons were on-site throughout the week except Wednesday, in observance of Independence Day. A weekly construction meeting was held on Monday of this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

• Approximately 1,135 LCY of Drainage Gravel (4-in maximum particle size) was imported from the Granby source and placed in western end of Phase II.

- Chenango installed approximately 69,250 ft² of 24-oz/yd non-woven geotextile and 83,850 ft² of sacrificial 60-mil thick HDPE geomembrane this week.
- Chenango successfully completed seven passing extrusion trial seams prior to performing repair work this week.
- Chenango conducted extrusion welding on geomembrane repairs in Phase II and the Phase I north berm.
- Chenango performed repairs and non-destructive testing on extrusion welds on repairs to primary geomembrane in Phase II and the temporary north berm flap.
- Extrusion welding of geomembrane deployed in Phase I over the north berm is complete.
- Two destructive samples, DS-6-097C and 6-108C, were marked and removed this week. Field and laboratory test results indicates both met minimum project specifications. A total of 114 original destructive samples have been removed and tested to date. Twenty two additional samples have been required to isolate failures. Five additional destructive samples have been obtained from cap repairs to failing areas greater than 150-ft long.
- Chenango demobilized from the project on 06 July 2012 and will return upon Parsons' request to continue the 24-oz/sy non-woven geotextile deployment in Phase II.

COPY TO: File	PER: Doug Hamilton
corrio. Inc	1 Etc. Bodg Hammton

PROJECT: Onondaga Lake Bottom Subsite Construction		
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	/Phase II WEEK ENDING: _	July 8, 2012

• The THG Geophysics Ltd. crew was on-site conducting the Electrical Leak Location Survey (ELLS) in Phase II, testing primary liner from the toe of the east and south berms out approximately 25 ft over the Phase II floor.

COPY TO: File PER: Doug Hamilton

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: J	(uly 15, 2012

This report is written for the period of 09 through 15 July 2012. Geosyntec was on-site 5 days (251 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 62° F to a high of 93° F during the hours worked. Approximately 0.30 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Chenango was onsite Wednesday through Friday. A weekly construction meeting was held on Monday of this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,526 LCY of Drainage Gravel (4-in maximum particle size) was imported from the Granby source and placed in the western end of Phase II this week.
- Low Permeability (LP) soil was placed in a 1-ft thick lift in the south and east anchor trenches during the week.

- Chenango performed an Electrical Leak Location Survey (ELLS) on the primary geomembrane in the West Basin. A leak was located around one of the 24-in diameter inlet pipes. Chenango repaired and non-destructively tested the boot repair.
- Parsons installed temporary tarps over exposed 24-oz/sy non-woven geotextile this week to reduce UV exposure.

COPY TO: File	PER: Doug Hamilton
---------------	--------------------

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: J	uly 22, 2012

This report is written for the period of 16 through 20 July 2012. Geosyntec was on-site 5 days (256 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 59° F to a high of 98° F during the hours worked. No rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Representatives of Chenango were onsite Monday and Tuesday. A construction meeting was not held this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,217 LCY of Drainage Gravel (4-in maximum particle size) was imported from the Granby source and placed in northwestern section of Phase II.
- Approximately 500 LCY of Engineered Fill material was imported, placed, and compacted in the southern anchor trench for Phase II.

- Chenango investigated a possible leak along the east slope of the West Basin.
- THG Geophysics crew worked three days this week conducting an Electrical Leak Location Survey in the West Basin and in the western end of Phase II. No leaks were observed.

COPY TO: File	PER: David Williams
---------------	---------------------

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: J	(uly 29, 2012

This report is written for the period of 23 through 27 July 2012. Geosyntec was on-site 5 days (261 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 62° F to a high of 88° F during the hours worked. Approximately 1.4 inches of rainfall were recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. A construction meeting was not held this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,403 LCY of 4-in maximum particle size Drainage Gravel was imported from the Granby source and placed in western end of Phase II. Temporary tarpaulins over the geotextile cushion were re-located as necessary. Continue to mark out areas of excessive fines that are to be re-worked.
- The Lake Road Pit was identified as a new Drainage Gravel source.

GEOSYNTHETICS:

• Samples of 24 oz/yd geotextile, 60-mil thick HDPE geomembrane, and Drainage Gravel from the Granby Pit were shipped to SGI laboratory for puncture resistance testing according to ASTM D5541.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>August 5, 2012</u>	

This report is written for the period of 30 July through 05 August 2012. Geosyntec was on-site six (6) days (267 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 69° F to a high of 94° F during the hours worked. No rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Chenango Contracting Inc. (CCI) was on site Saturday. A construction meeting was not held this week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 2,166 LCY of Drainage Gravel (4-in maximum particle size) was imported from the Granby and Lake Road sources and placed in western end of Phase II.
- A sample of Drainage Gravel (DG-019) was obtained from the Lake Road source. The sample was split and portions were shipped to GeoTesting Express and SGI for testing.

GEOSYNTHETICS:

Parsons continued pumping of water from the SCA western basin and removed a portion
of the sideslope riser pipe. CCI investigated a potential leak in the West Basin primary
sump. No leaks were detected; however, the investigation is not complete.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>August 12, 2012</u>	

This report is written for the period of 05 through 12 August 2012. Geosyntec was on-site seven (7) days (274 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 53° F to a high of 89° F during the hours worked. Approximately 0.52 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Chenango Contracting Inc. (CCI) was on site Wednesday, Saturday, and Sunday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 2,001 LCY of Drainage Gravel (4-in maximum particle size) was imported from the Granby and Lake Road sources and placed in western end of Phase II.
- The Debris Management Area (DMA) was expanded in Phase II an additional 50-ft to the east by adding an additional 1-ft thickness of Drainage Gravel material over the existing material, for a total minimum thickness of 2-ft.
- Conformance test results on sample DG-019 (Drainage Gravel) from the Lake Road source are pending.

- Chenango deployed approximately 159,250 SF of 24 oz/sy non-woven geotextile in Phase II.
- Investigation of the leak in the West Basin primary liner system is ongoing. CCI completed a repair to a pipe boot within the primary liner system of the West Basin.

COPY TO: File	PER: David Williams
---------------	---------------------

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_ TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	DING: <u>August 19, 2012</u>	

This report is written for the period of 13 through 19 August 2012. Geosyntec was on-site five (5) days (279 days to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 63° F to a high of 83° F during the hours worked. Approximately 0.81 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Chenango Contracting Inc. (CCI) crew was on site Friday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

• Approximately 2,166 LCY of Drainage Gravel (-4 in. maximum particle size) was imported from the Granby and Lake Road sources and placed in the northeastern limits of Phase II.

- Repairs to the primary liner system in the West Basin were performed. The silicone sealant was removed from the boots to the 24-in diameter HDPE pipes penetrating the liner system in the West Basin. The geomembrane boots were extrusion welded to the HDPE pipe.
- One repair was completed on the sacrificial 60-mil thick HDPE geomembrane on the south slope of Phase II.
- Water levels in the West Basin secondary sump continue to be monitored by Parsons for indication of a leak in the primary liner system.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	OING: <u>August 26, 2012</u>	

This report is written for the period of 20 through 26 August 2012. Geosyntec was on-site 5 days (284 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 52° F to a high of 88° F during the hours worked. No rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. The west basin of the SMS was accepted by the State and can be used in the management of stormwater. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- A new source of Drainage Gravel material, the Amboy Pit, was identified by Parsons. A conformance sample of the Drainage Gravel material from the Amboy Pit (DG-020) was obtained by Geosyntec from material placed in Phase II, Grid R-14.
- Approximately 2,619 LCY of Drainage Gravel was imported from the Granby, Lake Road, and Amboy sources. The imported material was placed in the northeastern limits of Phase II.

GEOSYNTHETICS:

• No geosynthetic activities were observed this week.

COPY TO: File	PER: David Williams
---------------	---------------------

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK ENI	DING: <u>September 02, 2012</u>	

This report is written for the period of 27 August through 02 September 2012. Geosyntec was on-site 5 days (289 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 55° F to a high of 84° F during the hours worked. Approximately 1 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Representatives from Chenango were on site Wednesday, the 29 August. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 2,207 LCY of Drainage Gravel was imported from the Granby, Lake Road, and Amboy sources. No Drainage Gravel was delivered on Wednesday.
- Parsons extended the Debris Management Area (DMA) width to approximately 150-ft, measured East to West. Parsons placed an additional 1-ft thick lift of Drainage Gravel over the previously placed material, for a total minimum thickness of 2-ft within the DMA.
- Parsons continued placement of the 1-ft thick Gravel Drainage Layer within Phase II.

GEOSYNTHETICS:

• Chenango installed approximately 119,500 ft² of the 24-oz/sy non-woven geotextile at the north end of Phase IIA on Wednesday.

COPY TO: File	PER: Douglas W. Hamilton
---------------	--------------------------

PROJECT: Onondaga Lake Bottom Subsite Construction			
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>	
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK ENI	DING: <u>September 09, 2012</u>	

This report is written for the period of 03 August through 09 September 2012. Geosyntec was on-site 4 days (293 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 64° F to a high of 86° F during the hours worked. Approximately 0.10 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,340 LCY of Drainage Gravel was imported from the Granby, Lake Road, and Amboy sources.
- Parsons placed Drainage Gravel in a 1-ft thick lift within Phase II.
- Parsons excavated, stockpiled, and re-screened Drainage Gravel material from areas observed having excessive fines along the Phase II northwestern access road. The screened material was placed into Phase II.

GEOSYNTHETICS:

• No construction activities this week.

COPY TO: File	PER: David Williams
---------------	---------------------

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK El	NDING: September 16, 2012

This report is written for the period of 10 through 16 September 2012. Geosyntec was on-site six (6) days (300 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 51° F to a high of 88° F during the hours worked. Approximately 0.95 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Representatives of Chenango were on site Friday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,464 LCY of Drainage Gravel was imported from the Granby, Lake Road, and Amboy sources.
- Parsons placed the imported Drainage Gravel in Phase II in a single, minimum 1-ft thick lift.
- Parsons reprocessed areas of Drainage Gravel material with excessive fines in the western end of Phase II. The material was reprocessed using a flip screen and then returned to the location of excavation within Phase II.
- Based on a review of survey data the LP soil layer was noted to be thinner than required
 at survey point 21ss within Phase II. Parsons and Geosyntec verified the LP soil layer
 thickness at survey point 21ss by manual excavation and measurement. The manual
 thickness measurement indicated the layer at this location to be 12.04-in thick. Repair of
 the geosynthetics at the location is pending.

- Chenango deployed approximately 117,000 sf. of 24 oz/sy non-woven geotextile cushion in the southeast section of Phase II.
- Will verify the puncture resistance of UV exposed geotextile as exposure has been extended (though temporary tarpaulins continue to be used to manage exposure).

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: <u>Sediment Consolidation Area (SCA)</u>	– Phase I/Phase II WEEK ENI	DING: <u>September 16, 2012</u>

This report is written for the period of 17 through 23 September 2012. Geosyntec was on-site five (5) days (305 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 41° F to a high of 82° F during the hours worked. Approximately 1.2 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Representatives of Chenango were on site Monday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 2,723 LCY of Drainage Gravel was imported from the Granby, Hayes, Oran Delphi, and Amboy sources.
- Parsons placed imported Drainage Gravel materials either into a stockpile or directly into Phase II. Material placed into Phase II was spread in a minimum 1-ft thick lift.
- Parsons performed removal of areas of excessive fines accumulation within Phase II.
 The areas were excavated, removed from the cell, and placed into a stockpile. Imported
 material was used to backfill the excavations within Phase II. Parsons completed the
 removal and replacement of Drainage Gravel material with excessive fines in the
 western end of Phase II.

GEOSYNTHETICS:

• Chenango completed a repair to the geosynthetics in the eastern end of Phase II where the liner was cut open for LP soil thickness verification.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	_TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK EN	DING: September 30, 2012

This report is written for the period of 24 through 30 September 2012. Geosyntec was on-site five (5) days (310 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 42° F to a high of 75° F during the hours worked. Approximately 0.9 inch of rainfall was recorded this week. Representatives of Geosyntec, THG Geophysics, and Parsons were on-site throughout the week. Chenango was on site Monday through Wednesday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 4,620 LCY of Drainage Gravel (minus 4 in. dia. maximum particle size) were imported from the Granby, Dendis, and Amboy sources and placed within the limits of Phase II.
- Parsons completed the removal and replacement of Drainage Gravel material with excessive fines in the western end of Phase II.

GEOSYNTHETICS:

- Chenango crew installed 24 oz/sy non-woven geotextile cushion layer in the southeastern section of Phase II. Approximately 198,000 sf. of geotextile material was deployed this week, exhausting material stockpiled onsite.
- Approximately four additional rolls of 24 oz/sy non-woven geotextile are required to complete the installation in Phase II.
- THG Geophysics crew conducted electrical leak location surveying of the geomembrane in Phase II. Two leaks and two potential leaks in the geomembrane were located and marked so that they can be investigated further.

COPY TO: File PER: David Williams	
-----------------------------------	--

PROJECT: Onondaga Lake Bottom Subsite Construction	on	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase I/Phase II WEEK ENI	OING: October 7, 2012

This report is written for the period of 01 through 07 October 2012. Geosyntec was on-site five (5) days (315 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 50°F to a high of 81°F during the hours worked. Approximately 0.53 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Representatives of THG Geophysics were on-site Monday and Wednesday. Representatives of Chenango were onsite Monday, Tuesday, Thursday, and Friday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,361 LCY of Drainage Gravel (4-in dia. maximum particle size) was imported from the Granby, Lake Road, and Amboy sources and placed within the limits of Phase II.
- Parsons removed Drainage Gravel from the locations of potential leaks identified by THG Geophysics using leak location survey techniques.

GEOSYNTHETICS:

- Chenango delivered 7 rolls (15,750 SF) of 24 oz/sy non-woven geotextile cushion layer material manufactured by GSE. One conformance sample was obtained from the delivered rolls.
- Chenango installed 4 rolls (9,000 SF) of the 24 oz/sy non-woven geotextile cushion layer in the southeastern section of Phase II.
- Chenango completed repairs to the geomembrane at locations identified by THG Geophysics. Repaired areas were re-surveyed by THG Geophysics to confirm the indicated leaks were corrected.

COPY TO: File	PER: David Williams
·	

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	Phase I/Phase II WEEK ENI	DING: October 14, 2012

This report is written for the period of 08 through 14 October 2012. Geosyntec was on-site five (5) days (320 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 41°F to a high of 67°F during the hours worked. Approximately 1.06 inches of rainfall were recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. Representatives of Chenango were on-site Monday, Tuesday, and Friday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,300 LCY of Drainage Gravel (4-in dia. maximum particle size) was imported from the Granby and Amboy sources and placed within the limits of Phase II.
- Parsons removed Drainage Gravel containing excessive fines in the northeast section of Phase II and replaced it with Drainage Gravel from an on-site stockpile.
- Geosyntec obtained sample DG-023 of Drainage Gravel material for conformance testing from the Oran Delphi Road source.
- Results for samples DG-021, DG-022, DG-023, ST-51, and ST-52 are pending from GeoTesting Express.

GEOSYNTHETICS:

- Chenango completed installation of a floating cover on the East Basin on Tuesday. Geosyntec did not provide CQA of this work.
- Chenango installed approximately 5,625 SF of 24 oz/sy non-woven geotextile cushion, completing installation of the layer.
- Results for conformance sample GT-014 are pending from GeoTesting Express.

•

COPY TO: File	PER: David Williams
eor 1 10. <u>1110</u>	Liv. Buvid Williams

PROJECT: Onondaga Lake Bottom Subsite Constructi	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: 0	October 21, 2012

This report is written for the period of 15 through 21 October 2012. Geosyntec was on-site five (5) days (325 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 35° F to a high of 68° F during the hours worked. Approximately 1.35 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 2,454 LCY of Drainage Gravel (4-in dia. maximum particle size) was imported from the Granby, Amboy, Oran Delphi Road, and Route 6/Dendis sources and placed within the southeastern limits of Phase II.
- Results for conformance samples DG-021, DG-022, DG-023, ST-51, and ST-52 are pending.

GEOSYNTHETICS:

• Results for conformance sample GT-014 are pending.

COPY TO: File	PER: David Williams
---------------	---------------------

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: 0	October 28, 2012

This report is written for the period of 22 through 28 October 2012. Geosyntec was on-site five (5) days (330 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 44° F to a high of 74° F during the hours worked. Approximately 0.45 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

- Approximately 1,794 LCY of Drainage Gravel (4-in dia. maximum particle size) was imported from the Granby, Amboy, Oran Delphi Road, and Route 6/Dendis sources and placed within Phase II.
- Placement of the 12-in thick lift of Drainage Gravel over the in place geosynthetic liner system was completed this week.
- Parsons removed Drainage Gravel containing excessive fines and replaced it with Drainage Gravel from an on-site stockpile.
- Results of conformance sample DG-023 are pending.
- Testing results for samples DG-021, DG-022, ST-51, and ST-52 were received from GeoTesting Express. The samples achieved the minimum project requirements.

GEOSYNTHETICS:

• Test results for geotextile conformance sample GT-014 were received from GeoTesting Express. The sample achieved the minimum project requirements.

COPY TO: File	PER: Billy Carruth

PROJECT: Onondaga Lake Bottom Subsite Construction	on		
LOCATION: Camillus, NY	_PROJECT NO	D.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: <u>Sediment Consolidation Area (SCA)</u>	– Phase II W	VEEK ENDING: <u>N</u>	November 4, 2012

This report is written for the period of 29 October through 04 November 2012. Geosyntec was on-site five (5) days (335 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 40° F to a high of 60° F during the hours worked. Approximately 1.23 inches of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site throughout the week. THG Geophysics was onsite Monday through Thursday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

 Approximately 45 LCY of Drainage Gravel (4-in maximum particle size) was imported from the Oran Delphi Road source and placed within the southeastern portion of Phase II, as Parsons continued to remove and replace drainage gravel containing excessive fines from the NE and SE Phase II access roads. Sufficient amount of gravel appears to have been delivered for the project.

GEOSYNTHETICS:

- THG Geophysics completed the leak location surveys for the SE portion of Phase II and the previous NE drainage gravel access road at Phase II.
- THG Geophysics located four potential leak locations during leak location surveys performed this week. Drainage gravel was removed from the areas; further investigation of the areas is being scheduled.

COPY TO: File	PER: Billy Carruth
· · · · · · · · · · · · · · · · · · ·	

PROJECT: Onondaga Lake Bottom Subsite Construction	ion		
LOCATION: Camillus, NY	_PROJECT N	NO.: <u>GJ4706B</u>	TASK NO.: <u>200</u>
DESCRIPTION: <u>Sediment Consolidation Area (SCA)</u>	– Phase II	WEEK ENDING: 1	November 11, 2012

This report is written for the period of 05 through 11 November 2012. Geosyntec was on-site three (3) days (338 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 25°F to a high of 42°F during the hours worked. Approximately 0.2 inch of rainfall was recorded this week. Representatives of Geosyntec were on-site Monday through Wednesday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

 Parsons completed removal and replacement of drainage gravel at the previous SE access road and ramp.

GEOSYNTHETICS:

• Completion of leak location survey. The repairs of potential leak locations are pending.

COPY TO: File	PER: Billy Carruth
---------------	--------------------

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: GJ4706B	TASK NO.: <u>200</u>
DESCRIPTION: Sediment Consolidation Area (SCA)	– Phase II WEEK ENDING: 1	November 18, 2012

This report is written for the period of 12 through 18 November 2012. Geosyntec was on-site three (3) days (341 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 36° F to a high of 67° F during the hours worked. Approximately 0.6 inch of rainfall was recorded this week. Representatives of Geosyntec and Parsons were on-site Monday through Wednesday. Representatives of THG Geophysics and Chenango Contracting were on-site Tuesday and Wednesday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

• Parsons completed removal and replacement of drainage gravel at eight locations in eastern Phase II identified by THG Geophysics for primary geomembrane repair.

GEOSYNTHETICS:

- THG Geophysics completed leak location survey of Phase II and the previous location for the SE access ramp in SE Phase I.
- THG Geophysics identified four potential leak locations along the SE access road in Phase II.
- Chenango Contracting completed nine repairs to the primary geomembrane in Phase II.
- Parsons completed the asbuilt survey of nine repairs to the primary geomembrane in eastern Phase II.

Geosyntec demobilized from the site on Wednesday.

COPY TO: File	PER: Billy Carruth

PROJECT: Onondaga Lake Bottom Subsite Construction	<u>on</u>	
LOCATION: Camillus, NY	PROJECT NO.: <u>GJ4706B</u>	_ TASK NO.: <u>200</u>
DESCRIPTION: <u>Sediment Consolidation Area (SCA)</u>	– Phase II WEEK ENDING:	07 April 2013

This report is written for the period of 01 through 07 April 2013. Geosyntec mobilized to the site and remained on-site two (2) days (343 days total to date) to provide CQA services during construction of the SCA. Temperatures generally ranged from a low of 24° F to a high of 39° F during the hours worked. Approximately 6 inches of snowfall was recorded this week. Representatives of Geosyntec and Parsons were on-site Wednesday and Thursday. Representatives Chenango Contracting were on-site Wednesday. An outline of work performed over this period is outlined below.

SAFETY:

• Safety meetings were held daily with no incidents being reported.

EARTHWORK:

• Parsons completed placement of the drainage gravel within the inclinometer abandonment area after the geosynthetics were repaired.

GEOSYNTHETICS:

- Chenango Contracting completed one repair to the primary geomembrane and 24 oz/sy non-woven geotextile in Phase II at the former location of inclinometer SI-G1.
- The repair and remaining extrusion weld of the boot repair associated with the inclinometer were vacuum tested.

Geosyntec demobilized from the site on Thursday.

COPY TO: File	PER: Josh Bullock	
---------------	-------------------	--

APPENDIX C

Analytical Summary from Borrow Source

(provided by Parsons)

			Field Sample ID	SCA-0022-01
			Location	SCA-SP-GQ-SF063
			Sample Date Sample Delivery Group	6/16/2012 JB9437
			Matrix	SOIL
			Sample Purpose	Regular sample
Method	Parameter Name	Units	Sample Type Restricted Use SCOs-Commercial	Surface soil
SW6010	ARSENIC	mg/kg	16	3.1
SW6010	BARIUM	mg/kg	400	56.7
SW6010	BERYLLIUM	mg/kg	590	0.39 0.026 U
SW6010 SW6010	CADMIUM CHROMIUM	mg/kg mg/kg	9.3 400	7.9
SW6010	COPPER	mg/kg	270	20.9
SW6010	LEAD	mg/kg	1000	3.6
SW6010 SW6010	MANGANESE NICKEL	mg/kg mg/kg	10000 310	764 9.6
SW6010	SELENIUM	mg/kg	1500	0.25 U
SW6010	SILVER	mg/kg	1500	0.17 J
SW6010	ZINC	mg/kg	10000	23.6
SW7471 SW8081	MERCURY 4,4'-DDD	mg/kg ug/kg	2.8 92000	0.012 U 0.69 U
SW8081	4,4'-DDE	ug/kg	62000	0.69 U
SW8081	4,4'-DDT	ug/kg	47000	0.69 U
SW8081	ALDRIN	ug/kg	680	0.69 U 0.69 U
SW8081 SW8081	ALPHA-BHC ALPHA-CHLORDANE	ug/kg ug/kg	3400 24000	0.69 U
SW8081	вета-внс	ug/kg	3000	0.69 U
SW8081	DELTA-BHC	ug/kg	500000	0.69 U
SW8081	DIELDRIN	ug/kg	1400 200000	0.69 U 0.69 U
SW8081 SW8081	ENDOSULFAN I ENDOSULFAN II	ug/kg ug/kg	200000	0.69 U
SW8081	ENDOSULFAN SULFATE	ug/kg	200000	0.69 U
SW8081	ENDRIN	ug/kg	89000	0.69 U
SW8081	GAMMA-BHC (LINDANE)	ug/kg	9200	0.69 U 0.69 U
SW8081 SW8082	HEPTACHLOR AROCLOR-1016	ug/kg ug/kg	15000 1000	0.69 U 34 U
SW8082	AROCLOR-1221	ug/kg	1000	34 U
SW8082	AROCLOR-1232	ug/kg	1000	34 U
SW8082	AROCLOR-1242	ug/kg	1000	34 U 34 U
SW8082 SW8082	AROCLOR-1248 AROCLOR-1254	ug/kg ug/kg	1000 1000	34 U
SW8082	AROCLOR-1260	ug/kg	1000	34 U
SW8082	AROCLOR-1262	ug/kg	1000	34 U
SW8082	AROCLOR-1268	ug/kg	1000 500000	34 U 3.3 U
SW8151 SW8260	2,4,5-TP (SILVEX) 1,1,1-TRICHLOROETHANE	ug/kg ug/kg	500000	5.3 U
SW8260	1,1-DICHLOROETHANE	ug/kg	240000	5.3 U
SW8260	1,1-DICHLOROETHENE	ug/kg	500000	5.3 U
SW8260	1,2,4-TRIMETHYLBENZENE	ug/kg	190000 500000	5.3 U 5.3 U
SW8260 SW8260	1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	ug/kg ug/kg	30000	1.1 U
SW8260	1,3,5-TRIMETHYLBENZENE	ug/kg	190000	5.3 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	280000	5.3 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	130000 130000	5.3 U 130 U
SW8260 SW8260	1,4-DIOXANE 2-BUTANONE	ug/kg ug/kg	500000	11 U
SW8260	ACETONE	ug/kg	500000	18.7
SW8260	BENZENE	ug/kg	44000	1.1 U
SW8260 SW8260	BUTYLBENZENE CARBON TETRACHLORIDE	ug/kg ug/kg	500000 22000	5.3 U 5.3 U
SW8260	CHLOROBENZENE	ug/kg	500000	5.3 U
SW8260	CHLOROFORM	ug/kg	350000	5.3 U
SW8260	CIS-1,2-DICHLOROETHENE	ug/kg	500000	5.3 U
SW8260 SW8260	ETHYLBENZENE METHYL TERT-BUTYL ETHER	ug/kg ug/kg	390000 500000	1.1 U 1.1 U
SW8260	METHYLENE CHLORIDE	ug/kg	500000	5.3 U
SW8260	N-PROPYLBENZENE	ug/kg	500000	5.3 U
SW8260	NAPHTHALENE	ug/kg	500000 500000	5.3 U 5.3 U
SW8260 SW8260	SEC-BUTYLBENZENE TERT-BUTYLBENZENE	ug/kg ug/kg	500000	5.3 U
SW8260	TETRACHLOROETHENE	ug/kg	150000	5.3 U
SW8260	TOLUENE	ug/kg	500000	1.1 U
SW8260 SW8260	TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/kg ug/kg	500000 200000	5.3 U 5.3 U
SW8260 SW8260	VINYL CHLORIDE	ug/kg ug/kg	13000	5.3 U
SW8260	XYLENES, TOTAL	ug/kg		1.1 U
SW8270	2-METHYLPHENOL	ug/kg		60 U
SW8270 SW8270	3&4-METHYLPHENOL ACENAPHTHENE	ug/kg ug/kg	null 500000	60 U 30 U
SW8270	ACENAPHTHENE	ug/kg ug/kg		30 U
SW8270	ANTHRACENE	ug/kg		30 U
SW8270	BENZO(A)ANTHRACENE	ug/kg		30 U
SW8270 SW8270	BENZO(A)PYRENE BENZO(B)FLUORANTHENE	ug/kg ug/kg		30 U 30 U
SW8270 SW8270	BENZO(B)FLOORANTHENE BENZO(G,H,I)PERYLENE	ug/kg ug/kg		30 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	56000	30 U
SW8270	CHRYSENE	ug/kg		30 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg ug/kg		30 U 60 U
SW8270 SW8270	DIBENZOFURAN FLUORANTHENE	ug/kg ug/kg		30 U
SW8270	FLUORENE	ug/kg	500000	30 U
SW8270	HEXACHLOROBENZENE	ug/kg		60 U
SW8270	INDENO(1,2,3-CD)PYRENE NAPHTHALENE	ug/kg ug/kg		30 U 30 U
SW8270 SW8270	PENTACHLOROPHENOL	ug/kg ug/kg		300 U
SW8270	PHENANTHRENE	ug/kg	500000	30 U
SW8270	PHENOL	ug/kg		60 U
SW8270 SW9012	PYRENE CYANIDE	ug/kg mg/k _l		30 U 0.11 U
J WV 3U1Z	CIMINE	1116/ N	. <u>.</u> '	5,11

APPENDIX D

Geotechnical Laboratory Test Results

- Engineered Fill QC (provided by Parsons)/QA
- Low-Permeability Soil Layer QC (provided by Parsons)/QA
- Gravel Drainage Layer QC (provided by Parsons) /QA

Engineered Fill

1	Tool	Soil Classification	Moisture Content	Organic Content		Particle Size Analysis	Atterberg Limits
	Test	ASTM D 2487	ASTM D 2216	ASTM D 2974	ASTM D 698	ASTM D 422	
Engineered / Structural Fill Sediment Consoidation Area- Phase II Camillus, New York	Spec Requirement	SC, SM, ML, CL, GM, GC, GW or combination RFI 15: GP w/ sand, GP- GM, SP-SM w/ gravel, SW-SM w/ gravel	No Spec	No Spec	No Spec	No Spec	No Spec
						> 50%	

Sample Source	Field Sample ID	Sample No.	USCS Classification	ASTM D2216 Moisture (%)	ASTM D2974 Organic (%)	Max Dry Density	Optimum Moisture Content (%)	4" (%)	3" (%)	2" (%)	1-1/2" (%)	1" (%)	3/4" (%)	1/2" (%)	3/8" (%)	1/4" (%)	#4 (%)	#10 (%)	#20 #40 (%) (%)	#80 (%)	#100 (%)	#200 (%)	Liquid Limit (%)		Plasticity Index (%)
Sennett Quarry	SF-067	S274-SF67	GW	3.9	0.4	136.1	8.2		100	97.0	91.0	87.0	80.0	67.0			40.0	22.0	8.0	-	5.0	4.5	NP	NP	NP
Sennett Quarry	SF-068	S275-SF68	GW-GM	4.0	0.3	139.3	7.9		100	95.0	91.0	82.0	74.0	64.0			38.0	22.0	8.0	-	6.0	5.3	NP	NP	NP
SCA Retest	SF-069	S280-SF69	GW-GM w/ sand	4.8	0.5	140.3	6.4	100	96.8	96.8	92.0	78.4	69.4	58.6	53.6	46.8	43.3	34.2	28.0 22.	5 14.7	13.3	9.0	NP	NP	NP
SCA Retest	SF-070	S281-SF70	SP-SM with gravel	4.9	0.8	132.9	7		100	98.5	95.2	83.5	76.5	68.9	66.5	62.3	60.1	53.3	47.7 32.	12.3	11.6	8.4	NP	NP	NP
SCA Retest	SF-071	S282-SF71	GW-GM w/ sand	5.2	0.8	137.1	6.7	100	95.6	90.8	86.3	80.5	71.5	61.4	54.2	46.5	41.7	29.5	21.9 16.	5 9.4	8.2	4.9	NP	NP	NP
SCA Retest	SF-072	S283-SF72	GW-GM w/ sand	4.3	0.6	139.4	6.4	100	93.9	90.3	85.2	76.8	69.3	59.8	52.9	43.6	39.2	28.1	21.6 16.	7 9.8	8.5	5.0	NP	NP	NP
SCA Retest	SF-073	S284-SF73	GW w/ sand	5.4	0.9	140.6	4.9		100	91.9	87.2	80.1	72.6	61.3	55.2	47.4	42.4	29.4	22.0 16.	8.9	7.5	4.2	NP	NP	NP
SCA Retest	SF-074	S285-SF74	GW w/ sand	4.9	0.6	139.1	5.6	100	95.3	94.2	91.8	80.5	71.4	60.2	52.5	44.8	40.3	29.2	21.8 16.	2 8.7	7.5	4.3	NP	NP	NP
SCA Retest	SF-075	S286-SF75	GW w/ sand	4.3	0.5	140.1	4.9	100	87.4	79.5	73.6	66.6	61.1	55.3	49.2	43.4	39.7	29.5	22.2 17.3	8.2	6.6	3.3	NP	NP	NP
SCA Retest	SF-076	S287-SF76	GW w/ sand	4.3	0.7	144.5	4.4		100	84.3	72.1	60.1	52.3	40.4	37.7	32.9	30.0	21.2	15.1 11.3	6.7	5.9	3.6	NP	NP	NP
Granby Quarry	SF-077	S355-SF77	GW	4.5	1.3	140.1	5.4	100	93.0	90.0	80.0	71.0	65.0	56.0	50.0		38.0	26.0	19.0 13.	5.0	4.0	2.0	NP	NP	NP
Granby Quarry	SF-078	S356-SF78	GP with sand	4.0	0.9	140.3	5.7	100	94.0	87.0	83.0	78.0	72.0	63.0	57.0		45.0	32.0	24.0 15.	6.0	5.0	3.0			

TABLE D-1
ENGINEERED FILL QA SUMMARY
Parsons / Honeywell
Sediment Consolidation Area - Phase II
Camillus, New York

Т	EST STANDARD		MOISTURE (ASTM D2216)				GRAIN (ASTM	_				CLASSIFICATION (ASTM D2487)	ORGANIC (ASTM D2974)		ERBERG LI ASTM D 431		STANDARD F (ASTM D	
QA	TEST FREQUENCY		@ 25,000 cyd				@ 25,0	00 cyd				@ 25,000 cyd	@ 25,000 cyd	(@ 25,000 cy	rd	@ 25,00	0 cyd
QA	TEST REQUIRED		1				1					1	1		1		1	
SAMPLE No.	LOCATION	APPROX. VOLUME PLACED	(1)	PASSING 3 in. (%)	PASSING 2- in. (%)	PASSING 1 in. (%)	PASSING NO. 10 (%)	PASSING NO.40 (%)	PASSING NO.100 (%)	PASSING NO.200 (%)	PASSING 0.002 mm (%)		(%)	LL	PL	PI	MAX. DRY DENSITY (PCF)	ΟΡΤ. ω (%)
EF-	Specs:		•	-	-	-	-	-	-	-	SC, SM	, ML, CL, GM, GC	C, or GW		•	•		
Phase I																		
EF1	Granby - on-site		5.8/7/6	100	90	67	34	23	15	12.8	2	GC-GM	0.9	20	13	7	129 / 140	8.5 / 5
EF3	Granby - on-site		5.8	97	87	71	25	15	5	2.8	0	GP	0.1	NP	NP	NP	127 / 137	8 / 5
EF4	Granby - on-site NW stoo	kpile	1.9	100	100	100	83	55	34	25	7	SC-SM	0.7	19	14	5	138 / 142.5	6 / 4.5
EF5	Granby - on-site D-10		4.1	100	100	82	29	20	9	6	1	GE-GM	0.4	NP	NP	NP	130 / 136.5	8/ 6
Phase II EF-6	On-site S. Haul Rd - Grid	0	5	92	81	65	22	11	5	3	1	GP	0.1	NP	NP	NP	128 / 139.5	8.5 / 5
EST.	TOTAL VOLUME (cyd) PLACED:	1,700	1	Number of 0	QA Samples:		1					1	1		1		1	

Notes:

- (1) The majority if the soil used to construct perimeter berms was obtained from the Granby source.
- (2) Reference construction documents, including Technical Specification Section 02200 and Tables A-1 and 2 of the CQA Plan for further details.

Analytical samples were obtained by Parsons from each source to confirm the material meets the Restricted Use Soil Cleanup Objectives (Table 375-6.8(b), NYDEC Subpart 375.

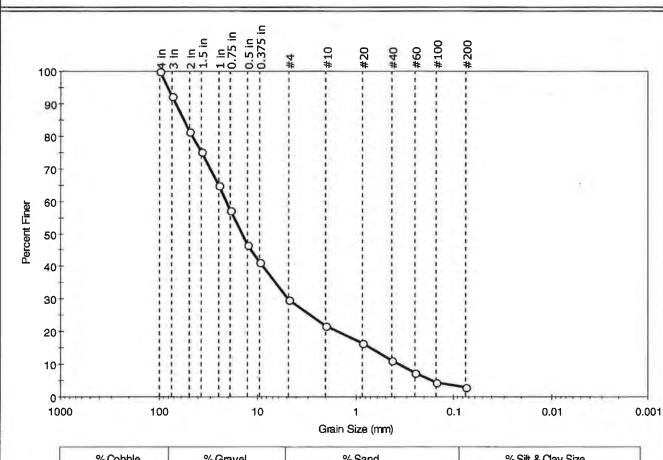
The minimum dry density required is 90 and 95 percent for mid and upper lifts, respectively, -3 to +3 percent of the optimum moisture content.

- (3) In-place testing was performed at a minimum of 5 per acre/lift.
- (4) Italics indicate an approximate value. **Bold** indicates oversized corrected numbers.

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: jbr Sample ID:EF-006 Test Date: 06/20/12 Checked By: jdt

Test Id:


240063

Depth: ---Test Comment:

Sample Description: Moist, reddish brown gravel with sand

Sample Comment: ---

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	70.3	26.7	3.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100		
3 in	75.00	92		
2 in	50.00	81		
1.5 in	37.50	75		
1 in	25.00	65	1	
0.75 in	19.00	57		
0.5 in	12.70	47		
0.375 in	9.50	41		
#4	4.75	30		
#10	2.00	22		
#20	0.85	17		
#40	0.42	11		
#60	0.25	7		
#100	0.15	5		
#200	0.075	3		

	<u>fficients</u>
D ₈₅ = 57.0836 mm	$D_{30} = 4.8166 \text{ mm}$
D ₆₀ = 20.9720 mm	D ₁₅ = 0.6931 mm
D ₅₀ =14.3987 mm	$D_{10} = 0.3606 \text{ mm}$
Cu =58.159	$C_c = 3.068$

Project No:

GTX-11670

ASTM	<u>Classification</u> Poorly graded gravel with sand (GP)
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u>
Sand/Gravel Particle Shape: ROUNDED
Sand/Gravel Hardness: HARD

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: jek Sample ID:EF-006 Test Date: 06/21/12 Checked By: jdt Depth: --- Sample Id: 115985

GTX-11670

Project No:

Test Comment: ---

Sample Description: Moist, reddish brown gravel with sand

Sample Comment: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	EF-006	***	Moist, reddish brown gravel with sand	5

Notes: Temperature of DryIng: 110° Celsius

Location: Camillus, NY

Boring ID: ---Sample Type: bucket Tested By: Sample ID:EF-006 Test Date: 06/20/12 Checked By: jdt Test Id:

Project No:

240065

GTX-11670

Test Comment:

Depth:

Sample Description: Moist, reddish brown gravel with sand

Sample Comment:

Moisture, Ash, and Organic Matter - ASTM D 2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
	EF-006		Moist, reddish brown gravel with sand	5	99.9	.1

Notes: Moisture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 110° C Ash content and organic matter determined by Method C; dried to constant mass at temperature 440° C

Location: Camillus, NY

Sample Type: bucket

Tested By: 06/21/12 Checked By: jdt

Project No:

GTX-11670

Boring ID: ---Sample ID:EF-006

Depth:

Test Date:

Test Id:

240062

Test Comment:

Sample Description: Moist, reddish brown gravel with sand

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	EF-006		Poorly graded gravel with sand	GP	70.3	26.7	3.0

Remarks: Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Location: Camillus, NY

Project No:

GTX-11670

Boring ID: ---Sample ID:EF-006 Sample Type: bucket Test Date:

Test Id:

240061

Tested By: 06/21/12 Checked By: jdt

Depth: ---

Test Comment:

Sample Description: Moist, reddish brown gravel with sand

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liguld Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	EF-006			5	n/a	n/a	n/a	n/a	Poorly graded gravel with sand (GP)

89% Retained on #40 Sieve

Dry Strength: NONE Dilentancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

Location: Camillus, NY

Sample Type: bucket Test Date:

Project No: Tested By: GTX-11670

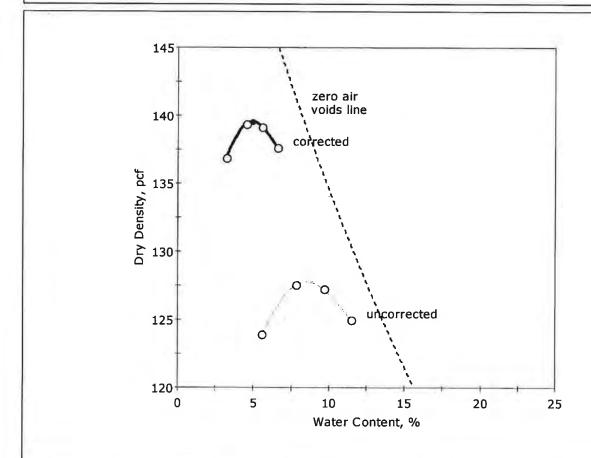
Boring ID: ---Sample ID:EF-006

Depth:

Test Id:

06/20/12 Checked By: jdt

240066


Test Comment:

ASTM does not recommend this method when >30% is >3/4-inch

Sample Description: Moist, reddish brown gravel with sand

Sample Comment:

Compaction Report - ASTM D 698

Data Points	Point 1	Point 2	Point 3	Point 4
Dry density, pcf	123.9	127.6	127.3	125.0
Moisture Content, %	5.5	7.8	9.6	11.5

Method: C

Preparation: WET As received Moisture: Rammer: Manual

Zero voids line based on assumed specific gravity of 2.75

Maximum Dry Density= 128.0 pcf Optimum Moisture= 8.5 %

Oversize Correction

(42.8% > 3/4 inch Sieve)

Corrected Maximum Dry Density= Corrected Optimum Moisture=

139.5 pcf 5.0 %

Assumed Average Bulk Specific Gravity =

2.55

Low-Permeability Soil Layer

- Index Testing
- Thin-Walled Tube Samples

		Soil Classification	Moisture Content	Organic Content	Standard Proctor		Particle Size Analysis		Atterberg Limits	Permeability
	Test	ASTM D 2487	ASTM D 2216	ASTM D 2974	ASTM D 698		ASTM D 422			ASTM D 5084
Low-Permeability Soil Layer Sediment Consoidation Area- Phase II	Spec Requirement	SC, SM, ML, CL or combination	No Spec	No Spec	No Spec	100%		>50%		= 1.0E-06</th

Marcellus Clay Pit	LP-176 LP-177 LP-178 LP-179 LP-180 LP-181 LP-182 LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191 LP-192	S276-LP176 S277-LP177 S278-LP178 S279-LP179 S291-LP180 S292-LP181 S294-LP182 S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188 S312-LP189	CL CL CL CL CL	22.0 24.4 20.4 21.1 23.3 24.0 23.9 22.5 23.2 21.7	0.9 1.0	106.1 105.7	17.4 17.4	100 100 100		100 100	100 100	99 100	98	34	17	17	3.0E-08	21.7	100.3
Marcellus Clay Pit	LP-177 LP-178 LP-179 LP-180 LP-181 LP-182 LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S278-LP178 S279-LP179 S291-LP180 S292-LP181 S294-LP182 S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188	CL CL CL	20.4 21.1 23.3 24.0 23.9 22.5 23.2	0.7		17.4	100							40	40	2 FF 00	00.4	
Marcellus Clay Pit	LP-179 LP-180 LP-181 LP-182 LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S279-LP179 S291-LP180 S292-LP181 S294-LP182 S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188	CL CL	21.1 23.3 24.0 23.9 22.5 23.2								100	99	36	18	18	3.5E-08	20.1	107.7
Marcellus Clay Pit	LP-180 LP-181 LP-182 LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S291-LP180 S292-LP181 S294-LP182 S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188	CL	23.3 24.0 23.9 22.5 23.2				400		100	100	99	98	35	17	17			
Marcellus Clay Pit	LP-181 LP-182 LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S292-LP181 S294-LP182 S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188		24.0 23.9 22.5 23.2				100		100	100	99	98	34	17	17			
Marcellus Clay Pit	LP-182 LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S294-LP182 S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188		23.9 22.5 23.2										34	18	16			
Marcellus Clay Pit	LP-183 LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S295-LP183 S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188		22.5 23.2		400 =								34	18	16			
Marcellus Clay Pit	LP-184 LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S298-LP184 S299-LP185 S300-LP186 S310-LP187 S311-LP188	CL	23.2	1.0	106.7	17.6	100		100	99.4	98.7	97.0	35	18	17	8.4E-08	20.9	101.9
Marcellus Clay Pit	LP-185 LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S299-LP185 S300-LP186 S310-LP187 S311-LP188				107.7	17.6	100		100	99.8	98.5	97.3	36	18	18	5.3E-08	19.9	102.8
Marcellus Clay Pit	LP-186 LP-187 LP-188 LP-189 LP-190 LP-191	S300-LP186 S310-LP187 S311-LP188		21.7										35	17	18			
Marcellus Clay Pit	LP-187 LP-188 LP-189 LP-190 LP-191	S310-LP187 S311-LP188												36	17	19			
Marcellus Clay Pit	LP-188 LP-189 LP-190 LP-191	S311-LP188		22.1										36	18	18			
Marcellus Clay Pit LF	LP-189 LP-190 LP-191			21.6										35	17	18			
Marcellus Clay Pit LF	LP-190 LP-191	S312-LP189		24.6										35	18	17			
Marcellus Clay Pit LF	LP-191	JU	CL	23.4				100		100	99.8	99.3	98.5	35	16	19			
Marcellus Clay Pit LF		S313-LP190	CL	22.3	2.6	105.8	18.6	100		100	99.8	99.6	99.1	34	16	18	4.2E-08	21.0	99.4
Marcellus Clay Pit LF	I P-192	S314-LP191	CL	22.7				100		100	99.5	99.1	98.4	34	17	17			
Marcellus Clay Pit LF	_1 102	S315-LP192	CL	22.4				100		100	99.5	98.9	97.8	34	16	18			
Marcellus Clay Pit LF Marcellus Clay Pit LF Marcellus Clay Pit LF Marcellus Clay Pit LF	LP-193	S316-LP193	CL	22.5				100	100	99	99.1	98.6	97.8	34	16	18			
Marcellus Clay Pit LF Marcellus Clay Pit LF Marcellus Clay Pit LF	LP-194	S317-LP194		23.5										28	16	12			
Marcellus Clay Pit LF Marcellus Clay Pit LF	LP-195	S318-LP195		25.1										28	17	11			
Marcellus Clay Pit LF	LP-196	S319-LP196	CL	21.5				-	100	100	99.2	98.6	97.6	33	17	16			
•	LP-197	S320-LP197		20.1										33	16	17			
Marcellus Clay Pit LF	LP-198	S321-LP198		23.4										33	16	17			
•	LP-199	S323-LP199	CL	20.1	0.7	108.5	18.0	100		100	100	99	98	33	17	16	2.9E-08	18.5	104.5
•	LP-200	S324-LP200	CL	22.1			10.0	100		100	100	99	99	34	16	18			
•	LP-201	S325-LP201		19.2										34	16	18			
•	LP-202	S326-LP202	CL	19.7	0.9	109.0	16.6	100		100	100	99	98	33	16	17	4.0E-08	17.3	103.8
•	LP-203	S327-LP203	<u> </u>	20.1	0.0		10.0							33	16	17			
•	LP-204	S328-LP204		22.2										34	17	17			
•	LP-205	S329-LP205	CL	19.3	0.6	106.9	17.1	100		100	99.0	99	98	33	15	18	4.5E-08	17.4	102.3
,	LP-206	S330-LP206		18.1	3.3	10010								35	17	18			
	LP-207	S331-LP207		17.7										33	16	17			
	LP-208	S332-LP208	CL	19.6	0.9	107.1	16.3	100		100	100	99	98	34	16	18	2.9E-08	17.2	102.2
•	LP-209	S333-LP209		18.9			10.0							35	17	18			
•	LP-210	S334-LP210		20.8										35	16	19			
•	LP-211	S335-LP211	CL	19.2				100		100	100	99	99	35	17	18			
•	LP-212	S336-LP212		20.2										35	17	18			
•	LP-213	S337-LP213		18.2										33	16	17			
•	LP-214	S338-LP214	CL	17.3				100		100	100	99	98	34	17	17			
•	LP-215	S339-LP215		21.9										34	15	19			
•	LP-216	S340-LP216		20.4										34	18	16			
	LP-217	S343-LP217		19.4										35	17	18			
•	LP-218	S344-LP218		20.8										35	19	16			
•	LP-219	S345-LP219	CL	16.8	0.6	108.4	17.5	100		100	100	99	99	33	16	17	3.4E-08	17.7	104.5
•	LP-220	S346-LP220		16.1	0.0	700.4	17.5	100		100	99.0	99	98	34	17	17	J. 12 30		.01.0
	LP-221	S347-LP221		19.4				100		100	30.0		- 00	35	18	17			
•	LP-222	S349-LP222		17.7										34	15	19			
•	LP-223	S350-LP223	CL	18.0				100		100	100	99	98	34	17	17			
•	LP-224	S351-LP224	OL .	18.3				100		100	100	33	30	33	16	17			
-	LP-224 LP-225	S352-LP225		16.9										35	17	18			
•	LP-225 LP-226	S353-LP226	CL	20.1	0.5	108.9	18.4	100		100	100	99	98	34	16	18	4.8E-08	18.6	103.9
Marcellus Clay Pit Li	LI -ZZU	S354-LP227	- OL	21.5	0.5	100.9	10.4	100							100		4 XE-UX		1117.4

SCA Phasell Geotech Sample Testing Data.xls

TABLE D-2
LOW-PERMEABILITY SOIL LAYER QA SUMMARY
Parsons / Honeywell
Sediment Consolidation Area - Phase II
Camillus, New York

TES	ST STANDARD		MOISTURE (ASTM D2216)			GRAIN (ASTM				CLASSIFICATION (ASTM D2487)	ORGANIC (ASTM D2974)		RBERG L STM D 43		STANDARD F (ASTM D			HYDRAULI (AS	C COND TM D 508		
QA TE	ST FREQUENCY					@ 2,500	cyd/10			@ 2,500 cyd/10	@ 2,500 cyd/10	@ '	1,000 cyd	/10	@ 5,000	cyd/10		@ 5	,000 cyd	/10	
QA T	EST REQUIRED					3				3	3		6		2				2		
SAMPLE No.	LOCATION	APPROX. VOLUME PLACED	MOISTURE (%)	PASSING 1-in. (%)	PASSING NO. 10 (%)	PASSING NO.40 (%)	PASSING NO.100 (%)	PASSING NO.200 (%)	PASSING 0.002 (%)	USCS	(%)	LL	PL	PI	MAX. DRY DENSITY (PCF)	OPT. ω (%)	REL. COMP. (%)	DRY UNIT WEIGHT (PCF)	ω (%)	REL. ω (%)	PERMEABI LITY (CM/S)
	Specs:			100	-	-	-	100-50		SC / SM / ML / C	L	-		-					≤ 1 E-6		
Phase II																					
LP-103	Marcellus - Grid E14		18.5	100	100	100	100	99	38	CL	0.3	33	18	15	113	17.5	96	109	15.3	-2.2	3.2E-08
LP-106	Marcellus FDT 5-015		13									30	16	14							
LP-107	Marcellus FDT 5-025		14									31	17	14							
LP-108	Marcellus - Grid E15		13	100	100	99	99	97	40	CL	0.4	33	17	16							
LP-128	Marcellus - Grid I-14		17.6	100	100	100	99	96	35	CL	0.2	29	16	13	115.5	16.0	95	110	16.1	0.1	1.0E-08
LP-129	Marcellus - Grid H-18		19.5									30	16	14							
ST-51	Marcellus - Grid P-19		15.7									28	15	13							
ST-52	Marcellus - Grid Q-14		15.5									30	16	14							
LP-141	Marcellus - Grid Q-13		12.5	100	100	100	99	98	-	CL	0.2	27	15	12							
LP-142	Marcellus - Grid R-16		15.8									27	15	12							
MATED TOTAI	L VOLUME (cyd) PLACED:	: 57,500	10	Number of	QA Samples	:	4			4	4		10		2				2		

Notes: (1) The soil was used to construct a 1 to 1.5-ft min. thick clay liner implemented by placing a bridge lift followed by mid lifts if necessary and an upper 6 in. compacted lift. Reference construction documents, including Technical Specification Section 02250 for further details.

See Shelby Tube summary, Table D-3, for results.

- (2) The minimum dry density required is 90 and 95 percent for mid and upper lifts, respectively, at -3 to +3 percent of the optimum moisture content.
- (3) In-place testing was performed at a minimum of 9 per acre/lift.
- (4) Italics indicate an approximate value.

TABLE D-3 SHELBY TUBE DATA SUMMARY Honeywell / Parsons **Sediment Consolidation Area - Phase II** Camillus, NY

No. ST-29A M	SOURCE Marcellus Marcellus Marcellus	TEST NO. 6-002 6-012	DRY UNIT WEIGHT (PCF)	FIELD MOIST. (cor) (%)	REL. COMP. (%)	MAX. DRY DENSITY (PCF)	OPT. MOISTURE	REL. MOIST.	DRY UNIT WEIGHT	MOIST.	PERM.
	Marcellus		108.8				(%)	(%)	(PCF)	(%)	(CM/S)
	Marcellus		108.8	40.4		110	47.5	•	400	00.7	4.55.00
ST-30A N		6-012		19.4	94	113	17.5	+3	106	20.7	1.5E-08
	Marcellus		108.9	17.8	95	113	17.5	+2	107	19.4	2.3E-08
		6-022	109.9	17.9	90	113	17.5	+4	102	21.5	1.4E-08
	Marcellus	6-035	108.6	19.5	96	113	17.5	+4	109	21.4	1.0E-08
	Marcellus	6-078	108.9	17	99	113	17.5	-+2	112	15.8	9.4E-09
	Marcellus	6-080	116.2	16.8	106	113	17.5	-+3	120	14.2	8.7E-09
	Marcellus	6-083	116.8	15.6	99	113	17.5	-+1	112	16.5	6.9E-09
	Marcellus	6-108	114.1	18.1	95	113	17.5	+0	107	17.7	1.2E-08
	Marcellus	6-114	111.0	18.1	100	113	17.5	+1	113	18.3	7.3E-09
	Marcellus	6-120	113.3	16.6	99	115.5	16	+2	114	17.5	7.3E-09
	Marcellus	6-133	113.0	16.3	99	115.5	16	+1	114	17.4	9.6E-09
	Marcellus	6-140	111.5	17.0	96	115.5	16	+1	111	17.2	1.2E-08
	Marcellus	6-146	110.5	17.3	100	115.5	16	+2	116	17.8	7.4E-09
	Marcellus	6-149	111.9	17.2	98	115.5	16	+2	113	17.6	7.2E-09
	Marcellus	6-158	113.3	17.7	99	115.5	16	+1	114	16.6	2.3E-08
	Marcellus	6-163	114.8	16.3	98	115.5	16	-+1	113	15.5	8.8E-09
	Marcellus	6-172	110.2	18.4	93	115.5	16	+3	107	19.2	2.9E-08
	Marcellus	6-184	111.3	17.0	97	115.5	16	+4	112	19.9	7.5E-09
ST-47A N	Marcellus	6-187	113.0	15.9	96	115.5	16	+1	111	17.0	1.1E-08
ST-48A N	Marcellus	6-193	110.8	18.0	93	115.5	16	+1	107	17.4	1.3E-08
ST-49A N	Marcellus	6-202	112.4	16.5	95	115.5	16	+2	110	17.7	2.9E-08
ST-50A N	Marcellus	6-209	112.4	17.4	93	115.5	16	+3	107	19.1	1.9E-08
ST-51A N	Marcellus	6-211	112.4	16.5	98	115.5	16	+2	113	18.1	1.3E-08
ST-52A N	Marcellus	6-222	110.3	18.3	96	115.5	16	+2	111	18.2	1.8E-08
ST-53A N	Marcellus	6-231	112.7	17.9	99	115.5	16	+1	114	17.1	1.3E-08
ST-54A N	Marcellus	6-243	112.0	18.0	100	115.5	16	+3	116	18.6	1.2E-08
ST-55A N	Marcellus	6-258	111.7	17.6	101	115.5	16	-+3	117	13.4	2.4E-08
ST-56A	Marcellus	6-279	112	15.1	97	115.5	16	+2	114	17.5	1.1E-08
								Ni	umber of QA	samnles:	28

Notes: LP material mixed with 10% granular bentonite was used to backfill perforations in LP layer. Hydraulic conductivity tests performed at 20.8 psi consolidation pressure.

Index Testing

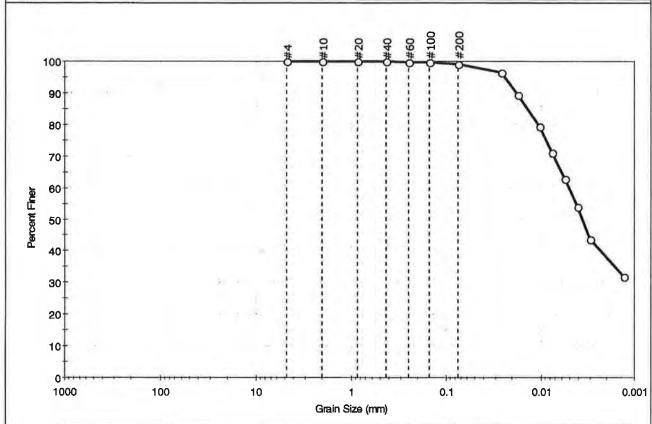
Location: Camillus, NY Project No:

GTX-11670

Boring ID: ---Sample ID:LP-103

Sample Type: bucket Test Date:

Tested By: 04/03/12 Checked By: jdt


Depth: ---Test Id: 233269

Test Comment:

Sample Description: Moist, dark reddish brown clay

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	% Sand	% Silt & Clay Size
_	0.0	0.9	99.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		THE STATE OF THE STATE OF
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	100		
#200	0.075	99		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
***	0.0260	96		
***	0.0174	89		
***	0.0104	79		
***	0.0077	71		
	0.0056	63		
***	0.0041	54		
***	0.0030	44		
***	0.0013	32		

Coe	efficients	
D ₈₅ = 0.0139 mm	$D_{30} = N/A$	
D ₆₀ = 0.0051 mm	$D_{15} = N/A$	
D ₅₀ = 0.0036 mm	$D_{10} = N/A$	
Cu =N/A	Cc =N/A	

<u>Classification</u> lean clay (CL) **ASTM**

AASHTO Clayey Solls (A-6 (16))

Sample/Test Description
Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Location: Camillus, NY

Project No: GTX-11670 Boring ID: ---Sample Type: bucket Tested By: Sample ID:LP-103 Test Date: 04/10/12 Checked By: jdt

Depth: Sample Id: 112011

Test Comment:

Sample Description: Moist, dark reddish brown clay

Sample Comment:

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	LP-103	1444	Moist, dark reddish brown clay	18.5

Notes: Temperature of Drying: 110° Celsius

Location: Camillus, NY

Sample Type: bucket

Project No: GTX-11670

Boring ID: ---Sample ID:LP-103

Test Date:

Test Id:

04/10/12 Checked By: jdt

233268

Tested By:

Depth:

Test Comment:

Sample Description: Moist, dark reddish brown clay

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Semple ID	Depth	Group Name	Group Symbol	Gravel,	Sand, %	Fines, %
-	LP-103	***	lean clay	CL	0.0	0.9	99.1

Remarks:

Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Location: Camillus, NY

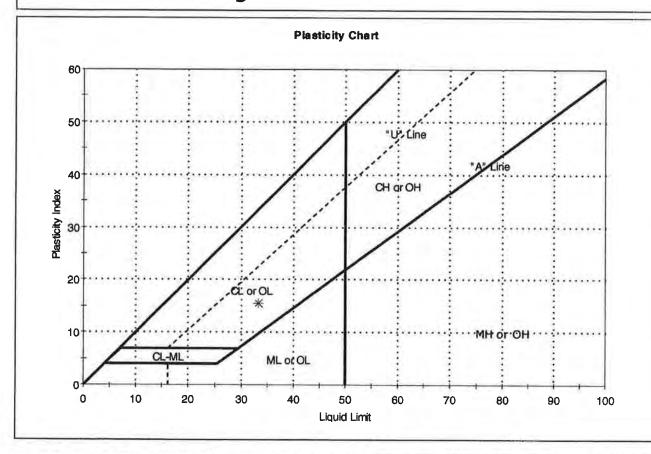
Boring ID: ---

Sample ID:LP-103

Sample Type: bucket Tested By: Test Date: 04/06/12 Checked By: jdt

GTX-11670

Project No:


Depth: Test Id: 233267

Test Comment:

Sample Description: Moist, dark reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soll Classification
*	LP-103	***		18	33	18	15	0	lean clay (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Boring ID: ---

Sample ID:LP-103

Sample Type: bucket Tested By: jek
Test Date: 04/03/12 Checked By: jdt

GTX-11670

Depth: --- Test Id: 233271

Test Comment: --

Sample Description: Moist, dark reddish brown clay

Sample Comment: -

Moisture, Ash, and Organic Matter - ASTM D 2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
	LP-103		Moist, dark reddish brown clay	18	99.7	,3

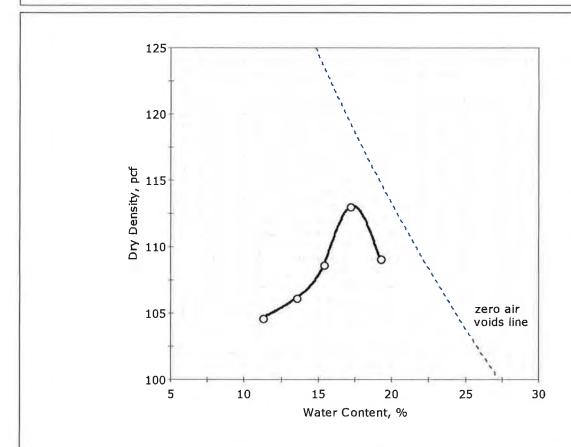
Notes: Molsture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 110° C

Ash content and organic matter determined by Method C; dried to constant mass at temperature 440° C

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: kdm
Sample ID:LP-103 Test Date: 04/10/12 Checked By: jdt
Depth: --- Test Id: 233272

Project No:


GTX-11670

Test Comment:

Sample Description: Moist, dark reddish brown clay

Sample Comment:

Compaction Report - ASTM D 698

Data Points	Point 1	Point 2	Point 3	Point 4	Point 5
Dry density, pcf	104.6	106.1	108.6	113.0	109.1
Moisture Content, %	11.2	13.5	15.4	17.2	19.2

Method: A

Preparation: WET
As received Moisture:
Rammer: Manual

Zero voids line based on assumed specific gravity of 2.85

Maximum Dry Density=
Optimum Moisture=

113.0 pcf 17.5 %

Client:	Parsons Engineering	g Science						
Project Name:	Onondaga SCA Pha	se I & II						
Project Location:	Camillus, NY	Camillus, NY						
GTX #:	11670							
Start Date:	4/11/2012	Tested By:	ema					
End Date:	4/13/2012	Checked By:	njh					
Boring #:	***							
Sample #:	LP-103							
Depth:								
Visual Description:	Moist, dark reddish	brown clay						

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

remolded

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

19/5

Sample Preparation:

Target Compaction: 95% of the Maximum Dry Density (113 pcf) at the Optimum Moisture Content (17.5%).

Values specified by client. Trimmings moisture content = 14.6%

Parameter	Initial	Final
Height, in	2.00	1.99
Diameter, in	2.85	2.83
Area, in ²	6.38	6.29
Volume, in ³	12.8	12.5
Mass, q	422	436
Bulk Density, pcf	126	132
Moisture Content, %	15.3	18.9
Dry Density, pcf	109	111
Degree of Saturation, %	(444	99

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.45

Pressure Increment, psi:

5.04

Sample Pressure, psi:

74.79

B Coefficient:

0.988

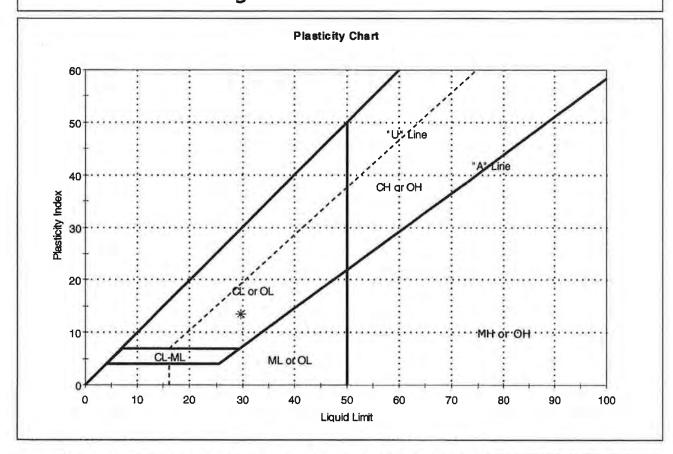
FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	adings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
4/13 4/13 4/13 4/13	1 2 3 4	90 90 90 90	69.2 69.2 69.2 69.2	9.0 9.0 9.0 9.0	8.9 8.9 8.9 8.9	0.1 0.1 0.1 0.1	99 109 115 117	22.4 22.4 22.4 22.4	3.5E-08 3.2E-08 3.0E-08 3.0E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	3.5E-08 3.2E-08 3.0E-08 3.0E-08

PERMEABILITY AT 20° C: 3.2 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Location: Camillus, NY

GTX-11670 Project No: Boring ID: ---Sample Type: bucket Tested By: cam Sample ID:LP-106 Test Date: 04/23/12 Checked By: jdt


Depth: Test Id: 234358

Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Soli Classification	Liquidity	Plasticity Index	Plastic Limit	Liquid Limit	Natural Moisture Content,%	Depth	Boring	Sample ID	Symbol
-	0	14	16	30	13			LP-106	*

Sample Prepared using the WET method

Dry Strength: VERY HIGH

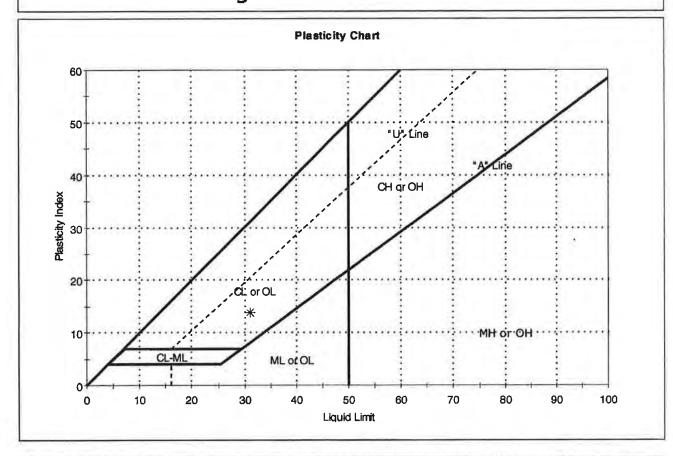
Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: cam Sample ID:LP-107 Test Date: 04/23/12 Checked By: jdt

GTX-11670

Project No:


Depth: --- Test Id: 234359

Test Comment: ---

Sample Description: Moist, reddish brown clay

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Pinstic Limit	Plasticity Index	Liquidity	Soli Classification
*	LP-107			14	31	17	14	0	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Sample Type: bucket

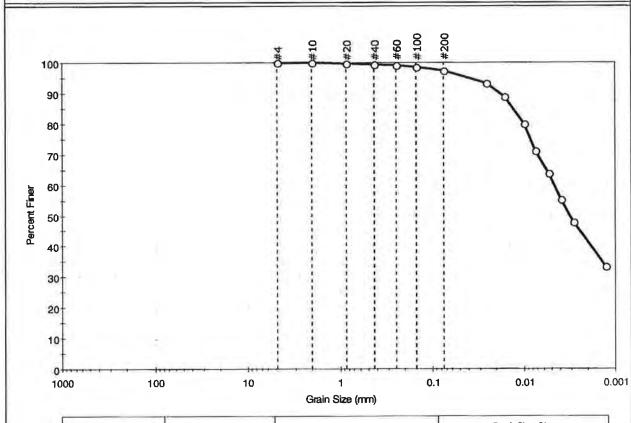
Project No: Tested By:

GTX-11670

Boring ID: ---Sample ID:LP-108 Depth:

Test Date:

04/20/12 Checked By: jdt


234362 Test Id:

Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	%Sand	% Silt & Clay Size
_	0.0	2.5	97.5

Sieve Name	Slave Siza, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	99	"	
#100	0.15	99		
#200	0.075	97		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0257	93		
***	0.0164	89		
***	0.0099	80		
***	0.0073	71		
***	0.0053	64	7-1	
	0.0039	55		
***	0.0029	48		
***	0.0013	33		

Coefficients					
D ₈₅ = 0.0132 mm	$D_{30} = N/A$				
D ₆₀ = 0.0046 mm	$D_{15} = N/A$				
D ₅₀ = 0.0032 mm	$D_{10} = N/A$				
Cu =N/A	Cc =N/A				

<u>Classification</u> lean clay (CL) **ASTM**

AASHTO Clayey Soils (A-6 (16))

Sample/Test Description
Sand/Gravel Particle Shape: ---

Sand/Gravel Hardness: ---

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: jek
Sample ID:LP-108 Test Date: 04/25/12 Checked By: jdt

Project No:

GTX-11670

Depth: --- Test Id: 234361

Test Comment: ---

Sample Description: Moist, reddlsh brown clay

Sample Comment: ---

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel,	Sand, %	Fines, %
	LP-108	-	lean clay	CL	0.0	2.5	97.5

Remarks: Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: jek Sample ID:LP-108 Test Date: 04/25/12 Checked By: jdt

Project No:

GTX-11670

Depth: --- Sample Id: 112554

Test Comment: ---

Sample Description: Moist, reddish brown clay

Sample Comment: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%	
	LP-108		Moist, reddish brown clay	rown clay 13	

Notes: Temperature of Drying: 110° Celsius

Location: Camillus, NY

Boring ID: ---

Sample ID:LP-108

GTX-11670 Sample Type: bucket Tested By: jek Test Date: 04/20/12 Checked By: jdt

Project No:

Depth: Test Id: 234364

Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Moisture, Ash, and Organic Matter - ASTM D 2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
-	LP-108		Moist, reddish brown clay	13	99.6	.4

Notes: Molsture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 110° C Ash content and organic matter determined by Method C; dried to constant mass at temperature 440 $^{\rm o}$ C

Camillus, NY Location:

Project No: Boring ID: ---Sample Type: bucket Tested By: cam Sample ID:LP-108 Test Date: 04/23/12 Checked By: jdt

GTX-11670


Depth: Test Id: 234360

Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

the state of the second states	100	Content,%	Limit	Limit	Index	Index	
108		13	33	17	16	0	lean clay (CL)
	-108	108	108 13	108 13 33	108 13 33 17	108 13 33 17 16	108 13 33 17 16 0

Sample Prepared using the WET method

1% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Boring ID: --- Sample Type: bucket
Sample ID:LP-128 Test Date: 05/14/12

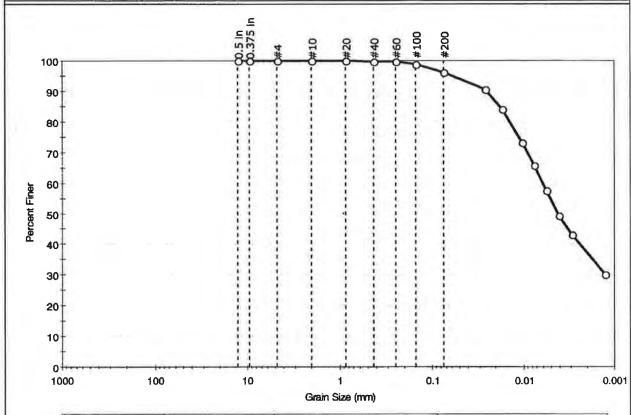
Test Id: 235831

Project No:

Tested By:

Checked By: 1dt

GTX-11670


jbr

Test Comment: ---

Sample Description: Moist, dark reddish brown clay Sample Comment:

Depth:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	%Gravel	%Sand	% Silt & Clay Size
_	0.0	3.8	96.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.5 in	12.70	100		
0.375 in	9.50	100		
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	99		
#200	0.075	96		
	Particle Size (mm)	Percent Finer	Spec: Percent	Complies
	0.0261	91		
- 4	0.0171	84		
***	0.0104	73		
***	0,0076	66		
***	0.0056	57		
***	0.0041	49		
200	0.0029	43		-
***	0.0013	30		

Coe	fficients	
$D_{85} = 0.0181 \text{ mm}$	$D_{30} = N/A$	
D ₆₀ = 0.0061 mm	D ₁₅ = N/A	
D ₅₀ = 0.0042 mm	$D_{10} = N/A$	
Cu =N/A	Cc =N/A	

<u>Classification</u>
ASTM lean clay (CL)

AASHTO Clayey Soils (A-6 (12))

Sample/Test Description
Sand/Gravel Particle Shape:

Sand/Gravel Hardness :

Parsons Engineering Science Client: Onondaga SCA Phase I & II Project:

Location: Camillus, NY

Sample Type: bucket

Project No: Tested By: jek

GTX-11670

Boring ID: ---Sample ID:LP-128

Test Date: 113452 Sample Id:

05/17/12 Checked By: jdt

Depth: ---Test Comment:

Sample Description:

Moist, dark reddish brown clay

Sample Comment:

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	LP-128		Moist, dark reddish brown clay	17.6

Notes: Temperature of Drying: 110° Celsius

Camillus, NY Location:

Sample Type: bucket

Project No: Tested By: GTX-11670

Boring ID: ---Sample ID:LP-128

Test Date: Test Id:

235832

jek 05/16/12 Checked By: jdt

Depth: Test Comment:

Sample Description:

Moist, dark reddish brown clay

Sample Comment:

Moisture, Ash, and Organic Matter - ASTM D 2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
	LP-128		Moist, dark reddish brown clay	18	99.8	.2

Parsons Engineering Science Client: Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Project No: Tested By:

GTX-11670

Sample Type: bucket Boring ID: --jbr Test Date: 05/17/12 Checked By: jdt Sample ID:LP-128 Depth: ---Test Id: 235830

Test Comment:

Moist, dark reddish brown clay Sample Description:

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	LP-128		lean clay	CL.	0.0	3.8	96.2

Remarks:

Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

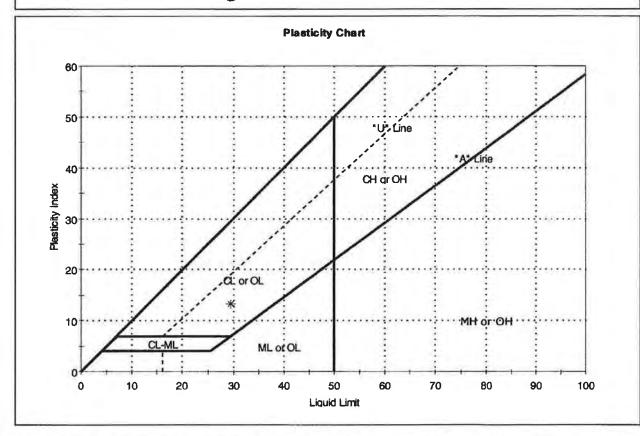
Location: Camillus, NY

Boring ID: --- Sample Type: bucket Sample ID:LP-128 Test Date: 05/16/

Test Date: 05/16/12 Test Id: 235826 Tested By: cam

Project No:

GTX-11670


ite: 05/16/12 Checked By: jdt

Depth: ---Test Comment: ---

Sample Description: Moist, dark reddish brown clay

Sample Comment: ---

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid	Plastic Limit	Planticity Index	Liquidity Index	Soil Classification
*	LP-128			18	29	16	13	0	lean clay (CL)
						(

Sample Prepared using the WET method

0% Retained on #40 Sleve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

Project: Onondaga SCA Phase I & I Location: Camillus, NY

Boring ID: ---

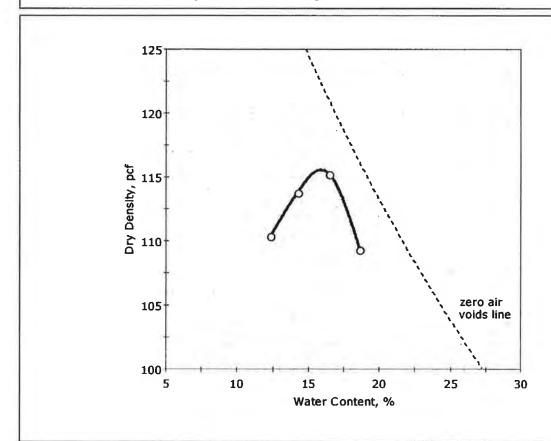
Sample Type: bucket Test Date: 05/15/12

Project No: GTX-11670

Tested By: cwd Checked By: jdt

Test Id: 235834

Test Comment:


Sample ID:LP-128

Depth:

Sample Description: Moist, dark reddish brown clay

Sample Comment: ---

Compaction Report - ASTM D 698

Data Points	Point 1	Point 2	Point 3	Point 4
Dry density, pcf	110.4	113.8	115.3	109.3
Moisture Content, %	12.3	14.2	16.5	18.6

Method: A

Preparation: DRY
As received Moisture:
Rammer: Manual

Zero voids line based on assumed specific gravity of 2.85

Maximum Dry Density= 115.5 pcf Optimum Moisture= 16.0 %

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 5/16/2012 Tested By: 5/17/2012 End Date: Checked By: jdt Boring #: Sample #: LP-128 Depth: Visual Description: Moist, dark reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

remolded

Permeant Fluid:

de-aired distilled water

Orlentation:

Vertical

Call #•

5/12/15

Sample Preparation:

Target Compaction: 95% of the Maximum Dry Density (115.5 pcf) at the Optimum Molsture Content

(16.0%). Values specified by client. Trimmings moisture content = 16.4%

Parameter	Initial	Final
Height, in	2.00	1.92
Diameter, in	2.85	2.81
Area, in ²	6.38	6.20
Volume, in ³	12.8	11.9
Mass, g	427	430
Bulk Density, pcf	127	137
Moisture Content, %	16.1	16.9
Dry Density, pcf	110	117
Degree of Saturation, %	242	99

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

94.7

Pressure Increment, psi:

4.95

Sample Pressure, psi:

74.5

B Coefficient:

0.97

FLOW DATA

	Trial	Pressure, psi		Mano	Manometer Readings		Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	Rt	cm/sec
5/17 5/17 5/17 5/17	1 2 3 4	90 90 90 90	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	262 258 272 277	28.4 28.4 28.4 28.4	1.1E-08 1.1E-08 1.0E-08 1.0E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.1E-08 1.1E-08 1.0E-08 1.0E-08

PERMEABILITY AT 20° C: 1.0×10^{-8} cm/sec (@ 20.8 psi effective stress)

Location: Camillus, NY

Project No: Sample Type: bag Tested By: 05/17/12 Checked By: jdt Test Date:

GTX-11670

jek

Sample ID:LP-129 Depth: ---Sample Id: 113453

Test Comment:

Boring ID: ---

Sample Description: Moist, reddish brown clay

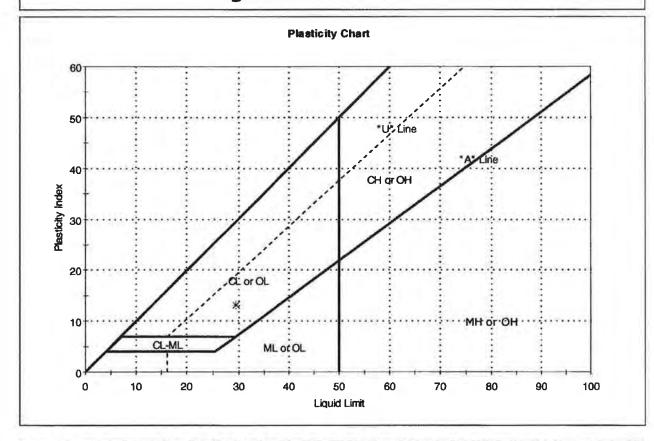
Sample Comment:

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	LP-129	***	Moist, reddish brown clay	19.5

Notes: Temperature of Drying: 110° Celsius

Camillus, NY Location:


Project No: GTX-11670 Boring ID: ---Sample Type: bag Tested By: cam Sample ID:LP-129 Test Date: 05/17/12 Checked By: jdt Test Id: 235827

Depth: Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Planticity Index	Liquidity	Soil Classification
*	LP-129			19	30	16	14	0	

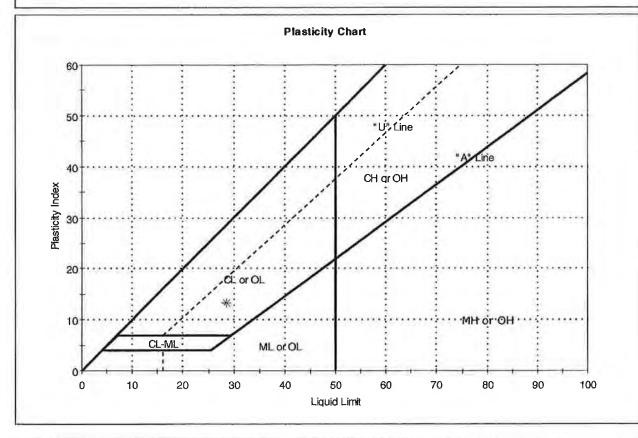
Sample Prepared using the WET method

Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Project No: Boring ID: -Sample Type: tube Tested By: cam Sample ID:ST-051B Test Date: 10/18/12 Checked By: jdt 252067 Test Id:


GTX-11670

Depth: Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	ST-051B			16	28	15	13	0	

Sample Prepared using the WET method

Dry Strength: HIGH Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Boring ID: --- Sample Tyr

Boring ID: --- Sample Type: tube Tested By: jek
Sample ID:ST-051B Test Date: 10/25/12 Checked By: jdt
Depth: --- Sample Id: 122187

GTX-11670

Project No:

Test Comment: ---

Sample Description: Moist, reddish brown clay

Sample Comment: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
***	ST-051B	*****	Moist, reddish brown clay	15.7

Notes: Temperature of Drylng: 110° Celsius

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 6/13/2012 Tested By: ema End Date: Checked By: 6/15/2012 jdt Boring #: Sample #: ST-052A Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 18.1%.

Parameter	Initial	Final		
Height, in	2.32	2.16		
Diameter, in	2.71	2.75		
Area, in ²	5.77	5.94		
Volume, in ³	13.4	12.8		
Mass, g	462	454		
Bulk Density, pcf	131	134		
Moisture Content, %	18.2	16.0		
Dry Density, pcf	111	116		
Degree of Saturation, %	***	95		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.07

Sample Pressure, psi:

74.2

B Coefficient:

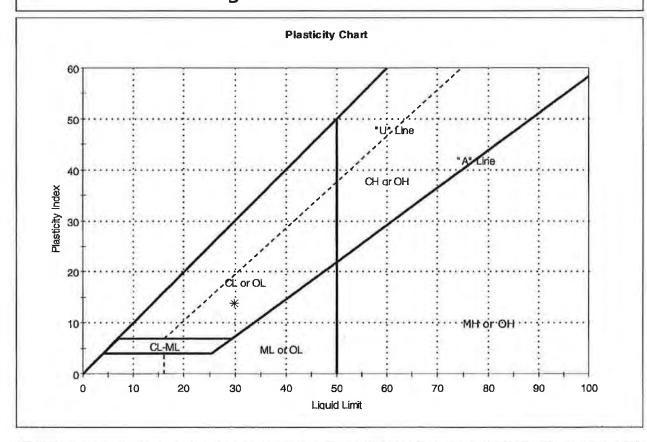
0.95

FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
06/14 06/14 06/14 06/14	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	154 161 166 174	27.6 27.6 27.6 27.6 27.6	1.9E-08 1.9E-08 1.8E-08 1.7E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.9E-08 1.9E-08 1.8E-08 1.7E-08

PERMEABILITY AT 20° C: 1.8 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Location: Camillus, NY


Project No: GTX-11670 Boring ID: ---Sample Type: tube Tested By: cam Sample ID:ST-052B Test Date: 10/19/12 Checked By: jdt 252068

Depth: Test Id: Test Comment:

Sample Description: Moist, reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soll Classification
*	ST-052B			15	30	16	14	0	

Sample Prepared using the WET method

Dry Strength: HIGH Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Project No: Boring ID: ---Sample Type: tube Tested By: Sample ID:ST-052B Test Date: 10/25/12 Checked By: jdt

GTX-11670

jek

Depth: ---Sample Id: 122188

Test Comment:

Sample Description: Molst, reddish brown clay

Sample Comment:

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
,222	ST-052B		Moist, reddish brown clay	15.5

Notes: Temperature of Drying: 110° Celsius

Location: Camillus, NY

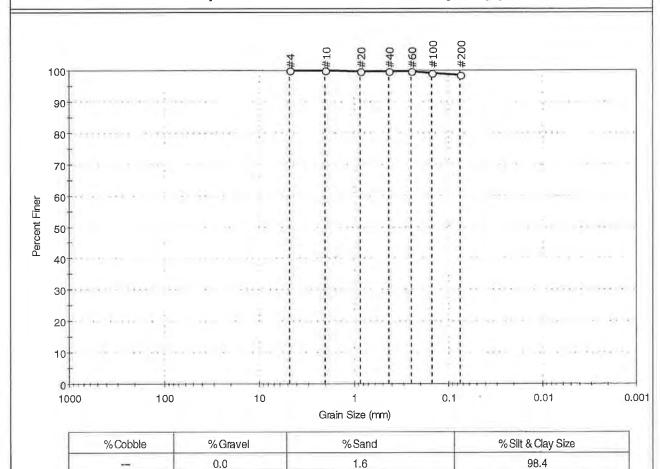
Boring ID: ---Sample ID:LP-141 Sample Type: bag Test Date:

Tested By: 06/25/12 Checked By: jdt

Project No:

jbr

GTX-11670


Depth: Test Id: 240787

Test Comment:

Sample Description: Mosit, reddish brown clay

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	100		
#60	0.25	100		
#100	0.15	99		
#200	0.075	98		

Coefficients						
$D_{85} = N/A$	$D_{30} = N/A$					
D ₆₀ = N/A	$D_{15} = N/A$					
D ₅₀ = N/A	$D_{10} = N/A$					
Cu =N/A	C _c =N/A					

<u>Classification</u> lean clay (CL) **ASTM**

AASHTO Clayey Soils (A-6 (10))

Sample/Test Description

Sand/Gravel Particle Shape: Sand/Gravel Hardness: ---

Location: Camillus, NY Project No: GTX-11670

Boring ID: --- Sample Type: bag Tested By: jek
Sample ID:LP-141 Test Date: 06/29/12 Checked By: jdt
Depth: --- Sample Id: 116370

Test Comment: ---

Sample Description: Mosit, reddish brown clay

Sample Comment: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	oring ID Sample ID Dep		Description	Moisture Content,%	
	LP-141	204	Mosit, reddish brown clay	12.5	

Notes: Temperature of Drying: 110° Celsius

Location: Camillus, NY

Project No: GTX-11670 Tested By: Boring ID: ---Sample Type: bag jek Sample ID:LP-141 Test Date: 06/29/12 Checked By: jdt

Depth: 240788 Test Id:

Test Comment:

Sample Description: Mosit, reddish brown clay

Sample Comment:

Moisture, Ash, and Organic Matter - ASTM D 2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
	LP-141		Mosit, reddish brown clay	12	99.8	.2

Notes: Molsture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 110° C Ash content and organic matter determined by Method C; dried to constant mass at temperature 440° C

Location: Camillus, NY Project No:

Boring ID: --- Sample Type: bag Tested By: jek
Sample ID:LP-141 Test Date; 06/29/12 Checked By: jdt

GTX-11670

Depth: --- Test Id: 240785

Test Comment: ---

Sample Description: Mosit, reddish brown clay

Sample Comment: --

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel,	Sand, %	Fines, %
	LP-141		lean clay	CL	0.0	1.6	98.4

Remarks: Grain Size analysis performed by ASTM D422, results enclosed

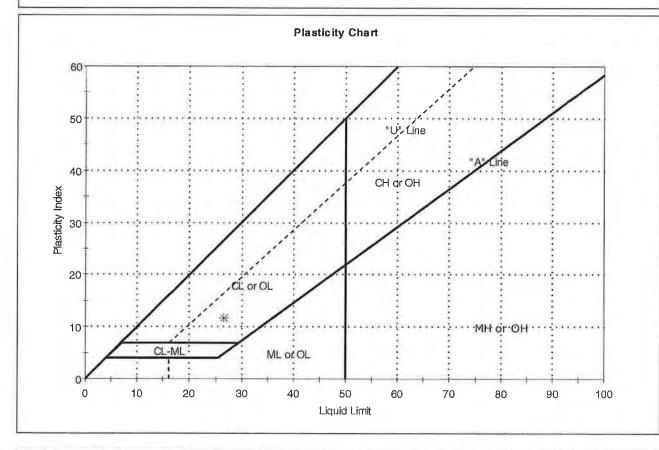
Atterbeg Limits performed by ASTM 4318, results enclosed

EXPRESS

Cllent: Parsons Engineering Science Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Project No: Boring ID: ---Sample Type: bag Tested By: cam Sample ID:LP-141 Test Date: 06/27/12 Checked By: jdt Depth: Test Id: 240780


GTX-11670

Test Comment:

Sample Description: Mosit, reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	LP-141	1777		13	27	15	12	0	lean clay (CL)

Sample Prepared using the WET method

0% Retained on #40 Sieve Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: LOW

Location: Camillus, NY

Sample Type: bag Tested By: jek Test Date: 06/29/12 Checked By: jdt

Project No:

GTX-11670

Depth: --- Sample Id: 116371

Test Comment: --Sample Description: Moist, light reddish brown clay

Sample Comment: ---

Boring ID: ---

Sample ID:LP-142

Moisture Content of Soil - ASTM D 2216-05

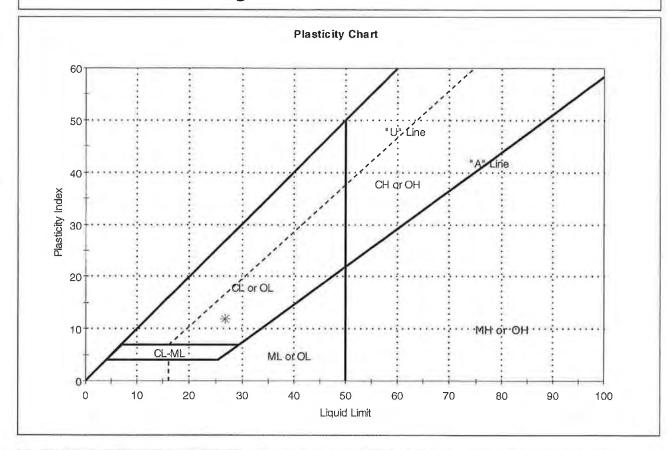
Boring ID	Sample ID	Depth	Description	Moisture Content,%
240	LP-142	***	Moist, light reddish brown clay	15.8

Notes: Temperature of Drying: 110° Celsius

EXPRESS

Client: Parsons Engineering Science Project: Onondaga SCA Phase I & II

Location: Camillus, NY


Project No: GTX-11670 Boring ID: --Sample Type: bag Tested By: cam Sample ID:LP-142 Test Date: 06/26/12 Checked By: jdt Test Id: 240781

Depth: Test Comment:

Sample Description: Moist, light reddish brown clay

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	LP-142			16	27	15	12	0	

Sample Prepared using the WET method

Dry Strength: VERY HIGH

Dilentancy: SLOW Toughness: MEDIUM Thin-Walled Tube Samples

Client:	Parsons Engineerin	g Science	
Project Name:	Onondaga SCA Pha	se I & II	
Project Location:	Camillus, NY		
GTX #:	11670		
Start Date:	4/18/2012	Tested By:	ema
End Date:	4/20/2012	Checked By:	mpd
Boring #:			
Sample #:	ST-029A		
Depth:	444		
Visual Description:	Moist, reddish brov	vn clay	

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 19.1%.

Parameter	Initial	Final
Height, in	3.09	2.91
Diameter, in	2.88	2.90
Area, in ²	6.51	6.61
Volume, in ³	20.1	19.2
Mass, g	675	661
Bulk Density, pcf	127	131
Moisture Content, %	(20,7)	(18.2)
Dry Density, pcf	106	111
Degree of Saturation, %		97

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

Sample Pressure, psi:

Pressure Increment, psi:

4.98

B Coefficient:

0.93

*B-value did not increase with increase in pressure

FLOW DATA

	Trial	Pressure, psi		Elapsed Flapsed Time,		Manometer Readings			Permeability K,	Temp,		Permeabilit K @ 20 °C
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
4/19	1	90.0	69.2	10.0	9.9	0.1	264	17.0	1.6E-08	20	1.000	1.6E-08
4/19	2	90.0	69.2	10.0	9.9	0.1	285	17.0	1.5E-08	20	1.000	1.5E-08
4/19	3	90.0	69.2	10.0	9.9	0.1	288	17.0	1.5E-08	20	1.000	1.5E-08
4/19	4	90.0	69.2	10.0	9.9	0.1	292	17.0	1.5E-08	20	1.000	1.5E-08
						1 1						

PERMEABILITY AT 20° C: 1.5 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science	
Project Name:	Onondaga SCA Phase	e I & II	
Project Location:	Camillus, NY		
GTX #:	11670		
Start Date:	4/19/2012	Tested By:	ema
End Date:	4/23/2012	Checked By:	jdt
Boring #:	1555		
Sample #:	ST-030A		
Depth:			
Visual Description:	Moist, reddish brown	clay	

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 18.7%.

Parameter	Initial	Final
Height, in	2.68	2.64
Diameter, in	2.88	2.85
Area, in ²	6.51	6.38
Volume, in ³	17.5	16.8
Mass, g	587	576
Bulk Density, pcf	128 //	130
Moisture Content, %	19.4 🗸	17.0 🏏
Dry Density, pcf	107	111
Degree of Saturation, %		96

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

Pressure Increment, psi:

4.99

Sample Pressure, psi:

74.2

B Coefficient:

0.90 *B-value did not increase with increase in pressure

FLOW DATA

Trial		Press	ure, psi	Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z_1	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	Rt	cm/sec
04/20 04/20 04/20 04/20	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	10.0 10.0 10.0 10.0	9,9 9,9 9,9 9,9	0.1 0.1 0.1 0.1	170 173 180 187	18.8 18.8 18.8 18.8	2.4E-08 2.4E-08 2.3E-08 2.2E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	2.4E-08 2.4E-08 2.3E-08 2.2E-08

PERMEABILITY AT 20° C: 2.3 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 4/19/2012 Tested By: ema End Date: 4/23/2012 Checked By: jdt Boring #: Sample #: ST-031A Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

3/9

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 19.8%.

Parameter	Initial	Final
Height, In	2.65	2.52
Diameter, in	2.80	2.79
Area, in ²	6.16	6.11
Volume, in ³	16.3	15.4
Mass, g	532	521
Bulk Density, pcf	124	128
Moisture Content, %	21.5	18.9 4
Dry Density, pcf	102 🗸	108
Degree of Saturation, %	***	95

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.06

Sample Pressure, psi:

74.1

B Coefficient:

0.92

*B-value did not increase with increase in pressure

FLOW DATA

	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	cm/sec °C R _t	Rt	cm/sec
04/20	1	90.0	69.2	10.0	9.9	0.1	261	19.7	1.6E-08	20	1.000	1.6E-08
04/20	2	90.0	69.2	10.0	9.9	0.1	275	19.7	1.5E-08	20	1.000	1.5E-08
04/20 04/20	3 4	90.0 90.0	69.2 69.2	10.0	9.9 9.9	0.1	296 300	19.7 19.7	1.4E-08 1.4E-08	20 20	1.000	1.4E-08 1.4E-08

PERMEABILITY AT 20° C: 1.4 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: Tested By: 4/20/2012 ema End Date: 4/24/2012 Checked By: jdt Boring #: Sample #: ST-032A Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 18.5%.

Parameter	Initial	Final
Height, in	2.43	2.37
Diameter, in	2.85	2.86
Area, in ²	6.38	6.42
Volume, in ³	15.5	15.2
Mass, g	539	526
Bulk Density, pcf	132 /	131
Moisture Content, %	21.4 🗸	18.4 √
Dry Density, pcf	109	111 √
Degree of Saturation, %		96

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.01

Sample Pressure, psi:

74.3

B Coefficient: *B-value did not increase with increase in pressure

0.92

FLOW DATA

	Trial	Pressure, psi		Manor	Manometer Readings				Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	ell Sample Z ₁ Z ₂ Z ₁ -Z ₂ sec Gradient cm/sec °C F	Rt	cm/sec							
4/23 4/23 4/23 4/23	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	10.0 10.0 10.0 10.0	9.9 9.9 9.9 9.9	0.1 0.1 0.1 0.1	335 341 360 376	20.9 20.9 20.9 20.9	1.1E-08 1.1E-08 1.0E-08 9.7E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	1.1E-08 1.1E-08 1.0E-08 9.7E-09

PERMEABILITY AT 20° C: 1.0 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Parsons Engineering Science Client: Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY 11670 GTX #: Start Date: 5/15/2012 Tested By: ema Checked By: jdt End Date: 5/17/2012 Boring #: ST-033A Sample #: Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 15.1%.

Parameter	Initial	Final
Height, in	2.31	2.26
Diameter, in	2.78	2.78
Area, in ²	6.07	6.07
Volume, in ³	14.0	13.7
Mass, g	477	478
Bulk Density, pcf	129	133
Moisture Content, %	15.8 /,	16.1
Dry Density, pcf	112	114 √
Degree of Saturation, %		95

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.05

Sample Pressure, psi:

74.4

B Coefficient:

0.95

FLOW DATA

	Trial		ure, psi	-	meter Rea	1	Elapsed Time,	Con diamet	Permeability K,	Temp, °C		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec		R _t	cm/sec
05/16 05/16 05/16 05/16	2 3 4 5	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	10.0 10.0 10.0 10.0	9.9 9.9 9.9 9.9	0.1 0.1 0.1 0.1	360 396 407 411	21.9 21.9 21.9 21.9	1.0E-08 9.3E-09 9.0E-09 8.9E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	1.0E-08 9.3E-09 9.0E-09 8.9E-09

PERMEABILITY AT 20° C: 9.4 x 10^{-9 √} cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Pha						
Project Location:	Camillus, NY	Camillus, NY					
GTX #:	11670						
Start Date:	5/15/2012	Tested By: ema					
End Date:	5/17/2012	Checked By: jdt					
Boring #:							
Sample #:	ST-034A						
Depth:							
Visual Description:	Moist, reddish brow	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 15.1%.

Parameter	Initial	Final
Height, in	2.14	2.14
Diameter, in	2.75	2.75
Area, in ²	5.94	5.94
Volume, in ³	12.7	12.7
Mass, g	460	459
Bulk Density, pcf	138	137
Moisture Content, %	14.2 🗸	14.0
Dry Density, pcf	120	120 J
Degree of Saturation, %		95

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.1

Pressure Increment, psi:

5.04

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

	Trial	Press	ure, psi	Manor	neter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
05/16 05/16 05/16 05/16	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	10.0 10.0 10.0 10.0	9.9 9.9 9.9 9.9	0.1 0.1 0.1 0.1	362 398 431 455	23.2 23.2 23.2 23.2 23.2	9.8E-09 8.9E-09 8.2E-09 7.8E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	9.8E-09 8.9E-09 8.2E-09 7.8E-09

PERMEABILITY AT 20° C: 8.7 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science	
Project Name:	Onondaga SCA Phas	se I & II	
Project Location:	Camillus, NY		
GTX #:	11670		
Start Date:	5/15/2012	Tested By:	ema
End Date:	5/17/2012	Checked By:	jdt
Boring #:	144		
Sample #:	ST-035A		
Depth:	1-9-1		
Visual Description:	Moist, reddish brow	n clay	

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and faced into permeameter at as-received density and moisture content.

Trimmings moisture content = 20.0%

Parameter	Initial	Final
Height, in	2.18	2.07
Diameter, in	2.78	2.78
Area, in ²	6.07	6.07
Volume, in ³	13.2	12.6
Mass, g	453	450
Bulk Density, pcf	130	136
Moisture Content, %	16.5	15.9
Dry Density, pcf	112 🗸	118
Degree of Saturation, %		99

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.0

Pressure Increment, psi:

5.00

Sample Pressure, psi:

74.0

B Coefficient:

0.96

*B-value did not increase with increase in pressure

FLOW DATA

Date	Trial #	Press Cell	ure, psi Sample	Mano Z ₁	meter Rea	dings	Elapsed Time, sec	Gradient	Permeability K, cm/sec	Temp,	R,	Permeability K @ 20 °C, cm/sec
05/16 05/16 05/16 05/16	2 3 4 5	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	428 439 451 460	26.4 26.4 26.4 26.4	7.1E-09 7.0E-09 6.8E-09 6.6E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	7.1E-09 7.0E-09 6.8E-09 6.6E-09

PERMEABILITY AT 20° C: 6.9×10^{-9} cm/sec $\sqrt{(@ 20.8 \text{ psi effective stress})}$

Client:	Parsons Engineering So	cience					
Project Name:	Onondaga SCA Phase I	Onondaga SCA Phase I & II					
Project Location:	Camillus, NY	Camillus, NY					
GTX #:	11670						
Start Date:	5/18/2012	Tested By:	ema				
End Date:	5/22/2012	Checked By:	jdt				
Boring #:	***						
Sample #:	ST-036A						
Depth:							
Visual Description:	Moist, reddish brown cl	lay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 18.0%.

Parameter	Initial	Final
Height, in	2.31	2.25
Diameter, in	2.89	2.84
Area, in ²	6.56	6.33
Volume, in ³	15.2	14.3
Mass, g	503	499
Bulk Density, pcf	126	133
Moisture Content, %	17.7 🗸 /	16.7 🏑
Dry Density, pcf	107	114 🗸
Degree of Saturation, %	1442	95

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.1

Pressure Increment, psi:

5.03

Sample Pressure, psi:

74.1

B Coefficient:

0.86 *B-value did not increase with increase in pressure

FLOW DATA

Tria	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
05/21	3	90,0	69.2	11.0	10.9	0.1	224	24.3	1.4E-08	20	1.000	1.4E-08
05/21	4	90.0	69.2	11.0	10.9	0.1	265	24.3	1.2E-08	20	1.000	1.2E-08
05/21	5	90.0	69.2	11.0	10.9	0.1	270	24.3	1.2E-08	20	1.000	1.2E-08
05/21	6	90.0	69.2	11.0	10.9	0.1	278	24.3	1.1E-08	20	1,000	1.1E-08
	1											

PERMEABILITY AT 20° C: 1.2 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Pha	Onondaga SCA Phase I & II					
Project Location:	Camillus, NY	Camillus, NY					
GTX #:	11670						
Start Date:	5/18/2012	Tested By:	ema				
End Date:	5/22/2012	Checked By:	jdt				
Boring #:	950						
Sample #:	ST-037A						
Depth:							
Visual Description:	Moist, reddish brow	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/4/8

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 16.4%.

Parameter	Initial	Final
Height, in	2.08	2.07
Diameter, in	2.85	2.82
Area, in ²	6.38	6.25
Volume, in ³	13.3	12.9
Mass, g	465	458
Bulk Density, pcf	133	135
Moisture Content, %	18.3	16.5
Dry Density, pcf	113	115
Degree of Saturation, %		97

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.1

Pressure Increment, psi:

5.01

Sample Pressure, psi:

73.7

B Coefficient:

0.80 *B-value did not increase with increase in pressure

FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
05/21 05/21 05/21 05/21	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	374 403 425 441	26.4 26.4 26.4 26.4	7.9E-09 7.4E-09 7.0E-09 6.7E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	7.9E-09 7.4E-09 7.0E-09 6.7E-09

PERMEABILITY AT 20° C: 7.3 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: Tested By: 5/22/2012 ema End Date: 5/24/2012 Checked By: jdt Boring #: Sample #: ST-038A Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

3/9

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 16.6%.

Parameter Initial Final 2.36 2.19 Height, in Diameter, in 2.72 2.77 Area, in² 5.81 6.03 Volume, in³ 13.7 13.2 Mass, g 482 476 Bulk Density, pcf 134 137 Moisture Content, % 17.5 16.0 Dry Density, pcf 114 118

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Degree of Saturation, %

Pressure Increment, psi:

*B-value did not increase with increase in pressure

5.08

97

Sample Pressure, psi:

74.2

B Coefficient:

0.89

FLOW DATA

		Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K, Temp,			
Date	#	Cell	Sample	Zı	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t		
05/23 05/23 05/23 05/23	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	402 435 469 482	24.9 24.9 24.9 24.9	8.1E-09 7.5E-09 6.9E-09 6.8E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	8.1E-09 7.5E-09 6.9E-09 6.8E-09	

PERMEABILITY AT 20° C: 7.3 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science						
Project Name:	Onondaga SCA Phase	Onondaga SCA Phase I & II						
Project Location:	Camillus, NY	Camillus, NY						
GTX #:	11670							
Start Date:	5/22/2012	Tested By:	ema					
End Date:	5/24/2012	Checked By:	jdt					
Boring #:	777							
Sample #:	ST-039A							
Depth:								
Visual Description: Moist, reddish brown clay								

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/7/8

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 16.8%.

Parameter	Initial	Final
Height, in	2.24	2.14
Diameter, in	2.79	2.79
Area, in ²	6.11	6.11
Volume, in ³	13.7	13.1
Mass, g	481	477
Bulk Density, pcf	134	139
Moisture Content, %	17.4	16.3
Dry Density, pcf	114	119
Degree of Saturation, %		98

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.04

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

Data	Trial		ure, psi		meter Rea	1	Elapsed Time,	Cundiant	Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z_1	Z_2	Z_1-Z_2	sec	Gradient	cm/sec		R _t	cm/sec
05/23 05/23 05/23 05/23	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	307 327 335 340	25.5 25.5 25.5 25.5	1.0E-08 9.6E-09 9.4E-09 9.2E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	1.0E-08 9.6E-09 9.4E-09 9.2E-09

PERMEABILITY AT 20° C: 9.6 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Phas	Onondaga SCA Phase I & II					
Project Location:	Camillus, NY	Camillus, NY					
GTX #:	11670						
Start Date:	5/23/2012	Tested By:	ema				
End Date:	5/25/2012	Checked By:	jdt				
Boring #:	344						
Sample #:	ST-040A						
Depth:	ere.						
Visual Description:	Moist, reddish brown	Moist, reddish brown clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

3/9

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 17%.

Parameter	Initial	Final ·			
Height, in	2.45	2.41			
Diameter, in	2.80	2.78			
Area, in ²	6.16	6.07			
Volume, in ³	15.1	14.6			
Mass, g	515	512			
Bulk Density, pcf	130 /,	133			
Moisture Content, %	17.2	16.6			
Dry Density, pcf	111	114			
Degree of Saturation, %		96			

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.00

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z_1	Z ₂	Z_1-Z_2	sec	Gradient	cm/sec	°C	R _t	cm/sec
05/24 05/24 05/24 05/24	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	288 290 295 300	22.6 22.6 22.6 22.6	1.2E-08 1.2E-08 1.2E-08 1.2E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.2E-08 1.2E-08 1.2E-08 1.2E-08

PERMEABILITY AT 20° C: 1.2 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering Sc	ience						
Project Name:	Onondaga SCA Phase I	& II						
Project Location:	Camillus, NY	Camillus, NY						
GTX #:	11670							
Start Date:	5/23/2012	Tested By:	ema					
End Date:	5/25/2012	Checked By:	jdt					
Boring #:	444							
Sample #:	ST-041A							
Depth:								
Visual Description:	Moist, reddish brown cla	ay						

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/4/8

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 17.1%.

Parameter	Initial	Final
Height, in	2.41	2.40
Diameter, in	2.81	2.80
Area, in ²	6.20	6.16
Volume, in ³	14.9	14.8
Mass, g	539	533
Bulk Density, pcf	137	137
Moisture Content, %	17.8	16.4
Dry Density, pcf	116	118
Degree of Saturation, %		99

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.5

Pressure Increment, psi:

5.13

Sample Pressure, psi:

74.2

B Coefficient:

0.98

FLOW DATA

	Trial	Press	Pressure, psi		Manometer Readings		Elapsed Time,		Permeability K,	Temp,	l Y	Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
05/24 05/24 05/24 05/24	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	423 451 496 543	22.7 22.7 22.7 22.7	8.3E-09 7.7E-09 7.0E-09 6.4E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	8.3E-09 7.7E-09 7.0E-09 6.4E-09

PERMEABILITY AT 20° C: 7.4 x 10⁻⁹/cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	g Science	
Project Name:	Onondaga SCA Pha	se I & II	
Project Location:	Camillus, NY		
GTX #:	11670		
Start Date:	5/23/2012	Tested By:	ema
End Date:	5/25/2012	Checked By:	jdt
Boring #:	(227)		
Sample #:	ST-042A		
Depth:			
Visual Description:	Moist, reddish brow	n clay	

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

۰# الم

2/2/4

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 17.5%.

Parameter	Initial	Final
Height, in	2.33	2.25
Diameter, in	2.79	2.79
Area, in ²	6.11	6.11
Volume, in ³	14.2	13.8
Mass, g	498	493
Bulk Density, pcf	133	136
Moisture Content, %	17.6	16.5 √
Dry Density, pcf	113	117
Degree of Saturation, %	1 202	97

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.05

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
	#	Cell	Sample	Z_1	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
05/24 05/24 05/24 05/24	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	11.0 11.0 11.0 11.0	10.9 10.9 10.9 10.9	0.1 0.1 0.1 0.1	421 454 477 494	24.3 24.3 24.3 24.3	7.8E-09 7.3E-09 6.9E-09 6.7E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	7.8E-09 7.3E-09 6.9E-09 6.7E-09

PERMEABILITY AT 20° C: 7.2 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Phase I & II						
Project Location:	Camillus, NY						
GTX #:	11670						
Start Date:	5/24/2012	Tested By:	ema				
End Date:	5/29/2012	Checked By:	jdt				
Boring #:	446						
Sample #:	ST-043A						
Depth:	***						
Visual Description:	Moist, reddish brown	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

16/5/11

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 16.4%.

Parameter	Initial	Final		
Height, in	2.73	2.66		
Diameter, in	2.80	2.78		
Area, in ²	6.16	6.07		
Volume, in ³	16.8	16.1		
Mass, g	588	582		
Bulk Density, pcf	133 /	137		
Moisture Content, %	16.6	15.4 🗸		
Dry Density, pcf	114 🗸	119 🗸		
Degree of Saturation, %	- Luise	99		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.4

Pressure Increment, psi:

5.11

Sample Pressure, psi:

74.1

B Coefficient:

0.97

FLOW DATA

	Trial	1100001.07 por		Manometer Readings			Elapsed Time,	Permeability K,		Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
5/25 5/25 5/25 5/25 5/25	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	155 149 162 168	22.4 22.4 22.4 22.4	2.3E-08 2.4E-08 2.2E-08 2.1E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	2.3E-08 2.4E-08 2.2E-08 2.1E-08

PERMEABILITY AT 20° C: 2.3 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Phas	se I & II					
Project Location:	Camillus, NY	Camillus, NY					
GTX #:	11670						
Start Date:	5/24/2012	Tested By:	ema				
End Date:	5/29/2012	Checked By:	jdt				
Boring #:							
Sample #:	ST-044A						
Depth:							
Visual Description:	Moist, reddish brown	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

۰# الم

2/2/4

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 15.7%.

Parameter	Initial	Final
Height, in	2.25	2.10
Diameter, in	2.83	2.81
Area, in ²	6.29	6.20
Volume, in ³	14.2	13.0
Mass, g	487 /	484
Bulk Density, pcf	131	141
Moisture Content, %	15.5	14.8
Dry Density, pcf	113	123 🗸
Degree of Saturation, %		99

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.00

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

	Trial	Press	ure, psi	Manometer Readings			Elapsed Time,		Permeability K,			Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
5/25 5/25 5/25 5/25 5/25	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	294 310 325 347	28.3 28.3 28.3 28.3	9.5E-09 9.0E-09 8.6E-09 8.0E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	9.5E-09 9.0E-09 8.6E-09 8.0E-09

PERMEABILITY AT 20° C: 8.8 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Phas	Onondaga SCA Phase I & II					
Project Location: Camillus, NY							
GTX #:	11670						
Start Date:	5/30/2012	Tested By:	ema				
End Date:	6/1/2012	Checked By:	jdt				
Boring #:	****						
Sample #:	ST-045A						
Depth:	***						
Visual Description:	Moist, reddish brow	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 18.6%.

Parameter	Initial	Final		
Height, in	2.99	2.86		
Diameter, in	2.85	2.84		
Area, in ²	6.38	6.33		
Volume, in ³	19.1	18.1		
Mass, g	641	630		
Bulk Density, pcf	128 /	132 /		
Moisture Content, %	19.2	17.1		
Dry Density, pcf	107	113		
Degree of Saturation, %		97		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.0

Pressure Increment, psi:

4.99

Sample Pressure, psi:

74.0

B Coefficient:

0.96

FLOW DATA

	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z_1	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
5/31 5/31 5/31 5/31	3 4 5 6	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	122 128 134 137	20.8 20.8 20.8 20.8	3.0E-08 2.9E-08 2.8E-08 2.7E-08	20 20 20 20 20	1,000 1,000 1,000 1,000	3.0E-08 2.9E-08 2.8E-08 2.7E-08

PERMEABILITY AT 20° C: 2.9 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering Science						
Project Name:	Onondaga SCA Pha	Onondaga SCA Phase I & II					
Project Location:	Camillus, NY	Camillus, NY					
GTX #:	11670						
Start Date:	5/31/2012	Tested By:	ema				
End Date:	6/5/2012	Checked By:	jdt				
Boring #:	***						
Sample #:	ST-046A						
Depth:	225						
Visual Description:	Moist, reddish brow	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/23/1

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 19.3%.

Parameter	Initial	Final	
Height, in	2.82	2.67	
Diameter, in	2.79	2.81	
Area, in ²	6.11	6.20	
Volume, in ³	17.2	16.6	
Mass, g	609	593	
Bulk Density, pcf	134 //	136	
Moisture Content, %	19.9	16.30	Kar
Dry Density, pcf	112 🗸 .	117	
Degree of Saturation, %	444	98	

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.1

Pressure Increment, psi:

5.05

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

Date	Trial #	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
		Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
6/1 6/1 6/1 6/1	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	426 453 489 519	22.3 22.3 22.3 22.3 22.3	8.3E-09 7.8E-09 7.2E-09 6.8E-09	20 20 20 20 20	1.000 1.000 1.000 1.000	8.3E-09 7.8E-09 7.2E-09 6.8E-09

PERMEABILITY AT 20° C: 7.5 x 10⁻⁹ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering Scie	nce						
Project Name:	Onondaga SCA Phase I &	Onondaga SCA Phase I & II						
Project Location:	Camillus, NY							
GTX #:	11670							
Start Date:	6/1/2012	Tested By:	ema					
End Date:	6/6/2012	Checked By:	jdt					
Boring #:	444							
Sample #:	ST-047A							
Depth:								
Visual Description:	Moist, reddish brown clay							

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

3/9

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 19.7%.

Parameter	Initial	Final		
Height, in	2.69	2.56		
Diameter, in	2.85	2.84		
Area, in ²	6.38	6.33		
Volume, in ³	17.2	16.2		
Mass, g	587	579		
Bulk Density, pcf	130 /	136		
Moisture Content, %	17.0 🅢	15.5		
Dry Density, pcf	111 .	118		
Degree of Saturation, %		96		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.5

Pressure Increment, psi:

4.75

Sample Pressure, psi:

73.9

B Coefficient:

0.97

FLOW DATA

Date	Trial #	Press Cell	ure, psi Sample	Mano Z ₁	meter Rea Z ₂	dings	Elapsed Time, sec	Gradient	Permeability K, cm/sec	Temp, °C	R _t	Permeability K @ 20 °C, cm/sec
6/6 6/6 6/6 6/6	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	295 301 326 331	23.3 23.3 23.3 23.3 23.3	1.1E-08 1.1E-08 1.0E-08 1.0E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.1E-08 1.1E-08 1.0E-08 1.0E-08

PERMEABILITY AT 20° C: 1.1 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science	
Project Name:	Onondaga SCA Phas	se I & II	
Project Location:	Camillus, NY		
GTX #:	11670		
Start Date:	6/11/2012	Tested By:	ema
End Date:	6/13/2012	Checked By:	jdt
Boring #:			
Sample #:	ST-050A		
Depth:	(***		
Visual Description:	Moist, reddish brown	n clay	

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/4/8

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 16.5%.

Parameter	Initial	Final		
Height, in	2.28	2.08		
Diameter, in	2.79	2.80		
Area, in ²	6.11	6.16		
Volume, in ³	13.9	12.8		
Mass, g	467	456		
Bulk Density, pcf	127	135		
Moisture Content, %	19.1 🗸	16.3		
Dry Density, pcf	107 🗸	116		
Degree of Saturation, %		98		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.1

Pressure Increment, psi:

5.04

Sample Pressure, psi:

74.1

B Coefficient:

0.97

FLOW DATA

	Trial		ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z_1	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
06/12 06/12 06/12 06/12	2 3 4 5	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	131 143 148 154	28.6 28.6 28.6 28.6	2.1E-08 1.9E-08 1.9E-08 1.8E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	2.1E-08 1.9E-08 1.9E-08 1.8E-08

PERMEABILITY AT 20° C: 1.9 x 10⁻⁸ cm/sec √ (@ 20.8 psi effective stress)

Client:	Parsons Engineerin	g Science	
Project Name:	Onondaga SCA Pha	se I & II	
Project Location:	Camillus, NY		
GTX #:	11670		
Start Date:	6/11/2012	Tested By:	ema
End Date:	6/13/2012	Checked By:	jdt
Boring #:	***		
Sample #:	ST-051A		
Depth:	***		
Visual Description:	Moist, reddish brow	n clay	

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 18.5%.

Parameter	Initial	Final		
Height, in	2.45	2.33		
Diameter, in	2.75	2.78		
Area, in ²	5.94	6.07		
Volume, in ³	14.6	14.1		
Mass, g	512	503		
Bulk Density, pcf	134	135		
Moisture Content, %	18.1	15.9		
Dry Density, pcf	113 🗸	117		
Degree of Saturation, %		96		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.1

Pressure Increment, psi:

5.05

Sample Pressure, psi:

74.1

B Coefficient:

0.96

FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
06/12 06/12 06/12 06/12	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	235 246 251 259	25.5 25.5 25.5 25.5	1.3E-08 1.3E-08 1.3E-08 1.2E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.3E-08 1.3E-08 1.3E-08 1.2E-08

PERMEABILITY AT 20° C: 1.3 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 6/13/2012 Tested By: ema End Date: 6/15/2012 Checked By: jdt Boring #: Sample #: ST-053A Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/23/1

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 16.7%.

Parameter	Initial	Final		
Height, in	1.97	1.89		
Diameter, in	2.75	2.74		
Area, in ²	5.94	5.90		
Volume, in ³	11.7	11.1		
Mass, g	411	402		
Bulk Density, pcf	133 //	137		
Moisture Content, %	17.1	14.8		
Dry Density, pcf	114	120		
Degree of Saturation, %		97		

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.10

Sample Pressure, psi:

74.1

B Coefficient:

0.96

FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
06/14 06/14 06/14 06/14	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	181 195 200 213	31.5 31.5 31.5 31.5	1.5E-08 1.4E-08 1.3E-08 1.2E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.5E-08 1.4E-08 1.3E-08 1.2E-08

PERMEABILITY AT 20° C: 1.3 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 6/15/2012 Start Date: Tested By: ema End Date: 6/19/2012 Checked By: jdt Boring #: ST-054A Sample #: Depth: Visual Description: Moist, reddish brown clay

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

2/2/4

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 17.9%.

Parameter	Initial	Final
Height, in	2.30	2.24
Diameter, in	2.80	2.85
Area, in ²	6.16	6.38
Volume, in ³	14.2	14.3
Mass, g	514	504
Bulk Density, pcf	138	134 /
Moisture Content, %	18.6 🌙/	16.2 🗸
Dry Density, pcf	116 🗸	115
Degree of Saturation, %	144	95

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.4

Pressure Increment, psi:

4.98

Sample Pressure, psi:

73.9

B Coefficient:

0.95

FLOW DATA

	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,	
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec	
06/18 06/18 06/18 06/18	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	230 235 246 251	26.6 26.6 26.6 26.6	1.3E-08 1.2E-08 1.2E-08 1.1E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.3E-08 1.2E-08 1.2E-08 1.1E-08	

PERMEABILITY AT 20° C: 1.2 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY GTX #: 11670 Tested By: ema 6/18/2012 Start Date: 6/20/2012 Checked By: jdt End Date: Boring #: ST-055A Sample #: Depth: Moist, reddish brown clay Visual Description:

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by ASTM D 5084 Constant Volume

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

15/1/7

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 15%.

Parameter	Initial	Final
Height, in	2.29	2.20
Diameter, in	2.80	2.76
Area, in ²	6.16	5.98
Volume, in ³	14.1	13.2
Mass, g	490 /	487
Bulk Density, pcf	132	141
Moisture Content, %	13.4 🗸	12.7 🗸
Dry Density, pcf	117	125 🖊
Degree of Saturation, %		98

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.0

Pressure Increment, psi:

4.98

Sample Pressure, psi:

74.0

B Coefficient:

0.97

FLOW DATA

	Trial	Press	ure, psi	Mano	meter Rea	dings	Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,
Date	#	Cell	Sample	Z ₁	Z ₂	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec
6/19 6/19 6/19 6/19	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	111 128 135 139	27.1 27.1 27.1 27.1	2.7E-08 2.4E-08 2.2E-08 2.2E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	2.7E-08 2.4E-08 2.2E-08 2.2E-08

PERMEABILITY AT 20° C: 2.4 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineerin	g Science						
Project Name:	Onondaga SCA Phase I & II							
Project Location:	Camillus, NY							
GTX #:	11670							
Start Date:	6/19/2012	Tested By:	ema					
End Date:	6/21/2012	Checked By:	jdt					
Boring #:	***							
Sample #:	ST-056A							
Depth:								
Visual Description:	Moist, reddish brow	n clay						

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

16/5/11

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content.

Trimmings moisture content = 19%.

Parameter	Initial	Final
Height, in	2.67	2.59
Diameter, in	2.85	2.83
Area, in ²	6.38	6.29
Volume, in ³	17.0	16.3
Mass, g	601	587
Bulk Density, pcf	134 //	137
Moisture Content, %	17.5 🗸	14.8
Dry Density, pcf	114	119 🗸
Degree of Saturation, %		97

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.0

Pressure Increment, psi:

4.92

Sample Pressure, psi:

73.8

0.01

FLOW DATA

B Coefficient:

0.91

*B-value did not increase with increase in pressure

Date	Trial	Press Cell	ure, psi Sample	Mano Z ₁	meter Rea	dings	Elapsed Time, sec	Gradient	Permeability K, cm/sec	Temp, °C	R,	Permeability K @ 20 °C, cm/sec
6/20 6/20 6/20 6/20	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	283 297 311 326	23.0 23.0 23.0 23.0 23.0	1.2E-08 1.1E-08 1.1E-08 1.0E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.2E-08 1.1E-08 1.1E-08 1.0E-08

PERMEABILITY AT 20° C: 1.1 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineering	Science					
Project Name:	Onondaga SCA Phase	Onondaga SCA Phase I & II					
Project Location:	Camillus, NY						
GTX #:	11670						
Start Date:	6/11/2012	Tested By:	ema				
End Date:	6/13/2012	Checked By:	jdt				
Boring #:	***						
Sample #:	ST-049A						
Depth:		111					
Visual Description:	Moist, reddish brown	clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

1/23/1

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 18.7%.

Parameter	Initial	Final
Height, in	2.68	2.51
Diameter, in	2.80	2.78
Area, in ²	6.16	6.07
Volume, in ³	16.5	15.2
Mass, g	564	555
Bulk Density, pcf	130	138
Moisture Content, %	17.7 🗸	15.8
Dry Density, pcf	110	120 🏑
Degree of Saturation, %	***	98

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.00

Sample Pressure, psi:

74.0

B Coefficient:

0.95

FLOW DATA

	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,	
Date	#	Cell	Sample	Z ₁	Z ₂	Z_1 - Z_2	sec	Gradient	cm/sec	°C	R _t	cm/sec	
06/12 06/12 06/12 06/12	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	113 117 120 122	23.7 23.7 23.7 23.7	3.0E-08 2.9E-08 2.8E-08 2.8E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	3.0E-08 2.9E-08 2.8E-08 2.8E-08	

PERMEABILITY AT 20° C: 2.9 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Client:	Parsons Engineerin	g Science					
Project Name:	Onondaga SCA Pha	Onondaga SCA Phase I & II					
Project Location:	Camillus, NY						
GTX #:	11670						
Start Date:	6/1/2012	Tested By:	ema				
End Date:	6/6/2012	Checked By:	jdt				
Boring #:	***						
Sample #:	ST-048A						
Depth:	()						
Visual Description:	Moist, reddish brow	n clay					

Sample Type:

tube

Permeant Fluid:

de-aired distilled water

Orientation:

Vertical

Cell #:

12/3/2

Sample Preparation:

Extruded from tube, cut, trimmed and placed into permeameter at as-received density and moisture content. Trimmings moisture content = 17%.

Final Parameter Initial Height, in 2.64 2.50 2.80 2.73 Diameter, in Area, in² 6.16 5.85 Volume, in³ 14.6 16.3 536 531 Mass, g Bulk Density, pcf 125 138 Moisture Content, % 17,4 16.3 119 Dry Density, pcf 107 98 Degree of Saturation, %

B COEFFICIENT DETERMINATION

Cell Pressure, psi:

95.2

Pressure Increment, psi:

5.05

Sample Pressure, psi:

73.9

B Coefficient:

0.90

*B-value did not increase with increase in pressure

FLOW DATA

	Trial	Pressure, psi		Manometer Readings			Elapsed Time,		Permeability K,	Temp,		Permeability K @ 20 °C,	
Date	#	Cell	Sample	Z ₁	Z_2	Z ₁ -Z ₂	sec	Gradient	cm/sec	°C	R _t	cm/sec	
6/6 6/6 6/6 6/6	1 2 3 4	90.0 90.0 90.0 90.0	69.2 69.2 69.2 69.2	12.0 12.0 12.0 12.0 12.0	11.9 11.9 11.9 11.9	0.1 0.1 0.1 0.1	261 273 276 278	23.8 23.8 23.8 23.8	1.3E-08 1.3E-08 1.3E-08 1.3E-08	20 20 20 20 20	1.000 1.000 1.000 1.000	1.3E-08 1.3E-08 1.3E-08 1.3E-08	

PERMEABILITY AT 20° C: 1.3 x 10⁻⁸ cm/sec (@ 20.8 psi effective stress)

Gravel Drainage Layer

		Soil Classification		Particle Size Analysis			Permeability
Gravel Drainage Layer	Test	ASTM D 2487		ASTM C 136			ASTM D 2434
Sediment Consoidation Area-Phase II Camillus, New York	Spec Requirement	GW or GP	100%		<5%	<3%	>/= 10 cm/sec

Sample Source	Field	Sample No.	USCS	4" (%)	3" (%)	2" (%)	1-1/2" (%)	1" (%)	3/4" (%)	1/2" (%)	#4 (%)	#200 (%)	Permeability K
Granby Quarry	Sample ID DG-093	S288-DG93	Classification GP	100	84.0	30.0	11.0	1	1	1	<1.0	<1.0	(cm/sec) 12.6
Granby Quarry	DG-094	S289-DG94	GP	100	83.0	38.0	6.0	1	1	1	< 1.0	< 1.0	12.7
Granby Quarry	DG-095	S290-DG95	GP	100	75.0	32.0	4.0	2	2	2	< 2.0	< 2.0	13.8
Granby Quarry	DG-096	S293-DG96	GP	100	51.9	14.9	3.2	0.9	0.8	0.8	< 0.8	< 0.8	15.4
Granby Quarry	DG-097	S296-DG97	GP GP	100	60.2	29.2	5.2	0.6			< 0.6	< 0.6	
Granby Quarry Granby Quarry	DG-098 DG-099	S297-DG98 S301-DG99	GP	100 100	76.1 73.4	23.7 18.1	5.4 7.5	0.7 0.8	0.8		< 0.7 < 0.8	< 0.7 < 0.8	
Granby Quarry	DG-099	S302-DG100	GP	100	76.0	8.1	2.2	1.2	0.0		< 1.2	< 1.2	
Granby Quarry	DG-101	S303-DG101	GP	100	66.2	14.4	5.5	5.5	5.5	5.5	< 5.5	< 5.5	
Granby Quarry	DG-102	S304-DG102	GP	100	66.4	9.1	2.3	1.1	1.1	1.1	< 1.1	< 1.1	
Granby Quarry	DG-103	S305-DG103	GP	100	58.7	13.8	1.7	1.2	1.2	1.2	< 1.2	< 1.2	
Granby Quarry	DG-104	S306-DG104	GP	100	84.4	30.9	8.0	1.4	1.0	1.0	< 1.0	< 1.0	
Granby Quarry Granby Quarry	DG-105 DG-106	S307-DG105 S308-DG106	GP GP	100 100	86.4 89.7	42.9 46.8	16.6 14.8	1.8 2.7	1.3 2.6	1.3 2.6	< 1.3 < 2.6	< 1.3 < 2.6	
Granby Quarry	DG-100	S309-DG107	GP	100	93.5	43.0	17.8	1.5	1.2	1.1	< 1.1	< 1.1	
Granby Quarry	DG-108	S322-DG108	GP	100	55.8	6.9	1.1	0.9	0.9	0.9	< 0.9	< 0.9	
Granby Quarry	DG-109	S341-DG109	GP	100	61.0	8.0	4.0	0.0			< 0	< 0	14.3
Granby Quarry	DG-110	S342-DG110	GP	100	68.0	12.0	5.0	1.0			< 1.0	< 1.0	
Granby Quarry	DG-111	S348-DG111	GP	100	79.0	46.0	2.0	2.0	2		< 2.0	< 2.0	12.4
Granby Quarry	DG-112	S357-DG112	GP CB	100	35.0	1.0	4.0				< 1.0	< 1.0	16.9
Granby Quarry Granby Quarry	DG-113 DG-114	S358-DG113 S359-DG114	GP GP	100 100	50.0 60.0	11.0 18.0	4.0 3.0				< 4.0 < 3.0	< 4.0 < 3.0	15.7
Granby Quarry Granby Quarry	DG-114 DG-115	S360-DG115	GP GP	100	67.0	23.0	4.0	2	1	1	< 3.0 < 1.0	< 1.0	14.5
Granby Quarry Granby Quarry	DG-115	S361-DG116	GP	100	61.0	19.0	6.0	2	2	2	< 2.0	< 2.0	14.6
Granby Quarry	DG-117	S362-DG117	GP	100	56.0	22.0	5.0	2	2	2	< 2.0	< 2.0	
Granby Quarry	DG-118	S363-DG118	GP	100	83.0	49.0	11.0	2	2	2	< 2.0	< 2.0	14.1
Granby Quarry	DG-119	S364-DG119	GP	100	76.0	48.0	6.0	2	2		< 2.0	< 2.0	
Granby Quarry	DG-120	S365-DG120	GP	100	51.0	23.0	1.0	1	1		< 1.0	< 1.0	15.7
Granby Quarry	DG-121	S366-DG121	GP	100	59.0	14.0	4.0	2	2	4	< 2.0	< 2.0	40.0
Granby Quarry Granby Quarry	DG-122 DG-123	S367-DG122 S368-DG123	GP GP	100 100	72.0 59.0	57.0 31.0	6.0 8.0	2	2	1	< 1.0 < 3.0	< 1.0 < 3.0	13.2
Granby Quarry Granby Quarry	DG-123 DG-124	S369-DG124	GP	100	45.0	7.0	1.0	1			< 1.0	< 1.0	
Granby Quarry	DG-125	S370-DG125	GP	100	61.0	20.0	1.0	1	1	1	< 1.0	< 1.0	
Granby Quarry	DG-126	S371-DG126	GP	100	51.0	13.0	1.0	1.0			< 1.0	< 1.0	15
Granby Quarry	DG-127	S372-DG127	GP	100	67.0	14.0	0.0				0	0	
Granby Quarry	DG-128	S373-DG128	GP	100	92.0	57.0	9.0	1			< 1.0	< 1.0	
Granby Quarry	DG-129	S374-DG129	GP	100	76.0	43.0	14.0	1	1	1	< 1.0	< 1.0	14.5
Granby Quarry Granby Quarry	DG-130 DG-131	S375-DG130 S376-DG131	GP GP	100 100	79.0 88.0	38.0 43.0	13.0 4.0	0.0	0	1	< 1.0 0	< 1.0 0	15.3
Granby Quarry Granby Quarry	DG-131 DG-132	S376-DG131 S377-DG132	GP	100	90.0	43.0	5.0	1.0	0	0	0	0	
Lake Road Quarry	DG-133	S378-DG133	GP	100	87.0	12.0	0.0	1.0	U	Ü	0	0	15.1
Lake Road Quarry	DG-134	S379-DG134	GP	100	90.0	8.0	0.0				0	0	14.1
Granby Quarry	DG-135	S380-DG135	GP	100	72.0	31.0	8.0	0.0			0	0	
Granby Quarry	DG-136	S381-DG136	GP	100	97.0	48.0	6.0	1.0			< 1.0	< 1.0	
Amboy Pit	DG-137	S382-DG137	GP	100	66.0	15.0	1.0	1.0			< 1.0	< 1.0	14.7
Lake Road Quarry Lake Road Quarry	DG-138 DG-139	S383-DG138 S384-DG139	GP GP	100 100	89.0 97.0	28.0 65.0	3.0 16.0	1.0 2.0	1	1	< 1.0 < 1.0	< 1.0 < 1.0	14.4
Amboy Pit	DG-139 DG-140	S385-DG140	GP	100	77.7	21.3	1.5	0.9	-		< 0.9	<0.9	15.4
Granby Quarry	DG-141	S386-DG141	GP	100	51.1	8.6	1.8	1.5			< 1.5	< 1.5	14.8
Granby Quarry	DG-142	S387-DG142	GP	100	95.7	31.3	3.7	0.8			< 0.8	< 0.8	13.9
Ambot Pit	DG-143	S388-DG143	GP	100	56.7	13.6	1.9	1.6			< 1.6	< 1.6	14.4
Oran Delphi Pit (Kinsella)	DG-144	S389-DG144	GP	100	100.0	79.5	32.1	4.1	2.2	1.8	< 1.8	< 1.8	14.4
Oran Delphi Pit (Kinsella)	DG-145	S390-DG145	GP CB	100	100.0	72.4	32.8	3.1	1.7	1.3	< 1.3	< 1.3	14.5
Hayes Rd Pit (Dendis)	DG-146 DG-147	S391-DG146 S392-DG147	GP GP	100 100	78.9 79.8	15.2 29.8	3.0 1.4	0.5 0.2	0.4 0.2	0.3 0.2	< 0.3 < 0.2	< 0.3 < 0.2	14.0 14.8
Hayes Rd Pit (Dendis) Ambot Pit	DG-147 DG-148	S392-DG147 S393-DG148	GP	100	79.8	13.3	2.2	0.2	0.2	0.2	< 0.2	< 0.2	15.0
Granby Quarry	DG-149	S394-DG149	GP	100	80.5	25.1	2.6	0.6			< 0.6	< 0.6	10.0
Granby Quarry	DG-150	S395-DG150	GP	100	79.9	31.7	4.1	0.5			< 0.5	< 0.5	
Lake Road Quarry	DG-151	S396-DG151	GP	100	67.8	8.9	1.8	0.4	0.4		< 0.5	< 0.5	
County Rte 6 Pit (Dendis)	DG-152	S397-DG152	GP	100	69.5	24.9	0.8	0.5	0.5	0.4	< 0.5	< 0.5	14.6
Granby Quarry	DG-153	S398-DG153	GP	100	92.6	46.5	5.7	1.5	1.0	0.9	< 0.9	< 0.9	
Amboy Pit	DG-154	S399-DG154 S400-DG155	GP GP	100 100	50.6 41.9	4.0	1.1	-			< 1.1 < 0.6	< 1.1	15.3
Granby Quarry Granby Quarry	DG-155 DG-156	S400-DG155 S401-DG156	GP GP	100	41.9 45.1	16.2 15.0	3.3 3.9	0.6 0.6			< 0.6 < 0.6	< 0.6 < 0.6	15.3
Lake Road Quarry	DG-156 DG-157	S401-DG156 S402-DG157	GP	100	51.5	10.8	1.5	0.8			< 0.8	< 0.8	
Lake Road Quarry	DG-157	S403-DG158	GP	100	55.9	7.7	0.7	0.4	0.3		< 0.3	< 0.3	16.26
County Rte 6 Pit (Dendis)	DG-159	S404-DG159	GP	100	69.2	22.3	4.9	1.1	1.0		< 1.0	< 1.0	16.44
County Rte 6 Pit (Dendis)	DG-160	S405-DG160	GP	100	72.0	29.7	5.8	1.3			< 1.3	< 1.3	16.04
Oran Delphi Pit (Kinsella)	DG-161	S406-DG161	GP	100	100.0	64.8	18.3	0.4	0.3		< 0.3	< 0.3	
Oran Delphi Pit (Kinsella)	DG-162	S407-DG162	GP	100	100.0	63.4	12.3	0.4	0.3		< 0.3	< 0.3	45.0
Granby Quarry Hayes Rd Pit (Dendis)	DG-163	S408-DG163	GP GP	100	82.4	24.9	3.0	0.2	0.6	0.5	< 0.2	< 0.2	15.8
Hayes Rd Pit (Dendis)	DG-164 DG-165	S409-DG164 S410-DG165	GP GP	100 100	69.7 79.9	31.2 38.0	5.4 6.7	1.0 0.6	0.6 0.4	0.5	< 0.5 < 0.4	< 0.5 < 0.4	
Lake Road Quarry	DG-165 DG-166	S411-DG166	GP	100	95.6	51.0	8.1	0.6	0.4		< 0.4	< 0.4	
7.5.2. 2.00,	00		74			23							35

SCA Phasell Geotech Sample Testing Data.xls

TABLE D-4
Gravel Drainage Layer QA Summary
Honeywell / Parsons
Sediment Consolidation Area - Phase II
Camillus, NY

	TEST STANDARD		CLASSIFICATION (ASTM D2487)		GRAIN SIZE (ASTM D 422/C117)					HYDRAULIC CONDUCTIVITY (ASTM D2434)
	QA TEST FREQUENCY QA TEST REQUIRED		10,000 cyd 5	@ 10,000 cyd 5				@25,000 cyd 2		
SAMPLE No.	LOCATION	APPROX. VOLUME PLACED	(%)	PASSING 4-in. dia. SIEVE (%)	PASSING 3-in. dia. SIEVE (%)	PASSING 2-in. dia. SIEVE (%)	PASSING 1-in. dia. SIEVE (%)	PASSING NO.4 SIEVE (%)	PASSING NO.200 SIEVE (%)	PERMEABILITY (CM/S)
DG-	Specs:		GW or GP	100				0 - 5	0 -3	≥ 10
Phase II 13 14 15	Granby Imported Stockpile Granby Imported Stockpile Granby Imported Stockpile	interface friction	GP GP	100 100	82 94	39 49	2	1	1	14.3 32
16 17 18	Granby Imported Stockpile Granby Imported - Grid J-14 Granby Imported - Grid H-18/19	puncture test	GP GP	100 100	68 94	19 39	1 12	1	0.7 0.9	
19 20 21 22	Lake Road Pit (source) Amboy - Grid I-19 Dendis Pit/Rte 6 (on site) Hayes Road Pit (on site)		GP GP GP GP	100 96 100 100	57 71 84 80	1 20 31 25	0 1 0.2 1	0 1 0.2 0	0 0.7 0.1 0	44.8 14.0
23 ESTIMA	Oran Delphi Road (source) TED TOTAL VOLUME (cyd) PLACED:	46,800	GP 9	100	100 Number of 0	61 QA Samples	1 	9	0	20.6

Notes: (1) Volume is based on truck count provided by contractor and are considered an estimate only.

The soil is used to construct a 1.5-ft min. thick gravel drainage layer.

- (2) Italics indicate an approximate value.
- (3) Reference Tables A-1 & A-2 of CQA Plan, Section 02300 of Specifications and FCF No. 1 (regarding slope).
- (4) See test reports for details of the size of material used for hydraulic conductivity testing.

Location: Camillus, NY

Boring ID: ---Sample ID:DG-013 Sample Type: bucket

Project No: Tested By:

GTX-11670

Depth:

Test Date: Test Id: 233250

04/03/12 Checked By: jdt

jbr

Test Comment:

Sample Description:

Moist, brown gravel

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	DG-013		Poorly graded gravel	GP	100.0	0.0	0.0

Remarks:

JWC 12 Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Location: Camillus, NY

> Sample Type: bucket Test Date: 04/03/12

> > 233249

Project No: GTX-11670 Tested By:

jbr Checked By: jdt

Sample ID:DG-013 Depth: Test Id:

Test Comment:

Boring ID: ---

Sample Description: Moist, brown gravel

Sample Comment:

Particle Size Analysis - ASTM C 136 3 in 22 in 1.5 in 100 90 80 70 60 Percent Finer 50 40 30 20 10 1000 100 10 0.1 0.01 0.001 Grain Size (mm)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	100.0	0.0	0.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100		
3 in	75.00	71		
2 in	50.00	33		
1.5 in	37.50	8		
1 in	25.00	0 ./		
0.75 in	19.00	0 /		

100-12

 $D_{50} = 59.8732 \text{ mm}$ $D_{10} = 38.5153 \text{ mm}$ $C_c = 0.901$ $C_u = 1.733$

Coefficients

 $D_{30} = 48.1349 \text{ mm}$

D₁₅ =40.7230 mm

<u>Classification</u> Poorly graded gravel (GP) **ASTM**

AASHTO ()

D₈₅ =86.2892 mm

D₆₀ = 66.7433 mm

Sample/Test Description Sand/Gravel Particle Shape: ROUNDED

Sand/Gravel Hardness: HARD

Camillus, NY Location:

Boring ID: ---

Sample Type: bucket Test Date: 04/10/12 Checked By: jdt

Tested By: jbr

Project No:

Sample ID:DG-013 Depth: Test Id: 233480

Test Comment: Sample Description: Moist, reddish brown gravel

GTX-11670

Sample Comment: Particle Size Analysis - ASTM C 136 33.55 in 2.15 in 1.5 in 0.75 in #200 90 80 70 60 Percent Finer 50 40 30 20 10 1000 100 0.1 0.01 0.001 Grain Size (mm) %Cobble % Gravel %Sand % Silt & Clay Size

0.6

Sieve Name	Sleve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100		11-17-
3.5 ln	90.00	97		
3 in	75.00	82		
2 In	50.00	39		
1.5 ln	37.50	12		-
1 in	25.00	2		
0.75 in	19.00	1		
0.5 in	12.50	1		
0.375 in	9.50	1		
#4	4.75	1		
#10	2.00	1		
#20	0.85	1		
#40	0.42	1		
#60	0.25	1		
#100	0.15	1		
#200	0.075	1		_

98.7

Coefficients						
D ₈₅ = 78.1424 mm	D ₃₀ = 45.4851 mm					
D ₆₀ = 61.0815 mm	D ₁₅ = 38.8058 mm					
D ₅₀ = 55.5432 mm	$D_{10} = 34.8884 \text{ mm}$					
$C_u = 1.751$	$C_c = 0.971$					

0.7

<u>Classification</u> Poorly graded gravel (GP) **ASTM** AASHTO Stone Fragments, Gravel and Sand (A-1-a(0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED

Sand/Gravel Hardness: HARD

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: jdt Sample ID:DG-013 Test Date: 04/10/12 Checked By: jdt

Project No:

GTX-11670

Depth: --- Test Id: 233832

Test Comment: --

Sample Description: Moist, reddish brown gravel

Sample Comment: ---

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel,	Sand, %	Fines, %
***	DG-013		Poorly graded gravel	GP	98.7	0.6	0.7

Remarks: Grain Size Analysis performed by ASTM C 136, results enclosed

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
GTX #: 11670
Test Date: 04/10/12
Tested By: jek
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-013		Moist, reddish brown gravel	0.7

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Parsons Engineering Science Cllent: Project Name: SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 04/09/12 Tested By: ema End Date: 04/09/12 Checked By: jďt Boring #: Sample #: GD-013 Depth: Visual Description: Moist, reddish brown gravel

Permeability of Granular Soils (Constant Head) by ASTM D 2434 (Modified)

Sample Type:

Remolded

Sample Information:

MaxImum Dry Density: --- pcf
Optimum Moisture Content: --- %
Compaction Test Method: --Classification (ASTM D 2487): GP
Assumed Specific Gravity: 2.55

Sample Preparation / Test

Setup:

The sample was placed into the testing apparatus and tamped lightly to create as even a top surface as practical. The full gradation of the as-received sample was used. See attached grain

size report for particle size distribution.

Parameter	Initial
Height, in	18.00
Diameter, in	19.24
Area, in ²	290.7
Volume, in ³	5233
Mass, g	115350
Bulk Density, pcf	84.0
Moisture Content, % (assumed)	0
Dry Density, pcf	84.0
Degree of Saturation, %	
Void Ratio, e	

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradient	Permeability, cm/sec	Temp.,	Correction Factor	Permeability @ 20°C, cm/sec
4/9	1	166803	55	3033	0.14	11.6	13.0	1.203	14.0
4/9	2	166803	54	3089	0.14	11.9	13.0	1.203	14.3
4/9	3	166803	51	3271	0.14	12.6	13.0	1.203	15.1
4/9	4	166803	54	3089	0.14	11.9	13.0	1.203	14.3
4/9	5	166803	55	3033	0.14	11.6	13.0	1.203	14.0

PERMEABILITY @ 20 °C =

14.3

cm/sec

Deviations from ASTM D 2434:

Material greater than 3/4-inch was used in the test specimen.

A top plate and light spring pressure was not applied to the top of the test specimen prior to testing.

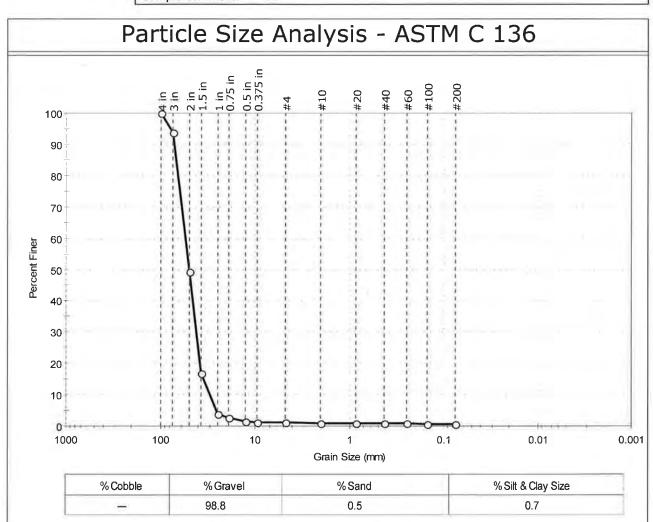
The test specimen was not de-aired under vacuum prior to testing.

Test was performed at only one gradient range.

The maximum particle size of 6-inch minus is not in accordance with the ASTM requirement that the permeameter have a diameter 8 to 12 times larger than the maximum particle size.

Location:Camillus, NYProject No:OBoring ID:---Sample Type: bucketTested By:jbrSample ID:DG-015Test Date:06/07/12Checked By:jdt

Depth: --- Test Id: 238868


Test Comment:

Sample Description: Dry, yellowish brown gravel

Sample Comment:

Gianby

GTX-11670

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100,00	100		_
3 in	75.00	94		
2 in	50.00	49		
1.5 in	37.50	17		
1 in	25.00	4		
0.75 in	19,00	3	1 00	
0.5 in	12.70	1		
0.375 in	9.50	1		
#4	4,75	1		
#10	2.00	1		
#20	0.85	1		-
#40	0.42	1		
#60	0.25	1		
#100	0.15	1		
#200	0.075	1		

<u>Coefficients</u>					
D ₈₅ =69.2074 mm	$D_{30} = 42.1607 \text{ mm}$				
D ₆₀ = 55.1445 mm	D ₁₅ =35.4736 mm				
D ₅₀ = 50.3549 mm	D ₁₀ =30.3904 mm				
Cu =1.815	C _c =1.061				

ASTM Poorly graded gravel (GP)

AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u>
Sand/Gravel Particle Shape: ROUNDED
Sand/Gravel Hardness: HARD

Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: jdt Sample ID:DG-015 Test Date: 06/15/12 Checked By: jdt

GTX-11670

Project No:

Depth: --- Test Id: 240306

Test Comment: --

Location:

Sample Description: Dry, yellowish brown gravel

Sample Comment: ---

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
***	DG-015	***	Poorly graded gravel	GP	98.8	0.5	0.7

Remarks: Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
GTX #: 11670
Test Date: 06/07/12
Tested By: jek
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-015	244	Dry, yellowish brown gravel	0.7

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Client: Parsons Engineering Science Project Name: SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 06/14/12 Tested By: ema End Date: 06/14/12 Checked By: jdt Boring #: ---Sample #: DG-015 Depth: Visual Description: Dry, yellowish brown gravel

Permeability of Granular Soils (Constant Head) by ASTM D 2434 (Modified)

Sample Type:

Remolded

Sample Information:

Maximum Dry Density:

--- pcf

Sample Information,

Optimum Moisture Content:

--- %

Compaction Test Method: Classification (ASTM D 2487):

GP

Assumed Specific Gravity:

2.55

Sample Preparation / Test

Setup:

The sample was placed into the testing apparatus and tamped lightly to create as even a top surface as practical. The full gradation of the as-received sample was used. See attached grain

size report for particle size distribution.

Parameter	Initial	
Height, in	17.50	
Diameter, in	19.24	
Area, in ²	290.7	
Volume, in ³	5088	
Mass, g	114200	
Bulk Density, pcf	85.5	
Moisture Content, % (assumed)	0	
Dry Density, pcf	85.5	
Degree of Saturation, %		
Void Ratio, e		

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradient	Permeability, cm/sec	Temp., °C	Correction Factor	Permeability @ 20°C, cm/sec
06/14	1	166803	46	3626	0.07	27.1	17.7	1.059	28.7
06/14	2	166803	48	3475	0.06	32.4	17.7	1.059	34.3
06/14	3	166803	48	3475	0.07	25.9	17.7	1.059	27.5
06/14	4	166803	47	3549	0.06	33.1	17.7	1.059	35.1
06/14	5	166803	48	3475	0.06	32.4	17.7	1.059	34.3

PERMEABILITY @ 20 °C =

32.0

cm/sec

Deviations from ASTM D 2434:

Material greater than 3/4-inch was used in the test specimen.

A top plate and light spring pressure was not applied to the top of the test specimen prior to testing. The test specimen was not de-aired under vacuum prior to testing.

Test was performed at only one gradient range.

The maximum particle size of 6-inch minus is not in accordance with the ASTM requirement that the permeameter have a diameter 8 to 12 times larger than the maximum particle size.

Location: Camillus, NY

Boring ID: ---

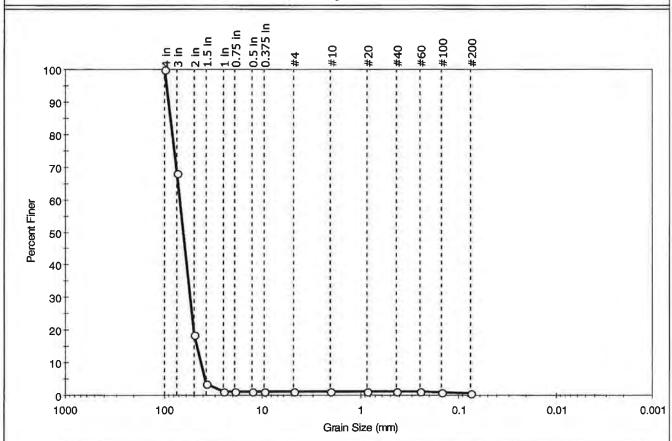
Sample ID:DG-016

Sample Type: bucket

Test Id:

Project No: GTX-11670

Tested By: Test Date: 06/19/12 Checked By: jdt


Depth: Test Comment:

Sample Description: Moist, reddish brown gravel Sample Comment:

240060

Gianby

Particle Size Analysis - ASTM C 136

% Cobble %Sand % Silt & Clay Size %Grave 98.7 0.6 0.7

Sieve Name	Sleve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100		
3 in	75.00	68		
2 in	50.00	19		
1.5 in	37.50	4		
1 in	25.00	1		-
0.75 in	19.00	1		
0.5 in	12.70	1		
0.375 in	9.50	1		
#4	4.75	1		
#10	2.00	1		
#20	0.85	1		
#40	0.42	1		
#60	0.25	1		
#100	0.15	1		
#200	0.075	i		

Coefficients					
D ₈₅ = 87.3196 mm	$D_{30} = 54.9004 \text{ mm}$				
D ₆₀ = 70.1529 mm	$D_{15} = 46.6953 \text{ mm}$				
D ₅₀ = 64.6481 mm	$D_{10} = 42.4179 \text{ mm}$				
Cu =1.654	$C_c = 1.013$				

<u>Classification</u> Poorly graded gravel (GP) **ASTM** AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

<u>Sample/Test Description</u>
Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
GTX #: 11670
Test Date: 06/21/12
Tested By: jek
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-016		Moist, reddish brown gravel	0.7

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Cllent: Parsons Engineering Science
Project: Onondaga SCA Phase I & II
Location: Camillus, NY

Boring ID: --- Sample Type: bucket
Sample ID:DG-017 Test Date: 07/09/12

Depth: --- Test Id: 242664
Test Comment: ---

Sample Description: Moist, reddish brown gravel

Sample Comment: ---

Comb

GTX-11670

Project No:

Tested By:

Checked By: jdt

Particle Size Analysis - ASTM C 136 르드 드 100 90 80 70 60 Percent Finer 50 40 30 0+ 1000 100 10 0.1 0.01 0.001 Grain Size (mm) % Sitt & Clay Size % Cobble %Gravel %Sand 98.7 0.4 0.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100	The state of the s	
3 in	75,00	94		
2 în	50,00	39		
1 m	25,00	12		
0.75 in	19.00	1		
0.5 in	12,70	1		
0.375 in	9,50	1		91
#4	4.75	1		
#10	2,00	1		
#20	0,85	1		
#40	0.42	1		
#60	0.25	1		
#100	0.15	1		
#200	0.075	1		

Coefficients				
D ₈₅ =70.2869 mm	$D_{30} = 39.6875 \text{ mm}$			
D ₆₀ = 58.3614 mm	D ₁₅ = 27.2423 mm			
D ₅₀ = 54.1784 mm	D ₁₀ = 23.9579 mm			
Cu =2.436	Cc =1.127			

ASTM	Classification Poorly graded gravel (GP)
AASHTO	Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

Location: Camillus, NY

Project No: GTX-11670 Boring ID: ---Sample Type: bucket Tested By: cam Sample ID:DG-017 Test Date: 07/13/12 Checked By: jdt

Depth: Test Id: 242666

Test Comment:

Sample Description: Moist, reddish brown gravel

Sample Comment:

USCS Classification - ASTM D 2487-06

%	10000000000000000000000000000000000000	1 4 5 5 5 5 8 M
98.7	0.4	0.9
	98.7	98.7 0.4

Grain Size analysis performed by ASTM D422, results endosed Remarks:

Atterbeg Limits performed by ASTM 4318, results enclosed

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
GTX #: 11670
Test Date: 07/13/12
Tested By: jek
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-017		Moist, reddish brown gravel	0.9

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

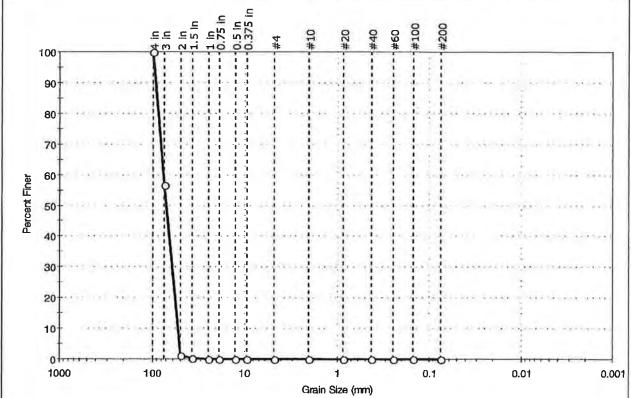
Location: Camillus, NY

Boring ID: ---Sample Type: bucket Sample ID:DG-019 Test Date:

246233

Project No: GTX-11670

Tested By: 08/09/12 Checked By: jdt Test Id:


Test Comment:

Depth:

Moist, gray and reddish brown gravel Sample Description: Sample Comment:

Late Rd

Particle Size Analysis - ASTM C 136 0.5 ln 0.375 i ee evi

% Cobble	%Gravel	%Sand	% Silt & Clay Size
-	99.9	0.1	0.0

<u>ASTM</u>

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100		September 1
3 In	75.00	57		
2 ln	50.00	1		
1.5 in	37,50	0		4
1 in	25.00	Ó		
0.75 In	19.00	0		
0.5 in	12.70	0		
0.375 in	9.50	0		
#4	4.75	Ō		
#10	2.00	0		
#20	0.85	0		3
#40	0.42	0		
#60	0,25	Ō		-
#100	0.15	ű		
#200	0.075	0		

<u>Coefficients</u>				
D ₈₅ =90.5172 mm	$D_{30} = 61.7225 \text{ mm}$			
D ₆₀ = 76.6684 mm	D ₁₅ =55.3201 mm			
D ₅₀ =71.4262 mm	D ₁₀ =53.3371 mm			
$C_u = 1.437$	$C_c = 0.932$			

<u>Classification</u> Poorly graded gravel (GP)

AASHTO Stone Fragments, Gravel and Sand

(A-1-a(0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

Client: Parsons Engineering Science
Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: cam Sample ID:DG-019 Test Date: 08/13/12 Checked By: jdt

GTX-11670

Project No:

246231

Depth: --- Test Id:

Sample Description: Moist, gray and reddish brown gravel

Sample Comment: ---

Test Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	DG-019	-	Poorly graded gravel	GP	99.9	0.1	0.0
				J.4.			

Remarks: Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Client:	Parsons Engineering Science	
Project Name:	Onondaga SCA Phase I & II	
Project Location:	Camillus, NY	
GTX #:	11670	
Test Date:	08/09/12	
Tested By: jek		
Checked By:	jdt	

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
***	DG-019		Moist, gray and reddish brown gravel	0

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Client: Parsons Engineering Science Project Name: SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Tested By: ema Start Date: 08/10/12 jdt Checked By: End Date: 08/10/12 Boring #: Lake Rd Sample #: DG-019 Depth: Visual Description: Dry, gray and reddish brown gravel

Permeability of Granular Soils (Constant Head) by ASTM D 2434 (Modified)

Sample Type:

Remolded

Sample Information:

Maximum Dry Density: --- pcf
Optimum Moisture Content: --- %
Compaction Test Method: --Classification (ASTM D 2487): GP

Classification (ASTM D 2487):
Assumed Specific Gravity:

Sample Preparation / Test Setup: The sample was placed into the testing apparatus and tamped lightly to create as even a top surface as practical. The full gradation of the as-received sample was used. See attached grain size report for particle size distribution.

2.55

Parameter	Initial
Height, in	19.00
Diameter, in	19.24
Area, In ²	290.7
Volume, In ³	5524
Mass, g	131400
Bulk Density, pcf	90.6
Moisture Content, % (assumed)	0
Dry Density, pcf	90.6
Degree of Saturation, %	
Void Ratio, e	

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradient	Permeability, cm/sec	Temp.,	Correction Factor	Permeability @ 20°C, cm/sec
8/10	1	166803	37	4508	0.05	45.7	20.0	1.000	45.7
8/10	2	166803	36	4633	0.05	46.9	20.0	1.000	46.9
8/10	3	166803	37	4508	0.05	45.7	20.0	1.000	45.7
8/10	4	166803	39	4277	0.05	43.3	20.0	1.000	43.3
8/10	5	166803	40	4170	0.05	42.2	20.0	1.000	42.3

PERMEABILITY @ 20 °C =

44.8

cm/sec

Deviations from ASTM D 2434:

Material greater than 3/4-inch was used in the test specimen.

A top plate and light spring pressure was not applied to the top of the test specimen prior to testing.

The test specimen was not de-aired under vacuum prior to testing.

Test was performed at only one gradient range.

The maximum particle size of 4-Inch minus is not in accordance with the ASTM requirement that the permeameter have a diameter 8 to 12 times larger than the maximum particle size.

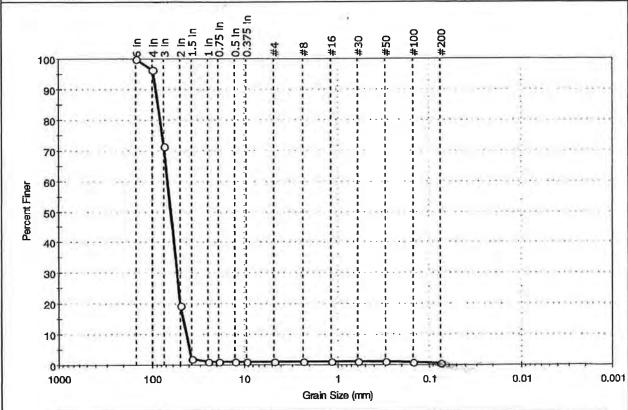
Parsons Engineering Science Client: Project: Onondaga SCA Phase I & II Location: Camillus, NY Boring ID: ---

Sample Type: bucket Test Date:

Project No: Tested By:

GTX-11670

Sample ID:DG-020 Depth: Test Id:


08/31/12 Checked By: jdt 248264

Test Comment:

Sample Description: Dry, gray gravel Sample Comment:

Ambay Rit

Particle Size Analysis - ASTM C 136

%Sand % Silt & Clay Size % Cobble %Gravel 0.5 0.7 98.8

Sleve Name	Sieve Size, mm	。 1965年1月27日(日本大学年代)	Spec, Percent	200 SECTION 1
6 in	150,00	100	33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	240
4 in	100.00	96		
3 in	75.00	71		
2 in	50.00	20		
1.5 in	37.50	2		
1 in	25.00	1		
0.75 in	19.00	î		
0.5 in	12.70	1		
0,375 in	9.50	1		
#4	4.75	1		
#B	2.36	1		
#16	1.18	1		
#30	0.60	i		
#50	0.30	i		
#100	0,15	1		
#200	0.075	1		

Coefficients				
D ₈₅ =87.7409 mm	$D_{30} = 54.2503 \text{ mm}$			
D ₆₀ =68.6255 mm	D ₁₅ =46.3984 mm			
D ₅₀ =63.4538 mm	D ₁₀ =42.7676 mm			
Cu =1.605	$C_c = 1.003$			

<u>Classification</u> Poorly graded gravel (GP) **ASTM** AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

Cllent: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
GTX #: 11670
Test Date: 08/31/12
Tested By: jbr
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-020		Dry, gray gravel	0.7

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Client: Parsons Engineering Science
Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Boring ID: --- Sample Type: bucket Tested By: cam
Sample ID:DG-020 Test Date: 09/07/12 Checked By: jdt
Depth: --- Test Id: 248262

Depth: ---Test Comment: ---

Sample Description: Dry, gray gravel

Sample Comment: ---

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	DG-020		Poorly graded gravel	GP	98.8	0.5	0.7

Remarks: Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

DE 9/1/12

GTX-11670

Project No:

50

Client: Parsons Engineering Science Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Project No: Boring ID: ---Sample Type: bucket Tested By: jbr 10/15/12 Checked By: jdt Sample ID:DG-021 Test Date:

Test Id: 251042 Depth:

Test Comment:

Sample Description: Moist, grayish brown gravel

Sample Comment:

Dendis/ ex6

GTX-11670

Particle Size Analysis - ASTM C 136 .5 in 1.5 in 1.75 in 1.75 in 1.375 in 1.375 in 90 80 70 60 Percent Finer

40 30 20 1000 100 10 0.1 0.01 0.001 Grain Size (mm)

%Cobble %Gravel	%Sand	% Silt & Clay Size
- 99.7	0.2	0.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100,00	100	2240-10-10	100000000000000000000000000000000000000
3 in	75.00	84		
2 in	50.00	31		
1.5 in	37.50	3	1	V
1 In	25.00	0	/	
0.75 in	19.00	0		
0,5 in	12.70	0		
0,375 in	9.50	0	1	1000
#4	4.75	0 1		
#10	2.00	- 0		
#20	0.85	0		
#40	0.42	0		
#60	0,25	0		
#100	0.15	0	/	
#200	0.075	0 1		

<u>Coefficients</u>			
D ₈₅ =75.7022 mm	D ₃₀ =49.4094 mm		
D ₆₀ = 62.2540 mm	D ₁₅ =42.4303 mm		
D ₅₀ ≃57.6961 mm	$D_{10} = 40.3304 \text{ mm}$		
Cu =1.544	$C_c = 0.972$		

Classification
Poorly graded gravel (GP) **ASTM** Stone Fragments, Gravel and Sand **AASHTO** (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project:

Location: Camillus, NY

Project No: Tested By: Sample Type: bucket 10/25/12 Checked By: jdt Test Date:

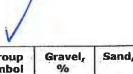
GTX-11670

cam

Test Id: 251041

Test Comment:

Sample ID:DG-021


Boring ID: ---

Depth:

Sample Description: Moist, grayish brown gravel

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel,	Sand, %	Fines, %
	DG-021		Poorly graded gravel	GP	99.7	0.2	0.1

Remarks: Grain Size Analysis performed by ASTM C 136, results enclosed

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
GTX #: 11670
Test Date: 10/15/12
Tested By: jbr
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-021		Moist, grayish brown gravel	0.1

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Cllent: Parsons Engineering Science Project Name: SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 11/01/12 Tested By: ema End Date: 11/01/12 Checked By: jdt Boring #: Sample #: DG-021 Depth: Visual Description: Moist, grayish brown gravel

Permeability of Granular Soils (Constant Head) by ASTM D 2434 (Modified)

Sample Type: Remolded

Sample Information: Maximum Dry Density:

Maximum Dry Density:
--- pcf
Optimum Molsture Content:
--- %
Compaction Test Method:
Classification (ASTM D 2487):
Assumed Specific Gravity:
2.55

Sample Preparation / Test

Setup:

The sample was placed into the testing apparatus and tamped lightly to create as even a top surface as practical. The full gradation of the as-received sample was used. See attached grain size report for particle size distribution.

Parameter	Initial	
Height, in	22.00	
Dlameter, in	19.24	
Area, in ²	290.7	
Volume, in ³	6396	
Mass, g	158650	
Bulk Density, pcf	94.5	
Moisture Content, % (assumed)	0	
Dry Density, pcf	94.5	
Degree of Saturation, %		
Vold Ratio, e	***	

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradient	Permeability, cm/sec	Temp., °C	Correction Factor	Permeability @ 20°C, cm/sec
11/1	1	166803	53	3147	0.10	17.4	16.7	1.087	18.9
11/1	2	166803	54	3089	0.10	17.0	16.7	1.087	18.5
11/1	3	166803	54	3089	0.10	17.0	16.7	1.087	18.5
11/1	4	166803	54	3089	0.10	17.0	16.7	1.087	18.5
11/1	5	166803	53	3147	0.10	17.4	16.7	1.087	18.9

PERMEABILITY @ 20 °C = 18.7 cm/sec

Deviations from ASTM D 2434:

Material greater than 3/4-inch was used in the test specimen.

A top plate and light spring pressure was not applied to the top of the test specimen prior to testing.

The test specimen was not de-aired under vacuum prior to testing.

Test was performed at only one gradient range.

The maximum particle size of 6-inch mlnus is not in accordance with the ASTM requirement that the permeameter have a diameter 8 to 12 times larger than the maximum particle size.

Client: Parsons Engineering Science
Project: Onondaga SCA Phase I & II
Location: Camillus, NY

Sample Comment:

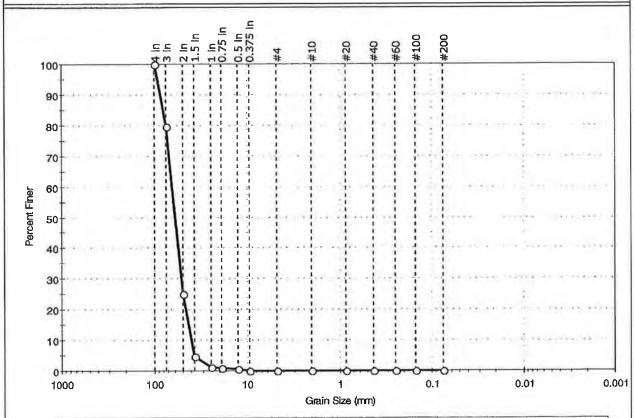
Boring ID: --- Sample Type: bucket

 Sample ID:DG-022
 Test Date:
 10/11/12
 Checked By: jdt

 Depth:
 -- Test Id:
 251264

Test Comment: --Sample Description: Moist, grayish brown gravel


Hayes ed


jbr

Project No:

Tested By:

GTX-11670

 % Cobble
 % Gravel
 % Sand
 % Silt & Clay Size

 —
 100.0
 0.0
 0.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec, Percent	Complies
4 in	100.00	100	100000000000000000000000000000000000000	The state of the state of
3 in	75.00	80		
2 in	50.00	25		
1,5 in	37,50	5		
1 in	25.00	1		
0.75 in	19,00	1		
0,5 in	12.70	0	/	
0.375 in	9.50	0 /		
#4	4.75	0 /		
#10	2.00	0		1
#20	0,85	0		
#40	0,42	0		
#60	0,25	0		
#100	0,15	0 /		
#200	0.075	0		1

<u>Coefficients</u>					
D ₈₅ =80.8167 mm	$D_{30} = 51.8845 \text{ mm}$				
D ₆₀ = 64.7970 mm	D ₁₅ =43.3779 mm				
D ₅₀ =60.1703 mm	D ₁₀ =40.4050 mm				
Cu =1.604	$C_c = 1.028$				

ASTM Poorly graded gravel (GP)

AASHTO Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR
Sand/Gravel Hardness: HARD

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY
GTX #: 11670

Test Date: 10/11/12

Tested By: jbr
Checked By: jdt

Material Finer Than #200 Sieve by ASTM C 117

Boring ID	Sample ID	Depth, ft	Sample Description	Fines, %
	DG-022		Moist, grayish brown gravel	0.0

Notes: Procedure A used.

See ASTM C 136 report for full as-received sample gradation.

Client: Parsons Engineering Science Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Boring ID: ---Sample ID:DG-022 Sample Type: bucket

Project No: Tested By: cam

GTX-11670

Test Date: 10/25/12 Checked By: jdt

Test Id: 251263

Test Comment:

Depth: ---

Sample Description: Moist, grayish brown gravel

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel,	Sand, %	Fines, %
	DG-022	p. 10.00	Poorfy graded gravel	GP	100.0	0.0	0.0

Remarks: Grain Size Analysis performed by ASTM C 136, results enclosed

Client: Parsons Englneering Science Project Name: SCA Phase I & II Project Location: Camillus, NY GTX #: 11670 Start Date: 11/01/12 Tested By: ema End Date: 11/01/12 Checked By: jdt Boring #: Sample #: DG-022 Depth: Visual Description: Moist, grayish brown gravel

Permeability of Granular Soils (Constant Head) by ASTM D 2434 (Modified)

Sample Type:

Remolded

Sample Information:

Maximum Dry Density:

Optimum Molsture Content:

--- %

Compaction Test Method: Classification (ASTM D 2487):

GP

Assumed Specific Gravity:

2.55

Sample Preparation / Test

Setup:

The sample was placed into the testing apparatus and tamped lightly to create as even a top surface as practical. The full gradation of the as-received sample was used. See attached grain size report for particle size distribution.

Parameter	Initial
Height, in	21.00
Diameter, in	19.24
Area, in ²	290.7
Volume, In ³	6105
Mass, g	157950
Bulk Density, pcf	98.6
Molsture Content, % (assumed)	0
Dry Density, pcf	98.6
Degree of Saturation, %	222
Void Ratio, e	

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradient	Permeability, cm/sec	Temp.,	Correction Factor	Permeability @ 20°C, cm/sec
11/1	1	166803	46	3626	0.10	20.3	16.7	1.087	22.1
11/1	2	166803	43	3879	0.10	21.7	16.7	1.087	23.6
11/1	3	166803	45	3707	0.10	20.7	16.7	1.087	22.6
11/1	4	166803	46	3626	0.10	20.3	16.7	1.087	22.1
11/1	5	166803	45	3707	0.10	20.7	16.7	1.087	22.6

PERMEABILITY @ 20 °C =

22.6

cm/sec

Deviations from ASTM D 2434:

Material greater than 3/4-inch was used in the test specimen.

A top plate and light spring pressure was not applied to the top of the test specimen prior to testing. The test specimen was not de-aired under vacuum prior to testing.

Test was performed at only one gradient range.

The maximum particle size of 6-inch minus is not in accordance with the ASTM requirement that the permeameter have a diameter 8 to 12 times larger than the maximum particle size.

Parsons Engineering Science Client: Project: Onondaga SCA Phase I & II

Location: Camillus, NY

> Sample Type: bucket Test Date: 10/27/12 Checked By: jdt

Project No: Tested By:

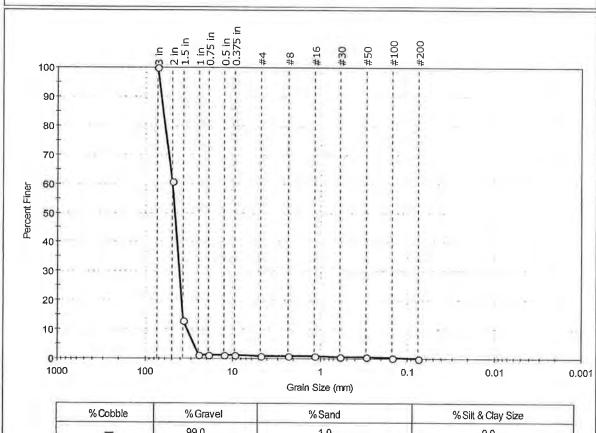
GTX-11670

Depth:

Boring ID: ---

Test Id:

252439


Test Comment:

Sample ID: DG-023

Sample Description: Moist, gray gravel

Sample Comment:

Particle Size Analysis - ASTM C 136-06

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	99.0	1.0	0.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3 in	75.00	100	/	111111111111111111111111111111111111111
2 in	50,00	61	-	
1.5 ln	37.50	13		
1 ln	25.00	1		
0.75 ln	19.00	1		
0,5 in	12.70	1		
0.375 In	9.50	1		
#4	4.75	1	1	
#8	2.36	1		
#16	1.18	1		
#30	0,60	1		
#50	0.30	ō		
#100	0,15	Ō		
#200	0.075	0	1	

Coefficients					
D ₈₅ =64.2408 mm	D ₃₀ =41.5621 mm				
D ₆₀ = 49.7829 mm	D ₁₅ =37.9757 mm				
D ₅₀ = 46.8762 mm	$D_{10} = 33.8838 \text{ mm}$				
$C_u = 1.469$	$C_c = 1.024$				

<u>ASTM</u>	<u>Classification</u> Poorly graded gravel (GP)

<u>AASHTO</u> Stone Fragments, Gravel and Sand (A-1-a (0))

Sample/Test Description Sand/Gravel Particle Shape: ROUNDED Sand/Gravel Hardness: HARD

Client: Parsons Engineering Science
Project: Onondaga SCA Phase I & II

Location: Camillus, NY

Boring ID: ---Sample ID: DG-023

Depth:

 Project No:
 GTX-11670

 Sample Type:
 bucket
 Tested By:
 cam

 Test Date:
 11/14/12
 Checked By:
 jdt

Test Id: 252438

Test Comment:

Sample Description: Moist, gray gravel

Sample Comment: --

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
77	DG-023	***	Poorly graded gravel	GP /	99.0	1.0	0.0

Remarks:

Grain Size analysis performed by ASTM C 136 results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

Client:	Parsons Engineering Science					
Project Name:	SCA Phase I & II					
Project Location:	ect Location: Camillus, NY					
GTX #:	11670					
Start Date:	11/01/12	Tested By:	ema			
End Date:	11/01/12	Checked By:	jdt			
Boring #:						
Sample #:	DG-023					
Depth:						
VIsual Description:	Moist, graylsh brown	gravel				

Permeability of Granular Soils (Constant Head) by ASTM D 2434 (Modified)

Sample Type: Remolded

Sample Information: Maximum Dry Density:

OptImum Molsture Content: --- %
Compaction Test Method: --Classification (ASTM D 2487); GP
Assumed Specific Gravity: 2.55

Sample Preparation / Test

Setup:

The sample was placed into the testing apparatus and tamped lightly to create as even a top surface as practical. The full gradation of the as-received sample was used. See attached grain

size report for particle size distribution.

Parameter	Initial				
Helght, In	17.50				
Dlameter, in	19.24				
Area, in ²	290.7				
Volume, in ³	5088				
Mass, g	123650				
Bulk Density, pcf	92.6				
Molsture Content, % (assumed)	0				
Dry Density, pcf	92.6				
Degree of Saturation, %	***				
Void Ratio, e	NAME OF THE PARTY				

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradlent	Permeability, cm/sec	Temp., °C	Correction Factor	Permeability @ 20°C, cm/sec
11/1	1	166803	43	3879	0.11	19.3	16.7	1.087	21.0
11/1	2	166803	44	3791	0.11	18.9	16.7	1.087	20.5
11/1	3	166803	45	3707	0.11	18.4	16.7	1.087	20.1
11/1	4	166803	42	3971	0.11	19.8	16.7	1.087	21.5
11/1	5	166803	45	3707	0.11	18.4	16.7	1,087	20.1

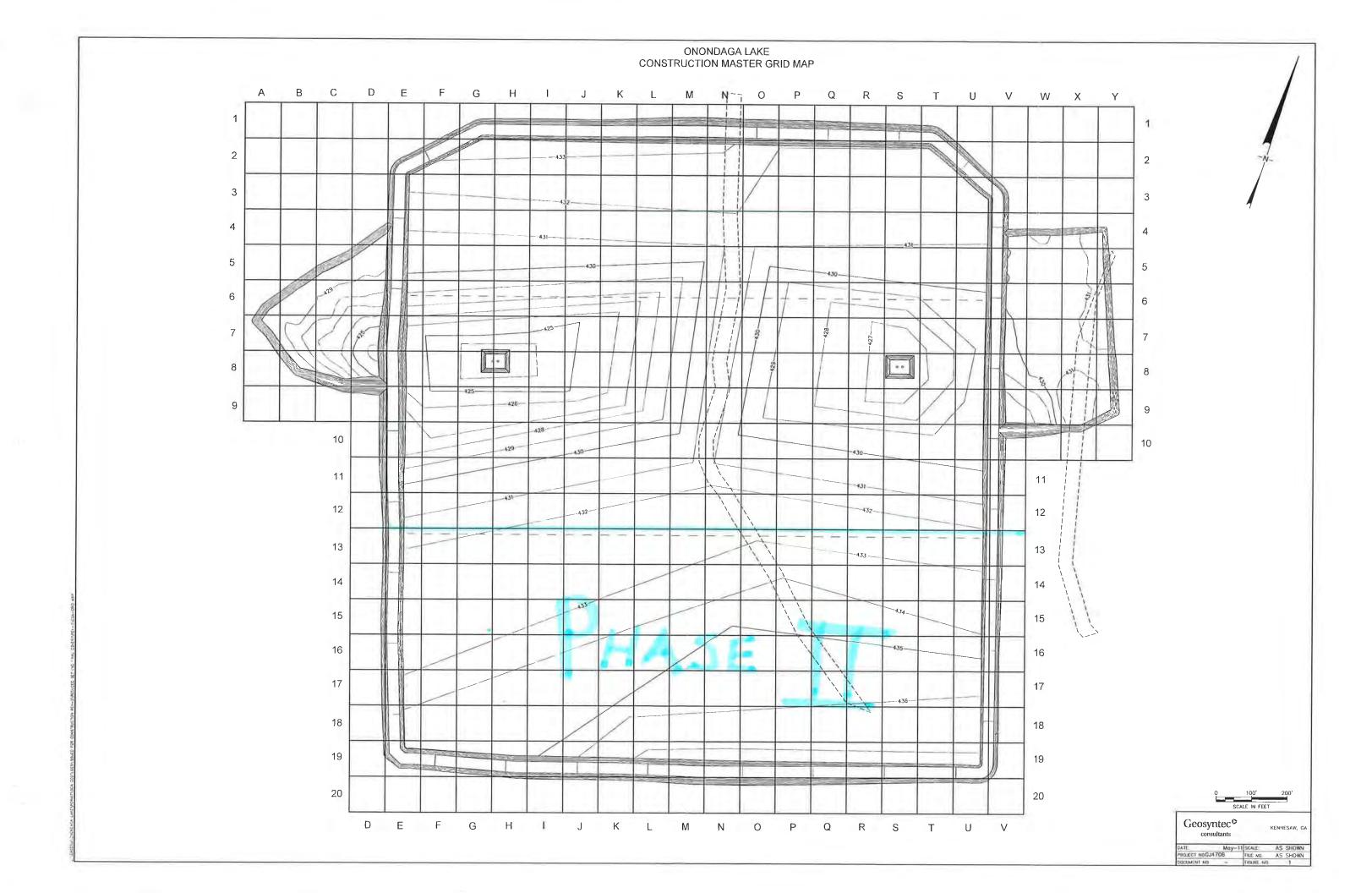
PERMEABILITY @ 20 °C = 20.6 cm/sec

Deviations from ASTM D 2434:

Material greater than 3/4-Inch was used in the test specimen.

A top plate and light spring pressure was not applied to the top of the test specimen prior to testing. The test specimen was not de-aired under vacuum prior to testing.

Test was performed at only one gradient range.


The maximum particle size of 6-inch minus is not in accordance with the ASTM requirement that the permeameter have a diameter 8 to 12 times larger than the maximum particle size.

APPENDIX E

In-Place Field Test Results

- Test Reference Grid Layout
- As-Built Thickness Memorandum
- Nuclear Gauge Standard Count Log
- Engineered Fill
- Low-Permeability Layer

Test Reference Grid Layout

As-Built Thickness Memorandum

Geosyntec consultants

1255 Roberts Blvd NW, Suite 200 Kennesaw, GA 30144 PH 678 202 9500 www.geosyntec.com

Memorandum

Date:

11 October 2012

To:

David Steele, P.E.

Parsons

From:

Joseph Sura, E.I.T., Ramachandran Kulasingam, Ph.D., P.E., and Jay

Beech, Ph.D., P.E. Geosyntec Consultants

Subject:

Evaluation of As-built Low Permeability Soil Liner Grades and Thickness in

Phase II of the Sediment Consolidation Area (SCA), Onondaga Lake, Syracuse,

NY

The purpose of this memorandum is to evaluate the as-built grades and thickness of the low permeability soil layer (LPSL) constructed in Phase II of the SCA to verify the intent of the design is met. The LPSL construction was intended to satisfy the requirements of the following documents:

- Permit Drawings entitled "Sediment Consolidation Area Final Design, Camillus, New York", dated July 2010, revised April 2011, prepared by Parsons and Geosyntec;
- "Construction Quality Assurance Plan, Onondaga Lake Sediment Consolidation Area (SCA) Final Design", prepared by Geosyntec, dated April 2011; and
- Specifications entitled "Onondaga Lake Sediment Consolidation Area (SCA) Final Design Submittal", prepared by Parsons and Geosyntec, dated April 2011.

During construction, clarifications were typically requested related to project specifications and drawings in the form of "Request for Information" (RFI). Changes to the design documents were handled through Construction Field Change Forms (FCF). The RFIs and FCFs were issued by the contractor with responses by the Designer. RFI No. 16 addressed the perimeter berm elevations and FCF No. 3 the proposed design elevation of the LPSL. The as-built grades and thickness are addressed separately in the following sections.

It is noted that the as-built grades and thickness of the LPSL constructed in Phase I of the SCA were evaluated in a previous memorandum titled "Evaluation of As-built Low Permeability Soil Liner Grades and Thickness in Phase 1 of the Sediment Consolidation Area (SCA), Onondaga

Page 2 11 October 2012 SCA Phase II Evaluation of As-Built LPSL Grades

Lake, Syracuse, NY" (referred to as the "Phase I Memorandum"). Therefore, the information discussed herein will focus on the LPSL within Phase II.

AS-BUILT GRADES

Attachment 1 presents the design and as-built grades for the top of LPSL. The design top of LPSL drawing prepared by Geosyntec Consultants (Geosyntec) states the following on Note 3:

"The elevation measurements of the top of the low permeability soil layer taken after the construction shall be used to verify general conformance with design slopes to meet positive drainage requirements as presented in the technical specifications. Due to the compressible nature of the foundation, a strict conformance with the design elevations is not required."

The as-built grades were provided to Geosyntec by Parsons. Based on our review, the as-built LPSL grades within Phase II match the design grades closely and meet the intent of the design.

THICKNESS

To verify that the minimum thickness was achieved, the contractor used various methods to measure the minimum thickness of 12-in in Phase II. The contractor surveyed the LPSL on 50-ft grid pattern. The contractor also installed 12-in square steel plates on a 100-ft grid pattern in areas with a proposed thickness of 18-in or less. A hand drill with a 24-in long drill bit was used to bore into the LPSL. If contact with the plate had not been achieved at a depth of 24 inches, then a pointed rod was hammered down to the plate. Once the bit or rod had been driven to the steel plate, a mark was made on the bit or rod. Once the bit or rod was extracted, a measurement was made to determine the LPSL thickness at that location. It is noted, based on the data provided to Geosyntec by Parsons, that thickness measurements were not performed everywhere.

Attachment 2 presents four figures related to as-built LPSL thickness. Based on the Attachment E titled "Sample Thickness and Settlement Calculation" in the "Geotechnical Instrumentation and Monitoring Plan" prepared for the SCA by Geosyntec, the thickness of the LPSL is calculated as follows:

LPSL thickness = [Top of LPSL survey elevation] - [Initial subgrade survey elevation] + [Measured settlement].

The minimum required LPSL thickness within Phase II is 1.0 ft.

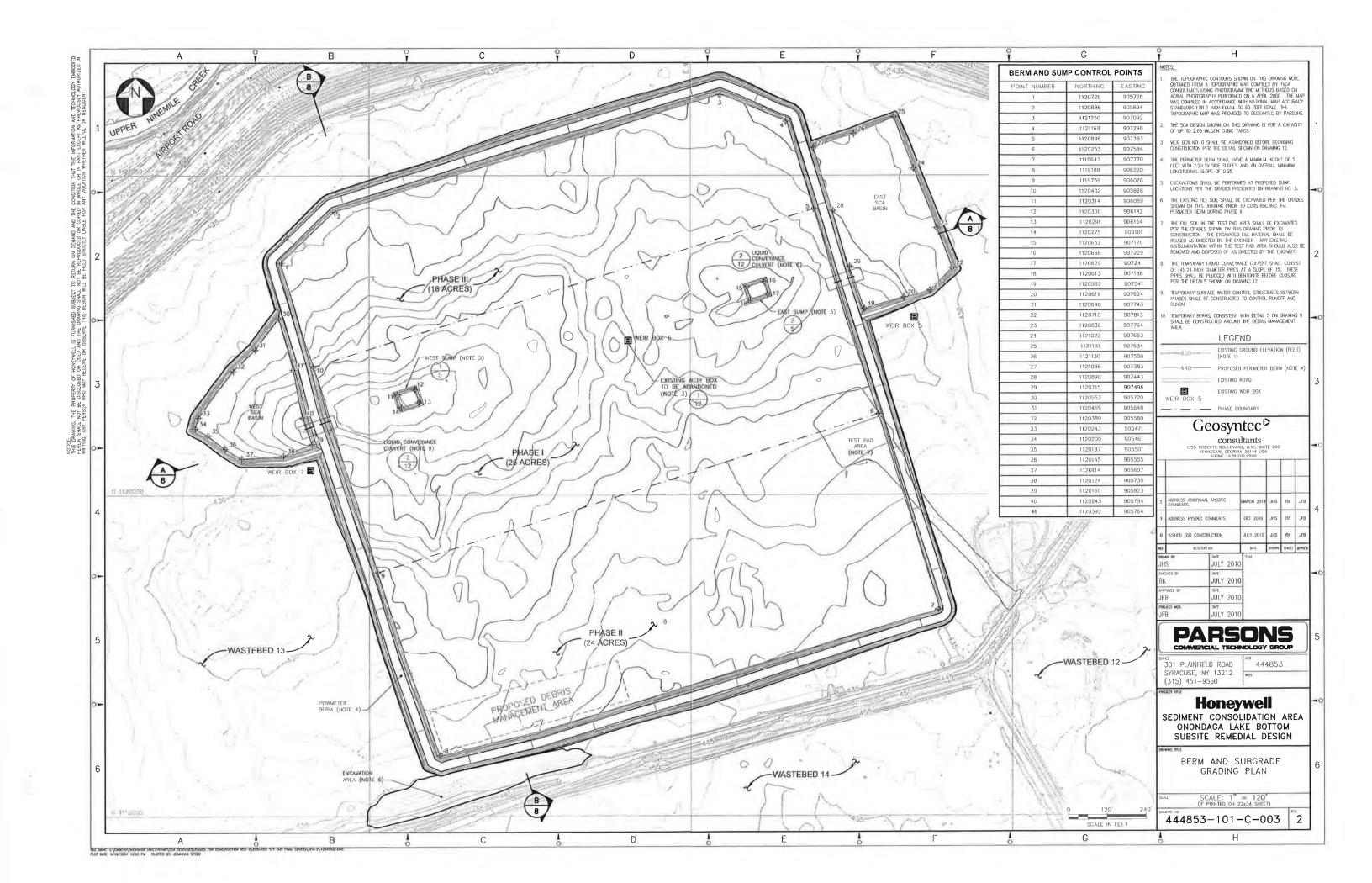
The surveyed elevations of the top of LPSL and the initial subgrade in Phase II were provided by Parsons in an electronic table as well as in the form of drawings presented in Attachment 2. The calculated LPSL thicknesses, without consideration of subgrade settlement, are shown in Figure

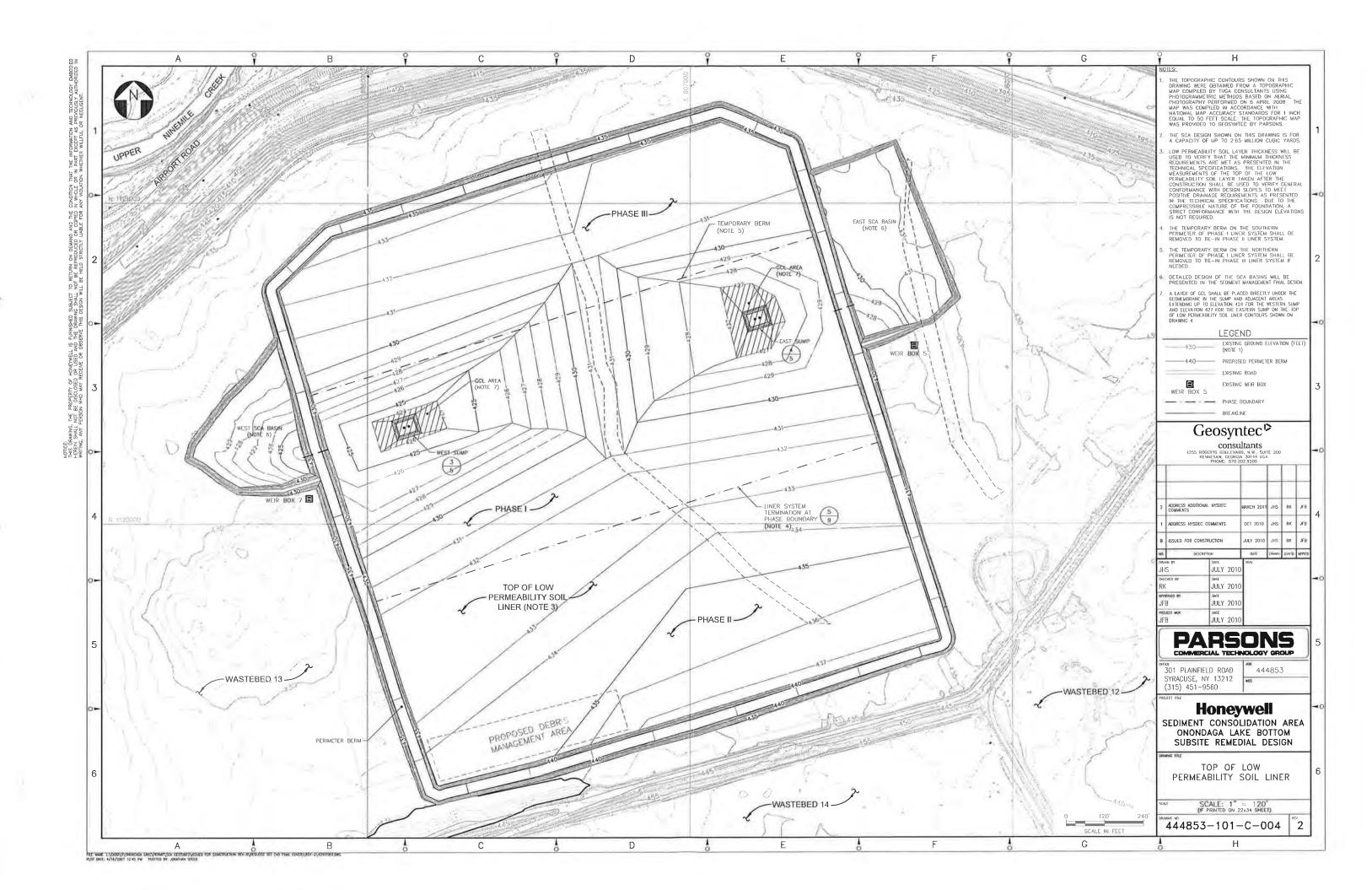
Page 3 11 October 2012 SCA Phase II Evaluation of As-Built LPSL Grades

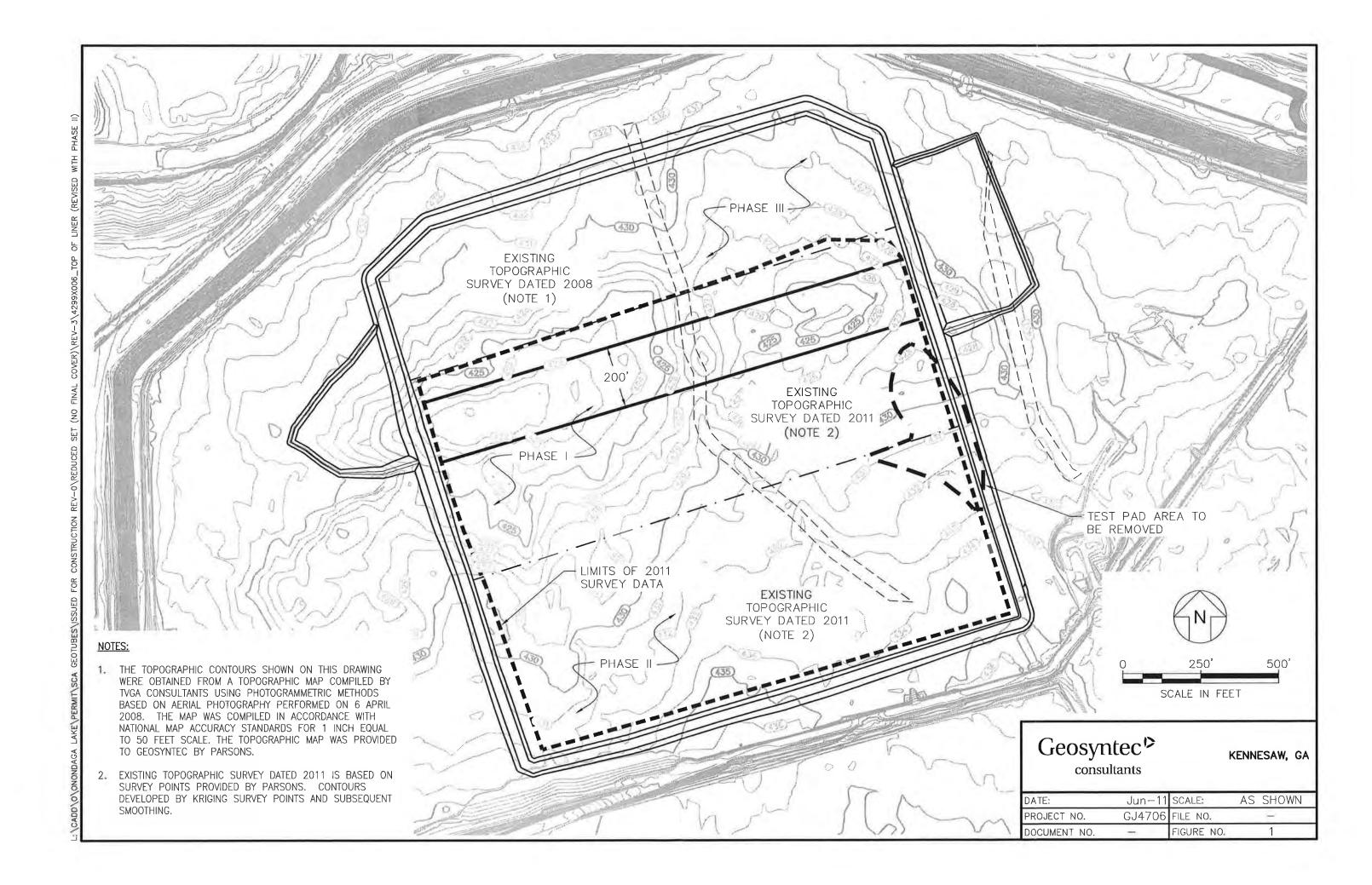
1 in Attachment 2. The LPSL thicknesses were also measured directly during the hand drilling and the measured thicknesses all exceeded 1-ft thickness, as shown in Figure 2 in Attachment 2. At 472 out of the total 475 surveyed locations (i.e., 99.4% of the total locations), the calculated LPSL thicknesses shown in Figure 1 in Attachment 2 met the minimum required thickness when the settlement of subgrade was not considered. The LPSL thicknesses at the remaining 3 locations (i.e., Locations No. 1 through No. 3 on Figure 1 in Attachment 2) were further evaluated by considering the settlement that had occurred during the LPSL placement, as discussed below.

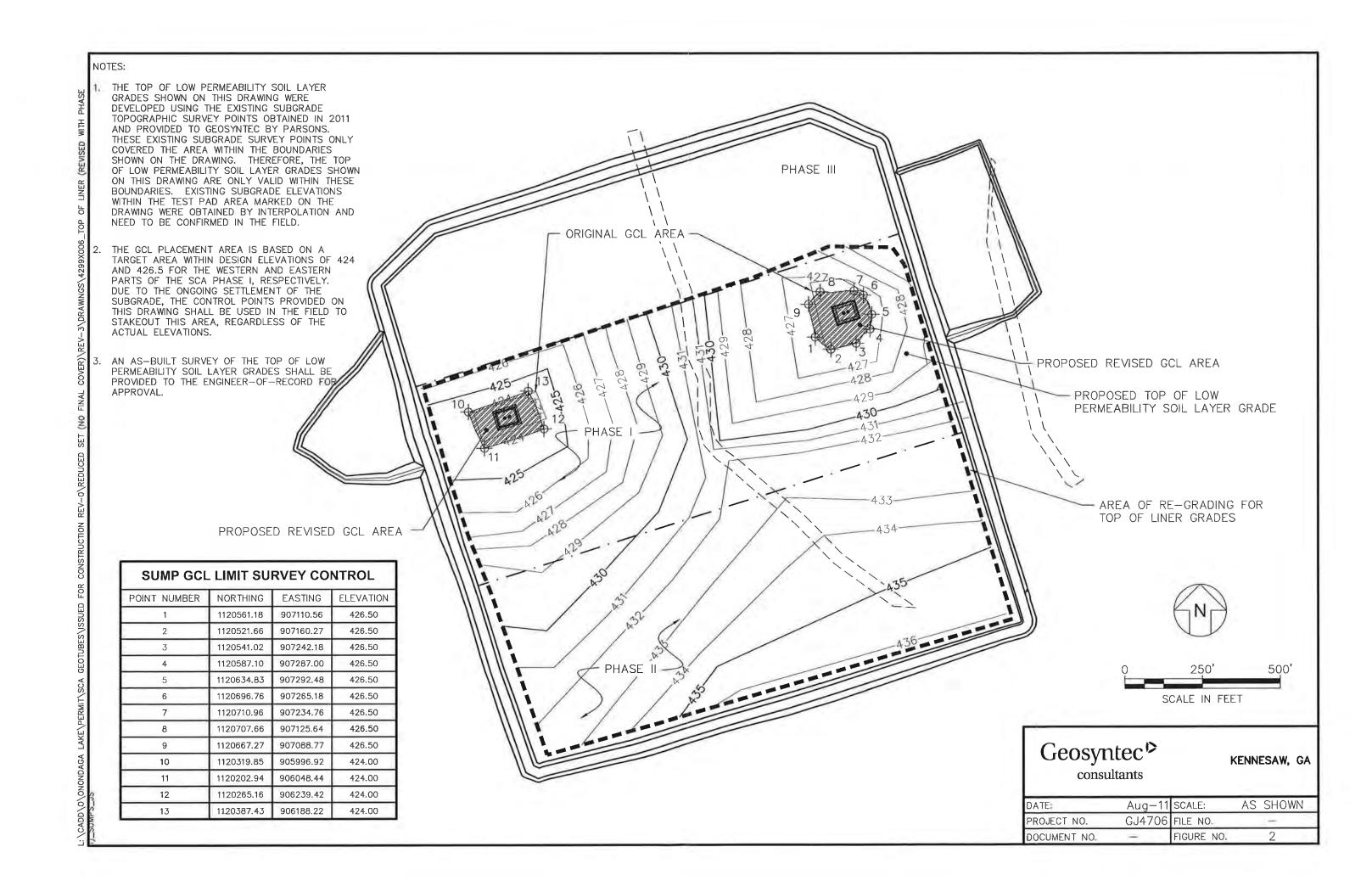
Figure 3 in Attachment 2 presents the calculated settlement from the settlement plates within Phase II. To complete the independent thickness calculation, direct thickness measurements at the settlement plate locations were used along with the subgrade elevations, and top of LPSL elevations. It is noted that some of the plates showed negative settlement (i.e., heave). The heave is not considered to represent field conditions and, therefore, has not been included. Figure 4 in Attachment 2 presents the settlement from the settlement plates within Phase II without the negative settlement (i.e., heave) points.

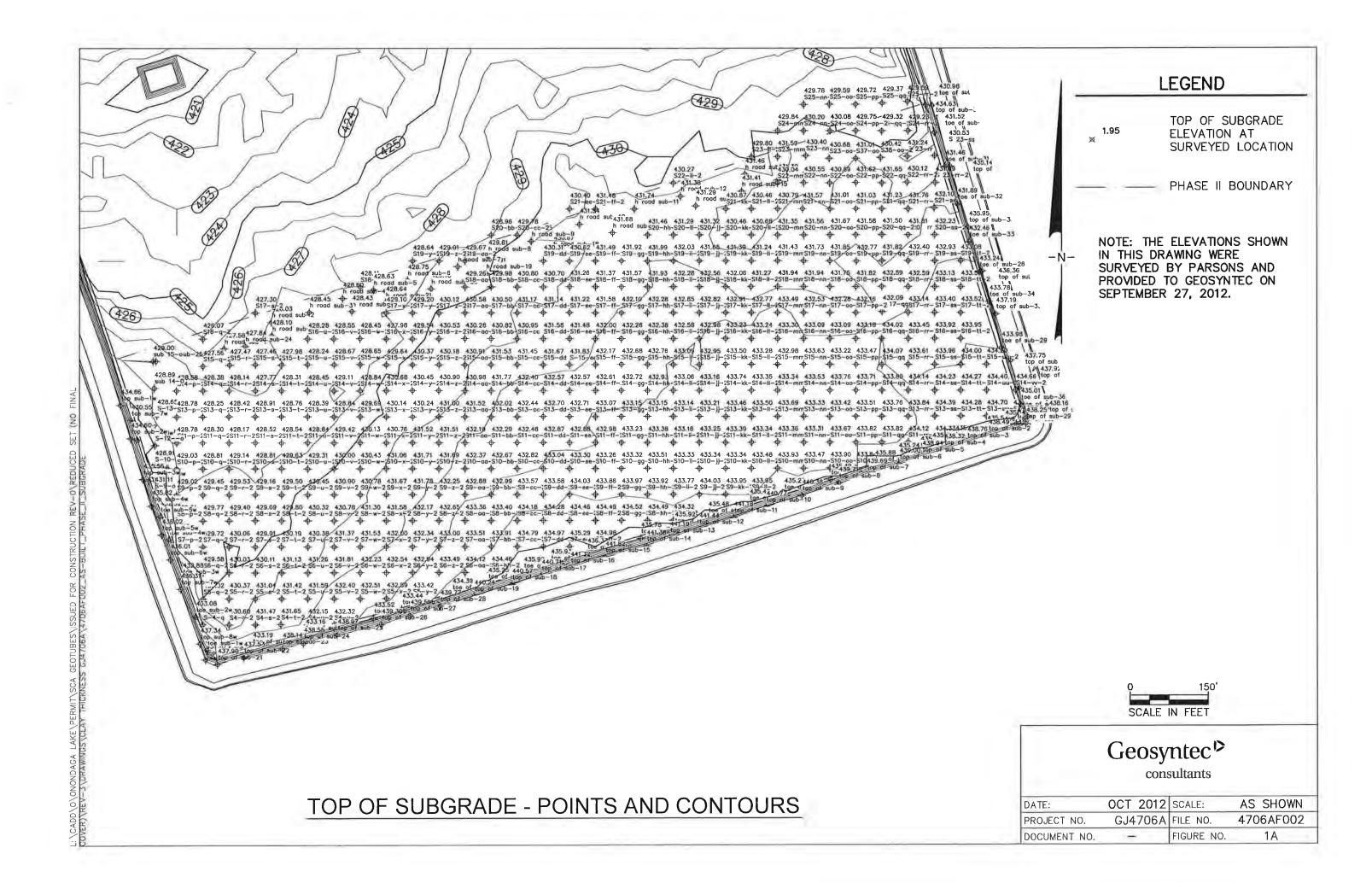
The justification that the LPSL thicknesses at the 3 locations met the minimum required thickness is presented below:

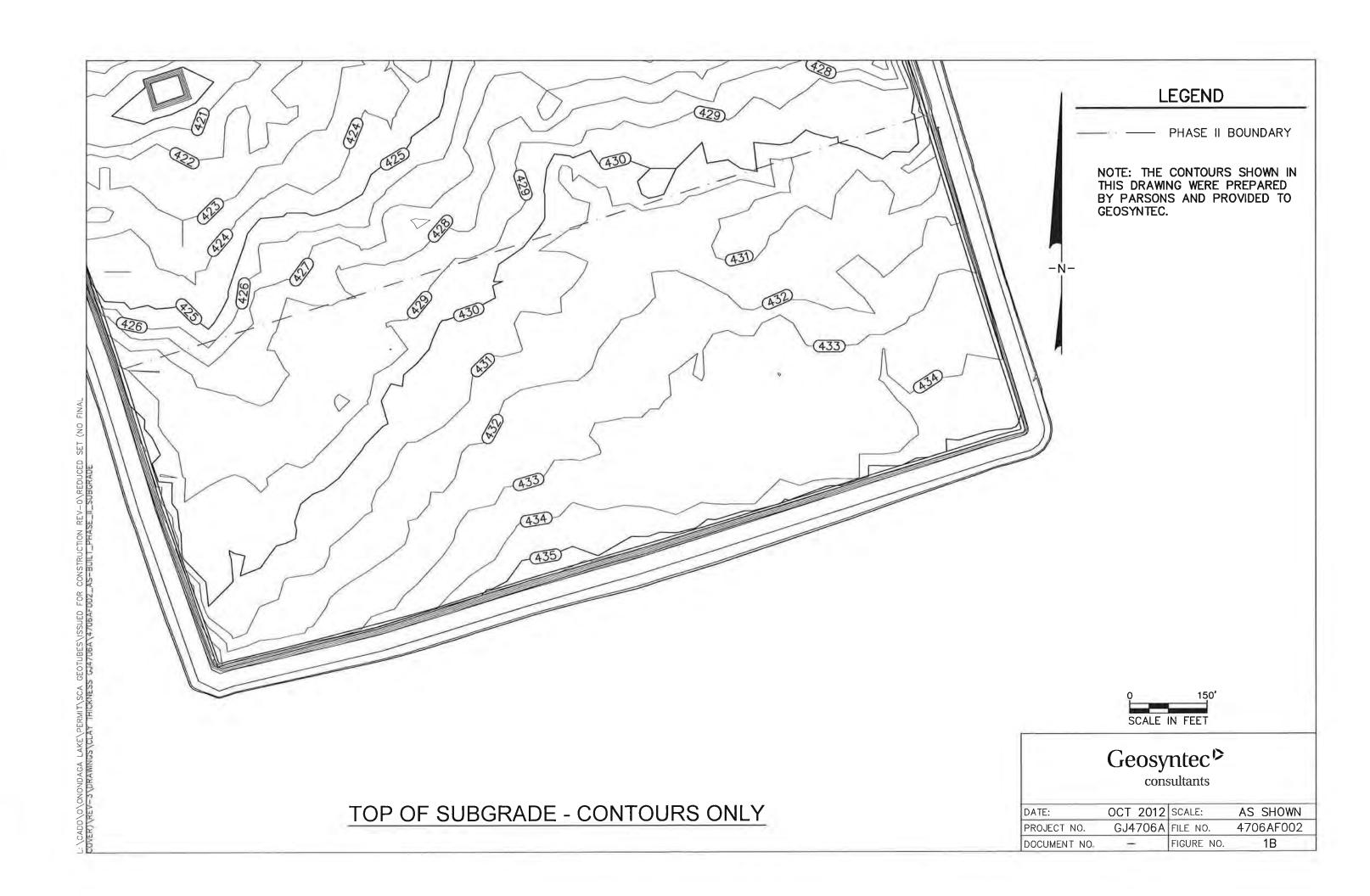

- For Location No. 1 near the northwestern corner of Phase II, the settlement plates near this location show an estimated settlement of 0.16 ft (approximately mean minus one standard deviation). Adding the 0.16 ft of settlement, the estimated LPSL thickness of 1.1 ft meets the requirement.
- For Location No. 2, near the boundary between Phases I and II, the settlement plates surrounding this location in both Phase I and Phase II show an estimated settlement of 0.21 ft (approximately mean minus one standard deviation) was considered to be reasonable. Therefore, for Location No. 2 of Phase II, upon adding the 0.21 ft of settlement, the estimated LPSL thickness of 1.04 ft meets the requirement.
- For Location No. 3, near the northeastern boundary of Phase II, the settlement plate near this location shows an estimated settlement of 0.17 ft (approximately mean minus one standard deviation). Adding the 0.17 ft of settlement, the estimated LPSL thickness of 1.08 ft meets the requirement.

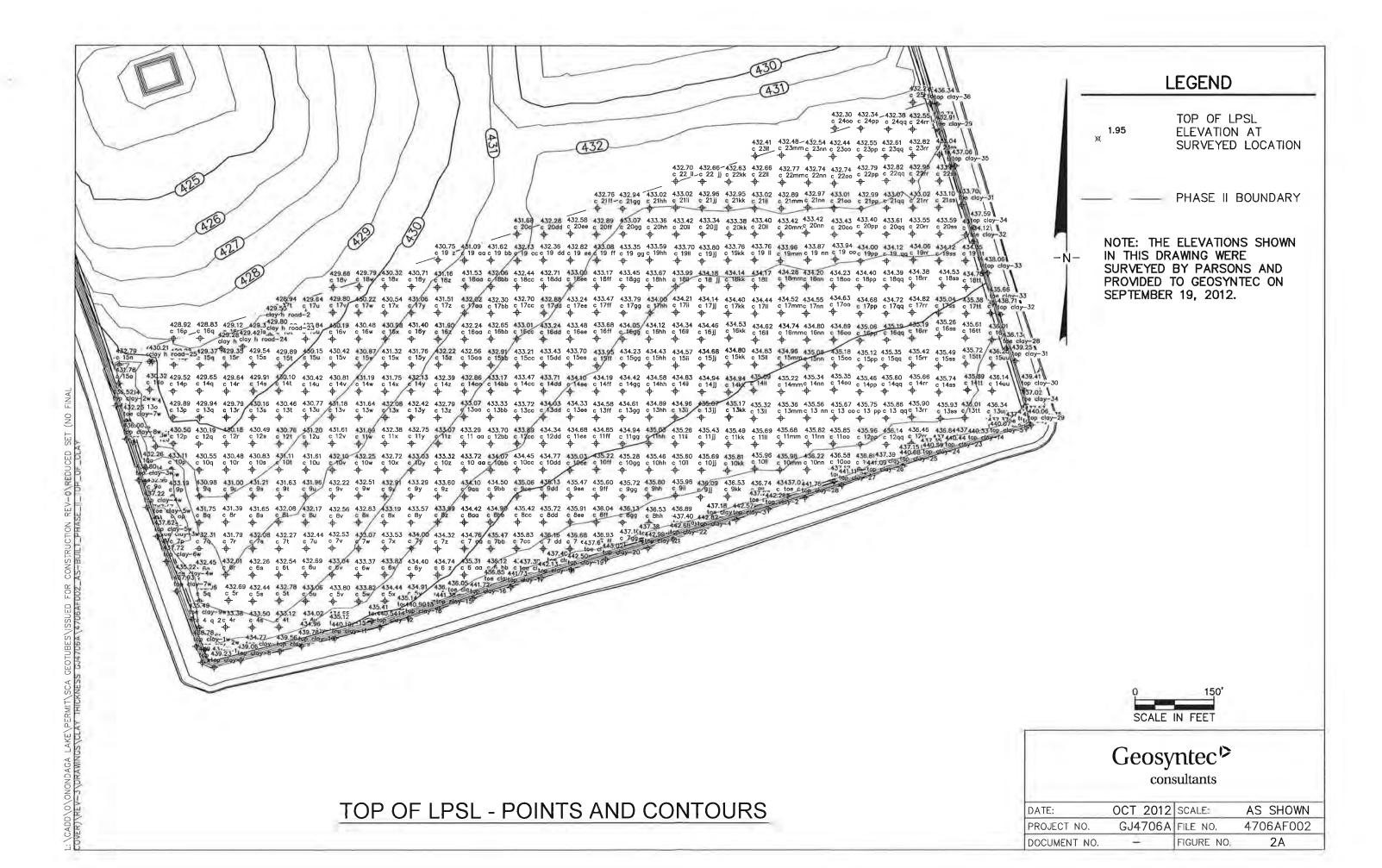

Based on the evaluation presented in this memorandum, the thickness of LPSL installed in Phase II of the SCA is considered to be acceptable.

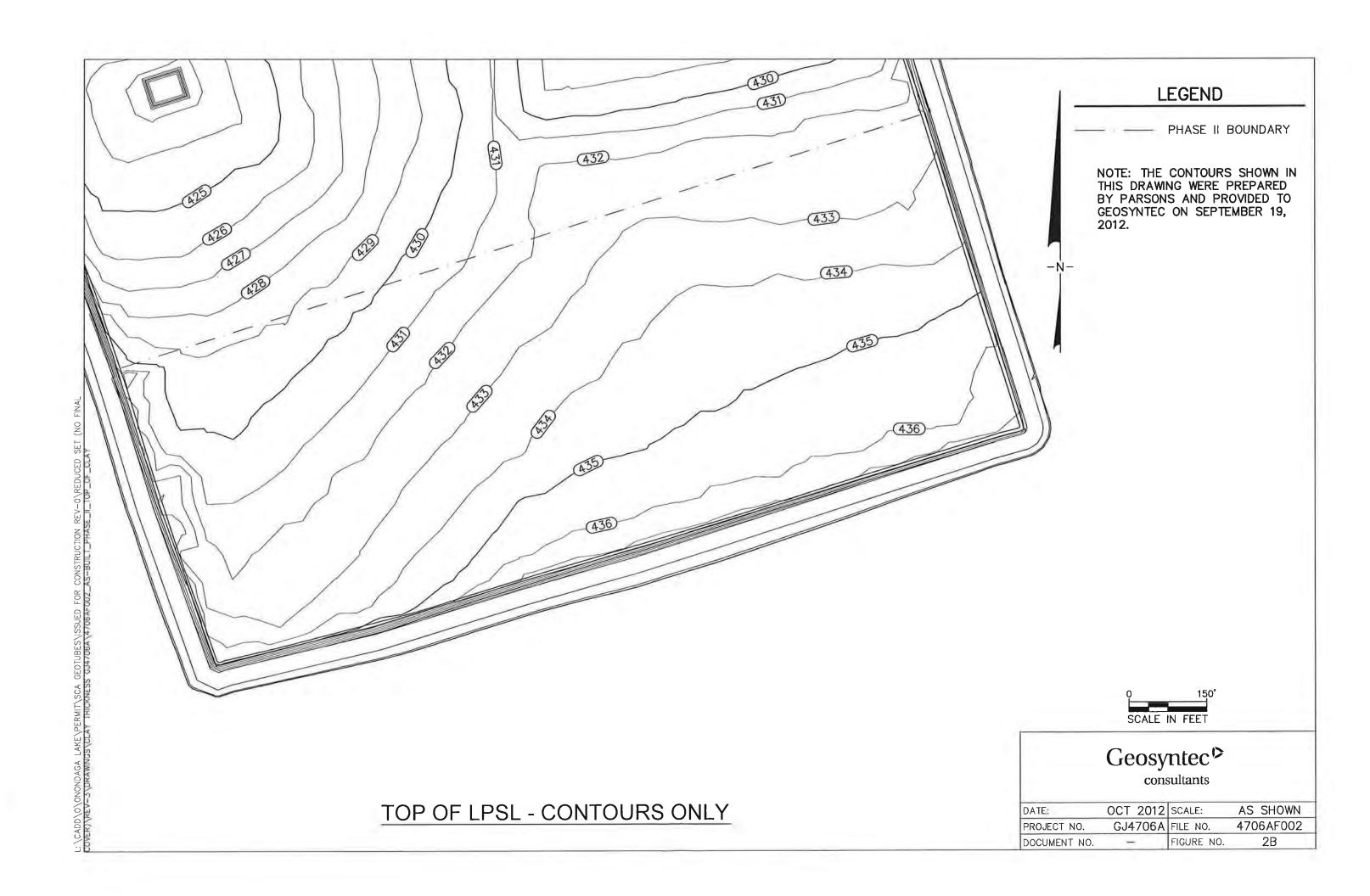

Attachment 1
Design and As-Built Drawings


Approved Design Drawings
April 2011
(Prepared by Geosyntec)

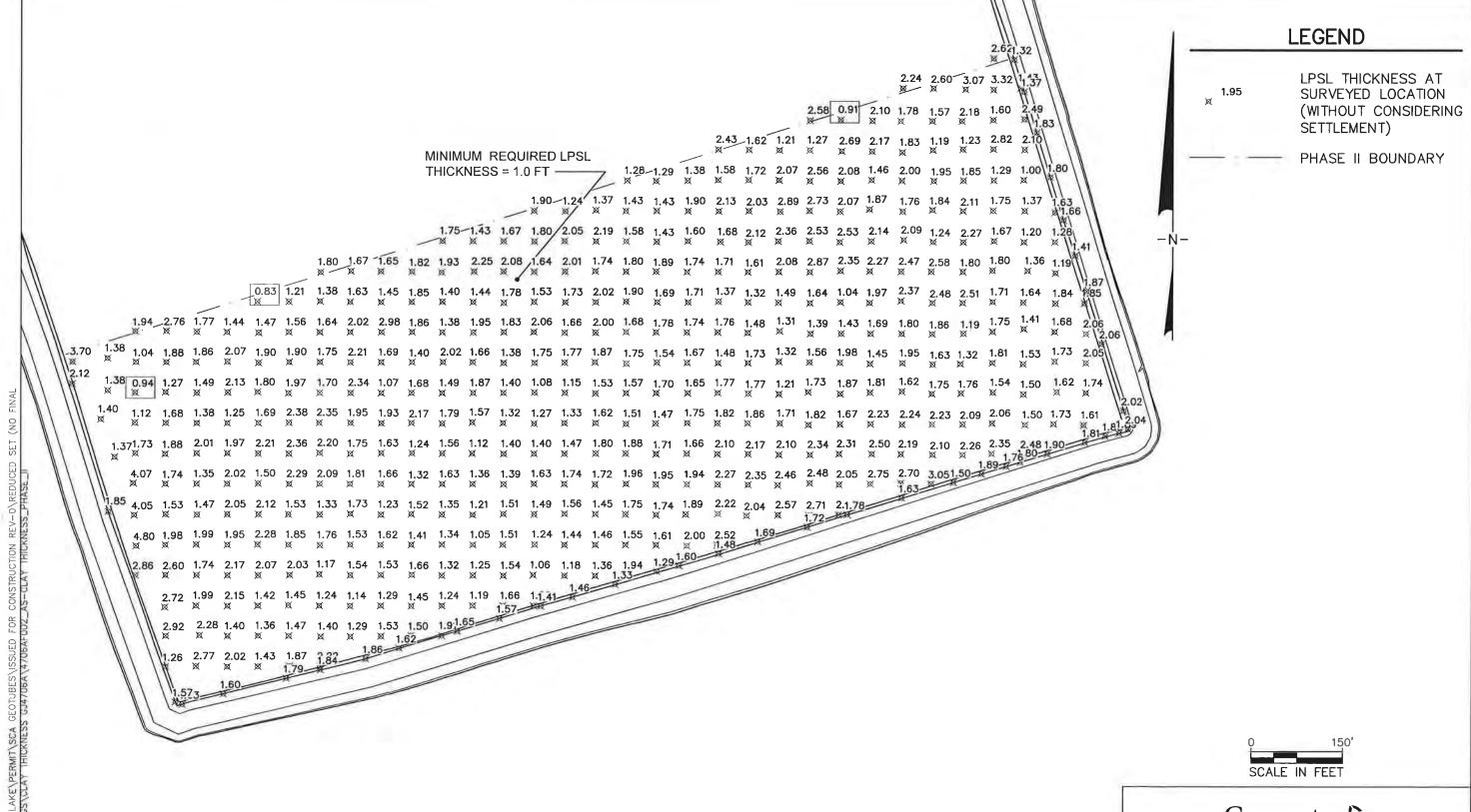

Revised Design Grades per Field Change Form #3
August 2011
(Prepared by Geosyntec)



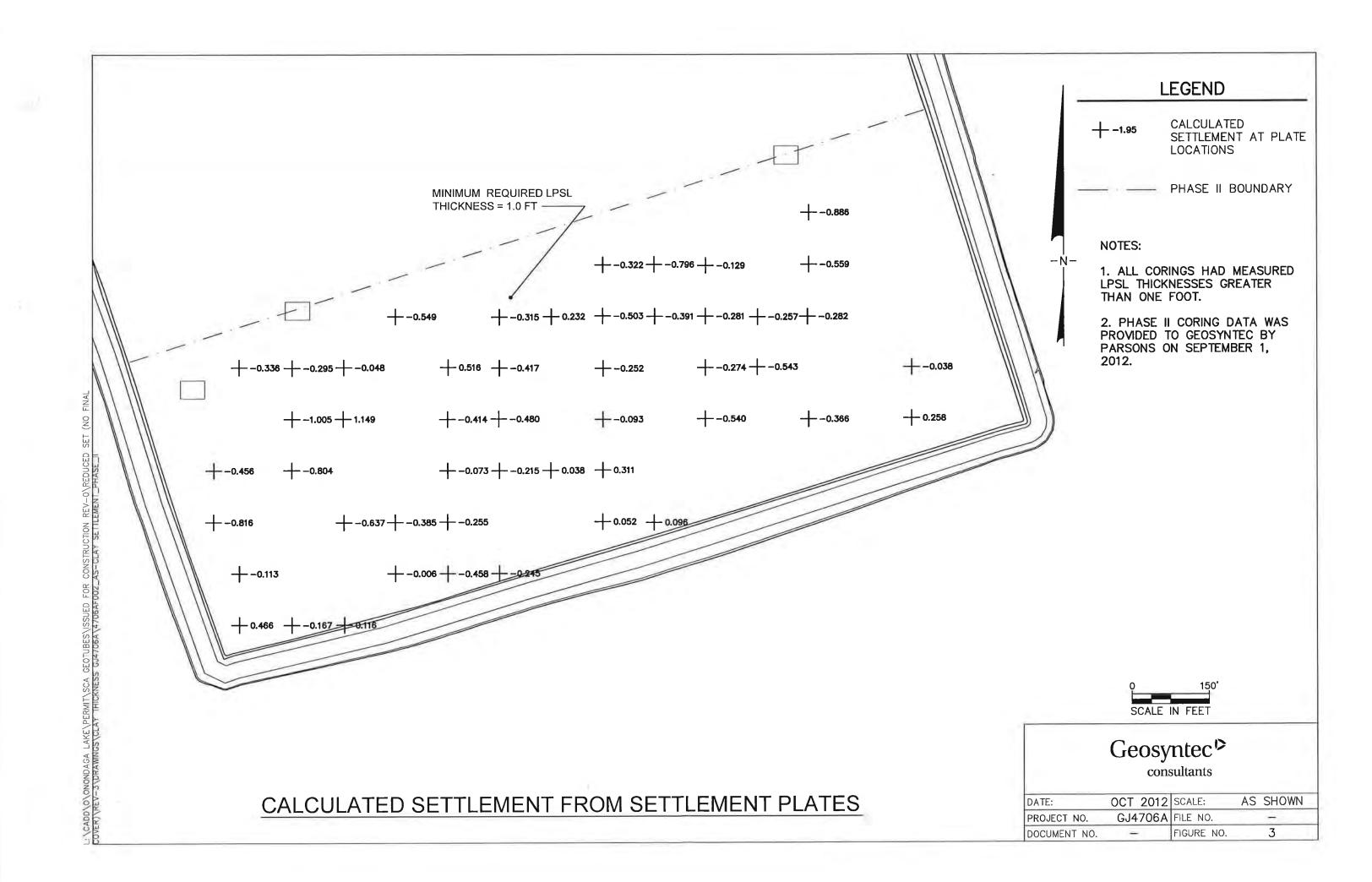


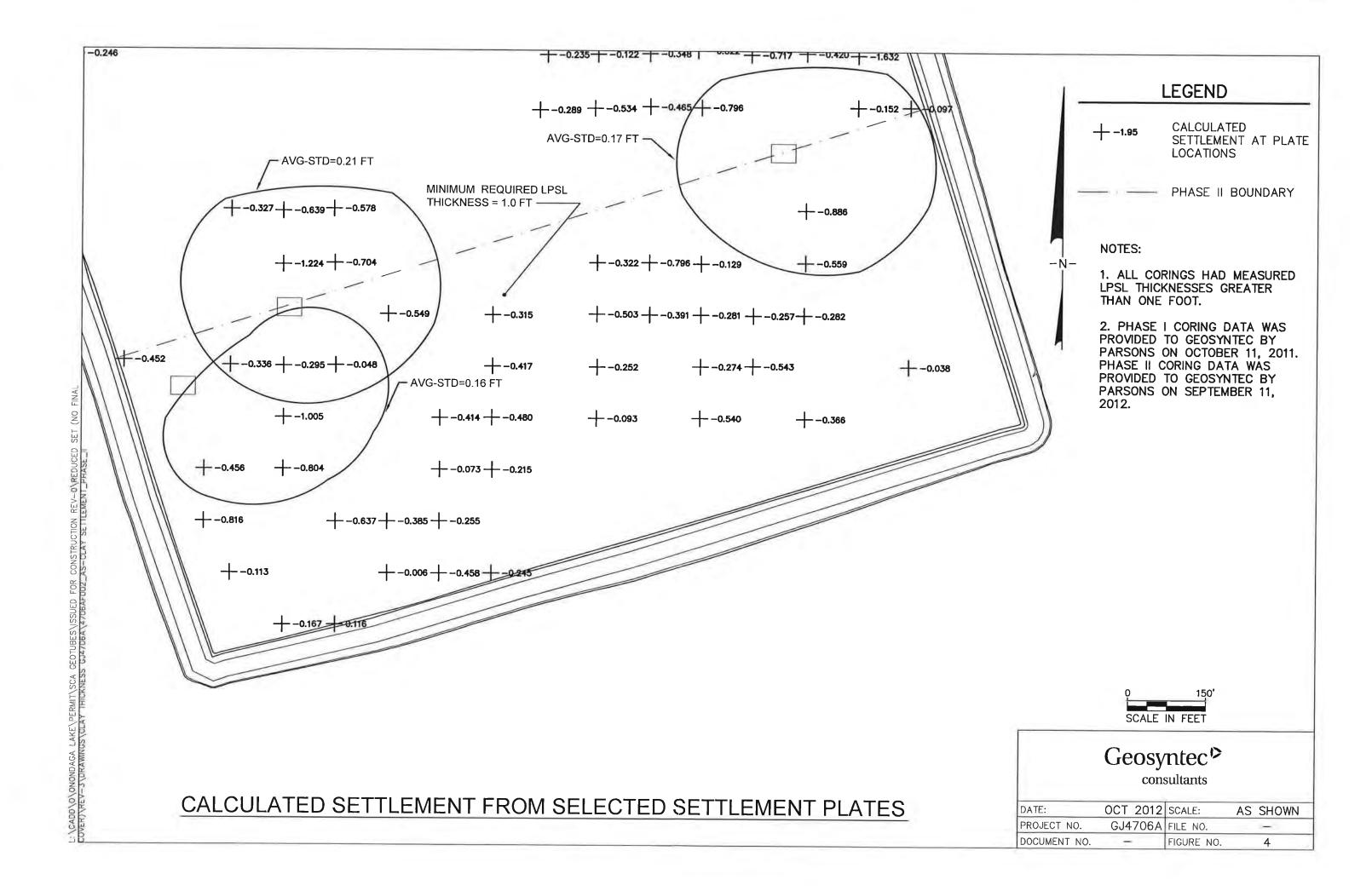

As-Built Grades September 2012 (Prepared by Parsons)

Note: Figures 1A and 2A include the surveyed points and the contours generated by Parsons. For clarity, Figures 1B and 2B only show the contours.



Attachment 2 Thickness Figures




LPSL THICKNESS (WITHOUT CONSIDERING SETTLEMENT)

Geosyntec[>]

consultants

DATE:	OCT 2012	SCALE:	AS SHOWN
PROJECT NO.	GJ4706A	FILE NO.	-
DOCUMENT NO.	-	FIGURE NO.	11

Nuclear Gauge Standard Count Log

consultants

Nuclear Gauge Standard Count Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Model: Troxler 3440

ArrivalDate: 4/27/2012

SerialNo: 28800

DepartureDate:

LeakTestDate: 1/3/2012

Date	Moisture Count	Density Count	Result	QAID
3/30/2012	2256	693	F	JWC
3/30/2012	2269	696	F	JWC
3/30/2012	2274	683	P	JWC
4/2/2012	2288	690	P	DW
4/5/2012	2280	695	Р	DW
4/6/2012	2281	700	P	DW
4/9/2012	2294	702	P	DW
4/10/2012	2350	694	F	DW
4/10/2012	2356	696	F	DW
4/10/2012	2350	694	F	DW
4/10/2012	2354	701	P	DW
4/11/2012	2314	700	F	DW
4/11/2012	2310	702	f	DW
4/11/2012	2313	705	P	DW
4/12/2012	2319	701	р	DW
4/16/2012	2307	698	P	DW
4/17/2012	2283	695	f	DW
4/17/2012	2286	700	р	DW
4/18/2012	2294	693	p	DW
4/19/2012	2276	699	p	DW
4/20/2012	2262	695	р	DW
5/7/2012	2276	699	Р	DW
5/11/2012	698	2311	F	JWC
5/11/2012	695	2307	P	JWC
5/14/2012	698	2263	F	JWC
5/14/2012	693	2266	F	JWC
5/14/2012	696	2266	P	JWC
5/16/2012	700	2256	P	JWC
5/17/2012	696	2301	F	JWC

consultants

Nuclear Gauge Standard Count Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Model: Troxler 3440

ArrivalDate: 4/27/2012

SerialNo: 28800

DepartureDate:

LeakTestDate: 1/3/2012

Date	Moisture Count	Density Count	Result	QAID
5/17/2012	696	2286	Р	JWC
5/18/2012	692	2316	F	JWC
5/18/2012	696	2288	P	JWC
5/21/2012	693	2249	f	DW
5/21/2012	697	2249	f	DW
5/21/2012	683	2260	р	DW
5/22/2012	701	2260	p	DW
5/23/2012	701	2313	f	DW
5/23/2012	699	2303	f	DW
5/23/2012	701	2302	p	DW
5/24/2012	702	2299	р	DW
5/25/2012	698	2269	f	DW
5/25/2012	698	2287	р	DW
5/29/2012	696	2290	P	DW
5/30/2012	697	2268	P	DW
5/31/2012	694	2265	р	DW
6/5/2012	700	2284	р	DW
6/6/2012	698	2290	р	DW
6/7/2012	698	2295	р	DW
6/11/2012	687	2273	р	DW
6/13/2012	690	2280	p	DW
6/14/2012	691	2277	р	DW
6/15/2012	691	2278	p	DW
6/18/2012	700	2270	p	DW
6/19/2012	695	2255	p	DW
6/19/2012	694	2259	p	DW
6/21/2012	697	2228	f	DW
6/21/2012	695	2238	р	DW
6/22/2012	691	2233	р	DW

Geosyntec[>]

consultants

Nuclear Gauge Standard Count Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

TaskNo: 200

Model: Troxler 3440

SerialNo: 28800

ArrivalDate: 4/27/2012

DepartureDate:

LeakTestDate: 1/3/2012

 Date
 Moisture Count
 Density Count
 Result
 QAID

 6/25/2012
 702
 2233
 p
 DW

 6/26/2012
 699
 3339
 p
 DW

Engineered Fill

- Field Density Tests
- Drive Cylinders

Field Density Tests

Geosyntec^o

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

TaskNo: 200

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase II Cell

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

12 -

Moisture Range;

-2 - 2

Soil Type:

I Engineered Fill-Gramby

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

Guage Serial No: 28800

7 Engineering Fill Phase II

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
7-001	P-19	3/30/2012	6	2	EF-001	8.5	129	6.6	6.6	134.5	126.2	98	р	JWC		
7-002	L-19	3/30/2012	6	2	EF-001	8.5	129	6.7	6.7	132.7	124.4	96	р	JWC		
7-003	F-19	3/30/2012	6	2	EF-001	8.5	129	6.5	6.5	130.7	122.7	96	р	JWC		
7-004	Q-19	4/2/2012	6	3	EF-001	8.5	129	6.8	6.8	131.4	123	96	p	DW		
7-005	K-19	4/2/2012	6	3	EF-001	8.5	129	7	7	132	123.4	96	р	DW		
7-006	G-19	4/2/2012	6	3	EF-001	8.5	129	6.7	6.7	132.6	124.2	96	р	DW		
7-007	F-19	5/29/2012	10	4	EF-001	8.5	129	6.5	6.5	133.7	125.5	98	р	DW		
7-008	G-19	5/29/2012	10	4	EF-001	8.5	129	6.7	6.7	134.3	125.9	98	р	DW	100	
7-009	H-19	5/29/2012	10	4	EF-001	8.5	129	7.2	7.2	131.6	122.8	95	р	DW		
7-010	I - 19	5/29/2012	10	4	EF-001	8.5	129	6.5	6.5	133.4	125.3	97	р	DW		
7-011	J-19	5/29/2012	10	4	EF-001	8.5	129	7.4	7.4	134.7	125.4	97	р	DW		
7-012	K-19	5/29/2012	10	4	EF-001	8.5	129	6.5	6.5	132	123.9	96	p	DW		
7-013	L-19	5/29/2012	10	4	EF-001	8.5	129	7.3	7.3	131.7	122.7	95	D	DW		
7-014	M-19	5/29/2012	10	4	EF-001	8.5	129	6.5	6.5	132,5	124,4	96	р	DW		
7-015	E-19	6/5/2012	10	5	EF-001	8.5	129	6.6	6.5	138.4	130	100	р	DW		

Geosyntec^D

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for Onondaga SCA Phase II Cell

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

12 -

Moisture Range:

-2 - 2

Soil Type:

1 Engineered Fill-Gramby

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

7 Engineering Fill Phase II

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
7-016	F-19	6/5/2012	10	5	EF-001	8.5	129	7.4	7.4	133.5	124.3	96	D	DW		
7-017	G-19	6/5/2012	10	5	EF-001	8.5	129	6.9	6.9	135.4	126.7	98	р	DW		
7-018	H-19	6/5/2012	10	5	EF-001	8.5	129	7.9	7.9	135.5	125.6	97	р	DW		
7-019	I-19	6/5/2012	10	5	EF-001	8.5	129	7.3	7.3	137-7	128.3	100	p	DW		
7-020	J-19	6/5/2012	10	5	EF-005	6	136.5	6.5	6.6	139.4	130.8	96	р	DW		
7-021	K-19	6/5/2012	10	5	EF-001	8.5	129	7.2	7.2	136.2	127_1	98	р	DW		
7-022	L-19	6/5/2012	10	5	EF-001	8.5	129	7.8	7.8	137	127, I	99	р	DW		
7-023	M-19	6/5/2012	10	5	EF-001	8.5	129	7.9	7.9	135,6	125.7	97	р	DW		
7-024	N-19	6/5/2012	10	5	EF-001	8.5	129	6.7	6.7	137.4	128.8	99	р	DW		
7-025	O-10	6/5/2012	10	5	EF-001	8-5	129	6.9	6.9	134	125.4	97	p	DW		
7-026	P-19	6/5/2012	10	5	EF-001	8.5	129	7.7	7.7	136.1	126.4	98	р	DW		
7-027	Q-19	6/5/2012	10	4	EF-001	8.5	129	7.3	7.3	135,5	126.3	98	р	DW		
7-028	F-19	6/11/2012	10	6	EF-005	6	136.5	5.2	5.2	139.9	132.9	97	р	DW		
7-029	F-19	6/11/2012	8	6	EF-005	6	136.5	5.2	5.2	139.9	132.9	97	p	DW		
7-030	G-19	6/11/2012	8	6	EF-005	6	136.5	5	5	139.1	132.5	97	р	DW		

Geosyntec^o

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for Onondaga SCA Phase II Cell

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

12 -

Moisture Range:

-2 - 2

Soil Type:

1 Engineered Fill-Gramby

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

7 Engineering Fill Phase II

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	OMC (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC			Percent Compact (%)	Result	ga 1D	No	Result
7-031	I-19	6/11/2012	8	6	EF-005	6	136.5	4.7	4.7	139.7	133.4	97	р	DW		i
7-032	K-19	6/11/2012	8	6	EF-005	6	136.5	5.3	5.3	137.8	130.9	95	р	DW		
7-033	L-19	6/11/2012	8	6	EF-005	6	136,5	5	5	140	133.3	98		DW		
7-034	M-19	6/11/2012	8	6	EF-005	6	136.5	5.1	5,1	138.6	131.9	97	р	DW		
7-035	N-19	6/11/2012	8	6	EF-005	6	136.5	4.7	4.7	138.2	132	96	р	DW		
7-036	O-19	6/11/2012	8	6	EF-005	6	136.5	5_2	5.2	140.1	133.2	97	р	DW		
7-037	Q-19	6/13/2012	8	6	EF-005	6	136.5	5	5	141	134.3	98	р	DW	_	
7-038	R-19	6/13/2012	8	4	EF-005	6	136.5	4.8	4.8	140	133.6	97	Р	DW		
7-039	S-19	6/13/2012	8	3	EF-005	6	136,5	5.2	5.2	138.6	131.7	97	р	DW		
7-040	T-19	6/13/2012	8	1	EF-005	6	136.5	4.5	4.5	139.8	133.8	98	Р			
7-041	U-19	6/13/2012	8	1	EF-005	6	136.5	5.2	5.2	139	132.1	97	р	DW		
7-042	V-19	6/13/2012	8	1	EF-005	6	136.5	4.9	4.9	137.4	131		р	DW		
7-043	V-17	6/13/2012	8	1	EF-005	6	136.5	5.4	5.4	137.7		96	р	DW		
7-044	V-15	6/13/2012	8	1	EF-005	6	136.5	5	5	137.7	130.6	96	р	DW		
7-045	L-19	6/13/2012	8	7	EF-005	6	136.5	5.2	5.2	139.6	132.3	97 97	p	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for Onondaga SCA Phase II Cell

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

12 -

Moisture Range:

-2 - 2

Soil Type:

1 Engineered Fill-Gramby

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

7 Engineering Fill Phase II

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	D advant
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC			Percent Compact (%)	Result	QAID	No	Retest Result
7-046	M-19	6/13/2012	8	7	EF-005	6	136.5	4.7	4.7	140.1	133.8	98	n	DW		
7-047	N-19	6/13/2012	8	7	EF-005	6	136.5	5.4	5.4	140	132.8	97	р			
7-048	P-19	6/13/2012	8	7	EF-005	6	136.5	5.1	5,1	138.7	132.8	97	р	DW		
7-049	Q-19	6/13/2012	8	7	EF-005	6	136.5	5.2	5.2	139.6			Р	DW		
7-050	E-18	6/26/2012	8	1	EF-006	5	139.5	5.1			132.7	97	p	DW		
7-051	E-16	6/26/2012	8	1	EF-006	5	139.5		5.1	141.8	134.9	97	р	DW		
7-052	E-15	6/26/2012	8	1	EF-006	5	_	6.4	6.4	146.1	137.3	98	Р	DW		
7-053	E-14	6/26/2012	8	1			139.5	5.7	5.7	142.9	135,2	97	р	DW		
7-054	E-13			1	EF-006	5	139.5	4.9	4.9	139.6	133.1	95	p	DW		
		6/26/2012	8	1	EF-006	5	139.5	5.5	5-5	142.6	135.2	97	р	DW		
7-055	E-12	6/26/2012	8	1	EF-006	5	139.5	5.9	5.9	141.8	133.9	96	р	DW		
7-056	E-11	6/26/2012	8	1	EF-006	5	139.5	5.5	5.5	140.9	133.6	96	р	DW		
7-057	E-10	6/26/2012	8	1	EF-006	5	139.5	6.1	6.1	143.9	135.6	97	р	DW		
7-058	E-9	6/26/2012	8	1	EF-006	5	139.5	5.2	5.2	143.9	136.8	98				
7-059	E-8	6/26/2012	8	1	EF-006	5	139.5	4,8	4.8	142			p	DW		
7-060	V-15	6/26/2012	8	1	EF-006	5	139.5	4.7	4.7	139.8	135.5	97 96	р	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for Onondaga SCA Phase II Cell

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

12 -

Moisture Range:

-2 - 2

Soil Type:

1 Engineered Fill-Gramby

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

7 Engineering Fill Phase II

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
7-061			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)			No	Result
7-061	V-14	6/26/2012	8	1	EF-006	5	139.5	5.4	5.4	142.1	134.8	97	n	DW		
7-062	V-13	6/26/2012	8	1	EF-006	5	139.5	1 6	6	141.2			Р			
7-063	V-12	(10(10010	0					. 0	U	141.2	133.2	96	р	DW		
7-003	V-12	6/26/2012	8	1	EF-006	5	139.5	5.9	5.9	143.3	135.3	97	D	DW		
7-064	V-11	6/26/2012	8	1	EF-006	5	139.5	6.4	6.4	144.6	135.9	97	D	DW	-	

Drive Cylinders

PROJECT: Onondaga Lake SCA Construct LOCATION: Camillus, New York DESCRIPTION: CQA of SCA Construct		ER)					
LOCATION: Camillus, New York	tion. Phase II				(A	STM D 293	7)
							
DESCRIPTION: CQA of SCA Construct		PRO	OJEC	T NO.: GJ	4706B TASK N		
	ion, Phase I	DA	TE:	2 day	April mor	nth <u>2012</u> y	ear
SOURCE: EF Soil (Granby)							
SPECIFICATION REQUIREMENTS:							
MATERIAL TYPE: FILL SUBG	RADE	SUE	BASE	CL	AY OTHER:		
% COMPACTION:	95			MOISTURE CO	ONTENT RANGE:	+ 2	2%
TEST LOCATION:	7-004			TEST NO.	DCE	F-001	
FIELD TEST DATA ASTM D2937					QA ID:	DW	
CYL HT 1 (IN): CYL HT 2 (IN):	(CYL D	IA 1 (IN):	CYL DIA 2 (IN):	
	JME (1) (cf)	0.033	Е	WET UNIT WEIGH	HT = D/A	(lbs)	132.7
WEIGHT OF SAMPLE & CYLINDER	(lbs)	5.74	F	DRY UNIT WEIGI		(pcf)	124.8
WEIGHT OF CYLINDER	(lbs)	1.36	G	PERCENT COMPA		(%)	96.7
WEIGHT OF WET SAMPLE = B - C	(lbs)	4.38	Н	PASS/FAIL			P
CCURACY OF 0.01-IN., AND CALCULATING THE VECTOR OF T		G AVERAG	E HEI	GHT AND DIAMET	QA ID;	DW	
WT. OF TARE NO.	(gm)	15.2	R	WT. OF WATER =	P-Q	(lbs)	23.1
WT. OF WET SOIL & TARE	(gm)	402.1	S	WT OF DRY SOIL	= Q - O	(pcf)	363.8
WT. OF DRY SOIL & TARE	(gm)	379.0	Т	MOISTURE CONT	ENT = (R/S)X100		6.3
PROCTOR TEST DATA EF-001 [L] N	MAXIMUM DRY	Y UNIT WT	. (pcf)	(M) O	PT. MOIST. CONTENT	· (%)	8
COMPARISION WITH NUCLEAR GAUG	E - ASTM D	6938			QA ID:	DW	
J DELTA MOISTURE CONTENT = T - X		0.2	X	FDT MOISTURE O	CONTENT	(%)	6.1
FDT WET UNIT WT.	(pcf)	131.4	Y	FDT DRY UNIT W	Т.	(pcf)	123.8
W DELTA DRY UNIT WT. = F - Y		1.0				46	
COMMENTS							

Geosyntec^D consultants (ASTM D 2937) **DETERMINATION OF DENSITY (DRIVE CYLINDER)** PROJECT: Onondaga Lake SCA Construction, Phase II PROJECT NO.: GJ4706B TASK NO.: LOCATION: Camillus, New York month 2012 year DESCRIPTION: CQA of SCA Construction, Phase I DATE: 5 day June SOURCE: EF Soil (Granby) SPECIFICATION REQUIREMENTS: OTHER: FILL 🗸 CLAY SUBGRADE SUBBASE MATERIAL TYPE: MOISTURE CONTENT RANGE: 95 % COMPACTION: TEST NO. DCEF-002 7-018 TEST LOCATION: QA ID: DW FIELD TEST DATA -- ASTM D2937 CYL DIA 2 (IN): CYL HT 2 (IN): CYL DIA 1 (IN): CYL HT 1 (IN): VOLUME (1) 135.5 0.033 WET UNIT WEIGHT = D/A (lbs) A CYLINDER NO.: (cf) 126.9 (lbs) 5.83 DRY UNIT WEIGHT = E/(1 + (T/100))(pcf) B WEIGHT OF SAMPLE & CYLINDER PERCENT COMPACTION = F/L 98.3 (lbs) 1.36 WEIGHT OF CYLINDER P 4.47 PASS/FAIL (lbs) H WEIGHT OF WET SAMPLE = B - C NOTE 1. CYLINDER VOLUME IS OBTAINED BY MEASURING THE HEIGHT AND DIAMETER, OF FOUR EQUALLY SPACED POINTS, TO AN ACCURACY OF 0,01-IN., AND CALCULATING THE VOLUME USING AVERAGE HEIGHT AND DIAMETER DW FIELD MOISTURE CONTENT -- ASTM D2216 QA ID: 19.5 (lbs) 15.2 WT. OF WATER = P - Q(gm) WT. OF TARE NO. 287.8 322.5 WT OF DRY SOIL = Q - OWT. OF WET SOIL & TARE (gm) 6.8 MOISTURE CONTENT = (R/S)X100 Q WT. OF DRY SOIL & TARE (gm) 303.0 129 (M) OPT. MOIST. CONTENT (%) 8.5 PROCTOR TEST DATA EF-001 [L] MAXIMUM DRY UNIT WT. (pcf) DW OA ID: COMPARISION WITH NUCLEAR GAUGE - ASTM D 6938 FDT MOISTURE CONTENT 7.9 U DELTA MOISTURE CONTENT = T - X 125.6 FDT DRY UNIT WT. FDT WET UNIT WT. 135.5 (pcf) W DELTA DRY UNIT WT. = F - Y **COMMENTS**

Geosyntec^b consultants (ASTM D 2937) **DETERMINATION OF DENSITY (DRIVE CYLINDER)** PROJECT: Onondaga Lake SCA Construction, Phase II PROJECT NO.: GJ4706B TASK NO.: 200 LOCATION: Camillus, New York month 2012 year DESCRIPTION: CQA of SCA Construction, Phase I DATE: 5 day June SOURCE: EF Soil (Granby) SPECIFICATION REQUIREMENTS: FILL 🗸 SUBGRADE CLAY OTHER: MATERIAL TYPE: SUBBASE MOISTURE CONTENT RANGE: 95 % COMPACTION: DCEF-003 TEST NO. 7-027 TEST LOCATION: QA ID: DW FIELD TEST DATA -- ASTM D2937 CYL DIA 2 (IN): CYL DIA 1 (IN): CYL HT 1 (IN): CYL HT 2 (IN): VOLUME (I) 133.6 (cf) 0.033 WET UNIT WEIGHT = D/A (lbs) CYLINDER NO.: 125.0 WEIGHT OF SAMPLE & CYLINDER (lbs) 5.77 DRY UNIT WEIGHT = E/(1 + (T/100))(pcf) PERCENT COMPACTION = F/L 96.9 (lbs) 1.36 G (%) WEIGHT OF CYLINDER P 4.41 H PASS/FAIL WEIGHT OF WET SAMPLE = B - C (lbs) NOTE 1. CYLINDER VOLUME IS OBTAINED BY MEASURING THE HEIGHT AND DIAMETER, OF FOUR EQUALLY SPACED POINTS, TO AN ACCURACY OF 0.01-IN., AND CALCULATING THE VOLUME USING AVERAGE HEIGHT AND DIAMETER DW FIELD MOISTURE CONTENT -- ASTM D2216 QA ID: 18.3 15.2 WT. OF WATER = P - QP (gm) (lbs) WT. OF TARE NO. 265.1 298.6 WT OF DRY SOIL = Q - O WT. OF WET SOIL & TARE (gm) (pcf) 6.9 MOISTURE CONTENT = (R/S)X100 280.3 WT. OF DRY SOIL & TARE (gm) 8.5 129 (M) OPT. MOIST. CONTENT (%) EF-001 PROCTOR TEST DATA [L] MAXIMUM DRY UNIT WT. (pcf)

COMPARISION WITH NUCLEAR GAUGE - ASTM D	6938		QA ID:	DW	
U DELTA MOISTURE CONTENT = T - X	-0.4	Х	FDT MOISTURE CONTENT	(%)	7.3
V FDT WET UNIT WT. (pcf)	135.5	Y	FDT DRY UNIT WT.	(pcf)	126.3
W DELTA DRY UNIT WT. = F - Y	-1.3	V			
COMMENTS					
COMMENTS					

Geosyntec^D consultants (ASTM D 2937) **DETERMINATION OF DENSITY (DRIVE CYLINDER)** PROJECT: Onondaga Lake SCA Construction, Phase II GJ4706B TASK NO.: PROJECT NO.: LOCATION: Camillus, New York June month 2012 year DESCRIPTION: CQA of SCA Construction, Phase I DATE: 26 day SOURCE: EF Soil (Granby) SPECIFICATION REQUIREMENTS: CLAY OTHER: FILL 🗸 SUBGRADE SUBBASE MATERIAL TYPE: MOISTURE CONTENT RANGE: + 2% 95 % COMPACTION: TEST NO. DCEF-004 7-051 TEST LOCATION: DW FIELD TEST DATA -- ASTM D2937 QA ID: CYL DIA 1 (IN): CYL DIA 2 (IN): CYL HT 2 (IN): CYL HT 1 (IN): 140.9 VOLUME (1) (cf) 0.033 WET UNIT WEIGHT = D/A (lbs) CYLINDER NO.: 133,2 6.01 DRY UNIT WEIGHT = E/(1 + (T/100))(lbs) (pcf) WEIGHT OF SAMPLE & CYLINDER 95.5 (lbs) 1.36 \mathbf{G} PERCENT COMPACTION = F/L (%) WEIGHT OF CYLINDER (lbs) 4.65 P H PASS/FAIL WEIGHT OF WET SAMPLE = B - C NOTE 1. CYLINDER VOLUME IS OBTAINED BY MEASURING THE HEIGHT AND DIAMETER, OF FOUR EQUALLY SPACED POINTS, TO AN ACCURACY OF 0.01-IN., AND CALCULATING THE VOLUME USING AVERAGE HEIGHT AND DIAMETER DW OA ID: FIELD MOISTURE CONTENT -- ASTM D2216 15.2 WT. OF WATER = P - Q(lbs) 16.4 (gm) O WT. OF TARE NO. 282.9 314.5 WT OF DRY SOIL = Q - OWT. OF WET SOIL & TARE (gm) S (pcf) 5.8 298.1 MOISTURE CONTENT = (R/S)X100 (gm) Q WT. OF DRY SOIL & TARE 5 139.5 (M) OPT. MOIST. CONTENT (%) EF-006 [L] MAXIMUM DRY UNIT WT. (pcf) PROCTOR TEST DATA DW QA ID: COMPARISION WITH NUCLEAR GAUGE - ASTM D 6938 FDT MOISTURE CONTENT (%) 6.4 U DELTA MOISTURE CONTENT = T - X 144.6 FDT DRY UNIT WT. (pcf) 135.9 V FDT WET UNIT WT. W DELTA DRY UNIT WT. = F - Y -2.7**COMMENTS**

Low-Permeability Layer

- Field Density Tests
- Drive Cylinders

Field Density Tests

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

5 Phase II, LP Soil, 90% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID		Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	g, i ib	No	Result
5-001	G-19	4/9/2012	10	2	LP-068	16	111	22.2	22.2	126.9	103.8	94	F	JWC	5-047	P
5-002	E-18	4/9/2012	10	2	LP-068	16	111	16.9	16.9	130.6	111.7	100	P	JWC	3-047	
5-003	F-16	4/9/2012	10	2	LP-068	16	111	14	14	137.5	120.6	100	P	JWC		
5-004	F-14	4/9/2012	10	2	LP-103	17.5	113	19.4	19.4	131.2	109.9	97	P	JWC		
5-005	E-13	4/10/2012	10	2	LP-068	16	111	16.8	16.8	128.6	110.1	99	P	DW		
5-006	E-13	4/10/2012	10	2	LP-068	16	111	16.8	16.8	129.8	111.1	100	P	DW		
5-007	E-14	4/10/2012	10	2	LP-068	16	111	19	19	132.7	111.5	100	P	DW		-
5-008	E-14	4/10/2012	10	2	LP-068	16	111	17.6	17.6	126.5	107.5	97	P	DW		
5-009	E-14	4/10/2012	10	2	LP-068	16	111	15.8	15.8	129	111.4	100	P	DW		
5-010	E-15	4/10/2012	10	2	LP-068	16	111	16.3	16.3	132.1	113.6	100	P	DW		-
5-011	E-15	4/10/2012	10	2	LP-068	16	111	16.7	16.7	128.6	110.2	99	P	DW		
5-012	E-16	4/10/2012	10	2	LP-068	16	111	15.2	15.2	127.5	110.7	100	P	DW		
5-013	E-16	4/10/2012	10	2	LP-068	16	111	18.2	18.2	127.4	107.8	97	P	DW		
5-014	E-17	4/10/2012	10	2	LP-068	16	111	18.1	18.1	127.5	107.8	97	Р	DW		
5-015	E-17	4/10/2012	10	2	LP-068	16	111	18.6	18.6	130.7	110.2	100	P	DW		

Geosyntec[>]

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

Guage Type: Troxler 3440

4 LP Soil-Marcellus

Correction Factor: NONE

Series:

5 Phase II, LP Soil, 90% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld		-	QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	-	No	Result
5-016	E-17	4/10/2012	10	2	LP-068	16	111	18.4	18.4	131.3	110.9	100	P	DW		
5-017	E-18	4/10/2012	10	2	LP-068	16	111	11.4	11.4	134.4	120.7	100	F	DW	5-035	Р
5-018	E-18	4/10/2012	10	2	LP-068	16	111	12.6	12.6	132.5	117.6	100	F	DW	5-036	P
5-019	E-19	4/10/2012	10	2	LP-068	16	111	12.1	12.1	128.6	114.7	100	F	DW	5-037	P
5-020	F-19	4/10/2012	10	2	LP-068	16	111	16.1	16.1	130.3	112.2	100	P	DW	3 03 /	- 1
5-021	F-19	4/10/2012	10	2	LP-103	17.5	113	15.6	15.6	132	114.2	100	P	DW		
5-022	F-18	4/10/2012	10	2	LP-068	16	111	17.6	17.6	127	108	97	P	DW		
5-023	F-18	4/10/2012	10	2	LP-068	16	111	17.2	17.2	127,4	108.7	98	P	DW		
5-024	F-18	4/10/2012	10	2	LP-068	16	111	15	15	132	114.7	100	P	DW		
5-025	F-17	4/10/2012	10	2	LP-068	16	111	14.9	14.9	135.3	117.8	100	P	DW		
5-026	F-17	4/10/2012	10	2	LP-068	16	111	13.7	13.7	136.4	119.9	100	Р	DW		-
5-027	F-16	4/10/2012	10	2	LP-068	16	111	14.2	14.2	132.9	116.3	100	P	DW		
5-028	F-16	4/10/2012	10	2	LP-068	16	111	13.4	13.4	133	117.3	100	P	DW		
5-029	F-15	4/10/2012	10	2	LP-068	16	111	14.2	14.2	130	113.9	100	P	DW		
5-030	F-15	4/10/2012	10	2	LP-068	16	111	18.2	18.2	134.2	113.5	100	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

P

DW

-3 - 3

Soil Type:

Guage Type: Troxler 3440

4 LP Soil-Marcellus

Guage Serial No: 28800

Correction Factor: NONE

Series: 5 Phase II, LP Soil, 90% Compaction ID Location Date Probe Lift No. Lab Field QA ID Retest Retest Depth Sample No OMC Max Dry Field MC Correct Wet Unit Dry Unit Percent Result Result Unit Wt MC WtWt(%) Compact (PCF) (PCF) (PCF) (%)5-031 F-14 4/10/2012 10 LP-068 2 16 111 18.4 18.4 129.4 109.3 99 P DW 5-032 F-14 4/10/2012 10 2 LP-068 16 111 17.1 17.1 130.2 111,2 100 P DW 5-033 F-13 4/10/2012 10 2 LP-068 16 111 18 18 130.9 110.9 100 P DW 5-034 F-13 4/10/2012 10 2 LP-068 16 111 15.3 15.3 128.3 111.3 P 100 DW 5-035 E-18 4/11/2012 10 2 LP-068 16 111 14.7 14.7 125 109 98 P DW 5-036 E-18 4/11/2012 10 2 LP-068 16 111 16.1 16.1 127.3 109.6 99 P DW 5-037 E-19 4/11/2012 10 2 LP-068 16 111 15.8 15.8 126.8 109.5 99 P DW 5-038 F-13 4/16/2012 10 3 LP-103 17.5 113 17.3 17.3 123.7 105.5 93 P DW 5-039 E-15 4/16/2012 10 3 LP-103 17.5 113 19.7 19.7 122.3 102.2 90 P DW 5-040 F-18 4/16/2012 10 3 LP-103 17.5 113 18.1 18.1 123.5 104.6 93 P DW 5-041 G-15 4/16/2012 10 2 LP-103 17.5 113 16.2 127.9 16.2 110.1 97 P DW 5-042 G-15 4/16/2012 10 2 LP-103 17.5 113 17.5 17.5 128.5 109.4 97 P DW 5-043 G-16 4/16/2012 10 2 LP-103 17.5 113 17.9 17.9 132.4 112.3 P 100 DW 5-044 G-16 4/16/2012 10 2 LP-103 17.5 113 19.4 19.4 132.1 110.6 98 Р DW

113

18.7

18.7

130.1

109.6

G-16

4/16/2012

10

2

LP-103

17.5

5-045

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

5 Phase II, LP Soil, 90% Compaction

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
5-046	G-17	4/16/2012	10	2	LP-103	17.5	113	16.5	16.5	129.5	111.2	98	P	DW		
5-047	G-17	4/16/2012	10	2	LP-103	17.5	113	17.4	17.4	131.3	111.8	99	P	DW		
5-048	H-17	4/16/2012	10	2	LP-103	17.5	113	19.7	19.7	132.1	110.4	98	P	DW		
5-049	H-17	4/16/2012	10	2	LP-103	17.5	113	19.4	19.4	133.1	111.5	99	P	DW		
5-050	H-16	4/16/2012	10	2	LP-103	17.5	113	18.1	18.1	132.6	112.3	99	P	DW		
5-051	H-16	4/16/2012	10	2	LP-103	17.5	113	19	19	130.1	109.3	97	P	DW		
5-052	H-15	4/16/2012	10	2	LP-103	17.5	113	17.8	17.8	130.3	110.6	98	P	DW		
5-053	H-15	4/16/2012	10	2	LP-103	17.5	113	17.2	17.2	130.2	111,1	98	P	DW		
5-054	G-14	4/17/2012	10	2	LP-103	17.5	113	18.6	18.6	131.3	110.7	98	P	DW		
5-055	G-14	4/17/2012	10	2	LP-103	17.5	113	18.9	18.9	129.5	108.9	96	P	DW		
5-056	H-14	4/17/2012	10	2	LP-103	17.5	113	18.9	18.9	129.7	109	97	P	DW		
5-057	H-14	4/17/2012	10	2	LP-103	17.5	113	19	19	130.3	109.5	97	P	DW		
5-058	H-14	4/17/2012	10	2	LP-103	17.5	113	17.2	17.2	128.5	109.6	97	Р	DW		

Geosyntec[>]

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.6319x + 7.8666

Series:

5 Phase II, LP Soil, 90% Compaction

Guage Serial No: 28800

ID Location Date Probe Lift No. Lab Field QA ID Retest Retest Depth Sample No OMC Max Dry Field MC Correct Wet Unit Dry Unit No Percent Result Result Unit Wt MC (%) WtWtCompact (PCF) (PCF) (PCF) 5-059 I-14 5/7/2012 8 2 LP-103 17.5 113 18.7 19.7 129.1 107.9 96 P DW 5-060 I-14 5/7/2012 8 2 LP-103 17.5 113 18.4 19.5 129.4 108.3 96 P DW 5-061 I-14 5/7/2012 8 2 LP-103 17.5 113 16.3 18.2 130.5 110.4 98 P DW 5-062 I-15 5/7/2012 8 2 LP-103 17.5 113 17.2 18.7 130.2 109.7 97 P DW 5-063 I-15 5/7/2012 8 2 LP-103 17.5 113 18.1 19.3 129.4 108.5 96 P DW 5-064 I-16 5/7/2012 8 2 LP-103 17.5 113 17.5 18.9 130.1 109.4 97 P DW 5-065 I-16 5/7/2012 8 2 LP-103 17.5 113 18.6 19.6 129.6 108.4 96 P DW

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Location

N-13

N-14

M-14

N-14

M-13

M-14

N-14

Q-13

P-13

O-13

P-14

0-14

P-14

Q-14

J-19

Percent Compaction: 90

Probe Lift No.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

LP-128

LP-128

LP-128

LP-128

LP-128

LP-128

16

16

16

16

16

16

115.5

115.5

115.5

115.5

115.5

115.5

15.7

15.3

16.1

15.1

17.3

14.7

17.6

17.3

17.9

17.1

18.9

16.8

Depth

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

ID

5-066

5-067

5-068

5-069

5-070

5-071

5-072

5-073

5-074

5-075

5-076

5-077

5-078

5-079

5-080

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

5 Phase II, LP Soil, 90% Compaction

Date

5/16/2012

5/16/2012

5/16/2012

5/16/2012

5/16/2012

5/16/2012

5/16/2012

5/18/2012

5/18/2012

5/18/2012

5/18/2012

5/18/2012

5/18/2012

5/18/2012

5/22/2012

Guage Serial No: 28800

Lab Field QA ID Retest Retest Sample No OMC Max Dry Field MC Correct Wet Unit Dry Unit No Result Percent Result Unit Wt MCWt (%) WtCompact (PCF) (PCF) (PCF) (%)LP-103 17.5 113 18.4 19.9 129.1 107.7 95 P JWC LP-103 17.5 113 20.2 21.4 128.8 106.1 94 F **JWC** 5-069 P LP-103 17.5 113 18.9 20.3 129.3 107.5 95 P JWC LP-103 17.5 113 18.9 20.3 130.1 108.2 96 P JWC LP-103 17.5 113 18.5 19.9 128.9 107.5 95 P **JWC** LP-103 17.5 113 18.8 20.2 129.5 107.7 95 P JWC LP-103 17.5 113 18.8 20.2 130.6 108.7 96 JWC LP-128 16 115.5 16.8 18.5 132.4 111.7 97 Р JWC LP-128 16 115,5 13.6 15.9 135.3 116.7 100 P JWC

128.7

132.8

131.9

134.2

126.9

130.3

109.4

113.2

111.9

114.6

106.7

111.6

95

98

97

99

92

97

P

P

P

P

P

P

JWC

JWC

JWC

JWC

JWC

DW

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

5 Phase II, LP Soil, 90% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fie	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC		Dry Unit Wt (PCF)	Percent Compact (%)	Result	QAID	No No	Result
5-081	L-19	5/22/2012	8	2	LP-128	16	115.5	16.2	18	131,7	111.6	97	Р	DW		
5-082	M-18	5/22/2012	8	2	LP-128	16	115.5	16.4	18.2	130.1	110.1	95	P	DW		
5-083	M-19	5/23/2012	8	2	LP-128	16	115.5	15	17	132.4	113.2	98	P	DW		
5-084	N-19	5/23/2012	8	2	LP-128	16	115.5	15.9	17.8	131.2	111.4	97	P	DW		
5-085	N-19	5/23/2012	8	2	LP-128	16	115.5	15.9	17.8	130.8	111.4	96	P	DW		
5-086	M-18	5/23/2012	8	2	LP-128	16	115.5	16	17.8	130.8	111	96	P	DW		
5-087	O-18	5/24/2012	8	2	LP-128	16	115.5	15.8	17.7	133.4	113.3	98	P	DW	-	
5-088	P-18	5/24/2012	8	2	LP-128	16	115.5	15.2	17.2	129,6	110.6	96	Р			
5-089	N-19	5/23/2012	8	2	LP-128	16	115.5	15.8	17.7	129.7	110.2	95	P	DW		
5-090	N-18	5/23/2012	8	2	LP-128	16	115.5	16	17.9	131	111.1	96		DW		
5-091	M-15	5/23/2012	8	2	LP-128	16	115.5	15.3	17.3	128.7	109.7		P	DW	-	
5-092	N-15	5/23/2012	8	2	LP-128	16	115.5	14.8	16.9	131	112.1	95	P	DW		
5-093	N-15	5/23/2012	8	2	LP-128	16	115.5	16.6	18.4	130.6		97	P	DW		
5-094	Q-14	5/25/2012	8	2	LP-128	16	115.5	15.3	17.3	128.2	110.3	96	P	DW		
5-095	R-15	5/25/2012	8	2	LP-128	16	115.5	14.5	16.6	132.2	109.3	94	P P	DW DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

5 Phase II, LP Soil, 90% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	2.12	No	Result
5-096	R-15	5/25/2012	8	2	LP-128	16	115.5	14.7	16.8	128.2	109.8	95	P	DW		
5-097	R-15	5/25/2012	8	2	LP-128	16	115.5	16	17.9	131	111.1	96	P	DW		
5-098	U-13	6/11/2012	8	2	LP-128	16	115.5	13.8	16	129.1	111.3	96	P	DW		
5-099	U-13	6/11/2012	8	2	LP-128	16	115.5	16.3	18.1	129.5	109.7	95	P	DW		
5-100	U-13	6/11/2012	8	3	LP-128	16	115.5	14.3	16.5	131.5	112.9	98	P	DW		
5-101	U-13	6/11/2012	8	3	LP-128	16	115.5	15.7	17.6	132.5	112.7	98	P	DW		
5-102	U-13	6/11/2012	8	4	LP-128	16	115.5	14.8	16.9	131	112.I	97	P	DW		
5-103	U-13	6/11/2012	8	4	LP-128	16	115.5	15.3	17.3	128.7	109.7	95	P	DW		
5-104	S-14	6/11/2012	8	2	LP-128	16	115.5	13.4	15.7	128.6	111.1	96	P	DW		
5-105	S-14	6/11/2012	8	2	LP-128	16	115.5	14.8	16.9	130.7	111.8	97	P	DW		
5-106	S-14	6/11/2012	8	2	LP-128	16	115.5	16.3	18.1	129.5	109.7	95	P	DW		
5-107	R-14	6/11/2012	8	2	LP-128	16	115.5	15.4	17,4	129.2	110.1	95	P	DW		
5-108	R-14	6/11/2012	8	2	LP-128	16	115.5	15	17	131.8	112.6	98	P	DW		_
5-109	S-15	6/11/2012	8	2	LP-128	16	115.5	13.8	16	130.5	112.5	97	P	DW	_	
5-110	S-15	6/11/2012	8	2	LP-128	16	115.5	14.1	16.3	129.4	111.3	96	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 90

Lift Thickness (Compacted - Loose):

8 - 10

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

5 Phase II, LP Soil, 90% Compaction

ID	Location	Date		Lift No.		Field							Retest	Retest		
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	QA ID	No	Result
5-111	S-15	6/11/2012	8	2	LP-128	16	115.5	16.4	18.2	133.4	112.9	98	P	DW		
5-112	R-16	6/11/2012	8	2	LP-128	16	115.5	16.6	18.4	130.5	110,2	95	P	DW		
5-113	R-16	6/11/2012	8	2	LP-128	16	115.5	15.7	17.6	132.3	112.5	97	P	DW		
5-114	Q-18	6/11/2012	8	2	LP-128	16	115.5	16.6	18.4	130.5	110.2	95	P	DW		-
5-115	Q-18	6/11/2012	8	2	LP-128	16	115.5	16.2	18	131.7	111.6	97	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

6 Phase II, LP Soil, 95% Compaction

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: NONE

Series:

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-001	E-13	4/17/2012	10	3	LP-103	17.5	113	18.8	18.8	129.6	109	97	P	DW		
6-002	E-14	4/17/2012	10	3	LP-103	17.5	113	19.4	19.4	129.6	108.5	96	р	DW		
6-003	E-13	4/17/2012	10	3	LP-103	17.5	113	19.4	19.4	129.3	108.3	96	P	DW		-
6-004	E-15	4/17/2012	10	3	LP-103	17.5	113	18	18	130.3	110.4	98	р	DW		
6-005	E-16	4/17/2012	10	3	LP-103	17.5	113	17.5	17.5	128,4	109.3	97	P	DW		
6-006	E-17	4/17/2012	10	3	LP-103	17.5	113	17.8	17.8	131	111.2	98	P	DW		
6-007	E-18	4/17/2012	10	3	LP-103	17.5	113	18.8	18.8	130.3	109.7	97	P	DW		
6-008	E-19	4/17/2012	10	3	LP-103	17.5	113	19.7	19.7	129.3	108	96	P	DW		
6-009	F-18	4/18/2012	8	3	LP-103	17.5	113	17.6	17.6	127.4	108.3	96	P	DW		
6-010	F-18	4/18/2012	8	3	LP-103	17.5	113	17.8	17.8	127.3	108.1	96	P	DW		-
6-011	F-17	4/18/2012	8	3	LP-103	17.5	113	17.5	17,5	128.6	109.4	97	P	DW		
6-012	F-17	4/18/2012	8	3	LP-103	17.5	113	17.8	17.8	129.4	109.9	97	P	DW		-
6-013	F-16	4/18/2012	8	3	LP-103	17.5	113	18.1	18.1	128.6	108.9	96	P	DW		
6-014	F-16	4/18/2012	8	3	LP-103	17.5	113	19.2	19.2	128.5	107.8	95	P	DW		
6-015	F-16	4/18/2012	8	3	LP-103	17.5	113	17.9	17.9	128.8	109.3	97	P	DW		

Geosyntec[>]

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

Guage Type: Troxler 3440

4 LP Soil-Marcellus

Correction Factor: NONE

Series:

6 Phase II, LP Soil, 95% Compaction

Guage Serial No: 28800

ID Location Date Probe Lift No. LabField QA ID Retest Retest Depth Sample No OMC Max Dry Field MC Correct Wet Unit Dry Unit No Result Percent Result Unit Wt MCWtWtCompact (%)(PCF) (PCF) (PCF) (%)6-016 F-15 4/18/2012 8 3 LP-103 17.5 113 18.5 18.5 128.5 108.4 96 P DW 6-017 F-15 4/18/2012 8 3 LP-103 17.5 113 17.8 17.8 128.4 109 96 P DW 6-018 F-14 4/18/2012 8 3 LP-103 17.5 113 19.7 19.7 128.9 107.7 95 P DW 6-019 F-14 4/18/2012 8 3 LP-103 17.5 113 19.1 19.1 129.8 109 97 P DW 6-020 F-13 8 4/18/2012 3 LP-103 17.5 113 18.6 18.6 128.2 108.1 96 DW 6-021 F-13 4/18/2012 8 LP-103 3 17.5 113 18.2 18.2 128.6 108.8 96 P DW 6-022 F-13 4/18/2012 8 3 LP-103 17.5 113 17.9 17.9 129.5 109.9 97 P DW 6-023 F-19 4/18/2012 8 3 LP-103 17.5 113 19 129.3 108.6 96 Ρ DW

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.6319x + 7.8666

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
8			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-024	G-19	4/19/2012	8	2	LP-103	17.5	113	17.5	18.9	129.5	108.9	96	Р	DW		
6-025	G-18	4/19/2012	8	2	LP-103	17.5	113	18	19.2	129.1	108.4	96	P	DW		
6-026	G-18	4/19/2012	8	2	LP-103	17.5	113	18.4	19.5	128.9	107.9	96	P	DW		
6-027	G-18	4/19/2012	8	2	LP-103	17.5	113	19.6	20.3	129.4	107.6	95	P	DW		
6-028	G-17	4/19/2012	8	3	LP-103	17,5	113	17.6	19	130.4	109.6	97	P	DW		
6-029	G-17	4/19/2012	8	3	LP-103	17.5	113	18.1	19.3	129.4	108.5	96	P	DW		
6-030	G-16	4/19/2012	8	3	LP-103	17.5	113	17.9	19.2	128.5	107.8	95	P	DW	-	
6-031	G-16	4/19/2012	8	3	LP-103	17.5	113	18.3	19.4	128.7	107.8	95	P	DW		
6-032	G-15	4/19/2012	8	3	LP-103	17.5	113	17.6	19	129.5	108.8	96	P	DW		_
6-033	G-15	4/19/2012	8	3	LP-103	17.5	113	17.5	18.9	130.1	109.4	97	P	DW		
6-034	G-14	4/19/2012	8	3	LP-103	17.5	113	17.8	19.1	128	107.5	95	P	DW		
6-035	G-14	4/19/2012	8	3	LP-103	17.5	113	18.4	19.5	129.8	108.6	96	P	DW		
6-036	G-14	4/19/2012	8	3	LP-103	17.5	113	18.9	19.8	128.8	107.5	95	P	DW		
6-037	G-13	4/19/2012	8	2	LP-103	17.5	113	18.3	19.4	129	108	96	P	DW		
6-038	G-13	4/19/2012	8	2	LP-103	17.5	113	17.6	19	130	109.2	97	P	DW	-	

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.6319x + 7.8666

Series:

6 Phase II, LP Soil, 95% Compaction

Guage Serial No: 28800

ID Location Date Probe Lift No. Lab Field QA ID Retest Retest Depth Sample No ОМС Max Dry Field MC Correct Wet Unit Dry Unit Percent Result Result Unit Wt MC (%) Wt Compact (PCF) (PCF) (PCF) (%) 6-039 H-18 5/7/2012 8 2 LP-103 17.5 113 10.6 14.6 132.6 115.7 100 F DW 6-050 P 6-040 H-16 5/7/2012 8 3 LP-103 17.5 113 12.4 15.7 130.4 112.7 100 P DW 6-041 H-14 5/7/2012 8 3 LP-103 17.5 113 11.2 14.9 131 114 100 P DW 6-042 E-14 5/7/2012 8 1 LP-103 17.5 113 17.1 18.7 129.3 108.9 96 P DW 6-043 E-16 5/7/2012 8 1 LP-103 17.5 113 16.9 18.5 127.9 107.9 95 P DW 6-044 E-18 5/7/2012 8 1 LP-103 17.5 113 18.1 16.2 130.3 110.3 98 P DW 6-045 F-19 5/7/2012 8 1 LP-103 17.5 113 16.5 18.3 129.7 109.6 97 DW

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	-	Dry Unit Wt (PCF)	Percent Compact (%)	Result	QAID	No	Result
6-046	H-19	5/11/2012	8	3	LP-103	17.5	113	14.6	16.7	131.7	112.9	100	P	JWC		
6-047	H-16	5/11/2012	8	3	LP-103	17.5	113	15.3	17.3	135.8	115.8	100	P	JWC		
6-048	H-14	5/11/2012	8	3	LP-103	17.5	113	14.8	16.9	132.1	113	100	P	JWC		
6-049	H-18	5/11/2012	8	2	LP-103	17.5	113	8.8	11.9	124.4	111.2	98	F	JWC	6.073	
6-050	H-18	5/11/2012	8	2	LP-103	17.5	113	14.2	16.4	135.5	116.4	100	P	JWC	6-073	P
6-051	H-17	5/11/2012	8	3	LP-103	17.5	113	12.1	14.6	135.1	117.9	100	P			
6-052	H-16	5/11/2012	8	3	LP-103	17.5	113	15.1	17.1	130.1	111.1	98	P	JWC		
6-053	H-15	5/11/2012	8	3	LP-103	17.5	113	13	15.4	132	111.1	100		JWC		
6-054	H-13	5/11/2012	8	2	LP-103	17.5	113	14	16.2	131.5	113.2	100	P	JWC		
6-055	I-13	5/11/2012	8	2	LP-103	17.5	113	13.8	16	133.3	114.9	100	P	JWC		
6-056	H-14	5/11/2012	8	3	LP-103	17.5	113	12.5	15	128.7	111.9	99	P	JWC		
6-057	I-14	5/11/2012	8	3	LP-103	17.5	113	10.4	13.2	133.6			P	JWC		
6-058	H-15	5/11/2012	8	3	LP-103	17.5	113	11.6	14.2	133.5	118	100	F	JWC	6-082	P
6-059	I-15	5/11/2012	8	3	LP-103	17.5	113	11.9			116.9	100	F	JWC	6-081	P
6-060	I-16	5/11/2012	8	3	LP-103	17.5	113	10.7	14.5	134.4	117.4	98	P	JWC	6-080	P

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-061	I-17	5/11/2012	8	2	LP-103	17.5	113	10.8	13.6	131.8	116	100	F	JWC	6-079	P
6-062	H-18	5/11/2012	8	3	LP-103	17.5	113	16.6	18.4	129.2	109.1	97	P	JWC	0 013	1
6-063	I-19	5/11/2012	8	2	LP-103	17.5	113	14	16.2	124.1	106.8	95	P	JWC		
6-064	I-19	5/11/2012	8	2	LP-103	17,5	113	16	17.9	126.6	107.4	95	P	JWC		
6-065	I-18	5/11/2012	8	2	LP-103	17.5	113	14,5	16.6	129.9	111.4	99	P	JWC		
6-066	I-18	5/11/2012	8	2	LP-103	17.5	113	9.3	12.3	130.1	115.9	100	F	JWC	6-077	P
6-067	I-17	5/11/2012	8	2	LP-103	17.5	113	15.6	17.5	134	114	100	P	JWC	0-077	Г
6-068	I-16	5/11/2012	8	3	LP-103	17.5	113	11.9	14.5	130.3	113.8	100	P	JWC		
6-069	I-15	5/11/2012	8	3	LP-103	17.5	113	12,2	14.7	127.7	111.3	99	P	JWC		
6-070	I-14	5/11/2012	8	3	LP-103	17.5	113	11.1	13.8	129.5	113.8	100	F	JWC	6-083	P
6-071	I-13	5/11/2012	8	2	LP-103	17.5	113	10.5	13.3	130.4	115.1	100	F	JWC	6-084	P
6-072	I-13	5/11/2012	8	2	LP-103	17.5	113	11.7	14.3	130.3	114	100	F	JWC		-
6-073	H-18	5/14/2012	8	2	LP-103	17.5	113	17	18.7	128.4	108.2	96	P	JWC	6-085	P
6-074	H-14	5/14/2012	8	3	LP-103	17.5	113	15.5	17.5	128.7	109.5	97	P	JWC		
6-075	I-16	5/14/2012	8	3	LP-103	17.5	113	17	18.7	129.9	109.4	97	P	JWC	-	

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-076	H-17	5/14/2012	8	3	LP-103	17.5	113	16.4	18.2	131,1	110.9	98	P	JWC		
6-077	I-18	5/14/2012	8	2	LP-103	17.5	113	16.3	18.1	125.3	106.1	94	F	JWC	6-078	P
6-078	I-18	5/14/2012	8	2	LP-103	17.5	113	14.9	17	127.4	108.9	96	P	JWC	0 070	
6-079	I-17	5/14/2012	8	2	LP-103	17.5	113	15.5	17.5	130.9	111,4	99	P	JWC		
6-080	I-16	5/14/2012	8	3	LP-103	17,5	113	14.7	16.8	135.7	116.2	100	P	JWC		
6-081	H-15	5/14/2012	8	3	LP-103	17.5	113	15.3	17.3	134.6	114.8	100	P	JWC		
6-082	I-14	5/14/2012	8	3	LP-103	17.5	113	17	18.7	131.2	110.5	98	P	JWC		
6-083	I-14	5/14/2012	8	3	LP-103	17.5	113	13.3	15.6	135	116.8	100	P	JWC		
6-084	I-13	5/14/2012	8	2	LP-103	17.5	113	15	17	133	113.7	100	Р	JWC		
6-085	I-13	5/14/2012	8	2	LP-103	17.5	113	15.3	17.3	134.9	115	100	P	JWC		
6-086	H-13	5/14/2012	8	2	LP-103	17.5	113	15.1	17.1	132.3	113	100	P	JWC		
6-087	J-13	5/16/2012	6	2	LP-103	17.5	113	14.4	16.5	130.6	112.1	99	P	JWC		
6-088	K-13	5/16/2012	6	2	LP-103	17.5	113	15.1	17.1	132.3	113	100	P	JWC		
6-089	L-13	5/16/2012	6	2	LP-103	17.5	113	15.6	17.5	131.1	111.6	99	P	JWC		
6-090	L-14	5/16/2012	6	2	LP-103	17.5	113	16.1	17.9	129.3	109.7	97	P	JWC		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

Soil Type;

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	22	No	Result
6-091	K-14	5/16/2012	6	2	LP-103	17.5	113	16.3	18.1	129.2	109.4	97	P	JWC		
6-092	J-14	5/16/2012	6	2	LP-103	17.5	113	16.2	18	129.4	109.7	97	p	JWC		
6-093	K-14	5/16/2012	6	2	LP-103	17.5	113	17.6	19.2	129.2	108.4	96	P	JWC		
6-094	L-14	5/16/2012	6	2	LP-103	17.5	113	16.4	18.2	129	109.1	97	P	JWC		
6-095	M-14	5/16/2012	6	3	LP-103	17.5	113	14.9	16.9	132.2	113.1	100	P			
6-096	M-14	5/16/2012	6	3	LP-103	17.5	113	17.8	19.4	129.5	108.5	96	P	JWC		
6-097	L-15	5/16/2012	6	2	LP-103	17.5	113	16.3	18.1	130.2	110.2	98	-	JWC		
6-098	K-15	5/16/2012	6	2	LP-103	17.5	113	16.2	18	131.1	111.1	98	P	JWC		
6-099	K-15	5/16/2012	6	2	LP-103	17.5	113	16.5	18.3	129.3			P	JWC		
6-100	L-15	5/16/2012	6	2	LP-103	17.5	113	16.1	17.9		109.3	97	P	JWC		
6-101	M-15	5/16/2012	6	3	LP-103	17.5	113	15.3	17.3	127.9	108.5	96	P	JWC		
6-102	H-19	5/17/2012	8	2	LP-103	17.5	113			130.5	111.3	98	P	JWC		
6-103	I-19	5/17/2012	8	2	LP-103	17.5		15.3	17.3	132.8	113.2	100	P	JWC	1	
6-104	J-19	5/17/2012	8	2			113	15.1	17.1	131.5	112.3	99	P	JWC		
6-105	K-19				LP-103	17.5	113	15	17	132.8	113.5	100	P	JWC		
0-103	K-19	5/17/2012	8	2	LP-103	17.5	113	15.5	17.5	128.5	109.4	97	Р	JWC	1	

Geosyntec[>]

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	-	No	Result
6-106	J-13	5/17/2012	8	2	LP-103	17.5	113	15.4	17.4	133,9	114.1	101	P	JWC		
6-107	J-14	5/17/2012	8	2	LP-103	17.5	113	15.4	17.4	135.8	115.7	100	P	JWC		
6-108	J-14	5/17/2012	8	2	LP-103	17.5	113	16,3	18.1	134.8	114.1	100	P	JWC		
6-109	J-15	5/17/2012	8	2	LP-103	17.5	113	15	17	137.2	117.3	100	P	JWC		
6-110	J-15	5/17/2012	8	2	LP-103	17.5	113	14.6	16.7	133.3	114.2	100	P	JWC		
6-111	J-15	5/17/2012	8	2	LP-103	17.5	113	14.1	16.3	135.5	116.5	100	P	JWC		
6-112	J-16	5/17/2012	8	2	LP-103	17.5	113	15.2	17.2	134.2	114.5	100	P	JWC		
6-113	J-16	5/17/2012	8	2	LP-103	17.5	113	15	17	135.2	115.5	100	P	JWC		
6-114	J-17	5/17/2012	8	2	LP-103	17.5	113	16.3	18.1	131.1	111	98	p	JWC		
6-115	J-17	5/17/2012	8	2	LP-103	17.5	113	16.9	18.6	133	112.1	99	P	JWC		
6-116	J-18	5/17/2012	8	2	LP-103	17.5	113	18.2	19.7	134	111.9	99	P	JWC		
6-117	J-18	5/17/2012	8	2	LP-103	17.5	113	18.5	19.9	131.5	109.7	97	P	JWC		
6-118	J-19	5/17/2012	8	3	LP-103	17.5	113	17.7	19.3	130.8	109.6	97	P	JWC		7
6-119	K-13	5/21/2012	8	2	LP-128	16	115.5	15.8	17.7	134.6	114.4	99	P	DW		
6-120	K-13	5/21/2012	8	2	LP-128	16	115.5	14.5	16.6	132.1	113.3	98	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

2

LP-128

16

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

. . .

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

5/22/2012

Guage Serial No: 28800

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-121	K-13	5/21/2012	8	2	LP-128	16	115.5	13.8	16	129.1	111.3	96	P	DW		
6-122	K-14	5/21/2012	8	2	LP-128	16	115.5	13.1	15.4	130	112.7	98	P	DW		
6-123	K-14	5/21/2012	8	2	LP-128	16	115.5	13.4	15.7	128.6	111.1	96	P	DW		
6-124	K-15	5/21/2012	8	2	LP-128	16	115.5	14.1	16.3	131.4	113	98	P	DW		
6-125	K-15	5/21/2012	8	2	LP-128	16	115.5	16.3	18.1	129.5	109.7	95	P	DW		-
6-126	K-16	5/21/2012	8	2	LP-128	16	115.5	15.1	17.1	130.2	111.2	96	P	DW		
6-127	K-16	5/21/2012	8	2	LP-128	16	115.5	15.7	17.6	132,1	112.3	97	P	DW		
6-128	K-17	5/21/2012	8	2	LP-128	16	115.5	14.3	16.5	131,5	112.9	98	P	DW		
6-129	K-17	5/21/2012	8	2	LP-128	16	115.5	16.4	18.2	132.6	112.2	97	P	DW		
6-130	K-18	5/21/2012	8	2	LP-128	16	115.5	14.8	16.9	130.7	111.8	97	P	DW		I
6-131	K-18	5/21/2012	8	2	LP-128	16	115.5	15.7	17.6	132.5	112.7	98	P	DW		
6-132	K-18	5/21/2012	8	2	LP-128	16	115.5	14	16.2	135.2	116.4	100	P	DW		
6-133	K-19	5/21/2012	8	2	LP-128	16	115.5	14.1	16.3	131.4	113	98	P	DW	-	
6-134	L-13	5/22/2012	8	2	LP-128	16	115.5	15.4	17.4	129.2	110.1	95	P	DW		
(105									4 2 1	12712	110.1	7.0	Г	DW		

115.5

15

17

131.8

112.6

98

L-13

6-135

DW

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	grib	No	Result
6-136	L-14	5/22/2012	8	2	LP-128	16	115,5	14.2	16.4	129.8	111.5	97	P	DW		
6-137	L-14	5/22/2012	8	2	LP-128	16	115.5	15.6	17.5	130.6	111.1	96	P	DW		-
6-138	L-14	5/22/2012	8	2	LP-128	16	115.5	14.8	16.9	131	112.1	97	P	DW		
6-139	L-15	5/22/2012		2	LP-128	16	115.5	13.9	16.1	132.2	113.9	99	P	DW		
6-140	L-15	5/22/2012	8	2	LP-128	16	115.5	15	17	130.4	111.5	97	P			
6-141	L-16	5/22/2012	8	2	LP-128	16	115.5	15.3	17.3	128.7	109.7	95	P	DW		
6-142	L-16	5/22/2012	8	2	LP-128	16	115.5	14.1	16.3	129.4	I11.3	96		DW		
6-143	L-17	5/22/2012	8	2	LP-128	16	115.5	14.7	16.8	130.8	111.3	97	Р	DW		
6-144	L-17	5/22/2012	8	2	LP-128	16	115.5	15.8	17.7	131.4	111.6	97	P	DW		
6-145	L-18	5/22/2012	8	3	LP-128	16	115.5	14.2	16.4	127.9	109.9		P	DW		
6-146	L-18	5/22/2012	8	3	LP-128	16	115.5	15.3	17,3	127.9		95	P	DW		
6-147	L-18	5/22/2012	8	3	LP-128	16	115.5	16.2	18		110.5	96	P	DW		
6-148	L-19	5/22/2012	8	3	LP-128	16	115.5	13.8		132	111.9	97	P	DW		
6-149	L-19	5/22/2012	8	2	LP-128	16	115.5	-	16	130.5	112.5	97	Р	DW		
6-150	K-19	5/22/2012	8	2	LP-128	16		15.2	17.2	131.2	111.9	97	Р	DW		
		5,22,2012	3	-	L1-120	10	115.5	13.8	16	130.5	112.5	97	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab		-		Fic	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-151	M-13	5/23/2012	8	3	LP-128	16	115.5	16.4	18.2	133.4	112.9	98	P	DW		-
6-152	M-13	5/23/2012	8	3	LP-128	16	115.5	15.7	17.6	: 130.2	110.7	96	р	DW		
6-153	M-14	5/23/2012	8	3	LP-128	16	115.5	15.4	17.4	132.7	113	98	P	DW		
6-154	M-14	5/23/2012	8	3	LP-128	16	115.5	16.6	18.4	130.5	110.2	95	P	DW		
6-155	M-14	5/23/2012	8	3	LP-128	16	115.5	16	17.9	131	111.1	96	P	DW		
6-156	M-15	5/23/2012	8	3	LP-128	16	115.5	15	17	129.8	110.9	96	Р	DW		
6-157	M-15	5/23/2012	8	3	LP-128	16	115.5	16.2	18	125,7	106.5	92	F	DW	6-167	P
6-158	M-16	5/23/2012	8	2	LP-128	16	115.5	15.8	17.7	133.4	113.3	98	p	DW	0-107	
6-159	M-16	5/23/2012	8	2	LP-128	16	115.5	15.2	17.2	129.6	110.6	96	P	DW		
6-160	M-17	5/23/2012	8	2	LP-128	16	115.5	15.7	17.6	132.3	112.5	97	P	DW		
6-161	M-17	5/23/2012	8	2	LP-128	16	115.5	16.1	17.9	134.7	114.2	99	P	DW		
6-162	M-18	5/23/2012	8	3	LP-128	16	115.5	14.7	16.8	130.8	112	97	P	DW		-
6-163	M-18	5/23/2012	8	3	LP-128	16	115.5	14	16.3	133.4	114.8	99	P	DW		
6-164	M-18	5/23/2012	8	3	LP-128	16	115.5	16.1	17.9	131.8	111.8	97	P	DW		
6-165	M-19	5/23/2012	8	3	LP-128	16	115.5	15.8	17.7	129.7	110.2	95	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab		1		Fi	eld			QA ID	Retest	Datas
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC			Percent Compact (%)	Result	QA ID	No	Retest Result
6-166	M-19	5/23/2012	8	3	LP-128	16	115.5	17	18.7	132,4	111.5	97	P	DW		
6-167	M-15	5/23/2012	8	3	LP-128	16	115.5	15.5	17.5	129.3	110	95	P	DW		_
6-168	N-13	5/29/2012	8	3	LP-128	16	115.5	16.6	18,4	130.5	110.2	95	P	DW		
6-169	N-13	5/29/2012	8	3	LP-128	16	115.5	15.7	17.6	132.3	112.5	97	P	DW		
6-170	N-13	5/29/2012	8	3	LP-128	16	115.5	15.8	17.7	129.7	110.2	95	P	DW		
6-171	N-14	5/29/2012	8	3	LP-128	16	115.5	16.4	18.2	133.4	112.9	98	P	DW		
6-172	N-14	5/29/2012	8	3	LP-128	16	115.5	16.6	18.4	130.5	110.2	95	P	DW		
6-173	N-15	5/30/2012	8	3	LP-128	16	115.5	14.8	16.9	131	112.1	97	P	DW		
6-174	N-15	5/30/2012	8	3	LP-128	16	115.5	16.2	18	131.7	111.6	97	P			-
6-175	N-16	5/30/2012	8	2	LP-128	16	115.5	15.2	17.2	129.6	110.6	96		DW		
6-176	N-16	5/30/2012	8	2	LP-128	16	115.5	15.7	17.6	132.3	112.5	97	P	DW		
6-177	N-17	5/30/2012	8	2	LP-128	16	115.5	14.1	16.3	129.4	111.3		P	DW		
6-178	N-17	5/30/2012	8	2	LP-128	16	115.5	15.6	17.5	130.6	111.1	97	P	DW		
6-179	N-17	5/30/2012	8	2	LP-128	16	115.5	16.2	18	130.0	111.9	96	P	DW		
6-180	N-18	5/30/2012	8	3	LP-128	16	115.5	15.3	17.3	128.7	109.7	97 95	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	g.1.12	No	Result
6-181	N-18	5/30/2012	8	3	LP-128	16	115.5	15.8	17.7	129.7	110.2	95	P	DW		
6-182	N-19	5/30/2012	8	2	LP-128	16	115.5	14	16.2	133.4	114.8	100	P	DW		-
6-183	N-19	5/30/2012	8	3	LP-128	16	115,5	15.4	17.4	133.7	113.9	98	P	DW	-	
6-184	N-19	5/30/2012	8	3	LP-128	16	115.5	15	17	130.2	111.3	96	P	DW	-	
6-185	O-13	5/31/2012	8	3	LP-128	16	115.5	14.8	16.9	132.6	113,4	99	P	DW		
6-186	O-13	5/31/2012	8	3	LP-128	16	115.5	15.3	17.3	129.9	110.7	96	P	DW		
6-187	O-14	5/31/2012	8	3	LP-128	16	115.5	13.6	15.9	131	113	98	P	DW		
6-188	O-14	5/31/2012	8	3	LP-128	16	115.5	13.7	16	132.2	114	99	P	DW		
6-189	O-15	5/31/2012	8	2	LP-128	16	115.5	14.3	16.5	131.7	113	98	P	DW		
6-190	O-15	5/31/2012	8	2	LP-128	16	115.5	15.5	17.5	130.3	110.9	96	P	DW		
6-191	O-15	5/31/2012	8	2	LP-128	16	115.5	13.3	15.6	129.2	111.8	97	P	DW		
6-192	O-16	5/31/2012	8	2	LP-128	16	115.5	16.8	18.5	131.4	110.9	96				
6-193	O-16	5/31/2012	8	2	LP-128	16	115.5	16.2	18	130.7	110.9	96	P	DW		
6-194	O-17	5/31/2012	8	2	LP-128	16	115.5	15.1	17.1	128.9	110.1	95	Р	DW		_
6-195	O-17	5/31/2012	8	2	LP-128	16	115.5	14.7	16.8	129.8	111.1	95	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Location

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Probe Lift No.

Depth

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Retest

Soil Type:

ID

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

Date

Guage Serial No: 28800

Lab QA ID Retest Field OMC. Max Dry Field MC Correct Wet Unit Day Hair D

			Depth				_				CALL			UA ID	Ketest	Retest
			Берін		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result		No	Result
6-196	O-18	5/31/2012	8	3	LP-128	16	115.5	16.9	18.6	131	110.5	96	P	DW		
6-197	O-18	5/31/2012	8	3	LP-128	16	115.5	16.2	18	132.4	112.2	97	P	DW		-
6-198	O-18	5/31/2012	8	3	LP-128	16	115.5	15	17	130.7	111.7	97	P	DW		
6-199	O-19	5/31/2012	8	3	LP-128	16	115.5	14.3	16.5	131.7	113	98	P	DW		
6-200	O-19	5/31/2012	8	2	LP-128	16	115.5	15.1	17.1	129.6	110.7	96	Р	DW		
6-201	P-13	6/7/2012	8	3	LP-128	16	115.5	16.4	18.2	134.8	114	99	P			
6-202	P-13	6/7/2012	8	3	LP-128	16	115.5	15.2	17.2	132.1	112.7	98	P	DW		
6-203	P-13	6/7/2012	8	3	LP-128	16	115.5	15.5	17.5	132.1	112.7	98	P	DW		
6-204	P-14	6/7/2012	8	3	LP-128	16	115.5	14.3	16.5	131.4	112.8	98	P	DW		
6-205	P-14	6/7/2012	8	3	LP-128	16	115.5	13	15.4	133.7	115.9	100		DW	£	
6-206	P-15	6/7/2012	8	2	LP-128	16	115.5	14.1	16.3	131	112.6		P	DW		
6-207	P-15	6/7/2012	8	2	LP-128	16	115.5	15.1	17.1	129.8		98	P	DW		
6-208	P-15	6/7/2012	8	2	LP-128	16	115.5	16.2	18		110.8	96	P	DW		
6-209	P-16	6/7/2012	8		LP-128	16	115.5			131.3	111.3	96	Р	DW		
6-210	P-16	6/7/2012	8	2	LP-128	16	115.5	15.5 15.2	17.4	132	112.4	97	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Datast	D
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC		Dry Unit Wt (PCF)	Percent Compact (%)	Result	QA ID	Retest No	Retest Result
6-211	P-17	6/7/2012	8	2	LP-128	16	115.5	14.4	16.5	131	112.4	97	P	DUI		
6-212	P-17	6/7/2012	8	2	LP-128	16	115.5	14.3	16.5	131.4	112.4	98		DW		
6-213	P-18	6/7/2012	8	3	LP-128	16	115.5	14.7					P	DW		
6-214	P-18	6/7/2012	8	3	LP-128		_		16.8	132.2	113.2	98	P	DW		
6-215	P-18					16	115.5	16.4	18.2	130.7	110.6	96	P	DW		
		6/7/2012	8	3	LP-128	16	115.5	13.4	15.7	129.9	112.3	97	P	DW		
6-216	P-19	6/7/2012	8	2	LP-128	16	115.5	15	17	131.4	112.3	97	Р	DW		
6-217	P-19	6/7/2012	8	2	LP-128	16	115.5	15.1	17.1	132.2	112.9	98	P	DW		1
6-218	Q-13	6/11/2012	8	3	LP-128	16	115.5	15	17	130.5	111.5					
6-219	Q-13	6/11/2012	8	3	LP-128	16	115.5	14.7				97	Р	DW		
6-220	Q-14	6/11/2012	8	3	LP-128	16			16.8	132.7	113.6	99	Р	DW		
6-221	Q-14	6/11/2012	. 8				115.5	15.6	17.5	132.4	112.7	98	P	DW		
6-222				3	LP-128	16	115.5	15.9	17.8	133	112.9	98	P	DW		
	Q-14	6/11/2012	8	3	LP-128	16	115.5	16.5	18.3	130.5	110.3	96	P	DW	-	
5-223	Q-15	6/11/2012	8	2	LP-128	16	115.5	14.3	16.5	132.2	113.5	99	P	DW		
5-224	Q-15	6/11/2012	8	2	LP-128	16	115.5	15.2	17.2	131.5	112.2	97				
5-225	Q-16	6/11/2012	8	2	LP-128	16	115.5	14.8	16.9	131.3	112.2	98	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab		T		Fi	eld			QA ID	Retest	Dt
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC		Dry Unit Wt (PCF)	Percent Compact (%)	Result	QAID	No	Retest Result
6-226	Q-16	6/11/2012	8	2	LP-128	16	115.5	16,4	18.2	129.7	109.7	95	P	DW		
6-227	Q-17	6/11/2012	8	2	LP-128	16	115.5	15.6	17.5	130.7	111.2	96	P			
6-228	Q-17	6/11/2012	8	2	LP-128	16	115.5	15	17.3	130.7	113.4	98	-	DW		
6-229	Q-18	6/11/2012	8	2	LP-128	16	115.5	15.4	17.4	132.7			P	DW		
6-230	Q-18	6/11/2012	8	3	LP-128	16	115.5	16.2	18		113.3	98	P	DW	1	
6-231	Q-18	6/11/2012	8	3	LP-128	16	115.5	16.2		134,4	113.9	99	P	DW		
6-232	Q-19	6/11/2012	8	2	LP-128	16	115.5		17.9	132.9	112.7	98	P	DW		
6-233	Q-19	6/11/2012	8	2	LP-128	16	115.5	14.3	16.5	129.8	111.4	97	P	DW		,
6-234	Q-19	6/11/2012	8	2	LP-128	16		15.1	17.1	130.4	111.4	97	P	DW		
6-235	R-13	6/14/2012	8	2			115.5	15.6	17.5	132.1	112.4	97	P	DW		
6-236	R-13	6/14/2012	8		LP-128	16	115.5	16.6	18.4	132.2	111.7	97	P	DW	-	
6-237				2	LP-128	16	115.5	16.5	18.3	134.3	113.5	98	P	DW	- 1	
	R-13	6/14/2012	8	2	LP-128	16	115.5	15.9	17.8	131.7	111.8	97	P	DW		
6-238	R-14	6/14/2012	8	3	LP-128	16	115.5	15.5	17.5	133.9	114	99	Р	DW		
6-239	R-14	6/14/2012	8	3	LP-128	16	115.5	16	17.9	131.4	111.5	96	P	DW		
6-240	R-15	6/14/2012	8	3	LP-128	16	115.5	16.5	18.3	131.7	111.3	96	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date	Probe	Lift No.		Lab				Fi	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC			Percent Compact (%)	Result	QA ID	No	Result
6-241	R-15	6/14/2012	8	3	LP-128	16	115.5	16.2	18	132.6	112.4	97	P	DW		
6-242	R-16	6/14/2012	8	3	LP-128	16	115.5	15.8	17,7	130.8	111.1	96	P	DW		
6-243	R-16	6/14/2012	8	3	LP-128	16	115.5	16.2	18	132.2	112	97	P	DW		
6-244	R-16	6/14/2012	8	3	LP-128	16	115.5	16.2	18	132.7	112.5	97	Р	DW	-	
6-245	R-17	6/14/2012	8	2	LP-128	16	115.5	15.6	17.5	130.8	111.3	96	P	DW		
6-246	R-17	6/14/2012	8	2	LP-128	16	115.5	14.7	16.8	132.9	113.8	98	P	DW		
6-247	R-18	6/14/2012	8	2	LP-128	16	115.5	15.9	17.8	134.1	113.8	99	P			
6-248	R-18	6/14/2012	8	2	LP-128	16	115.5	16.3	18.1	131.6	111.4	96	p	DW		-
6-249	R-19	6/14/2012	8	2	LP-128	16	115.5	14.8	16.9	133.3	111.4	99		DW		
6-250	R-19	6/14/2012	8	2	LP-128	16	115.5	15.6	17.5	131.5	111.9	99	P	DW		
6-251	S-13	6/15/2012	8	2	LP-128	16	115.5	13.3	15.6	131.8	111.9		P	DW		
6-252	S-13	6/15/2012	8	2	LP-128	16	115.5	13.9	16.1			99	P	DW		
6-253	S-14	6/15/2012	8	3	LP-128	16	115.5	14.5	16.6	131.4	113.2	98	P	DW		
6-254	S-14	6/15/2012	8	3	LP-128	16	115.5	15.5		-	113.3	98	P	DW		
6-255	S-14	6/15/2012	8	3	LP-128	16	115.5	14.4	17	133.2 129.9	113.8	99 97	P	DW DW		1

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fic	eld			QA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC		Dry Unit Wt (PCF)	Percent Compact (%)	Result	QA ID	No	Result
6-256	S-15	6/15/2012	8	3	LP-128	16	115.5	14.6	16.7	: 131	112.3	97	P	DW		
6-257	S-15	6/15/2012	8	3	LP-128	16	115.5	15.2	17.2	133.1	113.6	98	P	DW		
6-258	S-16	6/15/2012	8	2	LP-128	16	115.5	15.7	17.6	131.4	111.7	97	P	DW		
6-259	S-16	6/15/2012	8	2	LP-128	16	115.5	13.9	16.1	132.7	114.3	99	P	DW		
6-260	S-16	6/15/2012	8	2	LP-128	16	115.5	14.9	16.9	132.7	113.5	98	P	DW		
6-261	S-17	6/15/2012	8	2	LP-128	16	115.5	15.4	17.4	130.5	111.2	96	P	DW		
6-262	S-17	6/15/2012	8	2	LP-128	16	115.5	14.4	16.5	131.1	112.5	97	P	DW		
6-263	S-18	6/15/2012	8	2	LP-128	16	115.5	13.6	15.9	131.6	113.5	98	P	DW		
6-264	S-18	6/15/2012	8	2	LP-128	16	115.5	14.9	17	132.7	113.4	98	P	DW		
6-265	S-19	6/15/2012	8	2	LP-128	16	115.5	14.2	16.4	132	113.4	98	P	DW		
6-266	S-19	6/15/2012	8	2	LP-128	16	115.5	14.8	16.9	130.4	111.5	97	P	DW		
6-267	S-19	6/15/2012	8	2	LP-128	16	115.5	15.2	17.2	131.1	111.9	97	р	DW		
6-268	T-13	6/18/2012	8	2	LP-128	16	115.5	15.3	17.3	131.1	112.5	97	P			
6-269	T-13	6/18/2012	8	2	LP-128	16	115.5	14.8	16.9	132.7	112.5	98	P	DW		
6-270	T-13	6/18/2012	8	2	LP-128	16	115.5	15.6	17.5	131.2	111.7	97	P	DW DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

2

LP-128

16

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Series:

6 Phase II, LP Soil, 95% Compaction

6/19/2012

Guage Serial No: 28800

Correction Factor: y = 0.8292x + 4.5982

DW

DW

P

ID Location Date Probe Lift No. Lab Field OA ID Retest Retest Depth Sample No OMC Max Dry Field MC Correct Wet Unit Dry Unit Percent No Result Result Unit Wt MC We (%) WtCompact (PCF) (PCF) (PCF) (%)6-271 T-14 6/18/2012 8 2 LP-128 16 115.5 14.9 17 130.4 111.5 96 DW 6-272 T-14 6/18/2012 2 LP-128 16 115.5 15 17 130.9 111.8 97 P DW 6-273 T-15 6/18/2012 8 2 LP-128 16 115.5 15.7 17.6 129,9 110.5 95 P DW 6-274 T-15 6/18/2012 8 2 LP-128 16 115.5 16.2 18 131.3 111.3 96 P DW 6-275 T-16 6/18/2012 8 2 LP-128 16 115.5 15.1 17.1 132.7 113.3 98 P DW 6-276 T-16 6/18/2012 8 2 LP-128 16 115.5 15.4 17.4 131 111.6 97 P DW 6-277 T-16 6/18/2012 8 2 LP-128 16 115.5 15.7 17.6 130.2 110.7 96 P DW 6-278 T-17 6/18/2012 8 2 LP-128 16 115.5 15.8 17.7 133.4 113.3 98 P DW 6-279 T-17 6/18/2012 2 8 LP-128 16 115.5 15.1 17.1 132 112.7 98 P DW 6-280 T-18 6/18/2012 8 2 LP-128 16 115.5 14.7 16.8 130.8 112 97 P DW 6-281 T-18 6/18/2012 8 2 LP-128 16 115.5 17 18.7 132.4 111.5 97 P DW 6-282 T-18 6/18/2012 8 2 LP-128 16 115.5 15.6 17.5 130.6 111.1 96 P DW 6-283 T-19 6/18/2012 8 2 LP-128 16 115.5 14.1 16.3 129.4 111.3 96 P DW 6-284 T-19 6/18/2012 8 2 LP-128 16 115.5 16.2 18 132 111.9 97 P

115.5

13.8

16

130.5

112.5

97

U-13

6-285

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fi	eld			QA ID	Retest	D.,
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	QA ID	No No	Retest Result
6-286	U-13	6/19/2012	8	2	LP-128	16	115.5	16.2	18	131.3	111.3	96	D	*****		
6-287	U-14	6/19/2012	8	2	LP-128	16	115.5	15.6	17.5	131.2			P	DW		
6-288	U-14	6/19/2012	8	2	LP-128	16	115.5				111.7	97	P	DW		
6-289	U-14	6/19/2012	8	2	LP-128			16.6	18.4	130.5	110.2	95	P	DW		
6-290	U-15	6/19/2012	8			16	115.5	15.8	17.7	133,4	113.3	98	P	DW		
6-291				2	LP-128	16	115.5	16.1	17.9	134.7	114.2	99	Р	DW		
	U-15	6/19/2012	8	2	LP-128	16	115.5	14.7	16.8	130.8	112	97	P	DW		
6-292	U-16	6/19/2012	8	2	LP-128	16	115.5	14.8	16.9	132.7	113.5	98	P	DW		
6-293	U-16	6/19/2012	8	2	LP-128	16	115.5	15	17	130.9	111.8					
6-294	U-16	6/19/2012	8	2	LP-128	16	115.5	15.4	17.4			97	P	DW		
6-295	U-17	6/19/2012	8	2	LP-128	16				133.9	114.1	99	P	DW		
6-296	U-17	6/19/2012	8	2	LP-128		115.5	14.5	16.6	132.1	113.3	98	P	DW		
6-297	U-17	6/19/2012	8			16	115.5	13.4	15.7	128.6	111.1	96	P	DW		
6-298	U-18		-	2	LP-128	16	115.5	14.3	16.5	131.5	112.9	98	P	DW		
		6/19/2012	8	2	LP-128	16	115.5	14.8	16.9	130.7	111.8	97	Р	DW		
6-299	U-18	6/19/2012	8	2	LP-128	16	115.5	15.3	17.3	132	112.5	97	P	DW		
6-300	U-18	6/19/2012	8	2	LP-128	16	115.5	14.9	17	130.4	I11.5	96	P	DW		

consultants

Field Nuclear Moisture/Density Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Proctor Type: ASTM D 698

Percent Compaction: 95

Lift Thickness (Compacted - Loose):

6 - 8

Moisture Range:

-3 - 3

Soil Type:

4 LP Soil-Marcellus

Guage Type: Troxler 3440

Correction Factor: y = 0.8292x + 4.5982

Series:

6 Phase II, LP Soil, 95% Compaction

ID	Location	Date		Lift No.		Lab				Fie	eld			OA ID	Retest	Retest
			Depth		Sample No	<i>OMC</i> (%)	Max Dry Unit Wt (PCF)	Field MC	Correct MC	Wet Unit Wt (PCF)	Dry Unit Wt (PCF)	Percent Compact (%)	Result	g2	No	Result
6-301	U-19	6/19/2012	8	2	LP-128	16	115.5	15,7	17.6	131.3	111.6	97	D	DIL		
6-302	U-19	6/19/2012	8	2	LP-128	16	115.5	15	17				P	DW		
6-303	U-19	6/10/2012	0					13	17	130.1	111.2	96	P	DW		
0-303	0-19	6/19/2012	8	2	LP-128	16	115.5	14.5	16.6	132	113.2	98	Р	DW		

Drive Cylinders

Geosyn	tec							
consul								
DETERMINATION OF DENS	ITY (DRIVE CYLIND	ER)				(AST	TM D 293	37)
PROJECT: Onondaga Lake SCA	Construction, Phase II							
LOCATION: Camillus, New Yo	rk	PRO	OJEC	T NO.:	GJ4706B	TASK NO.:	2	200
DESCRIPTION: CQA of SCA	Construction, Phase I	DA	TE:	10 day	April	month	2012	year
SOURCE: Marcellus Pit								
SPECIFICATION REQUIREME	NTS:							
MATERIAL TYPE: FILL	SUBGRADE	SUB	BASE		CLAY	OTHER:		
% COMPACTION:	90			•	E CONTENT F			- 3%
TEST LOCATION:	5-005			TEST NO.	-	DCLP-0	01	
FIELD TEST DATA ASTM	D2937				QA ID);	DW	
CYL HT 1 (IN):	CYL HT 2 (IN):		CYL D	IA 1 (IN):	CYL	DIA 2 (IN):		
A CYLINDER NO.: K	VOLUME (1) (cf)	0.033	E	WET UNIT W	EIGHT = D/A		(lbs)	131.2
B WEIGHT OF SAMPLE & CYLINDER	≀ (lbs)	5.65	F	DRY UNIT W	EIGHT = E/(1 + (7	Γ/100)	(pcf)	111.4
C WEIGHT OF CYLINDER	(lbs)	1.32	G		MPACTION = F/I		(%)	100.3
D WEIGHT OF WET SAMPLE = B - C	(lbs)	4.33	Н	PASS/FAIL				P
NOTE 1. CYLINDER VOLUME IS OBTAI ACCURACY OF 0.01-IN., AND CALCULA FIELD MOISTURE CONTENT	TING THE VOLUME USING						DW	
	XX (gm)	185.2	R	WT. OF WAT			(lbs)	31,3
P WT. OF WET SOIL & TARE	(gm)	392.3	S	WT OF DRY S			(pcf)	175.8
Q WT. OF DRY SOIL & TARE	(gm)	361.0	Т	MOISTURE C	ONTENT = (R/S)	X100		17.8
PROCTOR TEST DATA LP-068	[L] MAXIMUM DRY	UNIT WT.	(pcf)		M) OPT. MOIST. O	CONTENT (%))	16
COMPARISION WITH NUCLEAR	AR GAUGE - ASTM D	6938			QA ID);	DW	
U DELTA MOISTURE CONTENT = T	- X	1.0	X	FDT MOISTU	RE CONTENT		(%)	16.8
V FDT WET UNIT WT.	(pcf)	128.6	Y	FDT DRY UN	IT WT.		(pcf)	110.1
W DELTA DRY UNIT WT. = F - Y		1.3						
COMMENTS								

								MASSING MILLION

Geosyntec consultants					
DETERMINATION OF DENSITY (DRIVE CYLINI	DER)		(AS	STM D 293	37)
PROJECT: Onondaga Lake SCA Construction, Phase I					
LOCATION: Camillus, New York	PR	OJEC	T NO.: GJ4706B TASK NO	.:2	00
DESCRIPTION: CQA of SCA Construction, Phase I	D.	ATE:	10dayAprilmont	h 2012	year
SOURCE: Marcellus Pit					
SPECIFICATION REQUIREMENTS:					
MATERIAL TYPE: FILL SUBGRADE	l sur	BBASE	CLAY • OTHER:		
% COMPACTION: 90	1		MOISTURE CONTENT RANGE:	+/-	3%
TEST LOCATION: 5-030			TEST NO. DCLP-		
FIELD TEST DATA ASTM D2937			QA ID:	DW	
CYL HT 1 (IN): CYL HT 2 (IN):		CYL D	IA 1 (IN): CYL DIA 2 (IN):		
A CYLINDER NO.: K VOLUME (1) (cf)	0.033	E	WET UNIT WEIGHT = D/A	(lbs)	128.8
B WEIGHT OF SAMPLE & CYLINDER (lbs)	5.57	F	DRY UNIT WEIGHT = E/(1 + (T/100)	(pcf)	107.3
C WEIGHT OF CYLINDER (lbs) D WEIGHT OF WET SAMPLE = B - C (lbs)	1.32 4.25	G H	PERCENT COMPACTION = F/L PASS/FAIL	(%)	96.7 P
ACCURACY OF 0.01-IN., AND CALCULATING THE VOLUME USIN FIELD MOISTURE CONTENT ASTM D2216	G AVERAC	E HEI	GHT AND DIAMETER QA ID:	DW	
O WT. OF TARE NO. P (gm)	184.9	R	WT. OF WATER = P - Q	(lbs)	37.8
P WT. OF WET SOIL & TARE (gm)	411.3	S	WT OF DRY SOIL = Q - O	(pcf)	188.6
Q WT. OF DRY SOIL & TARE (gm)	373.5	Т	MOISTURE CONTENT = (R/S)X100		20.0
PROCTOR TEST DATA LP-068 [L] MAXIMUM DR	Y UNIT WI	. (pcf)	(M) OPT. MOIST. CONTENT (%) <u>-</u>	16
COMPARISION WITH NUCLEAR GAUGE - ASTM D	6938		QA ID:	DW	
U DELTA MOISTURE CONTENT = T - X	1.6	X	FDT MOISTURE CONTENT	(%)	18,4
V FDT WET UNIT WT. (pcf)	129.4	Y	FDT DRY UNIT WT.	(pcf)	109.3
W DELTA DRY UNIT WT. = F - Y	-2.0	1			
COMMENTS					
		••••••••			

Geosyi	ntec ^D						
DETERMINATION OF DE	NSITY (DRIVE CYLINI	DER)				(ASTM D 29:	3 7)
PROJECT: Onondaga Lake S LOCATION: Camillus, New DESCRIPTION: CQA of So SOURCE: Marcellus Pit	York	PR			J4706B TASK TASK	NO.: 2 onth 2012	00 year
SPECIFICATION REQUIRED MATERIAL TYPE: FILL [% COMPACTION: TEST LOCATION:	MENTS: SUBGRADE 90 5-056	SUE	BBASE		LAY OTHE CONTENT RANGE DC		- 3%
FIELD TEST DATA AST	M D2937				QA ID:	DW	
CYL HT 1 (IN):	CYL HT 2 (IN):		CYL D	IA 1 (IN):	CYL DIA 2 (I	N):	
A CYLINDER NO.: H B WEIGHT OF SAMPLE & CYLIN C WEIGHT OF CYLINDER D WEIGHT OF WET SAMPLE = B NOTE 1. CYLINDER VOLUME IS OB ACCURACY OF 0.01-IN., AND CALCU	DER (lbs) (lbs) - C (lbs) TAINED BY MEASURING THE		H ND D	PERCENT COMP PASS/FAIL IAMETER, OF FOU	HT = E/(1 + (T/100) ACTION = F/L UR EQUALLY SPACEI	(lbs) (pcf) (%) D POINTS, TO A	129.1 107.9 97.2 P
FIELD MOISTURE CONTEN					QA ID:	DW	
O WT. OF TARE NO. P WT. OF WET SOIL & TARE Q WT. OF DRY SOIL & TARE PROCTOR TEST DATA LP-06		378.6 346.8		MOISTORE CON			31.8 161.6 19.7
			. (pci)	111 (191)		<u> </u>	10
COMPARISION WITH NUCL		0.8	Х	FDT MOISTURE	QA ID:	(%)	18.9
V FDT WET UNIT WT. W DELTA DRY UNIT WT. = F - Y	(pcf)	129.7 -1.1	Y	FDT DRY UNIT V	WT.	(pcf)	109.0
COMMENTS							

Geosyntec^D

consultants							
DETERMINATION OF DENSITY (DRIVE CYL	LINDI	 E R)			(A	STM D 293	7)
PROJECT: Onondaga Lake SCA Construction, Pha							
LOCATION: Camillus, New York	150 11	PRO	DIEC	T NO : GJ	4706B TASK NO): 20	00
DESCRIPTION: CQA of SCA Construction, Phas	se I			17 day		th 2012 y	
SOURCE: Marcellus Pit	30 1			uay	7 ipin		
SOURCE. Minicellus I II							
SPECIFICATION REQUIREMENTS:							
MATERIAL TYPE: FILL SUBGRADE		SUB	BASE	CLA	Y OTHER:		
% COMPACTION: 95				MOISTURE CC	NTENT RANGE:	+ :	3%
TEST LOCATION: 6-008				TEST NO	DCLP	-004	
PHELD TEST DATA ASTA DOOZ					OA ID:	DW	
FIELD TEST DATA ASTM D2937					QA ID;		
CYL HT 1 (IN): CYL HT 2 (IN):	T	_		IA 1 (IN):	CYL DIA 2 (IN):		100.4
	(cf)	0.033	E	WET UNIT WEIGH		(lbs)	129.4
***************************************	(lbs) (lbs)	5.83 1.56	F G	DRY UNIT WEIGH PERCENT COMPA	***************************************	(pcf) (%)	95.1
	(lbs)	4.27	Н	PASS/FAIL	CHON - F/L	(70)	P
ACCURACY OF 0.01-IN., AND CALCULATING THE VOLUME U FIELD MOISTURE CONTENT ASTM D2216	OSING	AVERAG	E THEN	JIII AND DIAMETI	QA ID:	DW	
O WT. OF TARE NO. XX ((gm)	185.2	R	WT. OF WATER =	P - Q	(lbs)	41.3
P WT. OF WET SOIL & TARE (428.7	S	WT OF DRY SOIL	= Q - O	(pcf)	202.2
Q WT. OF DRY SOIL & TARE	(gm)	387.4	T	MOISTURE CONTI	ENT = (R/S)X100		20.4
PROCTOR TEST DATA LP-103 [L] MAXIMUM	I DRY	UNIT WT.	(pcf)	(M) OF	T. MOIST. CONTENT ((%)	17.5
COMPARISION WITH NUCLEAR GAUGE - AST	M D e	6938			QA ID:	DW	
U DELTA MOISTURE CONTENT = T - X		0.7	X	FDT MOISTURE C	ONTENT	(%)	19.7
	pcf)	129.3	Y	FDT DRY UNIT W	Γ.	(pcf)	108.0
W DELTA DRY UNIT WT. = F - Y	_	-0.6					
COMMENTS							
							,,,,,,,,,,

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

Geosyntec^D consultants **DETERMINATION OF DENSITY (DRIVE CYLINDER)** (ASTM D 2937) PROJECT: Onondaga Lake SCA Construction, Phase II LOCATION: Camillus, New York PROJECT NO.: GJ4706B TASK NO.: 200 DESCRIPTION: CQA of SCA Construction, Phase I DATE: 17 day April month 2012 year SOURCE: LP soil (Marcellus Pit) SPECIFICATION REQUIREMENTS: SUBGRADE CLAY 🕣 OTHER: MATERIAL TYPE: FILL SUBBASE MOISTURE CONTENT RANGE: + 3% 95 % COMPACTION: DCLP-005 6-034 TEST NO. TEST LOCATION: QA ID: DW FIELD TEST DATA -- ASTM D2937

NOTE 1. CYLINDER VOLUME IS OBTAINED BY MEASURING THE HEIGHT AND DIAMETER, OF FOUR EQUALLY SPACED POINTS, TO AN ACCURACY OF 0.01-IN., AND CALCULATING THE VOLUME USING AVERAGE HEIGHT AND DIAMETER

0.033

5.80

1.56

4.24

(cf)

(lbs)

(lbs)

(lbs)

CYL HT 2 (IN):

T

VOLUME (1)

Fl	ELD MOISTURE CON	VTENT ASTM	D2216			QA ID:	DW	
10 AT 15	WT. OF TARE NO.	XX	(gm)	185.2	R	WT. OF WATER = P - Q	(lbs)	31.2
P	WT. OF WET SOIL & TAR		(gm)	375.8	S	WT OF DRY SOIL = Q - O	(pcf)	159.4
Q	WT. OF DRY SOIL & TAR	E	(gm)	344.6	Т	MOISTURE CONTENT = (R/S)X100		19.6

CYL DIA 1 (IN):

H

PASS/FAIL

WET UNIT WEIGHT = D/A

DRY UNIT WEIGHT = E/(1 + (T/100))

PERCENT COMPACTION = F/L

PROCTOR TEST DATA LP-103 [L] MAXIMUM DRY UNIT WT. (pcf) 113 (M) OPT. MOIST. CONTENT (%) 17.5

C	OMPARISION WITH NUCLEAR GAUGE - ASTM D	6938		QA ID:	DW	
	DELTA MOISTURE CONTENT = T - X	0.5	X	FDT MOISTURE CONTENT	(%)	19.1
V	FDT WET UNIT WT. (pcf)	128.0	Y	FDT DRY UNIT WT.	(pcf)	107.5
W	DELTA DRY UNIT WT. = F - Y	0.0				

COMMENTS

CYL DIA 2 (IN):

(lbs)

(pcf)

(%)

128.5

107.5

95.1

CYL HT 1 (IN):

CYLINDER NO.:

WEIGHT OF CYLINDER

D WEIGHT OF WET SAMPLE = B - C

WEIGHT OF SAMPLE & CYLINDER

APPENDIX F

Manufacturer's Quality Control Documentation

- Geomembrane
- Geotextile

Geomembrane

- 60-mil
- Sacrificial

60-mil

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material 1	<i>Type:</i> gml : 6	Manufac	turer: Ag	gru Ameri	ica		Produ	ct Type	: Microspil	ke HD 60-mi	il	
	Inventor	y			Q.A	. Confi	ormana	се	Q	Q.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAII
Accepted Ro	olls											
1/15/2011	7110583-443557-11	23	505	DW	11/4/2011	GM-09	P	DB	11/3/2011	11/3/2011	р	DB
1/15/2011	7110583-443558-11	23	505	DW						11/3/2011	P	DB
1/14/2011	7110583-443559-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/14/2011	7110583-443560-11	23	505	DW				-	11/3/2011	11/3/2011	P	DB
1/15/2011	7110583-443561-11	23	505	DW					11/3/2011	11/3/2011	P	DB
1/14/2011	7110583-443562-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/14/2011	7110583-443563-11	23	505	DW	4/3/2012	GM-11	544	DW	11/3/2011	11/3/2011	Р	DB
1/15/2011	7110583-443565-11	23	505	DW			HOTE		11/3/2011	11/3/2011	Р	DB
1/15/2011	7110583-443566-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/15/2011	7110583-443567-11	23	505	DW					11/3/2011	11/3/2011	р	DB
1/15/2011	7110583-443568-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/14/2011	7110583-443569-11	23	505	DW					11/3/2011	11/3/2011	P	DB
1/14/2011	7110583-443570-11	23	505	DW					11/3/2011	11/3/2011	P	DB
1/14/2011	7110583-443673-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/15/2011	7110583-443674-11	23	505	DW					11/3/2011	11/3/2011	P	DB
1/15/2011	7110583-443675-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/14/2011	7110583-443676-11	23	505	DW					11/3/2011	11/3/2011	р	DB
1/14/2011	7110583-443677-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/14/2011	7110583-443678-11	23	505	DW					11/3/2011	11/3/2011	P	DB
1/14/2011	7110583-443679-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
1/23/2012	7120199-311449-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	7120199-311450-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	7120199-311451-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	7120199-311452-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
1/23/2012	7120199-311453-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	7120199-311454-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
1/23/2012	7120199-311455-12	23	505	DWH					4/27/2012		P	DWH
/23/2012	7120199-311556-12	23	505	DWH					4/27/2012		P	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material 7	<i>Type:</i> gml: 6	Manufac	turer: Ag	ru Amer	ica		Produ	ict Type.	Microspik	e HD 60-mi	I	
	Inventor	y			Q.A	. Confe	ormano	се	Q	.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft,)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/23/2012	7120199-311557-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311558-12	23	505	DWH	3/29/2012	GM-13	Р	DB	4/27/2012	4/27/2012	P	DWI-
4/23/2012	7120199-311559-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311560-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311561-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311562-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311563-12	23	505	DWH					4/27/2012	4/27/2012	р	DWH
4/23/2012	7120199-311564-12	23	505	DWH			-		4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311565-12	23	505	DWH					4/27/2012	4/27/2012	р	DWH
4/23/2012	7120199-311566-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311567-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311568-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311569-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311670-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311671-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311672-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311673-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311674-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311675-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311676-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311677-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	7120199-311678-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311679-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311680-12	23	505	DWH	3/29/2012	GM-14	Р	DB	4/27/2012	4/27/2012	Р	DWH
4/23/2012	7120199-311681-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
1/23/2012	7120199-311682-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	7120199-311683-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	7120199-311784-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
1/23/2012	7120199-311785-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material T	Type: gml: 6	manufac	<i>turer</i> : Ag	ru Amer	ica		Produ	ict Type.	Microspik	e HD 60-mi	l			
	Inventor	y			Q.A	Q.A. Conformance Date Samp Result QAID 8/29/2012 GM-12 P DB				Q.C. Documents				
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date		Result	QAID	Date Rec	Date Ckk	Result	QAII		
4/23/2012	7120199-311786-12	23	505	DWH	1				4/27/2012	4/27/2012	P	DWF		
4/23/2012	7120199-311787-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWI		
4/23/2012	7120200-311330-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWI		
4/23/2012	7120200-311331-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWI		
4/23/2012	7120200-311332-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311333-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311334-12	23	505	DWH					4/27 /2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311335-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311336-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311337-12	23	505	DWH	3/29/2012	GM-12	Р	DB	4/27/2012	4/27/2012	Р	DWF		
4/23/2012	7120200-311338-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311339-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311340-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311341-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311442-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311443-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311444-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311445-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311446-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311447-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	7120200-311448-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	8110773-311788-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	8110773-311789-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	8110773-311790-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	8110773-311791-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/24/2012	8110773-311792-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
4/23/2012	8110773-311793-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH		
1/23/2012	8110773-311794-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		
1/23/2012	8110773-311795-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH		

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material	Type: gml: 6	Manufac	turer: Ag	gru Amer	ica		Produ	ict Type	: Microspil	ke HD 60-mi	il	
	Invento	ry			Q.A	. Conf	orman	се	Q.C. Documents			
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAII
4/23/2012	8110773-311796-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWF
4/23/2012	8110773-312101-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	8110773-312102-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWF
4/23/2012	8110773-312103-12	23	505	DWH					4/27/2012	4/27/2012	P	DWI-
4/23/2012	8110773-312104-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWI
4/23/2012	8110773-312105-12	23	505	DWH	4/18/2012	GM-15	P	DWH	4/27/2012	4/27/2012	Р	DWE
4/23/2012	8110773-312106-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312107-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312108-12	23	505	DWH				1111		4/27/2012	P	DWH
4/23/2012	8110773-312109-12	23	505	DWH						4/27/2012	P	DWH
4/23/2012	8110773-312110-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312111-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312112-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-312113-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312114-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312115-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	8110773-312116-12	23	505	DWH					4/27/2012		Р	DWH
4/24/2012	8110773-312217-12	23	505	DWH					4/27/2012		P	DWH
4/24/2012	8110773-312218-12	23	505	DWH					4/27/2012	4/27/2012	р	DWH
4/24/2012	8110773-312219-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	8110773-312220-12	23	505	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	8110773-312221-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	8110773-312222-12	23	505	DWH					4/27/2012		Р	DWH
1/24/2012	8110773-312223-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
1/23/2012	8110773-312224-12	23	505	DWH					4/27/2012			DWH
1/24/2012	8110773-312225-12	23	505	DWH					4/27/2012		P	DWH
1/24/2012	8110773-312226-12	23	505	DWH			-	-		4/27/2012		DWH
1/24/2012	8110773-312227-12	23	505	DWH	4/18/2012	GM-16	Р.	DWH	4/27/2012			DWH
1/24/2012	8110773-312228-12	23	505	DWH					4/27/2012			DWH

Geosyntec[>]

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material '	Type: gml: 6	Manufac	turer: Ag	gru Amer	ica		Produ	ict Type.	: Microspik	e HD 60-mi	I	
	Invento	ry			Q.A	. Confe	orman	се	Q	.C. Docu	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/23/2012	8110773-312229-12	23	505	DWH					4/27/2012	4/27/2012	Р	DWH
6/28/2012	8110773-312330-12	23	505	DWH					3/23/2012	3/23/2012	Р	DJB
6/28/2012	8110773-312331-12	23	505	DWH					3/23/2012	3/23/2012	Р	DJB
6/28/2012	8110773-312332-12	23	505	DWH					3/23/2012	3/23/2012	P	DJB
6/28/2012	8110773-312333-12	23	505	DWM					3/23/2012	3/23/2012	Р	DJB
6/28/2012	8110773-312334-12	23	505	DWM					3/23/2012	3/23/2012	Р	DJB
6/28/2012	8110773-312335-12	23	505	DWM					3/23/2012	3/23/2012	Р	DJB
11/14/2011	8210664-443682-11	23	505	DW		1			11/3/2011	11/3/2011	Р	DB
11/15/2011	8210664-443683-11	23	505	DW	11/4/2011	GM-10	P	ΒB	11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443784-11	23	505	DW				-	11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443785-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443786-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443787-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443788-11	23	505	DW	-				11/3/2011	11/3/2011	P	DB
11/15/2011	8210664-443789-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443790-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443791-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443792-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443793-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-443796-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-443797-11	23	505	DW					11/3/2011	11/3/2011	Р	DB
11/14/2011	8210664-444101-11	23	505	DW					11/3/2011	11/3/2011	P	DB
11/14/2011	8210664-444102-11	23	505	DW					11/3/2011	11/3/2011	Р	DB

Average Roll Width(ft.): 23

Total Number of Rolls: 138

Average Roll Length(ft.): 505
Cumulative Area(sq.ft.): 1602870

Total Number of Conformance Tests: 8

Comments: 7110583-443563-11:used for Interface Friction testing

Chenango Contracting Honeywell Sedim Consol doc 17645 Syracuse, NY PO# 2276

			***	0,1000						_
				138 rolls 60 h	D micro (5	(05)				_
	Engl	ish Dimens	sions							_
roil #	wid	len	area	check weld rod	qty (if ord	ered)	wgt		resin lot#	
443557 .11	23	505	11,615.0	60HD micro	138tot	1	3898	2ft conf	7110583	
443558 .11	23	505	11,615.0	60HD micro	138tot	2	3894		7110583	
443559 .11	23	505	11,615.0	60HD micro	138tot	3	3894		7110583	
443560 .11	23	505	11,615.0	60HD micro	138tot	4	3892		7110583	
443561 .11	23	505	11,615.0	60HD micro	138tot	5	3894		7110583	
443562 .11	23	505	11,615.0	60HD micro	138tot	6	3892		7110583	
443563 .11	23	505	11,615.0	60HD micro	138tot	7	3894		7110583	
443565 .11	23	505	11,615.0	60HD micro	138tot	8	3896		7110583	
443566 .11	23	505	11,615.0	60HD micro	138tot	9	3892		7110583	
443567 .11	23	505	11,615.0	60HD micro	138tot	10	3900		7110583	
443568 .11	23	505	11,615.0	60HD micro	138tot	11	3804		7110583	
443569 .11	23	505	11,615.0	60HD micro	138tot	12	3804		7110583	
443670 .11	23	505	11,615.0	60HD micro	138tot	13	3802		7110583	
443673 .11	23	505	11,615.0	60HD micro	138tot	14	3797		7110583	
443674 .11	23	505	11,615.0	60HD micro	138tot	15	3794		7110583	
443675 .11	23	505	11,615.0	60HD micro	138tot	16	3796		7110583	
443676 .11	23	505	11,615.0	60HD micro	138tot	17	3800		7110583	
443677 .11	23	505	11,615.0	60HD micro	138tot	18	3796		7110583	
443678 .11	23	505	11,615.0	60HD micro	138tot	19	3794		7110583	
443679 .11	_ 23	505	11,615.0	60HD micro	138tot	20	3796		7110583	
443682 .11	23	505	11,615.0	60HD micro	138tot	21	3908		8210664	
443683 .11	23	505	11,615.0	oraim DH09	138tot	22	3914	2ft conf	8210664	
443784 .11	23	505	11,615.0	OHD micro	138tot	23	3916		8210664	
443785 .11	23	505	11,615.0	60HD micro	138tot	24	3920		8210664	
443786 .11	23	505	11,615.0	60HD micro	138tot	25	3916		8210664	
443787 .11	23	505	11,615.0	60HD micro	138tot	26	3920		8210664	
443788 .11	23	505	11,615.0	60HD micro	138tot	27	3922		8210664	V
443789 .11	23	505	11,615.0	60HD micro	138tot	28	3920		8210664	
443790 .11	23	505	11,615.0	60HD micro	138tot	29	3910		8210664	
443791 .11	23	505	11,615.0	60HD micro	138tot	30	3946		8210664	
443792 .11	23	505	11,615.0	60HD micro	138tot	31	3940		8210664	
443793 .11	23	505	11,615.0	60HD micro	138tot	32	3788		8210664	
443796 .11	23	505	11,615.0	60HD micro	138tot	33	3788		8210664	
443797 .11	23	505	11,615.0	60HD micro	138tot	34	3788		8210664	
444101 .11	23	505	11,615.0	60HD micro	138tot	35			8210664	
444102 .11	23	505	11,615.0	60HD micro	138tot	36			8210664	

ANC.

PO# 2276

Syracuse, NY

				13	B rolls 60 l	1D micro (50)5)			
roll#	Engli wid	sh Dimens len	sions	chec	k weld roo	l qty (if orde	red)_	wgt		resin lot#
199.0										
11330 .12	23	505	11,615.0	60HD		138tot	37	3882		7120200
11331 .12	23	505	11,615.0	60HD	micro	138tot	38	3946		7120200
11332 .12	23	505	11,615.0	60HD	micro	138tot	39	3875		7120200
11333 .12	23	505	11,615.0	60HD	micro	138tot	40	3852		7120200
11334 .12	23	505	11,615.0	60HD	micro	138tot	41	3837		7120200
11335 .12	23	505	11,615.0	60HD	micro	138tot	42	3828		7120200
11336 .12	23	505	11,615.0	60HD	micro	138tot	43	3838		7120200
11337 .12	23	505	11,615.0	60HD	micro	138tot	44	3823	2ft conf	7120200
11338 .12	23	505	11,615.0	60HD	micro	138tot	45	3833		7120200
11339 .12	23	505	11,615.0	60HD	micro	138tot	46	3843		7120200
11340 .12	23	505	11,615.0	60HD	micro	138tot	47	3925		7120200
11341 .12	23	505	11,615.0	60HD	micro	138tot	48	3927		7120200
11442 .12	23	505	11,615.0	60HD	micro	138tot	49	3929		7120200
11443 .12	23	505	11,615.0	60HD		138tot	50	3919		7120200
11444 .12	23	505	11,615.0	60HD		138tot	51	3923		7120200
11445 .12	23	505	11,615.0	60HD		138tot	52	3934		7120200
				60HD		138tot	53	3938		7120200
11446 .12	23	505	11,615.0				54	3943		7120200
11447 .12	23	505	11,615.0	60HD		138tot		3943 3921		7120200
11448 .12	23	505	11,615.0	60HD		138tot	55 56			
11449 .12	23	505	11,615.0	60HD		138tot	56	3911		7120199
11450 .12	23	505	11,615.0	60HD		138tot	57	3894		7120199
11451 .12	23	505	11,615.0	60HD		138tot	58	3897		7120199
11452 .12	23	505	11,615.0	60HD		138tot	59	3889		7120199
11453 .12	23	505	11,615.0	60HD		138tot	60	3887		7120199
11454 .12	23	505	11,615.0	60HD	micro	138tot	61	3884		7120199
11455 .12	23	505	11,615.0	60HD	micro	138tot	62	3896		7120199
11556 .12	23	505	11,615.0	60HD	micro	138tot	63	3897		7120199
11557 .12	23	505	11,615.0	60HD	micro	138tot	64	3858		7120199
11558 .12	23	505	11,615.0	60HD	micro	138tot	65	3832	2ft conf	7120199
11559 .12	23	505	11,615.0	60HD	micro	138tot	66	3866		7120199
11560 .12	23	505	11,615.0	60HD	micro	138tot	67	3840		7120199
11561 .12	23	505	11,615.0	60HD		138tot	68	3908		7120199
11562 .12	23	505	11,615.0	60HD		138tot	69	3901		7120199
11562 .12	23	505	11,615.0	60HD		138tot	70	3904		7120199
11564 .12	23	505	11,615.0	60HD		138tot	71	3905		7120199
11564 .12	23	505 505	11,615.0	60HD		138tot	72	3910		7120199
						138tot	72 73	3904		7120199
11566 .12	23	505 505	11,615.0	60HD			73 74	3904		7120199
11567 .12	23	505	11,615.0	60HD		138tot				
11568 .12	23	505	11,615.0	60HD		138tot	75 76	3915		7120199
11569 .12	23	505	11,615.0	60HD		138tot	76	3920		7120199
11670 .12	23	505	11,615.0	60HD		138tot	77	3918		7120199
11671 .12	23	505	11,615.0	60HD		138tot	78	3277		7120199
11672 .12	23	505	11,615.0	60HD	micro	138tot	79	3922		7120199
11673 .12	23	505	11,615.0	60HD	micro	138tot	80	3926		7120199
11674 .12	23	505	11,615.0	60HD	micro	138tot	81	3934		7120199
11675 .12	23	505	11,615.0	60HD	micro	138tot	82	3947		7120199
11676 .12	23	505	11,615.0	60HD	micro	138tot	83	3912		7120199
11677 .12	23	505	11,615.0	60HD		138tot	84	3911		7120199
11678 .12	23	505	11,615.0	60HD		138tot	85	3907		7120199
11679 .12	23	505	11,615.0	60HD		138tot	86	3908		7120199
11680 .12	23	505	11,615.0	60HD		138tot	87	3904	2ft conf	7120199
11681 .12	23	505	11,615.0	60HD		138tot	88	3918		7120199
11682 .12	23	505	11,615.0	60HD		138tot	89	3910		7120199
11683 .12	23	505	11,615.0	60HD		138tot	90	3912		7120199
11784 .12	23			60HD		138tot	91	3910		7120199
		505	11,615.0							7120199
11785 .12	23	505	11,615.0	60HD		138tot	92	3911		
11786 .12	23	505	11,615.0	60HD		138tot	93	3918		7120199
11787 .12	23	505	11,615.0	60HD		138tot	94	4055	certs	7120199
11788 .12	23	505	11,615.0	60HD		138tot	95	3956		8110773
11789 .12	23	505	11,615.0	60HD	micro	138tot	96	3897		8110773
11790 .12	23	505	11,615.0	60HD	micro	138tot	97	3923		8110773
11791 .12	23	505	11,615.0	60HD	micro	138tot	98	3924		8110773
11792 .12	23	505	11,615.0	60HD	micro	138tot	99	3911		8110773
11793 .12	23	505	11,615.0		micro	138tot	100	3842		8110773
			11,615.0	60HD		138tot	101	3836		8110773
11794 .12	23	505								

Chenango Contracting Honeywell Sedim Consol doc 17645

PO# 2276

138 rolls 60 HD micro	(505

	F- ···	ah Diazz	lana	138	TOUS 60 I	1D micro (5)	uoj		
eall di	4157	sh Dimens		cheal	cutold ros	d qty (if orde	arad)	wgt	resin lot#
roll#	wid	len	area	cneci	(weld ro	i dià (ii oide	ared)	wgr	resili lot#
311796 .12	23	505	11,615.0	60HD	micro	138tot	103	3856	8110773
312101 .12	23	505	11,615.0	60HD	micro	138tot	104	3851	8110773
312102 .12	23	505	11,615.0	60HD	micro	138tot	105	3929	8110773
312103 .12	23	505	11,615.0	60HD	micro	138tot	106	4001	8110773
312104 .12	23	505	11,615.0	60HD	micro	138tot	107	4011	8110773
312105 .12	23	505	11,615.0	60HD	micro	138tot	108	3912 2ft conf	8110773
312106 .12	23	505	11,615.0	60HD	micro	138tot	109	3814	8110773
312107 .12	23	505	11,615.0	60HD	micro	138tot	110	3870	8110773
312108 .12	23	505	11,615.0	60HD	micro	138tot	111	3865	8110773
312109 .12	23	505	11,615.0	60HD	micro	138tot	112	3859	8110773
312110 .12	23	505	11,615.0	60HD	micro	138tot	113	3855	8110773
312111 .12	23	505	11,615.0	60HD	micro	138tot	114	3852	8110773
312112 .12	23	505	11,615.0	60HD	micro	138tot	115	3854	8110773
312113 .12	23	505	11,615.0	60HD	micro	138tot	116	3855	8110773
312114 .12	23	505	11,615.0	60HD	micro	138tot	117	3867	8110773
312115 .12	23	505	11,615.0	60HD	micro	138tot	118	3871	8110773
312216 .12	23	505	11,615.0	60HD	micro	138tot	119	3864	8110773
312217 .12	23	505	11,615.0	60HD	micro	138tot	120	3862	8110773
312218 .12	23	505	11,615.0	60HD	micro	138tot	121	3864	8110773
312219 .12	23	505	11,615.0	60HD	micro	138tot	122	3852	8110773
312220 .12	23	505	11,615.0	60HD	micro	138tot	123	3865	8110773
312221 .12	23	505	11,615.0	60HD	micro	138tot	124	3875	8110773
312222 .12	23	505	11,615.0	60HD	micro	138tot	125	3876	8110773
312223 .12	23	505	11,615.0	60HD	micro	138tot	126	3865	8110773
312224 .12	23	505	11,615.0	60HD	micro	138tot	127	3857	8110773
312225 .12	23	505	11,615.0	60HD	micro	138tot	128	3848	8110773
312226 .12	23	505	11,615.0	60HD	micro	138tot	129	3858	8110773
312227 .12	23	505	11,615.0	60HD	micro	138tot	130	3830 2ft conf	8110773
312228 .12	23	505	11,615.0	60HD	micro	138tot	131	3850	8110773
312229 .12	23	505	11,615.0	60HD	micro	138tot	132	3856	8110773
312330 .12	23	505	11,615.0	60HD	micro	138tot	133 —		8110773
312331 .12	23	505	11,615.0	60HD	micro	138tot	134-2)	1/ 1	8110773
312332 .12	23	505	11,615.0 delucred	60HD	micro	138tot	135 - 3	OK 1	8110773
312333 .12	23	505	11,615.0 7 28	60HD	micro	138tot	136 - 4	entered	8110773
312334 .12	23	505	11,615.0 June	60HD	micro	138tot	137_5	EN IO.	8110773
312335 .12	23	505	11,615.0 / 2012	60HD	micro	138tot	138 — 6		8110773

Honeywell Sediment Consolid. Syracuse, NY

Agru America will certify that the resin used to manufacture this material meets the requirements of Specification Section 02740

Paul W. Barker

Technical Director

Paul Barker (VV)

Date: April 14, 2012

Honeywell Sediment Consolid. Syracuse, NY

The properties of the welding rod (extrudate) supplied for this project will meet requirements set forth in these specifications.

Paul W. Barker

Technical Director

Paul Barker (VV)

Date: April 14, 2012

Honeywell Sediment Consolid. Syracuse, NY

Agru America, Inc. certifies that for this project we will test to ASTM D5397- Standard Test Method for evaluation of stress crack resistance of polyolefin geomembranes using notched constant tensile load test.

Paul W. Barker

Technical Director

Paul Barker (VV)

Date: April 14, 2012

SP NOTCHED CONSTANT TENSILE LOAD ASTM D 5397 APPENDIX A

and differed, inc.		AFFERDIX A
LOT # : 8210664	MATERIAL : HDPE	DATE 10-29-11
ROLL# 443682-11	LINER TYPE 60 HD MICROSPIKE	REF # :
	d = <u>(str@yld x %test_x_(80% of no</u> MA	om. thickness) x width) - CF
where : str@yld = Tensile strength @ yield	(Weakest Direction) from ASTM D-6693 ir	n psi
thickness = Thickness of sample at	t notch point in inches	
width = Width of sample in inches (
MA = Mechanical Advantage Used	· ·	
	tions is 77g (weight of arm with empty holde	
	(str@yld x nom. thickness x .0300*	
* This number may change due to Strength @ yield for this roll: 2,5	o customer specifications. Formula will 93 psi % of yield tested : 30	
Strength @ yield for this for	psi // or yield tested.	70
Station used:	Mechanical Advantage Used: 5	CF = <u>77</u> g
	••	
Nominal Thickness (in): 0.06	00	
LOAD = str@yld x nominal thick	ness x formula	
LOAD = $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	mula	
LOAD = 408 g		
PASS @ HRS		

Specimen Thickness (mil	s) De	Notch epth (mils)	PASS / FAIL ?	Failure at
#1	#1	0.0139	PASS	hours
#20.0618	#2	0.0138	_PASS_	hours
#3 0.0621	#3 .	0.0141	PASS	hours
#4 0.0620	#4 .	0.0140	PASS	hours
#5 <u>0.0620</u>	#5 .	0.0140	PASS	hours
#6	#6 .	0.0140 =	356 micr	rons

Comments: all 5 specimens after 312 hours with no breaks.	removed		
Tested By: JE			
Checked By: GP			
Test Conditions Temp:	71		
(At Notching) Humidity	: 52		

SP NOTCHED CONSTANT TENSILE LOAD ASTM D 5397 APPENDIX A

america, inc.	AFFERDIXA	
LOT # : 7120200 MATERIAL : HD	PE DATE	3/11/12
ROLL # 310775-12 LINER TYPE 60	HD MICROSPIKE REI	F#:
FORMULA FOR APPLIED LOAD: Load = (str@yld x %te	est x (80% of nom. thickness) x width) - CF
where:	MA	
str@yld = Tensile strength @ yield (Weakest Direction) fr	rom ASTM D-6693 in psi	
thickness = Thickness of sample at notch point in inches	:	
width = Width of sample in inches (.125" constant)		
MA = Mechanical Advantage Used (1:1, 3:1, 4:1, or 5:1)		
CF = Correction Factor for MA Stations is 77g (weight of	arm with empty holder attached to oth	er end)
Therefore, for each sample, load = (str@yld x nom. thi		
* This number may change due to customer specifica		3.
Strength @ yield for this roll : 2,456 psi % o	of yield tested :%	
Station used: Mechanical Advant	tage Used:_5 CF	= <u>77 g</u>
Nominal Thickness (in): 0.0600		
LOAD = str@yld x nominal thickness x formula		
LOAD - Stillyid & Hollinal Unickliess & Tollida		
LOAD = $\frac{2,456}{}$ x $\frac{0.060}{}$ x formula		
$LOAD = ^{386} g$		
PASS @ _ 300 HRS		
PASS @HRS		

	Specimen lickness (in)		Notch Depth (in)	P	ASS / FAIL	?	Failure at
#1	0.0665	#1	0.0185		PASS	_	hours
#2	0.0670	#2	0.0190		PASS_	_	hours
#3	0.0670	#3 .	0.0190		PASS	-	hours
#4	0.0660	#4 .	0.0180		PASS		hours
#5	0.0660	#5	0.0180		PASS	-	hours
#6	0.0665	#6 .	0.0185	= .	470	microns	

Comments: All 5 s 300 hours with no brea	
Tested By: DF	
Checked By: GP	
Test Conditions T	emp: 71
(At Notching)	lumidity: 52

SP NOTCHED CONSTANT TENSILE LOAD ASTM D 5397

america, inc	APPENDIX A
LOT # : 7120199 MATERIAL : HDI	DATE 3-15-2012
ROLL # 311449-12 LINER TYPE 60 I	HD MICROSPIKE REF#:
FORMULA FOR APPLIED LOAD: Load = (str@yld x %testwhere: str@yld = Tensile strength @ yield (Weakest Direction) fr	st x (80% of nom. thickness) x width) - CF MA om ASTM D-6693 in psi
thickness = Thickness of sample at notch point in inches width = Width of sample in inches (.125" constant)	
MA = Mechanical Advantage Used (1:1, 3:1, 4:1, or 5:1) CF = Correction Factor for MA Stations is 77g (weight of	arm with empty holder attached to other end)
Therefore, for each sample, load = (str@yld x nom. thic * This number may change due to customer specificate Strength @ yield for this roll: 2,478 psi % o	tions. Formula will be changed also.
Station used: Mechanical Advanta	age Used: <u>5</u>
Nominal Thickness (in): 0.0600	
LOAD = str@yld x nominal thickness x formula	
LOAD = $\frac{2,478}{}$ x $\frac{0.060}{}$ x formula	
LOAD = 389 g	

Specimen Thickness (in)	Notch Depth (in)	PASS / FAIL	? Failure at
#1	#1 <u>0.0160</u>	PASS_	hours
#2 0.0625	#20.0145	_PASS_	hours
#30.0635	#30.0155	_PASS_	hours
#4 0.0640	#40.0160	PASS	hours
#5 <u>0.0610</u>	#50.0130	PASS	hours
#6	#60.0145	368	microns

Comments: All 5 specimens possible 300 hours with no breaks. Tested By: CBS		assed at
Tested By: CBS		
Checked By: G	P	
Test Conditions	Temp:	71
(At Notching)	Humidity:	52

PASS @ ______ HRS

SP NOTCHED CONSTANT TENSILE LOAD ASTM D 5397

america, inc	APPENDIX A
LOT # : 7120718 MATERIAL : HDPE	DATE 6/17/2012
ROLL # 424683-12 LINER TYPE 60 HD MIC	REF#:
where: str@yld = Tensile strength @ yield (Weakest Direction) from AST thickness = Thickness of sample at notch point in inches width = Width of sample in inches (.125" constant) MA = Mechanical Advantage Used (1:1, 3:1, 4:1, or 5:1) CF = Correction Factor for MA Stations is 77g (weight of arm with Therefore, for each sample, load = (str@yld x nom. thickness * This number may change due to customer specifications. F Strength @ yield for this roll :	MA M D-6693 in psi empty holder attached to other end) x .0300*>([%TEST] x .8 x .125))-CF/MA ormula will be changed also.
Station used: Mechanical Advantage Us Nominal Thickness (in): 0.0600 LOAD = str@yld x nominal thickness x formula LOAD = $\frac{2,570}{x}$ x $\frac{0.060}{x}$ x formula LOAD = $\frac{404}{y}$ g PASS @ $\frac{300}{y}$ HRS	ed:_ <u>5</u>

Specimen Thickness (in)	Notch Depth (in)	PASS / FAIL ?	Failure at
#1 <u>0.0580</u>	#1 <u>0.0100</u>	_PASS_	hours
#20.0575	#20.0095	_PASS_	hours
#3 <u>0.0575</u>	#3	_PASS_	hours
#4 <u>0.0580</u>	#4	_PASS_	hours
#5 <u>0.0580</u>	#5 <u>0.0100</u>	PASS	hours
#6	#6	= <u>249</u> m	icrons

Comments: AL removed at 317 hou	ks.					
Tested By: DF						
Checked By: G	P					
Test Conditions	Test Conditions Temp: 71					
(At Notching)	Humidity:	52				

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88305479

PO #: 5844

Weight: 194700 LB Ship Date: 07/28/2011 Package: BULK

Mode: Hopper Car CEFX053841 Car #:

Seal No: 260555

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7110583

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.27	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	24	pel/g
Production Date		05/03/2011	

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

ROLL#	44	355	7-	11	Lo	ot #:		7	11058	B3	Liner 1	уре:	MICRO	SPI	KE™ HD	PI	Εř
Measurement ASTM D5994			٨	MIN:	MET 1.49	mm	5		mil		Thickness Length Width	********	1.5 r 153.920 7.01		60 mil 505.0 23.0	fee fee	
(Modified)				/IAX:	1.67	mm			mil						TES	ST	
Asperity ASTM D TOP / BOT		27/37	mil F	AVE:	1.58	mm		02	mil	Ol	T(Standard) AS	TM D389	95 minutes	186	RESU	JLT	S
Specific Grav ASTM D792	-				Density						g/cc				.946	3	
MFI ASTM D COND. E GRADE:	1238	K3	07		Melt Flo	ow Ind	lex	190°	C /216	60 g	g/10 m	in			.27	7	
Carbon Blac ASTM D421		tent			Range						%				2.42	2	
Carbon Blac ASTM D5596		ersion	ı		Catego	ry								1	0 in Cat	1	
Tarada Otras		1 100		-		,									2,51° 2,650	1	
Tensile Strer ASTM D6693					Averag	e Stre	ng	th @	Yield		28 N/mm ((kN/m)	161	ppi	2,58	1	psi
ASTM D638															3,334 2,992		
(2 inches / n	ninute)			Averag	e Stre	eng	ıth @	Break		34 N/mm ((kN/m)	197	ppi	3,163		psi
		D000	•				_								16.1 13.9		
Elongation ASTM D638			3		Averag	e Elor	nga	ation (@ Yield	d	%				15.0		
(2 inches / n	ninute	•													483.		
Lo = 1.3" Yie Lo = 2.0" Bre					Averag	e Elor	nga	ation (@ Brea	ak	%				555. 519.		
Dimensional ASTM D120					Averag	e Dim	en	siona	ıl chanç	ge	%				-0.3	3	
Tear Resista	ance														58.70		
ASTM D100		dified)			Averag	e Tea	r F	Resist	ance		258.7	N			57.596 58.15 6		lbs
Puncture Re FTMS 101 M			(Mod	dified	Averag						412.5				92.74		lbs
Puncture Re ASTM D483					Averaç	ge Pea	ak	Load			608.8	N			136.8	6	lbs
ESCR ASTM D169	3				Minim	um Hr	s \	wo F	ailures		1500 hrs			C	ERTIFIEI	D	
Notched Cor ASTM D539		Tensil	le Lo	ad	pass / fa	ail @	30	%			300 hrs				PAS	s	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

and a .

Signature.....Quality Control Department

10-28-11

443558-11 Liner Type: MICROSPIKE™ HDPE 7110583 Lot #: 1.5 mm 60 mil Thickness..... **ENGLISH** METRIC Measurement 153.926 m 505.0 feet Length..... MIN: 1.52 mm 60 mil **ASTM D5994** 23.0 7.01 feet Width..... (Modified) MAX: 1.74 mm 69 mil **TEST** Asperity ASTM D7466: 27/37 mil AVE: 1.59 mm 63 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 186 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 .27 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.40 % Range ASTM D4218 Carbon Black Dispersion 10 in Cat 1 Category **ASTM D5596** 2,430 2,628 Tensile Strength 28 N/mm (kN/m) 158 ppi Average Strength @ Yield 2,529 psi **ASTM D6693** ASTM D638 (Modified) 3,109 (2 inches / minute) 3,169 Average Strength @ Break 35 N/mm (kN/m) **198** ppi psi 17.96 14,11 Elongation ASTM D6693 Average Elongation @ Yield % 16.04 ASTM D638 (Modified) (2 inches / minute) 478.8 Lo = 1.3" Yield 571.0 524.9 Lo = 2.0" Break Average Elongation @ Break % **Dimensional Stability** % -0.33 Average Dimensional change ASTM D1204 (Modified) 57.981 Tear Resistance 60.095 ASTM D1004 (Modified) 59.038 262.6 N lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 102.07 454.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance lbs Average Peak Load 648.2 N 145.72 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-28-11

Signature. Quality Control Department

ROLL#	443	355	9-	11	Lo	ot #:		71	10583	Liner	Type:	MICRO	SPIK	ETM HC	PI	Ε
Measurement ASTM D5994 (Modified)			N	IIN:	MET 1.52	mm	6		mil	Thickne Length Width		1.5 m 153.926 7.01		60 mil 505.0 23.0	fee fee	
Asperity ASTM D74		27/37		MAX:	1.77 1.59	mm mm			mil mil	OIT(Standard) A	ASTM D389	95 minutes	186	TE:		
Specific Gravit ASTM D792					Density					g/cc				.940	ô	
MFI ASTM D1: COND. E GRADE:	238	K3(07		Melt Flo	ow Ind	ex	190°C	C /2160 g	g g/10	min			.2	7	
Carbon Black ASTM D4218	Conte	ent			Range					%				2.4	0	
Carbon Black ASTM D5596	Dispe	rsion			Catego	ry							1	0 in Cat	1	
Tensile Streng ASTM D6693 ASTM D638 (N	Modifi	,			Averag	e Stre	ng	th @ \	Yield	28 N/m	m (kN/m)	158	ppi	2,43(2,62) 2,52 (3,22) 3,10(9 8	psi
(Z Inches / Iniii	nute ,				Averag	e Stre	ng	th @ E	Break	35 N/m	ım (kN/m)	198	ppi	3,169	9	psi
Elongation AS ASTM D638 (No. 1) (2 inches / min Lo = 1.3" Yield Lo = 2.0" Brea	Modifi nute) d	ed)	3		Averag Averag		•) Yield) Break	%				17.9 14.1 16.0 478. 571.	1 4 8 0	
Dimensional S ASTM D1204		-			Averag	e Dim	en	sional	change	%				-0.3	3	
Tear Resistan ASTM D1004		ified)			Averag	e Tea	r R	esista	ince	262.6	6 N			57.98 60.09 59.03	5	lbs
Puncture Resi FTMS 101 Me		_	(Mod	dified	Avera	ge Pe	ak	Load		454.0) N			102.0	7	lbs
Puncture Resi ASTM D4833					Avera	ge Pe	ak	Load		648.2	2 N			145.7	2	lbs
ESCR ASTM D1693					Minim	um Hr	s v	v/o Fa	ilures	1500 hrs			С	ERTIFIE	D	
Notched Cons ASTM D5397	stant 7	Tensil	e Loa	ad	pass / f	ail @	309	%		300 hrs				PAS	S	
															_	_

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.....Quality Control Department

10-28-11

ROLL# 443	560-11	Lot #:	 7	110583	Liner 1	Гуре: І	MICROS	SPIK	E™ HDI	PE
Measurement ASTM D5994	MIN:		ENGLI n 56	mil	Thickness Length Width		1.5 m 153.926 7.01			eet eet
(Modified) Asperity ASTM D7466: 27 TOP / BOTTOM	MAX; 735 mil AVE:		n 67 n 61	mil mil	OIT(Standard) AS		5 minutes	186	TES RESU	
Specific Gravity ASTM D792		Density			g/cc				.946	
MFI ASTM D1238 COND, E GRADE:	K307	Melt Flow In	dex 190°	C /2160 g	g/10 m	nin			.27	
Carbon Black Conten	nt	Range			%				2.40	
Carbon Black Dispers	sion	Category						10) in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modifier (2 inches / minute)	d)	Average Str	ength @ `	Yield	27 N/mm	(kN/m)	155 բ	opi	2,430 2,628 2,529 3,228 3,109	ps
(2 mones / minute)		Average Str	ength @	Break	34 N/mm	(kN/m)	195 p	pji	3,169	ps
Elongation ASTM D6 ASTM D638 (Modifie (2 inches / minute) Lo = 1.3" Yield		Average Elo			%				17.96 14.11 16.04 478.8 571.0	
Lo = 2.0" Break Dimensional Stability		Average Elo	ngation (ng Break	%				524.9	
ASTM D1204 (Modifi		Average Din	nensional	change	%				-0.33	
Tear Resistance ASTM D1004 (Modifi	ed)	Average Tea	ar Resista	ance	262.6	N			57.981 60.095 59.038	
Puncture Resistance FTMS 101 Method 20		Average Pe	ak Load		454.0	N			102.07	lb
Puncture Resistance ASTM D4833 (Modifi		Average Pe	ak Load		648.2	N			145.72	lb
ESCR ASTM D1693		Minimum H	rs w/o Fa	ilures	1500 hrs			CI	ERTIFIED	
Notched Constant Te ASTM D5397	ensile Load	pass / fail @	30%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

ate:

Signature.....Quality Control Department

10-28-11

ROLL# 443561-1	1 Lot #:	7110583	Liner Type:	MICROSPIK	Ϊ HDP	È
Measurement ASTM D5994 MII (Modified) MA			Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^m ;	60 mil 505.0 fe 23.0 fe	et et
Asperity ASTM D7466: 28/34 mil AV	E: 1.57 mm	62 mil	OIT(Standard) ASTM D389	5 minutes 186	TES1 RESUL	
Specific Gravity ASTM D792	Density		g/cc		.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.27	
Carbon Black Content ASTM D4218	Range		%		2.40	
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	ngth @ Yield	27 N/mm (kN/m)	156 ppi	2,430 2,628 2,529 3,228 3,109	ps
(2 inches / minute)	Average Stren	ngth @ Break	34 N/mm (kN/m)	196 ppi	3,169	ps
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elono		%		17.96 14.11 16.04 478.8 571.0	
Lo = 2.0" Break	Average Elong	gation @ Break	%		524.9	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%		-0.33	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	262.6 N		57.981 60.095 59.038	lbs
Puncture Resistance FTMS 101 Method 2065 (Modifi	Average Peal	k Load	454.0 N		102.07	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	648.2 N		145.72	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.

Quality Control Department

10-28-11

ROLL#	44356	2-11	Lo	t #:	7	110583	Liner	Type: I	MICRO:	SPIK	E™ H	DP	Ε
Measurement			METF		ENGL	.ISH	Thickness		1.5 m 153.926		60 mi 505.0	il fee	a t
ASTM D5994		MIN:	1.52	mm	60	mil	Length		7.01	m;	23.0	fee	
Modified)		MAX:	1.78	mm	70	mil	Width		7.01				
sperity ASTM D7		mil AVE:	1.62	mm	64	mil	OIT(Standard) AS	TM D3895	5 minutes	186	RES	ST UL	
Specific Gravi ASTM D792	ty		Density				g/cc				.94	1 6	
MFI ASTM D1 COND. E GRADE:	238 K30	7	Melt Flo	w Ind	ex 190°	°C /2160 g	g/10 m	nin			.2	27	
Carbon Black ASTM D4218	Content		Range				%				2.4	1 6	
Carbon Black ASTM D5596	Dispersion		Categor	y						1	0 in Cat	1	
Tensile Streng ASTM D6693 ASTM D638 (Modified)		Average	Stre	ngth @	Yield	31 N/mm	(kN/m)	175 բ	opi	2,61 2,88 2,75 3,78 3,16	33 50 39	ps
(2 inches / mi	inute)		Average	Stre	ngth @	Break	39 N/mm	(kN/m)	222 p	pji	3,47	'9	ps
Elongation AS ASTM D638 (I (2 inches / mi Lo = 1.3" Yield	Modified) inute) d		Average			_	%				18.6 13.9 16.3 499 548	33 .0 .2	
Lo = 2.0" Brea	ak		Average	Elon	gation (@ Break	%				523	.6	
Dimensional S ASTM D1204			Average	Dime	ensiona	ıl change	%				-0.3	33	
Tear Resistan ASTM D1004			Average	Tear	Resist	ance	257.3	N			57.38 58.29 57.8 3)2	lb
Puncture Resi FTMS 101 Me		Modified)	Average	e Pea	ık Load		424.8	N			95.50) 6	lb
Puncture Resi ASTM D4833			Average	e Pea	ık Load		606.9	N			136.4	1 5	lb
ESCR ASTM D1693			Minimu	m Hrs	s w/o Fa	ailures	1500 hrs			C	ERTIFIE	D	
Notched Cons	stant Tensile	Load	pass / fai	il @ 3	30%		300 hrs				PAS	ss	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-28-11

Signature.

Quality Control Department

ROLL# 44	3563-1	Lot#	7	110583	Liner 1	Гуре: МІ	CRO	SPIK	E™ HDF	PΕ
Measurement ASTM D5994 (Modified)	11M AM		ENGLI nm 58 nm 66	SH mil mil	Thickness Length Width	1	1.5 m 53.926 '.01			et eet
,	28/37 mil AVI		nm 62	mil	NT(Standard) AS	TM D3895	minutes	186	TEST RESUL	
Specific Gravity ASTM D792		Density			g/cc				.946	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flow	Index 190°	C /2160 g	g/10 m	nin			.27	
Carbon Black Conte ASTM D4218	ent	Range	,		%				2.46	
Carbon Black Dispe ASTM D5596	ersion	Category						10	0 in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modifi (2 inches / minute)	-	Average S	trength @ `	Yield	30 N/mm	(kN/m)	170 բ	opi	2,616 2,883 2,750 3,789 3,169	psi
		Average S	trength @	Break	38 N/mm	(kN/m)	215 p	opi	3,479	psi
Elongation ASTM [ASTM D638 (Modifi (2 inches / minute) Lo = 1.3" Yield	ied)	-	longation @		%				18,66 13.99 16.33 499.0 548.2	
Lo = 2.0" Break		Average E	longation @	ng Break	%				523.6	
Dimensional Stabilit ASTM D1204 (Mod	*	Average D	imensional	change	%				-0.33	
Tear Resistance ASTM D1004 (Mod	ified)	Average T	ear Resista	ance	257.3	N			57.381 58.292 57.837	lbs
Puncture Resistand FTMS 101 Method		Average F	Peak Load		424.8	N			95.506	lbs
Puncture Resistance ASTM D4833 (Mod		Average F	Peak Load		606.9	N			136.45	lbs
ESCR ASTM D1693		Minimum	Hrs w/o Fa	ilures	1500 hrs			С	ERTIFIED	
Notched Constant 7 ASTM D5397	Tensile Load	pass / fail (<u>ම</u> 30%		300 hrs				PASS	
						*		-		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

lata:

Signature.....Quality Control Department

60HDmic FRM REV 03 12/23/05

10-28-11

Liner Type: MICROSPIKE™ HDPE 443565-11 7110583 Lot #: ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... METRIC Measurement 153.926 m 505.0 feet Length..... MIN: 1.54 mm 61 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** 1.60 mm 63 mil Asperity ASTM D7466: 27/30 mil AVE: **RESULTS** OIT(Standard) ASTM D3895 minutes 186 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 .27 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.46 % Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category **ASTM D5596** 2,616 2,883 Tensile Strength 173 ppi psi Average Strength @ Yield 30 N/mm (kN/m) 2,750 **ASTM D6693** ASTM D638 (Modified) 3,789 3,169 (2 inches / minute) 3,479 219 ppi psi Average Strength @ Break 38 N/mm (kN/m) 18,66 13.99 Elongation ASTM D6693 16.33 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 499.0 548.2 Lo = 1.3" Yield 523.6 Lo = 2.0" Break Average Elongation @ Break % **Dimensional Stability** % -0.33Average Dimensional change ASTM D1204 (Modified) 57.381 Tear Resistance 58.292 ASTM D1004 (Modified) 57.837 257.3 N lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 95.506 424.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 606.9 N lbs Average Peak Load 136.45 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

10-28-11

Signature.

Quality Control Department

60HDmic.FRM REV 03

ROLL#	443566	-11	Lo	t #:		7110583	Liner 1	Type: N	/IICROS	SPIK	E™ HD	PE
Measurement ASTM D5994 (Modified)		MIN:	METF 1.50	mm		mil	Thickness Length Width		1.5 m 153.926 7.01			eet eet
Asperity ASTM D7		MAX: AVE:	1.67 1.58	mm mm		mil mil	OIT(Standard) AS	TM D3895	minutes	186	TES RESU	
Specific Gravi ASTM D792			Density				g/cc				.947	
MFI ASTM D1 COND. E GRADE:	238 K307		Melt Flo	w Ind	ex 190	°C /2160 g	g/10 m	in			.27	
Carbon Black ASTM D4218	Content		Range				%				2.45	
Carbon Black ASTM D5596	Dispersion		Categor	y						10) in Cat 1	
Tensile Streng ASTM D6693 ASTM D638 ((2 inches / mi	Modified)		Average	Stre	ngth @) Yield	29 N/mm (kN/m)	166 p	pji	2,586 2,764 2,675 3,834 3,237	
(Z IIICHES / IIII	inde)		Average	Stre	ngth @) Break	39 N/mm (kN/m)	220 p	pi	3,536	
Elongation ASASTM D638 ((2 inches / mi Lo = 1,3" Yield Lo = 2.0" Brea	Modified) inute) d					@ Yield @ Break	%				21.06 15.18 18.12 504.5 569.4 537.0	
Dimensional S ASTM D1204	Stability				_	al change	%				-0.33	
Tear Resistan ASTM D1004			Average	Tear	Resis	tance	256.0	N			57,412 57,716 57,564	
Puncture Res FTMS 101 Me	istance ethod 2065 (Mo	odified	Averag	e Pea	k Load	t	443.7	N			99.756	lbs
Puncture Res ASTM D4833			Averag	e P e a	k Load	d	644.5	N			144.89	lbs
ESCR ASTM D1693			Minimu	m Hrs	s w/o F	ailures	1500 hrs			Cf	ERTIFIED	
Notched Cons ASTM D5397	stant Tensile L	oad	pass / fa	il @ 3	80%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-29-11

Signature.....Quality Control Department

Lot #:	7110583	Liner Type	e: MICROSPIR	(E™ HDP	E
		Length	153.926 m	60 mil 505.0 fe 23.0 fe	et eet
	63 mil	OIT(Standard) ASTM D	3895 minutes 186	TES1 RESUL	
Density		g/cc		.947	
Melt Flow Inde	ex 190°C /2160 g	g g/10 min		.27	
Range		%		2.45	
Category			1	0 in Cat 1	
				2,586 2,764	
Average Strer	ngth @ Yield	30 N/mm (kN/m)	169 ppi	2,675	ps
				3,834	
Average Stren	noth @ Break	39 N/mm (kN/m)	223 ppi		psi
	.g (9			21.06	
Average Elong	gation @ Yield	%		18.12	
	J			504.5	
Average Flond	nation @ Break	%			
Average Lions	gallon @ bicak	70		007.0	
Average Dime	ensional change	%		-0.33	
				57.412	
Average Tear	Resistance	256.0 N		57.564	lbs
Average Peal		443.7 N		99.756	lbs
Average Peal	k Load	644.5 N		144.89	lbs
Minimum Hrs	w/o Failures	1500 hrs	C	ERTIFIED	
pass / fail @ 3	0%	300 hrs		PASS	
	METRIC 1.48 mm 1.74 mm 1.60 mm Density Melt Flow Index Range Category Average Stren Average Stren Average Elong Average Elong Average Dime Average Pea Average Pea Minimum Hrs	METRIC ENGLISH 1.48 mm 58 mil 1.74 mm 69 mil 1.60 mm 63 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness. 1.5 mm 1.48 mm 58 mil Length 153.926 m 1.74 mm 69 mil Width 7.01 m; 1.60 mm 63 mil OIT(Standard) ASTM D3895 minutes 186 Density g/cc Melt Flow Index 190°C /2160 g g/10 min Range % Category 1 Average Strength @ Yield 30 N/mm (kN/m) 169 ppi Average Elongation @ Break 39 N/mm (kN/m) 223 ppi Average Elongation @ Break % Average Dimensional change % Average Peak Load 443.7 N Average Peak Load 644.5 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH 1.48 mm 58 mil 1.74 mm 69 mil 1.60 mm 63 mil 1.60 m

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-29-11

Signature......Quality Control Department

Lot #:	7110583	Liner Ty	pe: MICROSPII	KE™ HDF	E
1.47 mm		Length	153.926 m	000.0	eet eet
	62 mil	OIT(Standard) ASTM	// D3895 minutes 186	TES' RESUL	
Density		g/cc		.947	
Melt Flow Inde	ex 190°C /2160 g	g/10 mir	1	.27	
Range		%		2.45	
Category			1	10 in Cat 1	
Average Stren	igth @ Yield	29 N/mm (KN	_{/m)} 166 ppi	2,586 2,764 2,675 3,834 3,237	psi
Average Stren	gth @ Break	39 N/mm (kN	/m) 220 ppi	3,536	psi
		%		21.06 15.18 18.12 504.5 569.4 537.0	
Average Dime	nsional change	%		-0.33	
Average Tear	Resistance	25 6.0 N	J	57.412 57.716 57.564	lbs
Average Peak	< Load	443.7 N	V	99.756	lbs
Average Peak	< Load	644.5 N	J	144.89	lbs
Minimum Hrs	w/o Failures	1500 hrs	C	ERTIFIED	
pass / fail @ 30	0%	300 hrs		PASS	
	METRIC 1.47 mm 1.76 mm 1.58 mm Density Melt Flow Index Range Category Average Stren Average Elong Average Elong Average Dime Average Peal Average Peal Minimum Hrs	METRIC ENGLISH 1.47 mm 58 mil 1.76 mm 69 mil 1.58 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH 1.47 mm 58 mil Length 1.76 mm 69 mil 1.58 mm 62 mil OIT(Standard) ASTM Density g/cc Melt Flow Index 190°C /2160 g g/10 mir Range % Category Average Strength @ Yield 29 N/mm (M) Average Elongation @ Preak 39 N/mm (M) Average Elongation @ Preak % Average Dimensional change % Average Tear Resistance 256.0 N Average Peak Load 644.5 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH Thickness 1.5 mm 1.47 mm 58 mil Length 153.926 m 1.76 mm 69 mil Width 7.01 m 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 186 Density g/cc Melt Flow Index 190°C /2160 g g/10 min Range % Category 7 Average Strength @ Yield 29 Nmm (NNm) 166 ppi Average Elongation @ Flow 4 Average Elongation @ Flow % Average Dimensional change % Average Peak Load 443.7 N Average Peak Load 644.5 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH 1.47 mm Thickness

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-29-11

Signature.

Quality Control Department

ROLL# 4	435	69	-11	Lo	t #:		7110583	Liner 7	Гуре: М	MICROS	SPIK	E™ HDI	PE
Measurement ASTM D5994 (Modified)			MIN:	METS 1.46 1.75	RIC mm mm	57	SLISH mil mil	Thickness Length Width		1.5 m 153.926 7.01			eet eet
Asperity ASTM D7466		36 mil		1.55	mm		mil	OIT(Standard) AS	TM D3895	5 minutes	186	TES RESUI	
Specific Gravity ASTM D792				Density				g/cc				.947	
MFI ASTM D123 COND. E GRADE:		K307		Melt Flo	w Ind	ex 19	0°C /2160	g g/10 m	nin			.27	
Carbon Black C ASTM D4218	ontent			Range				%				2.45	
Carbon Black D ASTM D5596	ispersi	on		Categor	у						10	0 in Cat 1	
												2,586 2,764	
Tensile Strength ASTM D6693	1			Average	Stre	ngth (@ Yield	29 N/mm	(kN/m)	163 p	рі	2,675	
ASTM D638 (Me (2 inches / minu)					_					3,834 3,237	
				Average	Stre	ngth (@ Break	38 N/mm	(kN/m)	216 p	pi	3,536	psi
Elongation AST ASTM D638 (Mo (2 inches / minu Lo = 1.3" Yield Lo = 2.0" Break	odified ute)						n @ Yield n @ Break	%				21.06 15.18 18.12 504.5 569.4 537.0	
Dimensional Sta ASTM D1204 (M	ability	d)			-	_	nal change					-0.33	
												57.412	
Tear Resistance ASTM D1004 (M		d)		Average	e Tear	Resi	stance	256.0	N			57.716 57.564	
Puncture Resist FTMS 101 Meth		65 (M	odified	Averag	e Pea	ak Loa	ad	443.7	N			99.756	lbs
Puncture Resist ASTM D4833 (M		d)		Averag	e Pea	k Loa	ad	644.5	N			144.89	lbs
ESCR ASTM D1693				Minimu	ım Hr	s w/o	Failures	1500 hrs			С	ERTIFIED	
Notched Consta ASTM D5397	ant Ter	nsile L	_oad	pass / fa	ail @ 3	30%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-29-11

Lot #:	7110583	Liner Type:	MICROSPIK	Ϊ HDP	Έ
	GLISH mil	Thickness	1.5 mm 153.926 ^m	000.0	
1.65 mm 65	mil	Width	7.01		
1.57 mm 62	mil C	DIT(Standard) ASTM D389	5 minutes 186		
Density		g/cc		.945	
Melt Flow Index 19	00°C /2160 g	g/10 min		.27	
Range		%		2.46	
Category			1	0 in Cat 1	
				2,413 2.606	
Average Strength	@ Yield	27 N/mm (kN/m)	155 ppi	2,510	psi
				3,250	
Average Strength	@ Break	35 N/mm (kN/m)	197 ppi		psi
				18.72	
Average Elongatio	n @ Yield	%		16.17	
5 0	O			492.0	
Average Florantio	n @ Break	۸۵			
Average Liongatio	ii @ Dieak	70		347.0	-
Average Dimension	nal change	%		-0.33	
				55.443	
Average Tear Resi	istance	247.4 N			lbs
Average Peak Loa		402.6 N	0.000		
	ad	641.6 N		144.23	lbs
Minimum Hrs w/o	Failures	1500 hrs	С	ERTIFIED	
pass / fail @ 30%		300 hrs		PASS	
	METRIC ENG 1.49 mm 59 1.65 mm 65 1.57 mm 62 Density Melt Flow Index 19 Range Category Average Strength Average Elongatio Average Elongatio Average Dimensio Average Peak Load Minimum Hrs w/o	METRIC ENGLISH 1.49 mm 59 mil 1.65 mm 65 mil 1.57 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH 1.49 mm 59 mil 1.65 mm 65 mil 1.57 mm 62 mil Density g/cc Melt Flow Index 190°C /2160 g g/10 min Range % Category Average Strength @ Yield 27 N/mm (kN/m) Average Elongation @ Yield % Average Elongation @ Break % Average Dimensional change % Average Tear Resistance 247.4 N Average Peak Load 402.6 N Average Peak Load 641.6 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:...

10-29-11

Signature.....Quality Control Department

60HDmlc FRM REV 03

443673-11 Liner Type: MICROSPIKE™ HDPE Lot #: 7110583 ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet 1.39 mm 55 mil Length..... MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.64 mm 65 mil **TEST** 1.52 mm 60 mil Asperity ASTM D7466: 26/35 mil AVE: **RESULTS** OIT(Standard) ASTM D3895 minutes 186 TOP/BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .27 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.46 Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category **ASTM D5596** 2.413 2,606 Tensile Strength Average Strength @ Yield 26 N/mm (kN/m) 150 ppi 2,510 psi **ASTM D6693** ASTM D638 (Modified) 3,139 (2 inches / minute) Average Strength @ Break 33 N/mm (kN/m) 191 ppi 3,195 psi 18.72 13.61 Elongation ASTM D6693 Average Elongation @ Yield % 16.17 ASTM D638 (Modified) (2 inches / minute) 492.0 590.0 Lo = 1.3" Yield Lo = 2.0" Break % 541.0 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -0.33 ASTM D1204 (Modified) 55,443 Tear Resistance 55.799 ASTM D1004 (Modified) 247.4 N 55.621 lbs Average Tear Resistance Puncture Resistance Average Peak Load 90.510 lbs 402.6 N FTMS 101 Method 2065 (Modified) Puncture Resistance 641.6 N lbs Average Peak Load 144.23 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

Signature.

Quality Control Department

10-29-11

Lot #: 7110583	B Liner Type: MICROSPIKE™ HDPE						
	Thickness						
	TEST OIT(Standard) ASTM D3895 minutes 186 RESULTS						
Density	g/cc .947						
Melt Flow Index 190°C /2160	g g/10 min .27						
Range	% 2.46						
Category	10 in Cat 1						
Average Strength @ Yield	2,529 2,560 27 N/mm (kN/m) 152 ppi 2,545 ps 3,287 3,110						
Average Strength @ Break	34 N/mm (kN/m) 191 ppi 3,199 ps						
Average Elengation @ Presk	18.78 15.34 % 17.06 490.1 589.7 % 539.9						
Average Dimensional change							
Average Tear Resistance	58.010 57.793 257.5 N 57.902 lb						
Average Peak Load	423.5 N 95.220 lb						
Average Peak Load	659.4 N 148.24 lb						
Minimum Hrs w/o Failures	1500 hrs CERTIFIED						
pass / fail @ 30%	300 hrs PASS						
	METRIC ENGLISH 1.39 mm 55 mil 1.67 mm 66 mil 1.52 mm 60 mil Density Melt Flow Index 190°C /2160 Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Elongation @ Break Average Dimensional change Average Tear Resistance Average Peak Load Average Peak Load Minimum Hrs w/o Failures						

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

10-29-11

Quality Control Department

443675-11 Liner Type: MICROSPIKE™ HDPE Lot #: 7110583 ROLL# 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.46 mm 57 mil MIN: **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.67 mm 66 mil **TEST** 1.55 Asperity ASTM D7466: 26/33 mil AVE: mm 61 mil RESULTS OIT(Standard) ASTM D3895 minutes 186 TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 .27 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.46 % Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category ASTM D5596 2,529 2,560 Tensile Strength Average Strength @ Yield 27 N/mm (kN/m) **155** ppi 2.545 psi **ASTM D6693** 3,287 3,110 ASTM D638 (Modified) (2 inches / minute) 34 N/mm (kN/m) 195 ppi 3,199 psi Average Strength @ Break 18.78 15.34 Elongation ASTM D6693 % 17.06 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 490.1 Lo = 1.3" Yield 589.7Lo = 2.0" Break 539.9 % Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -0.33ASTM D1204 (Modified) 58.010 Tear Resistance 57.793 ASTM D1004 (Modified) 257.5 N 57.902 lbs Average Tear Resistance Puncture Resistance Average Peak Load 95.220 lbs **423.5** N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 659.4 N lbs 148.24 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature....

Quality Control Department

10-29-11

1 Lot #:	7110583	Liner Type: MICROSPIKE™ HDPE						
		Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^{m;}	60 mil 505.0 fe 23.0 fe	et et			
		OIT(Standard) ASTM D389	95 minutes 186	TEST RESUL				
Density		g/cc		.947				
Melt Flow Ind	ex 190°C /2160	g g/10 min		.27				
Range		%		2.46				
Category			1	0 in Cat 1				
				2,529 2,560				
Average Stre	ngth @ Yield	28 N/mm (kN/m)	158 ppi	2,545	ps			
				3,287				
Average Stre	ngth @ Break	35 N/mm (kN/m)	iga 991		ps			
				18.78				
Average Elon	gation @ Yield	%		17.06				
				490.1				
A	andian @ Decel	0/		589.7				
Average Elon	igation @ Break	%		559.9				
Average Dime	ensional change	%		-0.33				
				58.010				
Avorage Tear	r Decistance	257 5 N			lbs			
Average Pea	1211 - 011	423.5 N		95.220				
	ak Load	659.4 N		148.24	lbs			
Minimum Hr	s w/o Failures	1500 hrs	C	ERTIFIED				
d pass / fail @ 3	30%	300 hrs		PASS				
	METRIC IN: 1.49 mm AX: 1.71 mm VE: 1.58 mm Density Melt Flow Ind Range Category Average Stre Average Elon Average Elon Average Dim Average Teal Average Peal Average Peal Minimum Hre	METRIC ENGLISH 1.49 mm 59 mil AX: 1.71 mm 67 mil VE: 1.58 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Tear Resistance Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness 1.5 mm 60 mil Length 153.926 m 505.0 fe 23.0 fe 23.			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date

Signature.

Quality Control Department

10-29-11

ROLL# 443677-11		Lot #: 7110583				B Liner Type: MICROSPIKE™ HDPE						
Measurement ASTM D5994 (Modified)		MIN: MAX:	METF 1.49 1.74	RIC mm mm		LISH mil mil		ess	1.5 m 153.926 7.01			eet feet
Asperity ASTM D7466: TOP/BOTTOM	26/31 mil	AVE:	1.58	mm	62	mil	OIT(Standard)	ASTM D389	95 minutes	186	TES RESU	
Specific Gravity ASTM D792			Density				g/cc				.947	
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flov	w Inde	ex 190	°C /2160 g	g g/10	min			.27	
Carbon Black Con ASTM D4218	tent		Range				%				2.46	
Carbon Black Disp ASTM D5596	persion		Categor	y						10	0 in Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Mod (2 inches / minute			Average	Strer	ngth @) Yield	28 N/m	ım (kN/m)	158 բ	ppi	2,529 2,560 2,545 3,287 3,110	
(2 mones / minute	,		Average	Strer	ngth @) Break	35 N/m	ım (kN/m)	199 p	pji	3,199	psi
Elongation ASTM ASTM D638 (Modi (2 inches / minute Lo = 1.3" Yield Lo = 2.0" Break	ified)		Average Average			@ Yield @ Break	%				18.78 15.34 17.06 490.1 589.7 539.9	
Dimensional Stabi ASTM D1204 (Mod	•		Average	Dime	ensiona	al change	%				-0.33	
Tear Resistance ASTM D1004 (Mod	dified)		Average	Tear	Resist	tance	257.5	5 N			58.010 57.793 57.902	lbs
Puncture Resistan FTMS 101 Method		dified)	Average	Pea	k Load	ı	423.5	5 N			95.220	lbs
Puncture Resistan ASTM D4833 (Mod			Average	e Pea	k Load	l	659.4	N			148.24	lbs
ESCR ASTM D1693			Minimur	m Hrs	w/o F	ailures	1500 hrs			CE	ERTIFIED	
Notched Constant ASTM D5397	Tensile Lo	ad	pass / fai	1@3	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

10-29-11

Quality Control Department

				Н							
78-11	Lot	#:	7	7110583	Liner 7	Гуре: М	MICROS	SPIK	ETM H	DPE	Ξ
Measurement		METRIC ENGLISH			Thickness	1.5 m	60 mil				
MIN:				mil			153.926	m	505.0	feet	1
				mil	•		7.01	m;	23.0	fee	t
									TE	ST	
mil AVL.	1.50	1111111	01		OIT(Standard) AS	TM D3895	5 minutes	186	RES	ULT	S
	Density				g/cc				.94	15	
307	Melt Flov	v Ind	ex 190	°C /2160 g	g/10 m	nin			.2	27	
	Range				%				2.5	53	
n	Category							10	0 in Cat	1	
									2,50	16	
Tensile Strength ASTM D6693		Stre	ngth @	Yield	29 N/mm	(kN/m)	164 p	pi			ps
									3,39	8	
	Avorago	Ctro	nath @	Drook	25		202 -	mi			noi
	Average	Stiel	igiii @	Dieak	JJ N/mm ((KN/m)	202 p	ıμı			psi
93				0 V. 11	24				15.0	12	
	Average	⊢lon	gation	@ Yield	%						
	Average	Elon	gation	@ Break	%				517	.8	
)	Average	Dime	ensiona	al change	%				-0.3	33	
)	Δνετασο	Tear	Pecie	tance	252.2	N					lbs
					232.2	I V			50.08	1	פעו
(Modified)	Average	Pea	k Load	i	375.7	Ν			84.46	66	lbs
)	Average	Pea	k Load		609.6	N			137.0)5	lbs
	Minimun	n Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIE	D	
ile Load	pass / fail	@ 3	0%		300 hrs				PAS	S	
	MAX: mil AVE: 307 n (Modified)	MIN: 1.50 MAX: 1.64 1.56 Density Melt Flow Range Average	METRIC 1.50 mm MAX: 1.64 mm Density Melt Flow Ind 307 Range Category Average Street Average Street Average Elon Average Dime 30 Average Dime Average Pear	METRIC ENGINATION MAX: 1.50 mm 59 MAX: 1.64 mm 65 MIN: 1.56 mm 61 Density Melt Flow Index 190 Average Strength @ Average Strength @ Average Elongation Average Elongation Average Dimensiona Average Peak Load Average Peak Load Minimum Hrs w/o F	METRIC ENGLISH MIN: 1.50 mm 59 mil MAX: 1.64 mm 65 mil Density Melt Flow Index 190°C /2160 g 307 Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH MIN: 1.50 mm 59 mil MAX: 1.64 mm 65 mil MAX: 1.56 mm 61 mil Density Melt Flow Index 190°C /2160 g Melt Flow Index 190°C /2160 g Metron Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures And Thickness Length Width OIT(Standard) AS OIT(Standar	## Average Strength @ Break ## Average Elongation @ Break ## Average Dimensional change ## Average Peak Load ## Av	New color	Name	METRIC ENGLISH Thickness 1.5 mm 60 min 153.926 m 505.0 min 1.50 mm 59 min Length 1.53.926 m 505.0 min 1.50 mm 61 min 1.50 mm 1.50 mm	METRIC ENGLISH Thickness 1.5 mm 60 mil 505.0 feet 153.926 m 153.926 m

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

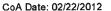
)ate:

Signature.....Quality Control Department

10-30-11

ROLL# 443679-11		Lot #: 7110583				110583	Liner Type: MICROSPIKE™ HDPE						E			
Measurement ASTM D5994	M D5994 MIN		MIN:	1.48 mm 5		ENGLISH 58 mil		Length.	Thickness Length Width		1.5 mm 153.926 ^m 7.01 m;		fee fee			
(Modified)				MAX:	1.66				mil	vvidii				23.0 TES	ST.	
Asperity ASTM D' TOP / BOT		25/36	mil	AVE:	1.56	mn	n 1	61	mil	OIT(Standard)	ASTM D38	95 minutes	186			rs
Specific Grav ASTM D792	vity				Density	,				g/cc				.945	5	
MFI ASTM D COND. E GRADE:	1238	K	307		Melt Fl	ow Inc	de	x 190°	°C /2160	g g/10	min			.27	7	
Carbon Black ASTM D4218		tent			Range					%				2.53	3	
Carbon Black ASTM D5596		ersior	1		Catego	ry							1	0 in Cat 1	1	
T	41-													2,50° 2,840		
Tensile Strer ASTM D6693	-				Averag	e Stre	eng	gth @	Yield	29 N/r	nm (kN/m)	164	ppi	2,674		psi
ASTM D638	(Modi													3,391		
(2 inches / n	ninute)			Averag	a Stra	anı	ath 🙉	Break	35 N/c	nm (kN/m)	202	nni	3,176 3,287		psi
					/ (VCI ag	COLIN	-11 (ξ	ے ۱۱۱	Break	33 W	iiii (Kiviii)		PP.	19.00	8	po.
Elongation A			3		Avoron	o Elo	2	otion	@ Yield	%				15.02 17.0 4		
ASTM D638 (2 inches / m	•	-			Averag	e Elo	ng	alion	@ rieiu	70						
Lo = 1.3" Yie		,												474.1 561.4		
Lo = 2.0" Bre	eak				Averag	e Elo	ng	ation	@ Break	%				517.8	3	_
Dimensional ASTM D1204		-			Averag	e Din	ner	nsiona	ıl change	%				-0.33	3	
Tear Resista	nce													56.918		
ASTM D1004		dified)			Averag	e Tea	ar F	Resist	ance	252.	2 N			56.476 56.69 7		lbs
Puncture Res			(Mo	odified)	Avera						7 N			84.466		
Puncture Res	sistan	ce			Avera	ge Pe	ak	Load		609.	6 N			137.0	5	lbs
ESCR ASTM D1693	3				Minim	um H	rs '	w/o F	ailures	1500 hrs			С	ERTIFIE	ס	
Notched Cor ASTM D5397		Tensi	le L	oad	pass / f	ail @	30	%		300 hrs				PASS	S	

Customer: Chenango Contracting, Inc.


PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

Signature......Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88417742

PO #: 006413

Weight: 194400 LB Ship Date: 02/22/2012

Package: BULK

Mode: Hopper Car Car #: CHVX896605

Seal No: 282623

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7120199

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.25	g/10mi
HLMI Flow Rate	ASTM D1238	21	g/10mi
Density	D1505 or D4883	0.938	g/cm3
Pellet Count	P02.08.03	26	pel/g
Production Date		02/12/2012	. •

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

311449-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... MIN: 1.44 mm 57 mil **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.70 mm 67 mil **TEST** Asperity ASTM D7466 35/32 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.31 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,439 2,572 Tensile Strength Average Strength @ Yield 155 ppi 2,506 psi 27 N/mm (kN/m) **ASTM D6693** 3,093 ASTM D638 (Modified) (2 inches / minute) 2.706 31 N/mm (kN/m) 179 ppi 2,900 psi Average Strength @ Break 20.64 15.14 Elongation ASTM D6693 % 17.89 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 450.0 Lo = 1.3" Yield 483.1 Lo = 2.0" Break 466.6 Average Elongation @ Break % Dimensional Stability -.55 Average Dimensional change % ASTM D1204 (Modified) 61.540 Tear Resistance 58,145 ASTM D1004 (Modified) 266.2 N 59.843 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 93.335 415.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 129.92 lbs Average Peak Load **577.9** N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED** ASTM D1693 Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.....Quality Control Department

311450-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153.926 m 505.0 feet Length..... MIN: 1.48 mm 58 mil ASTM D5994 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.69 mm 67 mil TEST Asperity ASTM D7466: 36/32 mil AVE: 1.60 mm 63 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.31 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,439 2,572 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) 158 ppi 2,506 psi **ASTM D6693** 3,093 ASTM D638 (Modified) (2 inches / minute) 2.706 **183** ppi 2,900 psi Average Strength @ Break 32 N/mm (kN/m) 20.64 15.14 Elongation ASTM D6693 % 17.89 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 450.0 Lo = 1.3" Yield 483.1 Lo = 2.0" Break 466.6 Average Elongation @ Break % **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 61.540 Tear Resistance 58.145 ASTM D1004 (Modified) 266.2 N 59.843 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 93.335 415.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 129.92 lbs 577.9 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature......Quality Control Department

ROLL# 311451-12					Lo	t #:		7120199	Liner Type: MICROSPIKE™ HDPE						
Measurement ASTM D5994	STM D5994 MIN		MIN:	METRIC ENGLIS			GLISH mil	Length	Thickness Length Width		1.5 mm 153.926 ^m 7.01 m;		et eet		
(Modified)				MAX:	1.69	mm	67	mil	vvidii				23.0 fe	-	
Asperity ASTM D		36/32	mil	AVE:	1.56	mm	61	mil	OIT(Standard) AS	TM D389	5 minutes	180	TES [*] RESUL		
Specific Grav ASTM D792	vity				Density				g/cc				.946		
MFI ASTM D COND. E GRADE:	1238	K3	307		Melt Flo	w Ind	ex 19	00°C /2160	g g/10 m	nin			.25		
Carbon Black ASTM D4218		tent			Range				%				2.16		
Carbon Black		ersion	1		Categor	у						1	0 In Cat 1		
													2,478 2,741		
Tensile Strer ASTM D6693	_				Average	Stre	ngth (@ Yield	28 N/mm	(kN/m)	160 p	opi	2,610	psi	
ASTM D638		ified)			Ū		Ū	•					3,177		
(2 inches / n		-											2,787		
					Average	Stre	ngth (@ Break	32 N/mm	(kN/m)	183 p	орі	2,982 20.25	psi	
Elongation A	(Mod	ified)	3		Average	e Elon	gatio	n @ Yield	%				15.10 17.68		
(2 inches / n Lo = 1.3" Yie		;)											460.6 512.4		
Lo = 2.0" Bre					Average	e Elor	gatio	n @ Break	%				486.5		
Dimensional ASTM D1204		-			Average	e Dim	ensio	nal change	%				55		
Tear Resista	nce												62.591		
ASTM D100		dified)			Average	e Tea	Res	istance	270.0	N			58.806 60.699	lbs	
Puncture Re FTMS 101 M			(Mo	odified	Averag	e Pea	ak Loa	ad	407.5	Ν			91.606	lbs	
Puncture Re ASTM D483					Averag	e Pea	ak Loa	ad	559.9	N			125.88	lbs	
ESCR ASTM D169	3				Minimu	ım Hr	s w/o	Failures	1500 hrs			С	ERTIFIED		
Notched Cor ASTM D539		Tensi	le L	oad	pass / fa	il @ 3	30%		300 hrs				PASS		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/15/2012

Signature......

Quality Control Department

311452-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE ROLL# 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet 1.48 mm 58 Length..... MIN: ASTM D5994 23.0 7.01 feet Width..... (Modified) 1.63 mil MAX: mm 64 **TEST** Asperity ASTM D7466: 29/32 mil AVE: 1.56 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.16 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,478 2.741 Tensile Strength 28 N/mm (kN/m) **160** ppi psi Average Strength @ Yield 2,610 **ASTM D6693** 3,177 ASTM D638 (Modified) (2 inches / minute) 2,787 Average Strength @ Break 32 N/mm (kN/m) 183 ppi 2,982 psi 20.25 15.10 Elongation ASTM D6693 % 17.68 Average Elongation @ Yield ASTM D638 (Modified) 460.6 (2 inches / minute) 512.4 Lo = 1.3" Yield 486.5 Lo = 2.0" Break Average Elongation @ Break % Dimensional Stability -.55 Average Dimensional change % ASTM D1204 (Modified) 62,591 Tear Resistance 58.806 ASTM D1004 (Modified) 60.699 lbs Average Tear Resistance **270.0** N Puncture Resistance lbs Average Peak Load 91.606 **407.5** N FTMS 101 Method 2065 (Modified) Puncture Resistance 559.9 N lbs Average Peak Load 125.88 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature......Quality Control Department

311453-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement feet 153.926 m 505.0 Length..... MIN: 1.49 mm 59 **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) mm 66 MAX: 1.68 mil **TEST** Asperity ASTM D7466: 36/32 mil AVE 1.58 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND, E GRADE: K307 Carbon Black Content 2.16 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,478 2,741 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **162** ppi 2,610 psi **ASTM D6693** 3,177 ASTM D638 (Modified) 2.787 (2 inches / minute) Average Strength @ Break 32 N/mm (kN/m) 185 ppi 2,982 psi 20.25 15,10 Elongation ASTM D6693 Average Elongation @ Yield % 17.68 ASTM D638 (Modified) (2 inches / minute) 460,6 Lo = 1.3" Yield 512.4 Lo = 2.0" Break % 486.5 Average Elongation @ Break Dimensional Stability % -.55 Average Dimensional change ASTM D1204 (Modified) 62.591 Tear Resistance 58.806 ASTM D1004 (Modified) Average Tear Resistance 270.0 N 60.699 lbs Puncture Resistance 91.606 lbs Average Peak Load 407.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance 559.9 N 125.88 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.....

Quality Control Department

311454-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet MIN: 1.49 mm 59 Length..... **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.69 mm 67 mil TEST Asperity ASTM D7466: 37/32 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP/BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.16 **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,478 2,741 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **161** ppi psi 2,610 **ASTM D6693** ASTM D638 (Modified) 3.177 (2 inches / minute) 2.787 Average Strength @ Break 32 N/mm (kN/m) 184 ppi 2,982 psi 20.25 Elongation ASTM D6693 15.10 Average Elongation @ Yield % 17.68 ASTM D638 (Modified) (2 inches / minute) 460.6 Lo = 1.3" Yield 512.4 Lo = 2.0" Break Average Elongation @ Break % 486.5 **Dimensional Stability** Average Dimensional change % -,55 ASTM D1204 (Modified) 62.591 Tear Resistance 58,806 ASTM D1004 (Modified) Average Tear Resistance 270.0 N 60.699 lbs Puncture Resistance Average Peak Load lbs 91.606 407.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 559.9 N 125.88 lbs ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

01

3/15/2012

Signature. Quality Control Department

311455-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... 1.56 mm 61 mil MIN: **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) mm 69 MAX: 1.76 mil **TEST** Asperity ASTM D7466: 37/31 mil AVE: 1.64 mm 65 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.26 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,437 2,579 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **162** ppi 2,508 psi **ASTM D6693** 3.164 ASTM D638 (Modified) 2.465 (2 inches / minute) Average Strength @ Break 32 N/mm (kN/m) 182 ppi 2,815 psi 19.13 15.89 Elongation ASTM D6693 % 17.51 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 465,3 430.1 Lo = 1.3" Yield Lo = 2.0" Break % 447.7 Average Elongation @ Break Dimensional Stability % -.55 Average Dimensional change ASTM D1204 (Modified) 59.683 Tear Resistance 55,718 ASTM D1004 (Modified) Average Tear Resistance 256.7 N 57.701 lbs Puncture Resistance lbs Average Peak Load 101.15 450.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 135.76 lbs 603.9 N Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Quality Control Department

311556-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet 1.44 mm 57 Length..... MIN: mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.62 mm 64 mil TEST Asperity ASTM D7466: 37/32 mil AVE: 1.55 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content 2.26 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,437 2,579 Tensile Strength Average Strength @ Yield 27 N/mm (kN/m) **153** ppi 2,508 psi **ASTM D6693** 3,164 ASTM D638 (Modified) (2 inches / minute) 2.465 Average Strength @ Break 30 N/mm (kN/m) 172 ppi 2,815 psi 19.13 Elongation ASTM D6693 15.89 Average Elongation @ Yield % 17.51 ASTM D638 (Modified) (2 inches / minute) 465.3 Lo = 1.3" Yield 430.1 Lo = 2.0" Break % 447.7 Average Elongation @ Break **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 59.683 Tear Resistance 55.718 ASTM D1004 (Modified) Average Tear Resistance 256.7 N 57.701 lbs Puncture Resistance Average Peak Load lbs 101.15 450.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 603.9 N 135.76 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Quality Control Department

ROLL# 311557-12				7	7120199	9 Liner Type: MICROSPIKE™ HDPI					
OT IVI DOUGH		1.51 mm 59			mil	Length	Thickness Length Width			000.0	et eet
		1.58			mil	OIT(Standard) AS	TM D389	5 minutes	180		
		Density				g/cc				.946	
88 K307		Melt Flor	w Ind	ex 190	°C /2160 g	g g/10 m	in			.25	
ontent		Range				%				2.26	
ispersion		Categor	у						10	0 In Cat 1	
odified)		Average	Stre	ngth @) Yield	27 N/mm ((kN/m)	156 p	pji	2,437 2,579 2,508 3,164	psi
ite)		Average	Stre	ngth @) Break	31 N/mm ((kN/m)	175 p	pi	2,815	psi
odified)		Average	: Elon	gation	@ Yield	%				15.89 17.51 466.3 430.1	
		Average	Elon	gation	@ Break	%				447.7	
-		Average	Dime	ension	al change	%				55	
		Average	: Tear	Resis	tance	256.7	N			59.683 55.718 57.701	lbs
	odified	Averag	e Pea	ık Load	d	450.0	N			101.15	lbs
		Averag	e Pea	ık Load	d	603.9	N			135.76	lbs
		Minimu	m Hrs	s w/o F	ailures	1500 hrs			C	ERTIFIED	
nt Tensile L	oad	pass / fa	il @ 3	30%		300 hrs				PASS	
	S: 38/33 mill 38 K307 ontent sispersion odified) ute) M D6693 odified) ute) Ability Modified) ance lod 2065 (Mill ance Modified)	MIN: MAX: 38: 38/33 mil AVE: 38 K307 ontent ispersion MD6693 odified) ute) Ability Modified) ance ance ance ance ance	MIN: 1.51 MAX: 1.65 S: 38/33 mil AVE: 1.58 Density Melt Flor K307 Ontent Range Categor Average Odified) Ute) Average Average	METRIC MIN: 1.51 mm MAX: 1.65 mm Density Melt Flow Ind K307 Ontent Range Dispersion Category Average Street Codified Dite Dispersion Average Elon Codified Dispersion Average Elon Codified Dispersion Average Elon Codified Dispersion Average Elon Codified Dispersion Average Pear Codified Di	METRIC ENGINATION SPONTANT MAX: 1.51 mm 59 MAX: 1.65 mm 65 S: 38/33 mil AVE: 1.58 mm 62 Density Melt Flow Index 190 K307 Ontent Range ispersion Category Average Strength @ Odified) Average Strength @ Odified) Average Elongation Average Elongation Average Elongation Average Dimension Average Tear Resist Average Peak Load Average Peak Load Average Peak Load Minimum Hrs w/o F	METRIC ENGLISH MIN: 1.51 mm 59 mil MAX: 1.65 mm 65 mil Density Melt Flow Index 190°C /2160 g K307 Ontent Range ispersion Category Average Strength @ Yield odified) tte) Average Elongation @ Break Ability Average Elongation @ Break Average Elongation @ Break Average Elongation @ Break Average Dimensional change Average Tear Resistance ance ance and 2065 (Modified) Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness Length Width MIN: 1.51 mm 59 mil Length Width MAX: 1.65 mm 65 mil OIT(Standard) AS Density g/cc Melt Flow Index 190°C /2160 g g/10 m K307 Ontent Range % Average Strength @ Yield 27 N/mm (and iffied) Average Strength @ Break 31 N/mm (and iffied) Average Elongation @ Break 31 N/mm (and iffied) Average Elongation @ Break 31 N/mm (and iffied) Average Dimensional change % Average Tear Resistance 256.7 Average Peak Load 450.0 Minimum Hrs w/o Failures 1500 hrs	MIN: 1.51 mm 59 mil Length	METRIC ENGLISH Thickness 1.5 m 153.926 7.01 154 mm 59 mil Length 153.926 7.01 155 mm 65 mil MAX: 1.65 mm 62 mil OIT(Standard) ASTM D3895 minutes Density g/cc	METRIC ENGLISH Thickness 1.5 mm 153.926 m 153.926 m	MIN: 1.51 mm 59 mil Length

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

3/16/2012

Signature.....Quality Control Department

		5 1	-			
ROLL# 311558-12	Lot #:	7120199	Liner Type: N	MICROSPIK	E™ HDP	E
	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement MIN:	1.51 mm		Length	153.926 ^m	505.0 fe	et
70 W D0007			Width	7.01 m;	23.0 fe	et
	1.62 mm				TES1	-
Asperity ASTM D7466: 37/31 mil AVE: TOP / BOTTOM	1.56 mm	61 mil	OIT(Standard) ASTM D3895	5 minutes 180	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	x 190°C /2160 g	g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.26	
Carbon Black Dispersion ASTM D5596	Category			10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stren	gth @ Yield	27 N/mm (kN/m)	154 ppi	2,437 2,579 2,508 3,164	ps
(2 inches / minute)	Average Stren	gth @ Break	30 N/mm (kN/m)	173 ppi	2,465 2,815	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elong	gation @ Yield	%		19.13 15.89 17.51	
(2 inches / minute) Lo = 1.3" Yield					465.3 430.1	
Lo = 2.0" Break	Average Elong	gation @ Break	%		447.7	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	nsional change	%		55	
Tana Danistana					59.683	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	256.7 N		55.718 57.701	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peal		450.0 N		101.15	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	603.9 N		135.76	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature......Quality Control Department

60HDmic.FRM REV 03

12/23/05

311559-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.51 mm 59 mil ASTM D5994 7.01 23.0 feet Width..... (Modified) mm 64 MAX: 1.62 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE: 1.56 mm 61 mil OIT(Standard) ASTM D3895 minutes 180 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .25 g/10 min COND. E GRADE: K307 Carbon Black Content 2.35 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,526 2,683 Tensile Strength **160** ppi Average Strength @ Yield 28 N/mm (kN/m) 2,605 psi **ASTM D6693** 3,116 ASTM D638 (Modified) (2 inches / minute) 2.597 2,857 Average Strength @ Break 31 N/mm (kN/m) 175 ppi psi 18.65 Elongation ASTM D6693 15.25Average Elongation @ Yield % 16.95 ASTM D638 (Modified) (2 inches / minute) 459.7 Lo = 1.3" Yield 450.8 Lo = 2.0" Break % 455.3 Average Elongation @ Break **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 57.487 Tear Resistance 53.959ASTM D1004 (Modified) Average Tear Resistance 247.9 N 55.723 lbs Puncture Resistance Average Peak Load lbs 93.901 417.7 N FTMS 101 Method 2065 (Modified) Puncture Resistance 584.3 N 131.35 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature......Quality Control Department

					1							
ROLL# 311:	560-12	Lot	#:	7	120199	Liner	Type: I	MICROS	SPIK	E™ H	DP	E
		METR	NC.	ENGL	ISH	Thickness	e	1.5 m	m	60 mi	il	
Measurement	MIN:	1.46	mm		mil	Length		153.926	m	505.0	fee	t
ASTM D5994 Modified)	MAX:		mm		mil	Width		7.01	m;	23.0	fee	ŧ
										TE	ST	
sperity ASTM D7466: 38 TOP / BOTTOM	/36 mil AVE:	1.52	mm	60	mil	OIT(Standard) AS	TM D3895	5 minutes	180	RES		S
Specific Gravity ASTM D792		Density				g/cc				.94	1 6	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flov	w Inde	ex 190°	°C /2160 g	g/10 n	nin			.2	25	
Carbon Black Conten ASTM D4218	t	Range				%				2.3	35	
Carbon Black Dispers ASTM D5596	sion	Categor	/						10) In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modified (2 inches / minute)	4)	Average	Strer	ngth @	Yield	27 N/mm	(kN/m)	156 p	pji	2,52 2,68 2,60 3,11 2,59	33)5 16	psi
(2 mones / minute)		Average	Strer	ngth @	Break	30 N/mm	(kN/m)	171 p	pi	2,85		ps
Elongation ASTM D6 ASTM D638 (Modified (2 inches / minute)		Average	Elon	gation (@ Yield	%				18.6 15.2 16.9 459	25 9 5	
Lo = 1.3" Yield Lo = 2.0" Break		Average	Elon	gation (@ Break	%				450 455	.8	
Dimensional Stability ASTM D1204 (Modific	ed)				l change	%					55	
Tear Resistance										57,48		
ASTM D1004 (Modifie	ed)	Average	Tear	Resist	ance	247.9	N			53,95 55.72		lbs
Puncture Resistance FTMS 101 Method 20	065 (Modified	Average	e Pea	k Load		417.7	N			93.90	01	lbs
Puncture Resistance ASTM D4833 (Modifie	ed)	Average	e Pea	k Load		584.3	N			131.3	35	lbs
ESCR ASTM D1693		Minimu	n Hrs	s w/o Fa	ailures	1500 hrs			CE	ERTIFIE	D	
Notched Constant Te ASTM D5397	nsile Load	pass / fai	I @ 3	0%		300 hrs				PAS	S	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature.....Quality Control Department

					II							
ROLL# 31156	1-12	Lot	t # :	7	7120199	Liner 1	Гуре:	MICROS	SPIK	E™ H	DPI	E
		METF	NC.	ENGL	ISH	Thickness		1.5 m	m	60 mi	il	
Measurement	MIN:	1.46	mm		mil	Length		153.926	m	505.0	fee	t
ASTM D5994 Modified)						Width		7.01	m;	23.0	fee	t
	MAX:	1.58	mm		mil					TE	ST	
Asperity ASTM D7466: 36/33 TOP / BOTTOM	mil AVE:	1.52	mm	60	mil	OIT(Standard) AS	TM D389	95 minutes	180	RES		s
Specific Gravity ASTM D792		Density				g/cc				.94	1 6	
MFI ASTM D1238 COND. E GRADE: K30	07	Melt Flo	w Ind	ex 190	°C /2160 g	g/10 m	nin				25	
Carbon Black Content ASTM D4218		Range				%				2.3	35	
Carbon Black Dispersion ASTM D5596		Categor	y						10	0 In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)		Average	Stre	ngth @) Yield	27 N/mm	(kN/m)	156 բ	opi	2,52 2,66 2,6 0 3,1	33)5 16	ps
(2 inches / minute)		Average	Stre	ngth @) Break	30 N/mm	(kN/m)	171 p	pji	2,59 2,8 \$	57	ps
Elongation ASTM D6693 ASTM D638 (Modified)	3	Average	: Elon	gation	@ Yield	%				18.1 15.1 16. 9	25 95	
(2 inches / minute) Lo = 1.3" Yield										459 450		
Lo = 2.0" Break		Average	Elon	gation	@ Break	%				455	3.3	
Dimensional Stability ASTM D1204 (Modified)		Average	Dim	ension	al change	%				٠	55	
			-							57.4	87	
Tear Resistance										53.9		
ASTM D1004 (Modified)		Average	Tea	Resis	tance	247.9	N			55.7	23	lbs
Puncture Resistance FTMS 101 Method 2065	(Modified	Averag	e Pea	ak Load	d	417.7	N			93.9	01	lbs
Puncture Resistance ASTM D4833 (Modified)		Averag	e Pea	ak Load	d	584.3	N	77		131.	35	lbs
ESCR ASTM D1693		Minimu	m Hr	s w/o F	ailures	1500 hrs			С	ERTIFIE	Đ	
Notched Constant Tensilo ASTM D5397	e Load	pass / fa	il @ 3	30%		300 hrs				PAS	SS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature....Quality Control Department

ROLL#	311	1562	-12	Lo	t#:		7120199	Liner 1	Type: N	AICROS	SPIK	E™ HDF	E
Measurement ASTM D5994 (Modified)			MIN: MAX:	METF	RIC mm mm		LISH mil mil	Thickness Length Width		1.5 m 153.926 7.01		60 mil 505.0 fe 23.0 fe	et et
Asperity ASTM D		36/34 mí		1.63 1.57	mm		mil	OIT(Standard) AS	TM D3895	i minutes	180	TES1 RESUL	
Specific Grav				Density				g/cc				.946	
MFI ASTM D COND. E GRADE:	1238	K307		Melt Flo	w Ind	ex 190)°C /2160 g	g/10 m	iin			.25	
Carbon Black ASTM D4218		ent		Range				%				2.35	
Carbon Black ASTM D5596		ersion		Categor	у						10	0 In Cat 1	
Tensile Strer ASTM D6693 ASTM D638 (2 inches / m	3 (Modifi			Average	e Stre	ngth @) Yield	28 N/mm ((kN/m)	161 բ	ppi	2,526 2,683 2,605 3,116 2,597	psi
(2	, , , , ,			Average	Stre	ngth @) Break	31 N/mm ((kN/m)	177 p	pj	2,857	psi
Elongation A ASTM D638 (2 inches / n Lo = 1.3" Yie	(Modifi ninute)	ied)		Average	e Elon	gation	@ Yield	%				15.25 16.95 459.7 450.8	
Lo = 2.0" Bre				Average	Elon	gation	@ Break	%				455.3	
Dimensional ASTM D1204		-		Average	Dime	ension	al change	%				55	
Tear Resista ASTM D1004		ified)		Average	e Tear	r Resis	stance	247.9	N			57.487 53.959 55.723	lbs
Puncture Re FTMS 101 M			odified	Averag	e Pea	ak Load	d	417.7	N			93.901	lbs
Puncture Res				Averag	e Pea	ak Loa	d	584.3	N			131.35	lbs
ESCR ASTM D1693	3			Minimu	ım Hr	s w/o F	Failures	1500 hrs			С	ERTIFIED	
Notched Cor ASTM D539		Γensile l	Load	pass / fa	il @ 3	30%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

3/16/2012

Signature.... Quality Control Department

311563-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m feet 505.0 1.50 Length..... MIN: mm 59 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) 1.59 MAX: mm 63 mil **TEST** Asperity ASTM D7466: 35/38 mil AVE: 1.54 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content % 2.32 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,677 2.769 Tensile Strength **165** ppi Average Strength @ Yield 29 N/mm (kN/m) 2,723 psi **ASTM D6693** 3.083 ASTM D638 (Modified) (2 inches / minute) 2,903 **181** ppi 2,993 Average Strength @ Break 32 N/mm (kN/m) psi 18.97 15,18 Elongation ASTM D6693 % 17.08 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 443.5 526.8 Lo = 1.3" Yield Lo = 2.0" Break % 485.2 Average Elongation @ Break **Dimensional Stability** -.55 Average Dimensional change % ASTM D1204 (Modified) 60.161 Tear Resistance 58.536 ASTM D1004 (Modified) 59.349 Average Tear Resistance **264.0** N lbs Puncture Resistance lbs Average Peak Load 96.85 430.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 132.88 lbs **591.1** N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

311564-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness...... Measurement 153.926 m 505.0 feet Length..... 1.46 mm 57 mil MIN: **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.65 mm 65 mil TEST Asperity ASTM D7466: 36/36 mil AVE: mm 61 1.56 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.32 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,677 2,769 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) **167** ppi 2,723 psi **ASTM D6693** 3,083 ASTM D638 (Modified) (2 inches / minute) 2.903 184 ppi 2,993 Average Strength @ Break 32 N/mm (kN/m) psi 18.97 15.18 Elongation ASTM D6693 Average Elongation @ Yield % 17.08 ASTM D638 (Modified) (2 inches / minute) 443.5 Lo = 1.3" Yield 526.8 Lo = 2.0" Break % 485.2 Average Elongation @ Break Dimensional Stability Average Dimensional change -.55 % ASTM D1204 (Modified) 60.161 Tear Resistance 58,536 ASTM D1004 (Modified) Average Tear Resistance 264.0 N 59.349 lbs Puncture Resistance lbs Average Peak Load 96.85 430.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 132.88 lbs 591.1 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature.

Quality Control Department

311565-12 7120199 Lot #: Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil **ENGLISH** METRIC Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.52 mm 60 mil ASTM D5994 7.01 23.0 feet Width..... (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466: 35/38 mil AVE: 1.57 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.32 ASTM D4218 Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,677 2,769 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) **168** ppi 2,723 psi **ASTM D6693** 3,083 ASTM D638 (Modified) (2 inches / minute) 2,903 185 ppi Average Strength @ Break 32 N/mm (kN/m) 2,993 psi 18.97 Elongation ASTM D6693 15.18 % 17.08 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 443.5 Lo = 1.3" Yield 526.8 Lo = 2.0" Break Average Elongation @ Break % 485.2 **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 60.161 Tear Resistance 58,536 ASTM D1004 (Modified) Average Tear Resistance 264.0 N 59.349 lbs Puncture Resistance Average Peak Load lbs 96.85 430.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load **591.1** N 132.88 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED** ASTM D1693 Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Quality Control Department

Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.51 mm 59 MIN: mil **ASTM D5994** 7.01 m: 23.0 Width..... feet (Modified) MAX: 1.64 mm 65 mil **TEST** Asperity ASTM D7466: 37/36 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.32 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,677 2,769 Tensile Strength psi Average Strength @ Yield 29 N/mm (kN/m) 168 ppi 2,723 **ASTM D6693** 3,083 ASTM D638 (Modified) (2 inches / minute) 2,903 185 ppi psi 2,993 Average Strength @ Break 32 N/mm (kN/m) 18.97 15.18 Elongation ASTM D6693 % 17.08 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 443.5 Lo = 1.3" Yield 526.8 Lo = 2.0" Break Average Elongation @ Break % 485.2 Dimensional Stability Average Dimensional change % -.55 ASTM D1204 (Modified) 60.161 Tear Resistance 58.536 ASTM D1004 (Modified) 264.0 N 59.349 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 96.85 430.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load **591.1** N 132.88 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature......Quality Control Department

		II .				
ROLL# 311567-12	Lot #:	7120199	Liner Type:	MICROSPIK	Ϊ HDF	Æ
Measurement ASTM D5994 MIN:	METRIC 1.51 mm	ENGLISH 59 mil	Thickness	1.5 mm 153.926 ^m	000.0	et
Modified) MAX:	1.63 mm	64 mil	Width	7.01 m;	23.0 fe	eet
Asperity ASTM D7466: 35/32 mil AVE:	1.57 mm	62 mil	OIT(Standard) ASTM D389	5 minutes 180	TES' RESUL	
Specific Gravity ASTM D792	Density		g/cc		.947	
MFI ASTM D1238 COND, E GRADE: K307	Melt Flow Inde	ex 190ºC /2160 g	g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.35	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stre	ngth @ Yield	27 N/mm (kN/m)	155 ppi	2,517 2,494 2,506 3,237 2,924	psi
(2 mones / minute)	Average Stre	ngth @ Break	33 N/mm (kN/m)	190 ppi	3,081	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elon	gation @ Yield	%		19.49 15.73 17.61	
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elon	gation @ Break	%		458.2 537.6 497.9	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%		55	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	248 .6 N		57.276 54.501 55.889	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Pea		454.3 N	100000000000000000000000000000000000000	102.14	
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	606.0 N		136.23	lbs
ESCR ASTM D1693	Minimum Hrs	s w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature.

Quality Control Department

60HDmic.FRM REV 03

Liner Type: MICROSPIKE™ HDPE 311568-12 7120199 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.56 mm 61 mil MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.67 mm 66 mil **TEST** 1.61 mm 63 mil Asperity ASTM D7466: 36/32 mil AVE: **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc .947 Density ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E **GRADE**: K307 Carbon Black Content 2.35 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,517 2,494 Tensile Strength 159 ppi 2,506 psi Average Strength @ Yield 28 N/mm (kN/m) **ASTM D6693** 3,237 ASTM D638 (Modified) 2.924 (2 inches / minute) 195 ppi 3,081 psi 34 N/mm (kN/m) Average Strength @ Break 19.49 15.73 Elongation ASTM D6693 17.61 % Average Elongation @ Yield ASTM D638 (Modified) 458.2 (2 inches / minute) 537.6 Lo = 1.3" Yield Lo = 2.0" Break % 497.9 Average Elongation @ Break **Dimensional Stability** -.55 Average Dimensional change % ASTM D1204 (Modified) 57.276 Tear Resistance 54.501 ASTM D1004 (Modified) 55.889 Average Tear Resistance 248.6 lbs Puncture Resistance lbs 102.14 Average Peak Load 454.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance 606.0 N 136.23 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature. Quality Control Department

311569-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: 60 mil 1.5 mm Thickness..... **ENGLISH METRIC** Measurement feet 153.926 m 505.0 Length..... 1.53 mm 60 mil MIN: **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.70 mm 67 mil TEST mm 63 Asperity ASTM D7466: 38/32 mil AVE: 1.59 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity .947 g/cc Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.35 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,517 2,494 Tensile Strength Average Strength @ Yield 27 N/mm (kN/m) **157** ppi 2,506 psi **ASTM D6693** 3,237 ASTM D638 (Modified) 2,924 (2 inches / minute) 193 ppi 3,081 Average Strength @ Break 34 N/mm (kN/m) psi 19.49 15.73 Elongation ASTM D6693 17.61 % Average Elongation @ Yield ASTM D638 (Modified) 458.2 (2 inches / minute) 537.6 Lo = 1.3" Yield Lo = 2.0" Break % 497.9 Average Elongation @ Break **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 57.276 Tear Resistance 54.501 ASTM D1004 (Modified) Average Tear Resistance 248.6 55.889 lbs Puncture Resistance lbs 102.14 Average Peak Load 454.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance 136.23 lbs 606.0 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/16/2012

Signature. Quality Control Department

Liner Type: MICROSPIKE™ HDPE Lot #: 7120199 ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length 1.58 mm 62 mil MIN: ASTM D5994 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466: 38/31 mil AVE: mm 62 1.58 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .947 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.35 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,517 2,494 Tensile Strength Average Strength @ Yield **156** ppi 2,506 psi 27 N/mm (kN/m) **ASTM D6693** 3,237 ASTM D638 (Modified) (2 inches / minute) 2,924 192 ppi 3,081 Average Strength @ Break 34 N/mm (kN/m) psi 19.49 Elongation ASTM D6693 15.73 % 17.61 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 458.2 Lo = 1,3" Yield 537.6 Lo = 2.0" Break 497.9 Average Elongation @ Break % Dimensional Stability -.55 Average Dimensional change % ASTM D1204 (Modified) 57,276 Tear Resistance 54.501 ASTM D1004 (Modified) 248.6 N 55.889 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 102,14 454.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance 136.23 lbs 606.0 N Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

Signature......Quality Control Department

60HDmic FRM REV 03

	Contract of the Contract of th				И							
ROLL# 311	671-12	Lot :	#:	7	7120199	Liner 1	Type:	MICROS	SPIK	E™ H	DP	E
		METRI	C	ENGL	ISH	Thickness	S	1.5 m	m	60 mi	it	
Measurement	MIN:		mm		mil	Length		153.926	m	505.0	fee	t
ASTM D5994 Modified)	MAX:		mm		mil	Width		7.01	m;	23.0	fee	et
•										TE	ST	
Asperity ASTM D7466: 31 TOP / BOTTOM	8/31 mil AVE:	1.59	mm	63	mil	OIT(Standard) AS	STM D389	5 minutes	180	RES		
Specific Gravity ASTM D792		Density				g/cc				.94	17	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flow	' Ind	ex 190	°C /2160 (g g/10 n	nin			.2	25	
Carbon Black Conter ASTM D4218	nt	Range				%				2.4	1 6	
Carbon Black Disper ASTM D5596	sion	Category							10	0 In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modifie (2 inches / minute)	ed)	Average S	Strer	ngth @	Yield	32 N/mm	(kN/m)	181 p	pji	2,78 2,98 2,88 3,44 3,43	33 35 \$0	psi
(2 mones / minute)		Average 8	Strei	ngth @	Break	38 N/mm	(kN/m)	215 p	pji	3,43		ps
Elongation ASTM Do ASTM D638 (Modified (2 inches / minute)		Average [Elon	gation	@ Yield	%				19.2 14.5 16.9 471	70 99	
Lo = 1.3" Yield Lo = 2.0" Break		Average (∃lon	gation	@ Break	%				567 519	8.	
Dimensional Stability ASTM D1204 (Modifi		Average [Dime	ensiona	al change	%					55	
Tear Resistance ASTM D1004 (Modifi	ied)	Average 1	Геаг	Resist	ance	264.9	N			61.92 57.19 59.5 6	9	lbs
Puncture Resistance FTMS 101 Method 2		Average				456.0	N			102.	51	lbs
Puncture Resistance ASTM D4833 (Modifi		Average	Pea	k Load		605.5	N			136.1	12	lbs
ESCR ASTM D1693	H	Minimum	n Hrs	w/o F	ailures	1500 hrs		HII	CI	ERTIFIE	D	
Notched Constant Te	ensile Load	pass / fail	@ 3	0%		300 hrs				PAS	S	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Signature.....Quality Control Department

Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 Length..... 1.45 mm 57 MIN: mil **ASTM D5994** m; 7.01 23.0 feet Width..... (Modified) MAX: 1.61 mm 63 mil **TEST** Asperity ASTM D7466: 38/32 mil AVE: 1.56 mil mm 61 **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.46 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,786 2,983 Tensile Strength psi Average Strength @ Yield 177 ppi 31 N/mm (kN/m) 2,885 **ASTM D6693** 3,440 ASTM D638 (Modified) 3,431 (2 inches / minute) 3,436 Average Strength @ Break 37 N/mm (kN/m) 211 ppi psi 19,28 14.70 Elongation ASTM D6693 16.99 % Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 471.5 Lo = 1.3" Yield 567.8 Lo = 2.0" Break Average Elongation @ Break % 519.7 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 61.927 Tear Resistance 57,199 ASTM D1004 (Modified) 59.563 Average Tear Resistance 264.9 N lbs Puncture Resistance lbs Average Peak Load 102.51 456.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 605.5 N 136.12 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Signature......Quality Control Department

311673-12 Lot #: 7120199 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 505.0 153.926 m feet MIN: 1.50 mm 59 Length..... **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.68 mm 66 mil TEST Asperity ASTM D7466: 36/31 mil AVE: 1.60 mm 63 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content Range % 2.46 **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,786 2,983 Tensile Strength Average Strength @ Yield 32 N/mm (kN/m) 182 ppi 2,885 psi **ASTM D6693** ASTM D638 (Modified) 3,440 (2 inches / minute) 3,431 Average Strength @ Break 38 N/mm (kN/m) 216 ppi 3,436 psi 19.28 Elongation ASTM D6693 14.70 16.99 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 471.5 Lo = 1.3" Yield 567.8 Lo = 2.0" Break Average Elongation @ Break % 519.7 **Dimensional Stability** Average Dimensional change % -.55 ASTM D1204 (Modified) 61,927 Tear Resistance 57,199 ASTM D1004 (Modified) Average Tear Resistance 264.9 N 59.563 lbs Puncture Resistance Average Peak Load lbs 102.51 456.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 605.5 N 136.12 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

Quality Control Department

311674-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 Length..... MIN: 1.47 mm 58 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 62 MAX: 1.57 mil TEST Asperity ASTM D7466: 37/34 mil AVE: 1.52 mm 60 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc .947 Density ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content 2.46 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,786 2,983 Tensile Strength 173 ppi psi Average Strength @ Yield 30 N/mm (kN/m) 2,885 **ASTM D6693** 3.440 ASTM D638 (Modified) 3,431 (2 inches / minute) 206 ppi 3,436 psi Average Strength @ Break 36 N/mm (kN/m) 19.28 14.70 Elongation ASTM D6693 16.99 Average Elongation @ Yield % ASTM D638 (Modified) 471.5 (2 inches / minute) 567.8 Lo = 1.3" Yield 519.7 Lo = 2.0" Break % Average Elongation @ Break **Dimensional Stability** -.55 % Average Dimensional change ASTM D1204 (Modified) 61.927 Tear Resistance 57.199 ASTM D1004 (Modified) 59.563 Average Tear Resistance 264.9 N lbs Puncture Resistance lbs 102.51 Average Peak Load 456.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 136.12 lbs 605.5 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Quality Control Department

					II							
ROLL# 311	675-12	Lo	t #:	7	7120199	Liner T	Гуре:	MICRO:	SPIK	E™ H)PI	Ē
		METI	210	ENGI	ISH	Thickness	SACRED TO	1.5 m	m	60 mi	I	
/leasurement	MIN:	1.54	mm		mil	Length		153.926	m	505.0	fee	t
ASTM D5994						Width		7.01	m;	23.0	fee	;t
Modified)	MAX:	1.69	mm	67	mił					тс	ST	
sperity ASTM D7466: 36	/32 mil AVE:	1.61	mm	63	mil	OIT(Standard) AS	TM D389	5 minutes	180	RES		
Specific Gravity ASTM D792		Density				g/cc				.94	15	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flo	w Ind	ex 190	°C /2160 g	g/10 m	in			.2	25	
Carbon Black Conten	t	Range				%				2.2	28	
Carbon Black Dispers ASTM D5596	sion	Catego	у						1	0 In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modifie	d)	Average	e Stre	ngth @) Yield	29 N/mm ((kN/m)	163 _i	opi	2,50 2,64 2,57 3,05 2,76	14 7 6 53	psi
(2 inches / minute)		Average	e Stre	ngth @) Break	32 N/mm ((kN/m)	184	орі	2,91	0	psi
Elongation ASTM D6 ASTM D638 (Modifie (2 inches / minute)		Average	e Elor	ngation	@ Yield	%				19.5 14.9 17.2 458	97 2 4	
Lo = 1.3" Yield Lo = 2.0" Break		Average	e Elor	ngation	@ Break	%				526 492		
Dimensional Stability ASTM D1204 (Modifi		Average	e Dim	ension	al change	%					55	
T D i. t										61.48		
Tear Resistance ASTM D1004 (Modifi	ed)		_							59.88		II
70 LIM D 1004 (MIDDIII	cu)	Average	e Tea	r Resis	stance	269.9	N			60.68	58	lbs
Puncture Resistance FTMS 101 Method 20		Averag	je Pea	ak Load	d	462.0	N			103.8	85	lbs
Puncture Resistance ASTM D4833 (Modifi		Averag	je Pea	ak Load	d	619.2	N			139.2	20	lbs
ESCR ASTM D1693	,	Minimu	ım Hr	s w/o F	- ailures	1500 hrs			С	ERTIFIE	Đ	
Notched Constant Te	ensile Load	pass / fa	ail @ :	30%		300 hrs				PAS	SS	

Customer: Chenango Contracting, Inc.

PO 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Signature.....Quality Control Department

ROLL# 311676-	12 Lot #:	7120199	Liner Type:	MICROSPIK	E™ HDF	Έ
(N 1)	METRIC MIN: 1.49 mm	ENGLISH 59 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 fe 23.0 fe	et et
Asperity ASTM D7466: 36/36 mil	MAX: 1.63 mm AVE: 1.57 mm	62 mil	OIT(Standard) ASTM D389	5 minutes 400	TEST RESUL	
Specific Gravity ASTM D792	Density		g/cc	s minutes 190	.945	.13
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.25	-
Carbon Black Content ASTM D4218	Range		%		2.28	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strer	ngth @ Yield	28 N/mm (kN/m)	159 ppi	2,508 2,644 2,576 3,053 2,766	psi
(2 mones / minute)	Average Strer	ngth @ Break	31 N/mm (kN/m)	180 ppi	2,910	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elon	gation @ Yield	%		19.51 14.97 17.24 458.0	
Lo = 1.3" Yield Lo = 2.0" Break	Average Elong	gation @ Break	%		526.5 492.3	
Dimensional Stability ASTM D1204 (Modified)		ensional change	%		55	
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	269.9 N		61,486 59,889 60,688	lbs
Puncture Resistance FTMS 101 Method 2065 (Mod	Average Pea		462.0 N	VI = (1 - VI)	103.85	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	619.2 N		139.20	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	CI	ERTIFIED	
Notched Constant Tensile Loa ASTM D5397	ad pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

)ate[.]

Quality Control Department

ROLL# 311677-	-12	Lot	#:	7	7120199	Liner	Гуре:	MICRO:	SPIK	E™ HD	PE
AO 1 W D3334	MIN:	METR 1.52	mm		_ISH mil	Thickness Length Width		1.5 m 153.926 7.01			eet eet
(Modified)	MAX:	1.68	mm	66	mil	vvidti					_
Asperity ASTM D7466: 36/34 mil	AVE:	1.57	mm	62	mil	OIT(Standard) AS	TM D389	5 minutes	180	TES RESU	
Specific Gravity ASTM D792		Density				g/cc				.945	
MFI ASTM D1238 COND. E GRADE: K307		Melt Flov	w Ind	ex 190	°C /2160 g	g/10 m	nin			.25	
Carbon Black Content ASTM D4218		Range				%				2.28	
Carbon Black Dispersion ASTM D5596		Categor	y						10	0 In Cat 1	
										2,508 2,644	
Tensile Strength		Average	Stre	nath @) Yield	28 N/mm	(kN/m)	159 p	iac	2,576	psi
ASTM D6693 ASTM D638 (Modified)				· · · · · ·	,		,	,	•	3,053	
(2 inches / minute)										2,766	
		Average	Stre	ngth @) Break	31 N/mm	(kN/m)	180 p	ppi	2,910	psi
Elongation ASTM D6693 ASTM D638 (Modified)		Average	Elon	gation	@ Yield	%				19.51 14.97 17.24	
(2 inches / minute) Lo = 1.3" Yield					C					458.0 526.5	
Lo = 2.0" Break		Average	Elon	gation	@ Break	%				492.3	
Dimensional Stability ASTM D1204 (Modified)		Average	Dime	ensiona	al change	%				55	
Tear Resistance										61,486	
ASTM D1004 (Modified)		Average	Toor	Decic	tance	269.9	N			59.889 60.688	lbs
						209.9	14				
Puncture Resistance FTMS 101 Method 2065 (Mc	odified)	Average	e Pea	k Load	1	462.0	N			103.85	lbs
Puncture Resistance ASTM D4833 (Modified)		Average	e Pea	ık Load	1	619.2	N			139.20	lbs
ESCR ASTM D1693		Minimu	m Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIED	
Notched Constant Tensile Lo	oad	pass / fai	il @ 3	80%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.

Quality Control Department

3/17/2012

31	167	78	-12	Lo	t #:		7120199	Liner 7	Гуре:	MICRO:	SPIK	E™ HD	PE
			MIN:	1.50	mm	59	mil	Length	p.n			000.0	eet feet
'466 : ⊺OM	36/34	mil		1.56			mil	OIT(Standard) AS	TM D389	95 minutes	180	TES RESU	
ity				Density				g/cc				.945	
1238	K3	307		Melt Flo	w Ind	ex 19	00°C /2160 g	g g/10 m	nin			.25	
Cont	ent			Range				%				2.28	
Disp	ersior	1		Categor	у						10	0 In Cat 1	
				Average	e Stre	ngth (@ Yield	28 N/mm	(kN/m)	158 բ	iqc	2,644 2,576 3,053	psi
				Average	Stre	ngth (@ Break	31 N/mm	(kN/m)	179 p	iqc	2,910	
(Modi inute	fied)	3		Average	e Elon	gatio	n @ Yield	%				14.97 17.24 458.0 526.5	
ak				Average	e Elon	gatio	n @ Break	%				492.3	1
	-			Average	e Dime	ensio	nal change	%				55	5
nce (Mod	dified)			Average	e Tear	Res	istance	269.9	N			61.486 59.889 60.688	
		(M	odified	Averag	e Pea	ak Loa	ad	462.0	N			103.85	; lbs
				Averag	e Pea	ık Loa	ad	619.2	N			139.20) lbs
				Minimu	ım Hr	s w/o	Failures	1500 hrs			С	ERTIFIED)
stant	Tensi	le L	oad	pass / fa	iil @ 3	30%		300 hrs				PASS	3
	466: OM ity 1238 Cont Disp gth Modifinute d ak Stabil (Mod istand istand (Mod istand istand istand	466: 36/34 OM ity 1238 K3 Content Dispersion gth Modified) inute) STM D669 Modified) inute) d ak Stability (Modified) ince (Modified) istance ethod 2065 istance (Modified)	466: 36/34 millom ity 1238 K307 Content Dispersion gth Modified) inute) STM D6693 Modified) inute) d ak Stability (Modified) nce (Modified) istance ethod 2065 (Millistance (Modified)	MAX: 466: 36/34 mil AVE: om ity 1238 K307 Content Dispersion gth Modified) inute) STM D6693 Modified) inute) d ak Stability (Modified) nce (Modified) istance ethod 2065 (Modified istance (Modified) stance (Modified)	METE MIN: 1.50 MAX: 1.59 466: 36/34 mil AVE: 1.56 OM Ity Density 1238 Melt Flo K307 Content Range Dispersion Categor Gth Average Modified) inute) Average STM D6693 Modified) inute) d ak Average Stability (Modified) Average (Modified) Average istance (Modified) Average Average Average Average Minimulation ass / fa	METRIC MIN: 1.50 mm MAX: 1.59 mm MAX: 1.56 mm MAX: 1.56 mm Melt Flow Ind Max: 1.59 mm Melt Flow Ind Max: 1.50 mm Melt Flow Ind Ma	METRIC END MIN: 1.50 mm 59 MAX: 1.59 mm 63 466: 36/34 mil AVE: 1.56 mm 61 CM EX307 Content Range Dispersion Category Gth Average Strength (Modified) inute) Average Strength (Modified) inute) STM D6693 Modified) inute) dak Average Elongatio inute) dak Average Elongatio inute) Average Dimensio Ce (Modified) Average Peak Loa istance (Modified) Average Peak Loa istance (Modified) Minimum Hrs w/o stant Tensile Load pass / fail @ 30%	METRIC ENGLISH MIN: 1.50 mm 59 mil MAX: 1.59 mm 63 mil 466: 36/34 mil AVE: 1.56 mm 61 mil Density Density Melt Flow Index 190°C /2160 g K307 Content Range Dispersion Category gth Average Strength @ Yield Modified) inute) Average Elongation @ Yield ak Average Elongation @ Freak STM D6693 Average Elongation @ Break Stability (Modified) Average Dimensional change nce (Modified) Average Tear Resistance istance ethod 2065 (Modified) istance (Modified) istance (Modified) istance (Modified) Average Peak Load Minimum Hrs w/o Failures	MIN: 1.50 mm 59 mil Length MAX: 1.59 mm 63 mil Width MAX: 1.59 mm 63 mil Width MAX: 1.59 mm 61 mil OIT(Standard) AS oIT Standard) AS oIT Stan	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness	MIN:	METRIC ENGLISH Thickness 1.5 mm 60 mit 153.926 m 505.0 mm 59 mit Length 153.926 m 7.01 m 23.0 mm 63 mit Width 1.50 mm 63 mit Width 1.50 mm 63 mit Width 1.50 mm 63 mit 180

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/17/2012

Signature.....

Quality Control Department

311679-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153,926 m 505.0 feet Length..... MIN: 1.50 mm 59 mil **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.63 mm 64 mil TEST 1.58 Asperity ASTM D7466: 37/35 mil AVE: mm 62 mil OIT(Standard) ASTM D3895 minutes 180 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.30 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,625 2,609 Tensile Strength 2,617 Average Strength @ Yield 163 ppi psi 29 N/mm (kN/m) **ASTM D6693** 3,124 ASTM D638 (Modified) 2,933 (2 inches / minute) 188 ppi 3,029 psi Average Strength @ Break 33 N/mm (kN/m) 19.55 15,14 Elongation ASTM D6693 % 17.35 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 447.3 Lo = 1.3" Yield 539.3 Lo = 2.0" Break 493.3 Average Elongation @ Break % **Dimensional Stability** -.55 Average Dimensional change % ASTM D1204 (Modified) 62,043 Tear Resistance 61.238 ASTM D1004 (Modified) 274.2 N 61.641 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 97.08 431.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 137.12 lbs 609.9 N Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Signature......Quality Control Department

311680-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement feet 153.926 m 505.0 1.52 mm 60 Length..... MIN: mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.68 mm 66 mil **TEST** Asperity ASTM D7466: 36/35 mil AVE: 1.58 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content 2.30 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,625 2,609 Tensile Strength 163 ppi Average Strength @ Yield 29 N/mm (kN/m) 2,617 psi **ASTM D6693** 3,124 ASTM D638 (Modified) (2 inches / minute) 2.933 3,029 Average Strength @ Break 33 N/mm (kN/m) 188 ppi psi 19.55 Elongation ASTM D6693 15.14 Average Elongation @ Yield % 17.35 ASTM D638 (Modified) (2 inches / minute) 447.3 Lo = 1.3" Yield 539.3 Lo = 2.0" Break % 493.3 Average Elongation @ Break **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 62 043 Tear Resistance 61.238 ASTM D1004 (Modified) Average Tear Resistance 274.2 N 61.641 lbs Puncture Resistance Average Peak Load 97.08 lbs 431.8 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance 609.9 N 137.12 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Quality Control Department

311681-12 7120199 Liner Type: MICROSPIKE™ HDPE Lot #: 60 mil 1.5 mm Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... MIN: 1.52 mm 60 **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 68 MAX: 1.72 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE: 1.63 mm 64 mil OIT(Standard) ASTM D3895 minutes 180 **RESULTS** TOP / BOTTOM Specific Gravity g/cc .946 Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.30 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2.625 2,609 Tensile Strength **168** ppi psi 2,617 Average Strength @ Yield 29 N/mm (kN/m) **ASTM D6693** 3,124 ASTM D638 (Modified) 2,933 (2 inches / minute) 194 ppi 3,029 psi Average Strength @ Break 34 N/mm (kN/m) 19.55 15.14 Elongation ASTM D6693 17.35 Average Elongation @ Yield % ASTM D638 (Modified) 447.3 (2 inches / minute) 539.3 Lo = 1.3" Yield Lo = 2.0" Break % 493.3 Average Elongation @ Break **Dimensional Stability** -.55 % Average Dimensional change ASTM D1204 (Modified) 62,043 Tear Resistance 61.238 ASTM D1004 (Modified) 61.641 lbs Average Tear Resistance 274.2 N Puncture Resistance 97.08 lbs Average Peak Load 431.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 137.12 lbs 609.9 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs **CERTIFIED** Minimum Hrs w/o Failures **ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

311682-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.48 mm 58 MIN: mil **ASTM D5994** 7.01 m; 23.0 feet Width.... (Modified) MAX: 1.65 mm 65 mil **TEST** mm 62 Asperity ASTM D7466: 36/36 mil AVE: 1.58 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc .946 Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.30 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,625 2.609 Tensile Strength 163 ppi psi Average Strength @ Yield 29 N/mm (kN/m) 2,617 **ASTM D6693** 3,124 ASTM D638 (Modified) (2 inches / minute) 2.933 188 ppi 3,029 psi Average Strength @ Break 33 N/mm (kN/m) 19.55 15,14 Elongation ASTM D6693 % 17.35 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 447.3 Lo = 1.3" Yield 539.3 Lo = 2.0" Break % 493.3 Average Elongation @ Break **Dimensional Stability** -.55 Average Dimensional change % ASTM D1204 (Modified) 62.043 Tear Resistance 61.238 ASTM D1004 (Modified) 274.2 N 61.641 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 97.08 431.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 137.12 lbs Average Peak Load **609.9** N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/17/2012

Signature.....Quality Control Department

311683-12 Liner Type: MICROSPIKE™ HDPE 7120199 Lot #: ROLL# 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.49 mm 59 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) mm 63 MAX: 1.60 mil TEST Asperity ASTM D7466: 36/32 mil AVE: 1.54 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity g/cc .946 Density ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.29 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,694 2,867 Tensile Strength 169 ppi Average Strength @ Yield 30 N/mm (kN/m) 2,781 psi **ASTM D6693** 3,179 ASTM D638 (Modified) 2.690 (2 inches / minute) Average Strength @ Break 31 N/mm (kN/m) 178 ppi 2,935 psi 18,09 14.86 Elongation ASTM D6693 Average Elongation @ Yield % 16.48 ASTM D638 (Modified) (2 inches / minute) 442.0 449.2 Lo = 1.3" Yield Lo = 2.0" Break % 445.6 Average Elongation @ Break **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 60.150 Tear Resistance 59.802 ASTM D1004 (Modified) Average Tear Resistance 266.8 N 59.976 lbs Puncture Resistance 94.469 lbs Average Peak Load 420.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 131.02 lbs **582.8** N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/17/2012

Signature......

Quality Control Department

Measurement METRIC ENGLISH Trickness 153.926 m 50 ASTM D5994 MIN: 1.48 mm 58 mil Length T.01 m; 23 (Modified) MAX: 1.64 mm 65 mil Width 7.01 m; 23	TM HDPE 60 mil 505.0 feet 3.0 feet	
Measurement METRIC ENGLISH Trickness 153.926 m 50 ASTM D5994 MIN: 1.48 mm 58 mil Length 7.01 m; 23 (Modified) MAX: 1.64 mm 65 mil Width 7.01 m; 23	05.0 feet	t
ASTM D5994 MIN: 1.48 mm 58 mil Length		T
Modified) MAX: 1.64 mm 65 mil	3.0 feet	
1.66 mm 61 mil		t
Asperity ASTM D7466: 36/31 mil AVE: 1.56 mm 61 mil OIT(Standard) ASTM D3895 minutes 180	TEST RESULT	'S
Specific Gravity Density g/cc ASTM D792	.946	
MFI ASTM D1238 COND. E GRADE: Melt Flow Index 190°C /2160 g g/10 min	.25	
Carbon Black Content Range % ASTM D4218	2.29	
Carbon Black Dispersion Category 10 In	n Cat 1	
Tensile Strength ASTM D6693 Average Strength @ Yield 30 N/mm (kN/m) 171 ppi ASTM D638 (Modified) (2 inches / minute)	2,694 2,867 2,781 3,179 2,690	ps
		ps
Elongation ASTM D6693 ASTM D638 (Modified) Average Elongation @ Yield % (2 inches / minute)	18.09 14.86 16.48 442.0	
Lo = 1.3" Yield Lo = 2.0" Break Average Elongation @ Break %	449.2 445.6	
Dimensional Stability ASTM D1204 (Modified) Average Dimensional change %	55	
Tear Resistance	60.150 59.802 59.976	lbs
Puncture Resistance		lbs
Puncture Resistance Average Peak Load 582.8 N ASTM D4833 (Modified)	131.02	lbs
ESCR Minimum Hrs w/o Failures 1500 hrs CERT ASTM D1693	RTIFIED	
Notched Constant Tensile Load pass / fail @ 30% 300 hrs	PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date.....

3/18/2012

Signature.....Quality Control Department

311785-12 Liner Type: MICROSPIKE™ HDPE Lot #: 7120199 ROLL# 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m feet 505.0 Length..... MIN: 1.52 mm 60 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.68 mm 66 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE 1.57 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 180 TOP / BOTTOM Specific Gravity Density g/cc .946 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.29 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,694 2,867 Tensile Strength Average Strength @ Yield 30 N/mm (kN/m) 172 ppi 2,781 psi **ASTM D6693** 3,179 ASTM D638 (Modified) 2,690 (2 inches / minute) Average Strength @ Break 32 N/mm (kN/m) 181 ppi 2,935 psi 18.09 14.86 Elongation ASTM D6693 16.48 % Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 442.0 449.2 Lo = 1.3" Yield Lo = 2.0" Break 445.6 Average Elongation @ Break % **Dimensional Stability** % -.55 Average Dimensional change ASTM D1204 (Modified) 60.150 Tear Resistance 59,802 ASTM D1004 (Modified) 59.976 266.8 N lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 94.469 420.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 582.8 N 131.02 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature.....

Quality Control Department

60HDmic FRM REV 03

					I.							
ROLL# 311	786-12	Lot	#:	7	120199	Liner 7	Гуре: I	MICRO:	SPIK	E™ H	OPE	Ξ
		NACTO	10	ENICI	ICH	Thickness		1.5 m	m	60 mi	i	
Measurement	A A I N I	METR		ENGL		Length		153.926	m	505.0	feet	:
ASTM D5994	MIN:	1.46	mm		mil	Width		7.01	m;	23.0	fee	t
Modified)	MAX:	1.62	mm	64	mil	VVICENTIA						
Asperity ASTM D7466: 36	6/33 mil AVE:	1.57	mm	62	mil	OIT(Standard) AS	TM D3895	5 minutes	180	RES	ST ULT	S
Specific Gravity ASTM D792		Density				g/cc				.94	6	
MFI ASTM D1238 COND. E		Melt Flov	w Ind	ex 190°	°C /2160 g	g/10 m	nin			.2	:5	
GRADE:	K307											
Carbon Black Conter ASTM D4218	nt	Range				%				2.2	9	
Carbon Black Disper ASTM D5596	sion	Categor	y						10	0 In Cat	1	
Tensile Strength ASTM D6693		Average	Stre	ngth @	Yield	30 N/mm ((kN/m)	172 բ	pji	2,69 2,86 2,78	7 1	ps
ASTM D638 (Modifie	ed)									3,17		
(2 inches / minute)		Average	Stre	nath <i>ര</i>	Break	32 N/mm	(kN/m)	181 p	iac	2,69 2,93		ps
Elongation ASTM De ASTM D638 (Modifie		Average				%	, a diny			18.0 14.8 16.4	19 16 1 8	
(2 inches / minute) Lo = 1.3" Yield										442. 449.		
Lo = 2.0" Break		Average	Elon	gation	@ Break	%				445.		
Dimensional Stability ASTM D1204 (Modif		Average	Dim	ensiona	al change	%				5	55	
T D i. t										60.15	50	
Tear Resistance ASTM D1004 (Modif	(hai									59.80		
VOLINI DIOOH (INIOQII	icu)	Average	Tea	Resist	ance	266.8	N			59.97	6	lbs
Puncture Resistance FTMS 101 Method 2		Average	e Pea	ak Load		420.2	N			94.46	9	lbs
Puncture Resistance ASTM D4833 (Modif		Average	e Pea	ak Load		582.8	N			131.0)2	lb
ESCR ASTM D1693	416	Minimu	m Hr	s w/o F	ailures	1500 hrs			C	ERTIFIE	D	
Notched Constant Te	ensile Load	pass / fa	il @ 3	30%		300 hrs				PAS	s	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

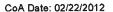
Date:....

3/18/2012

Signature......Quality Control Department

Lot #:	7120199	Liner Type:	MICDOCDIN	CTM UDD) =
_0	1120133	Liner Type.	MICROSPIK	E UDL	_
METRIC ENGLISH		Thickness 1.5 mi		m 60 mil	
			153.926 m	505.0 fe	et
		Width	7.01 m;	23.0 fe	et
				TEST	Г
1.58 mm	62 mil	DIT(Standard) ASTM D38	95 minutes 180	RESUL	
Density		g/cc		.947	
Melt Flow Inde	ex 190°C /2160 g	g/10 min		.25	
Range		%		2.33	
Category			1	0 In Cat 1	
Average Strer	ngth @ Yield	28 N/mm (kN/m)	163 ppi	2,539 2,688 2,614 3,249	psi
Average Strer	ngth @ Break	34 N/mm (kN/m)	193 ppi	3,097	ps
Average Elong	gation @ Yield	%		20.42 14.46 17.44	
				544.5	
Average Elono	gation @ Break	%		480.8	
Average Dime	ensional change	%		55	
				57.351	
Average Tear	Resistance	255.5 N		57.437	lbs
Average Peal	k Load	426.9 N		95.985	lbs
Average Pea	k Load	600.7 N		135.04	lbs
Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
pass / fail @ 3	0%	300 hrs		PASS	
	1.67 mm 1.58 mm Density Melt Flow Inde Range Category Average Strer Average Elong Average Elong Average Dime Average Tear Average Pea Average Pea Minimum Hrs	1.54 mm 61 mil 1.67 mm 66 mil 1.58 mm 62 mil 1.58 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	1.54 mm 61 mil Length	1.54 mm 61 mil Length	## 1.54 mm 61 mil Length

Customer: Chenango Contracting, Inc.


PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature.....Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #. 88417741

PO #: 006413 Weight: 193300 LB

Ship Date: 02/22/2012 Package: BULK

Mode: Hopper Car

Seal No: 282624

CHVX896092

Car #:

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7120200

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.25	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	26	pel/g
Production Date	. ==.= 3.00	02/13/2012	, ,

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

Lot #:	Lot #: 7120200		Liner Type: MICROSPIKE™ HDPE			
METRIC		Thickness	1.5 mm 153.926 ^m 7.01 ^{m;}	000.0	et et	
C: 1.61 mm (63 mil	width				
: 1.53 mm (60 mil	DIT(Standard) ASTM D389	5 minutes 167			
Density		g/cc		.946		
Meit Flow Index	x 190ºC /2160 g	g/10 min		.25		
Range		%		2.21		
Category			1	0 In Cat 1		
				2,456 2,608		
Average Streng	gth @ Yield	27 N/mm (kN/m)	153 ppi	2,532	ps	
				3,124		
Average Streng	nth @ Break	33 N/mm (kN/m)	188 ppi		ps	
/ Wording	J @ 2.0a	- Co vanini (com)		17.25		
		0.4		14.86		
Average Flong	ation @ Yield	%				
Average Elong	ation @ Break	%		517.6		
Average Dimer	nsional change	%		45		
	7			60.943		
A	Danishaw	267.0 1			مطا	
Average Lear F	resistance	201.8 N		00.21/	lbs	
Average Peak ed)	Load	410.2 N		92.224	lbs	
Average Peak	Load	612.7 N		137.74	lbs	
Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED		
pass / fail @ 30	%	300 hrs		PASS		
	METRIC 1.45 mm 1.61 mm 1.53 mm Density Melt Flow Index Range Category Average Streng Average Elong Average Elong Average Elong Average Dimer Average Tear F Average Peak Minimum Hrs	METRIC ENGLISH 1.45 mm 57 mil 1.61 mm 63 mil 1.53 mm 60 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness	METRIC ENGLISH 1.45 mm 57 mil Length	METRIC ENGLISH Thickness	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature.

Quality Control Department

311331-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: 1.5 mm 60 mil Thickness..... **ENGLISH METRIC** Measurement feet 153.926 m 505.0 Length..... 1.52 mm 60 mil MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.69 mm 67 mil TEST mm 63 Asperity ASTM D7466: 37/32 mil AVE: 1.59 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity .945 g/cc Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.27 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,371 2,521 Tensile Strength Average Strength @ Yield 27 N/mm (kN/m) **153** ppi 2,446 psi **ASTM D6693** 3,193 ASTM D638 (Modified) 2,936 (2 inches / minute) 3,065 34 N/mm (kN/m) 192 ppi psi Average Strength @ Break 16.91 15.27 Elongation ASTM D6693 16.09 % Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 452,4 528.3 Lo = 1.3" Yield Lo = 2.0" Break % 490.4 Average Elongation @ Break **Dimensional Stability** % -.45 Average Dimensional change ASTM D1204 (Modified) 57.784 Tear Resistance 53,588 ASTM D1004 (Modified) 247.7 N 55.686 lbs Average Tear Resistance Puncture Resistance 103.89 lbs Average Peak Load 462.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance 142.85 lbs 635.4 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature......

Quality Control Department

311332-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet 1.46 mm 57 Length..... MIN: **ASTM D5994** 7.01 23.0 feet Width.... (Modified) mm 64 MAX: 1.63 mil **TEST** Asperity ASTM D7466: 36/31 mil AVE: 1.55 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .945 Density ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content % 2.27 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,371 2,521 Tensile Strength 149 ppi 2,446 psi Average Strength @ Yield 26 N/mm (kN/m) **ASTM D6693** 3,193 ASTM D638 (Modified) 2,936 (2 inches / minute) 187 ppi 3,065 psi Average Strength @ Break 33 N/mm (kN/m) 16.91 15.27 Elongation ASTM D6693 % 16.09 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 452.4 528,3 Lo = 1.3" Yield Lo = 2.0" Break % 490.4 Average Elongation @ Break **Dimensional Stability** Average Dimensional change -.45 % ASTM D1204 (Modified) 57.784 Tear Resistance 53,588 ASTM D1004 (Modified) Average Tear Resistance 247.7 55.686 lbs Puncture Resistance Average Peak Load lbs 103.89 462.1 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance 142.85 lbs 635.4 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/14/2012

Quality Control Department

311333-12 7120200 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... MIN: 1.47 mm 58 **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 66 MAX: 1.67 mil **TEST** Asperity ASTM D7466: 36/32 mil AVE: 1.55 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .945 Density ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .25 COND. E GRADE: K307 Carbon Black Content 2.27 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,371 2,521 Tensile Strength psi 149 ppi 2,446 Average Strength @ Yield 26 N/mm (kN/m) **ASTM D6693** 3,193 ASTM D638 (Modified) 2,936 (2 inches / minute) 187 ppi 3,065 psi Average Strength @ Break 33 N/mm (kN/m) 16.91 15.27 Elongation ASTM D6693 16.09 Average Elongation @ Yield % ASTM D638 (Modified) 452.4 (2 inches / minute) 528.3 Lo = 1.3" Yield Lo = 2.0" Break % 490.4 Average Elongation @ Break **Dimensional Stability** -.45 % Average Dimensional change ASTM D1204 (Modified) 57,784 Tear Resistance 53.588 ASTM D1004 (Modified) 55.686 Average Tear Resistance 247.7 N lbs Puncture Resistance Average Peak Load lbs 103.89 462.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance 142.85 lbs 635.4 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/14/2012

Quality Control Department

311334-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.47 mm 58 MIN: mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.63 mm 64 mil **TEST** Asperity ASTM D7466: 36/32 mil AVE: 1.54 mil mm 61 **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND, E GRADE: K307 Carbon Black Content % 2.27 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,371 2,521 Tensile Strength Average Strength @ Yield 148 ppi 2,446 psi 26 N/mm (kN/m) **ASTM D6693** 3,193 ASTM D638 (Modified) 2.936 (2 inches / minute) 3,065 33 N/mm (kN/m) 186 ppi psi Average Strength @ Break 16.91 15.27 Elongation ASTM D6693 % 16.09 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 452,4 Lo = 1.3" Yield 528.3 490.4 Lo = 2.0" Break Average Elongation @ Break % **Dimensional Stability** -.45 Average Dimensional change % ASTM D1204 (Modified) 57.784 Tear Resistance 53.588 ASTM D1004 (Modified) 247.7 N 55.686 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 103.89 **462.1** N FTMS 101 Method 2065 (Modified) Puncture Resistance 142.85 lbs 635.4 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

311335-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.47 mm 58 mil MIN: **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.61 mm 63 mil TEST mm 61 Asperity ASTM D7466: 35/34 mil AVE 1.55 mil OIT(Standard) ASTM D3895 minutes 167 RESULTS TOP / BOTTOM Specific Gravity g/cc .947 Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.35 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,481 2,751 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) **160** ppi 2,616 psi **ASTM D6693** 3,129 ASTM D638 (Modified) 2,944 (2 inches / minute) 185 ppi 3,037 psi Average Strength @ Break 32 N/mm (kN/m) 20.20 14.64 Elongation ASTM D6693 % 17.42 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 441.1 544.0 Lo = 1.3" Yield 492.6 Lo = 2.0" Break % Average Elongation @ Break Dimensional Stability -.45 Average Dimensional change % ASTM D1204 (Modified) 57.969 Tear Resistance 54.689 ASTM D1004 (Modified) 250.6 N 56.329 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 86.965 386.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 126.18 lbs Average Peak Load **561.3** N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature......Quality Control Department

		LI.				
ROLL# 311336-12	Lot #:	7120200	Liner Type:	MICROSPIK	E™ HDP	E
	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement MIN:	1.47 mm		Length	153.926 ^m	505.0 fe	et
10 10 0000			Width	7.01 m;	23.0 fe	et
,					TES1	-
sperity ASTM D7466: 35/34 mil AVE: TOP / BOTTOM	1.54 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 167	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.947	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Indo	ex 190°C /2160 g	g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.35	
Carbon Black Dispersion ASTM D5596	Category			10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stre	ngth @ Yield	28 N/mm (kN/m)	159 ppi	2,481 2,751 2,616 3,129	ps
(2 inches / minute)	Average Strei	ngth @ Break	32 N/mm (kN/m)	184 ppi	2,944 3,037	ps
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elon	gation @ Yield	%		20.20 14.64 17.42 441.1	
Lo = 1.3" Yield Lo = 2.0" Break	Average Elon	gation @ Break	%		544.0 492.6	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%		45	
Tear Resistance					57,969 54.689	
ASTM D1004 (Modified)	Average Tear	Resistance	250.6 N		56.329	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Pea	ık Load	386.8 N		86.965	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	561.3 N		126.18	lbs
ESCR ASTM D1693	Minimum Hrs	s w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	30%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature.....Quality Control Department

311337-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: ROLL# 60 mil 1.5 mm Thickness..... **METRIC ENGLISH** Measurement 153.926 m feet 505.0 Length..... 1.45 mm 57 MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.64 mm 65 mil TEST mm 60 1.53 mil Asperity ASTM D7466: 36/33 mil AVE: **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .947 Density ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .25 g/10 min COND. E GRADE: K307 Carbon Black Content 2.35 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,481 2,751 Tensile Strength **158** ppi 2,616 psi Average Strength @ Yield 28 N/mm (kN/m) **ASTM D6693** 3,129 ASTM D638 (Modified) 2,944 (2 inches / minute) 3,037 183 ppi psi Average Strength @ Break 32 N/mm (kN/m) 20,20 14.64 Elongation ASTM D6693 % 17.42 Average Elongation @ Yield ASTM D638 (Modified) 441.1 (2 inches / minute) 544.0 Lo = 1.3" Yield 492.6 Lo = 2.0" Break % Average Elongation @ Break **Dimensional Stability** -.45 Average Dimensional change % ASTM D1204 (Modified) 57.969 Tear Resistance 54,689 ASTM D1004 (Modified) 250.6 N 56.329 lbs Average Tear Resistance Puncture Resistance lbs 86,965 Average Peak Load 386.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 126.18 lbs Average Peak Load 561.3 N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature......Quality Control Department

311338-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: 60 mil 1.5 mm Thickness..... **ENGLISH METRIC** Measurement 153.926 m 505.0 feet Length..... 1.46 mm 57 mil MIN: **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.59 mm 63 mil TEST mm 60 Asperity ASTM D7466: 36/35 mil AVE: 1.53 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .947 Density ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.35 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,481 2,754 Tensile Strength 158 ppi Average Strength @ Yield 28 N/mm (kN/m) 2,616 psi **ASTM D6693** 3,129 ASTM D638 (Modified) 2.944 (2 inches / minute) 3,037 Average Strength @ Break 183 ppi psi 32 N/mm (kN/m) 20.20 14.64 Elongation ASTM D6693 % 17.42 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 441.1 544.0 Lo = 1.3" Yield % 492.6 Lo = 2.0" Break Average Elongation @ Break **Dimensional Stability** -.45 Average Dimensional change % ASTM D1204 (Modified) 57,969 Tear Resistance 54.689 ASTM D1004 (Modified) 250.6 N 56.329 lbs Average Tear Resistance Puncture Resistance lbs 86.965 Average Peak Load 386.8 N FTMS 101 Method 2065 (Modified) Puncture Resistance 126.18 lbs 561.3 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs PASS pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature.....Quality Control Department

311339-12 Liner Type: MICROSPIKE™ HDPE 7120200 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.47 mm 58 MIN: mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.55 mm 61 mil TEST mm 60 Asperity ASTM D7466: 34/32 mil AVE: 1.52 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.38 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,434 2,624 Tensile Strength Average Strength @ Yield **151** ppi 2,529 psi 27 N/mm (kN/m) **ASTM D6693** 3,196 ASTM D638 (Modified) 2.583 (2 inches / minute) 173 ppi 2,890 psi Average Strength @ Break 30 N/mm (kN/m) 20,98 17.08 Elongation ASTM D6693 % 19.03 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 445.3 Lo = 1.3" Yield 440.7 Lo = 2.0" Break 443.0 Average Elongation @ Break % **Dimensional Stability** -.45 Average Dimensional change % ASTM D1204 (Modified) 55.973 Tear Resistance 56,198 ASTM D1004 (Modified) 249.5 N 56.086 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 89.74 399.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 126.53 lbs 562.8 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/14/2012

Signature.....Quality Control Department

ROLL# 311340	-12 Lot #:	7120200	Liner Type: I	: MICROSPIKE™ HDF		
Measurement ASTM D5994	METRIC MIN: 1.45 mm	ENGLISH n 57 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 fe 23.0 fe	et et
(Modified)	MAX: 1.69 mm	n 67 mil	vviatn	7.01		
Asperity ASTM D7466: 37/32 mil	AVE: 1.57 mm	n 62 mil	OIT(Standard) ASTM D3899	5 minutes 167	TEST RESUL	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307		dex 190°C /2160 g	g g/10 min		.25	
Carbon Black Content ASTM D4218	Range		%		2.38	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
					2,434	
Tensile Strength	Average Stre	ength @ Yield	27 N/mm (kN/m)	156 ppi	2,624 2,529	psi
ASTM D6693 ASTM D638 (Modified)	, wordge out	origin @ riole			3,196	,
(2 inches / minute)					2,583	
	Average Stre	ength @ Break	31 N/mm (kN/m)	179 ppi	2,890	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elo	ngation @ Yield	%		20,98 17.08 19.03	
(2 inches / minute)					445,3	
Lo = 1.3" Yield Lo = 2.0" Break	Average Elo	ngation @ Break	%		440.7 443.0	
Dimensional Stability ASTM D1204 (Modified)		nensional change	%		45	
					55.973	
Tear Resistance ASTM D1004 (Modified)					56,198	
//OTIVI D 1004 (Wodined)	Average Tea	r Resistance	249.5 N		56.086	lbs
Puncture Resistance FTMS 101 Method 2065 (M	Average Pe	ak Load	399.2 N		89.74	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Pe	ak Load	562.8 N		126.53	lbs
ESCR ASTM D1693	Minimum H	rs w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile L ASTM D5397	oad pass / fail @	30%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/14/2012

Signature.....Quality Control Department

311341-12 7120200 Liner Type: MICROSPIKE™ HDPE Lot #: 60 mil 1.5 mm **ENGLISH** Thickness..... **METRIC** Measurement feet 153.926 m 505.0 Length..... 1.48 mm 58 mil MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.70 mm 67 mil **TEST** Asperity ASTM D7466: 33/34 mil AVE: 1.57 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .945 Density ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.38 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,434 2,624 Tensile Strength **156** ppi Average Strength @ Yield 27 N/mm (kN/m) 2,529 psi **ASTM D6693** 3.196 ASTM D638 (Modified) 2,583 (2 inches / minute) 179 ppi 2,890 31 N/mm (kN/m) psi Average Strength @ Break 20.98 17.08 Elongation ASTM D6693 19.03 % Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 445,3 440.7 Lo = 1.3" Yield Lo = 2.0" Break % 443.0 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.45 ASTM D1204 (Modified) 55.973 Tear Resistance 56,198 ASTM D1004 (Modified) 249.5 N 56.086 lbs Average Tear Resistance Puncture Resistance lbs 89.74 Average Peak Load 399.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 126.53 lbs 562.8 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

gnature.

Quality Control Department

3/14/2012

311442-12 7120200 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.52 mm 60 MIN: mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.68 mm 66 mil **TEST** mm 62 1.58 mil Asperity ASTM D7466: 33/32 mil AVE: **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 .25 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.38 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,434 2,624 Tensile Strength Average Strength @ Yield 157 ppi psi 28 N/mm (kN/m) 2,529 **ASTM D6693** 3,196 ASTM D638 (Modified) (2 inches / minute) 2,583 180 ppi 2,890 Average Strength @ Break 31 N/mm (kN/m) psi 20,98 17.08 Elongation ASTM D6693 % 19.03 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 445.3 Lo = 1.3" Yield 440.7 Lo = 2.0" Break 443.0 Average Elongation @ Break % **Dimensional Stability** -.45 Average Dimensional change % ASTM D1204 (Modified) 55.973 Tear Resistance 56.198 ASTM D1004 (Modified) 249.5 N 56.086 Average Tear Resistance lbs Puncture Resistance lbs Average Peak Load 89.74 399.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 126.53 lbs Average Peak Load **562.8** N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.

Quality Control Department

311443-12 7120200 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 60 mil 1.5 mm **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m feet 505.0 Length..... MIN: 1.49 mm 59 **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 67 MAX: 1.69 mil **TEST** Asperity ASTM D7466: 37/32 mil AVE: 1.60 mm 63 mil RESULTS OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .946 Density ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.28 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,558 2,718 Tensile Strength **166** ppi Average Strength @ Yield 29 N/mm (kN/m) 2,638 psi **ASTM D6693** 3,214 ASTM D638 (Modified) 3,144 (2 inches / minute) 200 ppi 3,179 Average Strength @ Break 35 N/mm (kN/m) psi 19.48 15.13 Elongation ASTM D6693 17.31 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 455.5 567.8 Lo = 1.3" Yield Lo = 2.0" Break % 511.7 Average Elongation @ Break **Dimensional Stability** % -.45 Average Dimensional change ASTM D1204 (Modified) 57.945 Tear Resistance 54.681 ASTM D1004 (Modified) Average Tear Resistance 250.5 N 56.313 lbs Puncture Resistance lbs 87.08 Average Peak Load 387.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance 134.48 lbs 598.2 N Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature. Signature.

Quality Control Department

3/15/2012

	Щ				
Lot #:	7120200	Liner Type:	MICROSPIK	(E™ HDF	E
	ENCLIEN	Thickness	1.5 mm	60 mil	
			452 026 M	505.0 fe	et
			7.01 m;	23.0 fe	et
X: 1.66 mm	65 mil			TECT	_
E: 1.57 mm	62 mil	OIT(Standard) ASTM D38	95 minutes 167		
Density		g/cc		.946	
Melt Flow Inde	ex 190°C /2160 g	g/10 min		.25	
Range		%		2.28	
Category			1	0 In Cat 1	
Average Strer	ngth @ Yield	29 N/mm (kN/m)	163 ppi	2,558 2,718 2,638 3,214	ps
Average Strer	ngth @ Break	34 N/mm (kN/m)	196 ppi	3,179	ps
Average Elon	gation @ Yield	%		15.13 17.31	
Average Flon	gation @ Break	%		455.5 567.8 511.7	
		%		45	
				57.945	
				54.681	
Average Tear	Resistance	250.5 N		56.313	lbs
Average Pea	k Load	387.3 N		87.08	lbs
Average Pea	k Load	598.2 N		134.48	lbs
Minimum Hrs	s w/o Failures	1500 hrs	C	ERTIFIED	
pass / fail @ 3	30%	300 hrs		PASS	
	METRIC 1.49 mm X: 1.66 mm E: 1.57 mm Density Melt Flow Index Range Category Average Street Average Street Average Elon Average Elon Average Dime Average Pear	METRIC ENGLISH 1.49 mm 59 mil X: 1.66 mm 65 mil E: 1.57 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH 1.49 mm 59 mil Length	METRIC ENGLISH 1.49 mm 59 mil Length	METRIC ENGLISH Thickness 1.5 mm 50 mil Length 153.926 m 505.0 fe 7.01 m; 23.0 fe 1.57 mm 62 mil Length Melt Flow Index 190°C /2160 g g/10 min .25

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.

Quality Control Department

311445-12 7120200 Liner Type: MICROSPIKE™ HDPE Lot #: 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement feet 153,926 m 505.0 Length..... MIN: 1.50 mm 59 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** Asperity ASTM D7466: 34/33 mil AVE: 1.57 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.28 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,558 2,718 Tensile Strength 163 ppi Average Strength @ Yield 29 N/mm (kN/m) 2,638 psi **ASTM D6693** 3,214 ASTM D638 (Modified) (2 inches / minute) 3,144 3,179 Average Strength @ Break 34 N/mm (ktN/m) 196 ppi psi 19.48 15.13 Elongation ASTM D6693 Average Elongation @ Yield % 17.31 ASTM D638 (Modified) (2 inches / minute) 455.5 567.8 Lo = 1.3" Yield Lo = 2.0" Break % 511.7 Average Elongation @ Break **Dimensional Stability** % -.45 Average Dimensional change ASTM D1204 (Modified) 57.945 Tear Resistance 54.681 ASTM D1004 (Modified) Average Tear Resistance 250.5 N 56.313 lbs Puncture Resistance lbs 87.08 Average Peak Load 387.3 N FTMS 101 Method 2065 (Modified) Puncture Resistance 598.2 N lbs Average Peak Load 134.48 ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.....

Quality Control Department

	II	_			
Lot #:	7120200	Liner Type: I	MICROSP	IKE™ HDF	PΕ
METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
			100.020	505.0 fe	et
		Width	7.01 m	^{n;} 23.0 fe	eet
				TES'	Г
1.58 mm	62 Mil	OIT(Standard) ASTM D3895	minutes 16		
Density		g/cc		.946	
Melt Flow Index	x 190°C /2160 g	g/10 min		.25	
Range		%		2.28	
Category				10 In Cat 1	
Average Strenç	gth @ Yield	29 N/mm (kN/m)	164 ppi	2,558 2,718 2,638 3,214	psi
Average Streng	gth @ Break	35 N/mm (kN/m)	198 ppi	3,179	ps
Average Elong	ation @ Yield	%		15.13 17.31	
Average Flong	ation @ Break	%		567.8	
		%		45	
		<u>`</u>		57.945	
Average Tear F	Resistance	250.5 N		54.681 56.313	lbs
Average Peak	Load	387.3 N		87.08	lbs
Average Peak	Load	598.2 N		134.48	lbs
Minimum Hrs	w/o Failures	1500 hrs		CERTIFIED	
pass / fail @ 30	%	300 hrs		PASS	
	METRIC 1.50 mm 1.65 mm 1.58 mm Density Melt Flow Index Range Category Average Streng Average Elong Average Elong Average Dimer Average Tear F Average Peak Minimum Hrs	METRIC ENGLISH 1.50 mm 59 mil 1.65 mm 65 mil 1.58 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH 1.50 mm 59 mil Length	Lot #	Lot # 7120200 Liner Type: MICROSPIKE™ HDF METRIC ENGLISH Thickness

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.....

Quality Control Department

	II				
Lot #:	7120200 Liner Type: MICROSPIK		E™ HDP	E	
METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
			153.926 m	5 05.0 fe	et
		Width	7.01 m;	23.0 fe	et
				TES1	Γ
1.56 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 167	RESUL	
Density		g/cc		.946	
Melt Flow Inde	ex 190ºC /2160 g	g/10 min		.25	
Range		%		2.31	
Category			1	0 In Cat 1	
Average Strer	ngth @ Yield	27 N/mm (kN/m)	154 ppi	2,439 2,572 2,506 3,093	ps
Average Strer	ngth @ Break	31 N/mm (kN/m)	178 ppi	2,900	ps
Average Elong	gation @ Yield	%		15.14 17.89	
				450.0 483.1	
Average Elong	gation @ Break	%		466.6	
Average Dime	ensional change	%		45	
				61.540	
	_			58.145	,.
Average Tear	Resistance	266.2 N		59.843	lbs
Average Pea	k Load	415.2 N		93.335	lbs
Average Pea	k Load	577.9 N		129.92	lbs
Minimum Hrs	s w/o Failures	1500 hrs	С	ERTIFIED	
pass / fail @ 3	0%	300 hrs		PASS	
	METRIC 1.44 mm 1.60 mm 1.56 mm Density Melt Flow Index Range Category Average Stren Average Elong Average Elong Average Dime Average Tear Average Pear Average Pear Average Pear Average Pear	METRIC ENGLISH 1.44 mm 57 mil 1.60 mm 63 mil 1.56 mm 61 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH Thickness	Lot #: 7120200 Liner Type: MICROSPIK	Lot # 7120200 Liner Type: MICROSPIKE™ HDP

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Signature.....Quality Control Department

311448-12 7120200 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 Length..... 1.50 mm 59 MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.67 mm 66 mil **TEST** mm 62 Asperity ASTM D7466: 37/32 mil AVE: 1.57 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 167 TOP / BOTTOM Specific Gravity g/cc .946 Density ASTM D792 MFI ASTM D1238 g/10 min .25 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.31 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,439 2,572 Tensile Strength 155 ppi psi Average Strength @ Yield 27 N/mm (kN/m) 2,506 **ASTM D6693** 3.093 ASTM D638 (Modified) 2,706 (2 inches / minute) 179 ppi 2,900 Average Strength @ Break 31 N/mm (kN/m) psi 20.64 15,14 Elongation ASTM D6693 17.89 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 450.0 483.1 Lo = 1.3" Yield Lo = 2.0" Break % 466.6 Average Elongation @ Break Dimensional Stability % -.45 Average Dimensional change ASTM D1204 (Modified) 61.540 Tear Resistance 58,145 ASTM D1004 (Modified) 266.2 N 59.843 lbs Average Tear Resistance Puncture Resistance lbs 93.335 Average Peak Load 415.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 129.92 lbs 577.9 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/15/2012

Quality Control Department

Certificate of Analysis

Shipped To: AGRU AMERICA: RAINS

MILEPOST SH317 RAINS SC 29589

USA

Recipient: PALMER

Fax:

Delivery #: 88357558

PO #: 5847

Weight: 179200 LB Ship Date: 10/31/2011 Package: BULK Mode: Hopper Car Car #: PSPX002559

Seal No: 265824

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 8110773

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.29	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	27	pel/g
Production Date		07/01/2011	

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

311788-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet 1.56 Length..... MIN: mm 61 **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.68 mm 66 mil TEST Asperity ASTM D7466: 37/34 mil AVE: 1.60 mm 63 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content 2.33 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,539 2,688 Tensile Strength **165** ppi Average Strength @ Yield 29 N/mm (kN/m) 2,614 psi **ASTM D6693** 3,249 ASTM D638 (Modified) 2,945 (2 inches / minute) 195 ppi 3,097 Average Strength @ Break 34 N/mm (kN/m) psi 20,42 Elongation ASTM D6693 14.46 Average Elongation @ Yield % 17.44 ASTM D638 (Modified) (2 inches / minute) 429.1 544.5 Lo = 1.3" Yield Lo = 2.0" Break % 486.8 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.351 Tear Resistance 57,523 ASTM D1004 (Modified) Average Tear Resistance 255.5 N 57.437 lbs Puncture Resistance lbs Average Peak Load 95.985 426.9 N FTMS 101 Method 2065 (Modified) Puncture Resistance 135.04 lbs 600.7 N Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature.....Quality Control Department

		11	=			
ROLL# 311789-12	Lot #:	8110773	Liner Type: N	MICROSPIR	(E™ HDF	PΕ
	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement MIN:	1.50 mm		Length	153.926 m	505.0 fe	eet
10 1 W D0004			Width	7.01 m;	23.0 fe	eet
Modified) MAX:	1.66 mm	65 mil				_
Asperity ASTM D7466: 37/34 mil AVE:	1.57 mm	62 mil	DIT(Standard) ASTM D3895	5 minutes 184	TES' RESUL	
Specific Gravity ASTM D792	Density		g/cc		.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.33	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Strer	ngth @ Yield	28 N/mm (kN/m)	162 ppi	2,539 2,688 2,614 3,249	ps
(2 inches / minute)	Average Strer	ngth @ Break	34 N/mm (kN/m)	191 ppi	2,945 3,097	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elon	gation @ Yield	%		20.42 14.46 17.44	
(2 inches / minute) Lo = 1.3" Yield					429.1 544.5	
Lo = 2.0" Break	Average Elone	gation @ Break	%		486.8	
Dimensional Stability ASTM D1204 (Modified)		ensional change	%		44	
					57.351	
Tear Resistance					57.523	
ASTM D1004 (Modified)	Average Tear	Resistance	255.5 N		57.437	lb
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Pea)	k Load	426.9 N		95.985	lb
Puncture Resistance ASTM D4833 (Modified)	Average Pea	k Load	600.7 N		135.04	lb
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	C	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature. Quality Control Department

311790-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.49 mm 59 MIN: mil **ASTM D5994** 7.01 m: 23.0 Width..... feet (Modified) MAX: 1.65 mm 65 mil **TEST** 1.58 Asperity ASTM D7466: 37/36 mil AVE: mm 62 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .946 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E **GRADE**: K307 Carbon Black Content % 2.33 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,539 2,688 Tensile Strength Average Strength @ Yield 163 ppi psi 28 N/mm (kN/m) 2,614 **ASTM D6693** 3,249 ASTM D638 (Modified) (2 inches / minute) 2.945 3,097 Average Strength @ Break 34 N/mm (kN/m) 193 ppi psi 20.42 14,46 Elongation ASTM D6693 % 17.44 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 429.1 Lo = 1.3" Yield 544.5 Lo = 2.0" Break % 486.8 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.351 Tear Resistance 57.523 ASTM D1004 (Modified) 57.437 lbs 255.5 N Average Tear Resistance Puncture Resistance lbs Average Peak Load 95.985 **426.9** N FTMS 101 Method 2065 (Modified) Puncture Resistance 135.04 lbs Average Peak Load 600.7 N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature......Quality Control Department

					•						
ROLL# 31179	1-12	Lot	#:	8	110773	Liner	Type:	MICROS	SPIK	E™ HC	PE
		METR	NC	ENGL	ISH	Thicknes	S	1.5 m	m	60 mil	
Measurement	MIN:	1.49	mm		mil	Length		153.926	m	505.0	feet
ASTM D5994 Modified)	MAX:	1.60	mm		mil	Width		7.01	m;	23.0	feet
										TE	ST
sperity ASTM D7466: 37/35 m TOP / BOTTOM	nil AVE:	1.55	mm	61	mil	OIT(Standard) AS	STM D389	95 minutes	184	RESI	
Specific Gravity ASTM D792		Density				g/cc				.94	5
MFI ASTM D1238 COND. E GRADE: K30		Melt Flov	w Inde	ex 190°	°C /2160 (g g/10 r	min			.2	9
Carbon Black Content ASTM D4218		Range				%				2.2	8
Carbon Black Dispersion ASTM D5596		Categor	У						10	0 In Cat	1
Tensile Strength ASTM D6693 ASTM D638 (Modified)		Average	Stre	ngth @	Yield	28 N/mm	ı (KN/m)	163 p	pji	2,58 2,73 2,66 3,06	8 3 p 0
(2 inches / minute)		Average	Stre	ngth @	Break	33 N/mm	ı (kN/m)	187 p	pji	3,06 3,06	
Elongation ASTM D6693 ASTM D638 (Modified)		Average	Elon	gation	@ Yield	%				19.0 15.7 17.4	9
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break		Average	Elon	gation	@ Break	%				445. 551. 498.	5
Dimensional Stability ASTM D1204 (Modified)				-	l change	%				4	4
Tear Resistance ASTM D1004 (Modified)		Average	Tear	· Resist	ance	268.1	N		i.	60.22 60.31 60.27	6
Puncture Resistance FTMS 101 Method 2065 (I	Modified)	Average	e Pea	ık Load		432.5	N			97.22	8 II
Puncture Resistance ASTM D4833 (Modified)		Average	e Pea	ık Load		597.3	N			134.2	7 II
ESCR ASTM D1693		Minimu	m Hrs	s w/o F	ailures	1500 hrs			С	ERTIFIE	D
Notched Constant Tensile ASTM D5397	Load	pass / fa	il @ 3	30%		300 hrs				PAS	s

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature.

Quality Control Department

311792-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 mm 59 Length..... 1.51 MIN: mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.66 mm 65 mil **TEST** Asperity ASTM D7466: 37/35 mil AVE: 1.59 mm 63 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g .29 g/10 min COND. E GRADE: K307 Carbon Black Content % 2.28 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,588 2,738 Tensile Strength Average Strength @ Yield **167** ppi 29 N/mm (kN/m) 2,663 psi **ASTM D6693** 3,060 ASTM D638 (Modified) (2 inches / minute) 3,067 Average Strength @ Break 34 N/mm (kN/m) **192** ppi 3,064 psi 19.07 Elongation ASTM D6693 15.79 % Average Elongation @ Yield 17.43 ASTM D638 (Modified) (2 inches / minute) 445,7 Lo = 1.3" Yield 551.5 Lo = 2.0" Break Average Elongation @ Break % 498.6 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 60.226 Tear Resistance 60.316 ASTM D1004 (Modified) 268.1 Average Tear Resistance N 60.271 lbs Puncture Resistance Average Peak Load lbs 97.228 432.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load **597.3** N 134.27 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/18/2012

Signature..

Quality Control Department

		Щ				
ROLL# 311793-12	Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDF	PΕ
	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement MIN:	1.45 mm		Length	153.926 m	505.0 fe	et
A US D			Width	7.01 m;	23.0 fe	et
Modified) MAX:	1.62 mm	64 mil			****	_
sperity ASTM D7466: 37/36 mil AVE:	1.54 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 184	TES [*] RESUL	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND, E GRADE: K307	Melt Flow Inde	x 190°C /2160 g	g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.28	
Carbon Black Dispersion ASTM D5596	Category			10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stren	gth @ Yield	28 N/mm (kN/m)	161 ppi	2,588 2,738 2,663 3,060	ps
(2 inches / minute)	Average Stren	gth @ Break	33 N/mm (kN/m)	186 ppi	3,067 3,064	ps
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elong	ation @ Yield	%		19.07 15.79 17.43 445.7	
Lo = 1.3" Yield Lo = 2.0" Break	Average Elong	ation @ Break	%		551.5 498.6	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	nsional change	%		44	
T 0 11	110 111				60.226	
Tear Resistance					60.316	
ASTM D1004 (Modified)	Average Tear I	Resistance	268.1 N		60.271	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peak)	Load	432.5 N		97.228	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	597.3 N		134.27	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

3/18/2012

Signature.

Quality Control Department

(SS) 1015			11	=			
ROLL# 311	794-12	Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDI	PΕ
WOOD PERSON		METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement	MIN:	1.45 mm		Length,	153.926 m	505.0 fe	eet
ASTM D5994 Modified)		1.65 mm		Width	7.01 m;	23.0 f	eet
	MAX:					TES	т
ASPERITY ASTM D7466: 36 TOP / BOTTOM	6/32 mil AVE:	1.55 mm	61 mil	OIT(Standard) ASTM D389	95 minutes 184	RESUL	
Specific Gravity ASTM D792		Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flow Ind	ex 190°C /2160 (g g/10 min		.29	
Carbon Black Conter ASTM D4218	nt	Range		%		2.28	
Carbon Black Disper ASTM D5596	sion	Category			10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modifie (2 inches / minute)	ed)	Average Stre	ngth @ Yield	28 N/mm (kN/m)	163 ppi	2,588 2,738 2,663 3,060 3,067	ps
(2 mones / minute)		Average Stre	ngth @ Break	33 N/mm (kN/m)	187 ppi	3,064	ps
Elongation ASTM DO		Average Elon	gation @ Yield	%		19.07 15.79 17.43	
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break		Average Elon	gation @ Break	%		445.7 551.5 498.6	
Dimensional Stability ASTM D1204 (Modifi		Average Dim	ensional change	%		44	
Tear Resistance						60.226	
ASTM D1004 (Modifi	ied)	Avorago Tass	Posistanos	268.1 N		60.316 60.271	llee
Puncture Resistance FTMS 101 Method 2		Average Tea		432.5 N	1-2-13-11	97.228	lbs
Puncture Resistance ASTM D4833 (Modifi	* * ***********************************	Average Pea	ık Load	597.3 N		134.27	lbs
ESCR ASTM D1693		Minimum Hr	s w/o Failures	1500 hrs	CI	ERTIFIED	
Notched Constant Te	ensile Load	pass / fail @ 3	30%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature....

Quality Control Department

1795-12	Lot	t #:	8	110773	Liner 1	Type: I	MICRO:	SPIK	E™ H	DP	Ε
	METE	SIC	FNGI	ISH	Thickness	s	1.5 m	m	60 mi	il	
MIN:	1.52			mil				m	505.0	fee	t
		mm	64	mit	Width		7.01	m;	23.0	fee	ŧ
				mil	OIT(Standard) AS	STM D3895	5 minutes	184			
	Density				g/cc				.94	1 5	
K307	Melt Flor	w Ind	ex 190°	°C /2160 g	g/10 m	nin			.2	29	
tent	Range				%				2.2	26	
persion	Categor	y						10	0 In Cat	1	
ified)	Average	Stre	ngth @	Yield	27 N/mm	(kN/m)	157 բ	ppi	2,63 2,53 3,18	64 87 84	psi
•)	Average	Stre	ngth @	Break	33 N/mm	(kN/m)	190 p	pji			ps
D6693 ified)	Average	Elon	gation	@ Yield	%				15.3 18. 0	20)2	
	Average	Elon	gation	@ Break	%						
lity dified)	Average	Dime	ensiona	al change	%				-,4	14	
dified)	Average	Tear	Resist	ance	252.4	N			55.44	17	lbs
ice d 2065 (Modified	Average				411.2	N			92.4	57	lbs
ice dified)	Average	e Pea	ak Load		591.5	N			132.9	98	lbs
	Minimu	m Hrs	s w/o F	ailures	1500 hrs			C	ERTIFIE	D	
Tensile Load	pass / fa	il @ 3	30%		300 hrs				PAS	SS	
	MIN: MAX 37/33 mil AVE: K307 tent bersion D6693 iffied) b) lity diffied) diffied) dece diffied)	METER MIN: 1.52 MAX: 1.62 37/33 mil AVE: 1.57 Density Melt Flor K307 tent Range Category Average iffied) Average iffied) Average lity diffied) Average diffied) Average Average	METRIC MIN: 1.52 mm MAX: 1.62 mm Density Melt Flow Ind K307 tent Range Dersion Category Average Stre iffied) Average Elon (a) (b) Average Elon (c) Average Dimensity Average Pear	METRIC ENGLE MIN: 1.52 mm 60 MAX: 1.62 mm 64 37/33 mil AVE: 1.57 mm 62 Density Melt Flow Index 1900 K307 tent Range Category Average Strength @ ified) Average Strength @ ified) Average Elongation (a) Average Elongation (b) Average Dimensional (c) Average Peak Load (d) Average Peak Load (d) Average Peak Load (d) Minimum Hrs w/o Fa	METRIC ENGLISH MIN: 1.52 mm 60 mil MAX: 1.62 mm 64 mil Jensity Melt Flow Index 190°C /2160 g K307 Tent Range Category Average Strength @ Yield Average Strength @ Break Average Elongation @ Yield Average Elongation @ Break Average Elongation @ Break Average Dimensional change diffied) Average Tear Resistance Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH Thickness MIN: 1.52 mm 60 mil Length	MIN:	METRIC ENGLISH Thickness 1.5 m 153.926 MAX: 1.62 mm 64 mil 153.926 Width 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes Density Green Green	METRIC ENGLISH Thickness 1.5 mm 153.926 m 153.926 m	METRIC ENGLISH Thickness 1.5 mm 153 ,926 m 505.0 MAX: 1.62 mm 64 mil Mill 1.57 mm 62 mil OIT(Standard) ASTM D3695 minutes 184 TRES Density G/c John Jo	METRIC ENGLISH Thickness 1.5 mm 60 mil MAX 1.52 mm 60 mil MAX 1.62 mm 64 mil MI MAX 1.62 mm 62 mil MAX M

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/19/2012

Signature.....Quality Control Department

311796-12 8110773 **Liner Type: MICROSPIKE™ HDPE** Lot #: ROLL# 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153,926 m feet 505.0 Length..... MIN: 1.44 mm 57 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.59 mm 63 mil TEST mm 60 Asperity ASTM D7466: 37/34 mil AVE: 1.52 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND: E GRADE: K307 Carbon Black Content % 2.26 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,423 2,651 Tensile Strength Average Strength @ Yield **152** ppi 27 N/mm (kN/m) 2,537 psī **ASTM D6693** 3,181 ASTM D638 (Modified) (2 inches / minute) 2,977 Average Strength @ Break 32 N/mm (kN/m) 184 ppi 3,079 psi 20.84 15.20 Elongation ASTM D6693 18.02 % Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 448.4 Lo = 1.3" Yield 547.1 Lo = 2.0" Break % 497.8 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 58.031 Tear Resistance 55.447 ASTM D1004 (Modified) 252.4 N 56.739 Average Tear Resistance lbs Puncture Resistance Average Peak Load lbs 92.457 411.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 591.5 N 132.98 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature......Quality Control Department

		II .				
ROLL# 312101-12	Lot #:	8110773	Liner Type: N	MICROSPIK	E™ HDP	E
	METRIC E	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement ASTM D5994 MIN:	1.49 mm		Length	153.926 m	505.0 fe	et
ASTM D5994 MIN: Modified) MAX:	1.60 mm 6		Width	7.01 m;	23.0 fe	et
					TES1	_
ASPERITY ASTM D7466: 35/33 mil AVE:	1.54 mm 6	61 mil	OIT(Standard) ASTM D3895	minutes 184	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307	Meit Flow Index	(190°C /2160 g	g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.26	
Carbon Black Dispersion ASTM D5596	Category			10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Streng	gth @ Yield	27 N/mm (kN/m)	154 ppi	2,423 2,651 2,537 3,181	ps
(2 inches / minute)	Average Streng	gth @ Break	33 N/mm (kN/m)	187 ppi	2,977 3,079	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elonga	ation @ Yield	%		20.84 15.20 18.02	
(2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elonga	ation @ Break	%		448.4 547.1 497.8	
Dimensional Stability ASTM D1204 (Modified)	Average Dimer	nsional change	%		44	
Tear Resistance					58.031	
ASTM D1004 (Modified)	Average Tear F	Resistance	252.4 N		55.447 56.739	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified)	Average Peak		411.2 N		92.457	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	591.5 N	1111	132.98	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/19/2012

Signature.... **Quality Control Department**

60HDmic.FRM REV 03

Lot #:	8110773	Liner Type:	MICROSPIKE™ HDPE					
1.44 mm 5	57 mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^{m;}	60 mil 505.0 fe 23.0 fe	et et			
				TES1	Γ			
: 1.54 mm 6	MII C	OIT(Standard) ASTM D389	5 minutes 184					
Density		g/cc		.945				
Melt Flow Index	(190°C /2160 g	g/10 min		.29				
Range		%		2.26				
Category			1	0 In Cat 1				
				2,423				
Average Streng	th @ Yield	27 N/mm (kN/m)	154 ppi		psi			
0	, ,			3,181				
				2,977				
Average Streng	jth @ Break	33 N/mm (kN/m)	187 ppi		psi			
Average Elonga	ation @ Yield	%		18.02				
5 6	C			448.4				
				547.1				
Average Elonga	ation @ Break	%	.,	497.8				
Average Dimen	sional change	%		44				
				58.031				
Avorago Toar E	Posistance	252 A N			lbs			
- '		2J2.4 IV		50.155				
Average Peak d)	Load	411.2 N		92.457	lbs			
Average Peak	Load	591.5 N		132.98	lbs			
Minimum Hrs v	wlo Failures	1500 hrs	С	ERTIFIED				
pass / fail @ 30	%	300 hrs		PASS				
	METRIC E 1.44 mm 8 1.64 mm 6 1.54 mm 6 Density Melt Flow Index Range Category Average Streng Average Elonga Average Elonga Average Dimen Average Tear F Average Peak Minimum Hrs v	METRIC ENGLISH 1.44 mm 57 mil 1.64 mm 65 mil 1.54 mm 61 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH 1.44 mm 57 mil Length	METRIC ENGLISH Thickness	METRIC ENGLISH 1.44 mm 57 mil Length			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature.....Quality Control Department

							14							
ROLL#	312	2103	-12	Lo	t #:		110773	Liner	Type:	MICRO	SPIK	ETM H	DP	E
//easurement		100,000,000		MET	RIC	ENGL	JSH	Thicknes	s	1.5 n		60 mi		
STM D5994	•		MIN:	1.51	mm	59	mil	Length		153.926		505.0	fee	
Modified)			MAX:	1.62	mm	64	mil	Width		7.01	m;	23.0	fee	31
sperity ASTM D		6/35 mil	AVE:	1.56	mm	61	mil	OIT(Standard) AS	STM D389	5 minutes	184	TE RES	ST UL	
Specific Grav ASTM D792	vity			Density				g/cc				.94	45	
MFI ASTM D COND. E GRADE:	1238	K307		Melt Flo	w Ind	ex 190	°C /2160 g	g/10 r	nin			.2	29	
Carbon Black ASTM D4218		nt		Range				%		· ·		2.2	27	
Carbon Black ASTM D5596		rsion		Categor	у						1	0 In Cat	1	
Tensile Stren ASTM D6693 ASTM D638 (2 inches / m	3 (Modifie	ed)		Average	e Strei	ngth @	Yield	28 N/mm	(kN/m)	162	ррі	2,51 2,73 2,63 3,22 2,90	52 31 20	ps
(Z IIIOIIes / II	indic)			Average	Stre	ngth @	Break	33 N/mm	(kN/m)	188	ррі	3,06		ps
Elongation A ASTM D638 (2 inches / m	(Modifie ninute)			Average	e Elon	gation	@ Yield	%				19.6 14.3 17.0 459	37)0 .6	
Lo = 1.3" Yie Lo = 2.0" Bre				Average	e Elon	gation	@ Break	%				531 495		
Dimensional ASTM D1204	-			Average	Dime	ensiona	al change	%				4	44	
Tear Resista ASTM D1004		ried)		Average	e Tear	Resist	ance	257.2	N			57.81 57.75 57.8 1	57	lbs
Puncture Res			odified	Averag	e Pea	k Load		422.6	N			95.00	01	lbs
Puncture Res ASTM D4833				Averag	e Pea	k Load		579.1	N			130.	19	lbs
ESCR ASTM D1693	3			Minimu	ım Hrs	s w/o F	ailures	1500 hrs	Van Van		С	ERTIFIE	D	
Notched Con ASTM D5397		ensile L	oad	pass / fa	il @ 3	0%		300 hrs				PAS	SS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/19/2012

Quality Control Department

312104-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 60 mil 1.5 mm Thickness..... **ENGLISH METRIC** Measurement 153.926 m feet 505.0 Length..... 1.51 mm 59 mil MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.73 mm 68 mil **TEST** Asperity ASTM D7466: 37/33 mil AVE: 1.62 mm 64 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc .945 Density ASTM D792 MFI ASTM D1238 g/10 min .29 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.27 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,510 2,752 Tensile Strength **168** ppi Average Strength @ Yield 29 N/mm (kN/m) 2,631 psi **ASTM D6693** 3,220 ASTM D638 (Modified) 2,908 (2 inches / minute) 195 ppi 3,064 Average Strength @ Break 34 N/mm (kN/m) psi 19.63 14.37 Elongation ASTM D6693 % 17.00 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 459.6 531.5 Lo = 1.3" Yield Lo = 2.0" Break % 495.6 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.873 Tear Resistance 57.757 ASTM D1004 (Modified) 257.2 N 57.815 lbs Average Tear Resistance Puncture Resistance lbs 95.001 Average Peak Load 422.6 N FTMS 101 Method 2065 (Modified) Puncture Resistance 579.1 N lbs Average Peak Load 130.19 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature.....Quality Control Department

312105-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 60 mil 1.5 mm **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.54 mm 61 MIN: mil ASTM D5994 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.70 mm 67 mil TEST mil 1.62 mm 64 Asperity ASTM D7466: 37/33 mil AVE: OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .945 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.27 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,510 2,752 Tensile Strength Average Strength @ Yield 168 ppi 2,631 psi 29 N/mm (kN/m) **ASTM D6693** 3,220 ASTM D638 (Modified) (2 inches / minute) 2,908 195 ppi 3,064 psi Average Strength @ Break 34 N/mm (kN/m) 19.63 14.37 Elongation ASTM D6693 % 17.00 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 459.6 Lo = 1.3" Yield 531.5 495.6 Lo = 2.0" Break Average Elongation @ Break % **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.873 Tear Resistance 57.757 ASTM D1004 (Modified) 57.815 257.2 N lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 95.001 **422.6** N FTMS 101 Method 2065 (Modified) Puncture Resistance 130.19 lbs Average Peak Load **579.1** N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

ROLL# 312106-1				Lot #: 811077				773	3 Liner Type: MICROSPIKE™ HDPE							
leasurement STM D5994					MIN:	MET 1.48				il			153.926	m	505.5	eet
								il	_		7.01	m;	23.0	feet		
7466 :	36/35	mil		1.54				il	OIT(Standard) AS	TM D3895	5 minutes	184				
∕ity				Density					g/cc				.945			
1238		307		Melt Flo	w Ind	ex 1	90°C /2	160 g	g g/10 m	in			.29			
k Con 8	tent			Range					%				2.27			
k Disp 6	ersio	n		Catego	ry							1	0 In Cat 1			
ngth				Δνετασ	e Stre	nath	. A Viel	4	28 N/mm /	(khi/m)	160 r	ino				
	:e:\			Avciag	COLIC	ngun	i W Tiele	4)	20 (4//////	(KIVIII)	.00	٠,				
•	-												·			
illiute	;)			Averag	e Stre	nath	@ Brea	ık	33 N/mm ((kN/m)	186 g	igo				
					-					11 - 1						
MTSA	D669	93					- 10		٥,							
•				Averag	e Elor	gatio	on @ Yi	eld	%							
)															
				Averag	a Flor	natio	on @ Br	eak	%							
				Averag	C LIOI	gau	011 (2) 111	Cak								
	-)		Averag	e Dim	ensid	onal cha	nge	%							
nce																
	dified')		A	_ T	- D-			257.0	N1						
				Averag	e i ea	Res	sistance		251.2	IN			37.013	, וטפ		
		5 (M	odified	Averaç	ge Pea	ak Lo	oad		422.6	N			95.001	l lbs		
)		Averaç	ge Pea	ak Lo	oad		579.1	N			130.19) lbs		
3				Minim	ım Hr	s w/d	o Failure	es	1500 hrs			С	ERTIFIED)		
nstant 7	Tens	ile L	.oad	pass / fa	ail @ :	30%			300 hrs				PASS	6		
	7466: TOM vity 1238 k Con 3 k Disp 6 ngth 3 (Mod ninute eld eak Stabi 4 (Mo sistar dethod sistar 3 (Mo sistar 3 (Mo sistar 3 (Mo	7466: 36/35 TOM Vity 1238 K: K Content K Dispersion M Modified Ininute) ASTM D669 (Modified) Ininute) Ininute (Modified) Instance Inst	7466: 36/35 mil TOM //ity 1238 K307 K Content 3 K Dispersion 6 ngth 3 (Modified) ninute) ASTM D6693 (Modified) ninute) eld eak Stability 4 (Modified) sistance 4 (Modified) sistance 3 (Modified) sistance 3 (Modified)	MIN: MAX: 7466: 36/35 mil AVE: TOM 7ity 1238 K307 K Content 3 (Modified) ninute) ASTM D6693 (Modified) ninute) eld eak Stability 4 (Modified) sistance 4 (Modified) sistance 1 (Modified) sistance 3 (Modified) sistance 3 (Modified) 3 nstant Tensile Load	MIN: 1.48 MAX: 1.60 7466: 36/35 mil AVE: 1.54 TOM Vity Density 1238 Melt Flo K307 K Content Range K Dispersion Catego MSTM D6693 (Modified) Catego ASTM D6693 (Modified) Catego AVerage Catego AVerage	METRIC MIN: 1.48 mm MAX: 1.60 mm 7466: 36/35 mil AVE: 1.54 mm rom rity Density 1238 Melt Flow Ind K307 K Content Range K Dispersion Category Ogth Average Stree (Modified) Ininute (METRIC EN MIN: 1.48 mm 58 MAX: 1.60 mm 63 7466: 36/35 mil AVE: 1.54 mm 61 TOM TOM TOM TOM TOM TOM TOM TOM	METRIC ENGLISH MIN: 1.48 mm 58 m MAX: 1.60 mm 63 m MAX: 1.54 mm 61 m Melt Flow Index 190°C /2° K307 K Content Range K Dispersion Category Average Strength @ Yield Modified) Minimute) Average Elongation @ Yield Average Elongation @ Yield Average Elongation @ Yield Average Elongation @ Bread Average Peak Load Average Peak Load Minimum Hrs w/o Failure MAX: 1.60 mm 63 m Melt Flow Index 190°C //2° K307 Average Strength @ Yield Average Elongation @ Bread Average Elongation @ Bread Average Peak Load Minimum Hrs w/o Failure Average Peak Load Minimum Hrs w/o Failure Dass / fail @ 30%	METRIC ENGLISH MIN: 1.48 mm 58 mil MAX: 1.60 mm 63 mil 7466: 36/35 mil AVE: 1.54 mm 61 mil TOM //ity Density Density Melt Flow Index 190°C /2160 g K307 R Content Range R Average Strength @ Yield Average Strength @ Break ASTM D6693 (Modified) ninute) Average Elongation @ Yield Average Elongation @ Break Astability Average Elongation @ Break Stability Average Elongation @ Break Average Elongation @ Break Average Tear Resistance Average Peak Load Minimum Hrs w/o Failures Minimum Hrs w/o Failures	METRIC ENGLISH Thickness Length MIN: 1.48 mm 58 mil Length MAX: 1.60 mm 63 mil Vidth MAX: 1.54 mm 61 mil OIT(Standard) AS 7466: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS 74766: 36/35	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness 1.5 m 153.926 MAX:	MIN: 1.48 mm 58 mil MAX: 1.60 mm 63 mil MAX: 1.60 mm 61 mil MAX: 1	MIN: 1.48 mm 58 mil Length		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

3/19/2012

Signature.....Quality Control Department

ROLL#	ROLL# 312107-12						B110773	Liner 7	ner Type: MICROSPIKE™ HDPE						
Measurement ASTM D5994 (Modified)			MIN:	METF 1.49	mm		mil	Thickness Length Width		1.5 m 153.926 7.01		000.0	et eet		
Asperity ASTM D7		37/35 mi	MAX: AVE:	1.62 1.58	mm mm		mil mil	OIT(Standard) AS	TM D389	5 minutes	184	TES RESUL			
Specific Gravi				Density				g/cc		1111		.945			
MFI ASTM D1 COND. E GRADE:	1238	K307	,	Melt Flo	w Ind	ex 190	0°C /2160 g	g g/10 m	nin			.29			
Carbon Black ASTM D4218		ent		Range				%				2.29			
Carbon Black ASTM D5596		ersion		Categor	у						10	0 In Cat 1			
Tensile Streng ASTM D6693 ASTM D638 ((Modif			Average	e Stre	ngth @) Yield	27 N/mm	(kN/m)	155 բ	pji	2,406 2,565 2,486 3,179 2,647	psi		
(2 inches / m	inute)		Average	Stre	ngth @) Break	32 N/mm	(kN/m)	181 p	pji	2,913	ps		
Elongation A ASTM D638 ((2 inches / m Lo = 1.3" Yiel	(Modif iinute	ied)		Average	e Elon	gation	@ Yield	%				19.78 14.79 17.29 470.9 517.0			
Lo = 2.0" Brea				Average	e Elon	gation	@ Break	%				494.0			
Dimensional S ASTM D1204		•		Average	e Dim	ension	al change	%				44			
Tear Resistar ASTM D1004		ified)		Average	e Tea	r Resis	stance	264.4	N			60.474 58.430 59.452	lbs		
Puncture Res			/lodified	Averag	e Pea	ak Load	d	433.2	N			97.389	lbs		
Puncture Res ASTM D4833				Averag	e Pea	ak Load	d	606.3	N			136.29	lbs		
ESCR ASTM D1693	3			Minimu	ım Hr	s w/o F	Failures	1500 hrs			С	ERTIFIED			
Notched Cons		Tensile	Load	pass / fa	iil @ 3	30%		300 hrs				PASS			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/19/2012

Signature.

Quality Control Department

312108-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... 1.51 mm 59 MIN: mil **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) MAX: 1.61 mm 63 mil **TEST** Asperity ASTM D7466: 36/35 mil AVE: 1.56 mil mm 61 OIT(Standard) ASTM D3895 minutes 184 RESULTS TOP / BOTTOM Specific Gravity g/cc .945 Density ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.29 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,406 2,565 Tensile Strength Average Strength @ Yield 153 ppi 2,486 psi 27 N/mm (kN/m) **ASTM D6693** 3,179 ASTM D638 (Modified) (2 inches / minute) 2.647 psi 179 ppi 2,913 Average Strength @ Break 31 N/mm (kN/m) 19.78 14.79 Elongation ASTM D6693 % 17.29 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 470.9 517.0 Lo = 1.3" Yield 494.0 Lo = 2.0" Break Average Elongation @ Break % **Dimensional Stability** -.44 Average Dimensional change % ASTM D1204 (Modified) 60.474 Tear Resistance 58,430 ASTM D1004 (Modified) 264.4 N 59.452 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 97.389 433.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance 606.3 N lbs Average Peak Load 136.29 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature...

3/19/2012

Quality Control Department

312109-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet 1.47 mm 58 Length..... MIN: mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.62 mm 64 mil **TEST** Asperity ASTM D7466: 35/36 mil AVE: 1.55 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content 2.29 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,406 2,565 Tensile Strength Average Strength @ Yield **152** ppi psi 27 N/mm (kN/m) 2,486 **ASTM D6693** 3.179 ASTM D638 (Modified) (2 inches / minute) 2,647 178 ppi 2,913 Average Strength @ Break 31 N/mm (kN/m) psi 19.78 Elongation ASTM D6693 14.79 % 17.29 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 470.9 Lo = 1.3" Yield 517.0 Lo = 2.0" Break Average Elongation @ Break % 494.0 Dimensional Stability Average Dimensional change % -.44 ASTM D1204 (Modified) 60.474 Tear Resistance 58.430 ASTM D1004 (Modified) Average Tear Resistance 264.4 N 59.452 lbs Puncture Resistance lbs Average Peak Load 97.389 433.2 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 606.3 N lbs 136.29 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature......Quality Control Department

		LI	_			
ROLL# 312110-12	Lot #:	8110773	Liner Type	: MICROSPIK	(E™ HDF	Έ
	METRIC EN	NGLISH	Thickness	1.5 mm	60 mil	
Measurement ASTM D5994 MIN:	1.50 mm 59		Length	4 52 026 M	505.0 fe	et
Modified) MAX:	1.59 mm 63		Width	7 04 m	23.0 fe	et
, , , , , , , , , , , , , , , , , , , ,					TES	Г
Asperity ASTM D7466: 37/36 mil AVE:	1.54 mm 61	mil	OIT(Standard) ASTM D3	895 minutes 184		
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238	Melt Flow Index	190°C /2160 a	g/10 min		.29	
COND. E GRADE: K307	month for mack		3			
Carbon Black Content ASTM D4218	Range		%		2.29	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tanaila Strangth				-1-1111	2,406 2,565	
Tensile Strength ASTM D6693	Average Strength	n @ Yield	26 N/mm (kN/m)	151 ppi	2,486	ps
ASTM D638 (Modified)					3,179	
(2 inches / minute)					2.647	
	Average Strength	n @ Break	31 N/mm (kN/m)	177 ppi	2,913	ps
EL 4 OTM DOCCO					19.78 14.79	
Elongation ASTM D6693	Average Elongat	ion @ Yield	%		17.29	
ASTM D638 (Modified) (2 inches / minute)	Average Liongal	ion @ ricia	70		470.9	
Lo = 1.3" Yield					517.0	
Lo = 2.0" Break	Average Elongat	ion @ Break	%		494.0	
Dimensional Stability ASTM D1204 (Modified)	Average Dimens	ional change	%		44	
					60.474	
Tear Resistance					58.430	
ASTM D1004 (Modified)	Average Tear Re	esistance	264.4 N		59.452	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peak L	oad	433.2 N		97.389	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak L	oad	606.3 N		136.29	lbs
ESCR ASTM D1693	Minimum Hrs w	o Failures	1500 hrs	C	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%		300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature.....Quality Control Department

312111-12					Lot #: 8110773				Liner Type: MICROSPIKE™ HDPE						
		ľ	MIN:	1.47	mm	58	mil	Length					eet eet		
				1.62	mm	64	mil	Viden				TEC	т		
'466 : 'OM	38/36	mil A	AVE:	1.53	mm	60	mil	OIT(Standard) AS	TM D389	95 minutes	184				
ity				Density				g/cc				.944			
1238	КЗ	07		Melt Flo	w Ind	ex 190	0°C /2160	g g/10 m	nin			.29			
Conte	ent			Range		,,		%				2.30			
Dispe	ersion			Catego	ry						1	0 In Cat 1			
												2,520			
-				Average	e Stre	nath @	2) Yield	28 N/mm	(kN/m)	158 p	iqa		psi		
	ied)						_		, ,						
												3,182			
				Average	e Stre	ngth @) Break	34 N/mm	(kN/m)	192 p	pji	3,186	psi		
Modif	ied)	3		Average	e Elon	gation	n @ Yield	%				18.68 15.22 16.95			
)											473.5			
ak				Average	e Elon	gation	n @ Break	%				521.1			
	-			Average	e Dim	ension	nal change	%				44			
200												58,531			
	ified)			A	. T	Danie		260.4	N.C.				lho		
				Averag	e real	Resis	stance	∠0∪.4	IV			JO.J40	lbs		
		(Mod	dified	Averag	je Pea	k Loa	d	421.7	N			94.814	lbs		
				Averag	je Pea	ık Loa	d	591.0	N			132.85	lbs		
1				Minimu	ım Hr	s w/o l	Failures	1500 hrs			С	ERTIFIED			
stant ⁻	Γensil	e Lo	ad	pass / fa	ail @ 3	30%		300 hrs				PASS			
	de6: OM ity 1238 Conto Dispe gth Modif inute d ak Stabili (Mod ak Stabili	#466: 38/36 TOM ity 1238 K3 Content Dispersion gth Modified) inute) GModified) inute) d ak Stability (Modified) ince (Modified) sistance ethod 2065 sistance (Modified)	#466: 38/36 mil / Mity #1238 #307 #Content #Dispersion gth #Modified) inute) STM D6693 #Modified) inute) d ak Stability #Modified) ince #Modified) sistance #Modified) sistance #Modified) sistance #Modified) sistance #Modified) sistance #Modified) sistance #Modified)	MIN: MAX: 466: 38/36 mil AVE: OM ity 1238 K307 Content Dispersion gth Modified) inute) d ak Stability (Modified) inute (Modified) sistance ethod 2065 (Modified) sistance sistance (Modified) sistance (Modified)	METI MIN: 1.47 MAX: 1.62 466: 38/36 mil AVE: 1.53 TOM Density 1238 Melt Flo K307 Content Range Dispersion Categor (Modified) inute) Average STM D6693 (Modified) inute) d ak Average Stability (Modified) Average (Modified) Average Stability (Modified) Average Average (Modified) Average Stability (Modified) Average (Modified) Average	METRIC MIN: 1.47 mm MAX: 1.62 mm 466: 38/36 mil AVE: 1.53 mm OM Ity Density 1238 Melt Flow Ind K307 Content Range Dispersion Category gth Average Street Modified) inute) Average Street STM D6693 Modified) inute) Average Elon Stability Modified) Average Elon Category Average Elon Average Elon Average Dime (Modified) Average Pear Average Pear Average Pear (Modified) Average Pear Average Pear (Modified) Minimum Hrs Stant Tensile Load pass / fail @ 3	METRIC ENGRAL MIN: 1.47 mm 58 MAX: 1.62 mm 64 1.53 mm 60 Melt Flow Index 196 K307 Content Range Dispersion Category Gth Average Strength (and Strength) Modified) Inute) Average Strength (and Strength) Average Elongation Stability (Modified) Inute) Average Elongation Stability (Modified) Average Dimension Average Peak Load Sistance (Modified) Average Peak Load Minimum Hrs w/o	METRIC ENGLISH MIN: 1.47 mm 58 mil MAX: 1.62 mm 64 mil 466: 38/36 mil AVE: 1.53 mm 60 mil 1238	METRIC ENGLISH Thickness Length MIN: 1.47 mm 58 mil Length MAX: 1.62 mm 64 mil Width MAX: 1.62 mm 60 mil OIT(Standard) AS O	METRIC ENGLISH Thickness MIN: 1.47 mm 58 mil Length Width Widt	METRIC ENGLISH Thickness	MIN:	MIN: 1.47 mm 58 mil		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature.....Quality Control Department

312112-12 8110773 Lot #: Liner Type: MICROSPIKE™ HDPE ROLL# 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... 1.43 mm 56 MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.65 mm 65 mil **TEST** Asperity ASTM D7466: 38/34 mil AVE: 1.55 mm 61 mil RESULTS OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density g/cc .944 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.30 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,520 2,742 Tensile Strength psi 28 N/mm (kN/m) **161** ppi 2,631 Average Strength @ Yield **ASTM D6693** 3,190 ASTM D638 (Modified) 3,182 (2 inches / minute) Average Strength @ Break 34 N/mm (kN/m) 194 ppi 3,186 psi 18,68 15.22 Elongation ASTM D6693 % 16.95 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 473.5 568,6 Lo = 1.3" Yield 521.1 Lo = 2.0" Break Average Elongation @ Break % **Dimensional Stability** -.44 % Average Dimensional change ASTM D1204 (Modified) 58,531 Tear Resistance 58,565 ASTM D1004 (Modified) 58.548 lbs 260.4 N Average Tear Resistance Puncture Resistance lbs Average Peak Load 94.814 421.7 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance 591.0 N lbs Average Peak Load 132.85 ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/19/2012

Signature. Quality Control Department

312113-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet 1.50 mm 59 Length..... MIN: ASTM D5994 7.01 23.0 feet Width..... (Modified) mm 66 MAX: 1.67 mil **TEST** Asperity ASTM D7466: 35/32 mil AVE: 1.60 mm 63 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc .944 Density ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content 2.30 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,520 2,742 Tensile Strength **166** ppi Average Strength @ Yield 29 N/mm (kN/m) 2,631 psi **ASTM D6693** 3,190 ASTM D638 (Modified) 3,182 (2 inches / minute) **201** ppi 3,186 Average Strength @ Break 35 N/mm (kN/m) psi 18.68 15.22 Elongation ASTM D6693 Average Elongation @ Yield % 16.95 ASTM D638 (Modified) (2 inches / minute) 473.5 568.6 Lo = 1.3" Yield Lo = 2.0" Break % 521.1 Average Elongation @ Break **Dimensional Stability** Average Dimensional change -.44 % ASTM D1204 (Modified) 58.531 Tear Resistance 58.565 ASTM D1004 (Modified) Average Tear Resistance 260.4 N 58.548 lbs Puncture Resistance lbs Average Peak Load 94.814 **421.7** N FTMS 101 Method 2065 (Modified) Puncture Resistance 132.85 lbs 591.0 N Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED** ASTM D1693 Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/19/2012

Signature......Quality Control Department

Lot #:	8110773	Liner Type: I	MICROSPIK	(E™ HDPE		
METRIC 1.47 mm	ENGLISH 58 mil	Thickness	1.5 mm 153.926 ^m 7.01 m;	000.0	et	
1.63 mm	64 mil	vvidiri				
1.54 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 184	RESUL		
Density		g/cc		.944		
Melt Flow Ind	ex 190°C /2160 ç	g g/10 min		.29		
Range		%		2.30		
Category			10	0 In Cat 1		
Average Stre	ngth @ Yield	28 N/mm (kN/m)	160 ppi	2,520 2,742 2,631 3,190	psi	
Average Stre	ngth @ Break	34 N/mm (kN/m)	193 ppi	3,182 3,186	psi	
Average Elon	gation @ Yield	%		18.68 15.22 16.95 473.6		
Average Elon	gation @ Break	%		568.6 521.1		
Average Dime	ensional change	%		44		
Average Tear	Resistance	260.4 N		58.531 58.565 58.548	lbs	
Average Pea	ak Load	421.7 N		94.814	lbs	
Average Pea	ık Load	591.0 N		132.85	lbs	
Minimum Hrs	s w/o Failures	1500 hrs	CI	ERTIFIED		
pass / fail @ 3	30%	300 hrs		PASS		
	METRIC 1.47 mm 1.63 mm 1.54 mm Density Melt Flow Ind Range Category Average Stre Average Elon Average Elon Average Dime Average Pear	METRIC ENGLISH 1.47 mm 58 mil 1.63 mm 64 mil 1.54 mm 61 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH 1.47 mm 58 mil Length	METRIC ENGLISH Thickness 1.5 mm 1.47 mm 58 mil Length 153.926 m 1.63 mm 64 mil Width 7.01 m; 1.54 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 Density g/cc Melt Flow Index 190°C /2160 g g/10 min Range % Category 160 ppi Average Strength @ Yield 28 N/mm (NN/m) 193 ppi Average Elongation @ Break 34 N/mm (NN/m) 193 ppi Average Elongation @ Break % Average Dimensional change % Average Peak Load 421.7 N Average Peak Load 591.0 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH 1.47 mm Thickness	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature.

Quality Control Department

312115-12 Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.46 mm 57 MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.62 mm 64 mil **TEST** Asperity ASTM D7466: 36/36 mil AVE: 1.53 mm 60 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density a/cc .947 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.32 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,415 2,440 Tensile Strength 146 ppi Average Strength @ Yield 26 N/mm (kN/m) 2,428 psi **ASTM D6693** 3,067 ASTM D638 (Modified) (2 inches / minute) 2.812 Average Strength @ Break 31 N/mm (kN/m) 177 ppi 2,940 psi 19.68 Elongation ASTM D6693 18.41 % 19.05 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 491.8 462.8 Lo = 1.3" Yield 477.3 Lo = 2.0" Break Average Elongation @ Break % Dimensional Stability -.44 % Average Dimensional change ASTM D1204 (Modified) 56.927 Tear Resistance 55.016 ASTM D1004 (Modified) 55.972 lbs Average Tear Resistance 249.0 N Puncture Resistance ibs Average Peak Load 93.771 417.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance 594.8 N 133.72 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/19/2012

Signature......Quality Control Department

312216-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 Length..... MIN: 1.48 mm 58 mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) mm 65 MAX: 1.66 mil **TEST** Asperity ASTM D7466: 33/33 mil AVE: 1.56 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc Density .947 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content 2.32 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,415 2,440 Tensile Strength 149 ppi Average Strength @ Yield 26 N/mm (kN/m) 2,428 psi **ASTM D6693** 3.067 ASTM D638 (Modified) 2,812 (2 inches / minute) 181 ppi 2,940 Average Strength @ Break 32 N/mm (kN/m) psi 19.68 Elongation ASTM D6693 18.41 19.05 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 491.8 Lo = 1.3" Yield 462.8 Lo = 2.0" Break % 477.3 Average Elongation @ Break **Dimensional Stability** % -.44 Average Dimensional change ASTM D1204 (Modified) 56.927 Tear Resistance 55.016 ASTM D1004 (Modified) Average Tear Resistance 249.0 N 55.972 lbs Puncture Resistance lbs Average Peak Load 93.771 **417.1** N FTMS 101 Method 2065 (Modified) Puncture Resistance 133.72 lbs 594.8 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature.....Quality Control Department

7-12	Lot #: 8110				Liner 7	Гуре:	MICROSPIKE™ HDPE				
MIN:	1.48	mm	58	mil	Length				000.0	eet eet	
mil AVE:	1.55			mil	OIT(Standard) AS	TM D389	5 minutes	184	TES RESUL		
	Density				g/cc				.947		
07	Melt Flo	w Ind	ex 19	0°C /2160 ;	g g/10 m	nin			.29		
	Range				%				2.32		
	Categor	y						10	0 In Cat 1		
	Average	Stre	ngth (@ Yield	26 N/mm	(kN/m)	148 բ	ppi	2,415 2,440 2,428 3,067	psi	
	Average	Stre	ngth (@ Break	31 N/mm	(kN/m)	179 p	pi	2,940	psi	
	Average	Elon	igatio	n @ Yield	%				18.41 19.05 491.8		
	Average	Elon	gatio	n @ Break	%				477.3		
	Average	Dime	ensio	nal change	%				44		
	Average	Tear	r Resi	stance	249.0	N			56,927 55,016 55,972	lbs	
(Modified)	Average	e Pea	ak Loa	ad	417.1	N			93.771	lbs	
	Averag	e Pea	ak Loa	ad	594.8	N			133.72	lbs	
	Minimu	m Hr	s w/o	Failures	1500 hrs			C	ERTIFIED		
e Load	pass / fa	il @ 3	30%		300 hrs				PASS		
	MIN: MAX: mil AVE:	METR MIN: 1.48 MAX: 1.66 MIN: 1.55 Density Melt Flow Average Minimu	METRIC MIN: 1.48 mm MAX: 1.66 mm Density Melt Flow Ind O7 Range Category Average Stre Average Stre Average Elon Average Dim Average Pea (Modified) Average Pea Minimum Hr	METRIC ENC MIN: 1.48 mm 58 MAX: 1.66 mm 65 MAX: 1.55 mm 61 Density Melt Flow Index 19 77 Range Category Average Strength (Average Elongation Average Elongation Average Dimension Average Peak Load Average Peak Load Minimum Hrs w/o	METRIC ENGLISH MIN: 1.48 mm 58 mil MAX: 1.66 mm 65 mil Density Melt Flow Index 190°C /2160 graph Metric Flow Index 19	METRIC ENGLISH Thickness Length MIN: 1.48 mm 58 mil MAX: 1.66 mm 65 mil MAX: 1.55 mm 61 mil OIT(Standard) AS Density g/cc Melt Flow Index 190°C /2160 g g/10 m Thickness Length Width OIT(Standard) AS Density g/cc Melt Flow Index 190°C /2160 g g/10 m Thickness Length Width OIT(Standard) AS g/cc Average Strength @ Yield g/10 m Average Strength @ Peak g/10 m Average Elongation @ Yield g/10 m Average Elongation @ Peak g/10 m Average Elongation @ Break g/10 m Average Dimensional change g/10 m Average Peak Load g/17.1 Average Peak Load g/17.1 Average Peak Load g/1500 hrs	MIN: 1.48 mm 58 mil Length	METRIC ENGLISH Thickness	MIN: 1.48 mm 58 mil Length	MIN: 1.48 mm 58 mil Length	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

3/20/2012

Signature.....Quality Control Department

Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... MIN: 1.49 mm 59 **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.61 mm 63 mil TEST Asperity ASTM D7466: 36/33 mil AVE: 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .947 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.32 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,415 2,440 Tensile Strength Average Strength @ Yield 26 N/mm (kN/m) **148** ppi 2,428 psi **ASTM D6693** 3,067 ASTM D638 (Modified) 2.812 (2 inches / minute) 179 ppi 31 N/mm (kN/m) 2,940 psi Average Strength @ Break 19.68 18.41 Elongation ASTM D6693 Average Elongation @ Yield % 19.05 ASTM D638 (Modified) (2 inches / minute) 491.8 462.8 Lo = 1.3" Yield Lo = 2.0" Break % 477.3 Average Elongation @ Break Dimensional Stability Average Dimensional change % -.44 ASTM D1204 (Modified) 56.927 Tear Resistance 55.016 ASTM D1004 (Modified) Average Tear Resistance 249.0 N 55.972 lbs Puncture Resistance lbs Average Peak Load 93.771 417.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance **594.8** N 133.72 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature......Quality Control Department

312219-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... MIN: 1.45 mm 57 ASTM D5994 7.01 23.0 feet Width..... (Modified) MAX: 1.64 mm 65 mil **TEST** Asperity ASTM D7466: 34/34 mil AVE: 1.55 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc .948 Density ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content 2.36 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,516 2,702 Tensile Strength 159 ppi Average Strength @ Yield 28 N/mm (kN/m) 2,609 psi **ASTM D6693** 3.091 ASTM D638 (Modified) 3,104 (2 inches / minute) 189 ppi 3,098 psi Average Strength @ Break 33 N/mm (kN/m) 17.72 14.89 Elongation ASTM D6693 16.31 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 457.4 567.3 Lo = 1.3" Yield Lo = 2.0" Break % 512.3 Average Elongation @ Break **Dimensional Stability** -.44 Average Dimensional change % ASTM D1204 (Modified) 54.974 Tear Resistance 52,568 ASTM D1004 (Modified) 53.771 Average Tear Resistance 239.2 N Ibs Puncture Resistance lbs Average Peak Load 97.812 435.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance 131.18 lbs 583.5 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs **CERTIFIED** Minimum Hrs w/o Failures **ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Quality Control Department

		Ц				
ROLL# 312220-12	Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDF	E
	METRIC	ENGLISH	Thickness	1.5 mm	60 mil	
Measurement MIN:	1.46 mm		Length	153.926 ^m	505.0 fe	et
10 TV D0004			Width	7.01 m;	23.0 fe	et
					TEST	г
sperity ASTM D7466: 37/32 mil AVE: TOP / BOTTOM	1.56 mm	61 mil	OIT(Standard) ASTM D389	5 minutes 184	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.948	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.36	
Carbon Black Dispersion ASTM D5596	Category			10	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified)	Average Stren	gth @ Yield	28 N/mm (kN/m)	160 ppi	2,516 2,702 2,609 3,091	ps
(2 inches / minute)	Average Stren	gth @ Break	33 N/mm (kN/m)	190 ppi	3,104 3,098	ps
Elongation ASTM D6693 ASTM D638 (Modified)	Average Elong	gation @ Yield	%		17.72 14.89 16.31	
(2 inches / minute) Lo = 1.3" Yield					457.4 567.3	
Lo = 2.0" Break	Average Elong	gation @ Break	%		512.3	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	nsional change	%		44	
Ta an Danieten ee					54.974	
Tear Resistance ASTM D1004 (Modified)		5	000 0 11		52.568	ĮL.
	Average Tear	Resistance	239.2 N		53.771	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peal	k Load	435.1 N		97.812	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	583.5 N		131.18	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/20/2012

Signature.....Quality Control Department

312221-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet 1.49 mm 59 Length..... MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.68 mm 66 mil TEST Asperity ASTM D7466: 37/33 mil AVE: 1.58 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density g/cc .948 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content % 2.36 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,516 2,702 Tensile Strength **162** ppi Average Strength @ Yield 28 N/mm (kN/m) psi 2,609 **ASTM D6693** 3.091 ASTM D638 (Modified) (2 inches / minute) 3,104 Average Strength @ Break 193 ppi 3,098 psi 34 N/mm (kN/m) 17.72 14.89 Elongation ASTM D6693 % 16.31 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 457.4 Lo = 1.3" Yield 567.3 Lo = 2.0" Break Average Elongation @ Break % 512.3 Dimensional Stability -.44 Average Dimensional change % ASTM D1204 (Modified) 54.974 Tear Resistance 52.568 ASTM D1004 (Modified) 53.771 Average Tear Resistance 239.2 N lbs Puncture Resistance lbs Average Peak Load 97.812 435.1 Ν FTMS 101 Method 2065 (Modified) Puncture Resistance 583.5 N Average Peak Load 131.18 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.

Quality Control Department

3/20/2012

312222-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet 1.51 mm 59 Length..... MIN: **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mil MAX: 1.70 mm 67 **TEST** Asperity ASTM D7466: 37/32 mil AVE: mm 63 mil 1.61 RESULTS OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc .948 Density ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.36 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,516 2,702 Tensile Strength **165** ppi psi Average Strength @ Yield 29 N/mm (kN/m) 2,609 **ASTM D6693** 3,091 ASTM D638 (Modified) 3,104 (2 inches / minute) 34 N/mm (kN/m) 196 ppi 3,098 psi Average Strength @ Break 17.72 14.89 Elongation ASTM D6693 16.31 % Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 457.4 567.3 Lo = 1.3" Yield 512.3 Lo = 2.0" Break % Average Elongation @ Break **Dimensional Stability** -.44 Average Dimensional change % ASTM D1204 (Modified) 54.974 Tear Resistance 52.568 ASTM D1004 (Modified) 53.771 Average Tear Resistance 239.2 N lbs Puncture Resistance 97.812 lbs Average Peak Load 435.1 N FTMS 101 Method 2065 (Modified) Puncture Resistance 131.18 lbs Average Peak Load 583.5 N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature. Quality Control Department

Liner Type: MICROSPIKE™ HDPE Lot #: 8110773 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement 153.926 m 505.0 feet Length..... MIN: 1.48 mm 58 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.62 mm 64 mil TEST Asperity ASTM D7466: 36/32 mil AVE: 1.56 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density g/cc .944 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.19 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category ASTM D5596 2,493 2,634 Tensile Strength psi Average Strength @ Yield 28 N/mm (kN/m) **157** ppi 2,564 **ASTM D6693** 3,232 ASTM D638 (Modified) 2,803 (2 inches / minute) Average Strength @ Break 32 N/mm (kN/m) 185 ppi 3,018 psi 18.82 16.11 Elongation ASTM D6693 % 17.47 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 491.5 495.7 Lo = 1.3" Yield Lo = 2.0" Break 493.6 Average Elongation @ Break % Dimensional Stability -.44 % Average Dimensional change ASTM D1204 (Modified) 56.284 Tear Resistance 52,327 ASTM D1004 (Modified) 54.305 lbs 241.6 N Average Tear Resistance Puncture Resistance lbs Average Peak Load 94.191 419.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 614.5 N 138.14 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load 300 hrs **PASS** pass / fail @ 30% **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature.

Quality Control Department

312224-12 Liner Type: MICROSPIKE™ HDPE 8110773 Lot #: 60 mil 1.5 mm **METRIC ENGLISH** Thickness..... Measurement 153.926 m feet 505.0 Length..... MIN: 1.52 mm 60 mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) mm 66 MAX: 1.68 mil TEST Asperity ASTM D7466: 37/32 mil AVE: 1.58 mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc .944 Density ASTM D792 MFI ASTM D1238 g/10 min .29 Melt Flow Index 190°C /2160 g COND. E GRADE: K307 Carbon Black Content 2.19 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,493 2.634 Tensile Strength 159 ppi Average Strength @ Yield 28 N/mm (kN/m) 2,564 psi **ASTM D6693** 3,232 ASTM D638 (Modified) 2,803 (2 inches / minute) 188 ppi 3,018 Average Strength @ Break 33 N/mm (kN/m) psi 18.82 16.11 Elongation ASTM D6693 17.47 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 491.5 495.7 Lo = 1.3" Yield Lo = 2.0" Break % 493.6 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 56.284 Tear Resistance 52,327 ASTM D1004 (Modified) Average Tear Resistance 241.6 N 54.305 lbs Puncture Resistance lbs 94.191 Average Peak Load 419.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 138.14 lbs 614.5 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature......Quality Control Department

	Щ				
Lot #:	8110773	Liner Type:	MICROSPIK	E™ HDP	E
METRIC	ENCLICH	Thickness	1.5 mm	60 mil	
			153.926 m	505.0 fe	et
			7.01 m;	23.0 fe	et
1.70 mm	6 7 mil	***************************************			
1.57 mm (32 mil				
		DIT(Standard) ASTM D389	5 minutes 184	KESUL	13
Density		g/cc		.944	
Melt Flow Index	∢190°C /2160 g	g/10 min		.29	
Range		%		2.19	
- I aligo					
Category			10) In Cat 1	
Average Streng	ath @ Yield	28 N/mm (kN/m)	158 ppi	2,493 2,634 2,564	ps
				3.232	
				2,803	
Average Streng	gth @ Break	33 N/mm (kN/m)	187 ppi		ps
Average Elong	ation @ Yield	%		18.82 16.11 17.47	
				491.5 495.7	
Average Elong	ation @ Break	%		493.6	
Average Dimer	nsional change	%		44	
				56.284	
				52.327	
Average Tear F	Resistance	241.6 N		54.305	lbs
Average Peak	Load	419.0 N		94.191	lbs
Average Peak	Load	614.5 N		138.14	lbs
Minimum Hrs	w/o Failures	1500 hrs	Cl	ERTIFIED	
pass / fail @ 30	%	300 hrs		PASS	
	METRIC II 1.48 mm II 1.70 mm II 1.57 mm II Density Melt Flow Index Range Category Average Streng Average Elong: Average Elong: Average Dimer Average Peak Average Peak Minimum Hrs	METRIC ENGLISH 1.48 mm 58 mil 1.70 mm 67 mil 1.57 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load	METRIC ENGLISH 1.48 mm 58 mil Length	Lot #: 8110773 Liner Type: MICROSPIK	Lot #: 8110773 Liner Type: MICROSPIKE™ HDP METRIC ENGLISH Thickness

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/20/2012

Signature......Quality Control Department

ROLL#	31	222	26-	12	Lo	ot #:		81	10773	Liner	Туре:	MICRO	SPIK	E™ HC	PE	Ξ
Measurement ASTM D5994 (Modified)				MIN: MAX:	MET 1.49 1.66	mm	59		H mil mil	Thicknes Length Width		1.5 m 153.926 7.01		60 mil 505.0 23.0	feet	
Asperity ASTM D		36/33			1.57		62	2	mil	OIT(Standard) AS	STM D389	5 minutes	184	TE: RESU		S
Specific Grav ASTM D792	/ity				Density					g/cc				.94	4	
MFI ASTM D COND. E GRADE:	1238	К3	07		Melt Flo	ow Inc	lex	190°C	/2160 g	g g/10 n	nin			.29	9	
Carbon Black ASTM D4218		ent			Range			111		%				2.19)	
Carbon Black ASTM D5596		ersion			Catego	гу							10	In Cat	ı	
Tensile Stren ASTM D6693 ASTM D638 (2 inches / m	3 (Modit	,			Averag	e Stre	ngt	h @ Yi	ield	28 N/mm	(kN/m)	158 բ	ppi	2,493 2,634 2,56 4 3,237 2,803	4	psi
		,			Averag	e Stre	ngt	h @ Br	reak	33 N/mm	(kN/m)	187 p	pi	3,018	3	psi
Elongation A ASTM D638 (2 inches / m Lo = 1.3" Yie	(Modit ninute	fied)	3		Averag	e Elor	ıgat	ion @	Yield	%				18.87 16.17 17.4 7 491.5	7	
Lo = 2.0" Bre					Average	e Elor	gat	tion @	Break	%				493.6		
Dimensional ASTM D1204		-			Average	e Dim	ens	ional c	hange	%				44	4	
Tear Resista ASTM D1004		lified)			Average	e Tea	· Re	esistan	ce	241.6	N			56.284 52.327 54.30 5	?	lbs
Puncture Res			(Mod	dified)	Averaç	je Pea	ak L	.oad		419.0	N			94.19	1	lbs
Puncture Res					Averag	je Pea	ak L	.oad		614.5	N			138.14	4	lbs
ESCR ASTM D1693	3	100			Minimu	ım Hr	s W	/o Failu	ıres	1500 hrs			CE	ERTIFIED)	
Notched Con ASTM D5397		Tensile	e Loa	ad	pass / fa	ail @ 3	30%	b		300 hrs				PASS	8	
			-				_									

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

3/20/2012

Signature.....Quality Control Department

312227-12 Liner Type: MICROSPIKE™ HDPE Lot #: 8110773 ROLL# 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m feet 505.0 1.49 59 Length..... MIN: mm **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.69 mm 67 mil TEST 1.55 mm 61 Asperity ASTM D7466: 36/33 mil AVE: mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content % 2.26 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,492 2,608 Tensile Strength 156 ppi Average Strength @ Yield 27 N/mm (kN/m) 2,550 psi **ASTM D6693** 3,123 ASTM D638 (Modified) (2 inches / minute) 2,976 Average Strength @ Break 33 N/mm (kN/m) 186 ppi 3,050 psi 18,80 14.51 Elongation ASTM D6693 % 16.66 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 443.8 Lo = 1.3" Yield 569.8 Lo = 2.0" Break Average Elongation @ Break % 506.8 **Dimensional Stability** -.44 Average Dimensional change % ASTM D1204 (Modified) 57.399 Tear Resistance 55,160 ASTM D1004 (Modified) Average Tear Resistance 250.3 N 56.280 lbs Puncture Resistance Average Peak Load lbs 91.063 405.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 605.1 N 136.04 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs PASS **ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

a...

3/20/2012

60 mil 505.0 fe 23.0 fe	et
23.0 fe	
	et
TES1 RESUL	
.945	
.29	
2.26	
In Cat 1	
2,492 2,608 2,550	psi
3,123 2,976	nai
18.80 14.51 16.66 443.8 569.8	psi
506.8	
44	
57.399 55.160 56.280	lbs
91.063	lbs
136.04	lbs
RTIFIED	
PASS	
	RESUL .945 .29 2.26 In Cat 1 2,492 2,608 2,550 3,123 2,976 3,050 18.80 14.51 16.66 443.8 569.8 506.844 57,399 55.160 56.280 91.063 136.04 RTIFIED

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

3/20/2012

Signature.....

Quality Control Department

60HDmic FRM REV 03

312229-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m feet 505.0 Length..... MIN: 1.49 mm 59 mil **ASTM D5994** 7.01 Width..... 23.0 feet (Modified) MAX: 1.67 mm 66 mil **TEST** Asperity ASTM D7466: 36/34 mil AVE: 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 184 **RESULTS** TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content % 2.26 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,492 2,608 Tensile Strength Average Strength @ Yield 158 ppi 28 N/mm (kN/m) 2,550 psi **ASTM D6693** ASTM D638 (Modified) 3,123 (2 inches / minute) 2,976 Average Strength @ Break 33 N/mm (kN/m) 188 ppi 3,050 psi 18.80 Elongation ASTM D6693 14.51 Average Elongation @ Yield % 16.66 ASTM D638 (Modified) (2 inches / minute) 443.8 Lo = 1.3" Yield 569.8 Lo = 2.0" Break Average Elongation @ Break % 506.8 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.399 Tear Resistance 55.160 ASTM D1004 (Modified) Average Tear Resistance 250.3 N 56.280 lbs Puncture Resistance Average Peak Load lbs 91.063 405.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance 605.1 N Average Peak Load 136.04 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/21/2012

Signature......Quality Control Department

60HDmic.FRM REV 03

312330-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: 1.5 mm 60 mil **METRIC ENGLISH** Thickness..... Measurement feet 153.926 m 505.0 Length..... MIN: 1.42 mm 56 mil ASTM D5994 7.01 23.0 feet Width..... (Modified) mm 63 MAX: 1.60 mil **TEST** Asperity ASTM D7466: 36/33 mil AVE: 1.54 mm 61 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP / BOTTOM Specific Gravity g/cc .945 Density ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content 2.26 % Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,492 2,608 Tensile Strength **155** ppi Average Strength @ Yield 27 N/mm (kN/m) 2,550 psi **ASTM D6693** 3,123 ASTM D638 (Modified) (2 inches / minute) 2,976 185 ppi 3,050 Average Strength @ Break 32 N/mm (kN/m) psi 18.80 14.51 Elongation ASTM D6693 16.66 Average Elongation @ Yield % ASTM D638 (Modified) (2 inches / minute) 443.8 569.8 Lo = 1.3" Yield Lo = 2.0" Break % 506.8 Average Elongation @ Break **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.399 Tear Resistance 55.160 ASTM D1004 (Modified) Average Tear Resistance 250.3 N 56.280 lbs Puncture Resistance lbs Average Peak Load 91.063 **405.0** N FTMS 101 Method 2065 (Modified) Puncture Resistance 136.04 lbs 605.1 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

3/21/2012

Signature......Quality Control Department

ROLL# 312331-12	Lot #:	8110773	Liner Type: MICROSPIKE™ HDPE						
Measurement ASTM D5994 MIN: (Modified) MAX	METRIC 1.47 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;		et eet			
Asperity ASTM D7466: 36/34 mil AVE:		60 mil	OIT(Standard) ASTM D3895	5 minutes 184	TES ¹ RESUL				
Specific Gravity ASTM D792	Density	V-11-2-11	g/cc	7 militares 104	.945				
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 ç	g g/10 min		.29				
Carbon Black Content ASTM D4218	Range		%		2.38				
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1				
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	ngth @ Yield	27 N/mm (kN/m)	156 ppi	2,493 2,675 2,584 3,274 2,785	psi			
(I monos / minuto)	Average Stren	ngth @ Break	32 N/mm (kN/m)	182 ppi	3,030	ps			
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elong	gation @ Yield	%		18.49 14.13 16.31 459.8 502.3				
Lo = 2.0" Break	Average Elong	gation @ Break	%		481.1				
Dimensional Stability ASTM D1204 (Modified)	Average Dime	nsional change	%		44				
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	258.9 N		57.648 58.768 58.208	lbs			
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Peal	k Load	411.0 N		92.39	lbs			
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	597.7 N		134.38	lbs			
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED				
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	0%	300 hrs		PASS				

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:...

3/21/2012

Signature.....Quality Control Department

Almi ness.					11							
ROLL# 31:	2332-1	2 Lo	ot #:		3110773	Liner	Type: I	MICROS	SPIK	E™ H)PE	:
		MET	RIC	ENGI	ISH	Thicknes	S 10	1.5 m	m	60 mil	1	
Measurement ASTM D5994	MI		mm		mil	Length		153.926	m	505.0	feet	
Modified)	MA		mm		mil	Width		7.01	m;	23.0	feet	
•										TE	ST	
ASPERITY ASTM D7466: TOP / BOTTOM	35/34 mil AV	E: 1.57	mm	62	mil	OIT(Standard) AS	TM D389	5 minutes	184	RESI		3
Specific Gravity ASTM D792		Density				g/cc				.94	5	
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flo	w Ind	ex 190	°C /2160 g	g/10 n	nin			.2	9	
Carbon Black Cont ASTM D4218	ent	Range				%				2.3	8	
Carbon Black Dispe ASTM D5596	ersion	Catego	ry						10	0 In Cat	1	
Tensile Strength ASTM D6693 ASTM D638 (Modif (2 inches / minute	,	Averag	e Stre	ngth @	Yield	28 N/mm	(kN/m)	160 p	pj	2,49 2,67 2,58 3,27 2,78	5 4 p 4	os
(2 mones / minute		Averag	e Stre	ngth @	Break	33 N/mm	(kN/m)	187 p	pi	3,03	0 p	os
Elongation ASTM I ASTM D638 (Modif (2 inches / minute	ied)	Averag	e Elon	gation	@ Yield	%				18.4 14.1 16.3 459.	3 1	
Lo = 1.3" Yield Lo = 2.0" Break		Averag	e Elon	gation	@ Break	%				502. 481.	3	
Dimensional Stabili ASTM D1204 (Mod	•	Averag	e Dime	ensiona	al change	%				4	4	
Tear Resistance ASTM D1004 (Mod	ified)	Averag	e Tear	Resist	tance	258.9	N			57.64 58.76 58.20	8	bs
Puncture Resistance		Averaç ed)	je Pea	ık Load	I	411.0	N			92.3	9 II	bs
Puncture Resistand ASTM D4833 (Mod		Averag	je Pea	ık Load		597.7	N			134.3	8 II	bs
ESCR ASTM D1693		Minim	ım Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIEI	D	
Notched Constant 1 ASTM D5397	ensile Load	pass / fa	ail @ 3	80%		300 hrs				PAS	S	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

3/21/2012

Signature......Quality Control Department

		III.				
ROLL# 312333-12	Lot #:	8110773	Liner Type:	MICROSPIK	(E™ HDF	PE
Measurement ASTM D5994 MIN:	METRIC 1.50 mm	ENGLISH 59 mil	Thickness	1.5 mm 153.926 ^m	60 mil 505.0	eet
(Modified) MAX:			Width	7.01 m;	23.0 fo	eet
Asperity ASTM D7466: 34/33 mil AVE:		61 mil	OIT(Standard) ASTM D389	5 minutes 184	TES RESUL	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.29	
Carbon Black Content ASTM D4218	Range		%		2.38	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strer	ngth @ Yield	28 N/mm (kN/m)	158 ppi	2,493 2,675 2,584 3,274 2,785	psi
(2	Average Strer	ngth @ Break	32 N/mm (kN/m)	185 ppi	3,030	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Elon	gation @ Yield	%		18.49 14.13 16.31 459.8	
Lo = 1.3" Yield			0.4		502.3	
Lo = 2.0" Break	Average Elong	gation @ Break	%		481.1	
Dimensional Stability ASTM D1204 (Modified)	Average Dime	ensional change	%		44	
Tear Resistance					57.648	
ASTM D1004 (Modified)	Average Tear	Resistance	258.9 N		58.768 58.208	lbs
Puncture Resistance FTMS 101 Method 2065 (Modified	Average Pea		411.0 N		92.39	
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	597.7 N		134.38	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 3	0%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/21/2012

Signature.... **Quality Control Department**

60HDmic FRM REV 03

312334-12 Lot #: 8110773 Liner Type: MICROSPIKE™ HDPE 1.5 mm 60 mil **METRIC** Thickness..... **ENGLISH** Measurement 153.926 m feet 505.0 Length..... MIN: 1.44 mm 57 ASTM D5994 7.01 23.0 feet Width..... (Modified) MAX: 1.64 mm 65 mil TEST Asperity ASTM D7466: 36/32 mil AVE: 1.55 mm 61 mil OIT(Standard) ASTM D3895 minutes 184 RESULTS TOP / BOTTOM Specific Gravity Density g/cc .945 ASTM D792 MFI ASTM D1238 Melt Flow Index 190°C /2160 g g/10 min .29 COND. E GRADE: K307 Carbon Black Content % 2.38 Range **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,493 2,675 Tensile Strength Average Strength @ Yield 28 N/mm (kN/m) 158 ppi 2,584 psi **ASTM D6693** ASTM D638 (Modified) 3,274 (2 inches / minute) 2.785 Average Strength @ Break 185 ppi 3,030 32 N/mm (kN/m) psi 18.49 Elongation ASTM D6693 14.13 % Average Elongation @ Yield 16.31 ASTM D638 (Modified) (2 inches / minute) 459.8 Lo = 1.3" Yield 502.3 Lo = 2.0" Break Average Elongation @ Break % 481.1 **Dimensional Stability** Average Dimensional change % -.44 ASTM D1204 (Modified) 57.648 Tear Resistance 58,768 ASTM D1004 (Modified) Average Tear Resistance 258.9 N 58.208 lbs Puncture Resistance Average Peak Load lbs 92.39 411.0 N FTMS 101 Method 2065 (Modified) Puncture Resistance Average Peak Load 597.7 N 134.38 lbs ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

3/21/2012

Signature.

Quality Control Department

312335-12 8110773 Liner Type: MICROSPIKE™ HDPE Lot #: ROLL# 1.5 mm 60 mil Thickness..... **METRIC ENGLISH** Measurement 153.926 m feet 505.0 Length..... 1.51 59 MIN: mm mil **ASTM D5994** 7.01 23.0 feet Width..... (Modified) MAX: 1.62 mm 64 mil **TEST** 1.58 Asperity ASTM D7466: 36/32 mil AVE: mm 62 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 184 TOP/BOTTOM Specific Gravity Density g/cc .947 ASTM D792 MFI ASTM D1238 .29 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.32 Range % **ASTM D4218** Carbon Black Dispersion 10 In Cat 1 Category **ASTM D5596** 2,553 2,686 Tensile Strength Average Strength @ Yield 29 N/mm (kN/m) **163** ppi 2,620 psi **ASTM D6693** 3,180 ASTM D638 (Modified) (2 inches / minute) 2.994 3,087 Average Strength @ Break 34 N/mm (kN/m) **192** ppi psi 18.92 15.08 Elongation ASTM D6693 Average Elongation @ Yield % 17.00 ASTM D638 (Modified) (2 inches / minute) 466.9 Lo = 1.3" Yield 542.9 Lo = 2.0" Break 504.9 Average Elongation @ Break % **Dimensional Stability** % -.44 Average Dimensional change ASTM D1204 (Modified) 57.194 Tear Resistance 54.125 ASTM D1004 (Modified) 55.660 247.6 N lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 97.029 431.6 N FTMS 101 Method 2065 (Modified) Puncture Resistance 586.1 N lbs Average Peak Load 131.76 ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

Signature.

3/21/2012

Quality Control Department

60HDmic FRM REV 03

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88305989

PO #. 5844

Weight: 185800 LB Ship Date: 07/30/2011

Package: BULK Mode: Hopper Car

PSPX002613 Car #: Seal No: 270868

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 8210664

Property	Test Method	Value	Unit
Melt index	ASTM D1238	0.28	g/10mi
HLMI Flow Rate	ASTM D1238	22	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	26	pel/g
Production Date		05/29/2011	, ,

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

ROLL# 44	3682	-11	Lo	t #:	8	B210664	Liner ⁻	ner Type: MICROSP			'IKE™ HDPE				
Measurement ASTM D5994 (Modified)		MIN: MAX:	METF 1.51 1.67	RIC mm mm		LISH mil mil	Thickness Length Width		1.5 m 153.926 7.01			eet eet			
Asperity ASTM D7466:	26/33 mil	AVE:	1.57	mm	62	mil	OIT(Standard) AS	TM D389	95 minutes	190	TES RESUI				
Specific Gravity ASTM D792			Density				g/cc				.945				
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flo	w Ind	ex 190	°C /2160 g	g/10 m	nin			.28				
Carbon Black Cont ASTM D4218	tent		Range				%				2.48				
Carbon Black Disp ASTM D5596	ersion		Categor	у				_		1	0 in Cat 1				
Tensile Strength ASTM D6693 ASTM D638 (Modif (2 inches / minute			Average	: Strei	ngth @) Yield	29 N/mm	(kN/m)	166 լ	opi	2,593 2,784 2,689 3,336 3,142	psi			
	,		Average	Stre	ngth @) Break	35 N/mm ((kN/m)	200	opi	3,239	psi			
Elongation ASTM ASTM D638 (Modit (2 inches / minute Lo = 1.3" Yield Lo = 2.0" Break	fied)		Average Average			@ Yield @ Break	%				19.55 16.15 17.35 489.1 569.7 529.4				
Dimensional Stabil ASTM D1204 (Mod	•	1111				al change	%				-0.39				
Tear Resistance ASTM D1004 (Mod	dified)		Average	Tear	Resist	tance	268.8	N			60.625 60.257 60.441	lbs			
Puncture Resistant FTMS 101 Method		odified)	Average	e Pea	k Load	1	445.8	N			100.22	lbs			
Puncture Resistand ASTM D4833 (Mod			Average	e Pea	k Load	ı	669.3	N			150.48	lbs			
ESCR ASTM D1693			Minimu	m Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIED				
Notched Constant ASTM D5397	Tensile Lo	oad	pass / fa	il @ 3	0%		300 hrs				PASS				

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

Quality Control Department

60HDmic.FRM REV 03

12/23/05

ROLL#	443	3683	3-11	Lo	t #:		8210664	Liner	Туре:	MICRO	SPIK	E™ HD	PE
Measurement ASTM D5994			MIN:	METF 1.48	mm		mil	Thicknes Length Width		1.5 m 153.926 7.01			eet feet
(Modified) Asperity ASTM D7		25/34 m	MAX: ii AVE:	1.67 1.57	mm mm		mil mil	OIT(Standard) AS		95 minutes	190	TES RESU	
Specific Gravi ASTM D792				Density				g/cc		10000	100	.945	
MFI ASTM D1 COND. E GRADE:	1238	K307	•	Melt Flo	w Ind	ex 190)°C /2160 g	g/10 n	nin			.28	
Carbon Black ASTM D4218		ent		Range				%				2.48	
Carbon Black ASTM D5596	•	ersion		Categor	у						10	0 in Cat 1	
Tensile Streng ASTM D6693 ASTM D638 ((2 inches / mi	- Modifi	•		Average	: Strei	ngth @) Yield	29 N/mm	(kN/m)	166 p	opi	2,593 2,784 2,689 3,336 3,142	psi
				Average	Stre	ngth @) Break	35 N/mm	(kN/m)	200 p	pji	3,239	psi
Elongation ASASTM D638 (2 inches / mi Lo = 1.3" Yield	Modifi inute) d	ied)					@ Yield	%				19.55 15.15 17.35 489.1 569.7	
Lo = 2.0" Brea		h.		Average	Elon	gation	@ Break	%				529.4	_
Dimensional S ASTM D1204		•		Average	Dime	ension	al change	%				-0.39	
Tear Resistan ASTM D1004		ified)		Average	: Tear	Resis	tance	268.8	N			60.625 60.257 60.441	
Puncture Res			lodified)	Averag	e Pea	k Load	d	445.8	N		3.00	100.22	lbs
Puncture Resi ASTM D4833				Averag	e Pea	k Load	d	669.3	N	10.67		150.48	lbs
ESCR ASTM D1693				Minimu	m Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIED	
Notched Cons ASTM D5397		ensile l	_oad	pass / fa	il @ 3	0%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

10-30-11

Signature.....Quality Control Department

60HDmic FRM REV 03

Lot #:	82	10664	Liner 1	Liner Type: MICROSPIKE™ HE				
	n 57	mil	Length					eet eet
		mil	OIT(Standard) AS	TM D389	5 minutes	190		
Density			g/cc				.945	+1
Melt Flow In	dex 190°C	/2160 g	g/10 m	in			.28	
Range			%				2.47	
Category						10	0 in Cat 1	
Average Str	ength @ Yi	ield	29 N/mm ((kN/m)	166 p	pi	2,593 2,784 2,689 3,336 3,449	psi
Average Str	ength @ B	reak	35 N/mm (kN/m)	200 p	pi	3,239	psi
			%				19.55 15.15 17.35 489.1 569.7 529.4	
Average Din	nensional c	hange	%				-0.39	
Average Tea	ar Resistan	ce	268.8	N			60.625 60.257 60.441	lbs
Average Pe	eak Load		445.8	N			100.22	lbs
Average Pe	eak Load		669.3	N			150.48	lbs
Minimum H	rs w/o Failı	ures	1500 hrs			CE	ERTIFIED	
pass / fail @	30%		300 hrs				PASS	
	METRIC 1.46 mr 1.70 mr 1.57 mr Density Melt Flow In Range Category Average Str Average Eld Average Eld Average Din Average Tea Average Per	METRIC ENGLIS 1.46 mm 57 1.70 mm 67 1.57 mm 62 Density Melt Flow Index 190°C Range Category Average Strength @ Y Average Strength @ B Average Elongation @ Average Elongation @ Average Dimensional c Average Peak Load Average Peak Load	METRIC ENGLISH 1.46 mm 57 mil 1.70 mm 67 mil 1.57 mm 62 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH 1.46 mm 57 mil Length 1.70 mm 67 mil 1.57 mm 62 mil OIT(Standard) AS Density g/cc Melt Flow Index 190°C /2160 g g/10 m Range % Category Average Strength @ Yield 29 N/mm (Average Elongation @ Break 35 N/mm (Average Elongation @ Break % Average Dimensional change % Average Peak Load 445.8 Average Peak Load 669.3 Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH 1.46 mm 57 mil 1.70 mm 67 mil 1.57 mm 62 mil OIT(Standard) ASTM D389 Density g/cc Melt Flow Index 190°C /2160 g g/10 min Range % Category Average Strength @ Yield 29 N/mm (kN/m) Average Elongation @ Yield % Average Elongation @ Break % Average Dimensional change % Average Tear Resistance 268.8 N Average Peak Load 445.8 N Average Peak Load 669.3 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH 1.46 mm 57 mil 1.70 mm 67 mil 1.57 mm 62 mil 1.57 mm 62 mil 1.57 mm 62 mil 1.58 mil 1.59 mm 62 mil 1.50 mm 62 mil 1.50 m	METRIC ENGLISH Thickness 1.5 mm 1.46 mm 57 mil Length 153.926 m 1.70 mm 67 mil Width 7.01 m 1.57 mm 62 mil OIT(Standard) ASTM D3895 minutes 190 Density g/cc Melt Flow Index 190°C /2160 g g/10 min Range % Category 166 ppi Average Strength @ Yield 29 N/mm (NMm) 200 ppi Average Elongation @ Break 35 N/mm (NMm) 200 ppi Average Elongation @ Break % Average Dimensional change % Average Peak Load 445.8 N Average Peak Load 669.3 N Minimum Hrs w/o Failures 1500 hrs	METRIC ENGLISH 1.46 mm Thickness

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

10-30-11

Signature....

Quality Control Department

ROLL# 4437	'85-11	Lot #:	8	210664	Liner Type: MICROSPIKE™ HDP					
leasurement STM D5994 MIN:			ENGL n 58	mil	Thickness Length Width	153.926 ^m	000.0	et eet		
(Modified)	MAX:		n 67	mil 	***************************************		TES	т		
Asperity ASTM D7466: 25/3 TOP / BOTTOM	ss _{mil} AVE:	1.58 mn	n 62	mil	OIT(Standard) ASTM	D3895 minutes 19				
Specific Gravity ASTM D792		Density			g/cc		.945			
MFI ASTM D1238 COND. E GRADE:	K307	Melt Flow In	dex 190°	C /2160 g	g/10 min		.28			
Carbon Black Content ASTM D4218		Range			%		2.47			
Carbon Black Dispersi ASTM D5596	on	Category					10 in Cat 1			
Tanaila Chua anth							2,593 2,784			
Tensile Strength ASTM D6693		Average Str	ength @	Yield	29 N/mm (kN/	m) 167 ppi	2,689	psi		
ASTM D638 (Modified)						3,336			
(2 inches / minute)		Average Str	enath @	Break	35 N/mm (kN/	m) 201 ppi	3,142 3,239	psi		
							19.55 15.15			
Elongation ASTM D66 ASTM D638 (Modified		Average Elo	ngation (⊚ Yield	%		17.35			
(2 inches / minute)	,	7.11.41.41.51.41.41		9			489.1			
Lo = 1.3" Yield							569.7			
Lo = 2.0" Break		Average Elo	ngation (@ Break	%		529.4			
Dimensional Stability ASTM D1204 (Modifie	d)	Average Din	nensiona	l change	%		-0.39			
Tear Resistance							60.625 60.257			
ASTM D1004 (Modifie	d)	Average Tea	ar Resista	ance	268.8 N	i	60.441	lbs		
Puncture Resistance FTMS 101 Method 206	65 (Modified	Average Pe	ak Load		445.8 N		100.22	lbs		
Puncture Resistance ASTM D4833 (Modifie	d)	Average Pe	ak Load		669.3 N		150.48	lbs		
ESCR ASTM D1693	10	Minimum H	rs w/o Fa	ailures	1500 hrs		CERTIFIED			
Notched Constant Ter ASTM D5397	nsile Load	pass / fail @	30%		300 hrs		PASS			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

Signature.....

Quality Control Department

ROLL# 4437	Lo	t #:		8210664	Liner	E™ HDI	™ HDPE					
Measurement ASTM D5994		MIN:	METF 1.43	RIC mm		SLISH mil	Thickness Length Width		1.5 m 153.926 7.01		000.0	eet eet
Modified)		MAX:	1.65	mm	65	mil	vvidin					
Asperity ASTM D7466: 26/3 TOP / BOTTOM	34 mil	AVE:	1.56	mm	61	mil	OIT(Standard) AS	STM D389	95 minutes	190	TES RESUI	
Specific Gravity ASTM D792			Density				g/cc				.948	
MFI ASTM D1238 COND. E GRADE:	K307		Melt Flo	w Ind	ex 190	0°C /2160 g	g/10 n	nin			.28	
Carbon Black Content ASTM D4218			Range				%				2.48	
Carbon Black Dispersion ASTM D5596	on		Categor	у						1	0 in Cat 1	
											2,682 2,802	
Tensile Strength ASTM D6693			Average	Stre	ngth @	② Yield	29 N/mm	(kN/m)	168	ppi	2,742	psi
ASTM D6693 ASTM D638 (Modified) (2 inches / minute)										3,848 3,295		
			Average	Stre	ngth @	@ Break	38 N/mm	(kN/m)	219	ppi	3,572	psi
Elongation ASTM D66	593										18.63 14.99	
ASTM D638 (Modified) (2 inches / minute)			Average	e Elon	gation	n @ Yield	%				16.81	
Lo = 1.3" Yield											591.9	
Lo = 2.0" Break			Average	e Elon	gation	n @ Break	%				542.1	
Dimensional Stability ASTM D1204 (Modified	d)		Average	Dime	ension	nal change	%				-0.39	
Tear Resistance											61.973 60.739	
ASTM D1004 (Modified	d)		Average	e Tear	Resis	stance	272.9	N			61.356	lbs
Puncture Resistance FTMS 101 Method 206	55 (Mc	odified	Averag	e Pea	ak Loa	d	471.9	N			106.08	lbs
Puncture Resistance ASTM D4833 (Modified	d)		Averag	e Pea	ak Loa	d	672.4	N			151.16	lbs
ESCR ASTM D1693			Minimu	ım Hr	s w/o l	Failures	1500 hrs			С	ERTIFIED	
Notched Constant Ten ASTM D5397	sile L	oad	pass / fa	il @ 3	30%		300 hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

10-30-11

Quality Control Department

ROLL# 443787-1	1 Lot #:	8210664	Liner Type: MICROSPIKE™ HDP					
Measurement ASTM D5994 MII	N: 1.46 mm		Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^{m;}	60 mil 505.0 fe 23.0 fe	et		
(Modified) MA Asperity ASTM D7466: 25/36 mil AV		61 mil	OlT(Standard) ASTM D389	5 minutes 100	TES1 RESUL			
TOP / BOTTOM Specific Gravity ASTM D792	Density		g/cc	5 minutes 190	.948			
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Inde	ex 190°C /2160 g	g/10 min		.28			
Carbon Black Content ASTM D4218	Range		%		2.48			
Carbon Black Dispersion ASTM D5596	Category			10	0 in Cat 1			
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Stren	gth @ Yield	29 N/mm (kN/m)	167 ppi	2,682 2,802 2,742 3,848 3,295	psi		
(2 mones / minute)	Average Stren	gth @ Break	38 N/mm (kN/m)	218 ppi	3,572	psi		
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elong	gation @ Yield gation @ Break	%		18.63 14.99 16.81 492.2 591.9 542.1			
Dimensional Stability ASTM D1204 (Modified)		nsional change	%		-0.39			
Tear Resistance ASTM D1004 (Modified)	Average Tear	Resistance	272.9 N		61.973 60.739 61.356	lbs		
Puncture Resistance FTMS 101 Method 2065 (Modif	Average Peal	k Load	471.9 N		106.08	lbs		
Puncture Resistance ASTM D4833 (Modified)	Average Peal	k Load	672.4 N		151.16	lbs		
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED			
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	0%	300 hrs	•	PASS			

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

10-30-11

Signature.

Quality Control Department

ROLL# 443788-11			Lot #: 8210664				Liner Type: MICROSPIKE™ HDF						DP	E			
Measurement ASTM D5994 (Modified)				MIN: MAX:	METI 1.50 1.68	RIC mm	5		SH mil mil	L	Thicknes _ength Width		1.5 m 153.926 7.01		60 mi 505.0 23.0	il fee fee	
Asperity ASTM D746		28/38			1.57	mm			mil	OIT(St	andard) AS	STM D389	5 minutes	190	TE RES	EST	
Specific Gravity ASTM D792	/				Density						g/cc				.94	48	
MFI ASTM D12 COND. E GRADE:	238	K3(07		Melt Flo	w Ind	lex	190°0	C /2160	g	g/10 n	nin			.2	28	
Carbon Black C ASTM D4218	Conte	ent			Range						%				2.4	48	
Carbon Black D ASTM D5596	Dispe	rsion			Catego	ry								1	0 in Cat	1	
Tensile Strengt	h														2,68 2,80		
ASTM D6693			Average Strength @ Yield						30 N/mm	(kN/m)	169	opi	2,74		psi		
ASTM D638 (M (2 inches / min															3,84 3,29		
					Average	e Stre	ng	th @ 6	3reak		39 N/mm	(kN/m)	221	орі	3,57		psi
Elongation AS	тм с	06693	}												14.0	99	
ASTM D638 (M (2 inches / min					Average	e Elor	nga	ation @) Yield		%				16.8		
Lo = 1.3" Yield															492 591		
Lo = 2.0" Break	<				Average	e Elor	nga	ation @) Break		%				542	.1	
Dimensional St ASTM D1204 (Average	e Dim	en	sional	change		%				-0.:	39	
Tear Resistanc	e														61.9° 60.7°		
ASTM D1004 (fied)			Average	e Tea	r R	esista	nce		272.9	N			61.3		lbs
Puncture Resis FTMS 101 Met			(Mo	dified	Averag	je Pea	ak I	Load			471.9	N			106.0	08	lbs
Puncture Resis ASTM D4833 (I					Averag	je Pea	ak I	Load			672.4	N			151.	16	lbs
ESCR ASTM D1693					Minimu	ım Hr	s v	v/o Fa	ilures	150	00 hrs			С	ERTIFIE	D	
Notched Consta ASTM D5397	ant T	ensile	e Lo	ad	pass / fa	ail @ 3	309	%		300	O hrs				PAS	SS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:

10-30-11

Signature.....

Quality Control Department

ROLL# 4437	Lot:	Lot #: 8210664				Liner Type: MICROSPIKE™ HDPE						
Measurement ASTM D5994 (Modified)	MIN: MAX:		C mm mm		ISH mil mil	Thickness Length Width		1.5 m 153.926 7.01		000.0	feet feet	
Asperity ASTM D7466: 25/3	7 mil AVE:	1.59	mm	63	mil	OIT(Standard) AS	TM D389	5 minutes	190	TES RESU		
Specific Gravity ASTM D792		Density				g/cc	•			.948	3	
MFI ASTM D1238 COND. E GRADE:	(307	Melt Flow	/ Ind	ex 190 ⁶	°C /2160 g	g/10 m	in			.28	3	
Carbon Black Content ASTM D4218		Range				%				2.48	3	
Carbon Black Dispersion ASTM D5596	on	Category							10	0 in Cat 1	ľ	
										2,682 2,802		
Tensile Strength ASTM D6693		Average	Strei	ngth @	Yield	30 N/mm ((kN/m)	172 բ	pi	2,742		
ASTM D638 (Modified) (2 inches / minute)										3,848 3,295)	
		Average	Stre	ngth @	Break	39 N/mm ((kN/m)	224 p	opi	3,572		
Elongation ASTM D66 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield		Average	Elon	gation	@ Yield	%				14.99 16.81 492.3	9 I 2	
Lo = 2.0" Break		Average	Elon	gation	@ Break	%				542.1	1	
Dimensional Stability ASTM D1204 (Modified	d)	Average	Dime	ensiona	al change	%				-0.3	9	
Tear Resistance										61.973		
ASTM D1004 (Modified	(1)	Average	Tear	Resist	tance	272.9	N			60.739 61.35 6		
Puncture Resistance FTMS 101 Method 206	5 (Modified	Average				471.9				106.0		
Puncture Resistance ASTM D4833 (Modified	d)	Average	Pea	ık Load		672.4	N			151.10	6 lbs	
ESCR ASTM D1693		Minimun	n Hrs	s w/o F	ailures	1500 hrs			С	ERTIFIE)	
Notched Constant Ten ASTM D5397	sile Load	pass / fail	@ 3	30%		300 hrs				PAS	8	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.

10-30-11

Signature.....

Quality Control Department

ROLL# 443790-11		Lot	t #:		3210664	Liner Type: MICROSPIKE™ HDPE						
Measurement ASTM D5994 (Modified)	MIN: MAX:	METR 1.49 1.67	RIC mm mm		_ISH mil mil	Thickness Length Width		1.5 m 153.926 7.01		000.0	eet eet	
Asperity ASTM D7466: 26/33 TOP/BOTTOM		1.60	mm		mil	OIT(Standard) AS	TM D389	5 minutes	190	TES RESUL		
Specific Gravity ASTM D792		Density				g/cc				.948		
MFI ASTM D1238 COND. E GRADE: K3	307	Melt Flor	w Ind	ex 190	°C /2160 g	g/10 m	nin			.28		
Carbon Black Content ASTM D4218		Range				%				2.29		
Carbon Black Dispersion ASTM D5596	l	Categor	y						10	0 in Cat 1		
										2,797 3,008		
Tensile Strength ASTM D6693		Average	Stre	ngth @) Yield	32 N/mm	(kN/m)	183 p	pi	2,903	ps	
ASTM D638 (Modified)										3,742		
(2 inches / minute)			•					004		3,282		
		Average	Stre	ngth @) Break	39 N/mm	(kN/m)	221 p	рі	3,512 20.44	psi	
Elongation ASTM D6693	3									14.75		
ASTM D638 (Modified)		Average	Elon	gation	@ Yield	%				17.60		
(2 inches / minute) Lo = 1.3" Yield										482.2 531.8		
Lo = 2.0" Break		Average	Elon	gation	@ Break	%				507.0		
Dimensional Stability ASTM D1204 (Modified)		Average	Dime	ensiona	al change	%				-0.39		
Tear Resistance										61.032		
ASTM D1004 (Modified)		Average	Tear	Pecio	tance	266.5	N			58.811 59.921	lbs	
Puncture Resistance FTMS 101 Method 2065	(Modified	Average				437.5				98.370		
Puncture Resistance ASTM D4833 (Modified)		Averag	e Pea	ak Load	i	635.9	N			142.96	lbs	
ESCR ASTM D1693		Minimu	m Hrs	s w/o F	ailures	1500 hrs			C	ERTIFIED		
Notched Constant Tensil ASTM D5397	le Load	pass / fa	il @ 3	30%		300 hrs				PASS		

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:..

10-30-11

Signature.

Quality Control Department

443791-11 Liner Type: MICROSPIKE™ HDPE 8210664 Lot #: 1.5 mm 60 mil **ENGLISH** Thickness..... **METRIC** Measurement 153.926 m 505.0 feet Length..... MIN: 1.55 mm 61 **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.67 mm 66 mil **TEST** Asperity ASTM D7466: 23/34 mil AVE: 1.63 mm 64 mil **RESULTS** OIT(Standard) ASTM D3895 minutes 190 TOP / BOTTOM Specific Gravity g/cc Density .948 ASTM D792 MFI ASTM D1238 .28 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content 2.29 % Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category ASTM D5596 2,797 3,008 Tensile Strength **186** ppi Average Strength @ Yield 33 N/mm (kN/m) 2,903 psi **ASTM D6693** ASTM D638 (Modified) 3,742 3,282 (2 inches / minute) 3,512 Average Strength @ Break 39 N/mm (kN/m) 225 ppi psi 20.44 14.75 Elongation ASTM D6693 % 17.60 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 482.2 Lo = 1.3" Yield 531.8 Lo = 2.0" Break % 507.0 Average Elongation @ Break **Dimensional Stability** % -0.39Average Dimensional change ASTM D1204 (Modified) 61,032 Tear Resistance 58.811 ASTM D1004 (Modified) 266.5 N 59.921 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 98.370 **437.5** N FTMS 101 Method 2065 (Modified) Puncture Resistance 142.96 lbs 635.9 N Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED ASTM D1693** Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

signature.....

Quality Control Department

443792-11 Liner Type: MICROSPIKE™ HDPE 8210664 Lot #: ROLL # 1.5 mm 60 mil Thickness...... **METRIC ENGLISH** Measurement 153.926 m 505.0 feet Length..... MIN: 1.57 mm 62 **ASTM D5994** 7.01 m; 23.0 Width..... feet (Modified) mm 72 MAX: 1.82 mil **TEST** Asperity ASTM D7466: 22/30 mil AVE: 1.67 mm 66 mil OIT(Standard) ASTM D3895 minutes 190 RESULTS TOP / BOTTOM Specific Gravity g/cc Density .948 ASTM D792 MFI ASTM D1238 .28 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.29 Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category ASTM D5596 2,797 3,008 Tensile Strength Average Strength @ Yield **191** ppi 2,903 psi 33 N/mm (kN/m) **ASTM D6693** ASTM D638 (Modified) 3.742 3,282 (2 inches / minute) Average Strength @ Break 40 N/mm (kN/m) 231 ppi 3,512 psi 20.44 14.75 Elongation ASTM D6693 Average Elongation @ Yield % 17.60 ASTM D638 (Modified) (2 inches / minute) 482.2 Lo = 1.3" Yield 531.8 Lo = 2.0" Break % 507.0 Average Elongation @ Break **Dimensional Stability** % -0.39Average Dimensional change ASTM D1204 (Modified) 61.032 Tear Resistance 58.811 ASTM D1004 (Modified) 266.5 N 59.921 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 98.370 437.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance 635.9 N 142.96 lbs Average Peak Load ASTM D4833 (Modified) **ESCR** 1500 hrs Minimum Hrs w/o Failures **CERTIFIED** ASTM D1693 Notched Constant Tensile Load pass / fail @ 30% 300 hrs **PASS** ASTM D5397

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

signature......

Quality Control Department

443793-11 Liner Type: MICROSPIKE™ HDPE 8210664 Lot #: ROLL# 1.5 mm 60 mil **ENGLISH METRIC** Thickness..... Measurement 153.926 m 505.0 feet Length..... 1.56 mm 61 MIN: mil **ASTM D5994** 7.01 m; 23.0 feet Width..... (Modified) MAX: 1.76 mm 69 mil **TEST** Asperity ASTM D7466: 24/30 mil AVE: 1.65 mm 65 mil OIT(Standard) ASTM D3895 minutes 190 **RESULTS** TOP / BOTTOM Specific Gravity g/cc Density .948 ASTM D792 MFI ASTM D1238 .28 Melt Flow Index 190°C /2160 g g/10 min COND. E GRADE: K307 Carbon Black Content % 2.29 Range **ASTM D4218** Carbon Black Dispersion 10 in Cat 1 Category **ASTM D5596** 2,797 3,008 Tensile Strength Average Strength @ Yield 189 ppi 2,903 psi 33 N/mm (kN/m) **ASTM D6693** ASTM D638 (Modified) 3.742 3,282 (2 inches / minute) 228 ppi 3,512 psi Average Strength @ Break 40 N/mm (kN/m) 20.44 14.75 Elongation ASTM D6693 % 17.60 Average Elongation @ Yield ASTM D638 (Modified) (2 inches / minute) 482.2 Lo = 1.3" Yield 531.8 Lo = 2.0" Break % 507.0 Average Elongation @ Break **Dimensional Stability** % -0.39Average Dimensional change ASTM D1204 (Modified) 61.032 Tear Resistance 58.811 ASTM D1004 (Modified) 266.5 N 59.921 lbs Average Tear Resistance Puncture Resistance lbs Average Peak Load 98.370 437.5 N FTMS 101 Method 2065 (Modified) Puncture Resistance 142.96 lbs Average Peak Load 635.9 N ASTM D4833 (Modified) **ESCR** Minimum Hrs w/o Failures 1500 hrs CERTIFIED **ASTM D1693** Notched Constant Tensile Load 300 hrs pass / fail @ 30% **PASS ASTM D5397**

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:.....

9

Signature.....Quality Control Department

10-30-11

1 Lot #:	8210664	Liner Type: MICROSPIKE™ H			
METRIC N: 1.38 mm	54 mil	ThicknessLength	1.5 mm 153.926 ^m 7.01 m;		et eet
	60 mil	OIT(Standard) ASTM D3895	5 minutes 190		
Density		g/cc		.946	
Melt Flow Inde	x 190°C /2160 g	g/10 min		.28	
Range		%		2.42	
Category			1	0 in Cat 1	
Average Streng	gth @ Yield	28 N/mm (kN/m)	160 ppi	2,550 2,800 2,675 3,371 3,224	psi
Average Streng	gth @ Break	35 N/mm (kN/m)	197 ppi	3,298	psi
	_	%		17.76 12.99 15.38 468.4 589.3 528.8	
Average Dimer	nsional change	%		-0.39	
Average Tear F	Resistance	268.9 N		61.226 59.667 60.447	lbs
Average Peak ied)	Load	410.4 N		92.277	lbs
Average Peak	Load	605.3 N		136.07	lbs
Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
pass / fail @ 30	%	300 hrs		PASS	
	METRIC N: 1.38 mm AX: 1.64 mm /E: 1.52 mm Density Melt Flow Index Range Category Average Streng Average Elong Average Elong Average Dimer Average Tear F Average Peak Minimum Hrs	METRIC ENGLISH N: 1.38 mm 54 mil AX: 1.64 mm 65 mil /E: 1.52 mm 60 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Tear Resistance Average Peak Load Average Peak Load Minimum Hrs w/o Failures	METRIC ENGLISH N: 1.38 mm 54 mil Length	METRIC ENGLISH Thickness	METRIC ENGLISH N: 1.38 mm 54 mil AX: 1.64 mm 65 mil AX: 1.52 mm 60 mil Density Dens

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-30-11

Signature.....Quality Control Department

ROLL # 443797-11	Lot #:	8210664	Liner Type:	MICROSPIK	E™ HDF	E
Measurement ASTM D5994 MIN (Modified) MA	i: 1.42 mm (Thickness Length Width	1.5 mm 153.926 ^m 7.01 ^{m;}	60 mil 505.0 fe 23.0 fe	et et
Asperity ASTM D7466: 26/35 mil AVE		60 mil	DIT(Standard) ASTM D389	5 minutes 190	TES1 RESUL	
Specific Gravity ASTM D792	Density		g/cc		.946	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index	∢ 190°C /2160 g	g/10 min	,	.28	
Carbon Black Content ASTM D4218	Range		%	101	2.42	
Carbon Black Dispersion ASTM D5596	Category			1	0 in Cat 1	
Tensile Strength ASTM D6693	Average Streng	gth @ Yield	28 N/mm (kN/m)	160 ppi	2,550 2,800 2,675	psi
ASTM D638 (Modified) (2 inches / minute)	Average Streng	gth @ Break	35 N/mm (kN/m)	197 ppi	3,374 3,224 3,298	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield Lo = 2.0" Break	Average Elong: Average Elong:		%		17.76 12.99 15.38 468.4 589.3 528.8	
Dimensional Stability ASTM D1204 (Modified)	Average Dimer		%		-0.39	
Tear Resistance ASTM D1004 (Modified)	Average Tear F	Resistance	268.9 N		61.226 59.667 60.447	lbs
Puncture Resistance FTMS 101 Method 2065 (Modifie	Average Peak	Load	410.4 N		92.277	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak	Load	605.3 N		136.07	lbs
ESCR ASTM D1693	Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30	%	300 hrs		PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

Signature.

Quality Control Department

10-30-11

ROLL# 444101-11		Lot #: 8210664			Liner Type: MICROSPIKE™				E™ HDF	PΕ	
	MIN:	1.43	mm	56	mil	Length		1.5 m 153.926 7.01	m m m;		eet eet
										TES	т
25/35 mil	AVE:	1.54	mm	61	mil	OIT(Standard) AS	TM D389	5 minutes	190	RESUL	
		Density				g/cc				.946	
8 K307		Melt Flor	w Ind	ex 190	°C /2160 (g g/10 m	nin			.28	
ntent		Range				%				2.30	
spersion		Categor	y						10	0 in Cat 1	
										2,643 2,788	
		Average	Stre	ngth @	Yield	29 N/mm ((kN/m)	165 p	pi	2,716	psi
dified)										3,383	
.e)		Average	Stre	ngth @	Break	35 N/mm ((kN/m)	201 p	pi	3,312	psi
									•	19.28	
		Average	Elon	gation	@ Yield	%				17.03	
te)		ă								487.8	
		Average	Elon	aation	@ Break	%				588.7 538.3	
oility odified)						%				-0.39	
pr										59.289	
odified)		Average	Tear	Resist	tance	259 4	N				lbs
ince od 2065 (Mo	odified)	Average					-	_,		102.71	lbs
ince odified)		Average	e Pea	k Load		630.1	N			141.65	lbs
	,	Minimu	m Hrs	s w/o F	ailures	1500 hrs			CI	ERTIFIED	
it Tensile Lo	oad	pass / fai	il @ 3	0%		300 hrs				PASS	
	25/35 mil 8 K307 Intent Spersion M D6693 diffied) e) bility odified) odified) nce od 2065 (Monce odified)	MIN: MAX: 25/35 mil AVE: 8 K307 Intent Spersion M D6693 diffied) e) Millity odified) odified) odified) nce od 2065 (Modified) nce odified)	METER MIN: 1.43 MAX: 1.65 25/35 mil AVE: 1.54 Density Melt Flor K307 Intent Range Category Average diffied) e) Average M D6693 diffied) e) Average odified) Average odified) Average odified) Average Average Average Modified) Average Minimu	METRIC MIN: 1.43 mm MAX: 1.65 mm Density Melt Flow Index K307 Intent Range Spersion Category Average Street Average Street Average Elon (A) D6693 (diffied) (e) Average Elon (e) Average Elon (fied) Average Dimension Average Tear (fied) Average Pear (fied) Average	METRIC ENGINATION SET IN SET I	METRIC ENGLISH 1.43 mm 56 mil MAX: 1.65 mm 65 mil Density Melt Flow Index 190°C /2160 g K307 Melt Flow Index 190°C /2160 g K307 Average Strength @ Yield diffied) e) Average Strength @ Break A D6693 diffied) e) Average Elongation @ Yield e) Average Elongation @ Break A Verage Elongation @ Break A Verage Dimensional change odified) Average Tear Resistance Average Peak Load Minimum Hrs w/o Failures	MIN: 1.43 mm 56 mil Length MIN: 1.43 mm 56 mil Length MAX: 1.65 mm 65 mil Width 25/35 mil AVE: 1.54 mm 61 mil OIT(Standard) AS Density g/cc Melt Flow Index 190°C /2160 g g/10 m K307 Neter Range % Average Strength @ Yield 29 N/mm diffied) e) Average Strength @ Break 35 N/mm diffied) e) Average Elongation @ Yield % e) Average Elongation @ Break % Mility odified) Average Dimensional change % Average Tear Resistance 259.4 Average Peak Load 456.9 nce ad 2065 (Modified) Average Peak Load 630.1 Minimum Hrs w/o Failures 1500 hrs	MIN: 1.43 mm 56 mil Length	METRIC ENGLISH Thickness	METRIC ENGLISH Thickness	MIN: 1.43 mm 56 mil Length

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:....

10-31-11

Signature.

Quality Control Department

ROLL#	444102	2-11	Lo	Lot #: 8210664 Liner Typ						/pe: MICROSPIKE™ HDPE			
Measurement ASTM D5994 (Modified)		MIN:	METF 1.39	mm		mil	L	hicknese ength		1.5 m 153.926 7.01			eet eet
Asperity ASTM D7		MAX: il AVE:	1.66 1.52	mm mm		mil mil				95 minutes	190	TES RESUL	
Specific Gravi ASTM D792			Density					g/cc				.946	
MFI ASTM D1 COND. E GRADE:	238 K30 7	7	Melt Flo	w Ind	ex 190	0°C /2160) g	g/10 m	nin			.28	
Carbon Black ASTM D4218	Content		Range					%				2.30	
Carbon Black ASTM D5596	Dispersion		Categor	у			-				1	0 in Cat 1	
Tensile Streng ASTM D6693 ASTM D638 (Modified)		Average	Stre	ngth @) Yield		28 N/mm	(kN/m)	163	ррі	2,643 2,788 2,716 3,383	psi
(2 inches / mi	nute)		Average	Stre	ngth @	Break		35 N/mm	(kN/m)	198	ppi	3,240 3,312	psi
Elongation As ASTM D638 ((2 inches / mi Lo = 1.3" Yield	Modified) nute) d					@ Yield		%				19.28 14.77 17.03 487.8 588.7	
Lo = 2.0" Brea Dimensional S ASTM D1204	Stability		·			@ Breal		%				-0.39	
Tear Resistan ASTM D1004			Average	e Tear	Resis	stance		259.4	N			59.289 57.356 58.323	lbs
Puncture Res FTMS 101 Me		/lodified	Averag	e Pea	ık Loa	d		456.9	N			102.71	lbs
Puncture Res ASTM D4833			Averag	e Pea	ık Loa	d		630.1	N			141.65	lbs
ESCR ASTM D1693			Minimu	m Hr	s w/o F	Failures	150	0 hrs			С	ERTIFIED	
Notched Cons	stant Tensile	Load	pass / fa	il @ 3	30%		300	hrs				PASS	

Customer: Chenango Contracting, Inc.

PO: 2276 Honeywell Sediment Consolidation

Destination Syracuse, NY

Date:...

10-31-11

Signature.....Quality Control Department

Sacrificial

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

	Invent	ory			0.1	1. Confi	ormana	e	Q	.C. Docu	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (fl.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID

7/12/2012	7120718-424797-12	23	505	DWH	7/11/2012	7/11/2012	P	DWH
7/12/2012	7120718-425101-12	23	505	DWH	7/11/2012	7/11/2012	Р	DWH
7/12/2012	7120718-425102-12	23	505	DWH	7/11/2012	7/11/2012	P	DWH
7/12/2012	7120718-425103-12	23	505	DWH	7/11/2012	7/11/2012	P	DWH

Average Roll Width(ft.): 23

Total Number of Rolls: 4

Average Roll Length(ft.): 505

Cumulative Area(sq.ft.): 46460

Total Number of Conformance Tests: 0

Comments:

Chenango Contracting Inc PO#: Dest:

2276 Honeywell Sediment

138 rolls 60 HD micro (505) 4 rolls 60 HD micro (505) (added 6-25-12)

		Engi	Sil Dillien	SIONS	4 TOIIS 00 TID	IIIIGIO (SC	o i iada	60 0-20-12)		
19	roll#	wid	ten	area	check w	eld rod qt	y (if or	dered)	wgt	resin lot #
	424797 .12	23	505	11,615.0	60HD	micro	add	139	4039	7120718
	425101 .12	23	505	11,615.0	60HD	micro	add	140	4035	7120718
	425102 .12	23	505	11,615.0	60HD	micro	add	141	4036	7120718
	425103 .12	23	505	11,615.0	60HD	micro	add	142	4037	7120718

delivered 28 June 2012

See RFI No. 25

17645

doc

plus roll Nos.

- see original roll list POK 2276

Certificate of Analysis

Shipped To: AGRU AMERICA INC

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 88466938

PO #: 6424

Weight: 193000 LB Ship Date: 05/30/2012 Package: BULK Mode: Hopper Car Car #: PSPX001196

Seal No: 286851

Product:

MARLEX POLYETHYLENE K307 BULK

Lot Number: 7120718

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.24	g/10mi
HLMI Flow Rate	ASTM D1238	21	g/10mi
Density	D1505 or D4883	0.937	g/cm3
Pellet Count	P02.08.03	29	pel/g
Production Date		05/20/2012	, 0

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Customer Service Representative at +1-832-813-4806

Lili Cui, Ph.D., Geomembrane Technical Service & Applications Development
Room 154 PTC ■ Bartlesville, OK 74004■
918-661-1897 ■ cuil@cpchem.com ■ Fax: 918-662-2220 ■ www.cpchem.com

June 8, 2012

Grant Palmer Agru America 500 Garrison Road Georgetown, SC 29440

Dear Grant:

This letter is to report the final results of oven-aging and UV-aging tests (according to GRI-GM13 and GRI-GM17) on Agru America sheet samples that you provided to us in 2011. These tests were performed by CPChem's Materials Evaluation Laboratory in Bartlesville, OK. The tests were completed April 2012.

The GRI-GM13 (HDPE) and GRI-GM17 (LLDPE) durability tests were done according to the following procedures.

Test	Exposure	Method
HP-OIT	150 °C, 500 psi oxygen	D5885
Oven Aging	90 days, 85 °C	D5721
UV Aging	1600 UV hrs (Conditions were 20 hours UVA-340 at 75 °C followed by 4 hrs dark with condensation at 60 °C. Irradiance was 0.72 W/m² at 340	D7238
	nm.)	

Oven-Aging Results

Sample	Initial HP-OIT (min)	HP-OIT Value after Oven Aging (min)	% HP-OIT Retained	GRI-GM13 or GRI- GM17 % Retained Requirement
40 mil LLDPE Roll # 346550-11 from Marlex® 7104 Polyethylene Lot # CBC810430	659	572	87	60
60 mil HDPE Roll # 447108-11 from Marlex [®] K307 Polyethylene Lot # 71-1-1104	1136	994	88	80

UV-Aging Results

Sample	Initial HP-OIT (min)	HP-OIT Value after UV Aging (min)	% HP-OIT Retained	GRI-GM13 or GRI- GM17 % Retained Requirement
40 mil LLDPE Roll # 346550-11 from Marlex® 7104 Polyethylene Lot # CBC810430	659	449	68	35
60 mil HDPE Roll # 447108-11 from Marlex [®] K307 Polyethylene Lot #71-1-1104	1136	924	81	50

According to these test results, the durability requirements are met.

If you have any questions, please call me at 918-661-1897.

Sincerely,

Lili Cui, Ph.D.

Sili Cui

Geomembrane Technical Service & Applications Development

Any technical advice, recommendations, results, or analysis ("Information") contained herein, including, without limitation, Information as it may relate to the selection of a specific product ("Product") for your use and application, is given without warranty or guarantee and is accepted at your sole risk. It is imperative that you test the Information (and Product, if applicable) to determine to your own satisfaction whether the Information (and Product, if applicable) are suitable for your intended use and application. You expressly assume, and release Chevron Phillips Chemical Company, from all risk and liability, whether based in contract, tort or otherwise, in connection with the use of, or results obtained from, such Information (and Product, if applicable).

ROLL # 424797-12	2 Lot #:	7120718	Liner Type: I	Microspike ¹	™ HDPE	
Measurement ASTM D5994 MIN		GLISH mil	Thickness Length Width	1.5 mm 153.926 ^m 7.01 m;	60 mil 505.0 fe 23.0 fe	
(Modified) MA	X; 1.76 mm 69	mil	VVIGET		TEST	
Asperity ASTM D7466: 26/33 mil AVI	1.64 mm 65	mil OI	IT(Standard) ASTM D3895	5 minutes 175	RESUL	
Specific Gravity ASTM D792	Density		g/cc		.945	
MFI ASTM D1238 COND. E GRADE: K307	Melt Flow Index 19	90°C /2160 g	g/10 min		.24	
Carbon Black Content ASTM D4218	Range		%		2.39	
Carbon Black Dispersion ASTM D5596	Category			1	0 In Cat 1	
Tensile Strength ASTM D6693 ASTM D638 (Modified) (2 inches / minute)	Average Strength	@ Yield	29 N/mm (kN/m)	166 ppi	2,572	psi
(=,	Average Strength	@ Break	38 N/mm (kN/m)	217 ppi	3,362	psi
Elongation ASTM D6693 ASTM D638 (Modified) (2 inches / minute) Lo = 1.3" Yield	Average Elongation	on @ Yield	%		17.11	
Lo = 2.0" Break	Average Elongation	on @ Break	%		531.7	
Dimensional Stability ASTM D1204 (Modified)	Average Dimension	onal change	%		61	
Tear Resistance ASTM D1004 (Modified)	Average Tear Res	sistance	257.2 N		57.825	lbs
Puncture Resistance FTMS 101 Method 2065 (Modifi	Average Peak Lo	oad	440.3 N		98.995	lbs
Puncture Resistance ASTM D4833 (Modified)	Average Peak Lo	oad	637.8 N		143.39	lbs
ESCR ASTM D1693	Minimum Hrs w/o	o Failures	1500 hrs	С	ERTIFIED	
Notched Constant Tensile Load ASTM D5397	pass / fail @ 30%		300 hrs	(ONGOING	

Customer: Chenango Contracting Inc

PO: 2276 Honeywell Sediment

Destination Syracuse, NY

Date:....

Signature...... **Quality Control Department**

6/17/2012

60HDmic FRM REV 03

Lot #: 7120718	Liner Type: Microspike™ HDPE
	Thickness
: 1.62 mm 64 mil	TEST OIT(Standard) ASTM D3895 minutes 175 RESULTS
Density	g/cc . 945
Melt Flow Index 190°C /2160 g	g g/10 min .24
Range	% 2.39
Category	10 In Cat 1
Average Strength @ Yield	29 N/mm (kN/m) 164 ppi 2,572 ps
Average Strength @ Break	38 N/mm (kN/m) 214 ppi 3,362 ps
Average Elongation @ Yield	% 17.11
Average Elongation @ Break	% 531.7
Average Dimensional change	%61
Average Tear Resistance	257.2 N 57.825 lbs
Average Peak Load d)	440.3 N 98.995 lbs
Average Peak Load	637.8 N 143.39 lbs
Minimum Hrs w/o Failures	1500 hrs CERTIFIED
pass / fail @ 30%	300 hrs ONGOING
	METRIC ENGLISH 1.52 mm 60 mil 1.73 mm 68 mil 1.62 mm 64 mil Density Melt Flow Index 190°C /2160 g Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Break Average Dimensional change Average Peak Load Average Peak Load Minimum Hrs w/o Failures

Customer: Chenango Contracting Inc

PO: 2276 Honeywell Sediment

Destination Syracuse, NY

Date:....

6/18/2012

Signature..... Quality Control Department

2011 "	425102-1	2 Lot #:	7420740	Liner Type:	Miorocniko		
ROLL#	+20102-1	LOI #.	7120718	Liner Type:	•		
leasurement			ENGLISH	Thickness	1.5 mm 153.926 ^m	60 mil 505.0 fe	et
STM D5994	IIM	N: 1.57 mm	62 mil	Length Width	7.01 m;		eet
Modified)	MA	X: 1.76 mm	69 mil	vviatii			
sperity ASTM D74 TOP / BOTTO		E: 1.65 mm	65 mil	DIT(Standard) ASTM D389	95 minutes 175	TES ⁻ RESUL	
Specific Gravity ASTM D792	У	Density		g/cc		.945	
MFI ASTM D12 COND. E GRADE:	238 K307	Melt Flow Inde	x 190°C /2160 g	g/10 min		.24	
Carbon Black (ASTM D4218	Content	Range		%		2.39	
Carbon Black [ASTM D5596	Dispersion	Category			1	0 In Cat 1	
Tensile Strengt ASTM D6693 ASTM D638 (M 2 inches / mir	Modified)	Average Strenç	gth @ Yield	29 N/mm (kN/m)	167 ppi	2,572	ps
2 11101103711111	idio)	Average Streng	gth @ Break	38 N/mm (kN/m)	218 ppi	3,362	ps
Elongation AS ASTM D638 (M (2 inches / mir _o = 1.3" Yield	flodified) nute)	Average Elong	ation @ Yield	%		17.11	
_o = 2.0" Breal	<	Average Elong	ation @ Break	%		531.7	
Dimensional St ASTM D1204 (•	Average Dimer	nsional change	%		61	
Tear Resistand ASTM D1004 (Average Tear F	Resistance	257.2 N		57.825	lbs
Puncture Resis	stance hod 2065 (Modifi	Average Peak ed)	Load	440.3 N		98.995	lbs
Puncture Resis ASTM D4833 (Average Peak	Load	637.8 N		143.39	lbs
ESCR ASTM D1693		Minimum Hrs	w/o Failures	1500 hrs	С	ERTIFIED	
Notched Const ASTM D5397	ant Tensile Load	pass / fail @ 30	%	300 hrs	(ONGOING	

Customer: Chenango Contracting Inc

PO: 2276 Honeywell Sediment

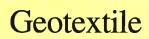
Destination Syracuse, NY

Date:....

Quality Control Department

6/18/2012

60HDmic FRM REV 03


Lot #: 7120	718 Liner Type: M	licrospike™ HDPE
	Width	1.5 mm 60 mil 153.926 ^m 505.0 feet 7.01 ^{m;} 23.0 feet
	il	TEST RESULTS
Density	g/cc	.945
Melt Flow Index 190°C /2°	60 g g/10 min	.24
Range	%	2.39
Category		10 In Cat 1
Average Strength @ Yield	30 N/mm (kN/m)	169 ppi 2,572 ps
Average Strength @ Brea	k 39 N/mm (kN/m)	221 ppi 3,362 ps
Average Elongation @ Yie	eld %	17.11
Average Elongation @ Bro	eak %	531.7
Average Dimensional cha	nge %	61
Average Tear Resistance	257.2 N	57.825 lbs
Average Peak Load	440.3 N	98.995 lbs
Average Peak Load	637.8 N	143.39 lbs
Minimum Hrs w/o Failure	s 1500 hrs	CERTIFIED
pass / fail @ 30%	300 hrs	ONGOING
	METRIC ENGLISH 1.55 mm 61 m 1.83 mm 72 m 1.67 mm 66 m Density Melt Flow Index 190°C /21 Range Category Average Strength @ Yield Average Elongation @ Yield Average Elongation @ Brea Average Elongation @ Brea Average Dimensional char Average Peak Load Average Peak Load Minimum Hrs w/o Failure	METRIC ENGLISH 1.55 mm 61 mil Length

Customer: Chenango Contracting Inc

PO: 2276 Honeywell Sediment

Destination Syracuse, NY

Date: 6/18/2012

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material Typ	<i>pe:</i> gt : 7	Manufac	<i>turer:</i> SK	APS			Produ	ct Type:	GE 240-15	5		
	Invent	ory		Q.A	. Conf	ormano	ce	Q	.C. Docu	ments		
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
Accepted Roll	S											
4/23/2012	22388-001	15	300	DWH	1/2/2012	GT-13	Р	ĎВ	4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-002	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-003	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-004	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-005	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-006	15	300	DWH		7			4/27/2012	4/27/20 12	P	DWH
4/23/2012	22388-007	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-008	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-009	15	300	DWH	-				4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-010	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-011	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-012	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-013	15	300	DWH					4/27/2012	4/27/2012	Р	DWI
4/23/2012	22388-014	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-015	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-016	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-017	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-018	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-019	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-020	15	300	DWH	172/2012	GT-14	Р	ŪΒ	4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-021	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-022	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/23/2012	22388-023	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-024	15	300	DWH					4/27/2012	4/27/2012	P	DWI
4/23/2012	22388-025	15	300	DWH	1				4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-026	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/23/2012	22388-027	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-028	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Material Typ	e: gt: 7	Manufac	<i>turer:</i> SK	APS			Produ	ct Type:	GE 240-15	5		
	Inven	tory			Q.A	. Confe	ormano	се	Q	.C. Docui	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/23/2012	22388-029	15	300	DWH	-				4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-030	15	300	DWH		1			4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-031	15	300	DWH !					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-032	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-033	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-034	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-035	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-036	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-037	15	300	DWH					4/27/2012	4/27/2012	р	DWH
4/23/2012	22388-038	15	300	DWI-I					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-039	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-040	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-041	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-042	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-043	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-044	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-045	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-046	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-047	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-048	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-049	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-050	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-051	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-052	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-053	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-054	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-055	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-056	15	300	DWH	1/2/2012	GT-15	Р	Ц́В	4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-057	15	300	DWH					4/27/2012	4/27/2012	P	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Typ	e: gt: 7	Manufac	turer: SK	.APS			Produ	ict Type:	GE 240-15	5		
	Invent	ory			Q.1	1. Conf	orman	ce	Q	.C. Docui	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/23/2012	22388-058	15	300	DWH		1			4/27/2012	4/27/2012	Р	DWI-
4/23/2012	22388-059	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-060	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-061	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-062	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-063	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-064	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-065	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-066	15	300	DWH					4/27/2012	4/27/2012	Р	DWI
4/23/2012	22388-067	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-068	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-069	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-070	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/23/2012	22388-071	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/23/2012	22388-072	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-073	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-074	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-075	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-076	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-077	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-078	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-079	15	300	DWH					4/27/2012	4/27/2012	Р	DWI
4/24/2012	22388-080	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-081	15	300	DWH					4/27/2012	4/27/2012	Р	DWF
4/24/2012	22388-082	15	300	DWH					4/27/2012	4/27/2012	Р	DWI
4/24/2012	22388-083	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-084	15	300	DWH					4/27/2012	4/27/2012	P	DWI
4/24/2012	22388-085	15	300	DWH					4/27/2012	4/27/2012	P	DWI
4/24/2012	22388-086	15	300	DWH					4/27/2012	4/27/2012	P	DWE

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material Typ	e: gt: 7	Manufac	turer: SK	APS			Produ	ct Type:	GE 240-15	5		
	Invent	ory			Q.A.	. Conf	ormano	се	Q	.C. Docu	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/24/2012	22388-087	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-088	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/24/2012	22388-089	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-090	15	300	DWH					4/27/2012	4/27/2012	Р	DWI-
4/24/2012	22388-091	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-092	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-093	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-094	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-095	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-096	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-097	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-098	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/24/2012	22388-099	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/24/2012	22388-100	15	300	DWH					4/27/2012	4/27/2012	P	DWI
4/25/2012	22388-101	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-102	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-103	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-104	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/25/2012	22388-105	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/25/2012	22388-106	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/25/2012	22388-107	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/25/2012	22388-108	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/25/2012	22388-109	15	300	DWH					4/27/2012	4/27/2012	P	DWE
4/25/2012	22388-110	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/25/2012	22388-111	15	300	DWH	1/2/2012	GT-16	P	ĎВ	4/27/2012	4/27/2012	Р	DWF
4/25/2012	22388-112	15	300	DWH					4/27/2012	4/27/2012	P	DWF
4/25/2012	22388-113	15	300	DWH					4/27/2012	4/27/2012	P	DWI
4/25/2012	22388-114	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/25/2012	22388-115	15	300	DWH					4/27/2012	4/27/2012	P	DWI

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Material Typ	<i>pe:</i> gt : 7	Manufac	<i>turer:</i> SK	APS			Produ	ict Type.	GE 240-1	5		
	Inven	tory			Q.1	4. Conf	orman	ce	Q	C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft,)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAII
4/25/2012	22388-116	15	300	DWH					4/27/2012	4/27/2012	P	DWI
4/25/2012	22388-117	15	300	DWH					4/27/2012	4/27/2012	Р	DWE
4/25/2012	22388-118	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-119	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-120	15	300	DWH					_	4/27/2012	P	DWH
4/25/2012	22388-121	15	300	DWH		1			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-122	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-123	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-124	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-125	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-126	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-127	15	300	DWH			- 1		4/27/2012	4/27/2012	р	DWH
4/25/2012	22388-128	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-129	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-130	15	300	DWH					4/27/2012	4/27/2012	р	DWH
4/25/2012	22388-131	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-132	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-133	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-134	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-135	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-136	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-137	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-138	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-139	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-140	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-141	15	300	DWH			-		4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-142	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-143	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-144	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

Material Typ	pe: gt: 7	Manufac	turer: SK	APS			Produ	ict Type.	GE 240-1	5		
	Inven	tory			Q.1	1. Conf	orman	ce	Q	C. Docu	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/25/2012	22388-145	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-146	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-147	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-148	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-149	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-150	15	300	DWH						4/27/2012	Р	DWH
4/25/2012	22388-151	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-152	15	300	DWH					-	4/27/2012	P	DWH
4/25/2012	22388-153	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-154	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-155	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-156	15	300	DWH						4/27/2012	Р	DWH
4/25/2012	22388-157	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-158	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-159	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-160	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-161	15	300	DWH		-			4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-162	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-163	15	300	DWH		-			4/27/2012	4/27/2012	р	DWH
4/25/2012	22388-164	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-165	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-166	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-167	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-168	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-169	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-170	15	300	DWH	-					4/27/2012	P	DWH
4/25/2012	22388-171	15	300	DWH						4/27/2012	P	DWH
4/25/2012	22388-172	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-173	15	300	DWH					4/27/2012			DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: <u>200</u>

Material Ty	pe: gt : 7	Manufac	turer: Sk	CAPS			Produ	ict Type	GE 240-1	5		
	Invent	ory			Q.1	1. Conf	ormano	се	Q	Q.C. Docu	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft,)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAIL
4/25/2012	22388-174	15	300	DWH		П			4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-175	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-176	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-177	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-178	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-179	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-180	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-181	15	300	DWH					-	4/27/2012	P	DWH
4/25/2012	22388-182	15	300	DWH					4/27/2012	-	Р	DWH
4/25/2012	22388-183	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-184	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-185	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-186	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-187	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-188	15	300	DWH						4/27/2012	Р	DWH
4/25/2012	22388-189	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-190	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-191	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-192	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-193	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/25/2012	22388-194	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/25/2012	22388-195	15	300	DWH					4/27/2012		P	DWH
4/25/2012	22388-196	15	300	DWH					4/27/2012		Р	DWH
4/25/2012	22388-197	15	300	DWH	-				4/27/2012	4/27/2012	P	DWH
1/25/2012	22388-198	15	300	DWH					4/27/2012			DWH
1/25/2012	22388-199	15	300	DWH						4/27/2012		DWH
1/25/2012	22388-200	15	300	DWH					4/27/2012	4/27/2012		DWH
1/26/2012	22388-201	15	300	DWH						4/27/2012	-	DWH
1/26/2012	22388-202	15	300	DWH						4/27/2012		DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Material Ty	<i>pe:</i> gt : 7	Manufac	turer: Sk	CAPS			Produ	ict Type.	: GE 240-1	5		
	Inven	tory			Q.A	. Conf	orman	се	Q	Q.C. Docui	ments	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/26/2012	22388-203	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-204	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-205	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-206	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-207	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-208	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-209	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-210	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-211	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-212	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-213	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-214	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-215	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-216	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-217	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-218	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-219	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-220	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-221	15	300	DWH	1/2/2012	GT-17	Р	DB	4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-222	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-223	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-224	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-225	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-226	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-227	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-228	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-229	15	300	DWH		9			4/27/2012		-	DWH
4/26/2012	22388-230	15	300	DWH					4/27/2012			DWH
4/26/2012	22388-231	15	300	DWH					4/27/2012			DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: <u>200</u>

Material Typ	e: gt: 7	Manufac	<i>turer:</i> SK	APS			Produ	ict Type:	GE 240-15	5		
	Invent	ory			Q./	1. Conf	orman	ce	Q	.C. Docui	nents	
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/26/2012	22388-232	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-233	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-234	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012 :	22388-235	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-236	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-237	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-238	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-239	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-240	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-241	15	300	DWH :					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-242	15	300	DWH :					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-243	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-244	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-245	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-246	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-247	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-248	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/26/2012	22388-249	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/26/2012	22388-250	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-251	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-252	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-253	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-254	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-255	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-256	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-257	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-258	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-259	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-260	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Typ	daterial Type: gt: 7 Manufacturer: SKAPS						Produ	ct Type:	GE 240-1:	5		
	Inventory						Q.A. Conformance Q.C. Documents					
Inv Date	Batch-Roll	Width (ft.)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID
4/27/2012	22388-261	15	300	DWII					4/27/2012	4/27/2012	р	DWH
4/27/2012	22388-262	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-263	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-264	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-265	15	300	DWH					4/27/2012	4/27/2012	P	DWH
4/27/2012	22388-266	15	300	DWH					4/27/2012	4/27/2012	Р	DWH
4/27/2012	22388-267	15	300	DWH					4/27/2012	4/27/2012	Р	DWH

Average Roll Width(ft.): 15

Average Roll Length(ft.): 300

Total Number of Rolls: 267

Cumulative Area(sq.ft.): 1201500

Total Number of Conformance Tests: 5

Comments:

consultants

Material Inventory

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type	Material Type: gt: 9 Manufacturer: GSE						Produ	ict Type:	GEO-2401	E-EBN-E-00)				
	Inven	tory			Q.A	1. Conf	orman	се	Q	.C. Docu	uments				
Inv Date	Batch-Roll	Width (ft _s)	Length (ft.)	QA ID	Date	Samp No	Result	QAID	Date Rec	Date Ckk	Result	QAID			
Accepted Rolls															
10/3/2012	130431059	15	150	DW	-	-			10/1/2012	10/1/2012	р	DB			
10/4/2012	130431060	15	150	DW					10/1/2012	10/1/2012	р	DB			
10/4/2012	130431061	15	150	DW					10/1/2012	10/1/2012	р	DB			
10/3/2012	130431063	15	150	DW					10/1/2012	10/1/2012	р	DB			
10/4/2012	130431065	15	150	DW					10/1/2012	10/1/2012	р	DB			
10/3/2012	130431066	15	150	DW					10/1/2012	10/1/2012	р	DB			
10/3/2012	130431076	15	150	DW	10/5/2012	GT-18	Р	JWC :	10/1/2012	10/1/2012	р	DB			

Average Roll Width(ft.): 15

Total Number of Rolls: 7

Average Roll Length(ft.): 150

Cumulative Area(sq.ft.): 15750

Total Number of Conformance Tests: 1

Comments: 130431076:Puncure = 336 lbs, mass/unit area = 26.1 oz/sy, grab strength MD = 497 lbs, XMD = 869 lbs, trap tear MD = 189

lbs, XMD = 367 lbs. Exceeds project requirements. PASS

SKAPS Industries (Nonwoven Division) 335, Athena Drive Athens, GA 30601 (U.S.A.) Phone (706) 354-3700 Fax (706) 354-3737

E-mail: info@skaps.com

Sales Office:

Engineered Synthetic Product Inc.

Phone: (770)564-1857 Fax: (770)564-1818

January 26, 2012 Chenango Contracting

29 Arbutus Road Johnson City, NY 13790

Ref: Honeywell Sediment Control

PO: 2279

Dear Sir/Madam:

11	NO EXCEPTIONS
	EXCEPTIONS AS NOTED
	PROCEED WITH WORK
	RESUBMIT
	SUBMIT CERTIFIED PRINTS
CLIE	PARSONS 446199
	TRACT
BY	DATE

ACTION TAKEN HEREON DOES NOT SUPERSEDE REQUIREMENTS OF APPLICABLE DESIGN DRAWINGS, SPECIFICATIONS, ORDERS, CODES OR REGULATIONS, OR RELIEVE THE CONTRACTOR OR SUPPLIER FROM RESPONSIBILITY FOR ERRORS OR OMISSIONS.

This is to certify that SKAPS GE240 is a high quality needle-punched nonwoven geotextile made of 100% polypropylene staple fibers, randomly networked to form a high strength dimensionally stable fabric. SKAPS GE240 resists ultraviolet deterioration, rotting, biological degradation. The fabric is inert to commonly encountered soil chemicals. Polypropylene is stable within a pH range of 2 to 13. SKAPS GE240 conforms to the property values listed below:

PROPERTY	TEST METHOD	UNITS	M.A.R.V. Minimum Average Roll Value
Weight	ASTM D 5261	oz/sy (g/m²)	24.00 (814)
Grab Tensile	ASTM D 4632	lbs (kN)	230 (1.02)
Grab Elongation	ASTM D 4632	%	50
Trapezoidal Tear	ASTM D 4533	lbs (kN)	95 (0.42)
Puncture Resistance	ASTM D 4833	lbs (kN)	250 (1.11)
UV Resistance	ASTM D 4355	%/hrs	70/500

Notes:

ANURAG SHAH

QUALITY CONTROL MANAGER

www.skaps.com

www.espgeosynthetics.com

^{*} At the time of manufacturing. Handling may change these properties.

Product : GE240-15

II	DLL# METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
UI UI	NITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
TA	RGET	24.00	230	50	230	50	95	95	250
223	38.001	26.30	603	66	695	76	170	181	285
223	38,002	26.30	603	66	695	76	170	181	285
223	38.003	26.30	603	66	695	76	170	181	285
223	38.004	26.30	603	66	695	76	170	181	285
223	38.005	25.59	559	61	631	74	170	181	285
	38.006	25.59	559	61	631	74	170	181	285
223	38.007	25,59	559	61	631	74	170	181	285
223	800.8	25.59	559	61	631	74	170	181	285
223	38.009	25.59	559	61	631	74	170	181	285
223	38.010	26.41	612	69	652	79	165	175	282
223	38.011	26.41	612	69	652	79	165	175	282
223	38.012	26.41	612	69	652	79	165	175	282
223	38.013	26.41	612	69	652	79	165	175	282
	38.014	26.41	612	69	652	79	165	175	282
223	38.015	25.93	584	64	625	71	165	175	282
223	88.016	25.93	584	64	625	71	165	175	282
223	38.017	25.93	584	64	625	71	165	175	282
223	38.018	25.93	584	64	625	71	165	175	282
223	38.019	25.93	584	64	625	71	165	175	282
223	38.020	26.48	645	67	690	75	168	184	290
223	38.021	26.48	645	67	690	75	168	184	290
223	88.022	26.48	645	67	690	75	168	184	290
223	88.023	26.48	645	67	690	75	168	184	290
223	88.024	26.48	645	67	690	75	168	184	290
223	88.025	25.71	570	60	613	73	168	184	290
223	88.026	25.71	570	60	613	73	168	184	290
223	88.027	25.71	570	60	613	73	168	184	290
223	88.028	25.71	570	60	613	73	168	184	290
223	88.029	25.71	570	60	613	73	168	184	290
223	88.030	26.57	635	70	661	77	161	178	275
223	88.031	26.57	635	70	661	77	161	178	275
223	88.032	26.57	635	70	661	77	161	178	275
223	88.033	26.57	635	70	661	77	161	178	275

Product: GE240-15

	ROLL #	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
	UNITS	oz/sq yd	lbs.	%	ibs	%	lbs.	lbs	lbs.
	TARGET	24.00	230	50	230	50	95	95	250
	22388,034	26.57	635	70	661	77	161	178	275
-	22388,035	25.79	557	62	645	74	161	178	275
	22388.036	25.79	557	62	645	74	161	178	275
	22388.037	25.79	557	62	645	74	161	178	275
	22388.038	25.79	557	62	645	74	161	178	275
	22388.039	25.79	557	62	645	74	161	178	275
-	22388.040	26.69	627	68	671	80	175	180	283
	22388.041	26,69	627	68	671	80	175	180	283
	22388.042	26.69	627	68	671	80	175	180	283
	22388.043	26.69	627	68	671	80	175	180	283
-	22388.044	26.69	627	68	671	80	175	180	283
r -	22388.045	25.86	581	64	615	71	175	180	283
	22388.046	25.86	581	64	615	71	175	180	283
	22388.047	25.86	581	64	615	71	175	180	283
	22388.048	25,86	581	64	615	71	175	180	283
> -	22388.049	25.86	581	64	615	71	175	180	283
1.7	22388,050	26.55	600	66	699	76	167	177	279
	22388.051	26.55	600	66	699	76	167	177	279
	22388,052	26,55	600	66	699	76	167	177	279
	22388.053	26.55	600	66	699	76	167	177	279
	22388.054	26.55	600	66	699	76	167	177	279
	22388,055	25.91	568	61	602	74	167	177	279
	22388.056	25.91	568	61	602	74	167	177	279
	22388.057	25.91	568	61	602	74	167	177	279
	22388.058	25.91	568	61	602	74	167	177	279
	22388,059	25.91	568	61	602	74	167	177	279
	22388.060	27.00	617	69	688	79	171	185	287
	22388.061	27.00	617	69	688	79	171	185	287
	22388.062	27.00	617	69	688	79	171	185	287
	22388.063	27.00	617	69	688	79	171	185	287
5 -	22388.064	27.00	617	69	688	79	171	185	287
5	22388.065	25.50	556	63	612	72	171	185	287
	22388,066	25.50	556	63	612	72	171	185	287

Product : GE240-15

	ROLL # ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
	UNITS	oz/sqyd	lbs.	%	lbs	%	lbs.	lbs	lbs.
	TARGET	24.00	230	50	230	50	95	95	250
	22388,067	25,50	556	63	612	72	171	185	287
	22388,068	25,50	556	63	612	72	171	185	287
4	22388.069	25.50	556	63	612	72	171	185	287
	22388,070	26,59	626	67	644	75	160	179	276
	22388.071	26.59	626	67	644	75	160	179	276
	22388,072	26.59	626	67	644	75	160	179	276
	22388.073	26.59	626	67	644	75	160	179	276
5	22388.074	26.59	626	67	644	75	160	179	276
	22388.075	25.87	596	60	626	70	160	179	276
	22388.076	25,87	596	60	626	70	160	179	276
	22388.077	25.87	596	60	626	70	160	179	276
	22388.078	25.87	596	60	626	70	160	179	276
16	22388.079	25.87	596	60	626	70	160	179	276
, 0	22388.080	26.25	601	70	700	80	174	183	284
	22388.081	26.25	601	70	700	80	174	183	284
	22388.082	26.25	601	70	700	80	174	183	284
	22388.083	26.25	601	70	700	80	174	183	284
17	22388.084	26.25	601	70	700	80	174	183	284
	22388.085	25.94	579	65	619	74	174	183	284
	22388.086	25.94	579	65	619	74	174	183	284
	22388.087	25.94	579	65	619	74	174	183	284
	22388.088	25.94	579	65	619	74	174	183	284
18 -	22388.089	25.94	579	65	619	74	174	183	284
0	22388.090	26.75	613	68	673	77	164	176	281
	22388.091	26.75	613	68	673	77	164	176	281
	22388.092	26.75	613	68	673	77	164	176	281
	22388.093	26.75	613	68	673	77	164	176	281
12	22388.094	26.75	613	68	673	77	164	176	281
	22388.095	25.72	555	62	610	72	164	176	281
	22388,096	25.72	555	62	610	72	164	176	281
	22388.097	25.72	555	62	610	72	164	176	281
	22388.098	25.72	555	62	610	72	164	176	281
	22388.099	25.72	555	62	610	72	164	176	281

Product : GE240-15

	ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
	UNITS	oz/sqyd	lbs.	%	lbs	%	lbs.	lbs	lbs.
20	TARGET	24.00	230	50	230	50	95	95	250
_	22388,100	26,88	607	65	691	75	169	180	288
	22388,101	26.88	607	65	691	75	169	180	288
	22388.102	26.88	607	65	691	75	169	180	288
	22388.103	26.88	607	65	691	75	169	180	288
	22388.104	26.88	607	65	691	75	169	180	288
	22388.105	25.95	566	60	627	70	169	180	288
	22388.106	25.95	566	60	627	70	169	180	288
	22388.107	25.95	566	60	627	70	169	180	288
	22388.108	25.95	566	60	627	70	169	180	288
2 _	22388.109	25.95	566	60	627	70	169	180	288
	22388.110	26.96	643	69	674	78	162	178	277
	22388.111	26.96	643	69	674	78	162	178	277
	22388.112	26.96	643	69	674	78	162	178	277
	22388.113	26.96	643	69	674	78	162	178	277
23 _	22388.114	26,96	643	69	674	78	162	178	277
	22388.115	25.88	599	64	649	73	162	178	277
	22388.116	25.88	599	64	649	73	162	178	277
	22388.117	25.88	599	64	649	73	162	178	277
	22388.118	25.88	599	64	649	73	162	178	277
24 -	22388.119	25.88	599	64	649	73	162	178	277
- 1	22388.120	26.33	602	66	689	76	172	184	286
	22388.121	26.33	602	66	689	76	172	184	286
	22388.122	26.33	602	66	689	76	172	184	286
	22388.123	26.33	602	66	689	76	172	184	286
25 -	22388.124	26.33	602	66	689	76	172	184	286
	22388.125	25.74	578	61	609	71	172	184	286
	22388.126	25.74	578	61	609	71	172	184	286
	22388.127	25.74	578	61	609	71	172	184	286
	22388.128	25.74	578	61	609	71	172	184	286
26_	22388.129	25.74	578	61	609	71	172	184	286
	22388.130	26.98	625	68	678	80	167	175	280
	22388.131	26.98	625	68	678	80	167	175	280
	22388.132	26.98	625	68	678	80	167	175	280

	ROLL# ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
	UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
	TARGET	24.00	230	50	230	50	95	95	250
	22388.133	26.98	625	68	678	80	167	175	280
	22388,134	26,98	625	68	678	80	167	175	280
7	22388.135	25.96	565	65	646	75	167	175	280
	22388.136	25.96	565	65	646	75	167	175	280
	22388.137	25.96	565	65	646	75	167	175	280
	22388.138	25.96	565	65	646	75	167	175	280
_	22388.139	25.96	565	65	646	75	167	175	280
	22388.140	26.56	605	70	698	77	175	182	289
	22388.141	26.56	605	70	698	77	175	182	289
	22388.142	26.56	605	70	698	77	175	182	289
	22388.143	26.56	605	70	698	77	175	182	289
	22388.144	26.56	605	70	698	77	175	182	289
-	22388.145	25,82	553	63	630	70	175	182	289
	22388.146	25.82	553	63	630	70	175	182	289
	22388.147	25.82	553	63	630	70	175	182	289
	22388.148	25.82	553	63	630	70	175	182	289
	22388.149	25,82	553	63	630	70	175	182	289
-	22388.150	26.31	623	68	682	79	163	180	276
	22388,151	26.31	623	68	682	79	163	180	276
	22388.152	26.31	623	68	682	79	163	180	276
	22388.153	26.31	623	68	682	79	163	180	276
	22388.154	26.31	623	68	682	79	163	180	276
	22388.155	25.89	562	60	606	73	163	180	276
	22388.156	25.89	562	60	606	73	163	180	276
	22388.157	25.89	562	60	606	73	163	180	276
	22388.158	25.89	562	60	606	73	163	180	276
,	22388.159	25.89	562	60	606	73	163	180	276
	22388.160	26.92	633	65	693	75	168	185	287
	22388.161	26.92	633	65	693	75	168	185	287
	22388.162	26.92	633	65	693	75	168	185	287
	22388.163	26.92	633	65	693	75	168	185	287
_	22388.164	26.92	633	65	693	75	168	185	287
	22388.165	25.97	577	62	614	71	168	185	287

Product: GE240-15

	ROLL # ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
	UNITS	oz/sqyd	lbs.	%	lbs	%	lbs.	lbs	lbs.
	TARGET	24.00	230	50	230	50	95	95	250
	22388,166	25.97	577	62	614	71	168	185	287
	22388.167	25,97	577	62	614	71	168	185	287
	22388.168	25.97	577	62	614	71	168	185	287
	22388,169	25.97	577	62	614	71	168	185	287
-	22388.170	26.83	606	69	679	80	160	177	279
	22388.171	26.83	606	69	679	80	160	177	279
	22388.172	26.83	606	69	679	80	160	177	279
	22388,173	26,83	606	69	679	80	160	177	279
- 2	22388.174	26.83	606	69	679	80	160	177	279
	22388.175	25.56	571	60	601	74	160	177	279
- 0	22388.176	25.56	571	60	601	74	160	177	279
	22388.177	25.56	571	60	601	74	160	177	279
	22388.178	25.56	571	60	601	74	160	177	279
	22388.179	25.56	571	60	601	74	160	177	279
	22388.180	26.99	620	65	684	76	173	181	283
- 9	22388.181	26.99	620	65	684	76	173	181	283
	22388.182	26.99	620	65	684	76	173	181	283
	22388.183	26.99	620	65	684	76	173	181	283
	22388.184	26.99	620	65	684	76	173	181	283
	22388.185	25.83	552	63	611	72	173	181	283
	22388.186	25.83	552	63	611	72	173	181	283
	22388.187	25.83	552	63	611	72	173	181	283
	22388.188	25.83	552	63	611	72	173	181	283
3 -	22388.189	25,83	552	63	611	72	173	181	283
, _	22388.190	26.26	611	68	692	79	166	179	281
	22388.191	26.26	611	68	692	79	166	179	281
	22388.192	26.26	611	68	692	79	166	179	281
	22388.193	26.26	611	68	692	79	166	179	281
1-	22388.194	26.26	611	68	692	79	166	179	281
	22388.195	25.90	561	61	604	75	166	179	281
	22388.196	25.90	561	61	604	75	166	179	281
	22388.197	25.90	561	61	604	75	166	179	281
	22388.198	25.90	561	61	604	75	166	179	281

Product : GE240-15

	ROLL # ASTM METHOD	WEIGHT D5261	MD TENSILE D4632	MD ELONG D4632	XMD TENSILE D4632	XMD ELONG D4632	MD TRAP D4533	XMD TRAP D4533	PUNCTURE D4833
	UNITS	oz/sq yd	lbs.	%	lbs	%	lbs.	lbs	lbs.
	TARGET	24.00	230	50	230	50	95	95	250
40	22388,199	25.90	561	61	604	75	166	179	281
	22388,200	26,93	634	66	686	77	170	183	290
	22388.201	26.93	634	66	686	77	170	183	290
	22388,202	26.93	634	66	686	77	170	183	290
	22388.203	26.93	634	66	686	77	170	183	290
1)	22388.204	26.93	634	66	686	77	170	183	290
	22388.205	25.60	572	64	633	73	170	183	290
	22388.206	25.60	572	64	633	73	170	183	290
	22388.207	25.60	572	64	633	73	170	183	290
	22388.208	25.60	572	64	633	73	170	183	290
42 -	22388.209	25.60	572	64	633	73	170	183	290
, ,	22388.210	26.37	608	70	653	75	161	176	275
	22388.211	26,37	608	70	653	75	161	176	275
	22388.212	26.37	608	70	653	75	161	176	275
	22388.213	26,37	608	70	653	75	161	176	275
43	22388.214	26.37	608	70	653	75	161	176	275
	22388.215	25.84	550	62	603	70	161	176	275
	22388.216	25.84	550	62	603	70	161	176	275
	22388.217	25.84	550	62	603	70	161	176	275
	22388.218	25.84	550	62	603	70	161	176	275
44 _	22388.219	25.84	550	62	603	70	161	176	275
. 1	22388.220	26.47	650	67	665	78	174	180	284
	22388.221	26.47	650	67	665	78	174	180	284
	22388.222	26.47	650	67	665	78	174	180	284
	22388.223	26.47	650	67	665	78	174	180	284
43 -	22388.224	26.47	650	67	665	78	174	180	284
13	22388.225	25.61	574	60	621	74	174	180	284
	22388.226	25.61	574	60	621	74	174	180	284
	22388.227	25.61	574	60	621	74	174	180	284
	22388.228	25.61	574	60	621	74	174	180	284
-	. 22388.229	25.61	574	60	621	74	174	180	284
	22388.230	26.66	641	65	694	76	165	178	280
	22388.231	26.66	641	65	694	76	165	178	280

Product : GE240-15

	ROLL # ASTM METHOD UNITS	oz/sq yd	D4632 lbs.	D4632 %	XMD TENSILE D4632 lbs	D4632 %	D4533 lbs.	XMD TRAP D4533 Ibs	PUNCTURI D4833 lbs.
-	TARGET 22200 2CF	24.00	230	50	230	50	95	95	250
	22388.265 22388.266	25.51 25.51	551 551	60 60	600 600	72 72	172 172	181 181	283 283
	22388.267	25.51	551	60	600	72	172	181	283
		1					-		

GSE Roll Allocation

Order:

SO-068591

Customer:

Chenango Contracting

Project Name:

Chenango Stock

,	Roll#	Product Code	Mfg Date	Length	
10/3	130431059	GEO-240E-EBN-E-00	5/27/2012	150	
10/4	130431060	GEO-240E-EBN-E-00	5/27/2012	150	
10/4	130431061	GEO-240E-EBN-E-00	5/27/2012	150	
10/3	130431063	GEO-240E-EBN-E-00	5/27/2012	150	
10/4	130431065	GEO-240E-EBN-E-00	5/27/2012	150	
10/3	130431066	GEO-240E-EBN-E-00	5/27/2012	150	
,	130431068 ×	GEO-240E-EBN-E-00	5/27/2012	150	
10/3	130431076	GEO-240E-EBN-E-00	5/27/2012	150 —	GT-018

1245 Eastland Avenue Kingstree, SC 29556 Phone 843-382-4603 Fax 843-382-4604

Date: September 26, 2012

Project: # 68591 Chenango Stock

Ref: Ultraviolet (UV) Resistance

To Whom It May Concern:

The resistance of nonwoven needle punched geotextiles to ultraviolet light depends primarily on antioxident and carbon black package mixed with resin to prepare a formulation for fiber extrusion. As long as this formulation remains the same the UV resistance of a geotextiles does not change. Therefore, GSE performs UV testing only once per resin formulation. The testing is performed according to ASTM Test Method D 4355 and results are included on GSE geotextile specification sheet. Currently, all GSE geotextiles meet or exceed a value of 70% strength retained after 500 hours of UV exposure. GSE will meet or exceed this value for the referenced project.

Although GSE geotextiles are manufactured using one of the best available antioxident packages, we recommend covering the geotextiles within 15 days of exposure to direct Sunlight. This period does not include time during which geotextiles rolls remain on site covered in black shrink-wrap. Our recommendation is based on UV performance data published in technical literature indicating geotextile strength can decrease sharply after prolonged exposure to Sunlight.

Actual data from an independent laboratory can be supplied upon request.

Jane Allen

Laboratory Manager

19103 Gundle Road Houston, TX 77073 800 435 2008 • 281 443 8564 281 230 8650 Fax www.gseworld.com

November 13, 2012

Carl Burdick Chenango Contracting, Inc. 29 Arbutus Road Johnson City, NY

RE: Honeywell SCA

Certification of Compliance

The undersigned, being qualified and authorized to do so, hereby certifies that GSE 24 oz/yd² Nonwoven Geotextile produced for this project will meet or exceed the following properties or conditions:

 GSE geotextiles are composed of typically 98% virgin polypropylene or polyester staple fibers.

Sincerely,

Daniel E. Semanisin GSE Technical Support

cc: Patty Beaubien, GSE Lining Technology, Inc.

RECEIVED

Nov 19 2012

PARSONS

September 10, 2008

To Whom It May Concern:

Subject: "Needle free" Statement for GSE Nonwoven Geotextiles

GSE takes intensive process and quality control measures to ensure that our nonwoven needle punched geotextiles are free from broken needles or any other metal objects. We have two metal detection systems working in series to achieve this objective.

The first metal detector is placed between the fiber supply and the card. At this point any metal in the fiber supply is detected and prevented from passing on to the production line. The second system is located after the needle looms. This industrial strength magnetic system spans the entire width of the geotextile. Should a metal piece or a broken needle be detected by the system, an alarm alerts the operator. The contaminated part of the geotextile is eliminated by the operator.

With the above in place, GSE is confident that all our nonwoven products are needle free.

Sincerely,

Dino Heathcott Plant Manager

Mass per

ROLL TEST DATA REPORT

Report Date: Sep/26/2012

Sales Order No.	Customer Name	Project Location	Product Name	BOL Number
SO-068591	Chenango Contracting	Johnson City NY US	GEO-240E-EBN-E-00	
	Change Contracting			

Roll Number	Unit Area ASTM D5251 (oziydi)	ASTM D4632 Grab Strength (Iba) MD	ASTM D4632 Grab Strength (Ibs) TD	ASTM D4832 Grab Elongation (%) MD	ASTM D4632 Grab Elongelian (%) TD	D4533 Trapezoldal Tear (lbs) MD	D4533 Trapszoidal Tear (lbs) TD	Puncture Resistance ASTM D4233 (lbs)		
130431059	26.4	568	1012	136	119	376	409	379		
130431060	26.4	568	1012	136	119	376	409	379		
130431061	26.4	568	1012	136	119	376	409	379		
130431063	26.4	568	1012	136	119	376	409	379		
130431065	26.4	568	1012	136	119	376	409	379		
130431066	26.4	568	1012	136	119	376	409	379		
13043106B	26.4	568	1012	136	119	376	409	379		
130431076	26.4	568	1012	136	119	376	409	379		
	Z24 03	3/61	<u> > 230</u>	16		5 32	O		طا	

ASTM

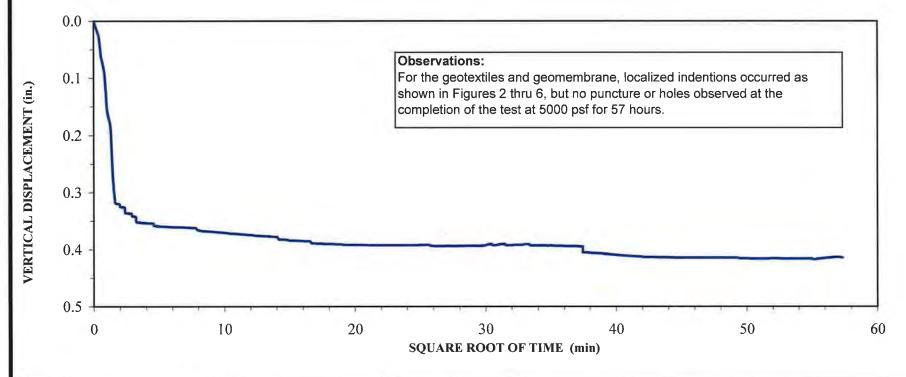
Laboratory Manager

APPENDIX G

Geosynthetic Conformance Test Results

- Puncture Testing
- Interface Friction
- Geomembrane
- Geotextile

Puncture Testing


PARSONS - ONONDAGA LAKE HYDROSTATIC PUNCTURE TESTING (ASTM D 5514 MODIFIED (1))

8" thick Granby Pit stone nominally compacted at as-received moisture content/

Exposed SKAPS GE240 NWGT deployed 25 May 12 (recovered from the project site with non heat-treated side down)/

Agru 60-mil Microspike HDPE geomembrane with long spike side down (recovered from the project site) /

3" thick subgrade soil compacted to approximately 95% of max. standard Proctor dry density at optimum moisture content

Test		Tes	st Specimen Size		Normal	Duration		Gravel		S	Subgrade Soi	1
	Length	Width	Gravel	Subgrade Soil	Stress							
			Thickness	Thickness			$\gamma_{ m d}$	$\omega_{\rm i}$	$\omega_{ m f}$	$\gamma_{ m d}$	$\omega_{\rm i}$	$\omega_{ m f}$
No.	(in.)	(in.)	(in.)	(in.)	(psf)	(hours)	(pcf)	(%)	(%)	(pcf)	(%)	(%)
6	12.0	12.0	8.0	3.0	5000	58				94.4	19.2	

NOTE: localized strains of the deformed geomembrane not calculated.

SGI TESTING SERVICES, LLC

DATE OF REPORT: 8/9/2012

FIGURE NO. A-6

PROJECT NO. SGI10043

DOCUMENT NO.

FILE NO.

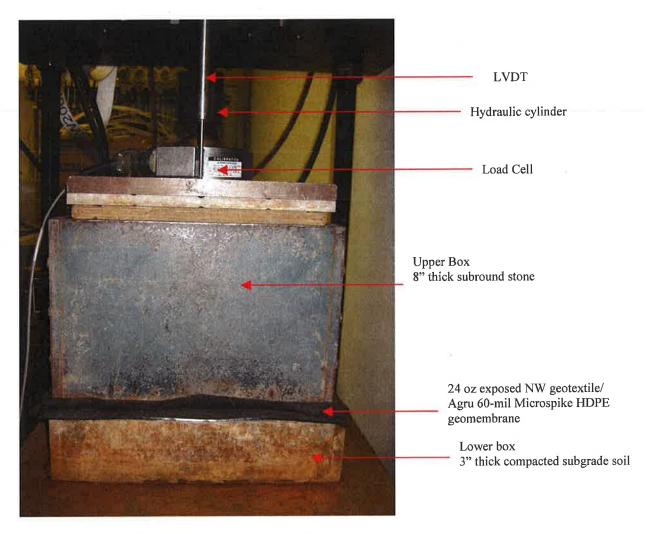


Figure 1. View of hydrostatic puncture test #6 setup.

Figure 2. View of stone in contact with the nonwoven geotextile after the completion of test.

Figure 3. "Prints" of stone on top surface of the nonwoven geotextile after the completion of test.



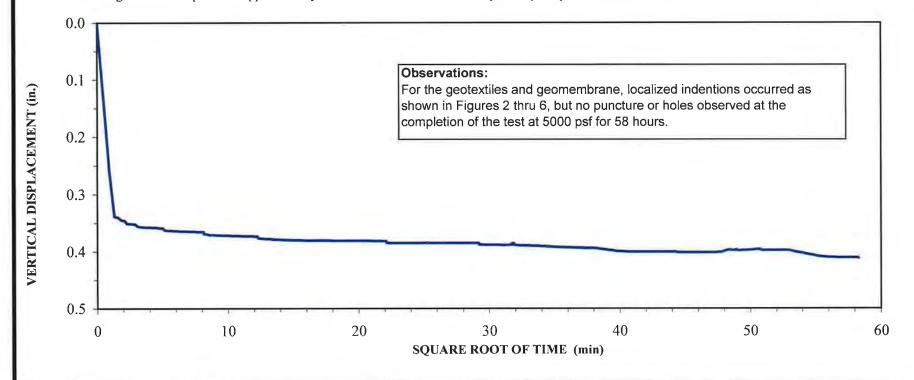
Figure 4. Deformed bottom surface of the geotextile.

Figure 5. Deformed top surface of the geomembrane (no punctures)

Figure 6. Deformed bottom surface of the geomembrane (no punctures)

Figure 7. Deformed top surface of subgrade soil

Figure 8. View of indentions on the deformed top surface of the geomembrane


PARSONS - ONONDAGA LAKE HYDROSTATIC PUNCTURE TESTING (ASTM D 5514 MODIFIED $^{(1)}$)

8" thick Lake Road Pit stone nominally compacted at as-received moisture content/

Exposed SKAPS GE240 NWGT deployed 25 May 12 (recovered from the project site with non heat-treated side down)/

Agru 60-mil Microspike HDPE geomembrane with long spike side down (recovered from the project site) /

3" thick subgrade soil compacted to approximately 95% of max. standard Proctor dry density at optimum moisture content

Test		Tes	st Specimen Size		Normal	Duration		Gravel		S	Subgrade Soi	I
Ш	Length	Width	Gravel	Subgrade Soil	Stress							
11		1.77	Thickness	Thickness			$\gamma_{ m d}$	$\omega_{\rm i}$	ω_{f}	γ _d	$\omega_{\rm i}$	$\omega_{ m f}$
No.	(in.)	(in.)	(in.)	(in.)	(psf)	(hours)	(pcf)	(%)	(%)	(pcf)	(%)	(%)
7	12.0	12.0	8.0	3.0	5000	58				93.7	18.5	

NOTE: localized strains of the deformed geomembrane not calculated.

SGI TESTING SERVICES, LLC

DATE OF REPORT: 8/9/2012

FIGURE NO. A-7

PROJECT NO. SGI10043

DOCUMENT NO.

FILE NO.

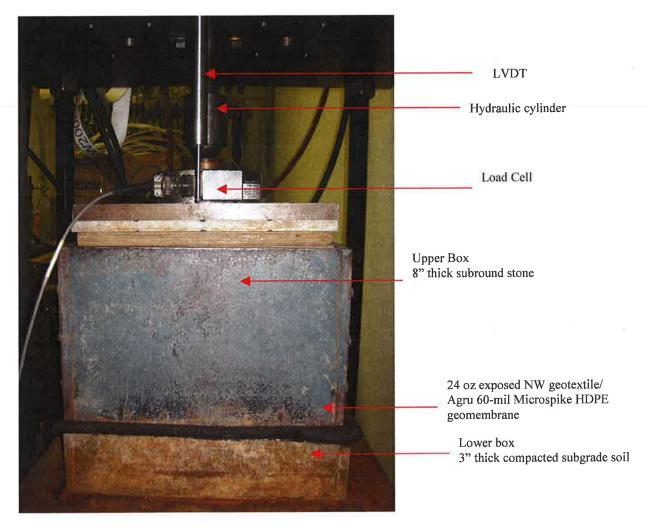


Figure 1. View of hydrostatic puncture test #6 setup.

Figure 2. View of stone in contact with the nonwoven geotextile after the completion of test.

Figure 3. "Prints" of stone on top surface of the nonwoven geotextile after the completion of test.

Figure 4. Deformed bottom surface of the geotextile.

Figure 5. Deformed top surface of the geomembrane (no punctures)

Figure 6. Deformed bottom surface of the geomembrane (no punctures)

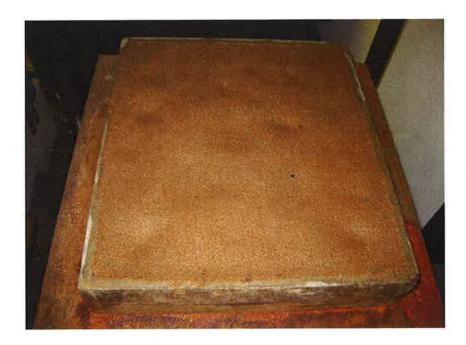


Figure 7. Deformed top surface of subgrade soil

1" diameter ball placed in an indention

Figure 8. View of indentions on the deformed top surface of the geomembrane

Interface Friction Testing

TABLE 1

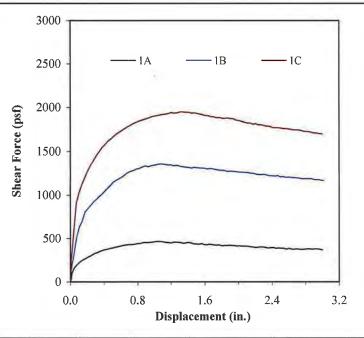
ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA Camillus, NY

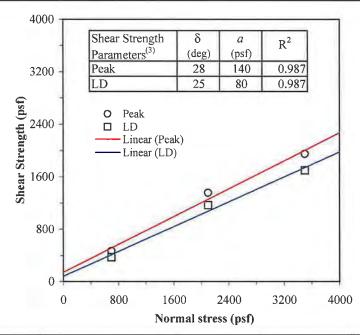
							SUMMA	RY OF	STR	ESSES	3				SUM	IMARY (F RESUL	ΓS
		REF			PEAK					LA	ARGE I	DISPLA	CEME	NT	PEA	.K	RESID	UAL
TESTED COMPONENTS	SHEAR	TEST			Norma	Stress (psi)			N	Iormal S	Stress (psi)					1
	RATE	No.	5	5	15	15	24	24	5	5	15	15	24	24	Adhesion	Friction	Adhesion	Friction
					Norma	Stress (psf)			N	Iormal S	Stress (psf)			Angle		Angle
			700	700	2,100	2,100	3,500	3,500	700	700	2,100	2,100	3.500	3,500				
					Shear	Stress					Shear	Stress						
Phase I			(psi)	(°)	(psi)	(°)	(psi)	(°)	(psi)	(°)	(psi)	(°)	(psi)	(0)	(psf)	(°)	(psf)	(°)
Gravel/24 oz Geotextile/60 mil HDPE/Mar. Clay	@ 0.04 in/min	C1	3.1	32.6	8.8	31.1	12.9	28.0	2.3	25.4	7.7	27.8	10.9	24.1	131	27	77	24
Gravel/24 oz Geotextile/60 mil HDPE/Blk Crk Cla	@ 0.04 in/min	C2	2.5	27.4	6.9	25.2	8.7	19.6	2.4	26.5	6.4	23.7	8.2	0.1	203	18	196	16
Phase II													5	7-7				
Gravel/24 oz Geotextile/60 mil HDPE/Mar. Clay	@ 0.04 in/min	C-1	3.2	33.5	9.4	32.8	13.5	29.1	2.6	27.8	8.1	29.0	11.8	0.2	142	28	82	25
														2 = 1				

Notes:

- (1) Apparent friction angles are calculated by taking the arctan of shear stress /normal stress.
- $\ensuremath{\mbox{(2)}}\ Large\ displacement\ shear\ strength\ using\ the\ shear\ force\ at\ the\ end\ of\ the\ test.$

Phase I used GSE geomembrane and non-woven geotextile with Marcellus and Black Creek low permeability soil.


GEOSYNTEC CONSULTANTS - ONONDAGA SCA PHASE 1 INTERFACE DIRECT SHEAR TESTING (ASTM D 5321)


Upper Shear Box: Drainage gravel nominally compacted/

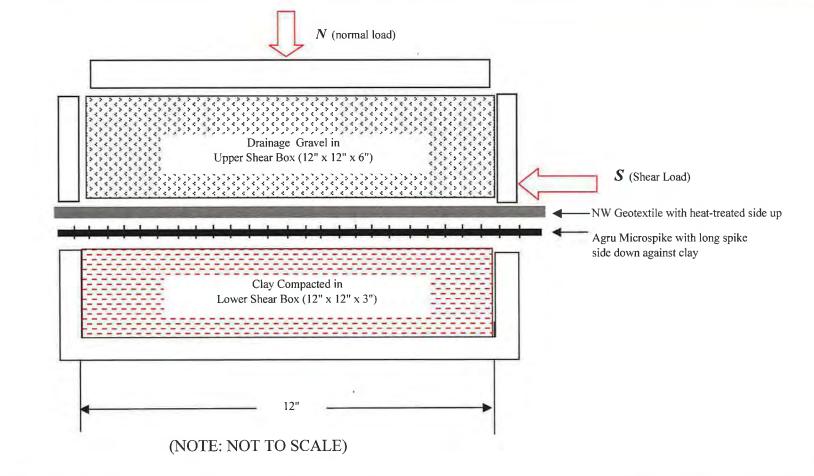
SKAPS GE240 (24 oz) nonwoven geotextile #22388.166 with heart-treated side up/

Agru 60-mil Microspike HDPE geomembrane # 443563-11 with dull (short spike) side up/

Lower Shear Box: Marcellus clay #LP-103 compacted to approximately 95% of max standard Proctor density at 3% wet of OMCY_{dmax} = 113 pcf OMC = 17.5%)

Test	Shear	Normal	Shear	Soa	king	Consol	lidation	Dra	inage Gr	avel		Clay		G	CL	Shear S	Strength	Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω_{i}	$\omega_{\rm f}$	γ _d	ω_{i}	ω_{f}	ω_{i}	ω_{f}	τ_{P}	$ au_{ ext{LD}}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
1A	12 x 12	700	0.004		- 16	700	24	-			107.4	20.4		*		464	369	(1)
1B	12 x 12	2100	0.004	-	1,9	2100	24	-	+	Ψ.	107.2	20.7	14	-	1.3	1355	1165	(1)
1C	12 x 12	3500	0.004		-14	3500	24	-	- 474		107.7	20.1	1.	~		1949	1695	(1)

NOTES:


- (1) Sliding occurred at the interface between the geomembrane and clay.
- (2) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

	DATE OF REPORT:	5/3/2012	
7	FIGURE NO.	C-1	
	PROJECT NO.	SGI11017	
	DOCUMENT NO.		
	FILE NO.		

SCHEMATIC DIAGRAM GEOSYNTEC CONSULTANTS - INTERFACE DIRECT SHEAR TESTING (ASTM D 5321) ONONDAGA SCA PHASE 1

The "sandwich" test, where GM and GT are not clamped, is to evaluate the shear strength of the weakest interface within the liner system. The weakest interface is the interface with the lowest PEAK shear strength within the 4-layer system.

DA	ATE:	5/3/2012
FIC	GURE NO.	5
PR	OJECT NO.	SGI11017.1
DC	CUMENT NO.	
FII	LE NO.	

Figure 1. Drainge gravel and 24 oz nonwoven geotextile at the completion of Test #1C (3500 psf)

Figure 2. Shear failure (sliding between the long spike side of Agru Microspike geomembrane and clay soil at the completion of Test #1C at 3500 psf.

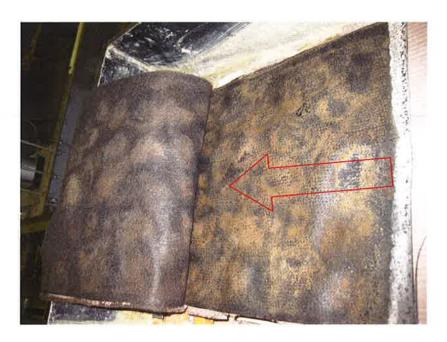


Figure 3. Contact surfaces between nonwoven geotextile and geomembrane at the completion of Test #1C at 3500 psf.



Figure 4. Deformed sgeomembrane and clay surfaces at the completion of Test #1C at 3500 psf.

Geomembrane

• 60-mil

Client:	Parson Engineering	
Project:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX Project No.:	10596	
Test Date:	11/07/11	
Tested By:	bfs	
Checked By:	jdt	

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Sample ID	Spec. #	Density, g/cm ³
Roll #443557 (GM-9)	1	0.9416
Black, 60 mil textured HDPE geomembrane	2	0.9411
Black, 60 mm textures flor 2 geometrisrane	3	0.9408
	AVG.	0.9412

Sample ID	Spec. #	Density, g/cm³
Roll #443683 (GM-10)	1	0.9418
Black, 60 mil textured HDPE geomembrane	2	0.9420
older, of his textared har a geometrial and	3	0.9419
	AVG.	0.9419

Comments:

23°C

Temperature:

REVIEWED BY
M. Fountain
PASS
NOV 08 2011

Client:	Parson Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	11/06/11	Checked By: bfs	

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID	Specimen Number	Carbon Black, %
Roll #443557 (GM-9)	1	2.41
Black, 60 mil textured HDPE	2	2.42
geomembrane	Average	2.42

Sample ID	Specimen Number	Carbon Black, %
Roll #443683 (GM-10)	1	2.56
Black, 60 mil textured HDPE	2	2.50
geomembrane	Average	2.53

	l .

Comments:

Client:	Parson Engineering			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By: bfs		
Test Date:	11/04/11	Checked By: jdt		

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID	Specimen Number	Category Ra Random Field o	
		R _r 1	R _t 2
Roll #443557 (GM-9) Black, 60 mil textured HDPE	1	1	1
	2	1	1
	3	1	1
geomembrane	4	1	1
geomembrane	5	1	1
	Average Lowest Quality Observed	1 1	1 1

Sample ID	Specimen Number	Category Rating Random Field of View		
		R _t 1	R _t 2	
Roll #443683 (GM-10)	. 1	1	1	
	2	1	1	
Black 60 mil toyturad UDBE	3	1	1	
Black, 60 mil textured HDPE	4	1	1	
geomembrane	5	1	1	
	Average Lowest Quality Observed	1	1	

Comments:

Method of preparation: Microtome

Client:	Parson Engineering			
Project Name:	Geosynthetic Testing			
Project Location;	Syracuse, NY			
GTX #:	10596	Tested By:	cwd	
Test Date:	11/07/11	Checked By:	bfs	
Sample ID:	Roll #443557 (GM-9)			
Sample Description:	Black, 60 mil textured	HDPE geomemb	rane	

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz
Presser Foot: cone point Loading Time: 5 seconds
Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils		
1	71.4		
2	75.7		
3	65.5		
4	70.5		
5	67.2		
6	72.4		
7	70.0		
8	69.6		
9	65.8		
10	68.0		
Average	69.6		
Standard Deviation	2.98		
Coefficient of Variation, %	4.28		

Comments:

M. Fountain PASS CAY NOV 08 2011

Client:	Parson Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	cwd
Test Date:	11/07/11	Checked By:	bfs
Sample ID:	Roll #443683 (GM-10	0)	
Sample Description:	Black, 60 mil texture	d HDPE geomemb	orane

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz
Presser Foot: cone point Loading Time: 5 seconds
Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils
1	66.0
2	66.8
3	67.5
. 4	67.8
5	74.0
6	70.2
7	71.7
8	70.9
9	66.6
10	64.9
Average	68.6
Standard Deviation	2.76
Coefficient of Variation, %	4.03

Comments:

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	ad
Test Date:	11/07/11	Checked By:	bfs
Sample ID:	Roll #443557 (GM-9)		
Description:	Black, 60 mil textured HDP	E geomembrane	

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123
Grip Separation: 2.5 in.

Testing Speed: Grips: 2.0 in./min.

Temperature, °F: 66.2 - 73.4

Dia Tunas

ATS pneumatic

Die Type: IV

			١	YIELD			BREAK	
Direction Specim Number	Specimen Thickness, mil	Tensile Stren	ngth,	Elongation,	Tensile St	rength,	Elongation	
	Walliset		ppi	psi	% /	ppi	psī	%
	1	62.9	164 / 2	601	19	205	3259	435 🗸
	2	60.5	163 / 2	691	18	203	3348	507 🗸
	3	65.8	165 / 2	2505	15	282	4283	491 🗸
	4	64.5	165 // 2	2561	21	237	3677	476
Standard	5	67.5	171 2	2528	22	249	3689	488
	Average	64.2	165 2	2577	19	235 🗸	3651	479
	Standard Deviation	2.69	3.09 7	3.06	2.7	33.0	402.2	27.2
	1	60.0	182	3033	14-	208	3477	600
	2	65.8	176 2	2668	18//	179	2723	523 V
	3	64.7	172 2	2666	15	195	3010	582
	4	66.4	176 2	2653	15//	196	2959	577 V
Cross Machine	5	66.5	184 2	2770	13	188	2824	529 🗸
	Average	64.7	178 2	2758	15	193	2999	562
	Standard Deviation	2.73	4.87 1	61.0	1.9	10.8	290.1	34.2

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch M. Fountain
PASS
NOV 08 2011

Client:	Parsons Engineering				
Project Name:	Geosynthetic Testing				
Project Location:	Syracuse, NY				
GTX #:	10596	-	Tested By:	ad	
Test Date:	11/07/11		Checked By:	bfs	
Sample ID:	Roll #443683 (GM-10)			
Description:	Black, 60 mil textured HDPE geomembrane				

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.
Temperature, F: 66.2 - 73.4

Grips:

ATS pneumatic

Die Type:

IV

				YIELD			BREAK	
Direction	Specimen Thickness, mil	Tensile S	trength,	Elongation,	Tensile St	rength,	Elongation	
			ppi	psi	% /	ppi /	psi	%
	1	63.3	163	2581	21 /	240 /	3796	486 V
	2	62.1	163 v	2628	18 //	218	3504	461 V
	3	68.0	156	2301	17	211	3104	444
	4	65.5	169	2574	19	211	3225	435
Machine	5	63.6	160 🗸	2522	15	210	3300	488 🖍
Standar	Average	64.5	162	2521	18	218	3386	463
	Standard Deviation	2.31	4.45	128.8	2.2	12.8	271.3	24.0
	1	63.3	182	2869	14	194	3070	581 V
	2	61.0	181	2972	13.	207	3390	598 🗸
	3	71.4	179	2500	13/	1891	2650	534
	4	68.0	169	2492	14/	178	2611	525
Cross Machine	5	66.6	172	2585	18/	180	2704	572
	Average	66.1	177	2684	14	190	2885	562 4
	Standard Deviation	4.06	5.50	222.2	2.1	11.8	336.1	31.3

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch M. Fountain

OFF

NOV 08 2011

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	11/04/11	Checked By: bfs	
Sample ID:	Roll #443557 (GM-9)		
Description:	Black, 60 mil textured HDI	PE geomembrane	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs
1	149
2	133
3	160
4	160
5	148
Average	150
Standard Deviation	11.2
Coefficient of Variation, %	7.44

Comments:

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	11/04/11	Checked By: bfs	
Sample ID:	Roll #443683 (GM-10)		
Description:	Black, 60 mil textured HDI	PE geomembrane	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, Ibs
1	152
2	146
3	142
4	143
5	141
Average	145
Standard Deviation	4.19
Coefficient of Variation, %	2.90

Comments:

Client:	Parson Engineering		
Project Name:	Geosynthetic Testin	g	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	bfs
Test Date:	11/07/11	Checked By:	jdt
Sample ID:	Roll #443557 (GM-9	9)	
Description:	Black, 60 mil textur	ed HDPE geomembrane	

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Machine Direction	
Specimen Humber	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, Ib
1	67.7	64	69.2	65
2	63.3	60	67.4	62
3	69.0	64	73.4	61
4	72.8	63	68.1	57
5	68.8	58	69.2	57
6	70.6	59	68.8	61
7	66.6	56	67.2	58
8	68.2	64	65.1	56
9	70.1	61	70.8	62
10	72.5	64	69.0	58
Average	68.9	61	68.8	60
Standard Deviation	2.82	2.8	2.21	3.0

Comments:

Client:	Parson Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	bfs
Test Date:	11/07/11	Checked By:	jdt
Sample ID:	Roll #443683 (GM-10	0)	
Description:	Black, 60 mil texture	d HDPE geomembrane	2

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib
1	67.4	64	72.2	56
2	68.9	59	68.8	62
3	65.9	57	65.1	66
4	65.7	57	68.1	55
5	67.1	63	71.1	58
6	71.2	64	75.1	56
7	66.6	62	64.2	63
8	71.1	64	75.3	62
9	72.6	63	71.2	54
10	68.2	54	68.5	59
Average	68.5	61	70.0	59
Standard Deviation	2.43	3.7	3.76	4.0

Comments:

Client:	Parsons Engineering
Project:	Onondaga Lake Sediment Consolidation Area - Phase 2
Project Location:	Syracuse, NY
GTX Project No.:	11644
Test Date:	03/29/12
Tested By:	ad
Checked By:	bfs

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

GM-12

G11-13

G88-14

Sample ID	Spec. #	Density, g/cm ³
Roll #311337-12	1	0.9417
Black, microspike 60 mil HDPE	2	0.9419
geomembrane	3	0.9419
	AVG.	0.9418
Sample ID	Spec. #	Density, g/cm ³
Roll #311558-12	1	0.9427
Black, microspike 60 mil HDPE	2	0.9427
geomembrane	3	0.9427
	AVG.	0.9427
Sample ID	Spec. #	Density, g/cm³
Roll #311680-12	1	0.9430
Black, microspike 60 mil HDPE	2	0.9432
geomembrane	3	0.9433
	AVG.	0.9432

Comments:

Temperature: 23° C

2 0.94 g/cm3

AIK.

30 Mach 12

Client:	Parsons Engineer	ing
Project Name:	Onondaga Lake S	ediment Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	03/28/12	Checked By: bfs

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID (30)-12	Specimen Number	Carbon Black, %
Roll #311337-12	1	2.28
Black, microspike 60 mil HDPE	2	2.24
geomembrane	Average	2.26 —

Sample ID GM-13	Specimen Number	Carbon Black, %
Roll #311558-12	1	2.33
Black, microspike 60 mil HDPE	2	2.30
geomembrane	Average	2.32

Sample ID GM-14	Specimen Number	Carbon Black, %
Roll #311680-12	1	2.32
Black, microspike 60 mil HDPE	2	2.29
geomembrane	Average	2.31 -

Comments:

2+03%

DUB

Client: Parsons Engineering
Project Name: Onondaga Lake Sediment Consolidation Area - Phase 2
Project Location: Syracuse, NY
GTX #: 11644 Tested By: bfs
Test Date: 03/28/12 Checked By: jdt

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID GM-12	Specimen Number	Category Rating Random Field of View		
GI'I TO		R _f 1	R _f 2	
	1	1	1	
Roll #311337-12	2	1	1	
	3	1	1	
Black, microspike 60 mil HDPE	4	1	1	
geomembrane	5	1	1	
	Average	1	1	
	Lowest Quality Observed	1	1	

Sample ID GM-13	Specimen Number	Category Rating Random Field of View		
Sample 18 GIV		R _f 1	R _f 2	
	1	1	1	
Roll #311558-12	2	1	1	
	3	1	1	
Black, microspike 60 mil HDPE	4	1	1	
geomembrane	5	1	1	
	Average	1	1	
	Lowest Quality Observed	1	1	

Sample ID AM-14	Specimen Number	Category Rating Random Field of View		
Girt		R _f 1	R _f 2	
	1	1	1	
Roll #311680-12	2	1	1	
	3	1	1	
Black, microspike 60 mil HDPE	4	1	1	
geomembrane	5	1	1	
	Average	1	1 \	
	Lowest Quality Observed	1	1	

Comments:

Method of preparation: Microtome

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sed	ment Consolidatio	n Area - Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/27/12	Checked By:	bfs
Sample ID:	Roll #311337-12	GM-12	
Sample Description:	Black, microspike 60	mil HDPE geomer	mbrane

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils
1	69.4
2	69.6
3	67.9
4	68.7
5	66.4
6	66.3
7	65.9
8	65.6
9	61.8
10	62.4
Average	66.4
Standard Deviation	2.55
Coefficient of Variation, %	3.84

Comments:

60 MARV

32 March 12

Client: Parsons Engineering Onondaga Lake Sediment Consolidation Area - Phase 2 Project Name: Project Location: Syracuse, NY Tested By: ad 11644 GTX #: Checked By: bfs Test Date: 03/27/12 Roll #311337-12 GM-12 Sample ID: Black, microspike 60 mil HDPE geomembrane Description:

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed: 2.0 in./min.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature, F: 66.2 - 73.4

Die Type:

IV

				YIELD			BREAK		
Direction	Specimen Thickness, mil	Tensile Strength,		Elongation,	Tensile Strength,		Elongation		
	Number		ppi	psi	%	ppi	psi	%	
	1	67.4	159	2358	19	176	2611	414	
	2	67.7	158	2336	17	193	2845	419	
	3	62.0	151	2437	21	191	3090	423	
	4	65.5	158	2412	18	181	2759	421	
Machine	5	66.6	165	2481	15	184	2766	415	
A	Average	65.8	√ 158	2405	√ 18	√ ₁₈₅	2814	4 418	
	Standard Deviation	2.33	5.00	58.71	2.2	7.08 175.9	175.9	3.85	
	1	66.1	172	2605	15	171	2584	505	
	2	67.6	167	2477	13	172	2546	503	
	3	63.9	162	2543	14	166	2593	510	
	4	63.5	164	2580	13	162	2556	506	
Cross Machine	5	65.0	166	2547	13	178	2731	543	
	Average	65.2	/ 166	2551	J 14	170	2602	✓ 513	
	Standard Deviation	1.68	3.82	48.28	0.9	5.91	74.60	16.7	

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in.

ppi = pounds per inch
psi = pounds per square inch

> 9016/in

1000

break

126 lb/in

120.

yield

PR

Client:	Parsons Engineering			
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	03/28/12	Checked By:	bfs	
Sample ID:	Roll #311337-12	6M-12		
Description:	Black, microspike 60 mil HDPE geomembrane			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Caralina an Normhan	Machine	Direction	Cross Machine Direction	
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, It
1	67.8	61	67.4	61
2	67.3	64	66.4	58
3	66.9	64	66.8	62
4	67.2	61	66.9	62
5	66.7	61	68.6	58
6	69.7	65	69.5	62
7	68.4	60	65.9	57
8	62.8	58	63.8	56
9	64.7	59	62.3	53
10	61.8	56	64.3	56
Average	66.3	61	66.2	58 🗸
Standard Deviation	2.48	3.0	2.21	3.0

Comments:

>42

Client:	Parsons Engineering	
Project Name:	Onondaga Lake Sedime	nt Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	03/30/12	Checked By: bfs
Sample ID:	Roll #311337-12 AM	-12
Description:	Black, microspike 60 m	

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs	
1	138	
2	137	
3	150	
4	141	
5	136	
Average	140	
Standard Deviation	5.91	
Coefficient of Variation, %	4.21	

Comments:

790 lb

1005

Client:	Parsons Engineerir	ng	
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/27/12	Checked By:	bfs
Sample ID:	Roll #311558-12	GM-13	
Sample Description:	Black, microspike	60 mil HDPE geomei	mbrane

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils	
1	67.3	
2	74.1	
3	70.0	
4	69.1	
5	66.0	
6	65.4	
7	60.4	
8	64.4	
9	63.0	
10	63.6	
Average	66.3	
Standard Deviation	3.75	
Coefficient of Variation, %	5.66	

Comments:

60 Mar

DOB

Client: Parsons Engineering Project Name: Onondaga Lake Sediment Consolidation Area - Phase 2 Project Location: Syracuse, NY Tested By: ad GTX #: 11644 Checked By: bfs Test Date: 03/27/12 Roll #311558-12 4M-13 Black, microspike 60 mil HDPE geomembrane Sample ID: Description:

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature, °F: 66.2 - 73.4

Die Type:

			YIELD			BREAK		
Direction	Specimen Thickness, mil	Thickness, mil	Tensile Strength,		Elongation,	Tensile Strength,		Elongation
	Number		ppi	psi	%	ppi	psi	%
	1	70.7	168	2374	18	207	2922	461
	2	71.9	170	2364	18	206	2868	465
	3	69.4	168	2417	15	185	2670	466
	4	65.7	152	2316	19	204	3107	436
Machine	5	63.8	146	2291	17	196	3072	430
Sta	Average	68.3	√ 161	2352	✓ 17	, 200	2928	, 452
	Standard Deviation	3.45	10.9	49.60	1.5	9.09	175.4	17.2
	1	59.9	164	2738	14	169	2817	529
	2	68.5	177	2590	13	183	2669	526
	3	65.0	179	2757	17	177	2722	494
	4	69.3	179	2578	13	214	3083	608
Cross Machine	5	64.4	167	2594	17	190	2956	593
	Average	65.4	/ 173	2651	. 15	- 186	2849	- 550
	Standard Deviation	3.74	7.16	88.25	2.0	17.2	170.4	48.4

Comments:

yield gauge length = 1.3 in.

break gauge length = 2.0 in.

ppi = pounds per inch psi = pounds per square inch > 9016/in

126 16/m

12%

Client:	Parsons Engineering			
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	03/28/12	Checked By:	bfs	
Sample ID:	Roll #311558-12	GM-13		
Description:	Black, microspike 6	0 mil HDPE geomembrane		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Considerant Number	Machine	Direction	Cross Machine Direction	
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, It
1	64.2	60	62.8	59
2	66.3	58	62.5	58
3	64.0	61	66.6	60
4	65.0	60	65.9	59
5	65.9	58	65.1	56
6	66.0	61	64.2	60
7	70.1	64	70.0	62
8	70.0	64	71.2	65
9	69.9	60	67.5	62
10	69.5	67	66.1	58
Average	67.1	61	66.2	60 -
Standard Deviation	2.51	2.7	2.84	2.5

Comments:

Client:	Parsons Engineering	
Project Name:	Onondaga Lake Sediment Co	nsolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	03/30/12	Checked By: bfs
Sample ID:	Roll #311558-12 6M-13	
Description:	Black, microspike 60 mil HDP	E geomembrane

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, Ibs
1	152
2	146
3	143
4	147
5	136
Average	145 🗸
Standard Deviation	5.99
Coefficient of Variation, %	4.13

Comments:

2 90 lbs

M

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/27/12	Checked By:	bfs
Sample ID:	Roll #311680-12	GM-14	
Sample Description:	Black, microspike 60 mil HDPE geomembrane		

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo [

Mitutoyo Digimatic Indicator, Model #: IDC-112E

Pressure: 2.0 oz

Presser Foot:

cone point

Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils
1	69.3
2	67.6
3	66.5
4	64.9
5	69.6
6	71.0
7	69.1
8	69.0
9	66.6
10	64.2
Average	67.8 _
Standard Deviation	2.09
Coefficient of Variation, %	3.08

Comments:

60 Marce

. DOB

Client: Parsons Engineering Onondaga Lake Sediment Consolidation Area - Phase 2 Project Name: Project Location: Syracuse, NY Tested By: ad GTX #: 11644 03/27/12 Checked By: bfs Test Date: Sample ID: Roll #311680-12 Black, microspike 60 mil HDPE geomembrane Description:

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123 Testing Speed: 2.0 in./min. Grip Separation: 2.5 in. Grips: ATS pneumatic

Temperature, °F: 66.2 - 73.4 Die Type:

			YIELD			BREAK		
Direction Specimen Number	Thickness, mil	Tensile S	Strength,	Elongation,	Tensile :	Strength,	Elongation	
	Number		ppi	psi	%	ppi	psi	%
	1	67.7	171	2527	19	196	2889	426
	2	68.0	171	2515	17	206	3027	421
	3	72.4	181	2497	18	200	2757	420
	4	68.0	164	2419	21	191	2804	408
Machine	5	69.5	167	2398	18	194	2797	407
Average Standard Deviation	69.1	171	2471	~ 19	1 97	2855	416	
		1.97	6.25	58.48	1.5	5.73	107.7	8.44
·	1	71.4	170	2385	13	184	2583	549
	2	71.6	182	2546	13	176	2463	481
	3	70.3	183	2603	17	186	2645	508
	4	68.9	175	2541	17	170	2476	494
Cross Machine	5	69.9	180	2579	15	173	2479	486
	Average	70.4	/ 178	2531	15	178	2529	/ 504
	Standard Deviation	1.13	5.40	85.28	2.0	6.82	80.82	27.4

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in.

ppi = pounds per inch

psi = pounds per square inch

90 16/in 1007. break 126 16/in 12% yield

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2		
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	03/28/12	Checked By:	bfs
Sample ID;	Roll #311680-12	GM-14	
Description:	Black, microspike 60 mil HDPE geomembrane		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

	Machine	Direction	Cross Machine Direction	
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, It
1	68.9	67	66.5	65
2	69.5	64	67.7	63
3	66.8	65	63.3	65
4	71.8	65	65.1	60
5	70.5	67	69.5	66
6	70.3	67	68.0	68
7	69.5	69	68.5	68
8	67.0	63	64.8	63
9	64.3	63	68.2	62
10	68.6	62	72.0	65 -
Average	68.7	65 -	67.3	65
Standard Deviation	2.18	2.2	2.53	2.6

Comments:

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sed	Onondaga Lake Sediment Consolidation Area - Phase 2	
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By: ad	
Test Date:	03/30/12	Checked By: bfs	
Sample ID:	Roll #311680-12 GM-JH		
Description:	Black, microspike 60 mil HDPE geomembrane		

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, lbs
1	151
2	154
3	158
4	151
5	148
Average	153 🐱
Standard Deviation	4.01
Coefficient of Variation, %	2.63

Comments:

2 90 lbs

DOK

Client:	Parsons Engineering
Project:	Onondaga Lake Sediment Consolidation Area - Phase 2
Project Location:	Syracuse, NY
GTX Project No.:	11644
Test Date:	04/18/12
Tested By:	bfs
Checked By:	gtt

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Sample ID 6M·15	Spec. #	Density, g/cm³
Roll #312105-12	1	0.9417
Black, microspike 60 mil HDPE	2	0.9417
geomembrane	3	0.9418
	AVG.	0.9418
Sample ID GM-16	Spec. #	Density, g/cm ³
Roll #312227-12	1	0.9420
Black, microspike 60 mil HDPE geomembrane	2	0.9421
	3	0.9419
	AVG.	0.9420

Comments:

Temperature: 23° C

> 0 94 4/4° DWH

Client:	Parsons Engineering Onondaga Lake Sediment Consolidation Area - Phase Syracuse, NY	
Project Name:		
Project Location:		
GTX #;	11644	Tested By: ad
Test Date:	04/18/12	Checked By: bfs

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID 6M-15	Specimen Number	Carbon Black, %
Roll #312105-12	1	2.25
Black, microspike 60 mil HDPE	2	2.26
geomembrane	Average	2.25

Sample ID GM-16	Specimen Number	Carbon Black, %
Roll #312227-12	1	2,29
Black, microspike 60 mil HDPE	2	2.28
geomembrane	Average	2.28

Comments:

2+3%

DWY

Client:	Parsons Engineering	ng
Project Name:	Onondaga Lake Se	diment Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: bfs
Test Date:	04/18/12	Checked By: gtt

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID 6M-15	Specimen Number		y Rating eld of View	
ØII**		R _t 1	R ₁ 2	
Roll #312105-12	1	1	1	
	2	1	1	
Black, microspike 60 mil HDPE	3	1	1	
geomembrane	4	1	1	
geomembrane	5	1	1	
	Average	1	1	
	Lowest Quality Observed	1	1	

Sample ID MAN	Specimen Number	Category Random Fie	Rating ld of View	
Cu		R _f 1	R/2	
	1	1	1	
Roll #312227-12	2	1	1	
Black, microspike 60 mil HDPE	3	1	1	
geomembrane	4	1	1	
geomembrane	5	1	1	
	Average	1	1	
	Lowest Quality Observed	1	1	

Comments:

Method of preparation: Microtome

9 00- 10 CAT/022 TW.

Client:	Parsons Engineering Onondaga Lake Sediment Consolidation Area - Phase 2 Syracuse, NY				
Project Name: Project Location:					
GTX #:	11644	Tested By:	ad		
Test Date:	04/16/12	Checked By:	bfs		
Sample ID: Sample Description:	Roll #312105-12 Black, microspike 60	6M-15			

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-Inch-diameter

Measurement Number	Thickness, mils
1	65.6
2	66.4
3	68.5
4	66.8
5	67.4
6	69.2
7	68.1
8	68.3
9	67.3
10	64.7
Average	67.2
Standard Deviation	1.33
Coefficient of Variation, %	1.97

Comments:

60 MARV

DWF

Client:	Parsons Engineering				
Project Name: Project Location:	Onondaga Lake Sediment Consolidation Area - Phase 2 Syracuse, NY				
GTX #:	11644	Tested By:	ad		
Test Date:	04/16/12	Checked By:	bfs		
Sample ID:	Roll #312227-12	6M-15	010		
Sample Description:	Black, microspike 6		mbrane		

Measurement of the Core Thickness of Textured Geomembranes by ASTM D 5994

Testing Machine: Mitutoyo Digimatic Indicator, Model #: IDC-112E Pressure: 2.0 oz

Presser Foot: cone point Loading Time: 5 seconds

Specimen Size: 2-inch-diameter

Measurement Number	Thickness, mils
1	65.3
2	67.0
3	67.6
4	66.0
5	67.5
6	66.6
7	65.0
8	65.8
9	67.2
10	66.1
Average	66.4
Standard Deviation	0.85
Coefficient of Variation, %	1.28

Comments:

60 MAIZY Suff

Client:	Parsons Engineering			
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2			
Project Location:	Syracuse, NY			
GTX #:	11644	Tested By:	ad	
Test Date:	04/17/12	Checked By:	bfs	
Sample ID:	Roll #312105-12 6M-15			
Description:	Black, microspike 60 mil HDPE	geomembrane		

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./mln.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature,°F: 66.2 - 73.4 Die Type:

				YIELD			BREAK	
Direction	Specimen Thickness, mil	Tensile	Strength,	Elongation,	Tensile	Strength,	Elongation	
			ppl	psi	%	ppi	psi	%
	1	64.8	151	2326	17	194	3001	443
	2	65.2	156	2398	18	193	2953	420
	3	69.0	163	2368	17	191	2773	468
	4	68.8	164	2392	18	198	2881	489
Machine	5	65.4	153	2346	17	188	2872	425
	Average	66.6	158	2366	17	193	2896	449
	Standard Deviation	2.07	6.08	30.42	0.5		86.6	29.21
	1	67.5	172	2545	14	186	2756	548
	2	66.3	166	2505	13	186	2806	555
	3	66.5	177	2658	15	182	2732	522
	4	60.9	174	2863	13	191	3137	564
Cross Machine	5	66.7	177	2662	13	187	2812	544
	Average	65.6	173	2646	14	186	2849	547
	Standard Deviation	2.67	4.59	139.16	0.9	3.30	164.68	15.7

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 ln.

ppi = pounds per inch psi = pounds per square inch

>90

7/26

Client:	Parsons Engineering				
Project Name: Project Location:	Onondaga Lake Sediment Consolidation Area - Phas Syracuse, NY				
GTX #:	11644	Tested By:	ad		
Test Date:	04/17/12	Checked By:	bfs		
Sample ID: Description:	Roll #312105-12 Black, microspike 60	MI HDPE geomembra			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004 constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Mach	ine Direction
-p	Thickness, mil	Tear Resistance, Ib	Thickness, mll	Tear Resistance, It
1	63.7	64	65.7	63
2	62,7	62	65.0	59
3	64.9	62	66.4	59
4	67.6	60	65.9	59
5	63.8	60	68.9	58
6	66.1	64	69.5	66
7	66.6	64	67.2	61
8	69.7	66	66.5	58
9	64.1	58	65.2	60
10	65.7	58	61.3	57
Average	65.5	62	66.2	60
Standard Deviation	2.11	2.8	2.26	2.5

Comments:

>42 43

D0#

Client:	Parsons Engineerin	g
Project Name:	Onondaga Lake Sediment Consolidation Area - Phase 2	
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	04/16/12	Checked By: bfs
Sample ID:	Roll #312105-12	6M-15
Description:	Black, microspike 6	50 mil HDPE geomembrane

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

Specimen Number	Puncture Resistance, Ibs
1	137
2	149
3	149
4	148
5	145
Average	146
Standard Deviation	5.03
Coefficient of Variation, %	3.46

Comments:

790 B DUA

Client:	Parsons Engineering		
Project Name:	Onondaga Lake Sediment Cor	solidation Area -	Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	04/17/12	Checked By:	bfs
Sample ID:	Roll #312227-12 6M-16	,	
Description:	Black, microspike 60 mil HDPI	E geomembrane	

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./min.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature, F: 66.2 - 73.4 Die Type:

				YIELD			BREAK	
Direction	Specimen Number	Thickness, mil	Tensile :	Strength,	Elongation,	Tensile	Strength,	Elongation
	Number		ppi	psi	%	ppi	psi	%
	1	65.2	156	2396	18	193	2963	423
	2	63.5	155	2441	18	185	2913	424
	3	65.9	152	2308	17	190	2887	440
	4	66.8	152	2277	17	185	2767	420
Machine	5	68.8	159	2317	18	204	2967	462
	Average	66.0	155	2348	18	191	2899	434
	Standard Devlation	1.96	3.11	68.12	0.5	7.94	81.1	17.58
	1	67.2	169	2517	17	169	2515	516
	2	60.5	169	2787	13	174	2869	522
	3	68.0	167	2453	13	168	2469	533
	4	67.0	166	2474	13	170	2537	528
Cross Machine	5	69.8	169	2427	13	175	2508	547
	Average	66.5	168	2532	14	171	2580	529
	Standard Deviation	3.52	1.59	146.62	1.8	3.06	163.77	11.8

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in.

100

DUTT

ppi = pounds per inch psi = pounds per square inch

Cllent:	Parsons Engineering	ng	
Project Name:	Onondaga Lake Se	ediment Consolldation Area -	Phase 2
Project Location:	Syracuse, NY		
GTX #:	11644	Tested By:	ad
Test Date:	04/17/12	Checked By:	bfs
Sample ID:	Roll #312227-12	GM-16	
Description:	Black, microspike	60 mil HDPE geomembrane	

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004 constant rate of extension (CRE) tensile testing machine

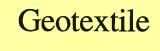
Specimen Number	Machine	Direction	Cross Mach	Ine Direction
opecinien Number	Thickness, mll	Tear Resistance, Ib	Thickness, mil	Tear Resistance, Ib
1	65.7	63	65.3	62
2	68.7	63	66.1	60
3	66.0	60	67.0	58
4	65.0	61	64.0	56
5	66.1	60	67.9	58
6	67.6	62	69.8	64
7	66.9	58	66.8	61
8	65.7	60	67.7	62
9	67.5	58	69.5	60
10	66.4	57	69.3	60
Average	66.5	60	67.3	60
Standard Deviation	1.13	2.1	1.89	2.3

Comments:

> 4/2 LB

JWH

Client:	Parsons Engineering	
Project Name:	Onondaga Lake Sedin	nent Consolidation Area - Phase 2
Project Location:	Syracuse, NY	
GTX #:	11644	Tested By: ad
Test Date:	04/16/12	Checked By: bfs
Sample ID:	Roll #312227-12	M-16
Description:	Black, microspike 60	mil HDPE geomembrane


Testing Machine: Instron 1000 Testing Speed: 12 in/min
Clamping Method: Circular Clamp Attachment

Specimen Number	Puncture Resistance, Ibs
1	141
2	148
3	149
4	142
5	144
Average	145
Standard Deviation	3.49
Coefficient of Variation, %	2.41

Comments:

> 90 13

DOM

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	01/02/12	Checked By: jdt
Sample ID:	Roll #22388.1 (GT-007)	E GT-013
Description:	Black, nonwoven geotextile	a 01 010

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	26.3	893
2	25.4	863
3	25.2	855
4	23.9	811
5	25.7	870
Average	25.3	858
Standard Deviation	0.89	30.2

Comments:

Specimen Size, in: 4 inch x 8 inch

724 03/482

MB

2/9/12 DW

Client:	Parsons Engineering Scie	ence
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	02/01/12	Checked By: jdt
Sample ID:	Roll #22388.1 (GT-007)	F GT-013
Description:	Black, nonwoven geotex	tile

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 3 in Grips: Curtis "Geo" Grip
Maximum Obtainable Load: 2500 lb Padding: --Condition: dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	598	142	637	133
2	621	133	783	130
3	576	121	620	125
4	598	125	650	134
5	616	122	632	135
6	632	128	591	127
7	547	134	640	124
8	621	127	672	127
9	595	124	789	138
10	664	127	716	124
Average	J 607	128	✓ 673	130
Standard Deviation	31.9	6.40	67.9	5.03
Coefficient of Variation, %	5.26	4.98	10.1	3.88

Comments:

>230 lb

DIB

DW 2/9/12

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY Tested By: bfs GTX #: 10596 Checked By: jdt Test Date: 02/01/12 Sample ID: Roll #22388.1 (GI-007) GT-13 Black, nonwoven geotextile Sample Description:

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 1 in Grips: Curtis "Geo" Grip
Condition: dry

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	164	246	
2	170	254	
3	207	224	
4	210	200	
5	222	220	
6	206	236	
7	198	277	
8	191	264	
9	182	222	
10	294	283	
Average	205	243	
Standard Deviation	36.4	26.9	
Coefficient of Variation, %	17.8	11.1	

Comments:

2951bs

M

DW 2/9/12

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	02/02/12	Checked By: bfs
Sample ID:	Roll #22388.1 (GT-007)	GT-13
Description:	Black, nonwoven geotextile	61-13

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Clamping Method: Circular Clamp Attachment

Specimen Number	Puncture Resistance, Ibs
1	333
2	328
3	359
4	402
5	338
6	292
7	367
8	302
9	336
10	330
11	298
12	350
13	400
14	345
15	316
Average	√ 340
Standard Deviation	32.9
Coefficient of Variation, %	9.69

Comments:

> 250 165

DW 2/9//2

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	01/02/12	Checked By: jdt
Sample ID:	Roll #22388.20 (GT-	008) GT-14
Description:	Black, nonwoven geo	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	24.6	835
2	27.9	947
3	25.2	855
4	26.6	902
5	25.1	851
Average	25.9 🖊	878
Standard Deviation	1.36	46.1

Comments:

Specimen Size, in: 4 inch x 8 inch

> 24 03/49 5

Pu

2/9/12

Client:	Parsons Engineering	g Science	
Project Name:	Geosynthetic Testin	ig	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.20 (G	entertile GT-14	
Description:	Black, nonwoven ge	eotextile GITTI	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine: Instron 1000 Testing Speed: 12 in/min

Grip Separation: 3 in Grips: Curtis "Geo" Grip

Maximum Obtainable Load: 2500 lb Padding: --Condition: dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	542	140	682	124
2	604	128	703	131
3	551	129	691	120
4	593	120	714	119
5	564	124	618	124
6	560	117	686	134
7	572	121	737	115
8	669	133	645	116
9	641	128	702	115
10	615	122	617	124
Average	591 -	126	679	122
Standard Deviation	41.4	6.86	40.2	6.53
Coefficient of Variation, %	7.01	5.44	5.92	5.34

Comments:

230 lb

SCB

DW 2/9/12

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	02/02/12	Checked By: bfs
Sample ID:	Roll #22388.20 (GT-008)	GT-14
Description:	Black, nonwoven geotextile	61-11

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Clamping Method: Circular Clamp Attachment

Specimen Number	Puncture Resistance, Ibs
1	317
2	328
3	339
4	343
5	361
6	335
7	296
8	335
9	314
10	340
11	296
12	346
13	256
14	323
15	316
Average	323 🗸
Standard Deviation	25.8
Coefficient of Variation, %	7.98

Comments:

d1 C355

DLB 249/12

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: 10596 Tested By: bfs Test Date: 02/01/12 Checked By: jdt Sample ID: Roll #22388.20 (GT-008) Sample Description: Black, nonwoven geotextile

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 1 in Grips: Curtis "Geo" Grip
Condition: dry

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	193	242	
2	195	300	
3	195	271	
4	190	256	
5	189	253	
6	179	314	
7	180	279	
8	200	259	
9	172	258	
10	179	256	
Average	187	- 269	
Standard Deviation	9.15	22.6	
oefficient of Variation, %	4.89	8.42	

Comments:

95/6

DOK

DW 2/9/12

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	01/02/12	Checked By: jdt	
Sample ID:	Roll #22388.56 (GT	:0097GF ST-15	
Description:	Black, nonwoven ger	otextile 61-15	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	26.0	881
2	23.9	810
3	24.0	813
4	23.7	804
5	23.5	796
Average	24.2 🤳	821
Standard Deviation	1.00	34.0

Comments:

Specimen Size, in: 4 inch x 8 inch

>2403/eyd

DW 2/9/12

Client:	Parsons Engineering Science Geosynthetic Testing		
Project Name:			
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.56 (GI	=009) GV 1-1	
Description:	Black, nonwoven ge	eotextile GT-15	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Speed: 12 in/min Testing Machine: Instron 1000 Curtis "Geo" Grip Grip Separation: 3 in Grips: Maximum Obtainable Load: 2500 lb Padding: Condition: dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	643	120	587	144
2	551	120	682	129
3	586	111	636	124
4	544	123	578	144
5	603	122	605	124
6	534	116	615	148
7	531	117	668	125
- 8	564	124	598	117
9	552	124	631	124
10	574	120	626	130
Average	₹ 568	120	\ 622	131
Standard Deviation	34.7	4.08	33.6	10.6
Coefficient of Variation, %	6.11	3.41	5.40	8.10

Comments:

230 lb

pw 2/9/17

Client:	Parsons Engineering Science		
Project Name: Geosynthetic Testing			- 1
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	02/02/12	Checked By: bfs	
Sample ID:	Roll #22388.56 (GT-009)	1715	
Description:	Black, nonwoven geotextile	61-10	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Clamping Method: Circular Clamp Attachment

Specimen Number	Puncture Resistance, Ibs
1	334
2	359
3	332
4	294
5	373
6	348
7	399
8	336
9	313
10	326
11	339
12	309
13	315
14	375
15	350
Average	340
Standard Deviation	28.1
Coefficient of Variation, %	8.26

Comments:

d1625

Dra DRZ

2/9/12

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: 10596 Tested By: bfs Test Date: 02/01/12 Checked By: jdt Sample ID: Roll #22388.56 (GT-909) Black, nonwoven geotextile Sample Description:

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min

Grip Separation: 1 in Grips: Curtis "Geo" Grip

Condition: dry

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	203	334	
2	205	241	
3	209	241	
4	187	249	
5	211	290	
6	204	249	
7	229	258	
8	213	244	
9	246	290	
10	245	251	
Average	№ 215	265	
Standard Deviation	19.0	30.6	
oefficient of Variation, %	8.82	11.6	

Comments:

9516

Da

DW

2/9/12

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	01/02/12	Checked By: jdt	
Sample ID:	Roll #22388.111 (GI-010/04 GT-16	
Description:	Black, nonwoven o		

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	27.0	915
2	27.9	946
3	26.5	898
4	24.9	845
5	27.6	934
Average	26.8	907
Standard Deviation	1.17	39.5

Comments:

Specimen Size, in: 4 inch x 8 inch

2403/241

219/12 mg

Client:	: Parsons Engineering Science		
Project Name: Geosynthetic Testing			
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.111 (GI	-010XX 1T 1	
Description:	Black, nonwoven geo	textile 67-16	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 3 in Grips: Curtis "Geo" Grip

Maximum Obtainable Load: 2500 lb Padding: ---

Condition: dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	646	124	691	117
2	614	127	747	120
3	604	126	670	117
4	590	127	697	117
5	538	124	626	127
6	560	130	636	134
7	618	128	734	123
8	587	127	727	123
9	606	127	650	120
10	640	131	660	117
Average	√ 600	127	684	122
Standard Deviation	33.4	2.23	42.2	5.54
Coefficient of Variation, %	5.57	1.76	6.18	4.56

Comments:

230 16

003 DW 2/9/12

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	02/02/12	Checked By: bfs	
Sample ID:	Roll #22388.111 (GT-010)	AT V	
Description:	Black, nonwoven geotextile	61-10	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Clamping Method: Circular Clamp Attachment

Specimen Number	Puncture Resistance, lbs
1	378
2	292
3	324
4	337
5	397
6	339
7	338
8	328
9	317
10	306
11	363
12	406
13	312
14	363
15	288
Average	339 🐷
Standard Deviation	35.9
Coefficient of Variation, %	10.6

Comments:

250 lb

OW

2/9/17

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Scien	cience	
Project Name: Geosynthetic Testing			
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.111 (GT-010	TOK BY V	
Sample Description:	Black, nonwoven geotexti	le GT-16	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min Grip Separation: 1 in Grips: Curtis "Geo" Grip Condition: dry

	Maximum T	ear Strength, Ib	
Specimen Number	Machine Direction	Cross Machine Direction	
1	185	322	
2	186	303	
3	192	296	
4	180	273	
5	178	298	
6	193	303	
7	167	335	
8	179	366	
9	213	362	
10	211	334	
Average	\188	∖ 319	
Standard Deviation	14.5	30.1	
oefficient of Variation, %	7.70	9.44	

Comments:

DW 2/9/12

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	01/02/12 Checked By: jdt		
Sample ID:	Roll #22388.221 (GI-0111/1 1-7	
Description:	Black, nonwoven g	eotextile GI-11	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m
1	24.8	841
2	24.9	843
3	23.5	796
4	24.0	813
5	23.7	804
Average	24.2	819
Standard Deviation	0.63	21.5

Comments:

Specimen Size, in: 4 inch x 8 inch

2404/2045

2000 S/9/12

Client:	Parsons Engineering Se	cience	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	02/01/12	Checked By: jdt	
Sample ID:	Roll #22388.121 (GT-	11 XX 17	
Description:	Black, nonwoven geote	extile G/-//	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:Instron 1000Testing Speed:12 in/minGrip Separation:3 inGrips:Curtis "Geo" Grip

Maximum Obtainable Load: 2500 lb Padding: --Condition: dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	587	127	686	137
2	586	127	664	130
3	542	117	606	124
4	553	134	663	120
5	550	119	555	116
6	549	130	770	120
7	581	123	668	130
8	503	129	592	144
9	556	123	551	130
10	463	117	637	126
Average	547	125	639	128
Standard Deviation	38.6	5.78	66.2	8.43
Coefficient of Variation, %	7.06	4.64	10.4	6.60

Comments:

230 16

2/9/17 WG

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	02/02/12	Checked By: bfs	
Sample ID:	Roll #22388.221 (GT-011)	GT-IT	
Description:	Black, nonwoven geotextile	G1-11	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Instron 1000 Testing Speed: 12 in/min Clamping Method: Circular Clamp Attachment

Specimen Number	Puncture Resistance, Ibs
1	377
2	308
3	286
4	316
5	320
6	313
7	338
8	403
9	360
10	404
11	502
12	373
13	350
14	358
15	292
Average	> 353
Standard Deviation	55.4
Coefficient of Variation, %	15.7

Comments:

25016

209. 21/9/12 WG

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: 10596 Tested By: bfs Test Date: 02/01/12 Checked By: jdt Sample ID: Roll #22388.221 (GT-011) Sample Description: Black, nonwoven geotextile

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 1 in Grips: Curtis "Geo" Grip
Condition: dry

	Maximum T	ear Strength, lb	
Specimen Number	Machine Direction	Cross Machine Direction	
1	186	284	
2	205	229	
3	200	251	
4	218	253	
5	233	247	
6	162	258	
7	231	250	
8	183	259	
9	234	299	
10	197	242	
Average	205	257	
Standard Deviation	24.3	20.3	
Coefficient of Variation, %	11.8	7.91	

Comments:

95 lb

D06

PH

2/19/12

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location	n: Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	10/15/12	Checked By: jdt	
Sample ID:	A GT-014 Roll #130431076	GT-18	
Description:	Black, nonwoven geotextile	a1-10	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		

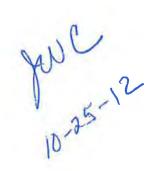
Specimen Number	Puncture Resistance, lbs
1	358
2	307
3	285
4	345
5	286
6	314
7	373
8	342
9	281
10	385
11	394
12	373
13	348
14	321
15	322
Average	336
Standard Deviation	37.0
Coefficient of Variation, %	11.0

Comments:

7250

A propriet

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the Indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, eampling procedure or intended use of the material.


Client:	Parsons Engineering Science	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	10/15/12	Checked By: jdt	
Sample ID:	GT-014 Roll #130431076	GT-18	
Description:	Black, nonwoven geotextile	e GI-10	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	24.5	832
2	27.4	928
3	24.7	839
4	26.5	898
5	27.1	920
Average	26.1	883
Standard Deviation	1.34	45.3

Comments:

Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Engineering Scie	ence
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	10/15/12	Checked By: jdt
Sample ID:	GT-014 Roll #13043107	6 AT-18
Description:	Black, nonwoven geotext	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine: Instron 1000 Testing Speed: 12 in/min
Grip Separation: 3 in Grips: Curtis "Geo" Grip
Maximum Obtainable Load: 2500 lb Padding: --Condition: dry

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, lb	Apparent Breaking Elongation, %
1	503	120	1051	74
2	522	120	788	70
3	458	109	895	74
4	518	102	844	73
5	513	104	831	75
6	458	106	819	87
7	506	102	843	77
8	499	101	896	73
9	529	125	793	75
10	468	114	931	68
Average	497	110	869	75
Standard Deviation	26.4	8.83	78.8	5.1
Coefficient of Variation, %	5.32	8.01	9.07	6.8

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

JUC 25-12

Client:	Parsons Engineering Scien	nce	
Project Name:	Geosynthetic TestIng		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	10/15/12	Checked By: jdt	
Sample ID:	GI-014 Roll #130431076	1410	
Sample Description:	GI 014 Roll #130431076 Black, nonwoven geotextil	le GT-18	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 In/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		/
1500 0 10 10 10 10 10 10 10 10 10 10 10 10			
		Maximum Tear Strength, lb	1/
Specimen Number	Machine Direction	Cross Ma	achine Direction
1	227		377
2	193		320
3	171		417
4	174		396
5	200		382
6	174		328
7	178		352
8	198		416
9	194		325
10	180		352
Average	189		367
Standard Deviation	17.0		36.4
Coefficient of Variation, %	9.00		9.93

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

YWC 11-25-12

APPENDIX H

Installer's Certificate of Acceptance of Subgrade Surface

CERTIFICATE OF ACCEPTANCE SUBGRADE SURFACE

	INSTALLER	PROJECT
NAME:	Chenango Contracting	NAME: Phase II
ADDRESS:	29 Arbutus Road	
-	Johnson City, NY 13790	LOCATION: 522 Gerelock Road
		Camillus, NY 13209
INSTALLER		
AUTHORIZED	VE. Develler Kernkisler	OWNER - III
REPRESENTATI	VE: Bounthan Keophiphath	OWNER: Honeywell / Parsons
1 What are the second		
	d, duly authorized representative of	Chenango Contractors
		ics will be installed and shall be responsible for
		te with the project specifications. (i.e., The contractor urface is acceptable. Installation of the
	be considered acceptance of the sub	
goodynmoned win	be considered acceptance of the squ	ogrado.)
PRIMARY: X	SECONDARY:	OTHER:
DATE	PANEL NOS.	SIGNATURE
5-15-2012	6-001 - 6-045	710004
CONTRACTOR STATES	The same and a second s	12/2011
5-16-2012	1-046-6-054	DW=DIF
5-19-20,2	6-055-6-279	1311 Late
5-24-2012	6-130 - 6-44 110	
Control of the state of the sta	and the second s	BI-TE
6-1-2012	6-111 -6-121	5555
6-8-2012	6-133-6-135	BK 195
6-14-2012	7 7	1 King g
	The state of the s	BIAS
6-18-2012		
6-21-2012	6-175-6-223	BKEST

***************************************	1	

1000 March 1112 March 1100 March		

APPENDIX I

Geomembrane Panel Placement Monitoring Logs

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

			Seri	es: 6 Mater	rial Type: gn	Type: gml	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA IE
1	7110583-443566-11	5/15/2012	8:04	Phase II	22,5	48	DWH
2	7110583-443566-11	5/15/2012	8:06	Phase II	22.5	47	DWH
3	7110583-443566-11	5/15/2012	8:09	Phase II	22.5	47	DWH
4	7110583-443566-11	5/15/2012	8:13	Phase II	22.5	47	DWH
5	7110583-443566-11	5/15/2012	8:16	Phase II	22.5	48	DWH
6	7110583-443566-11	5/15/2012	8:19	Phase II	22,5	49.5	DWH
7	7110583-443566-11	5/15/2012	8:23	Phase II	22,5	50	DWH
8	7110583-443566-11	5/15/2012	8:25	Phase II	22,5	49	DWH
9	7120199-311454-12	5/15/2012	8:42	Phase II	22,5	49.5	DWH
10	7120199-311454-12	5/15/2012	8:45	Phase II	22.5	50	DWH
11	7120199-311454-12	5/15/2012	8:49	Phase II	22.5	50	DWH
12	7120199-311454-12	5/15/2012	8:51	Phase II	22.5	50.5	DWH
13	7120199-311454-12	5/15/2012	8:53	Phase II	22,5	51	DWH
14	7120199-311454-12	5/15/2012	8:56	Phase II	22.5	51	DWH
15	7120199-311454-12	5/15/2012	8:58	Phase II	22.5	51	DWH
16	7120199-311454-12	5/15/2012	9:00	Phase II	22.5	50	DWH
17	7120199-311454-12	5/15/2012	9:04	Phase II	22.5	50	DWH
18	7120200-311340-12	5/15/2012	9:10	Phase II	22.5	49	DWH
19	7120200-311340-12	5/15/2012	9:14	Phase II	22.5	48.5	DWH
20	7120200-311340-12	5/15/2012	9:15	Phase II	22.5	48	DWH
21	7120200-311340-12	5/15/2012	9:18	Phase II	22.5	47	DWH
22	7120200-311340-12	5/15/2012	9:21	Phase II	22.5	46	DWH
23	7120200-311340-12	5/15/2012	9:23	Phase II	22.5	46	DWH
24	7120200-311340-12	5/15/2012	9:25	Phase II	22,5	45.5	DWH
25	7120200-311340-12	5/15/2012	9:27	Phase II	22.5	44	DWH
26	7120200-311340-12	5/15/2012	9:27	Phase II	22.5	43	DWH
27	7120200-311340-12	5/15/2012	9:30	Phase II	22.5	17.5	DWH
28	7120200-311444-12	5/15/2012	10:08	Phase II	22.5	31.5	DWH
29	7120200-311340-12	5/15/2012	10:12	Phase II	14	11	DWH
30	7120200-311444-12	5/15/2012	10:40	Phase II	22.5	458	DWH
31	7120199-311449-12	5/15/2012	10:50	Phase II	22.5	174.5	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Primary / Secondary: Primary			Seri	es: 6 Mater	terial Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
32	7120199-311449-12	5/15/2012	11:15	Phase !l	22.5	313	DWH
33	7120200-311445-12	5/15/2012	11:32	Phase II	22.5	321.5	DWH
34	7120200-311445-12	5/15/2012	13:10	Phase II	22.5	178	DWH
35	7120199-311450-12	5/15/2012	13:32	Phase II	22.5	461.5	DWH
36	7120199-311450-12	5/15/2012	13:47	Phase II	22.5	37.5	DWH
37	7120200-311447-12	5/15/2012	14:15	Phase II	22.5	510	DWH
38	8110773-312219-12	5/15/2012	14:27	Phase II	22.5	94,5	DWH
39	8110773-312219-12	5/15/2012	14:41	Phase II	22.5	407	DWH
40	7120200-311341-12	5/15/2012	14:55	Phase II	22.5	234	DWH
41	7120200-311341-12	5/15/2012	15:12	Phase II	22.5	266	DWH
42	7120200-311446-12	5/15/2012	15:30	Phase II	22.5	377	DWH
43	7120200-311446-12	5/15/2012	15:40	Phase II	22.5	123.5	DWH
44	8110773-312217-12	5/15/2012	16:00	Phase II	22.5	499.5	DWH
45	8201507-102158887	5/15/2012	16:30	Phase II	22.5	20	DWH
46	8110773-312221-12	5/16/2012	9:07	Phase II	22,5	500	DWH
47	8110773-312111-12	5/16/2012	9:19	Phase II	22.5	146	DWH
48	8110773-312111-12	5/16/2012	9:20	Phase II	22,5	347	DWH
49	8110773-312222-12	5/16/2012	9:42	Phase II	22.5	300	DWH
50	8110773-312222-12	5/16/2012	9:48	Phase II	22,5	198	DWH
51	8110773-312115-12	5/16/2012	10:03	Phase II	22.5	450.5	DWH
52	8110773-312115-12	5/16/2012	10:08	Phase II	22.5	46	DWH
53	8110773-312114-12	5/16/2012	10:25	Phase II	22.5	498	DWH
54	8110773-312112-12	5/16/2012	10:30	Phase II	22.5	102	DWH
55	8110773-312112-12	5/18/2012	8:31	Phase II	22.5	378.5	DWH
56	8110773-312104-12	5/18/2012	8:48	Phase II	22.5	275	DWH
57	8110773-312104-12	5/18/2012	8:56	Phase II	22.5	219	DWH
58	7120199-311556-12	5/18/2012	9:10	Phase II	22.5	435.5	DWH
59	7120199-311556-12	5/18/2012	9:13	Phase II	22.5	62	DWH
60	7120199-311559-12	5/18/2012	9:30	Phase II	22.5	503	DWH
61	7120199-311561-12	5/18/2012	9:38	Phase II	22.5	89	DWH
62	7120199-311561-12	5/18/2012	9:49	Phase II	22.5	414	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

			Serie	es: 6 Mater	Material Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA III
63	7120200-311443-12	5/18/2012	10:03	Phase II	22.5	243	DWH
64	7120200-311443-12	5/18/2012	10:14	Phase II	22.5	250	DWH
65	8110773-312229-12	5/18/2012	10:29	Phase II	22.5	403	DWH
66	8110773-312229-12	5/18/2012	10:35	Phase II	22.5	91.5	DWH
67	7120199-311452-12	5/18/2012	10:55	Phase II	22.5	498,5	DWH
68	7120200-311331-12	5/18/2012	11:06	Phase II	22.5	65	DWH
69	7120200-311331-12	5/18/2012	11:13	Phase II	22,5	439	DWH
70	7120200-311334-12	5/18/2012	11:34	Phase II	22.5	218	DWH
71	7120200-311334-12	5/18/2012	11:45	Phase II	22.5	260	DWH
72	8110773-312224-12	5/18/2012	13:05	Phase II	22.5	399	DWH
73	8110773-312224-12	5/18/2012	13:11	Phase II	22.5	97	DWH
74	7120199-311558-12	5/18/2012	13:30	Phase II	22.5	505	DWH
75	7120199-311453-12	5/18/2012	13:43	Phase II	22,5	58	DWH
76	7120199-311453-12	5/18/2012	13:50	Phase II	22.5	442	DWH
77	7120200-311339-12	5/18/2012	14:05	Phase II	22.5	217	DWH
78	7120200-311339-12	5/18/2012	14:10	Phase II	22.5	281	DWH
79	7120199-311557-12	5/18/2012	14:20	Phase II	22.5	378	DWH
80	7120199-311557-12	5/24/2012	8:17	Phase II	22.5	112.5	DWH
81	7120199-311451-12	5/24/2012	8:26	Phase II	22.5	485	DWH
82	7120199-311683-12	5/24/2012	8:33	Phase II	22.5	63	DWH
83	7120199-311683-12	5/24/2012	8:44	Phase II	22.5	430.5	DWH
84	7120200-311336-12	5/24/2012	8:54	Phase II	22.5	228.5	DWH
85	7120200-311336-12	5/24/2012	9:13	Phase II	22.5	265	DWH
86	7120199-311562-12	5/24/2012	9:23	Phase II	22,5	395	DWH
87	7120199-311562-12	5/24/2012	9:30	Phase II	22.5	93.5	DWH
88	7120200-311337-12	5/24/2012	9:45	Phase II	22,5	500	DWH
89	7120200-311335-12	5/24/2012	9:49	Phase II	22.5	65.5	DWH
90	7120200-311335-12	5/24/2012	9:57	Phase II	22.5	393	DWH
91	7120200-311332-12	5/24/2012	10:10	Phase II	22.5	228.5	DWH
92	7120200-311332-12	5/24/2012	10:22	Phase II	22.5	267	DWH
93	7120200-311330-12	5/24/2012	10:30	Phase II	22.5	392.5	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Prima				es: 6 Mater	Material Type: gml		
Panel	Batch-Røll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA II
94	7120200-311330-12	5/24/2012	10:39	Phase II	22.5	102.5	DWH
95	7120199-311681-12	5/24/2012	10:49	Phase II	22.5	504	DWH
96	7120200-311448-12	5/24/2012	11:02	Phase II	22,5	52.5	DWH
97	7120200-311448-12	5/24/2012	11:13	Phase II	22.5	436	DWH
98	7120200-311442-12	5/24/2012	11:17	Phase II	22.5	216	DWH
99	7120200-311442-12	5/24/2012	11:27	Phase II	22.5	273	DWH
100	7120200-311338-12	5/24/2012	12:55	Phase II	22.5	286	DWH
101	7120200-311338-12	5/24/2012	13:05	Phase II	22.5	100	DWH
102	7120199-311678-12	5/24/2012	13:15	Phase II	22.5	506	DWH
103	7120199-311566-12	5/24/2012	13:30	Phase II	22.5	54	DWH
104	7120199-311566-12	5/24/2012	13:43	Phase II	22.5	451	DWH
105	7120199-311680-12	5/24/2012	13:55	Phase II	22.5	209	DWH
106	7120199-311680-12	5/24/2012	14:14	Phase II	22,5	283	DWH
107	7120199-311671-12	5/24/2012	14:30	Phase II	22.5	382	DWH
108	7120199-311671-12	5/24/2012	14:38	Phase II	22.5	116	DWH
109	7120199-311670-12	5/24/2012	14:45	Phase II	22.5	505	DWH
110	8110773-312103-12	5/24/2012	14:58	Phase II	22.5	43	DWH
111	8110773-312103-12	6/1/2012	8:40	Phase II	22.5	453.5	DWH
112	8110773-312105-12	6/1/2012	8:47	Phase II	22.5	114	DWH
113	8110773-312105-12	6/1/2012	8:52	Phase II	22.5	283	DWH
114	7120199-311674-12	6/1/2012	9:00	Phase II	22.5	381	DWH
115	7120199-311674-12	6/1/2012	9:10	Phase II	22.5	112	DWH
116	7120199-311567-12	6/1/2012	9:13	Phase II	22.5	500	DWH
117	8110773-312101-12	6/1/2012	9:15	Phase II	22.5	51	DWH
118 :	8110773-312101-12	6/1/2012	9:18	Phase II	22.5	448	DWH
119	7120199-311675-12	6/1/2012	9:25	Phase II	22.5	220	DWH
120	7120199-311675-12	6/1/2012	9:32	Phase II	22.5	273	DWH
121	7120199-311565-12	6/1/2012	21:45	Phase II	22.5	389	DWH
122	7120199-311565-12	6/8/2012	8:25	Phase II	22.5	104	DWH
123	8110773-312108-12	6/8/2012	8:33	Phase II	22.5	494	DWH
124	7120199-311569-12	6/8/2012	8:45	Phase II	22.5	66	DWH

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase JI

ProjNo: GJ4706B

	ry / Secondary: Primary		Seri	ies: 6 Mater	rial Type: gn	nl	
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
125	7120199-311569-12	6/8/2012	8:50	Phase II	22.5	434	DWH
126	7120199-311568-12	6/8/2012	9:14	Phase II	22.5	226	DWH
127	7120199-311568-12	6/8/2012	9:16	Phase II	22.5	252	DWH
128	8110773-312109-12	6/8/2012	9:30	Phase II	22.5	408	DWH
129	8110773-312109-12	6/8/2012	9:35	Phase II	22.5	46	DWH
130	8110773-312107-12	6/8/2012	9:40	Phase II	22.5	494	DWH
131	7120199-311676-12	6/8/2012	9:55	Phase [I	22.5	127	DWH
132	7120199-311676-12	6/8/2012	10:21	Phase II	22.5	370.5	DWH
133	8110773-312106-12	6/8/2012	10:28	Phase II	22.5	291	DWH
134	8110773-312106-12	6/8/2012	10:40	Phase II	22.5	207	DWH
135	8110773-311789-12	6/8/2012	10:50	Phase II	22.5	455	DWH
136	8110773-311789-12	6/14/2012	8:33	Phase II	22.5	37	DWH
137	7120199-311679-12	6/14/2012	8:37	Phase II	22.5	500	DWH
138	7120199-311785-12	6/14/2012	8:55	Phase II	22.5	128	DWH
139	7120199-311785-12	6/14/2012	9:08	Phase II	22.5	366	DWH
140	7120199-311672-12	6/14/2012	9:19	Phase II	22.5	299	DWH
141	7120199-311672-12	6/14/2012	9:27	Phase II	22.5	192	DWH
142	7120199-311677-12	6/14/2012	9:43	Phase II	22.5	471.5	DWH
143	8110773-312228-12	6/14/2012	9:53	Phase II	22,5	500	DWH
144	8110773-311788-12	6/14/2012	10:05	Phase II	22.5	162.5	DWH
145	8110773-311788-12	6/14/2012	10:14	Phase II	22.5	336.5	DWH
146	8110773-311795-12	6/14/2012	10:38	Phase II	22.5	326	DWH
147	8110773-311795-12	6/14/2012	10:48	Phase II	22.5	172.5	DWH
148	7120199-311564-12	6/14/2012	10:55	Phase II	22.5	489	DWH
149	8110773-312223-12	6/14/2012	11:09	Phase II	22.5	500	DWH
150	8110773-312218-12	6/14/2012	11:27	Phase II	22.5	161	DWH
151	8110773-312218-12	6/14/2012	12:58	Phase II	22.5	341	DWH
152	7120199-311677-12	6/14/2012	13:05	Phase II	22.5	26	DWH
153	8110773-312226-12	6/14/2012	13:15	Phase II	22.5	294	DWH
154	8110773-312226-12	6/18/2012	7:45	Phase II	22.5	204	DWH
155	7110583-443674-11	6/18/2012	7:54	Phase II	22.5	458	DWH

Geosyntec[>]

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

1				es: 6 Mater	rial Type: gr	nl	
Panel :	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
156	7110583-443674-11	6/18/2012	8:00	Phase II	22.5	36.5	DWH
157	7110583-443675-11	6/18/2012	8:25	Phase II	22.5	498	DWH
158	8110773-312116-12	6/18/2012	8:38	Phase II	22.5	26.5	DWH
159	8110773-312116-12	6/18/2012	8:48	Phase II	22.5	368.5	DWH
160	8110773-312113-12	6/18/2012	8:55	Phase II	22.5	292	DWH
161	8110773-312113-12	6/18/2012	9:15	Phase II	22.5	201	DWH
162	8210664-443791-11	6/18/2012	9:40	Phase II	22.5	459.5	DWH
163	8110773-312110-12	6/18/2012	9:50	Phase II	22,5	496	DWH
164	8210664-443791-11	6/18/2012	10:00	Phase II	22.5	38	DWH
165	7120199-311786-12	6/18/2012	10:02	Phase II	22.5	126	DWH
166	7120199-311786-12	6/18/2012	13:00	Phase II	22.5	374.5	DWH
167	8210664-443796-11	6/18/2012	13:13	Phase II	22.5	287.5	DWH
168	8210664-443796-11	6/18/2012	13:18	Phase II	22.5	108.5	DWH
169	7120199-311560-12	6/18/2012	13:42	Phase II	22.5	503.5	DWH
170	8210664-443784-11	6/18/2012	13:51	Phase II	22.5	51	DWH
171	8210664-443784-11	6/18/2012	13:53	Phase II	22.5	451	DWH
172	7120199-311673-12	6/18/2012	14:20	Phase II	22.5	212	DWH
173	7120199-311673-12	6/18/2012	14:28	Phase II	22.5	283	DWH
174	7120199-311563-12	6/18/2012	14:41	Phase II	22.5	380	DWH
175	7120199-311563-12	6/21/2012	8:11	Phase II	22.5	100	DWH
176	7120199-311455-12	6/21/2012	8:30	Phase II	22.5	506	DWH
177	8110773-311796-12	6/21/2012	8:40	Phase II	22.5	67	DWH
178	8110773-311796-12	6/21/2012	8:50	Phase II	22.5	433	DWH
179	7120199-311787-12	6/21/2012	9:00	Phase II	22.5	238	DWH
180	7120199-311787-12	6/21/2012	9:09	Phase II	22,5	259	DWH
181	8110773-312102-12	6/21/2012	9:10	Phase II	22.5	413.5	DWH
182	8110773-312102-12	6/21/2012	9:20	Phase II	22.5	83	DWH
183	7120200-311333-12	6/21/2012	9:39	Phase II	22.5	458	DWH
184	8110773-311793-12	6/21/2012	9:50	Phase II	22.5	82	DWH
185	8110773-311793-12	6/21/2012	10:00	Phase II	22.5	418.5	DWH
186	8110773-311791-12	6/21/2012	10:09	Phase II	22.5	250.5	DWH

Geosyntec[>]

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Primary / Secondary: Primary		Seri	Series: 6 Material Type: gml				
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
187	8110773-311791-12	6/21/2012	10:21	Phase II	22.5	250.5	DWH
188	7120199-311784-12	6/21/2012	10:34	Phase II	22.5	418	DWH
189	7120199-311784-12	6/21/2012	10:44	Phase II	22.5	81.5	DWH
190	8110773-311790-12	6/21/2012	10:52	Phase II	22,5	502.5	DWH
191	8110773-311794-12	6/21/2012	11:05	Phase II	22,5	84.5	DWH
192	8110773-311794-12	6/21/2012	11:30	Phase II	22,5	46	DWH
193	8110773-311794-12	6/21/2012	11:35	Phase II	22.5	46	DWH
194	8110773-311794-12	6/21/2012	12:40	Phase II	22,5	45.5	DWH
195	8110773-311794-12	6/21/2012	12:46	Phase II	22.5	44.5	DWH
196	8110773-311794-12	6/21/2012	12:49	Phase II	22.5	44.5	DWH
197	8110773-311794-12	6/21/2012	12:52	Phase II	22,5	45	DWH
198	8110773-311794-12	6/21/2012	12:55	Phase II	22.5	45	DWH
199	8110773-311794-12	6/21/2012	13:00	Phase II	22.5	44.5	DWH
200	8210664-443788-11	6/21/2012	13:11	Phase II	22.5	44	DWH
201	8210664-443788-11	6/21/2012	13:14	Phase II	22.5	44	DWH
202	8210664-443788-11	6/21/2012	13:18	Phase II	22.5	44	DWH
203	8210664-443788-11	6/21/2012	13:19	Phase II	22.5	44	DWH
204	8210664-443788-11	6/21/2012	13:25	Phase II	22.5	43.5	DWH
205	8210664-443788-11	6/21/2012	13:27	Phase II	22.5	43.5	DWH
206	8210664-443788-11	6/21/2012	13:30	Phase II	22.5	43.5	DWH
207	8210664-443788-11	6/21/2012	13:31	Phase II	22.5	42	DWH
208	8210664-443788-11	6/21/2012	13:34	Phase II	22.5	42	DWH
209	8210664-443788-11	6/21/2012	13:37	Phase II	22.5	42	DWH
210	7120199-311682-12	6/21/2012	13:50	Phase II	22.5	42	DWH
211	7120199-311682-12	6/21/2012	13:55	Phase II	22.5	42	DWH
212	7120199-311682-12	6/21/2012	13:57	Phase II	22.5	42.5	DWH
213	7120199-311682-12	6/21/2012	14:00	Phase II	22.5	43	DWH
214	7120199-311682-12	6/21/2012	14:02	Phase II	22.5	43	DWH
215	7120199-311682-12	6/21/2012	14:04	Phase II	22.5	43	DWH
216	7120199-311682-12	6/21/2012	14:09	Phase II	22.5	43	DWH
217	7120199-311682-12	6/21/2012	14:12	Phase II	22.5	43.5	DWH

Geosyntec[>]

consultants

Panel Placement Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

/ Secondary: Primary		Serie	es: 6 Mate	erial Type: gn	ıt	
Butch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (fl.)	QA II
7120199-311682-12	6/21/2012	14:14	Phase II	22.5	44	DWH
7120199-311682-12	6/21/2012	14:16	Phase II	22.5	100	DWH
8201499-102158766	6/21/2012	14:33	Phase II		-	DWH
8201499-102158766	6/21/2012	14:47	Phase II		-	DWH
8201499-102158766	6/21/2012	14:54	Phase II			DWH
8201499-102158766	6/21/2012	15:00	Phase II			DWH
	7120199-311682-12 7120199-311682-12 8201499-102158766 8201499-102158766 8201499-102158766	Batch-Roll Date 7120199-311682-12 6/21/2012 7120199-311682-12 6/21/2012 8201499-102158766 6/21/2012 8201499-102158766 6/21/2012 8201499-102158766 6/21/2012	Batch-Roll Date Time 7120199-311682-12 6/21/2012 14:14 7120199-311682-12 6/21/2012 14:16 8201499-102158766 6/21/2012 14:33 8201499-102158766 6/21/2012 14:47 8201499-102158766 6/21/2012 14:54	Batch-Roll Date Time Placement/Location/Comments 7120199-311682-12 6/21/2012 14:14 Phase II 7120199-311682-12 6/21/2012 14:16 Phase II 8201499-102158766 6/21/2012 14:33 Phase II 8201499-102158766 6/21/2012 14:47 Phase II 8201499-102158766 6/21/2012 14:54 Phase II	Batch-Roll Date Time Placement/Location/Comments Width (ft.) 7120199-311682-12 6/21/2012 14:14 Phase II 22.5 7120199-311682-12 6/21/2012 14:16 Phase II 22.5 8201499-102158766 6/21/2012 14:33 Phase II 22 8201499-102158766 6/21/2012 14:47 Phase II 22 8201499-102158766 6/21/2012 14:54 Phase II 12	Batch-Roll Date Time Placement/Location/Comments Width (ft.) Length (ft.) 7120199-311682-12 6/21/2012 14:14 Phase II 22.5 44 7120199-311682-12 6/21/2012 14:16 Phase II 22.5 44.5 8201499-102158766 6/21/2012 14:33 Phase II 22 25.5 8201499-102158766 6/21/2012 14:47 Phase II 22 32.5 8201499-102158766 6/21/2012 14:54 Phase II 12 8.5 8201499-102158766 6/21/2012 14:50 Phase II 12 8.5

APPENDIX J

Geomembrane Trial Seam Logs

- Calibration of Field Tensiometer
- Fusion
- Extrusion

Calibration of Field Tensiometer

CalSource, Inc. 1005 West Fayette St Suite 4D Syracuse, NY 13204 866-895-8648 calsource.com

CEDTECATE OF CALIDDATION

ISSUED TO	EQUIPMENT INFORMATION		
CHENANGO CONTRACTING 29 ARBUTUS ROAD JOHNSON CITY NY 13790 CUSTOMER PO NUMBER: MIKE-021312	ASSET NUMBER NAL-1203 MANUFACTURER TEMPLETON KENLY & CO MODEL NUMBER AL-0102 DESCRIPTION TENSIOMETER SERIAL NUMBER NAL-1203		
TES	T RESULTS		
CERTIFICATE NUMBER 305718 AS RECEIVED IN TOLERANCE AS RETURNED PASS LAB TEMPERATURE 68.0 F LAB HUMIDITY 47.0 %	PROCEDURE NA17-20MF-41L INTERVAL 12 MONTHS CALIBRATION DATE 2/24/2012 CALIBRATION DUE DATE 2/24/2013 TECHNICIAN BREANNE M WENDT		

CALIBRATION STANDARDS

ASSET NUMBER	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	DESCRIPTION	CAL DATE	CAL DUE
CAL-00278	BEOWULF	N-1	124	FORCE CAL KIT	1/26/2012	1/26/2013
CAL-00490	NEWPORT	ITHX-M	MEC	TEMP HUMIDITY METER	9/15/2011	9/15/2012

CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9001, ISO/IEC 17025, ISO/TS 16949. ANSI/NCSL Z540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above.

NO EXCEPTIONS **EXCEPTIONS AS NOTED** PROCEED WITH WORK RESUBMIT SUBMIT CERTIFIED PRINTS PARSONS 446199 CLIENTIJOB NO. CONTRACT_SC 60008 ACTION TAKEN HEREON DOES NOT SUPERSEDE REQUIREMENTS OF APPLICABLE DESIGN DRAWINGS. SPECIFICATIONS, ORDERS, CODES OR REGULATIONS, OR RELIEVE THE CONTRACTOR OR SUPPLIER FROM RESPONSIBILITY FOR ERRORS OR OMISSIONS. CERTIFIED BY. BREANNE M WENDT

Tensiometer

ID Number	NAL-1203	
Certificate Number	305718	
Technician	Breanne M Wendt	
Date	February 24, 2012	

Force(lbs.):

Range:	0-500 lbs.	Accuracy +/- 1% of ind.

Nominal	Minimum	As Found	As Left	Maximum
100	99	101		101
200	198	200		202
300	297	302		303
400	396	400		404
450	445	447		455

Notes:

Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

Demtech Services, Inc.

Placerville, California, USA

CALIBRATION CERTIFICATE

Tensiometer Model:	Pro-Tester T-0100			
Device Calibrated: Range:	S-Type load cell 0 - 750 lbs. Tension	Calibratio	on Apparatus:	
Model No:	M2405-750#	Pro-Cal u	ınit, model FC	-0100/A
Serial No:	260610			
A/D Module Model No: A/D Module Serial No: Channel No:	T-029 411260610 N/A	Dead Weight: W1 2 W2 152 W3 302	Reference R1 R2 R3	ce Cell: 2 152 302
ndicator reading with no loa	ad: 0			
	Offset 2.074836	Scale: 5.125794	1	
Applied Force lbs.	Cell Response:	Deviation Error:		
2 52 102 152 202 252 302	2 52 102 152 202 252 302	0.00 0.00 0.00 0.00 0.00 0.00 0.00		
	Total Deviation E	rror (%) 0.00%		
	ration: 73 degrees F			

MH Date: 08/0

matched pair. In general, calibrated A/D Modules and load cells are not interchangeable.

08/01/11

CalSource, Inc. 1005 West Fayette St Suite 4D Syracuse, NY 13204 866-895-8648 calsource.com

CERTIFICATE OF CALIBRATION

ISSUED TO	EQUIPMENT INFORMATION		
CHENANGO CONTRACTING 29 ARBUTUS ROAD JOHNSON CITY NY 13790 CUSTOMER PO NUMBER: MIKE-021312	ASSET NUMBER NAL-0802 MANUFACTURER PLASTIC WELDING TECHNOLOGIES MODEL NUMBER AL-0102 DESCRIPTION DYNAMOMETER SERIAL NUMBER NAL-0802		
TEST	RESULTS		
CERTIFICATE NUMBER 308845 AS RECEIVED IN TOLERANCE AS RETURNED PASS LAB TEMPERATURE 68.0 F LAB HUMIDITY 39.5 %	PROCEDURE 33K6-4-1756-1 INTERVAL 12 MONTHS CALIBRATION DATE 3/16/2012 CALIBRATION DUE DATE 3/16/2013 TECHNICIAN BREANNE M WENDT		

CALIBRATION STANDARDS

ASSET NUMBER	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	DESCRIPTION	CAL DATE	CAL DUE
CAL-00056	RICE LAKE WEIGHING	N/A	125E THRU 125U	WEIGHT SET	4/19/2011	4/19/2012
CAL-00162	OMEGA	ITHX-SD	1280668	TEMP/RH LOGGER	9/15/2011	9/15/2012
CAL-00178	CDI	2000-303-0	260	50LB WEIGHT HANGER	3/29/2011	3/29/2012

CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9001, ISO/IEC 17025, ISO/TS 16949, ANSI/NCSL Z540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above.

NO EXCEPTIONS

EXCEPTIONS AS NOTED

PROCEED WITH WORK

RESUBBIT

SUBMIT CERTIFIED PRINTS

PARSONS
CLIENTIJOB NO.

CONTRACT

BY

DATE

ACTION TAKEN HEREON DOES NOT SUPERSEDE REQUIREMENTS OF APPLICABLE DESIGN DRAWINGS, SPECIFICATIONS, ORDERS, CODES OR REGULATIONS.
OR RELIEVE THE CONTRACTOR OR SUPPLIER FROM RESPONSIBILITY FOR ERRORS OR OMISSIONS.

CERTIFIED BY SUCKE BREANNE M WENDT

Mar 22 2012

Mar Anna

PARSONS

Br

3/16/2012

Tensiometer

ID Number	NAL-0802	
Certificate Number	308845	
Technician	Breanne M Wendt	
Date	March 16, 2012	

Force(lbs.):

100(100./.	
Range: 0-500 lbs.	Accuracy +/- 1% of ind.

Nominal	Minimum	As Found	As Left	Maximum	
50	50	50		51	
150	149	151		152	
250	248	250		253	
350	347	348		354	
450	445	448		455	

Notes:

Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

CalSource, Inc. 1005 West Favette St. Suite 41) Straton NY 13204 H66-895-3888 ca inagree, such

CERTIFICATE OF CALIBRATION

ISSUED TO

CHENANGO CONTRACTING ARBUTUS ROAD KHINSON CITY NY 13790

CUSTOMER PO NUMBER:

020413

EQUIPMENT INFORMATION

ASSET NUMBER

MANUFACTURER

MODEL NUMBER DESCRIPTION

SERIAL NUMBER

NAL-0026

COLUMBINE INTERNATIONAL

AL-0102

TENSIOMETER

NAL-0020

TEST RESULTS

CERTIFICATE NUMBER AS RECEIVED AS RETURNED LAB TEMPERATURE

LAB HUMIDITY

350310 IN TOLERANCE PASS 68.5 F 32.0 %

PROCEDURE INTERVAL

CALIBRATION DATE CALIBRATION DUE DATE TECHNICIAN

33K6-4-3196-1 JAN 00 12 MONTHS 3/21/2013 3/21/2014 CODY W COOPER

COMMENTS

CALIBRATION STANDARDS

ASSET NUMBER	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	DESCRIPTION	GAL DATE	CAU DUE
CAL-00162 CAL-00275	OMENA	FTHX-SD N-1	VARIOUS	TEMPRH LOGGER FORCE CAL RIT	9/16/2012 . 12/21/2012	9 (8/2013

CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9001, ISO/IEC 17025, ISO/TS 16949, ANSI/NCSL 2540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above.

CERTIFIED BY CZ

3/21/2013

Load Cell

Syracuse, NY 13204 (315) 425-1151

ID Number Certificate Number	NAL-0020	
	350310	
Technician	Cody W. Cooper	_
Date	March 21, 2013	

Force(lbs.):

Danas	0.70-11	
Kange:	0-500 lbs.	Accuracy +/- 1% of ind.
		Accuracy +/- 1% of Ind.

Nominal	Minimum	As Found	As Left	Maximum	
100	99	100.5		101	
200	198	202.0		202	
300	297	298.0		303	
400	396	396.0		404	
500	495	495.0		505	

Notes:

Out of Tolerance Readings Highlighted
All Transferred Values Reviewed for Accuracy
Unless otherwise stated, As Left = As Found

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:

91 ppi

Shear:

120 ppi

Peel Outside:

Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		T	est Result	s		QA
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
1-153	3/28/2012	8:45	W-9	VS	S/S	365	7	136-138	141-134	234-235	PPJ	Р	DWH
1-154	3/28/2012	8:45	W-9	VS	S/S	365	6.5	127-139	133-146	200-218	PPI	Р	DWH
1-155	3/28/2012	9:00	W-5	AS	S/S	365	7	135-148	135-123	219-218	PPI	Р	DWH
1-156	3/28/2012	9:00	W-5	AS	T/T	365	6	141-134	154-134	214-229	PPI	Р	DWH
1-157	3/28/2012	10:00	W-10	TS	S/S	370	7			188-188	PPI	P	DWH
1-158	3/28/2012	10:00	W-10	TS	T/T	370	6		151-136		PPI	P	DWH
1-159	3/28/2012	13:20	W-9	VS	S/S	365	7	118-118		185-190	PPI	P	DWH
1-160	3/28/2012	13:20	W-9	VS	T/T	365	6.5	155-148		187-182	PPI	P	DWH
1-161	3/28/2012	14:00	W-5	AS	S/S	365	7			207-210	PPI	Р	DWH
1-162	3/28/2012	14:00	W-5	AS	T/T	365	6		150-143		PPI	P	DWH
1-163	3/28/2012	15:00	W-10	TS	S/S	370	7	121-131		192-196	PPI	P	DWH
1-164	3/28/2012	15:00	W-10	TS	T/T	370	6	145-139		200-200	PPI	Р	DWH
1-165	3/30/2012	13:25	W-9	VS	S/S	365	7	135-120		211-206	PPI	Р	DWH
1-166	3/30/2012	13:25	W-9	VS	T/T	365	6	150-149		218-209	PPI	P	DWH
1-167	3/30/2012	13:40	W-10	TS	S/S	370	7	126-131		214-210	PPI	P	DWH
1-168	3/30/2012	13:40	W-10	TS	T/T	370	6	113-123	113-140		PPI	Р	DWH
1-169	3/30/2012	13:40	W-5	AS	S/S	365	7	131-151	128-157	214-215	PPI	Р	DWH
1-170	3/30/2012	13:40	W-5	AS	T/T	365	6	153-117		204-202	PPI	P	DWH
1-171	3/30/2012	13:45	W-11	KC	S/S	375	7		137-109		PPI	P	DWH
1-172	3/30/2012	13:45	W-11	KC	T/T	375	6.5			195-195	PPI	Р	DWH
1-173	4/5/2012	8:45	W-9	VS	S/S	365	7		121-139		PPI	P	DWH
1-174	4/5/2012	8:45	W-9	VS	T/T	365	6		139-154		PPI	P	DWH
1-175	4/5/2012	8:50	W-10	TS	S/S	370	7	128-148	141-139		PPI	Р	DWH
1-176	4/5/2012	8:50	W-10	TS	T/T	370	6	115-137	126-123		PPI	P	DWH
1-177	4/5/2012	9:00	W-II	VC	S/S	375	8.5	140-142	158-157		PPI	P	DWH
1-178	4/5/2012	9:00	W-11	VC	T/T	375	6.5	128-118	118-123		PPI	P	DWH
1-179	4/5/2012	10:30	W-9	VS	S/S	365	7	141-119	91-101	200-202	PPI	P	DWH
1-180	4/5/2012	10:30	W-10	TS	S/S	370	7		117-142		PPI	P	DWH
1-181	4/5/2012	10:30	W-11	VC	S/S	375	8.5	-	147-138		PPI	P	DWH
1-182	4/5/2012	11:45	W-5	AS	S/S	365	7		154-156		PPI	P	DWH
1-183	4/5/2012	11:45	W-5	AS	T/T	365	6		142-133		PPI	P	DWH
1-184	4/5/2012	12:40	W-10	TS	S/S	370	7		123-127		PPI	P	DWH
1-185	4/5/2012	12:40	W-10	TS	T/T	370	6		116-127		PPI	P	DWH
1-186	4/5/2012	12:45	W-9	VS	S/S	365	7	139-125			PPI		DWH

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:

91 ppi

Shear:

120 ppi

Peel Outside: 91 ppi

Trial Seam	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		T	est Result	ts .		QA
No No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
1-187	4/5/2012	12:45	W-9	VS	T/T	365	6	118-150	117-132	210-205	PPI	Р	DWH
1-188	4/5/2012	12:55	W-11	VC	S/S	375	8.5	127-128	-	212-212	PPI	P	DWH
1-189	4/5/2012	12:55	W-11	VC	T/T	375	6.5	153-155		206-212	PPI	P	DWH
1-190	4/12/2012	8:25	W-10	TS	T/T	370	6	97-126		167-177		P	DWH
1-191	4/12/2012	8:35	W-5	AS	S/S	365	7	127-126		202-200	PPI	P	DWH
1-192	4/12/2012	8:35	W-5	AS	T/T	365	6	152-121		201-164	PPI	P	DWH
1-193	4/12/2012	9:00	W-9	VS	S/S	365	7		108-109		PPI	P	DWH
1-194	4/12/2012	9:00	W-9	VS	T/T	365	6	-	182-162		PPI	P	DWH
1-195	4/12/2012	10:10	W-11	TS	S/S	375	7	110-107	114-113		PPI	p	DWH
1-196	4/12/2012	10:10	W-11	TS	T/T	375	6	129-119	131-133		PPI	P	DWH
1-197	4/12/2012	12:10	W-9	VS	S/S	365	7	112-113	118-119		PPI	P	DWH
1-198	4/12/2012	12:10	W-9	VS	T/T	365	6	125-133	151-129	165-168	PPI	P	DWH
1-199	4/12/2012	12:44	W-5	AS	S/S	365	7	112-117	102-130	165-182	PPI	Р	DWH
1-200	4/12/2012	12:44	W-5	AS	T/T	365	6	105-128	120-124	180-178	PPI	Р	DWH
1-201	4/12/2012	12:44	W-5	AS	S/T	365	6	129-98	118-98	182-179	PPI	P	DWH
1-202	4/12/2012	14:10	W-11	TS	S/S	375	7	102-91	103-104	147-148	PPI	P	DWH
1-203	4/13/2012	8:50	W-9	VS	S/S	365	7	131-131	131-146	-	PPJ	P	DWH
1-204	4/13/2012	8:50	W-9	VS	T/T	365	7	132-151	136-147	192-198	PPI	P	DWH
1-205	4/13/2012	8:50	W-5	AS	S/S	365	7	126-119		186-181	PPI	Р	DWH
1-206	4/13/2012	8:50	W-5	AS	T/T	365	6	136-117		173-160	PPI	P	DWH
1-207	4/13/2012	8:50	W-5	AS	S/T	365	6			182-192	PPI	P	DWH
1-208	4/13/2012	9:10	W-14	TS	S/S	370	7			203-207	PPI	Р	DWH
1-209	4/13/2012	9:10	W-14	TS	T/T	370	6	-		187-200	PPI	Р	DWH
1-210	4/13/2012	10:30	W-9	VS	S/T	365	6.5		118-116	179-176	PPI		DWH
1-211	4/13/2012	13:10	W-14	TS	S/S	370	7		107-120	160-166	PPI	P	DWH
1-212	4/13/2012	13:10	W-14	TS	T/T	370	6	102-114	116-116	140-141	PPI		DWH
1-213	4/13/2012	13:15	W-5	AS	S/S	365	7		106-130	176-178	PPI		DWH
1-214	4/13/2012	13:15	W-5	AS	T/T	365	6		116-142	146-151	PPI		DWH
1-215	4/13/2012	13:15	W-5	AS	S/T	365	6		121-130	172-185	PPI		DWH
1-216	4/13/2012	13:35	W-9	VS	S/S	365	7			180-189	PPI	P	DWH
1-217	4/13/2012	13:35	W-9	VS	T/T	365	6			191-182	PPI		DWH
6-001	5/15/2012	8:15	W-14	VC	S/S	370	8			178-178	PPI		DWH
6-002	5/15/2012	8:15	W-14	VC	T/T	370	7	138-120		187-190	PPI		DWH
6-003	5/15/2012	8:25	W-5	AS	S/S	365	7	112-129			PPI		DWH

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: <u>Construction Quality Assurance for SCA Phase II</u>

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:

91 ppi

Shear:

120 ppi

Peel Outside: 91 ppi

Trial Seam	Date	Time	Mach ID	Oper ID	Mat Desc	Fus	sion		7	est Result	ts		QA.
No						Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
6-004	5/15/2012	8:25	W-5	AS	S/S	365	6	107-102	105-126	178-175	PPI	Р	DWH
6-005	5/15/2012	8:35	W-11	TS	S/S	375	7		109-114		PPI	P	
6-006	5/15/2012	8:35	W-11	TS	T/T	375	6	105-100	111-117		PPI	P	DWH
6-007	5/15/2012	8:45	W-9	LV	S/S	375	7.5	125-133	118-128	1	PPI	P	DWH
6-008	5/15/2012	8:45	W-9	LV	T/T	375	7.5	118-132	130-133		PPI	P	DWH
6-009	5/15/2012	10:30	W-5	AS	S/T	375	6.5	103-99	105-131	174-190			DWH
6-010	5/15/2012	12:40	W-5	AS	S/S	375	7	100-106	97-117	170-176	PPI	Р	DWH
6-011	5/15/2012	12:40	W-5	AS	T/T	375	6	121-152	144-135		PDI	Р	DWH
6-012	5/15/2012	12:55	W-9	LV	S/S	375	7.5	112-131		176-180	PPI	P	DWH
6-013	5/15/2012	13:05	W-11	TS	S/S	375	7	101-103		145-145	PPI	P	DWH
6-014	5/15/2012	13:05	W-11	TS	T/T	375	6	114-110	115-114		PPI	Р	DWH
6-015	5/15/2012	13:10	W-14	VC	S/S	375	8	107-114	105-117	160-160	PPI	Р	DWH
6-016	5/15/2012	13:10	W-14	VC	T/T	375	7	134-135		166-169	PPI	P	DWH
6-017	5/15/2012	17:20	W-9	LV	S/T	385	5.0	116-114	128-127 114 - 119	162-162	PPI	Р	DWH
6-018	5/16/2012	8:20	W-11	TS	S/S	375	7.5	100-101		167-169	PPI	Р	DWH
6-019	5/16/2012	8:20	W-11	TS	T/T	375	6.5		105-107	161-164	PPI	P	DWH
6-020	5/16/2012	8:40	W-9	LV	S/S	375	7.5	109-127 132-125	117-118		PPI	P	DWH
6-021	5/16/2012	8:40	W-9	LV	T/T	375	6.5		110-111	179-184	PPI	Р	DWH
6-022	5/16/2012	8:50	W-5	VC	S/S	375	8.5		140-134	160-179	PPI	Р	DWH
6-023	5/16/2012	8:50	W-5	VC	T/T	375			150-130	179-168	PPI	Р	DWH
6-024	5/18/2012	8:20	W-11	TS	S/S	375	7.5		116-120		PPI	Р	DWH
6-025	5/18/2012	8:20	W-11	TS	T/T	375			127-122		PPI	P	DWH
6-026	5/18/2012	8:40	W-9	LV	S/S	375	6	140-127			PPI	P	DWH
6-027	5/18/2012	8:40	W-9	LV	T/T	375	7.5		133-132		PPI		DWH
6-028	5/18/2012	8:45	W-5	AS	S/S	375	6.5		141-135		PPI	Р	DWH
6-029	5/18/2012	8:45	W-5	AS	T/T		7			224-220	PPI		DWH
6-030	5/18/2012	9:00	W-10	KC	S/S	375	6	115-118		194-206	PPI		DWH
6-031	5/18/2012	9:00	W-10	KC		380	8		143-124		PPI		DWH
6-032	5/18/2012	9:10	W-8	VC	T/T	380	6.5			192-195	PPI		DWH
6-033	5/18/2012	9:10	W-8	VC	S/S	375	9			208-204	PPI		DWH
6-034	5/18/2012	12:30	W-6 W-5		T/T	375	8			200-197	PPI		DWH
6-035	5/18/2012	12:30	W-5 W-5	AS	S/S	375	7			185-178	PPI	Р	DWH
5-036	5/18/2012			AS	T/T	375	6			183-174	PPI	P	DWH
5-030	5/18/2012	12:35	W-10	KC	S/S	380	9			178-179	PPI	P	DWH
1.00-0	3/10/2012	12:35	W-10	KC	T/T	375	7	120-127	137-138	162-162	PPI	P	DWH

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:

91 ppi

Shear:

120 ppi

Peel Outside:

Trial Seam	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion		T	est Resuli	ts		QA
No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
6-038	5/18/2012	13:15	W-9	LV	S/S	380	7.5	118-123	125-130	180-187	PPI	Р	DWH
6-039	5/18/2012	13:15	W-9	LV	T/T	380	7.5	111-121	118-121	180-177	PPI	P	DWH
6-040	5/18/2012	13:30	W-11	TS	S/S	375	6.5	101-110		160-161	PPI	P	DWH
6-041	5/18/2012	13:30	W-II	TS	T/T	375	6.5	120-121	118-130	204-198	PPI	P	DWH
6-042	5/18/2012	13:35	W-8	VC	S/S	375	9	127-126		194-202	PPI	P	DWH
6-043	5/18/2012	13:35	W-8	VC	T/T	375	8	128-112		190-192	PPI	P	DWH
6-044	: 5/24/2012	8:00	W-11	TS	S/S	375	7.5	119-110			PPI	P	DWH
6-045	5/24/2012	8:00	W-11	TS	T/T	375	6.5	114-110	-	151-155	PPI	P	DWH
6-046	5/24/2012	8:15	W-8	VC	S/S	375	9	126-130	131-131	185-187	PPI	P	DWH
6-047	5/24/2012	8:15	W-8	VC	T/T	375	8	153-140	145-138	178-176	PP]	p	DWH
6-048	5/24/2012	8:30	W-5	AS	S/S	375	7	119-128	121-116	150-173	PPI	Р	DWH
6-049	5/24/2012	8:30	W-5	AS	T/T	375	6	136-119	113-127	210-190	PPI	P	DWH
6-050	5/24/2012	8:40	W-10	KC	S/S	385	8.5	133-140			PPI	P	DWH
6-051	5/24/2012	8:40	W-10	KC	T/T	385	7	130-132			PPI	P	DWH
6-052	5/24/2012	12:35	W-8	VC	S/S	375	9	116-127	120-132		PPI	P	DWH
6-053	5/24/2012	12:35	W-8	VC	T/T	375	8.5	112-118	120-132		PPI	P	DWH
6-054	5/24/2012	12:42	W-5	AS	S/S	380	7	119-132	120-124		PPI	P	DWH
6-055	5/24/2012	12:42	W-5	AS	T/T	375	6	121-133	128-124	168-174	PPI	P	DWH
6-056	5/24/2012	13:10	W-11	TS	S/S	375	8,5			154-154	PPI	P	DWH
6-057	5/24/2012	13:10	W-11	TS	T/T	375	7.5	106-115		152-150	PPI	P	DWH
6-058	5/24/2012	13:25	W-10	KC	S/S	385	9		117-104		PPI	P	DWH
6-059	5/24/2012	14:05	W-9	VC	S/S	375	9	130-117	124-123		PPI	P	
6-060	5/24/2012	14:05	W-9	VC	T/T	375	8			195-190	PPI	P	DWH
6-061	6/1/2012	8:10	W-9	VS	S/S	365	8	-	156-152		PPI	_	DWH
6-062	6/1/2012	8:15	W-5	AS	S/S	365	7			182-191	PPI	Р	DWH
6-063	6/1/2012	8:15	W-5	AS	T/T	365	6			175-181	PPI PPI		DWH
6-064	6/1/2012	8:30	W-11	TS	S/S	375	8			171-175		Р	DWH
6-065	6/1/2012	8:30	W-11	TS	T/T	375	6.5			185-192	PPI PPI	Р	DWH
6-066	6/1/2012	8:35	W-10	KC	S/S	385	8					Р	DWH
6-067	6/1/2012	8:35	W-10	KC	T/T	385	7			184-187	PPI	Р	DWH
6-068	6/1/2012	11:00	W-28	VC	T/T	450	7.5			18 -190	PPI	_	DWH
6-069	6/8/2012	8:20	W-14	VS	S/S	365	8			188-190	PPI	P	DWH
6-070	6/8/2012	8:20	W-14	VS	T/T	365				198-197	PPI		DWH
6-071	6/8/2012	8:25	W-14 W-5	AS	S/S	365	7		132-133 142-138	180-179	PPI		DWH DWH

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:

91 ppi

Shear:

ProjNo: <u>GJ4706B</u>

120 ppi

TaskNo: <u>200</u>

Peel Outside:

Trial Seam	Date	Time	Mach ID	Oper 1D	Mat Desc	Fus	ion		T	est Result	ts		QA
No			ID.			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
6-072	6/8/2012	8:25	W-5	AS	T/T	365	6	145-133	137-124	188-182	PP1	Р	DWH
6-073	6/8/2012	8:37	W-11	TS	S/S	375	8	-	122-112		PPI	P	DWH
6-074	6/8/2012	8:37	W-11	TS	T/T	375	6.5	124-128	146-132	-	PPI	P	DWH
6-075	6/8/2012	8:45	W-10	KC	S/S	375	8,5	123-130			PPI	P	DWH
6-076	6/8/2012	8:45	W-10	KC	T/T	375	6.5	141-141		189-191	IPPI	P	DWH
6-077	6/8/2012	13:10	W-11	TS	T/T	375	6	109-147	103-145		PPI	Р	DWH
6-078	6/14/2012	8:15	W-11	TS	S/S	375	8	131-133	133-131	201-201	PPI	P	DWH
6-079	6/14/2012	8:15	W-11	TS	T/T	375	6.5	120-114	128-135	165-166	PPI	Р	DWH
6-080	6/14/2012	8:35	W-28	VC	S/S	450	7	_	142-125	189-194	PPI	P	DWH
6-081	6/14/2012	8:35	W-28	VC	T/T	450	7	+	140-137		PPI	P	DWH
6-082	6/14/2012	8:40	W-10	KC	S/S	380	8		149-116		PPI	P	DWH
6-083	6/14/2012	8:40	W-10	KC	T/T	380	6.5		132-140		PPI	P	DWH
6-084	6/14/2012	8:45	W-5	AS	S/S	375	8	136-151	138-131	189-187	PPI	P	DWH
6-085	6/14/2012	8:45	W-5	AS	T/T	375	6,5	151-153	158-150		PPI	P	DWH
6-086	6/14/2012	12:40	W-28	VC	T/T	450	7	126-136	134-131	175-179	PPI	P	DWH
6-087	6/14/2012	13:15	W-11	TS	S/S	375	8	120-103		172-176	PPI	P	DWH
6-088	6/14/2012	13:15	W-11	TS	T/T	375	6.5	108-110	131-111	150-152	PPI	Р	DWH
6-089	6/14/2012	13:30	W-10	KC	S/S	380	8		113-112		PPI		DWH
6-090	6/14/2012	13:30	W-10	KC	T/T	380	7		104-106	168-171	PPI		DWH
6-091	6/18/2012	7:45	W-11	TS	S/S	375	8		138-139	171-159	PPI		DWH
6-092	6/18/2012	7:45	W-11	TS	T/T	375	6.5		125-142	161-159	PPJ		DWH
6-093	6/18/2012	7:50	W-10	KC	S/S	380	8			176-176	PPI		DWH
6-094	6/18/2012	7:50	W-10	KC	T/T	380	7			149-149	PPI		DWH
6-095	6/18/2012	8:00	W-28	VC	S/S	450	7.5			176-176	PPI	_	DWH
6-096	6/18/2012	8:00	W-28	VC	T/T	450	6.5			145-152	PPI		DWH
6-097	6/18/2012	12:40	W-28	VC	S/S	450	12.5			147-138	PPI		DWH
6-098	6/18/2012	12:40	W-28	VC	T/T	450	11.5	99-104		124-120	PPI		DWH
6-099	6/18/2012	12:45	W-11	TS	S/S	375	8			148-159	PPI		_
6-100	6/18/2012	12:45	W-11	TS	T/T	375	6.5			129-122	PPI		DWH
6-101	6/18/2012	12:50	W-10	KC	S/S	380	8						DWH
6-102	6/18/2012	12:50	W-10	KC	T/T	380	6.5	107-101		143-133 122-120	PPI PPI		DWH
6-103	6/21/2012	7:40	W-28	VC	S/S	450	12.5	125-120					DWH
6-104	6/21/2012	7:40	W-28	VC	T/T	450	11.5			154-151	PPI		DWH
6-105	6/21/2012	7:45	W-5	BTK	S/S	375	7.5	122-114		156-152 160-163	PPI PPI		DWH DWH

consultants

Trial Seam Log - Fusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

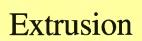
TaskNo: 200

Tensiometer Description: NAL-0802

Material Type

gml : 6

Peel Inside:


91 ppi

Shear:

120 ppi

Peel Outside:

Trial Seam	Date	Time	Mach ID	Oper ID	Mat Desc	Fus	ion		T	est Result	'S		QA
No						Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
6-106	6/21/2012	7:45	W-5	BTK	T/T	375	6	113-114	113-115	143-149	PPI	Р	DWH
6-107	6/21/2012	8:03	W-11	TS	S/S	375	8		125-120		PPI	P	DWH
6-108	6/21/2012	8:03	W-11	TS	T/T	375	6.5		129-137	11111	PPI	P	DWH
6-109	6/21/2012	8:05	W-10	KC	S/S	380	8.5	117-124		165-154	PPI	P	DWH
6-110	6/21/2012	8:05	W-10	KC	T/T	380	7	127-127		131-120	PPI	Р	DWH
6-111	6/21/2012	12:50	W-28	VC	S/S	450	12.5		119-128		PPI	P	DWH
6-112	6/21/2012	12:50	W-28	VC	T/T	450	11.5	120-115	124-126		PPI	P	DWH
6-113	6/21/2012	12:56	W-5	BTK	S/S	375	8	111-120	110-118		PPI	P	DWH
6-114	6/21/2012	12:56	W-5	BTK	T/T	375	6.5		116-119		PPl	P	DWH
6-115	6/21/2012	13:10	W-10	KC	S/T	380	8,5	106-112	109-120	133-127	PPI	P	DWH
6-116	6/21/2012	13:10	W-10	KC	T/T	380	7	123-127	122-120	130-132	PPI	P	DWH
6-117	6/21/2012	13:30	W-11	TS	S/S	375	8.5	102-109	119-118	135-130	PPI	Р	DWH
6-118	6/21/2012	13:30	W-11	TS	T/T	375	6.5		108-109	120-120	PPI		DWH

consultants

Trial Seam Log - Extrusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Tensiometer Description: NAL-0802 Peel:

78 ppi

Shear:

							ррі		Shear:	120	ррі		
Trial Seam No	Date	Time	Mach ID	Oper ID	Mat	Extra	ision		Test Res	sults		Retest	QA II
Seam 140			ID	ID	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No.	
1-080	3/28/2012	13:35	MX-16	CP	T/T	450	495	145-132	168-171	PPI	Р		DWH
1-081	3/30/2012	8:15	MX-16	VS	T/T	500	500	128-140	189-190	PPI	P		DWH
1-082	4/2/2012	8:30	MX-16	: VS	T/T	500	500	155-154	189-216	PPI	P	_	DWH
1-083	4/2/2012	10:30	MX-16	VS	T/T	500	500	119-124	198-196	PPI	P		DWH
1-084	4/2/2012	12:45	MX-16	VS	T/T	500	500	142-131	185-191	PPI	: P		DWH
1-085	4/3/2012	8:30	MX-16	VS	T/T	500	500	138-146	224-214	PPI	P		DWH
1-086	4/3/2012	10:00	MX-16	VS	T/T	500	500	119-121	178-191	PPI	P		DWH
1-087	4/3/2012	12:45	MX-16	VS	T/T	500	500	135-128	187-190	PPI	P		DWH
1-088	4/4/2012	9:42	MX-16	VS	T/T	500	500	147-142	203-207	PPI	P	-	DWH
1-089	4/6/2012	9:10	MX-16	VS	T/T	500	500	151-163	212-210	PPI	P		DWH
1-090	4/6/2012	13:40	MX-16	VS	T/T	500	500	140-136	181-176	PPI	P		DWH
1-091	4/9/2012	8:15	MX-16	VS	T/T	500	500	140-133	212-216	PPI	P	-	DWH
1-092	4/9/2012	10:30	MX-16	VS	T/T	500	500	150-137	191-198	PPI	P		DWH
1-093	4/9/2012	12:45	MX-16	VS	Т/Т	500	500	138-151	196-192	PPI	P		DWH
1-094	4/10/2012	8:30	MX-16	VS	T/T	500	500	158-165	220-209	PPI	P		DWH
1-095	4/10/2012	12:40	MX-16	VS	T/T	500	500	149-140	221-204	PPI	P		DWH
1-096	4/13/2012	9:20	MX-12	VC	T/T	500	500	126-129	188-196	PPI	P		DWH
1-097	4/13/2012	13:30	MX-18	VC	T/T	475	500	128-130	196-186	PPI	P		DWH
1-098	4/16/2012	8:00	MX-16	VS	T/T	500	500	134-122	171-178	PPI	P		DWH
1-099	4/16/2012	9:00	MX-18	LV	T/T	475	500	120-118	171-173	PPI	P		DWH
1-100	4/16/2012	13:00	MX-18	LV	T/T	475	500	130-131	156-162	PPI	P		DWH
1-101	4/16/2012	14:45	MX-16	BTK	T/T	500	450	135-123	137-138	PPI	Р		DWH
1-102	4/17/2012	8:00	MX-18	LV	T/T	500	500	128-163	192-189	PPI	P		DWH
1-103	4/17/2012	12:50	MX-18	LV	T/T	500	500	115-158	141-182	PPI	P		DWH
1-104	4/18/2012	8:05	MX-16	VS	T/T	500	500	134-147	201-196	PPI	P		DWH
1-105	4/18/2012	8:05	MX-18	LV	T/T	500	500	112-136	230-230	PPI	P		DWH
1-106	4/18/2012	12:40	MX-16	VS	T/T	500	500	136-147	168-178	PPI	P		DWH
1-107	4/18/2012	12:45	MX-18	LV	T/T	500	500	120-135	208-209	PPI	P		DWH
1-108	4/19/2012	8:10	MX-16	VS	T/T	500	500	134-139	209-223	PPI	P		DWH
6-001	5/16/2012	13:20	MX-16	VC	T/T	425	475	115-119	174-169	PPI	P		DWH
6-002	5/17/2012	8:20	MX-16	VC	T/T	475	500	123-122	161-164	PPI	P		DWH
6-003	5/17/2012	9:30	MX-18	CAP	T/T	475	475	142-141	168-168	PPI	P		
6-004	5/17/2012	12:40	MX-18	CAP	T/T	475	475	128-140	164-169	PPI	P		DWH
6-005	5/17/2012	12:50	MX-16	VC	T/T	475	500	130-124	165-168	PPI	P		DWH
	5/21/2012	8:00	MX-16	VC	T/T	475	500	118-108	168-174	PPI	P		DWH
6-007	5/21/2012	8:15	MX-18	BTK	T/T	500	475	126-121	188-181	PPI	P		DWH DWH

consultants

Trial Seam Log - Extrusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml : 6

Tensiometer Description: NAL-0802 Peel:

78 ppi

Shear:

						70	ppi		SHEUT,	120	ppi		
Trial Seam No	Date	Time	Mach ID	Oper ID	Mat	Extri	usion	9	Test Res	ults		Retest	QA II
Jean 110			ID	ID.	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No	
6-008	5/21/2012	11:30	MX-18	VS	T/T	500	475	126-129	164-178	PPI	Р		DWH
6-009	5/21/2012	13:20	MX-16	VC	T/T	475	500	130-138	192-190	PPI	Р		DWH
6-010	5/22/2012	9:10	MX-16	VC	T/T	500	500	134-128	192-196	PPI	Р		DWH
6-011	5/22/2012	12:35	MX-16	VC	T/T	500	500	132-138	198-196	PPI	: P		DWH
6-012	5/23/2012	8:30	MX-16	VC	T/T	500	500	130-126	184-192	PPI	Р		DWH
6-013	5/23/2012	13:00	MX-16	VC	T/T	500	500	135-123	178-181	PPI	Р		DWH
6-014	5/25/2012	8:00	MX-16	JS	T/T	500	500	89-89	166-169	PPI	Р		DWH
6-015	5/29/2012	8:00	MX-16	VC	T/T	500	500	128-132	165-160	PPI	P		DWH
6-016	5/29/2012	12:45	: MX-16	VC	T/T !	500	500	115-124	180-179	PPI	Р		DWH
6-017	5/30/2012	9:35	MX-16	VC	T/T	500	500	115-120	180-174	PPI	P		DWH
6-018	5/30/2012	12:45	MX-16	VC	T/T	500	500	98-110	165-185	PPI	P		DWH
6-019	5/31/2012	8:00	MX-16	VC	T/T	500	500	104-126	184-180	PPI	P		DWH
6-020	5/31/2012	12:55	MX-16	VC	T/T	500	500	140-140	200-195	PPI	Р		DWH
6-021	6/4/2012	8:10	MX-16	VC	T/T	500	500	160-142	172-181	PPI	Р		DWH
6-022	6/4/2012	12:31	MX-16	VC	T/T	500	500	151-171	194-189	PPI	Р		DWH
6-023	6/5/2012	8:00	MX-16	VS	T/T	500	500	154-161	191-195	PPI	P		DWH
6-024	6/5/2012	12:45	MX-16	VS	T/T	500	500	142-139	189-192	PPI	P		DWH
6-025	6/6/2012	8:00	MX-16	VS	T/T	500	500	131-146	187-193	PPI	Р		DWH
6-026	6/6/2012	13:00	MX-16	VS	T/T	500	500	125-129	178-186	PPI	Р		DWH
6-027	6/7/2012	7:35	MX-18	KC	T/T	475	500	156-162	179-173	PPI	P		DWH
6-028	6/7/2012	8:00	MX-16	VS	T/T	500	500	157-139	187-191	PPI	P		DWH
6-029	6/7/2012	13:00	MX-16	VS	T/T	500	500	133-131	172-182	PPI	P		DWH
6-030	6/7/2012	13:00	MX-18	KC	T/T	475	500	142-135	172-176	PPI	P		DWH
6-031	6/8/2012	13:10	MX-16	VS	T/T	500	500	123-129	171-183	PPI	P		DWH
6-032	6/11/2012	7:35	MX-16	KC	T/T	500	500	130-133	183-198	PPI	P		DWH
6-033	6/11/2012	7:40	MX-18	VC	T/T	475	500	112-118	179-185	PPI	P		DWH
6-034	6/11/2012	12:40	MX-16	KC	T/T	500	500	123-125	179-188	PPI	P		DWH
6-035	6/11/2012	12:45	MX-18	VC	T/T	500	500	120-118	181-178	PPI	P		DWH
6-036	6/13/2012	7:40	MX-16	KC	T/T	475	500	125-142	172-178	PPI	P		DWH
6-037	6/13/2012	12:40	MX-16	KC	T/T	475	500	117-128	187-179	PPI	P		DWH
6-038	6/14/2012	8:30	MX-16	VS	T/T	500	500	138-141	194-189	PPI	Р		DWH
6-039	6/14/2012	13:25	MX-16	VS	T/T	500	500	159-167	185-168	PPI	P		DWH
6-040	6/15/2012	7:30	MX-16	KC	T/T	500	500	106-109	170-175	PPJ	P	-	DWH
6-041	6/15/2012	12:40	MX-16	VS	T/T	500	500	102-107	165-172	PPI	P		DWH
6-042	6/15/2012	13:30	-	BTK	T/T	400	500	139-140	160-169	PPI	P		DWH
6-043	6/20/2012	7:30	MX-16	KC	T/T	500	500	108-127	136-132	PPI	P		DWH

Geosyntec[>]

consultants

Trial Seam Log - Extrusion

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Tensiometer Description: NAL-0802

Material Type gml : 6 Peel: 78 p

78 ppi Shear: 120 ppi

Trial Seam No	Date	Time	Mach	Oper	Mat	Extra	usion		Test Res	ults		Retest	QA II
seum Ivo			ID	ID	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No	
6-044	6/20/2012	12:45	MX-16	KC	T/T	500	500	121-124	127-120	PPI	Р		DWH
6-045	6/22/2012	7:30	MX-16	KC	T/T	500	450	106-110	152-142	PPI	P		DWH
6-046	6/22/2012	12:45	MX-16	KC	T/T	500	450	111-109	145-150	PPI	P		DWH
6-047	6/25/2012	7:30	MX-16	KC	T/T	500	450	109-114	189-186	PPI	P		DWH
6-048	6/25/2012	12:40	MX-16	KC	Т/Т	500	450	110-112	175-180	PPI	P		DWH
6-049	6/26/2012	7:35	MX-16	KC	T/T	500	450	102-101	145-149	PPJ	P		DWH
6-050	6/26/2012	8:00	MX-12	BTK	T/T	550	500	134-121	160-161	PPI	P		DWH
6-051	6/26/2012	12:55	MX-16	KC	T/T	500	450	130-131	147-141	PPI	P		DWH
6-052	6/26/2012	13:00	MX-12	BTK	T/T	550	500	101-146	158-163	PPI	Р	1	DWH
6-053	6/27/2012	8:00	MX-16	KC	T/T	500	475	113-120	172-178	PPI	P		DWH
6-054	6/27/2012	9:00	MX-12	втк	T/T	550	500	111-123	171-170	PP]	P		DWH
6-055	6/27/2012	12:45	MX-12	BTK	T/T	550	500	115-110	158-160	PPI	P	-	DWH
6-056	6/27/2012	12:48	MX-16	KC	T/T	500	475	143-133	156-159	PPI	P	-	DWH
6-057	6/28/2012	7:30	MX-16	KC	T/T	500	475	119-120	170-175	PPI	P		DWH
6-058	6/28/2012	13:00	MX-12	BTK	T/T	550	500	123-137	141-139	PPI	P		DWH
6-059	6/28/2012	13:00	MX-16	KC	T/T	500	475	133-136	158-160	PP1	P		DWH
6-060	6/29/2012	7:40	MX-16	KC	T/T	500	475	108-126	161-161	PPI	P		DWH
6-061	6/29/2012	9:00	MX-12	BTK	T/T	550	500	118-106	144-146	PPI	P		DWH
6-062	6/29/2012	12:45	MX-12	BTK	T/T	550	500	118-110	160-170	PPI	P		DWH
6-063	6/29/2012	12:50	MX-16	KC	T/T	500	475	110-109	161-168	PPI	P		DWH
6-064	7/2/2012	8:00	MX-12	KC	T/T	500	500	117-110	170-176	ppi	P		DWH
6-065	7/2/2012	8:30	MX-16	BTK	T/T	550	500	136-139	179-175	ppi	P		DWH
6-066	7/2/2012	12:45	MX-12	KC	T/T	500	500	109-110	160-162	PPI	P		DWH
6-067	7/2/2012	12:50	MX-16	втк	T/T	550	500	136-128	155-145	PPI	P		DWH
6-068	7/3/2012	7:35	MX-16	KC	Т/Т	550	500	118-122	174-179	PPI	P		DWH
6-069	7/3/2012	0:00	MX-16	KC	T/T	550	500	105-109	154-160	PPI	P		DWH
6-070	7/6/2012	10:00	MX-12	KC	T/T	550	500	110-112	167-171	PPJ	P		DWH
6-071	7/13/2012	0:00	MX-16	VC	T/T	500	500	114-115	133-129	ppi	р		DWH
6-072	7/16/2012	0:00	MX-8	MBY2	T/T	475	475	110-114	139-135	ppi	p		DW
6-073	9/17/2012	0:00	MX-14	MB	T/T	500	450	111-118	141-153	ppi	р		DW
6-074	10/3/2012	0:00	MX-I	MB	T/T	500	500	102-109	152-145	ppi	р	-	DW
6-075	11/13/2012	0:00	X6	ВТК	T/T	550	550	146-131	224-209	ppi	P		JWC
-	11/14/2012	0:00	X-12	BTK	T/T	550	550	114-117	189-187	ppi	P		JWC
6-077	4/3/2013	12:30	X-12	CP	T/T	450	450	117-125	212-204	ppi	р		JB

APPENDIX K

Geomembrane Production Seam and Non-Destructive Test Logs

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml: 6

Specifications: Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA IL
5/15/2012	8:45	W-14	VC	F	6-001-002-0-47.5	47.5	DWH	0-47.5	30-30	AS	. P	AT OK	DWH
5/15/2012	8:47	W-5	AS	F	6-002-003-0-47	47	DWH	0-47	30-29	AS	P	AT OK	DWH
5/15/2012	8:58	W-14	VC	F	6-003-004-0-47	47	DWH	0-47	30-28	AS	Р	AT OK	DWH
5/15/2012	8:58	W-5	AS	F	6-004-005-0-47.5	47.5	DWH	0-47.5	30-28	AS	P	AT OK	DWH
5/15/2012	9:10	W-14	VC	F	6-005-006-0-49	49	DWH	0-49	30-30	AS	P	AT OK	
5/15/2012	9:12	W-5	AS	F	6-006-007-0-50	50	DWH	0-50	30-30	AS	P		DWH
5/15/2012	9:16	W-9	LV	F	6-009-010-0-50	50	DWH	0-50	30-30	AS	P	AT OK	DWH
5/15/2012	9:16	W-11	TS	F	6-010-011-0-50	50	DWH	0-50	30-30			AT OK	DWH
5/15/2012	9:19	W-14	VC	F	6-007-008-0-49.5	49.5	DWH	0-49-5		AS	P	AT OK	DWH
5/15/2012	9:23	W-5	AS	F	6-008-009-0-49	49	DWH -	0-49	30-30	AS	P	AT OK	DWH
5/15/2012	9:35	W-11	TS	F	6-011-012-0-50	50	DWH	0-49	30-27	AS	Р	AT OK	DWH
5/15/2012	9:38	W-14	VC	F	6-012-013-0-51				30-30	AS	P	AT OK	DWH
5/15/2012	9:39	W-5	AS	F		51	DWH	051	30-30	AS	P	AT OK	DWH
					6-013-014-0-51	51	DWH	0-51	30-28	AS	P	AT OK	DWH
5/15/2012	9:45	W-14	VC	F	6-014-015-0-51	51	DWH	0-51	30-30	AS	Р	AT OK	DWH
5/15/2012	9:45	W-9	LV	F	6-017-018-0-49.5	49.5	DWH	0-49.5	30-28	AS	P	AT OK	DWH
5/15/2012	9:45	W-11	TS	F	6-018-019-0-49	49	DWH	0-49	30-30	AS	P	AT OK	DWH

Geosyntec[>]

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Mondostr	uctive Test			-
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA IL
5/15/2012	9:51	W-5	AS	F	6-015-016-0-50.5	50,5	DWH	0-50.5	30-30	AS	Р	47.04	D.11.11
5/15/2012	9:56	W-14	VC	F	6-016-017-0-50	50	DWH	0-50	30-28			AT OK	DWH
5/15/2012	9:56	W-9	LV	F	6-019-020-0-48	48	DWH			AS	P	AT OK	DWH
5/15/2012	9:56	W-11	TS	F	6-020-021-0-48			0-48	30-30	AS	P	AT OK	DWH
5/15/2012	10:06					48	DWH	0-48	30-30	AS	P	AT OK	. DWH
		W-11	TS	F	6-021-022-0-46	46	DWH	0-46	30-30	AS	P	AT OK	DWH
5/15/2012	10:06	W-14	VC	F	6-022-023-0-46	46	DWH	0-46	30-30	AS	P	AT OK	
5/15/2012	10:09	W-5	AS	F	6-023-024-0-46	46	DWH	0-46	30-28				DWH
5/15/2012	10:14	W-14	VC	F	6-025-026-0-43	43	DWH			AS	Р	AT OK	DWH
5/15/2012	10:15	W-11	TS	F				0-43	30-30	AS	P	ATOK	DWH
5/15/2012	10:22				6-024-025-0-45	45	DWH	0-45	30-30	AS	P	AT OK	DWH
		W-5	AS	F	6-028-029-22-0	22	DWH:	0-22	30-30	AS	Р	AT OK	DWH
5/15/2012	10:25	W-14	VC	F	6-027-029-0-17	17	DWH	0-17	30-29	AS	P	AT OK	DWH
5/15/2012	10:27	W-14	VC	F	6-027-028-17-34	17	DWH	17-34	30-30				
5/15/2012	10:30	W-14	VC	F	6-026-028-30-42	12	DWH			AS	Р	AT OK	DWH
5/15/2012	10:33	W-9	LV	F			-	34-42	30-28	AS	P	AT OK	DWH
5/15/2012	10:58				6-026-027-0-34	34	DWH	0-34	30-30	AS	P	AT OK	DWH
		W-11	TS	F	6-030-031-0-22	22	DWH	0-22	30-30	AS	P	AT OK	DWH
5/15/2012	11:03	W-5	AS	F	6-001-030-628-605	23	DWH	605-628	30-29	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA II
5/15/2012	11:07	W-5	AS	F	6-002-030-605-583	22	DWH	583-605	30-28	AS	P	AT OK	DWH
5/15/2012	11:11	W-5	AS	F	6-003-030-583-560	23	DWH	560-583	30-30	AS	Р	AT OK	DWH
5/15/2012	11:14	W-5	AS	F	6-004-030-560-538	22	DWH	538-560	30-30	AS	P	AT OK	DWH
5/15/2012	11:17	W-14	VC	F	6-032-034-633-594	39	DWH !	594-633	30-30	AS	P	AT OK	DWH
5/15/2012	11:19	W-5	AS	F	6-005-030-538-515	23	DWH	515-538	30-27	AS	P	AT OK	DWH
5/15/2012	11:23	W-9	LV	F	6-030-032-594-320	274	DWH	320-594	30-30	AS	P	AT OK	DWH
5/15/2012	11:24	W-5	AS	F	6-006-030-515-493	22	DWH	493-515	30-27	AS	Р	AT OK	DWH
5/15/2012	11:27	W-5	AS	F	6-007-030-493-470	23	DWH	470-493	30-30	AS	P	AT OK	DWH
5/15/2012	11:30	W-5	AS	F	6-008-030-470-448	22	DWH	448-470	30-28	AS	P	AT OK	DWH
5/15/2012	11:33	W-5	AS	F	6-009-030-448-425	23	DWH	425-448	30-30	AS	P	AT OK	DWH
5/15/2012	11:37	W-5	AS	F	6-010-030-425-403	22	DWH	403-425	30-30	AS	P	AT OK	
5/15/2012	11:40	W-11	TS	F	6-030-033-320-175	145	DWH	175-320	30-30	AS	P		DWH
5/15/2012	11:41	W-5	AS	F	6-011-030-403-381	22	DWH	381-403	30-30	AS	P	AT OK	DWH
5/15/2012	11:45	W-5	AS	F	6-012-030-381-358	23	DWH	358-381	30-30		P	AT OK	DWH
5/15/2012	11:49	W-5	AS	F	6-013-030-358-335	23	DWH	335-358	30-30	AS		AT OK	DWH
5/15/2012	11:53	W-5	AS	F	6-014-030-335-313	22	DWH	313-335	30-30	AS AS	P	AT OK AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestri	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
5/15/2012	11:55	W-14	VC	F	6-032-033-0-22.5	22.5	DWH	0-22.5	30-28	AS	Р	AT OK	DWH
5/15/2012	11:57	W-5	AS	F	6-015-030-313-290	23	DWH	290-313	30-30	AS	P	AT OK	DWH
5/15/2012	12:00	W-11	TS	F	6-031-033-175-0	175	DWH	0-175	30-30	AS	P	AT OK	DWH
5/15/2012	12:01	W-5	AS	F	6-016-030-290-267	23	DWH	267-290	30-30	AS	P	AT OK	DWH
5/15/2012	13:08	W-5	AS	F	6-017-030-265-247	22	DWH	247-265	30-28	AS	P	AT OK	DWH
5/15/2012	13:13	W-5	AS	F	6-018-030-245-222	23	DWH	222-245	30-29	AS	P	AT OK	DWH
5/15/2012	13:18	W-5	AS	F	6-019-030-222-200	22	DWH	200-222	30-30	AS	P	AT OK	DWH
5/15/2012	13:22	W-5	AS	F	6-020-030-200-177	23	DWH	177-200	30-30	AS	P	AT OK	DWH
5/15/2012	13:26	W-5	AS	F	6-021-030-177-174	3	DWH	174-177	CAPPED	AS	P	VTOK	DWH
5/15/2012	13:27	W-5	AS	F	6-021-031-174-154	20	DWH	154-174	30-30	AS	P	AT OK	DWH
5/15/2012	13:30	W-5	AS	F	6-022-031-154-131	23	DWH	131-154	30-30	AS	P	AT OK	DWH
5/15/2012	13:33	W-5	AS	F	6-023-031-131-109	22	DWH	109-131	30-30	AS	P	AT OK	DWH
5/15/2012	13:36	W-5	AS	F	6-024-031-109-86	23	DWH	86-109	30-30	AS	P	AT OK	DWH
5/15/2012	13:38	W-9	LV	F	6-032-034-639-465	204	DWH	435-639	30-28	AS	P	AT OK	DWH
5/15/2012	13:39	W-5	AS	F	6-025-031-86-63	23	DWH	63-86	30-27	AS	P	AT OK	DWH
5/15/2012	13:40	W-11	TS	F	6-033-035-323-0	323	DWH	0-323	30-28	AS	P	ATOK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA ID
5/15/2012	13:43	W-5	AS	F	6-026-031-63-41	22	DWH	41-63	30-29	AS	P	AT OK	DWH
5/15/2012	13:48	W-5	AS	F	6-028-031-41-0	41	DWH	0-41	30-30	AS	Р	AT OK	DWH
5/15/2012	13:50	W-14	VC	F	6-034-035-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/15/2012	14:05	W-9	LV	F	6-032-035-465-323	142	DWH	323-465	30-30	i AS	P	AT OK	DWH
5/15/2012	14:15	W-14	VC	F	6-036-037-0-22.5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/15/2012	14:24	W14	VC	F	6-034-036-639-598	41	DWH	598-639	30-28	! AS	P	AT OK	DWH
5/15/2012	14:28	W-14	VC	F	6-034-037-598-463	135	DWH	463-598	30-30	AS	P	AT OK	DWH
5/15/2012	14:30	W-5	AS	F	6-035-037-463-92	371	DWH	92-463	30-30	AS	P	AT OK	DWH
5/15/2012	14:35	W-11	TS	F	6-037-038-0-22.5	22.5	DWH	0-22.5	30-30	AS	p !	AT OK	_
5/15/2012	14:46	W-9	LV	F	6-036-039-640-602	38	DWH	602-640	30-29	AS	P	AT OK	DWH
5/15/2012	14:51	W-9	LV	F	6-037-039-602-233	369	DWH	233-602	30-30	I AS	P	AT OK	
5/15/2012	15:00	W-11	TS	F	6-039-040-0-22.5	22.5	DWH	0-22.5	30-29	AS	р		DWH
5/15/2012	15:09	W-11	TS	F	6-037-040-233-95	138	DWH	95-233	30-29		P	AT OK	DWH
5/15/2012	15:10	W-14	VC	F	6-039-041-640-375	265	DWH	375-640	30-30	AS		AT OK	DWH
5/15/2012	15:15	W-5	AS	F	6-035-038-92-0	92	DWH	0-92		AS	Р	AT OK	DWH
5/15/2012	15:27	W-11	TS	F	6-038-040-95-0	95	DWH		30-27	AS	Р	AT OK	DWH
		-			0-030-040-93-0	93	DWH	0-95	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
5/15/2012	15:45	W-14	VC	F	6-041-042-0-10	10	DWH	0-10	CAPPED	AS	P	VT OK	DWH
5/15/2012	15:48	W-11	TS	F	6-040-042-235-0	235	DWH	0-235	30-30	AS	P	AT OK	DWH
5/15/2012	15:50	W-9	LV	F	6-039-042-375-235	140	DWH	235-375	30-30	AS	P	AT OK	
5/15/2012	15:55	W-5	AS	F	6-041-042-10-22	12	DWH	10-22	30-30	AS	P		DWH
5/15/2012	16:05	W-5	AS	F	6-041-043-639-520	119	DWH	520-639	30-30		-	AT OK	DWH
5/15/2012	16:20	W-9	LV	F	6-041-044-500-337	163	DWH	337-500		AS	P	AT OK	DWH
5/15/2012	16:36	W-11	TS	F	6-042-044-337-0	337	DWH	0-337	30-30	AS	Р	AT OK	DWH
5/15/2012	16:41	W-5	AS	F	6-043-045-0-22.5	22.5	DWH		30-30	AS	Р	AT OK	DWH
5/15/2012	16:50	W-5	AS	F	6-041-045-520-500	20	DWH	0-22.5	30-28	AS	Р	AT OK	DWH
5/15/2012	16:56	W-5	AS	F	6-044-045-0-22-5			500-520	30-30	AS	P	AT OK	DWH
5/15/2012	17:13	W-9				22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
			LV	F	6-001-PhaseI-0-48	48	DWH	0-48	30-30	AS	Р	AT OK	DWH
5/15/2012	17:35	W-9	LV	F	6-030-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/15/2012	17:41	W-9	LV	F	6-032-Phase I-0-22.5	22.5	DWH	0-22,5	30-27	AS	Р	AT OK	DWH
5/15/2012	17:45	W-9	LV	F	6-034-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/15/2012	17:49	W-9	LV	F	6-036-Phase I-1-22.5	21.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/15/2012	17:54	W-5	AS	F	6-039-Phase I-0-22-5	22.5	DWH	0-22.5	30-28	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gmi : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestri	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	Seam/No Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
5/15/2012	17:58	W-5	AS	F	6-041-Phase 1-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/16/2012	9:11	W-11	TS	F	6-044-046-499-0	499	DWH	0-499	30-27	AS	P	AT OK	
5/16/2012	9:22	W-5	VC	F	6-046-047-0-22.5	22.5	DWH -	0-22.5	30-30	AS	P		DWH
5/16/2012	9:26	W-9	LV	F	6-043-047-645-521	124	DWH	521-645	30-30			AT OK	DWH
5/16/2012	9:31	W-5	VC	F	6-047-048-650-501	149	DWH	501-650	30-30	AS	Р.	AT OK	DWH
5/16/2012	9:43	W-9	LV	F	6-045-047-521-499	22	DWH	499-521		AS	P	AT OK	DWH
5/16/2012	9:44	W-5	VC	F	6-046-048-501-300	201	DWH	300-501	30-27	AS	P	AT OK	DWH
5/16/2012	9:52	W-9	LV	F	6-048-050-645-450		-		30-30	AS	P	AT OK	DWH
5/16/2012	10:10	W-5	VC			195	DWH	450-645	30-30	AS	P	AT OK	DWH
				F	6-048-049-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
5/16/2012	10:13	W-5	VC	F	6-046-049-300-0	300	DWH	0-300	30-30	AS	P	AT OK	DWH
5/16/2012	10:28	W-9	LV	F	6-050-051-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
5/16/2012	10:30	W-9	LV	F	6-048-051-450-300	150	DWH	300-450	30-30	AS	P	AT OK	DWH
5/16/2012	10:30	W-11	TS	F	6-051-053-0-450	450	DWH	0-450	30-30	AS	P	AT OK	-
5/16/2012	10:55	W-9	LV	F	6-049-051-300-0	300	DWH	0-300	30-30	AS	P		DWH
5/16/2012	10:57	W-5	VC	F	6-053-054-0-22-5	22.5	DWH	0-22.5	CAPPED			AT OK	DWH
5/16/2012	11:08	W-5	VC	F	6-050-054-600-498	102	DWH	498-600	30-28	AS AS	P	VT OK AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gm! : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
5/16/2012	11:23	W-5	VC	F	6-052-054-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
5/16/2012	11:27	W-5	VC	F	6-050-052-645-600	45	DWH	600-645	30-28	AS	p	AT OK	DWH
5/16/2012	11:30	W-11	TS	F	6-050-053-450-498	48	DWH	450-498	30-27	AS	P	AT OK	
5/16/2012	14:00	W-11	TS	F	6-043-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	р		DWH
5/16/2012	14:04	W-11	TS	F	6-047-Phase I-0-22.5	22.5	DWH	0-22.5	30-30		P	AT OK	DWH
5/16/2012	14:08	W-11	TS	F	6-048-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS		AT OK	DWH
5/16/2012	14:12	W-11	TS	F	6-050-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/16/2012	14:20	W-11	TS	F	6-052-Phase I-0-22.5	22.5	DWH	0-22.5		AS	P	AT OK	DWH
5/18/2012	8:26	W-9	LV	F	6-055-057-0-219	219	DWH	0-219	30-30	AS	P	AT OK	DWH
5/18/2012	9:01	W-9	LV	F	6-055-058-219-380	161	DWH	219-380	30-30	AS	P	AT OK	DWH
5/18/2012	9:10	W-11	TS	F	6-053-055-0-377	377	DWH		30-30	AS	Р	AT OK	DWH
5/18/2012	9:10	W-5	AS	F	6-055-056-0-22.5			0-377	30-30	AS	Р	AT OK	DWH
5/18/2012	9:18	W-5	AS			22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
				F	6-057-058-0-22,5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	9:25	W-10	KC	F	6-057-060-0-219	219	DWH	0-219	30-29	AS	P	AT OK	DWH
5/18/2012	9:30	W-9	LV	F	6-056-059-380-655	275	DWH	380-655	30-30	AS	P	AT OK	DWH
5/18/2012	9:45	W-8	VC	F	6-060-061-0-22,5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
5/18/2012	9:52	W-8	VC	F	6-059-061-0-22.5	22.5	DWH	0-22.5	30-27	AS	р	AT OK	DWH
5/18/2012	10:00	W-10	KC	F	6-058-060-219-502	283	DWH	219-502	30-29	AS	P	AT OK	
5/18/2012	10:05	W-11	TS	F	6-053-056-377-502	125	DWH	307-502	30-30	AS	P		DWH
5/18/2012	10:08	W-5	AS	F	6-060-063-0-240	240	DWH	0-240	30-29	AS		AT OK	DWH
5/18/2012	10:12	W-8	VC	F	6-062-063-0-22.5	22.5	DWH	0-22.5	30-30		P	AT OK	DWH
5/18/2012	10:22	W-11	TS	F	6-054-056-502-605	103	DWH	502-605		AS	P	AT OK	DWH
5/18/2012	10:37	W-11	TS	F	6-052-056-605-650	45	DWH	605-650	30-30	AS	P	AT OK	DWH
5/18/2012	10:37	W-10	KC	F	6-058-061-502-588	86	DWH		30-28	AS	P	AT OK	DWH
5/18/2012	10:42	W-10	KC	F	6-058-059-588-655	67		502-588	30-30	AS	P	AT OK	DWH
5/18/2012	10:42	W-9	LV	F			DWH	588-655	30-30	AS	P	AT OK	DWH
5/18/2012	10:43				6-064-065-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
		W-8	VC	F	6-062-064-244-251	7	DWH	244-251	30-30	AS	Р	AT OK	DWH
5/18/2012	10:43	W-8	VC	F	6-062-065-251-650	399	DWH	251-650	30-30	AS	P	AT OK	DWH
5/18/2012	10:44	W-5	AS	F	6-060-062-240-504	264	DWH	240-504	30-30	AS	P	AT OK	DWH
5/18/2012	10:57	W-8	VC	F	6-063-064-0-244	244	DWH	0-240	30-30	AS	p	AT OK	DWH
5/18/2012	11:08	W-5	AS	F	6-061-062-504-594	90	DWH	504-594	30-30	AS	P		
5/18/2012	11:13	W-8	VC	F	6-067-068-0-22-5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
5/18/2012	11:18	W-9	LV	F	6-064-067-0-250	250	DWH	0-250	30-30	AS	Р	AT OK	DWH
5/18/2012	11:20	W-11	TS	F	6-067-070-0-218	218	DWH	0-218	30-30	AS	P	AT OK	DWH
5/18/2012	11:22	W-10	KC	F	6-066-068-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	11:26	W-8	VC	F	6-065-068-495-562	67	DWH	495-562	30-30	AS	P	AT OK	DWH
5/18/2012	11:32	W-5	AS	F	6-059-062-594-655	61	DWH	594-655	30-28	AS	P	AT OK	DWH
5/18/2012	11:32	W-10	KC	F	6-068-069-498-565	67	DWH	498-565	30-30	AS	P	AT OK	DWH
5/18/2012	11:33	W-10	KC	F	6-065-066-502-650	148	DWH	562-650	30-30	AS	P	AT OK	DWH
5/18/2012	11:40	W-10	KC	F	6-066-069-565-655	90	DWH	565-655	30-28	AS	P	AT OK	DWH
5/18/2012	11:45	W-11	TS	F	6-067-069-218-498	280	DWH	218-498	30-30	AS	P	AT OK	DWH
5/18/2012	11:48	W-5	AS	F	6-069-070-0-22_5	22.5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
5/18/2012	12:00	W-9	LV	F	6-065-067-250-495	245	DWH	250-495	30-30	AS	Р	AT OK	DWH
5/18/2012	12:01	W-8	VC	F	6-070-071-0-218	218	DWH	0-218	30-30	AS	P	AT OK	DWH
5/18/2012	12:28	W-8	VC	F	6-069-071-219-252	33	DWH	219-252	30-30	AS	P	AT OK	DWH
5/18/2012	13:20	W-5	AS	F	6-071-073-0-95	95	DWH	0-95	30-30	AS	P	AT OK	DWH
5/18/2012	13:22	W-10	KC	F	6-071-072-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	13:32	W-10	KC	F	6-069-072-252-650	398	DWH	252-650	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	п			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA IE
5/18/2012	13:42	W-5	AS	F	6-073-075-0-22,5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	13:50	W-5	AS	F	6-071-075-95-155	60	DWH	95-155	30-30	AS	P	AT OK	DWH
5/18/2012	13:53	W-8	VC	F	6-073-076-0-97	97	DWH	0-97	30-30	AS	P	AT OK	DWH
5/18/2012	13:58	W-9	LV	F	6-074-075-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	14:01	W-5	AS	F	6-071-074-155-261	106	DWH	155-261	30-28	AS	P	AT OK	DWH
5/18/2012	14:03	W-8	VC	F	6-075-076-97-155	58	DWH	97-155	30-30	AS	P	AT OK	DWH
5/18/2012	14:07	W-8	VC	F	6-074-076-155-650	495	DWH	155-650	30-30	AS	P	AT OK	DWH
5/18/2012	14:10	W-11	TS	F	6-076-077-0-22.5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	14:15	W-5	AS	F	6-072-074-261-650	389	DWH	261-650	30-30	AS	P	AT OK	DWH
5/18/2012	14:27	W-11	TS	F	6-078-079-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	14:35	W-9	LV	F	6-076-079-0-374	374	DWH	0-374	30-30	AS	P	AT OK	DWH
5/18/2012	14:37	W-8	VC	F	6-074-077-443-650	207	DWH	443-650	30-27	AS	P	AT OK	DWH
5/18/2012	14:37	W-11	TS	F	6-076-078-374-442	68	DWH	374-442	30-30	AS	P	AT OK	DWH
5/18/2012	14:49	W-11	TS	F	6-077-078-442-650	108	DWH	442-650	30-30	AS	P	AT OK	DWH
5/18/2012	15:09	W-10	KC	F	6-056-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:16	W-10	KC	F	6-058-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	p	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Time	Mach ID			Location	III			Nondestr	uctive Test			
5/18/2012		muen. 12	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA IL
5/10/2012	15:20	W-10	KC	F	6-059-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:23	W-10	KC	F	6-062-Phase I-0-22,5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:26	W-10	KC	F	6-065-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:29	W-10	KC	F	6-066-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:30	W-10	KC	F	6-069-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:34	W-10	KC	F	6-072-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:39	W-10	KC	F	6-074-Phase I-0-22,5	22,5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
5/18/2012	15:45	W-10	KC	F	6-077-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/18/2012	15:50	W-10	KC	F	6-078-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	8:30	W-8	VC	F	6-080-083-0-113	113	DWH	0-113	30-28	JS	P	AT OK	DWH
5/24/2012	8:35	W-11	TS	F	6-079-080-0-112	112	DWH	0-112	30-30	JS	P	AT OK	DWH
5/24/2012	8:44	W-8	VC	F	6-080-082-0-22.5	22.5	DWH	0-22.5	30-29	JS	P	AT OK	DWH
5/24/2012	8:51	W-10	KC	F	6-081-082-0-22.5	22.5	DWH	0-22.5	30-30	JS	P	AT OK	
5/24/2012	8:54	W-11	TS	F	6-079-082-113-175	62	DWH	113-175	30-30	JS	P		DWH
5/24/2012	8:58	W-5	AS	F	6-083-084-0-22.5	22.5	DWH	0-22.5	30-30			AT OK	DWH
5/24/2012	9:02	W-11	TS	F	6-079-081-175-377	202	DWH	175-377	30-30	JS JS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestri	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	Seam/No Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
5/24/2012	9:03	W-8	VC	F	6-082-083-113-178	65	DWH	113-178	30-29	JS	P	AT OK	DWH
5/24/2012	9:10	W-8	VC	F	6-081-083-178-436	258	DWH	178-436	30-30	AS	P	AT OK	DWH
5/24/2012	9:13	W-10	KC	F	6-083-085-0-266	266	DWH	0-266	30-30	JS	· P ·	AT OK	DWH
5/24/2012	9:26	W-5	AS	F	6-085-086-0-22,5	22.5	DWH	0-22.5	30-28	JS	Р	AT OK	DWH
5/24/2012	9:30	W-11	TS	F	6-078-081-377-660	283	DWH	377-650	30-29	JS	P	AT OK	DWH
5/24/2012	9:34	W-5	AS	F	6-085-087-0-93	93	DWH	0-93	30-29	JS	P	AT OK	DWH
5/24/2012	9:35	W-10	KC	FI	6-081-084-436-650	214	DWH	436-650	30-30	JS	P	AT OK	DWH
5/24/2012	9:45	W-10	KC	F	6-083-086-266-432	166	DWH	266-432	30-30	JS	P	AT OK	DWH
5/24/2012	9:53	W-5	AS	F	6-087-089-0-22.5	22.5	DWH	0-22.5	30-29	JS	P	AT OK	DWH
5/24/2012	10:07	W-5	AS	F	6-085-089-93-158	65	DWH	93-158	30-28	JS	P	AT OK	DWH
5/24/2012	10:09	W-10	KC	F	6-084-086-432-660	228	DWH	432-660	30-30	JS	P	AT OK	DWH
5/24/2012	10:15	W-5	AS	F	6-085-088-158-264	106	DWH	158-264	30-29	JS	P	AT OK	DWH
5/24/2012	10:15	W-8	VC	F	6-087-090-0-94	94	DWH	0-94	30-28	JS	P	AT OK	DWH
5/24/2012	10:26	W-11	TS	F	6-090-091-0-22.5	22.5	DWH	0-22-5	30-29	JS	P	AT OK	DWH
5/24/2012	10:27	W-8	VC	F	6-089-090-94-166	72	DWH	94-166	30-30	JS	P	AT OK	DWH
5/24/2012	10:28	W-5	AS	F	6-086-088-264-660	396	DWH	264-660	30-30	JS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test	71-7		
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
5/24/2012	10:32	W-8	VC	F	6-088-090-166-432	334	DWH	166-432	30-30	JS	P	AT OK	DWH
5/24/2012	10:40	W-11	TS	F	6-092-093-0-22.5	22.5	DWH	0-22.5	30-28	JS	Р	AT OK	DWH
5/24/2012	10:49	W-10	KC	F	6-094-095-0-22_5	22.5	DWH	0-22.5	30-29	JS	P	AT OK	DWH
5/24/2012	10:50	W-11	TS	F	6-090-092-0-270	270	DWH	0-270	30-29	JS	Р	AT OK	DWH
5/24/2012	10:58	W-8	VC	F	6-088-091-432-660	228	DWH	432-660	30-30	JS	Р	AT OK	DWH
5/24/2012	11:00	W-11	TS	F	6-091-093-434-660	226	DWH	434-660	30-30	JS	P	AT OK	DWH
5/24/2012	11:00	W-10	KC	F	6-092-094-0-101	101	DWH	0-1-1	30-29	JS	P	ATOK	DWH
5/24/2012	11:11	W-10	KC	F	6-092-095-101-265	164	DWH	101-265	30-30	JS	! P	AT OK	DWH
5/24/2012	11:27	W-5	AS	F	6-095-096-0-22.5	22.5	DWH	0-22.5	30-29	JS	P	AT OK	DWH
5/24/2012	11:30	W-11	TS	F	6-090-093-270-434	164	DWH	270-434	30-30	JS	P	AT OK	DWH
5/24/2012	11:32	W-8	VC	F	6-094-098-0-101	101	DWH	0-101	30-28	JS	P	AT OK	DWH
5/24/2012	11:38	W-10	KC	F	6-093-095-265-600	335	DWH	265-600	30-29	JS	P	AT OK	DWH
5/24/2012	11:43	W-8	VC	F	6-095-098-101-220	119	DWH	101-220	30-30	JS	P	AT OK	DWH
5/24/2012	11:45	W-5	AS	F	6-098-099-0-220	220	DWH	0-220	30-30	JS	Р	AT OK	DWH
5/24/2012	11:55	W-8	VC	F	6-097-098-0-22.5	22.5	DWH	0-22.5	CAPPED	JS	P	VT OK	DWH
5/24/2012	12:08	W-5	AS	F	6-097-099-220-272	52	DWH	220-272	30-28	JS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus. New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n		-	Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA II
5/24/2012	12:46	W-8	VC	F	6-095-097-220-610	390	DWH	220-610	30-30	JS	P	AT OK	DWH
5/24/2012	13:09	W-5	AS	F	6-099-100-0-22.5	22.5	DWH	0-22,5	30-30	JS	P	AT OK	DWH
5/24/2012	13:15	W-5	AS	F	6-097-100-272-659	383	DWH	272-660	30-30	JS	P	AT OK	DWH
5/24/2012	13:30	W-8	VC	F	6-096-097-610-660	50	DWH	610-660	30-29	JS	P	AT OK	DWH
5/24/2012	13:55	W-10	KC	F	6-104-105-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
5/24/2012	14:02	W-10	KC	F	6-101-105-0-100	100	DWH	0-100	30-30	AS	P	AT OK	DWH
5/24/2012	14:08	W-5	AS	F	6-102-103-0-22.5	22.5	DWH	0-22.5	CAPPED	AS	P	VT OK	DWH
5/24/2012	14:10	W-11	TS	F	6-099-101-0-101	101	DWH	0-101	30-27	AS	P	AT OK	DWH
5/24/2012	14:12	W-10	KC	F	6-102-105-100-209	109	DWH	100-209	30-28	AS	р	AT OK	DWH
5/24/2012	14:15	W-11	TS	F	6-099-102-101-273	172	DWH	101-273	30-30	AS	P	AT OK	DWH
5/24/2012	14:20	W-10	KC	F	6-093-096-600-660	60	DWH	600-660	30-30	JS	P	AT OK	DWH
5/24/2012	14:24	W-9	VC	F	6-105-106-0-210	210	DWH	0-210	30-27	AS	P	AT OK	DWH
5/24/2012	14:28	W-10	KC	F	6-102-104-209-606	397	DWH	209-606	30-30	AS	P	AT OK	DWH
5/24/2012	14:30	W-5	AS	F	6-106-107-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	14:30	W-5	AS	F	6-109-110-0-22.5	22.5	DWH	0-22,5	30-30	AS	P	AT OK	DWH
5/24/2012	14:40	W-11	TS	F	6-100-102-273-606	333	DWH	273-606	30-30	AS	P	AT OK	DWH

Geosyntec[>]

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
5/24/2012	14:45	W-5	AS	F	6-108-109-0-22,5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	14:46	W-9	VC	F	6-104-106-210-282	72	DWH	210-282	30-30	AS	P	AT OK	DWH
5/24/2012	14:50	W-10	KC	F	6-103-104-606-660	54	DWH	606-660	30-30	AS	P	AT OK	DWH
5/24/2012	14:55	W-11	TS	F	6-101-102-0-22.5	22.5	DWH	0-22.5	30-30	AS	. Р	AT OK	DWH
5/24/2012	14:55	W-5	AS	F	6-106-108-0-116	116	DWH	0-116	30-29	AS	P	AT OK	DWH
5/24/2012	14:57	W-9	VC	F	6-104-107-202-650	448	DWH	202-650	30-30	AS	P	AT OK	DWH
5/24/2012	15:00	W-11	TS	F	6-100-103-606-660	54	DWH	606-660	30-30	JS	P	AT OK	DWH
5/24/2012	15:12	W-5	AS	F	6-106-109-116-283	167	DWH	116-283	30-30	AS	P	AT OK	DWH
5/24/2012	15:40	W-5	AS	F	6-107-109-283-621	338	DWH	203-621	30-30	AS	P	AT OK	DWH
5/24/2012	16:10	W-5	AS	F	6-107-110-621-660	39	DWH	621-660	30-28	AS	P	AT OK	DWH
5/24/2012	16:29	W-11	TS	F	6-081-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	16:30	W-11	TS	F	6-084-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	16:33	W-11	TS	F	6-086-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	16:37	W-11	TS	F	6-088-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	16:40	W-11	TS	F	6-096-Phase I-0-22.5	22.5	DWH	0-22.5	30-29	AS	P	AT OK	DWH
5/24/2012	16:41	W-11	TS	F	6-091-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: <u>200</u>

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
5/24/2012	16:45	W-11	TS	F	6-093-Phase I-0-22.5	22,5	DWH	0-22.5	30-29	ÄS	Р	AT OK	DWH
5/24/2012	16:52	W-11	TS	F	6-097-Phase I-0-22.5	22.5	DWH :	0-22.5	30-30	i AS	P	AT OK	DWH
5/24/2012	16:55	W-11	TS	F	6-100-Phase I-0-22.5	22,5	DWH	0-22,5	30-30	AS	Р	AT OK	DWH
5/24/2012	16:58	W-11	TS	F	6-103-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
5/24/2012	17:06	W-11	TS	F	6-104-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
5/24/2012	17:13	W-11	TS	F	6-107-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
5/24/2012	17:17	W-II	TS	F	6-110-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/1/2012	8:40	W-9	VS	F	6-108-111-0-118	118	DWH	0-118	30-27	AS	P	AT OK	DWH
6/1/2012	8:40	W-5	AS	F	6-109-112-452-623	171	DWH	452-623	30-30	AS	P	AT OK	DWH
6/1/2012	8:48	W-10	KC	F	6-111-112-0-22.5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/1/2012	9:00	W-9	VS	F	6-109-111-118-452	334	DWH	118-452	30-28	AS	P	AT OK	DWH
6/1/2012	9:00	W-11	TS	F	6-111-113-0-280	280	DWH	0-280	30-28	AS	P	AT OK	DWH
6/1/2012	9:02	W-10	KC	F	6-113-114-0-22.5	22.5	DWH	0-22,5	30-30	AS	P	AT OK	DWH
6/1/2012	9:10	W-10	KC	F	6-111-114-280-454	174	DWH	280-454	30-27	AS	Pi	AT OK	DWH
6/1/2012	9:35	W-5	AS	F	6-114-116-283-665	382	DWH	283-665	30-30	AS	P	AT OK	DWH
6/1/2012	9:40	W-5	AS	F	6-110-112-623-654	31	DWH	623-654	30-28	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/1/2012	9:43	W-10	KC	F	6-112-114-454-664	210	DWH	454-664	30-30	AS	P	AT OK	DWH
6/1/2012	9:43	W-11	TS	F	6-116-117-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/1/2012	10:00	W-II	TS	F	6-115-117-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/1/2012	10:05	W-9	VS	F	6-113-115-0-90	90	DWH	0-90	30-30	AS	P	AT OK	DWH
6/1/2012	10:10	W-11	TS	F	6-115-118-0-112	112	DWH	0-112	30-28	AS	P	AT OK	DWH
6/1/2012	10:20	W-11	TS	F	6-117-118-112-163	51	DWH	112-163	30-30	AS	P	AT OK	DWH
6/1/2012	10:25	W-11	TS	F	6-116-118-163-443	280	DWH	163-443	30-28	AS	P	AT OK	DWH
6/1/2012	10:35	W-5	AS	F	6-118-120-0-234	234	DWH	0-234	30-30	AS	P	AT OK	DWH
6/1/2012	10:38	W-10	KC	F	6-113-115-90-111	21	DWH	90-111	30-28	AS	P	AT OK	DWH
6/1/2012	10:38	W-5	AS	F	6-118-119-0-22.5	22.5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
6/1/2012	10:45	W-10	KC	F	6-113-117-111-164	53	DWH	111-164	30-30	AS	P	AT OK	DWH
6/1/2012	11:07	W-10	KC	F	6-120-121-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/1/2012	11:10	W-10	KC	F	6-113-116-164-283	119	DWH	164-283	30-30	AS	P	AT OK	DWH
6/1/2012	11:10	W-10	KC	F	6-118-121-274-443	169	DWH	274-443	30-30	AS	P	AT OK	DWH
6/1/2012	11:18	W-11	TS	F	6-116-119-443-663	220	DWH	443-663	30-30	AS	P	AT OK	DWH
6/1/2012	11:25	W-28	VC	F	6-112-Phase I-0-22.5	22.5	DWH -	0-22.5	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus;	Seam/No Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/1/2012	11:28	W-28	VC	F	6-114-Phase 1-0-22.5	22.5	DWH	0-22,5	30-30	AS	P	AT OK	DWH
6/1/2012	11:32	W-28	VC	F	6-116-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/1/2012	11:35	W-10	KC	F	6-119-121-443-664	221	DWH	443-664	30-30	AS	P	AT OK	DWH
6/1/2012	11:36	W-28	VC	F	6-119-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/1/2012	11:40	W-28	VC	F	6-121-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/8/2012	8:53	W-14	VS	F	6-123-124-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	8:55	W-5	AS	F	6-120-123-166-273	107	DWH	166-273	30-30	AS	P	AT OK	DWH
6/8/2012	9:05	W-14	VS	F	6-122-124-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	9:06	W-11	TS	F	6-122-125-0-100	100	DWH	0-100	30-30	AS	P	AT OK	DWH
6/8/2012	9:11	W-14	VS	F	6-120-122-0-100	100	DWH	0-100	30-30	AS	P	AT OK	DWH
6/8/2012	9:12	W-5	AS	F	6-121-123-273-650	377	DWH	273-650	30-27	AS	P	AT OK	DWH
6/8/2012	9:20	W-11	TS	F	6-124-125-100-168	68	DWH	100-168	30-30	AS	P	AT OK	DWH
6/8/2012	9:24	W-14	VS	F	6-120-124-100-166	66	DWH	100-166	30-30	AS	P	AT OK	DWH
6/8/2012	9:28	W-10	KC	F	6-125-127-0-251	251	DWH	0-251	30-30	AS	P	AT OK	DWH
6/8/2012	9:29	W-11	TS	F	6-123-125-168-434	266	DWH	168-434	30-30	AS	P	AT OK	DWH
6/8/2012	9:45	W-14	VS	F	6-127-128-0-22.5	22.5	DWH	0-22,5	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	active Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail		Result	Action	QA IL
6/8/2012	9:50	W-10	KC	F	6-125-128-251-434	183	DWH	251-434	30-28	AS	P	AT OK	DWH
6/8/2012	9:56	W-14	VS	F	6-127-130-0-251	251	DWH	0-251	30-30	AS	P	AT OK	DWH
6/8/2012	10:10	W-11	TS	F	6-125-126-0-22.5	22,5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/8/2012	10:15	W-11	TS	F	6-123-126-434-650	216	DWH	434-650	30-30	AS	P	AT OK	DWH
6/8/2012	10:17	W-5	AS	F	6-130-131-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	10:23	W-10	KC	F	6-126-128-434-650	216	DWH	434-650	30-30	AS	P	AT OK	DWH
6/8/2012	10:26	W-5	AS	F	6-128-131-494-620	126	DWH	494-620	30-30	AS	P	AT OK	DWH
6/8/2012	10:30	W-14	VS	F	6-128-130-251-494	243	DWH	251-494	30-30	AS	P	AT OK	DWH
6/8/2012	10:43	W-5	AS	F	6-129-131-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	10:53	W-5	AS	F	6-128-129-620-658	38	DWH	620-658	30-27	AS	P	AT OK	DWH
6/8/2012	11:02	W-5	AS	F	6-132-133-0-22.5	22.5	DWH	0-22.5	30-27	AS	Р	AT OK	DWH
6/8/2012	11:05	W-11	TS	F	6-130-132-0-370	370	DWH	0-370	30-30	AS	P	AT OK	DWH
6/8/2012	11:10	W-5	AS	F	6-130-133-370-494	124	DWH	370-494	30-30	AS	P	AT OK	DWH
6/8/2012	11:10	W-14	VS	F	6-133-135-371-658	287	DWH	371-658	30-30	AS	P	AT OK	DWH
6/8/2012	11:11	W-10	KC	F	6-134-135-0-22-5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/8/2012	11:23	W-10	KC	F	6-132-134-0-207	207	DWH	0-207	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n	11		Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/8/2012	11:25	W-5	AS	F	6-131-133-494-621	127	DWH	494-621	30-30	AS	Р	AT OK	DWH
6/8/2012	11:45	W-5	AS	F	6-129-133-621-658	37	DWH	621-658	30-28	AS	P	AT OK	DWH
6/8/2012	11:45	W-10	KC	F	6-132-135-207-371	164	DWH	207-371	30-30	AS	P	AT OK	DWH
6/8/2012	13:25	W-11	TS	F	6-123-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	13:27	W-11	TS	F	6-126-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	13:30	W-11	TS	F	6-128-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	13:37	W-11	TS	F	6-129-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/8/2012	13:45	W-11	TS	F	6-133-Phase I-0-22.5	22.5	DWH	0-22.5	30-29	AS	p	AT OK	DWH
6/8/2012	13:50	W-11	TS	F	6-135-Phase I-0-22.5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/14/2012	8:51	W-11	TS	F	6-136-137-0-22.5	22.5	DWH	0-22.5	30-29	AS	P	AT OK	DWH
6/14/2012	9:00	W-11	TS	F	6-134-136-0-37	37	DWH	0-37	30-30	AS	P	AT OK	DWH
6/14/2012	9:01	W-28	VC	F	6-137-138-0-22.5	22.5	DWH	0-22.5	30-29	AS	P	AT OK	DWH
6/14/2012	9:06	W-11	TS	F	6-134-137-37-207	170	DWH	37-207	30-30	AS	P	AT OK	DWH
6/14/2012	9:06	W-28	VC	F	6-135-137-207-537	330	DWH	207-537	30-30	AS	P	AT OK	DWH
6/14/2012	9:07	W-10	KC	F	6-136-139-0-35	35	DWH	0-35	30-30	AS	P	AT OK	DWH
6/14/2012	9:15	W-10	KC	F	6-137-139-35-367	332	DWH	35-367	30-29	AS	P	AT OK	DWH

Geosyntec^o

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/14/2012	9:21	W-5	AS	F	6-139-140-0-22.5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/14/2012	9:26	W-5	AS	F	6-137-140-367-538	171	DWH	367-538	30-30	AS	P	AT OK	DWH
6/14/2012	9:42	W-28	VC	F	6-135-138-537-660	123	DWH	537-660	30-28	AS	P	AT OK	DWH
6/14/2012	9:46	W-11	TS	F	6-141-142-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/14/2012	9:49	W-5	AS	F	6-138-140-538-660	122	DWH	538-660	30-28	AS	P	AT OK	DWH
6/14/2012	9:57	W-11	TS	F	6-139-141-0-192	192	DWH	0-192	30-29	AS	Р	AT OK	DWH
6/14/2012	10:06	W-28	VC	F	6-140-142-366-660	294	DWH	366-660	30-30	AS	Р	AT OK	DWH
6/14/2012	10:11	W-10	KC	F	6-141-143-0-192	192	DWH	0-192	30-30	AS	P	AT OK	DWH
6/14/2012	10:17	W-5	AS	F	6-143-144-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/14/2012	10:23	W-11	TS	F	6-139-142-192-366	174	DWH	192-366	30-30	AS	P	AT OK	DWH
6/14/2012	10:28	W-5	AS	F	6-142-143-192-500	308	DWH	192-500	30-28	AS	P	AT OK	DWH
6/14/2012	10:45	W-10	KC	F	6-143-145-0-337	337	DWH	0-337	30-30	AS	P	AT OK	DWH
6/14/2012	10:50	W-11	TS	F	6-145-146-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/14/2012	10:56	W-28	VC	F	6-143-146-337-500	163	DWH	337-500	30-28	AS	P	AT OK	DWH
6/14/2012	11:00	W-11	TS	F	6-147-148-0-22-5	22.5	DWH	0-22,5	30-30	AS	Р	AT OK	DWH
6/14/2012	11:07	W-5	AS	F	6-142-144-500-660	160	DWH	500-660	30-30	AS	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gmi : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA II
6/14/2012	11:12	W-28	VC	F	6-144-146-500-663	163	DWH	500-663	30-28	AS	P	AT OK	DWH
6/14/2012	11:15	W-11	TS	F	6-145-147-0-172	172	DWH	0-172	30-30	AS	P	AT OK	DWH
6/14/2012	11:30	W-28	VC	F	6-146-148-336-660	324	DWH	336-660	30-30	AS	P	AT OK	DWH
6/14/2012	11:31	W-5	AS	F	6-149-150-0-22.5	22.5	DWH	0-22.5	30-29	AS	Р	AT OK	DWH
6/14/2012	11:35	W-10	KC	F	6-147-149-0-172	172	DWH	0-172	30-30	AS	Р	AT OK	DWH
6/14/2012	11:36	W-11	TS	F	6-145-148-172-336	164	DWH	172-336	30-30	AS	P	AT OK	DWH
6/14/2012	11:38	W-5	AS	F	6-148-150-500-660	160	DWH	500-660	30-30	AS	P :	AT OK	DWH
6/14/2012	12:00	W-10	KC	F	6-148-149-172-500	328	DWH	172-500	30-30	AS	Р	AT OK	DWH
6/14/2012	13:25	W-11	TS	F	6-149-151-0-341	341	DWH	0-341	30-28	AS	Р	AT OK	DWH
6/14/2012	13:41	W-10	KC	F	6-149-153-341-500	159	DWH	341-500	30-30	AS	P	AT OK	DWH
6/14/2012	13:42	W-28	VC	F	6-138-Phase I-0-22.5	22.5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
6/14/2012	13:45	W-28	VC	F	6-140-Phase I-0-22.5	22-5	DWH	0-22.5	30-29	AS	: P	AT OK	DWH
6/14/2012	13:48	W-28	VC	F	6-142-Phase I-0-22.5	22,5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/14/2012	13:50	W-28	VC	F	6-144-Phase I-0-22.5	22.5	DWH	0-22.5	30-29	AS	P	AT OK	DWH
6/14/2012	13:53	W-28	VC	F	6-148-Phase I-0-22.5	22.5	DWH	0-22,5	30-30	AS	P	AT OK	DWH
6/14/2012	13:56	W-28	VC	F	6-146-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/14/2012	14:02	W-28	VC	F	6-150-Phase I-0-22,5	22.5	DWH	0-22.5	30-28	AS	P	AT OK	DWH
6/14/2012	14:03	W-28	VC	F	6-152-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	AS	P	AT OK	DWH
6/14/2012	14:05	W-10	KC	F	6-150-153-500-635	135	DWH	500-635	30-29	AS	Р	AT OK	DWH
6/14/2012	14:10	W-28	VC	F	6-152-153-0-22.5	22.5	DWH	0-22,5	30-30	AS	Р	AT OK	DWH
6/14/2012	14:11	W-11	TS	F	6-151-153-0-22.5	22,5	DWH	0-22.5	30-30	AS	Р	AT OK	DWH
6/14/2012	14:25	W-10	KC	F	6-150-152-635-660	25	DWH	635-660	30-30	AS	P	AT OK	DWH
6/18/2012	7:58	W-11	TS	F	6-151-154-0-204	204	DWH	0-204	30-28	ВТК	P	AT OK	DWH
6/18/2012	8:05	W-28	VC	F	6-153-155-343-637	294	DWH	343-637	30-30	BTK	Р	AT OK	DWH
6/18/2012	8:11	W-10	KC	F	6-154-155-0-22,5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/18/2012	8:15	W-11	TS	F	6-151-155-204-343	139	DWH	204-343	30-30	BTK	Р	AT OK	DWH
6/18/2012	8:32	W-28	VC	F	6-152-155-637-663	26	DWH	637-663	30-30	BTK	Р	AT OK	DWH
6/18/2012	8:35	W-10	KC	F	6-154-157-0-204	204	DWH	0-204	30-30	BTK	P	AT OK	DWH
6/18/2012	8:40	W-28	VC	F	6-155-157-204-498	294	DWH	204-498	30-30	BTK	P	AT OK	DWH
6/18/2012	9:00	W-11	TS	F	6-157-159-0-368	368	DWH	0-368	30-29	BTK	P	AT OK	DWH
6/18/2012	9:10	W-28	VC	F	6-157-158-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/18/2012	9:13	W-28	VC	F	6-155-158-448-624	176	DWH	448-624	30-30	ВТК	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IE
6/18/2012	9:13	W-10	KC	F	6-159-160-0-22.5	22,5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/18/2012	9:28	W-28	VC	F	6-156-158-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/18/2012	9:30	W-28	VC	F	6-155-156-624-661	37	DWH	624-661	30-29	BTK	P	AT OK	DWH
6/18/2012	9:37	W-28	VC	F	6-157-160-368-499	131	DWH	368-499	30-30	ВТК	P	AT OK	DWH
6/18/2012	9:48	W-28	VC	F	6-158-160-499-625	126	DWH	499-625	30-30	BTK	Р	AT OK	DWH
6/18/2012	10:00	W-10	KC	F	6-161-162-0-22.5	22.5	DWH	0-22_5	30-30	BTK	Р	AT OK	DWH
6/18/2012	10:01	W-28	VC	F	6-156-160-625-661	36	DWH	625-661	30-29	ВТК	P	AT OK	DWH
6/18/2012	10:03	W-10	KC	F	6-159-161-0-201	201	DWH	0-201	30-30	ВТК	Р	AT OK	DWH
6/18/2012	10:07	W-28	VC	F	6-160-162-369-661	292	DWH	369-661	30-29	BTK	P	AT OK	DWH
6/18/2012	10:11	W-11	TS	F	6-161-163-0-201	201	DWH	0-201	30-30	BTK	P	AT OK	DWH
6/18/2012	10:30	W-10	KC	F	6-159-162-201-369	168	DWH	201-369	30-30	BTK	P	AT OK	DWH
6/18/2012	10:36	W-28	VC	F	6-164-165-0-22.5	22.5	DWH	0-22.5	30-30	ВТК	P	AT OK	DWH
6/18/2012	10:41	W-28	VC	F	6-163-165-0-22.5	22.5	DWH	0-22,5	30-30	BTK	P	AT OK	DWH
6/18/2012	10:42	W-11	TS	F	6-162-163-201-495	294	DWH	201-495	30-30	BTK	P	AT OK	DWH
6/18/2012	10:51	W-28	VC	F	6-162-165-495-621	126	DWH	495-621	30-30	BTK	P	AT OK	DWH
6/18/2012	11:06	W-28	VC	F	6-162-164-621-661	40	DWH	621-661	30-30	BTK	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	ctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IE
6/18/2012	11:24	W-28	VC	F	6-155-Phase I-0-22.5	22,5	DWH	0-22.5	30-29	BTK	P	AT OK	DWH
6/18/2012	11:28	W-28	VC	F	6-156-Phase I-0-22,5	22,5	DWH	0-22.5	30-30	BTK	Р	AT OK	: DWH
6/18/2012	11:31	W-28	VC	F	6-160-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P :	AT OK	DWH
6/18/2012	11:33	W-28	VC	· F	6-162-Phase I-0-22.5	22,5	DWH	0-22.5	30-29	BTK	P	AT OK	DWH
6/18/2012	11:35	W-28	VC	F	6-164-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/18/2012	13:20	W-11	TS	F	6-163-166-0-374	374	DWH	0-374	30-30	BTK	Р	AT OK	DWH
6/18/2012	13:21	W-28	VC	F	6-166-167-0-22.5	22,5	DWH	0-22.5	30-30	ВТК	Р	AT OK	DWH
6/18/2012	13:23	W-28	VC	F	6-163-167-374-497	123	DWH	374-497	30-30	ВТК	Р	AT OK	DWH
6/18/2012	13:30	W-28	VC	F	6-165-167-497-623	126	DWH	497-623	30-29	BTK	P	AT OK	DWH
6/18/2012	13:50	W-28	VC	F	6-164-167-623-662	39	DWH	623-662	30-30	BTK	Р	AT OK	DWH
6/18/2012	13:58	W-28	VC	F	6-167-169-374-663	289	DWH	374-663	30-30	BTK	P	AT OK	DWH
6/18/2012	14:04	W-10	KC	F	6-168-170-0-22.5	22,5	DWH	0-22.5	30-29	BTK	P	AT OK	DWH
6/18/2012	14:11	W-10	KC	F	6-169-170-0-22,5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/18/2012	14:16	W-10	KC	F	6-166-168-0-108	108	DWH	0-108	30-30	BTK	P	AT OK	DWH
6/18/2012	14:33	W-10	KC	F	6-166-170-108-159	51	DWH	108-159	30-30	BTK	P	AT OK	DWH
6/18/2012	14:33	W-28	VC	F	6-169-171-212-663	451	DWH	212-663	30-29	BTK	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test		-	
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/18/2012	14:35	W-11	TS	F	6-171-172-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/18/2012	14:45	W-10	KC	F	6-166-169-159-374	215	DWH	159-374	30-30	BTK	P	AT OK	DWH
6/18/2012	14:46	W-11	TS	F	6-168-172-0-109	109	DWH	0-109	30-30	BTK	P	AT OK	DWH
6/18/2012	15:00	W-1 I	TS	F	6-170-172-109-160	51	DWH	109-160	30-30	ВТК	P	AT OK	DWH
6/18/2012	15:08	W-11	TS	F	6-169-172-160-212	52	DWH	160-212	30-30	ВТК	P	AT OK	DWH
6/18/2012	15:15	W-10	KC	F	6-173-174-0-22-5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/18/2012	15:20	W-10	KC	F	6-171-173-380-664	284	DWH	380-664	30-30	BTK	P	AT OK	DWH
6/18/2012	15:20	W-11	TS	F	6-172-174-0-212	212	DWH	0-212	30-29	BTK	P	AT OK	DWH
6/18/2012	15:32	W-28	VC	F	6-167-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/18/2012	15:35	W-28	VC	F	6-169-Phase I-0-22.5	22.5	DWH	0-22,5	30-30	ВТК	P	AT OK	DWH
6/18/2012	15:42	W-28	VC	F	6-171-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/18/2012	15:45	W-11	TS	F	6-171-174-212-380	168	DWH	212-380	30-30	BTK	Р	AT OK	DWH
6/18/2012	15:49	W-28	VC	F	6-173-Phase I-0-22.5	22.5	DWH	0-22.5	30-29	BTK	P	AT OK	DWH
6/21/2012	8:45	W-5	BTK	F	6-173-176-672-384	288	DWH	384-672	30-30	BTK	l P	AT OK	DWH
6/21/2012	8:45	W-11	TS	F	6-174-175-98-0	98	DWH	0-98	30-30	ВТК	P	AT OK	DWH
6/21/2012	8:55	W-10	KC	F	6-176-177-0-22.5	22.5	DWH	0-22,5	30-28	BTK	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/21/2012	9:00	W-11	TS	F	6-175-177-0-22.5	22,5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	9:15	W-11	TS	F	6-174-176-384-166	218	DWH	166-384	30-30	BTK	Р	AT OK	DWH
6/21/2012	9:15	W-10	KC	F	6-178-179-0-22_5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	9:20	W-10	KC	F	6-176-178-434-168	266	DWH	168-434	30-30	ВТК	P	AT OK	DWH
6/21/2012	9:25	W-28	VC	F	6-176-179 - 671-434	237	DWH	434-671	30-28	BTK	Р	AT OK	DWH
6/21/2012	9:40	W-5	BTK	F	6-179-180-669-432	237	DWH	432-669	30-30	BTK	Р	AT OK	DWH
6/21/2012	9:50	W-11	TS	F	6-174-177-166-98	68	DWH	98-166	30-28	BTK	P	AT OK	DWH
6/21/2012	9:52	W-10	KC	F	6-177-178-168-100	68	DWH :	100-168	30-29	BTK	P	AT OK	DWH
6/21/2012	9:54	W-28	VC	F	6-182-183-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	10:00	W-10	KC	F	6-175-178-100-0	100	DWH	0-100	30-30	BTK	P	AT OK	DWH
6/21/2012	10:00	W-11	TS	F	6-180-181-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	10:00	W-28	VC	F	6-180-182-673-590	83	DWH	590-673	30-30	BTK	P	AT OK	DWH
6/21/2012	10:04	W-10	KC	F	6-178-180-432-413	19	DWH	413-432	30-28	BTK	P	AT OK	DWH
6/21/2012	10:07	W-11	TS	F	6-178-181-413-0	413	DWH	0-413	30-30	BTK	P	AT OK	DWH
6/21/2012	10:18	W-10	KC	F	6-183-184-0-22.5	22.5	DWH	0-22.5	30-28	ВТК	P	AT OK	DWH
6/21/2012	10:20	W-5	BTK	F	6-182-185-670-589	81	DWH	589-670	30-30	BTK	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	Seam/No Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/21/2012	10:26	W-28	VC	F	6-180-183-590-414	176	DWH	414-590	30-30	ВТК	P	AT OK	DWH
6/21/2012	10:30	W-10	KC	F	6-181-183-414-82	332	DWH	82-414	30-28	BTK	Р	AT OK	: DWH
6/21/2012	10:32	W-28	VC	F	6-185-187-667-418	249	DWH	418-667	30-28	BTK	Р	AT OK	DWH
6/21/2012	10:40	W-5	BTK	F	6-183-185-589-250	339	DWH	250-589	30-30	BTK	Р	AT OK	DWH
6/21/2012	10:58	W-28	VC	F	6-187-188-0-22.5	22.5	DWH	0-22.5	30-30	ВТК	Р	AT OK	DWH
6/21/2012	11:03	W-28	VC	F	6-187-189-670-588	82	DWH	588-670	30-28	BTK	P	AT OK	DWH
6/21/2012	11:07	W-11	TS	F	6-185-186-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	11:11	W-10	KC	F	6-181-184-82-0	82	DWH	0-82	30-28	BTK	P	AT OK	DWH
6/21/2012	11:11	W-11	TS	F	6-183-186-250-82	168	DWH	82-250	30-30	BTK	P	AT OK	DWH
6/21/2012	11:16	W-28	VC	F	6-189-191-0-22.5	22.5	DWH	0-22.5	30-28	ВТК	Р	AT OK	DWH
6/21/2012	11:20	W-28	VC	F	6-187-191-588-504	84	DWH	504-588	30-30	BTK	P	AT OK	DWH
6/21/2012	11:30	W-11	TS	F	6-184-186-82-0	82	DWH	0-82	30-30	BTK	P	AT OK	DWH
6/21/2012	11:30	W-10	KC	F	6-185-188-418-250	168	DWH	250-418	30-30	ВТК	P	AT OK	DWH
6/21/2012	11:30	W-28	VC	F	6-190-191 - 0-22.5	22.5	DWH	0-22.5	30-28	BTK	P	AT OK	DWH
6/21/2012	11:33	W-28	VC	F	6-187-190-504-418	86	DWH	418-504	30-29	ВТК	P	AT OK	DWH
6/21/2012	11:45	W-28	VC	F	6-192-193-46-0	46	DWH	0-46	30-30	ВТК	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestru	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/21/2012	11:48	W-11	TS	F	6-188-190-418-0	418	DWH	0-418	30-30	BTK	P	AT OK	DWH
6/21/2012	11:53	W-10	KC	F	6-186-188-250-0	250	DWH	0-250	30-30	BTK	Р	AT OK	DWH
6/21/2012	13:13	W-28	VC	F	6-193-194-46-0	46	DWH	0-46	30-30	BTK	P	AT OK	DWH
6/21/2012	13:15	W-5	BTK	F	6-176-Phase I-0-22.5	22.5	DWH	0-22,5	30-30	BTK	Р	AT OK	DWH
6/21/2012	13:20	W-28	VC	F	6-194-195-46-0	46	DWH	0-46	30-29	BTK	Р	AT OK	DWH
6/21/2012	13:23	. W-5	BTK	F	6-179-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	13:28	W-28	VC	F	6-195-196-45-0	45	DWH	0-45	30-30	BTK	P	AT OK	DWH
6/21/2012	13:29	W-5	BTK	F	6-180-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	ВТК	P	AT OK	DWH
6/21/2012	13:34	W-28	VC	F	6-196-197-45-0	45	DWH	0-45	30-28	BTK	Р	AT OK	DWH
6/21/2012	13:42	W-28	VC	F	6-197-198-45-0	45	DWH	0-45	30-30	BTK	Р	AT OK	DWH
6/21/2012	13:49	W-28	VC	F	6-198-199-45-0	45	DWH	0-45	30-30	BTK	Р	AT OK	DWH
6/21/2012	13:54	W-10	KC	F	6-189-192-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	13:55	W-11	TS	F	6-208-209-42-0	42	DWH	0-42	30-29	BTK	Р	AT OK	DWH
6/21/2012	13:58	W-10	KC	F	6-189-193-0-22.5	22.5	DWH	0-22,5	30-30	ВТК	Р	AT OK	DWH
6/21/2012	14:00	W-28	VC	F	6-199-200-44-0	44	DWH	0-44	30-30	BTK	P	AT OK	DWH
6/21/2012	14:02	W-10	KC	F	6-189-194-0-22.5	22.5	DWH	0-22,5	30-30	ВТК	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus. New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml : 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper, ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/21/2012	14:03	W-11	TS	F	6-209-210-42-0	42	DWH	0-42	30-29	ВТК	P	AT OK	DWH
6/21/2012	14:06	W-10	KC	F	6-189-195-0-12	12	DWH	0-12	30-30	BTK	P	AT OK	DWH
6/21/2012	14:07	W-28	VC	F	6-200-201-44-0	44	DWH	0-44	30-29	BTK	Р	AT OK	DWH
6/21/2012	14:08	W-10	KC	F	6-191-195-0-10	10	DWH	0-10	30-30	BTK	P	AT OK	DWH
6/21/2012	14:10	W-10	KC	F	6-191-196-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:11	W-11	TS	F	6-210-211-42-0	42	DWH	0-42	30-30	BTK	P	AT OK	DWH
6/21/2012	14:13	W-10	KC	F	6-191-197-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	14:14	W-28	VC	F	6-201-202-44-0	44	DWH	0-44	30-28	BTK	Р	AT OK	DWH
6/21/2012	14:16	W-10	KC	F	6-191-198-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	14:18	W-10	KC	F	6-191-199-0-6	6	DWH	0-6	30-29	BTK	P	AT OK	DWH
6/21/2012	14:19	W-10	KC	F	6-190-199-0-16.5	16.5	DWH	0-16.5	30-28	BTK	Р	AT OK	DWH
6/21/2012	14:20	W-5	BTK	F	6-182-Phase I-0-22.5	22.5	DWH	0-22-5	30-28	BTK	Р	AT OK	DWH
6/21/2012	14:22	W-10	KC	F	6-190-200-0-22.5	22.5	DWH	0-22-5	30-30	BTK	P	AT OK	DWH
6/21/2012	14:22	W-28	VC	F	6-202-203-43-0	43	DWH	0-43	30-29	BTK	Р	AT OK	DWH
6/21/2012	14:22	W-11	TS	F	6-211-212-42-0	42	DWH	0-42	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:24	W-5	BTK	F	6-185-Phase I-0-22.5	22.5	DWH	0-22-5	30-30	BTK	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA IL
6/21/2012	14:24	W-10	KC	F	6-190-201-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:27	W-10	KC	F	6-190-202-0-22.5	22.5	DWH	0-22,5	30-30	BTK	P	AT OK	DWH
6/21/2012	14:29	W-28	VC	F	6-203-204-44-0	44	DWH	0-44	30-29	BTK	P	AT OK	DWH
6/21/2012	14:31	W-10	KC	F	6-190-203-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:31	W-11	TS	F	6-212-213-43-0	43	DWH	0-43	30-30	BTK	P	AT OK	DWH
6/21/2012	14:32	W-5	BTK	F	6-187-Phase I-0-22,5	22.5	DWH	0-22.5	30-28	BTK	Р	AT OK	DWH
6/21/2012	14:35	W-28	VC	F	6-204-205-43-0	43	DWH	0-43	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:36	W-5	BTK	F	6-189-Phase I-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:41	W-1 I	TS	F	6-213-214-43-0	43	DWH	0-43	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:42	W-5	BTK	F	6-192 Phase I-46-0	46	DWH	0-46	30-30	ВТК	Р	AT OK	DWH
6/21/2012	14:42	W-28	VC	F	6-205-206-44-0	44	DWH	0-44	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:47	W-10	KC	F	6-190-204-0-22.5	22.5	: DWH	0-22.5	30-30	ВТК	Р	AT OK	DWH
6/21/2012	14:47	W-11	TS	F	6-214-215-43-0	43	DWH	0-43	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:49	W-28	VC	F	6-206-207-44-0	44	DWH	0-44	30-30	BTK	P	AT OK	DWH
6/21/2012	14:50	W-10	KC	F	6-190-205-0-22,5	22.5	DWH	0-22-5	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:50	W-10	KC	F	6-190-207-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/21/2012	14:53	W-10	KC	F	6-190-206-0-22,5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	14:56	W-28	VC	F	6-207-208-42-0	42	DWH	0-42	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:56	W-11	TS	F	6-215-216-43-0	43	DWH	0-43	30-30	BTK	Р	AT OK	DWH
6/21/2012	14:59	W-10	KC	F	6-190-208-0-22.5	22.5	DWH	0-22.5	30-30	ВТК	Р	AT OK	DWH
6/21/2012	15:03	W-10	KC	F	6-190-209-0-22.5	22.5	DWH	0-22.5	30-29	BTK	P	AT OK	DWH
6/21/2012	15:05	W-10	KC	F	6-190-210-0-22.5	22.5	DWH	0-22,5	30-30	BTK	Р	AT OK	DWH
6/21/2012	15:05	W-11	TS	F	6-216-217-43-0	43	DWH	0-43	30-30	BTK	P	AT OK	DWH
6/21/2012	15:09	W-10	KC	F	6-190-211-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	15:12	W-10	KC	F	6-190-212-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	15:12	W-11	TS	F	6-217-218-44-0	44	DWH	0-44	30-30	BTK	P	AT OK	DWH
6/21/2012	15:15	W-10	KC	F	6-190-213-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	15:18	W-5	BTK	F	6-221-223-20-0	20	DWH	0-20	30-30	BTK	P	AT OK	DWH
6/21/2012	15:19	W-10	KC	F	6-190-214-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	15:19	! W-11	TS	F	6-218-219-44-0	44	DWH	0-44	30-30	BTK	Р	AT OK	DWH
6/21/2012	15:22	W-10	KC	F	6-190-215-0-22.5	22.5	DWH	0-22.5	30-30	ВТК	P	AT OK	DWH
6/21/2012	15:25	W-10	KC	F	6-190-216-0-22-5	22.5	DWH	0-22-5	30-30	BTK	Р	AT OK	DWH

consultants

Production Seam Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Material Type

gml: 6

Specifications:

Seam Pressure: 25-30 PSI 3 lb loss

Vacuum Box: 5 PSI 20 Sec

Primary / Secondary:

Primary

Series: 6

	Produ	ction Seam			Locatio	n			Nondestr	uctive Test			
Date	Time	Mach. ID	Oper. ID	Ext/ Fus:	SeamNo Series-Seam1-Seam2-Begin-End	Length (ft.)	QA ID	Location	Detail	Oper.	Result	Action	QA ID
6/21/2012	15:25	W-5	BTK	F	6-220-222-17-0	17	DWH	0-17	30-29	BTK	P	AT OK	DWH
6/21/2012	15:26	W-11	TS	F	6-219-221-45-0	45	DWH	0-45	30-30	ВТК	P	AT OK	DWH
6/21/2012	15:28	W-10	KC	F	6-190-217-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	15:30	W-5	BTK	F	6-220-221-28-0	28	DWH	0-28	30-29	BTK	P	AT OK	DWH
6/21/2012	15:31	W-10	KC	F	6-190-218-0-22.5	22.5	DWH	0-22.5	30-30	BTK	Р	AT OK	DWH
6/21/2012	15:34	W-10	KC	F	6-190-219-0-22.5	22.5	DWH	0-22.5	30-30	BTK	P	AT OK	DWH
6/21/2012	15:36	W-5	BTK	F	6-222-223-16-0	16	DWH	0-16	30-29	BTK	P	AT OK	DWH
6/21/2012	15:40	W-10	KC	F	6-190-220-34-0	34	DWH	0-34	30-30	BTK	P	AT OK	DWH

Total Length Fusion: 53286.5

Total Length Extrusion: 0

Comments:

APPENDIX L

Geomembrane Destructive Seam Test Logs and Laboratory Test Results

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Primar	y / Sec	ondary:	Prima	агу		Se	eries: 6				Ma	terialTyp	e: 6			
			Samp	ple Data				1			Test Data	3			Re test	Re tes
Samp		Track	Loca		Mach		Date	1	P	eel	Shear	Unit	Result		1	2
No	Type	Туре	Seam	Dist.	ID	1D	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-001	F	D	20-21	24 E	W-11	TS	5/15/2012	Lab	132	132	170	PPI	р	DWH		- 2
								Field	116	117	190	PPI	i P	DWH		
6-002	F	D	13-14	16 E	W-5	AS	5/15/2012	Lab	119	134	169	PPI	Р	DWH		
								Field	133	137	189	PPI	р	DWH		
6-003	F	D	5-6	21 E	W-14	VC	5/15/2012	Lab	147	134	177	PPI	Р	DWH	-	
		,						Field	126	137	182	PPI	Р	DWH	-	
6-004	F	D	25-31	74 N	W-5	AS	5/15/2012	Lab	135	141	171	PPI	P	DWH	-	-
								Field	123	141	182	PPI	Р	DWH	L	
6-005	F	D	31-33	140 N	W-11	TS	5/15/2012	Lab	124	137	179	PPI	Р	DWH		1.
								Field	134	132	189	PPI	P	DWH		
6-006	F	D	33-35	222 N	W-11	TS	5/15/2012	Lab	127	130	186	PPI	P	DWH	-	-
		+1						Field	123	120	190	PPI	P	DWH		-
6-007	F	D	39-40	13 E	W-11	TS	5/15/2012	Lab	155	147	165	PPI	P	DWH		
								Field	142	132	1,82	PPI	P	DWH		
6-008	F	D	35-37	303 N	W-5	AS	5/15/2012	Lab	125	129	183	PPI	P	DWH	(3)	-
								Field	129	123	199	PPJ	P	DWH	-	
6-009	F	D	37-39	413 N	W-9	LV	5/15/2012	Lab	125	119	177	PPI	P	DWH	-	
								Field	124	114	193	PPI	Р	DWH		
6-010	F	D	39-41	507 N	W-14	VC	5/15/2012	Lab	146	130	178	PPI	Р	DWH	-	
								Field	142	114	177	PPI	P	DWH		
6-011	F	D	41-43	550 N	W-5	AS	5/15/2012	Lab	136	131	177	PPI	P	DWH		
						1		Field	121	123	172	PP1	Р	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: <u>200</u>

Fusion

Т	est Req		Fusion: Extrusion:		Peel Ins P	ide: <u>9</u> eel: <u>7</u>			eel Outsido near: <u>120</u>	e: <u>91</u>		Shear:	120			
Primar	y / Sec	ondary:	Prima	гу		S	eries: 6				Ma	terialTyp	e: 6			
			Samp	le Data							Test Dat	a			Re test	Re test
Samp No	Weld Type	Track Type	Local		Mach ID	Oper ID	Date Samp	1	Po	eel	Shear		Result		1	2
710	Турс	Турс	Seam	Dist. (ft.)	ID.	10	Sump		Inside	Outside		ppi/psi	(P/F)	ID		
6-012	F	D	01-Tie in	20 E	W-9	LV	5/15/2012	Lab	130	143	180	PPI	P	DWH	(-	
								Field	126	132	189	PPI	Р	DWH		
6-013	F	D	34-35	10 E	W-14	VC	5/15/2012	Lab	163	141	179	PPI	Р	DWH	T-	-
								Field	148	146	192	PPI	p	DWH		
6-014	F	D	43-47	600 N	W-9	LV	5/16/2012	Lab	133	137	181	PPI	Р	DWH		(92)
								Field	128	109	180	PPI	Р	DWH		
6-015	F	D	44-46	250 N	W-11	TS	5/16/2012	Lab	143	138	184	PPI	Р	DWH	-	
						-		Field	125	127	184	PPI	Р	DWH		
6-016	F	D	47-48	550 N	W-5	VC	5/16/2012	Lab	147	142	183	PPI	р	DWH	-	267
								Field	148	126	181	PPI	P	DWH	1	
6-017	F	D	53-54	11 E	W-5	VC	5/16/2012	Lab	152	154	164	PPl	Р	DWH		
								Field	154	135	157	PPI	р	DWH		
6-018	F	D	48-51	350 N	W-9	LV	5/16/2012	Lab	131	129	192	PPI	P	DWH		300
		,						Field	113	127	185	PPI	Р	DWH	-	-
6-019	F	D	51-53	150 N	W-11	TS	5/16/2012	Lab	126	138	182	PPI	Р	DWH		1.00
								Field	130	113	175	PPI	Р	DWH		
6-020	F	D	53-55	100 N	W-11	TS	5/18/2012	Lab	135	141	181	PPI	P	DWH		
								Field	126	115	179	PPI	Р	DWH		
6-021	F	D	55-57	197 N	W-9	LV	5/18/2012	Lab	135	141	180	PPI	Р	DWH		
								Field	135	126	176	PPI	Р	DWH		
6-022	F	D	58-60	300 N	W-10	KC	5/18/2012	Lab	135	142	181	PPI	P	DWH		
								Field	109	138	175	PPI	P	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

						eer: //			iear: 120							
Primar	y / Sec	ondary:	Prima	пгу		Se	eries: 6				Ma	terialTyp	e: 6			
			Samp	ole Data							Test Dat	a	-		Re test	Re tes
Samp		Track	Loca	tion	Mach	Oper	Date		P	eel	Shear		Result		1	2
No	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-023	F	D	60-62	397 N	W-5	AS	5/18/2012	Lab	128	131	170	PPI	P	DWH		
								Field	131	125	174	PPI	P	DWH		
6-024	F	D	62-65	504 N	W-8	VC	5/18/2012	Lab	137	137	190	PPI	P	DWH		
								Field	120	120	181	PPI	Р	DWH		
6-025	F	D	65-66	600 N	W-8	VC	5/18/2012	Lab	135	140	182	PPI	Р	DWH		-
								Field	129	120	175	PP1	P	DWH		
6-026	F	D	68-69	518 N	W-10	KC	5/18/2012	Lab	126	132	178	PPI	Р	DWH		3
								Field	140	114	174	PPI	p	DWH		
6-027	F	D	64-67	50 N	W-9	LV	5/18/2012	Lab	119	130	179	PPI	Р	DWH		Ê
								Field	128	117	175	PPI	Р	DWH		
6-028	F	D	67-70	150 N	W-11	TS	5/18/2012	Lab	130	138	176	PPI	P	DWH	-	
								Field	109	120	168	PP1	P	DWH		
6-029	F	D	69-72	276 N	W-10	KC	5/18/2012	Lab	136	128	184	PPI	Р	DWH	-	
								Field	124	129	179	PPI	P	DWH		
6-030	F	D	72-74	346 N	W-5	AS	5/18/2012	Lab	135	123	185	PPI	Р	DWH		-
								Field	120	114	179	PPI	Р	DWH		
6-031	F	D	74-77	465 N	W-8	VC	5/18/2012	Lab	128	124	175	PPI	Р	DWH		
								Field	120	112	174	PPI	Р	DWH		
6-032	F	D	77-78	550 N	W-11	TS	5/18/2012	Lab	129	123	174	PPI	P	DWH	-:	
								Field	119	118	173	PPI	Р	DWH		
6-033	F	D	64-65	10 E	W-9	LV	5/18/2012	Lab	138	146	164	PPI	Р	DWH		
								Field	142	153	161	PPI	Р	DWH	-	

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: 78

Primar	y / Sec	ondary:	Prima	гу		Se	eries: 6				Ma	terialTyp	e: 6			
			Samp	le Data							Test Dat	a			Re test	Re tes
Samp	Weld		Local		Mach		Date		P	eel	Shear		Result		1	2
No	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-034	F	D	69-Phase I	10 E	W-10	KC	5/21/2012	Lab	148	147	178	PPI	F	DWH:	6-034 A	6-034
								Field	141	126	171	PPI	P	DWH		
6-034 A	F	D	72-Tie in	6 E	W-10	KC	5/31/2012	Lab	148	141	180	PPI	р	DWH		185
								Field	135	161	167	PPI	Р	DWH	-	
6-034 B	F	D	66-Tie in	2 W	W -10	KC	5/31/2012	Lab	141	142	167	PPI	Р	DWH		-
								Field	132	159	175	PPI	P	DWH		
6-035	F	D	57-58	9 W	W-5	AS	5/18/2012	Lab	159	159	172	PPI	Р	DWH		-
					,			Field	142	153	170	PPI	Р	DWH		
6-036	F	D	79-80	14 N	W-11	TS	5/24/2012	Lab	136	139	173	PPI	Р	DWH	•	•
								Field	126	120	177	PPI	Р	DWH		
6-037	F	D	80-83	53 N	W-8	VC	5/24/2012	Lab	137	126	178	PPI	Р	DWH	1	
								Field	115	124	176	PPI	P	DWH		
6-038	F	D	83-85	106 N	W-10	KC	5/24/2012	Lab	119	143	176	PPI	P	DWH		348
								Field	120	129	174	PPI	Р	DWH		
6-039	F	D	85-88	167 N	W-5	ĀS	5/24/2012	Lab	125	130	168	PPI	P	DWH	: - 0.	30
								Field	116	111	170	PPI	Р	DWH		
6-040	F	D	88-90	211 N	W-8	VC	5/24/2012	Lab	124	127	175	PPI	Р	DWH	-	
								Field	120	116	160	PPI	Р	DWH		
6-041	F	D	90-91	260 N	W-11	TS	5/24/2012	Lab	121	131	171	PPI	P	DWH	Γ-	-
								Field	124	120	167	PPI	P	DWH		
6-042	F	D	93-95	306 N	W-10	KC	5/24/2012	Lab	117	125	178	PPI	P	DWH		
								Field	128	114	176	PPI	Р	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: <u>200</u>

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Primar	y / Sec	ondary:	: Prima	ry		Se	eries: 6				Ma	terialTyp	e: 6			
			Samp	le Data							Test Dat	a			Re test	Re tes
Samp No	Weld Type	Track		, -	Mach	Oper	Date		P	eel	Shear	Unit	Result		1	2
110	Туре	Туре	Seam	Dist. (fL)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-043	F	D	95-97	350 N	W-8	VC	5/24/2012	Lab	137	121	172	PPI	P	DWH		
								Field	132	113	145	PPI	Р	DWH		
6-044	F	D	97-100	406 N	W-5	AS	5/24/2012	Lab	123	131	171	PPI	P	DWH		
								Field	108	117	174	PPI	p	DWH		
6-045	F	D	100-102	450 N	W-11	TS	5/24/2012	Lab	126	125	181	PPI	Р	DWH		(5)
			, j	-				Field	117	111	184	PPI	Р	DWH		
6-046	F	D	103-104	507 N	W-10	KC	5/24/2012	Lab	128	135	175	PPI	Р	DWH	-	-
								Field	117	118	178	PPI	р	DWH	L	
6-047	F	D	104-107	559 N	W-9	VC	5/24/2012	Lab	118	130	181	PPI	Р	DWH		
								Field	128	124	190	PPI	Р	DWH		
6-048	F	D	107-109	599 N	W-5	AS	5/24/2012	Lab	129	134	186	PPI	P	DWH		-
								Field	128	115	197	PPI	P	DWH		
6-049	F	D	103-Phase	10 W	W-11	TS	5/25/2012	Lab		10:1	-	-			6-049 A1	6-049 B
								Field	120	-	-	PPI	F	DWH		l
6-049 A	F	D	104-Tie in	10 E	W-11	TS	5/30/2012	Lab	126	133	167	PPI	F	DWH	6-049 AT	:40
								Field	140	128	168	PPI	P	DWH		
-049 A1	F	D	111-113	1 N	W-9	VS	6/26/2012	Lab	137	134	190	PPI	Р	DWH		-
								Field	134	136	197	PPI	Р	DWH		
5-049 B	F	D	97-Tie in	8 W	W-11	TS	5/30/2012	Lab	133	145	188	PPI	F	DWH	6-049 B1	-
								Field	128	155	165	PPI	Р	DWH		
-049 B1	F	D	100-103	655 N	W-11	TS	6/4/2012	Lab	125	127	179	PPI	Р	DWH	~	-
								Field	124	124	203	PPI	Р	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Re test Re test

TaskNo: 200

Unit Result QA

Р

P

P

P

Р

P

P

P

P

F

F

P

P

F

Р

DWH

ppi/psi (P/F)

PPI

182

155

179

185

185

162

165

158

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: 78

Shear: 120

Primary / Secondary: Primary Series: 6 MaterialType: 6 Sample Data Test Data Samp Weld Track Location Mach Oper Date Peel Shear No Type Type IDIDSamp Seam Dist. Inside Outside (ft.) 6-049 C S 93-Tie in 6 W MX-16 VS 6/5/2012 Lab 128 168 Field 113 171 6-050 D 78-81 449 N W-11 TS 5/25/2012 Lab 128 126 173 131 Field 136 176 6-051 D 84-86 500 N W-10 5/25/2012 Lab 121 127 175 119 Field 113 175 6-052 F D 88-91 550 N 5/25/2012 Lab W-8 VC 127 177 Field 111 115 173 6-053 D 106-107 W-5 7 E AS 5/25/2012 Lab 151 149 165 161 Field 148 176 6-054 D 105-106 110 N W-9 VC 5/24/2012 Lab 135 180 126 118 Field 184 6-055 F D 121-122 42 N W-14 VS 6/8/2012 Lab . Field

Thursday, December 13, 2012

D

D

D

D

120-122

120-122

120-122

122-124

64 N

85 N

26 N

6 E

W-14

W-14

W-14

W-14

VS

6/11/2012

6/13/2012 Lab

6/11/2012 Lab

6/14/2012 Lab

126

126

136

120

139

121

140

130

Lab

Field

Field

Field

Field

128

133

139

105

131

134

150

129

6-055 A

6-055 A1

6-055 B

6-055 B1

F

F

F

6-055 A1 6-055 B1

6-055 A1

6-055 B1

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

Re test Re test

TaskNo: 200

Р

Ρ

Р

Р

Р

P

P

P

P

Р

Р

P

P

P

Р

P

DWH

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: 78

Shear: 120

Primary / Secondary: Primary Series: 6 MaterialType: 6 Sample Data Test Data Samp Weld Track Location Mach Oper Date Peel Shear Unit Result QA Type Type NoID ID Seam Samp ppi/psi (P/F) Dist. Inside Outside (ft.) 6-056 F D 123-125 177 N W-11 TS 6/8/2012 Lab 126 134 189 PPI Field 123 119 169 PPI 6-057 F D 125-128 300 N W-10 KC 6/8/2012 Lab 140 132 183 PPI Field 116 118 159 PPI 6-058 F D 128-130 400 N W-14 VS 6/8/2012 Lab 145 193 PPI Field 132 170 PPI 6-059 F D 131-133 512 N 6/8/2012 AS 126 Lab 136 177 PPI Field 125 162 PPI 6-060 F D 133-135 565 N W-14 VS 6/8/2012 Lab 145 141 186 PPI Field 128 121 158 PPI 6-061 F D 130-132 300 N W-11 TS 6/8/2012 132 Lab 147 188 PPI Field 111 116 160 PPI 6-062 F 132-134 D 190 N W-10 КÇ 6/8/2012 Lab 132 129 182 PPI

Field

Lab

Field

Field

Field

Field

6/8/2012

6/14/2012 Lab

6/14/2012 Lab

6/14/2012 Lab

119

144

136

132

127

127

115

123

116

120

146

132

134

132

132

130

130

107

167

169

147

176

172

181

172

178

172

PPI

PPI

PP1

PPI

PPI

PPI

PPI

PPI

PPI

6-063

6-064

6-065

6-066

F

F

F

D

D

D

D

128-Tie in

134-137

137-139

139-142

15 E

62 N

150 N

250 N

W-11

W-11

W-10

W-11

KC

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA) ProjNo: GJ4706B Location: Camillus, New York TaskNo: 200 Description: Construction Quality Assurance for SCA Phase JJ Test Reqs: Fusion: Peel Inside: 91 Peel Outside: 91 Shear: 120 Extrusion: Peel: 78 Shear: 120 Primary / Secondary: Primary Series: 6 MaterialType: 6 Sample Data Test Data Re test | Re test Samp Weld Track Location Oper Peel Mach Date Shear Unit Result QA NoType Type ID ID ppi/psi (P/F) Samp Seam Dist. Outside Inside (ft.) F 6-067 D 142-143 300 N W-5 AS 6/14/2012 Lab 137 132 189 PPI DWH Field Π 135 183 PPI p DWH 6-068 D F 143-146 370 N W-28 VC 6/14/2012 Lab 127 131 180 PPI DWH 127 126 179 Field PPI DWH 6-069 146-148 6/14/2012 Lab F D 431 N W-28 VC 127 142 191 PPI DWH Field 120 126 176 DWH 6-070 F D 148-150 550 N W-5 6/14/2012 Lab AS 138 137 177 PPI DWH Field 119 122 164 PPI DWH 6-071 F D 135-137 500 N W-28 ٧C 6/14/2012 Lab 113 125 165 PPI DWH Field 112 124 163 PPI Р DWH 6-072 F D 144-Tie in 6/14/2012 6 W W-28 VC Lab 128 154 166 PPI F DWH. 6-072 A1 6-072 B Field 133 132 156 PPI P DWH 6/20/2012 Lab 6-072 A F D 146-Tie-in 8 E W-28 VC 136 144 154 PPI F DWH 6-072 AI Field 110 121 120 PPI DWH 6/26/2012 Lab 6-072 A1 F D 153-155 349 N W-28 VC 119 178 152 PPI P DWH Field 98 125 157 PPI P DWH 6-072 B 6/26/2012 Lab F D 152-153 5 W W-28 VC 123 140 165 PPI DWH 97 Field 116 134 PPI P DWH 6-072 C E 6/27/2012 Lab D 148-Tie in 6 W MX-12 BTK 139 178 -PPI P DWH Field 103 P 147 PPI DWH 6-073 149-150 F D 9 W W-5 AS 6/14/2012 137 154 6-073 A 6-073 B Lab 164 PPI F DWH 133 Field 133 153 PPI DWH

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: 120

Primary / Secondary:

Primary

Series: 6

MaterialType: 6

Filliai	y / 300	ondary.	Prima	ıı y		31	eries: 6				Ma	terialTyp	e: 6			
	,			le Data				1			Test Dat	a			Re test	Re tes
Samp No		Track	Loca		Mach	Oper	Date		P	eel	Shear	Unit	Result	Alex	1	2
NO	Type	Type	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-073 A	F	D	148-150	508 N	W-5	AS	6/20/2012	Lab	135	132	172	PPI	Р	DWH		
								Field	103	120	123	PPI	Р	DWH		
5-073 B	F	D	149-150	3 E	W-5	AS	6/20/2012	Lab	147	149	158	PPI	P	DWH		
								Field	123	119	126	PPI	P	DWH		
6-074	F	D	149-151	200 N	W-11	TS	6/14/2012	Lab	125	127	184	PPI	Р	DWH		
								Field	125	121	170	PPI	Р	DWH		
6-075	F	D	149-153	450 N	W-10	KC	6/14/2012	Lab	127	144	180	PPI	P	DWH	-	ī -
								Field	126	124	166	PPI	Р	DWH		
6-076	F	D	151-154	43 N	W-11	TS	6/20/2012	Lab	136	138	180	PPI	P	DWH		-
								Field	117	114	128	PPI	P	DWH		
6-077	F	D	154-157	100 N	W-10	KC	6/20/2012	Lab	113	139	162	PPI	P	DWH		
								Field	102	117	124	PPI	P	DWH		
6-078	F	D	157-159	188 N	W-11	TS	6/20/2012	Lab	129	130	171	PPI	Р	DWH	147	٠.
								Field	108	100	122	PPI	Р	DWH	1,-	
6-079	F	D	159-162	322 N	W-10	KC	6/20/2012	Lab	123	131	176	PPI	Р	DWH	-	-
								Field	110	110	120	PPI	Р	DWH		
6-080	F	D	162-163	400 N	W-11	TS	6/20/2012	Lab	130	124	178	PPI	P	DWH	-	-
								Field	107	109	131	PPI	P	DWH		
180-6	F	D	163-167	459 N	W-28	VC	6/20/2012	Lab	120	128	166	PPI	Р	DWH	-	
								Field	98	107	120	PPI	Р	DWH		
6-082	F	D	167-169	507 N	W-28	VC	6/20/2012	Lab	122	120	164	PPI	Р	DWH	-	-
								Field	91	95	120	PPI	Р	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: <u>78</u>

Shear: 120

Primary / Secondary:

Primary

Series: 6

MaterialType: 6

			Samp	ole Data							Test Dat	a			Re test	Re tes
Samp		Track	Loca	tion	Mach		Date		P	eel	Shear	Unit	Result		1	2
No	Туре	Туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-083	F	D	169-171	582 N	W-28	VC	6/20/2012	Lab	109	144	176	PPI	Р	DWH	_	
								Field	91	92	131	PPI	P	DWH		
6-084	F	D	171-173	455 N	W-10	KC	6/20/2012	Lab	127	124	170	PPI	Р	DWH	-	
								Field	114	92	122	PPI	P	DWH		
6-085	F	D	173-174	5 E	W-10	KC	6/20/2012	Lab	139	148	162	PPJ	Р	DWH		
								Field	116	109	120	PPI	Р	DWH		
6-086	F	D	171-174	296 N	W-11	TS	6/20/2012	Lab	133	132	171	PPI	Р	DWH	-	-
								Field	107	95	128	PPI	P	DWH		
6-087	F	D	153-155	500 N	W-28	VC	6/20/2012	Lab	127	148	175	PPI	P	DWH		
								Field	95	120	131	PPI	Р	DWH		
6-088	F	D	162-Tie-in	9 W	W-28	VC	6/20/2012	Lab	-	•					6-088 A1	6-088 E
								Field	110	•	•	PPI	F	DWH		
6-088 A	F	D	117 Tie in	8 E	W-28	VC	6/26/2012	Lab	149	154	178	PPI	F	DWH	6-088 AI	
								Field	117	139	150	PPI	Р	DWH		
-088 A1	F	D	169-Tie in	7 E	W-28	VC	6/28/2012	Lab	154	158	170	PPI	Р	DWH	- 1	-
								Field	120	126	132	PPI	Р	DWH		
5-088 B	F	D	160-Tie in	3 W	W-28	VC	6/26/2012	Lab	147	152	169	PPI	P	DWH	- 1	-
								Field	107	140	140	PPJ	P	DWH		
6-089	F	D	174-175	50 N	W-11	TS	6/22/2012	Lab	121	137	181	PPI	Р	DWH	-	÷
								Field	111	135	170	PPI	Р	DWH		
6-090	F	D	176-178	182 N	W-10	KC	6/22/2012	Lab	133	124	183	PPI	Р	DWH		+
								Field	118	120	174	PPI	Р	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B

Location: Camillus, New York

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Test Regs:

Fusion

Deal Incide: 01

Peel Outside: 91

Те	st Reqs		Fusion: Extrusion:		Peel Ins	ide: 91 eel: 78			eel Outside ear: <u>120</u>	e: <u>91</u>		Shear:	120			
Primar	y / Sec	ondary:	Prima	гу		Se	eries: 6				Mat	terialTyp	e: 6			
			Samp	le Data							Test Data	a			Re test	
Samp No		Track Type			Mach	Oper ID	Date Samp		Pe	eel	Shear	Unit ppi/psi	Result	QA ID	1	2
740	Type	Type	Seam	Dist. (ft.)	ID	ID	Sump		Inside	Outside		ppupsi	(F/F)	ID		
6-091	F	D	178-181	273 N	W-11	TS	6/22/2012	Lab	128	130	188	PPl	Р	DWH	-	-
	_							Field	134	131	173	PPI	P	DWH		LC-
6-092	F	D	181-183	365 N	W-10	KC	6/22/2012	Lab	136	139	179	PPI	Р	DWH	100	-
								Field	144	122	173	PPI	P	DWH		
6-093	F	D	183-185	426 N	W-5	ВТК	6/22/2012	Lab	125	121	186	PPI	P	DWH	-	
								Field	120	116	171	PPI	Р	DWH		
6-094	F	D	185-187	500 N	W-28	VC	6/22/2012	Lab	116	140	191	PPI	Р	DWH	-	-
								Field	97	119	178	PPI	Р	DWH		
6-095	F	D	187-189	600 N	W-28	VC	6/22/2012	Lab	111	141	187	PPI	Р	DWH	-	-
								Field	114	141	168	PPI	Р	DWH		
6-096	F	D	173-176	592 N	W-5	BTK	6/22/2012	Lab	147	138	183	PPI	P	DWH		
								Field	125	143	181	PPI	P	DWH		
6-097	F	D	182 Tie-in	10 W	W-5	BTK	6/22/2012	Lab	-	16			100		6-097 A	6-097 E
								Field	110		-	PPI	F	DWH		
6-097 A	F	D	220-222	14 N	W-5	BTK	6/28/2012	Lab	129	128	192	PPI	P	DWH		
								Field	118	116	144	PPI	Р	DWH		
6-097 B	F	D	183-185	254 N	W-5	BTK	6/28/2012	Lab	131	131	186	PPI	Р	DWH		
								Field	115	101	165	PPI	Р	DWH		
6-097 C	Е	D	187-Cap	10 E	MX-16	ВТК	7/2/2012	Lab	148	•	176	PPI	Р	DWH	•	
								Field	105		163	PPI	Р	DWH		
6-098	F	D	191-198	527 N	W-10	KC	6/22/2012	Lab	131	142	174	PPI	P	DWH	-	-
								Field	128	12	146	PPI	P	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: GJ4706B

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Primar	y / Sec	ondary:	Prima	iry		Se	eries: 6				Ma	terialTyp	e: 6			
			Samp	le Data							Test Dat	a			Re test	Re test
Samp		Track Type	Loca	1000	Mach ID	Oper ID	Date Samp		P	eel	Shear	Unit	Result		1	2
7.0	Турс	туре	Seam	Dist. (ft.)	ID	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
6-099	F	D	190-212	¹ 201 N	W-10	KC	6/22/2012	Lab	124	127	170	PPI	Р	DWH		
								Field	116	133	160	PPI	Р	DWH		
6-100	F	D	215-216	27 W	W-11	TS	6/22/2012	Lab	136	129	181	PPI	P	DWH	-	
								Field	121	122	163	PPI	P	DWH		
6-101	F	D	209-210	28 W	W-11	TS	6/22/2012	Lab	120	120	178	PPI	P	DWH	-	
								Field	119	123	162	PPI	Р	DWH		
6-102	F	D	205-206	29 W	W-28	VC	6/22/2012	Lab	119	126	176	PPI	Р	DWH		
								Field	126	118	169	PPI	Р	DWH		
6-103	F	D	199-200	27 W	W-28	VC	6/22/2012	Lab	127	142	179	PPI	Р	DWH	-	(*)
								Field	111	101	163	PPI	Р	DWH		
6-104	F	D	108-111	44 N	W-9	VS	6/26/2012	Lab	133	130	185	PPI	P	DWH		-
								Field	144	130	197	PPI	Р	DWH		
6-105	F	D	111-113	150 N	W-11	TS	6/26/2012	Lab	140	141	195	PPI	Р	DWH		
								Field	120	131	190	PPI	Р	DWH		
6-106	F	D	114-116	346 N	W-5	AS	6/26/2012	Lab	132	135	185	PPI	P	DWH		-
								Field	116	115	168	PPI	Р	DWH		
6-107	F	D	120-121	HE	W-10	KC	6/26/2012	Lab	143	154	181	PPI	P	DWH		
								Field	135	145	168	PPI	Р	DWH		
6-108	F	D	109-112	500 N	W-5	AS	6/26/2012	Lab				-	-	-	6-108 A1	6-108 B
								Field	110	•	•	PPI	F	DWH		
-108 A	F	D	109-112	515	W-5	AS	6/26/2012	Lab	127	131	186	PPI	F	DWH	6-108 A1	,
								Field	121	133	175	PPI	Р .	DWH		

consultants

Destructive Test Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

ProjNo: <u>GJ4706B</u>

TaskNo: 200

Test Reqs:

Fusion:

Peel Inside: 91

Peel Outside: 91

Shear: 120

Extrusion:

Peel: 78

Shear: 120

Primary / Secondary:

Primary

Series: 6

MaterialType: 6

1 1 minut			7 111116				ciics. 0					terial i yp				
				le Data			,				Test Dat	a			Re test	Re te.
Samp No		Track Type			Mach ID	Oper ID	Date		P	eel	Shear	Unit	Result	~	1	2
710	туре	Туре	Seam	Dist.	, ib	ID	Samp		Inside	Outside		ppi/psi	(P/F)	ID		
-108 A1	F	D	114-116	290 N	W-5	AS	6/28/2012	Lab	140	129	187	PPI	P	DWH		(4)
								Field	103	96	114	PPI	P	DWH		
6-108 B	F	D	107-110	660 N	W-5	AS	6/26/2012	Lab	143	144	197	PPI	P	DWH		
								Field	135	131	179	PPI	Р	DWH		
5-108 C	Е	D	109-Cap	554 N	MX-16	ВТК	7/2/2012	Lab	128	3	172	PPI	Р	DWH		
								Field	108	-	145	PPI	Р	DWH	1,	
6-109	F	D	116-119	567 N	W-11	TS	6/26/2012	Lab	132	146	189	PPI	Р	DWH		
								Field	126	126	180	PP!	Р	DWH		
6-110	F	D	119-121	639 N	W-10	KC	6/26/2012	Lab	127	134	184	PPI	P	DWH	-	
							-	Field	115	123	168	PPI	Р	DWH		
6-111	F	D	121-Tie in	4 W	W-28	VC	6/27/2012	Lab	142	151	171	PPI	Р	DWH		8
								Field	112	124	146	PPI	Р	DWH		
6-112	F	D	116-119	659 N	W-11	TS	6/27/2012	Lab	122	136	186	PPI	Р	DWH	2	÷
								Field	108	107	153	PPJ	Р	DWH		
6-113	F	D	118-120	266 N	W-5	AS	6/27/2012	Lab	141	145	189	PPI	Р	DWH	12	
								Field	123	109	145	PPI	Р	DWH		
6-114	F	D	119-1 21	660 N	W-10	KC	6/27/2012	Lab	133	132	186	PPI	Р	DWH	120	141
								Field	105	100	148	РРІ	P	DWH		

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II

Project Location: Camillus, NY

Installer: --GTX #: 11670

Test Date: 05/18/12

 Tested By:
 ad
 Report #: 7

 Checked By:
 bfs
 Page: 1 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-001
 Machine ID:
 W-11

 Seam ID:
 20/21
 Welder ID:
 TS

Date Sampled: 05/15/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	118	***	SE1	118	200	SE1	172	>50%	both
2	135		SE1	112	***	SE1	173	>50%	upper
3	126		SE1	143	***	SE1	174	>50%	upper
4	127		SE1	146		SE1	174	>50%	upper
5	153	***	SE1	141	224	SE1	160	>50%	lower
Average	132	***		132	***		170	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY

Installer: ---

GTX #: 11670 Test Date: 05/18/12

Tested By: ad

Checked By: bfs Page: 2 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumati

Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

Report #:

 Sample ID:
 DS-6-002
 Machine ID:
 W-5

 Seam ID:
 13/14
 Welder ID:
 AS

Date Sampled: 05/15/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	122	***	SE1	130	***	SE1	180	>50%	upper
2	118		SE1	135	***	SE1	179	>50%	upper
3	122	222	SE1	141	***	SE1	182	>50%	upper
4	117		SE1	131	***	SE1	176	>50%	upper
5	117		SE1	134	***	SE1	129	>50%	upper
Average	119	***	***	134	***	***	169	***	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Camillus, NY Project Location: Installer: GTX #: 11670 Test Date: 05/18/12 Report #: 7 Tested By: Page: 3 of 11 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-003
 Machine ID:
 W-14

 Seam ID:
 5/6
 Welder ID:
 VC

 Date Sampled:
 05/15/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	153	***	SE1	137		SE1	178	>50%	upper
2	156		SE1	135	444	SE1	177	>50%	upper
3	154	***	SE1	132	***	SE1	180	>50%	upper
4	138		SE1	126		SE1	174	>50%	upper
5	135	***	SE1	140		SE1	178	>50%	upper
Average	147	***	+++	134	444		177	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY

GTX #: 11670

Installer:

Test Date: 05/18/12
Tested By: ad Report #: 7
Checked By: bfs Page: 4 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-004
 Machine ID:
 W-5

 Seam ID:
 25/31
 Welder ID:
 AS

 Date Sampled:
 05/15/12

Peel Strength Shear Strength Weld B Weld A Rupture **Failure** Seam Failure Seam Elongation, Specimen lb./in lb./in lb./in Separation, % Separation, % Туре Mode Type Number SE1 165 >50% upper 129 SE1 138 SE1 169 >50% upper 2 136 SE1 134 SE1 182 >50% SE1 147 upper 3 142 >50% 134 SE1 138 SE1 169 upper 5 SE1 149 SE1 170 >50% upper 135 135 141 171 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 05/18/12
Tested By: ad Report #: 7

Page:

5 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

bfs

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-005
 Machine ID:
 W-11

 Seam ID:
 31/33
 Welder ID:
 TS

 Date Sampled:
 05/15/12

Checked By:

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	124	***	SE1	142		SE1	179	>50%	lower
2	120		SE1	130		SE1	177	>50%	lower
3	129	***	SE1	135		SE1	184	>50%	lower
4	125	***	SE1	136	***	SE1	175	>50%	lower
5	123		SE1	143		SE1	178	>50%	lower
Average	124	544		137	***		179	646	107

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Onondaga SCA Phase I II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/18/12 Report #: 7 Tested By: ad Page: 6 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 2 in/min 60 mil AGRU microspike HDPE Testing Speed: Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in

W-11 DS-6-006 Machine ID: Sample ID: TS Welder ID: Seam ID: 33/35 Date Sampled: 05/15/12

Checked By:

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	119		SE1	131		SE1	187	>50%	lower
2	120		SE1	126	244	SE1	183	>50%	lower
3	137	***	SE1	123		SE1	184	>50%	lower
4	135	***	SE1	123	1444	SE1	192	>50%	lower
5	124		SE1	146		SE1	186	>50%	lower
Average	127			130	•••	***	186	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 05/18/12

Report #: 7

7 of 11

Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machlne: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-007
 Machine ID:
 W-11

 Seam ID:
 39/40
 Welder ID:
 TS

 Date Sampled:
 05/15/12

Tested By:

Checked By:

Specimen Number 1 2	Peel Strength									
	Weld A				Weld B			Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	162	616	SE1	142		SE1	167	>50%	lower	
2	157		SE1	154		SE1	161	>50%	lower	
3	162	***	SE1	146	***	SE1	165	>50%	lower	
4	148		SE1	150	***	SE1	169	>50%	lower	
5	148	***	SE1	145		SE1	160	>50%	lower	
Average	155	1999		147	****		165	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science						
Project Name: Onondaga SCA Phase I II							
Project Location:	Camillus, NY						
Installer:							
GTX #:	11670						
Test Date:	05/18/12						
Tested By:	ad	Report #:	7				
Checked By:	bfs	Page:	8 of 11				

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 2 in/min 60 mil AGRU microspike HDPE Testing Speed: Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in W-5 DS-6-008 Machine ID: Sample ID: AS Welder ID: Seam ID: 35/37 05/15/12 Date Sampled:

	Peel Strength								
	Weld A				Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	128		SE1	128	***	SE1	185	>50%	lower
2	124		SE1	127	***	SE1	176	>50%	lower
3	127		SE1	134	***	SE1	186	>50%	lower
4	121	****	SE1	126	***	SE1	182	>50%	upper
5	123		SE1	132		SE1	187	>50%	upper
Average	125	•••		129			183	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) Interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 05/18/12
Tested By: ad Report #: 7

Page:

9 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

Checked By:

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-009
 Machine ID:
 W-9

 Seam ID:
 37/39
 Welder ID:
 LV

 Date Sampled:
 05/15/12

		Peel Strength							
Specimen Number 1 2	Weld A				Weld B		Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	125		SE1	120		SE1	180	>50%	both
2	121	***	SE1	119	***	SE1	171	>50%	lower
3	128		SE1	119	***	SE1	181	>50%	lower
4	127		SE1	116	***	SE1	176	>50%	lower
5	123	***	SE1	121		SE1	178	>50%	lower
Average	125	24.5	***	119		***	177		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer:

GTX #: 11670 Test Date: 05/23/12

Tested By: ad
Checked By: bfs

Report #: 8
Page: 1 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-010
 Machine ID:
 W-14

 Seam ID:
 39/41
 Welder ID:
 VC

 Date Sampled:
 05/15/12

Peel Strength Shear Strength Weld A Weld B Rupture Failure Elongation, Failure Specimen Seam Seam lb./in lb./in lb./in Mode Separation, % Type Separation, % Type Number SE1 SF1 178 >50% lower 135 146 >50% lower SE1 128 SE1 179 2 145 SE1 181 >50% lower SE1 133 3 152 SF1 175 >50% lower SE1 124 141 5 147 SE1 130 SE1 178 >50% lower 130 ---178 Average 146

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/23/12 Report #: 8 Tested By: 2 of 13 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-011
 Machine ID:
 W-5

 Seam ID:
 41/43
 Welder ID:
 AS

 Date Sampled:
 05/15/12

Specimen Number			Peel St	rength						
	Weld A			Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	139		SE1	130		SE1	177	>50%	lower	
2	146	444	SE1	129		SE1	177	>50%	lower	
3	149	***	SE1	134		SE1	178	>50%	lower	
4	116		SE1	128	***	SE1	177	>50%	lower	
5	133	***	SE1	136		SE1	179	>50%	lower	
Average	136	***		131	***	***	177	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/18/12 Tested By: Report #: 7 ad Page: 10 of 11 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Lower Geomembrane: 60 mil AGRU microspike HDPE

60 MII AGRU MICROSPIKE HD

Dual Hot Wedge Weld

Testing Machine: Testing Speed: Instron 1123
2 in/min

Grips: Specimen Size: ATS pneumatic 1 in x 8 in

Sample ID: Seam ID:

Seaming Method:

DS-6-012 1/PHASE 1 Machine ID: Welder ID: W-9 LV

Date Sampled:

05/15/12

Specimen Number 1 2										
	Weld A				Weld B			Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	120	***	SE1	141		SE1	178	>50%	upper	
2	136	400	SE1	146		SE1	178	>50%	upper	
3	136	***	SE1	136	+22	SE1	183	>50%	upper	
4	135		SE1	142	***	SE1	178	>50%	upper	
5	122	100	SE1	147	\	SE1	181	>50%	upper	
Average	130	***	***	143			180	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/18/12 Report #: Tested By: ad Checked By: Page: 11 of 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-013
 Machine ID:
 W-14

 Seam ID:
 34/35
 Welder ID:
 VC

 Date Sampled:
 05/15/12

			Peel St	rength						
Specimen Number	Weld A				Weld B			Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	161		SE1	137	4-4	SE1	179	>50%	both	
2	157	èné	SE1	132		SE1	178	>50%	both	
3	164	****	SE1	149		SE1	188	>50%	lower	
4	165	***	SE1	143	***	SE1	175	>50%	lower	
5	167	***	SE1	144		SE1	179	>50%	lower	
Average	163		***	141			179	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/23/12 Report #: 8 Tested By: ad 3 of 13 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-014
 Machine ID:
 W-9

 Seam ID:
 43/47
 Welder ID:
 LV

 Date Sampled:
 05/16/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	136		SE1	138	***	SE1	181	>50%	lower	
2	136		SE1	135	(444)	SE1	181	>50%	lower	
3	135		SE1	137		SE1	184	>50%	both	
4	128		SE1	134	***	SE1	178	>50%	lower	
5	130	***	SE1	141		SE1	180	>50%	lower	
Average	133		***	137	***		181	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Camillus, NY Project Location: Installer: GTX #: 11670 05/23/12 Test Date: Report #: Tested By: 4 of 13 Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

Checked By:

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic 1 in x 8 in Specimen Size:

Machine ID: W-11 DS-6-015 Sample ID: TS Seam ID: 44/46 Welder ID: 05/16/12 Date Sampled:

			Peel St	rength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	149		SE1	139	***	SE1	187	>50%	both
2	129		SE1	137		SE1	182	>50%	upper
3	157	***	SE1	144	***	SE1	185	>50%	upper
4	142	***	SE1	143	***	SE1	183	>50%	both
5	139		SE1	128		SE1	185	>50%	upper
Average	143			138	***		184	***	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY
Installer: ---

GTX #: 11670

Test Date: 05/23/12
Tested By: ad Report #: 8
Checked By: bfs Page: 5 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Lower Geomembrane: 60 mil AGRU microspike HDPE

60 mil AGRU microspike HDPE Testing Spe

Testing Machine: Instron 1123
Testing Speed: 2 in/min
Grips: ATS pneumat

Seaming Method:

Dual Hot Wedge Weld

Specimen Size:

ATS pneumatic 1 in x 8 in

Sample ID: Seam ID: DS-6-016 47/48

Welder ID: Date Sampled:

Machine ID:

VC 05/16/12

W-5

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	152	***	SE1	140	222	SE1	180	>50%	lower	
2	149		SE1	136		SE1	182	>50%	upper	
3	162		SE1	151		SE1	186	>50%	upper	
4	127		SE1	149	***	SE1	181	>50%	lower	
5	144	-	SE1	135	249	SE1	185	>50%	both	
Average	147	122	(222)	142	***		183	1999	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location; Camillus, NY Installer: GTX #: 11670 Test Date: 05/23/12 Report #: Tested By: ad Page: 6 of 13 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-017
 Machine ID:
 W-5

 Seam ID:
 46/47
 Welder ID:
 VC

Date Sampled: 05/17/12

			Peel St	rength					
	Weld A				Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	153	***	SE1	158		SE1	161	>50%	upper
2	153		SE1	156	***	SE1	163	>50%	upper
3	152		SE1	151		SE1	167	>50%	upper
4	147	***	SE1	152		SE1	163	>50%	upper
5	154		SE1	153	***	SE1	163	>50%	both
Average	152	***		154	***	-	164		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 05/23/12 Test Date: Report #: 8 Tested By: 7 of 13 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: Seaming Method: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Dual Hot Wedge Weld

Testing Machine: Testing Speed:

Specimen Size:

Instron 1123
2 in/min
ATS pneumatic
1 in x 8 in

Sample ID:

Seam ID:

DS-6-018 48/51 Machine ID: Welder ID:

Grips:

W-9 LV

Date Sampled:

05/16/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	137		SE1	138	***	SE1	192	>50%	both
2	127		SE1	124		SE1	191	>50%	both
3	132		SE1	127	***	SE1	195	>50%	upper
4	130		SE1	125		SE1	191	>50%	both
5	130		SE1	133		SE1	192	>50%	lower
Average	131			129	200	***	192	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/23/12 Report #: 8 Tested By: ad Page: 8 of 13 Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Dual Hot Wedge Weld

Testing Machine: Testing Speed: Grips:

Specimen Size:

Instron 1123 2 in/min ATS pneumatic 1 in x 8 in

Seaming Method:

Sample ID:

Seam ID:

DS-6-019

53/54

Machine ID: Welder ID: W-11 TS

Date Sampled: 05/16/12

		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	131	***	SE1	139	***	SE1	183	>50%	lower
2	122		SE1	134	64	SE1	180	>50%	lower
3	133		SE1	137	995	SE1	184	>50%	lower
4	123	***	SE1	141	***	SE1	180	>50%	lower
5	122		SE1	140		SE1	182	>50%	lower
Average	126	***	***	138		***	182	[***]	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/23/12 Report #: 8 Tested By: Page: 9 of 13 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: Seaming Method: Dual Hot Wedge Weld

60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Testing Machine: Testing Speed: Grips:

Specimen Size:

Instron 1123 2 in/min ATS pneumatic 1 in x 8 in

Sample ID: Seam ID:

DS-6-020 53/55

Machine ID: Welder ID:

W-11 TS

Date Sampled:

05/18/12

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	140	***	SE1	140		SE1	181	>50%	lower
2	133	***	SE1	139		SE1	181	>50%	lower
3	134		SE1	149		SE1	184	>50%	lower
4	138	***	SE1	138	***	SE1	179	>50%	lower
5	129	***	SE1	139	+++	SE1	183	>50%	lower
Average	135	***	477	141	ana.	244	181	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits ylelding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	1999		
GTX #:	11670		
Test Date:	05/23/12		
Tested By:	ad	Report #:	8
Checked By	hfs	Page:	10 of 13

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-021
 Machine ID:
 W-9

 Seam ID:
 55/57
 Welder ID:
 LV

 Date Sampled:
 05/18/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	133		SE1	140		SE1	182	>50%	lower	
2	134		SE1	134		SE1	180	>50%	lower	
3	139		SE1	139	***	SE1	182	>50%	lower	
4	138	•••	SE1	153	***	SE1	180	>50%	lower	
5	133	***	SE1	137	***	SE1	179	>50%	lower	
Average	135			141	***	***	180	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/23/12 Report #: 8 Tested By: ad

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE

Checked By:

Testing Machine: Testing Speed:

Instron 1123

60 mil AGRU microspike HDPE

Grips:

2 in/min ATS pneumatic

Seaming Method:

Dual Hot Wedge Weld

Specimen Size:

1 in x 8 in

Sample ID: Seam ID:

DS-6-022 58/60

Machine ID: Welder ID:

W-10 KC

Page:

11 of 13

Date Sampled:

05/18/12

			Peel St	rength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	140	244	SE1	139		SE1	180	>50%	upper
2	134		SE1	136	352	SE1	178	>50%	upper
3	133		SE1	146		SE1	186	>50%	upper
4	133		SE1	135	***	SE1	181	>50%	upper
5	133	***	SE1	157	***	SE1	181	>50%	lower
Average	135		2	142		444	181		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Camillus, NY Project Location: Installer: GTX #: 11670 Test Date: 05/23/12 Report #: 8 Tested By: ad 12 of 13 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: Seaming Method: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Dual Hot Wedge Weld

Testing Machine: Testing Speed: Instron 1123 2 in/min ATS pneumatic

Grips: Specimen Size:

1 in x 8 in

Sample ID: Seam ID: DS-6-023 60/62 Machine ID: Welder ID: W-5 AS

Date Sampled:

05/18/12

			Peel St	rength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	132	44	SE1	133		SE1	173	>50%	lower
2	127		SE1	128		SE1	173	>50%	both
3	118	-)-	SE1	137	242	SE1	173	>50%	lower
4	137	-	SE1	125		SE1	166	>50%	lower
5	124	***	SE1	131		SE1	167	>50%	lower
Average	128			131			170		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Camillus, NY Project Location: Installer: GTX #: 11670 05/23/12 Test Date: Report #: 8 Tested By: 13 of 13 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: Seaming Method:

60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Dual Hot Wedge Weld

Testing Machine: Testing Speed: Grips:

Specimen Size:

Instron 1123 2 in/min ATS pneumatic 1 in x 8 in

Sample ID: Seam ID:

DS-6-024 62/65

Machine ID: Welder ID:

W-8 VC

05/18/12 Date Sampled:

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	137	***	SE1	145	***	SE1	189	>50%	upper	
2	140		SE1	129		SE1	191	>50%	upper	
3	136		SE1	139	44	SE1	191	>50%	lower	
4	131		SE1	135	***	SE1	184	>50%	lower	
5	144	***	SE1	134		SE1	193	>50%	lower	
Average	137	***	-22	137	***	***	190	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:			
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	1 of 11

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-025
 Machine ID:
 W-8

 Seam ID:
 65/66
 Welder ID:
 VC

 Date Sampled:
 05/18/12

Specimen Number	Weld A				Weld B		Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138		SE1	135		SE1	179	>50%	Upper
2	129		SE1	141		SE1	180	>50%	Upper
3	135	1	SE1	145	300	SE1	186	>50%	Upper
4	135		SE1	137		SE1	181	>50%	Lower
5	139		SE1	140	494	SE1	182	>50%	Both
Average	135	***	***	140	144	1222	182	***	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	444		
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	2 of 11

peel & shear destructive test

60 mil AGRU microspike HDPE Instron 1123 Testing Machine: Upper Geomembrane: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: Seaming Method: Dual Hot Wedge Weld ATS pneumatic Grips: 1 in x 8 in Specimen Size: Machine ID: W-10 DS-6-026 Sample ID: Seam ID: 68/69 Welder ID: Date Sampled: 05/18/12

	Weld A				Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	112	***	SE1	133		SE1	181	>50%	Lower
2	120	1944	SE1	137		SE1	177	>50%	Lower
3	124	1.24	SE1	120		SE1	180	>50%	Lower
4	142	-	SE1	129		SE1	174	>50%	Lower
5	133		SE1	141		SE1	179	>50%	Lower
Average	126	(proje		132			178		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:			
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	3 of 11

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-027
 Machine ID:
 W-9

 Seam ID:
 64/67
 Welder ID:
 LV

 Date Sampled:
 05/18/12

Specimen Number	Peel Strength									
	Weld A				Weld B		Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	121	***	SE1	131		SE1	174	>50%	Lower	
2	119	****	SE1	126	ines.	SE1	181	>50%	Lower	
3	121		SE1	128	-	SE1	182	>50%	Lower	
4	116		SE1	128	***	SE1	176	>50%	Lower	
5	119		SE1	136		SE1	182	>50%	Lower	
Average	119		-22	130	***	444	179			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	44		
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	4 of 11

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: ATS pneumatic Seaming Method: Dual Hot Wedge Weld Grips: Specimen Size: 1 in x 8 in W-11 Machine ID:

 Sample ID:
 DS-6-028
 Machine ID:
 W-11

 Seam ID:
 67/70
 Welder ID:
 TS

 Date Sampled:
 05/18/12

	Peel Strength								
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138		SE1	140	***	SE1	177	>50%	Lower
2	140		SE1	141	***	SE1	175	>50%	Lower
3	129	***	SE1	145		SE1	175	>50%	Lower
4	122	-	SE1	143		SE1	176	>50%	Lower
5	121		SE1	123		SE1	179	>50%	Lower
Average	130	***		138	***	3444	176	(944)	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science						
Project Name:	Onondaga SCA Phase I & II Camillus, NY						
Project Location:							
Installer:	***						
GTX #:	11670						
Test Date:	05/24/12						
Tested By:	ad	Report #:	9				
Checked By:	bfs	Page:	5 of 11				

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-029
 Machine ID:
 W-10

 Seam ID:
 69/72
 Welder ID:
 KC

 Date Sampled:
 05/18/12

Specimen Number		Weld A			Weld B		Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	131		SE1	128		SE1	184	>50%	Upper
2	139		SE1	127	***	SE1	182	>50%	Upper
3	136	-	SE1	131	***	SE1	184	>50%	Lower
4	136		SE1	123		SE1	181	>50%	Lower
5	136		SE1	130		SE1	186	>50%	Lower
Average	136		***	128		***	184		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Camillus, NY Project Location: Installer: 11670 GTX #: Test Date: 05/24/12 Report #: Tested By: ad Page: bfs Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-030
 Machine ID:
 W-5

 Seam ID:
 72/74
 Welder ID:
 AS

 Date Sampled:
 05/18/12

Specimen Number		Weld A			Weld B		Shear Strength		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	155		SE1	133	***	SE1	185	>50%	Upper
2	137		SE1	112		SE1	183	>50%	Upper
3	126	1448)	SE1	131	***	SE1	187	>50%	Upper
4	137	***	SE1	110		SE1	183	>50%	Upper
5	120	444	SE1	130	1944	SE1	186	>50%	Upper
Average	135	Jan.	444	123	***		185	444	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science								
Project Name:	Project Name: Onondaga SCA Phase I & II								
Project Location:	Camillus, NY								
Installer:									
GTX #:	11670								
Test Date:	05/24/12								
Tested By:	ad	Report #:	9						
Checked By:	bfs	Page:	7 of 11						

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-031
 Machine ID:
 W-8

 Seam ID:
 74/77
 Welder ID:
 VC

 Date Sampled:
 05/18/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	134	***	SE1	123	***	SE1	172	>50%	Upper	
2	126	444	SE1	118	***	SE1	172	>50%	Upper	
3	126	(*ee	SE1	122		SE1	177	>50%	Upper	
4	128		SE1	127		SE1	175	>50%	Upper	
5	125	***	SE1	128		SE1	179	>50%	Upper	
Average	128		***	124	749		175		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	i de e		
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	8 of 11

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-032
 Machine ID:
 W-11

 Seam ID:
 77/78
 Welder ID:
 TS

 Date Sampled:
 05/18/12

	Weld A				Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	123		SE1	125	***	SE1	174	>50%	Upper
2	128		SE1	118		SE1	174	>50%	Upper
3	142	44	SE1	124		SE1	177	>50%	Upper
4	127		SE1	123		SE1	171	>50%	Upper
5	125	***	SE1	127	. 222	SE1	174	>50%	Lower
Average	129			123	***		174	444	202

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science			
Project Name:	Onondaga SCA Phase I & II			
Project Location:	Camillus, NY			
Installer:	***			
GTX #:	11670			
Test Date:	05/24/12			
Tested By:	ad	Report #:	9	
Checked By:	bfs	Page:	9 of 11	

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-033
 Machine ID:
 W-9

 Seam ID:
 64/65
 Welder ID:
 LV

 Date Sampled:
 05/18/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	142		SE1	156	***	SE1	168	>50%	Lower	
2	133	222	SE1	146	***	SE1	166	>50%	Lower	
3	141		SE1	149	444	SE1	163	>50%	Lower	
4	137	204	SE1	139		SE1	160	>50%	Lower	
5	138	***	SE1	142		SE1	163	>50%	Lower	
Average	138	***		146			164		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer: --GTX #: 11670
Test Date: 06/01/12

 Tested By:
 meo
 Report #: 13

 Checked By:
 jdt
 Page: 1 of 2

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-034A
 Machine ID:
 W-10

 Seam ID:
 Phase I/6-072
 Welder ID:
 TS

eam ID: Phase I/6-072 Welder ID: TS

Date Sampled: 05/31/12

		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	151	242	SE1	140	***	SE1	182	>50%	upper
2	148		SE1	139	+++	SE1	183	>50%	upper
3	150	***	SE1	137	444	SE1	179	>50%	upper
4	141		SE1	145	***	SE1	175	>50%	lower
5	151		SE1	142	***	SE1	180	>50%	upper
Average	148			141			180	***	222

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY

Installer: GTX #: 11670

Test Date: 06/01/12 Report #: 13 Tested By: meo 2 of 2 Page: Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: 60 mil AGRU microspike HDPE Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: Specimen Size: 1 in x 8 in

W-10 Machine ID: Sample ID: DS-6-034B TS Welder ID: Seam ID: Phase I/6-066

Date Sampled: 05/31/12

	Weld A				Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	147	***	SE1	142	-	SE1	169	>50%	upper	
2	142		SE1	144		SE1	171	>50%	upper	
3	140	***	SE1	139	220	SE1	161	>50%	upper	
4	148		SE1	145		SE1	166	>50%	lower	
5	126		SE1	139		SE1	168	>50%	upper	
Average	141		475	142	***	***	167		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	***		
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	10 of 11

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-034
 Machine ID:
 W-10

 Seam ID:
 69/PHASE 1
 Welder ID:
 KC

 Date Sampled:
 05/21/12

		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	154	444	SE1	147		SE1	185	>50%	Upper
2	148	***	SE1	145		SE1	180	>50%	Upper
3	134	65	AD-BRK	149	***	SE1	175	>50%	Upper
4	159	***	SE1	151		SE1	174	>50%	Upper
5	148	***	SE1	144	555	SE1	177	>50%	Upper
Average	148	144		147			178	(444)	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	Selection (Control of Control of		
GTX #:	11670		
Test Date:	05/24/12		
Tested By:	ad	Report #:	9
Checked By:	bfs	Page:	11 of 11

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-035
 Machine ID:
 W-5

 Seam ID:
 57/58
 Welder ID:
 AS

 Date Sampled:
 05/21/12

			Peel St	rength						
	Weld A				Weld B			Shear Streng	th	
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	157		SE1	163		SE1	174	>50%	Upper	
2	151		SE1	160	***	SE1	171	>50%	Upper	
3	165		SE1	161		SE1	173	>50%	Upper	
4	161		SE1	163		SE1	169	>50%	Upper	
5	162		SE1	150	+++	SE1	172	>50%	Upper	
Average	159	***		159	44-	244	172		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
Installer: --GTX #: 11670

GTX #: 11670
Test Date: 05/29/12
Tested Bv: ad

 Tested By:
 ad
 Report #: 10

 Checked By:
 bfs
 Page: 1 of 8

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-036
 Machine ID:
 W-11

 Seam ID:
 79/80
 Welder ID:
 TS

 Date Sampled:
 05/24/12

1		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	134		SE1	139	***	SE1	176	>50%	lower
2	138		SE1	136	44	SE1	174	>50%	lower
3	140	***	SE1	133	222	SE1	175	>50%	lower
4	136		SE1	147	***	SE1	168	>50%	lower
5	130		SE1	143	***	SE1	173	>50%	lower
Average	136	122-	-22	139	344		173		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670

05/29/12 Test Date: Tested By: ad

Report #: 10 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: 60 mil AGRU microspike HDPE Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: Specimen Size: 1 in x 8 in

Sample ID: DS-6-037 Seam ID: 80/83

W-8 Machine ID: VC Welder ID:

Date Sampled: 05/24/12

		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	131	***	SE1	135	222	SE1	179	>50%	lower	
2	139	***	SE1	123		SE1	176	>50%	lower	
3	144	***	SE1	120		SE1	179	>50%	lower	
4	133	***	SE1	113	***	SE1	177	>50%	lower	
5	137		SE1	137	424	SE1	179	>50%	lower	
Average	137			126		***	178			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: ... GTX #: 11670 05/29/12 Test Date: 10 Report #: Tested By: ad

Date Sampled:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

bfs

Checked By:

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 2 in/min Testing Speed: 60 mil AGRU microspike HDPE Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: Specimen Size: 1 in x 8 in W-10 Sample ID: Machine ID: DS-6-038 KC Welder ID: Seam ID: 83/85

	Weld A				Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Fallure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	123	444	SE1	130		SE1	175	>50%	lower
2	117	***	SE1	142	***	SE1	177	>50%	lower
3	121	***	SE1	150	444	SE1	179	>50%	lower
4	118		SE1	147	***	SE1	173	>50%	lower
5	118		SE1	148	***	SE1	177	>50%	lower
Average	119	***		143	***	***	176		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 50%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material

3 of 8

Page:

05/24/12

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer: --GTX #: 11670
Test Date: 05/29/12

 Tested By:
 ad
 Report #: 10

 Checked By:
 bfs
 Page: 4 of 8

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-039
 Machine ID:
 W-5

 Seam ID:
 85/88
 Welder ID:
 AS

 Date Sampled:
 05/24/12

Peel Strength Shear Strength Weld A Weld B Rupture **Failure** Elongation, Failure Seam Seam Specimen lb./in lb./in lb./in Mode Separation, % Type Separation, % Type Number SE1 167 >50% lower SE1 121 138 SE1 172 >50% upper 119 SE1 114 2 SE1 SE1 170 >50% upper 3 122 123 SE1 SE1 166 >50% both >50% both SE1 145 SE1 168 5 125 168 125 130 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: ---GTX #: 11670 05/29/12 Test Date: Report #: 10 Tested By: ad 5 of 8 Checked By: Page: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Upper Geomembrane: Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in W-8 Machine ID: Sample ID: DS-6-040 VC Welder ID: Seam ID: 88/90 Date Sampled: 05/24/12

			Peel St	rength							
		Weld A			Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	122		SE1	124	1777	SE1	177	>50%	both		
2	123		SE1	145	4+4	SE1	174	>50%	both		
3	121	(***)	SE1	125	***	SE1	177	>50%	both		
4	123		SE1	106		SE1	170	>50%	both		
5	131		SE1	137	222	SE1	175	>50%	both		
Average	124	***	***	127			175				

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/30/12 Report #: 11 Tested By: meo 1 of 10 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Machine: Testing Speed: Instron 1123 2 in/min

Seaming Method:

Dual Hot Wedge Weld

Grips: Specimen Size: ATS pneumatic 1 in x 8 in

Sample ID: Seam ID: DS-6-041 90/92 Machine ID: Welder ID:

W-11 TS

Date Sampled:

05/24/12

2									
		Weld A	- 1		Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	119	***	SE1	127		SE1	172	>50%	lower
2	121		SE1	136	***	SE1	171	>50%	lower
3	124	***	SE1	141	-44	SE1	174	>50%	lower
4	116		SE1	130	***	SE1	168	>50%	lower
5	124	***	SE1	121	***	SE1	172	>50%	lower
Average	121	***	***	131		***	171	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Seaming Method:

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer:

GTX #: 11670

Test Date: 05/30/12 Tested By: Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Lower Geomembrane: 60 mil AGRU microspike HDPE

Dual Hot Wedge Weld

Instron 1123 Testing Machine: Testing Speed:

2 in/min Grips: ATS pneumatic Specimen Size: 1 in x 8 in

Report #: 11

Page:

2 of 10

W-10 Machine ID: Sample ID: DS-6-042 93/95 Welder ID: KC Seam ID: 05/24/12 Date Sampled:

			Peel St	rength							
Specimen Number	7 7	Weld A		Weld B			Shear Strength				
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	117		SE1	119		SE1	176	>50%	lower		
2	113		SE1	139		SE1	176	>50%	lower		
3	114	7-1 -	SE1	130		SE1	180	>50%	lower		
4	119	***	SE1	121	***	SE1	177	>50%	lower		
5	122	1444	SE1	116		SE1	180	>50%	lower		
Average	117			125		2.2	178		***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 05/30/12
Tested By: meo Report #: 11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: Seaming Method: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Dual Hot Wedge Weld

Checked By:

Testing Machine: Testing Speed: Grips:

Specimen Size:

Instron 1123
2 in/min
ATS pneumatic
1 in x 8 in

DS-6-043

Machine ID: Welder ID:

VC

W-8

Page:

3 of 10

Sample ID: Seam ID:

95/97

Date Sampled:

05/24/12

			Peel St	rength						
		Weld A			Weld B			Shear Streng	th	
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	130		SE1	121		SE1	174	>50%	upper	
2	128		SE1	116	1.00	SE1	170	>50%	upper	
3	135	***	SE1	131	77	SE1	174	>50%	upper	
4	149	***	SE1	121		SE1	170	>50%	lower	
5	141		SE1	115		SE1	174	>50%	both	
Average	137	***		121			172			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer: --GTX #: 11670

Test Date: 05/30/12
Tested By: meo Report #: 11
Checked By: bfs Page: 4 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-044
 Machine ID:
 W-5

 Seam ID:
 97/100
 Welder ID:
 AS

Date Sampled: 05/24/12

			Peel St	Peel Strength							
		Weld A			Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	132	***	SE1	121		SE1	170	>50%	upper		
2	125		SE1	128		SE1	168	>50%	upper		
3	125	***	SE1	136	-4-	SE1	174	>50%	upper		
4	118	***	SE1	137		SE1	169	>50%	upper		
5	117	1.0	SE1	133	***	SE1	173	>50%	upper		
Average	123	***		131	***		171		***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer:

GTX #: 11670

Test Date: 05/30/12
Tested By: meo
Checked By: bfs

Report #:

1 in x 8 in

5 of 10

Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size:

 Sample ID:
 DS-6-045
 Machine ID:
 W-11

 Seam ID:
 100/102
 Welder ID:
 TS

100/102	Welder ID:	15
Date Sampled:	05/24/12	
Peel Strength	Weld B	Shear Strength

Specimen Number		Weld A		Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	126		SE1	123		SE1	179	>50%	lower	
2	119		SE1	121		SE1	181	>50%	lower	
3	124	***	SE1	125	***	SE1	185	>50%	lower	
4	123	-222	SE1	126	***	SE1	178	>50%	lower	
5	136		SE1	129		SE1	182	>50%	lower	
Average	126	***	***	125			181	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/30/12 Tested By: Report #: 11 meo Checked By: 6 of 10 bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-046
 Machine ID:
 W-10

 Seam ID:
 102/104
 Welder ID:
 KC

 Date Sampled:
 05/24/12

			Peel St	rength							
Specimen Number		Weld A		(Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	122		SE1	153		SE1	177	>50%	upper		
2	131		SE1	124	•	SE1	176	>50%	upper		
3	142		SE1	126		SE1	178	>50%	upper		
4	121	}**	SE1	136	-77	SE1	171	>50%	upper		
5	122	***	SE1	138	-	SE1	174	>50%	upper		
Average	128	***		135			175	1000			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) Interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/30/12 Tested By: Report #: 11 meo 7 of 10 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: Seaming Method: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

60 mil AGRU microspike HDPE Testing Spe
Dual Hot Wedge Weld Grips:

Testing Machine: Instron 1123
Testing Speed: 2 in/min

2 in/min ATS pneumatic 1 in x 8 in

Sample ID:

Seam ID:

DS-6-047 104/107 Machine ID: Welder ID:

Specimen Size:

W-9 VC

Date Sampled:

05/24/12

		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	116	248	SE1	131		SE1	181	>50%	upper	
2	121		SE1	122	***	SE1	180	>50%	upper	
3	122	***	SE1	139	***	SE1	183	>50%	upper	
4	117	***	SE1	134		SE1	180	>50%	upper	
5	115		SE1	123	Ç	SE1	183	>50%	upper	
Average	118	444	-4-	130	***	- 444	181	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/30/12 Report #: 11 Tested By: meo 8 of 10 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Machine: Testing Speed: Instron 1123 2 in/min

Seaming Method:

Dual Hot Wedge Weld

Grips: Specimen Size: ATS pneumatic
1 in x 8 in

Sample ID: Seam ID: DS-6-048 107/109 Machine ID: Welder ID:

W-5 AS

Date Sampled:

05/25/12

			Peel St	rength						
		Weld A		Weld B				Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	138	4	SE1	138	***	SE1	185	>50%	lower	
2	123	-	SE1	140	444	SE1	184	>50%	lower	
3	120	-	SE1	135		SE1	190	>50%	lower	
4	135		SE1	132	444	SE1	184	>50%	lower	
5	130	1448	SE1	127	***	SE1	189	>50%	lower	
Average	129	(444)	***	134	- 0.0	***	186	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer: ---

GTX #: 11670 Test Date: 06/27/12

 Tested By:
 meo
 Report #: 23

 Checked By:
 bfs
 Page: 1 of 13

1 in x 8 in

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size:

 Sample ID:
 DS 6-049A-1
 Machine ID:
 --

 Seam ID:
 111/113
 Welder ID:
 TS

Date Sampled: 06/26/12

			Peel St	ength					
		Weld A		Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138	444	SE1	136	***	SE1	189	>50%	lower
2	140		SE1	128		SE1	194	>50%	lower
3	139	100	SE1	124		SE1	193	>50%	lower
4	135		SE1	147		SE1	188	>50%	lower
5	133		SE1	137		SE1	188	>50%	lower
Average	137	***		134			190		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/31/12 Report #: 12 Tested By: ad Page: Checked By: idt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-049A
 Machine ID:
 W-10

 Seam ID:
 Phase I/104
 Welder ID:
 TS

 Date Sampled:
 05/30/12

			Peel Str	ength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	126	50%	AD-BRK	127		SE1	167	>50%	upper
2	116	50%	AD-BRK	133		SE1	167	>50%	upper
3	132	40%	AD-BRK	142		SE1	170	>50%	upper
4	126	60%	AD-BRK	124		SE1	166	>50%	upper
5	129	60%	AD-BRK	139	52	SE1	168	>50%	upper
Average	126	***		133			167		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/05/12 Report #: 14 Tested By: ad Page: Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: 1 in x 8 in Specimen Size: W-11 Sample ID: DS-6-049B1 Machine ID: Seam ID: 100/103 Welder ID: TS Date Sampled:

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	123		SE1	128	444	SE1	178	>50%	both	
2	122		SE1	127		SE1	179	>50%	both	
3	128		SE1	133	***	SE1	180	>50%	upper	
4	124		SE1	122	242	SE1	178	>50%	both	
5	127	-	SE1	125		SE1	179	>50%	both	
Average	125		***	127	***		179	-	44	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/31/12 Tested By: Report #: 12 ad Page: 2 of 2 Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-049B
 Machine ID:
 W-10

 Seam ID:
 Phase I/97
 Welder ID:
 TS

 Date Sampled:
 05/30/12

			Peel Str	rength			Shear Strength		
		Weld A			Weld B				
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	146	50%	AD-BRK	145		SE1	187	>50%	both
2	138	60%	AD-BRK	151	10%	AD-BRK	191	>50%	upper
3	143	70%	AD-BRK	152		SE1	189	>50%	upper
4	123	30%	AD-BRK	150	10%	AD-BRK	185	>50%	both
5	114	70%	AD-BRK	130	10%	AD-BRK	187	>50%	both
Average	133	***	***	145		*	188	444	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer: --GTX #: 11670
Test Date: 05/29/12

 Tested By:
 ad
 Report #: 10

 Checked By:
 bfs
 Page: 6 of 8

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-050
 Machine ID:
 W-11

 Seam ID:
 78/81
 Welder ID:
 TS

 Date Sampled:
 05/25/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	140		SE1	138	***	SE1	175	>50%	both	
2	123	1 ***	SE1	140	-	SE1	172	>50%	both	
3	122	***	SE1	123	***	SE1	174	>50%	both	
4	124	***	SE1	116	242	SE1	171	>50%	both	
5	129	***	SE1	113	***	SE1	175	>50%	both	
Average	128			126	***		173			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/06/12 Report #: 15 Tested By: ad Page: 1 of 1 Checked By: jdt

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Filet Extrusion Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-049C
 Machine ID:
 16

 Seam ID:
 93/CAP
 Welder ID:
 VS

 Date Sampled:
 06/05/12

			Peel St	rength					
		Weld A		Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	132	202	SE3				167	>50%	both
2	122	4-8-	SE3	-4-	÷.		165	>50%	both
3	130	***	SE3			+	170	>50%	both
4	131	***	SE3		-24		166	>50%	both
5	126	***	SE3				170	>50%	both
Average	128			***	***		168	1444	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
Installer: ---

GTX #: 11670 Test Date: 05/29/12

 Tested By:
 ad
 Report #: 10

 Checked By:
 bfs
 Page: 7 of 8

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-051
 Machine ID:
 W-10

 Seam ID:
 84/86
 Welder ID:
 KC

 Date Sampled:
 05/25/12

			Peel St	rength						
		Weld A		Weld B				Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	121	444	SE1	129		SE1	178	>50%	both	
2	117		SE1	127	***	SE1	175	>50%	both	
3	123		SE1	129	22	SE1	177	>50%	both	
4	123	***	SE1	126		SE1	171	>50%	both	
5	120	1 777	SE1	122		SE1	176	>50%	both	
Average	121		444	127			175		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer:

GTX #: 11670 Test Date: 05/29/12

Tested By: ad Report #: 10
Checked By: bfs Page: 8 of 8

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-052
 Machine ID:
 W-8

 Seam ID:
 88/91
 Welder ID:
 VC

Date Sampled: 05/25/12

Peel Strength Shear Strength Weld A Weld B Rupture Failure Elongation, Seam Failure Seam Specimen lb./in lb./in lb./in Separation, % Type Separation, % Type Mode Number >50% both SE1 SE1 174 119 1 124 SE1 >50% upper SE1 121 176 124 2 SE1 180 >50% upper SE1 123 3 120 SE1 124 SE1 176 >50% upper 130 4 SE1 178 >50% upper 5 136 SE1 130 177 127 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Camillus, NY

Project Location: Installer:

GTX #: 11670

Test Date: 05/30/12 Report #: 11 Tested By: meo Page: 9 of 10 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Upper Geomembrane: Lower Geomembrane:

60 mil AGRU microspike HDPE

Dual Hot Wedge Weld

Instron 1123 Testing Machine: Testing Speed:

165

2 in/min ATS pneumatic

Grips: Specimen Size:

1 in x 8 in

Sample ID: Seam ID:

Seaming Method:

DS-6-053 106/107

Machine ID: Welder ID: Date Sampled: W-5 AS 05/25/12

Peel Strength Shear Strength Weld A Weld B Rupture Failure Seam **Failure** Elongation, Seam Specimen lb./in lb./in lb./in Separation, % Mode Type Separation, % Type Number >50% lower 154 SE1 155 SE1 166 >50% lower SE1 167 154 SE₁ 146 2 >50% lower SF1 166 151 3 151 SE₁ >50% lower SE1 SE1 162 148 >50% lower SE1 149 SE₁ 162 5 149

149

Comments:

Average

151

Estimate of seam separation visually determined based upon area of separated bond to the

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 05/30/12 Report #: 11 Tested By: meo 10 of 10 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-054
 Machine ID:
 W-9

 Seam ID:
 105/106
 Welder ID:
 VC

 Date Sampled:
 05/25/12

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	126		SE1	132		SE1	178	>50%	lower	
2	115		SE1	133		SE1	179	>50%	lower	
3	121		SE1	134		SE1	183	>50%	lower	
4	118		SE1	135		SE1	179	>50%	lower	
5	119	***	SE1	141	***	SE1	179	>50%	lower	
Average	120	(MS)		135	***		180			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer: ---

GTX #: 11670 Test Date: 06/14/12

 Tested By:
 meo
 Report #: 18

 Checked By:
 bfs
 Page: 1 of 1

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-055A1
 Machine ID:
 W-14

 Seam ID:
 120/122
 Welder ID:
 VS

 Date Sampled:
 06/13/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	150		SE1	145		SE1	181	>50%	lower	
2	134	***	SE1	138	1	SE1	181	>50%	lower	
3	130	1994	SE1	133	1.414	SE1	181	>50%	lower	
4	136	***	SE1	131		SE1	176	>50%	lower	
5	129	***	SE1	147		SE1	176	>50%	lower	
Average	136	1.22	:	139	444		179		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer: --GTX #: 11670
Test Date: 06/08/12

 Tested By:
 ad
 Report #:
 17

 Checked By:
 bfs
 Page:
 1 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seamling Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-055A
 Machine ID:
 W-14

 Seam ID:
 120/122
 Welder ID:
 VS

 Date Sampled:
 06/11/12

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	129		SE1	143		SE1	184	>50%	lower	
2	128	/	SE1	130	70%	ADBRK	181	>50%	lower	
3	127		SE1	147		SE1	183	>50%	lower	
4	123		SE1	115	100%	AD	179	>50%	lower	
5	122	***	SE1	105	100%	AD	184	>50%	lower	
Average	126			128	***		182	(***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test haited for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: 11670 GTX #: Test Date: 06/15/12 Report #: 19 Tested By: ad 1 of 1 bfs Page: Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: 1 in x 8 in Specimen Size: Sample ID: W-14 DS-6-055B1 Machine ID: Welder ID: VS Seam ID: 122/124 06/14/12 Date Sampled:

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	134	1224	SE1	139		SE1	167	>50%	Both
2	133	-	SE1	144		SE1	164	>50%	Both
3	142	***	SE1	157		SE1	166	>50%	Both
4	138		SE1	152	4.0	SE1	165	>50%	Both
5	155	707	SE1	157	175	SE1	164	>50%	Both
Average	140			150		1220	165	Arr.	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY
Installer: --GTX #: 11670
Test Date: 06/08/12
Tested By: ad Report #: 17

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

bfs

Checked By:

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-055B
 Machine ID:
 W-14

 Seam ID:
 120/122
 Welder ID:
 VS

 Date Sampled:
 06/11/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	142	100%	AD	142		SE1	187	>50%	lower	
2	152	***	SE1	134	90%	ADBRK	185	>50%	lower	
3	137	(***)	SE1	123	90%	ADBRK	187	>50%	lower	
4	132		SE1	122	100%	AD	181	>50%	lower	
5	131		SE1	136	***	SE1	185	>50%	lower	
Average	139		444	131	244	***	185			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material

2 of 10

Page:

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY ---

Installer: GTX #: 11670 Test Date: 06/08/12

Tested By: ad Report #: 17 3 of 10 Page: Checked By: bfs

Machine ID:

W-11

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE **Testing Machine:** Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE ATS pneumatic Dual Hot Wedge Weld Seaming Method: Grips: 1 in x 8 in

Specimen Size:

DS-6-056

Sample ID: Welder ID: TS Seam ID: 123/125 Date Sampled: 06/08/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	126	***	SE1	131		SE1	190	>50%	both	
2	123		SE1	132		SE1	187	>50%	both	
3	123		SE1	136		SE1	190	>50%	both	
4	133		SE1	140		SE1	185	>50%	both	
5	125		SE1	129	144	SE1	191	>50%	both	
Average	126	2		134			189			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY

Installer:

GTX #: 11670 Test Date: 06/08/12

 Tested By:
 ad
 Report #: 17

 Checked By:
 bfs
 Page: 4 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-057
 Machine ID:
 W-10

 Seam ID:
 125/128
 Welder ID:
 KC

 Date Sampled:
 06/08/12

			Peel St	rength							
		Weld A			Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	138	***	SE1	126		SE1	185	>50%	both		
2	147	***	SE1	126		SE1	183	>50%	both		
3	156		SE1	136	***	SE1	185	>50%	both		
4	133	***	SE1	140	***	SE1	180	>50%	both		
5	125		SE1	131	***	SE1	183	>50%	both		
Average	140		:	132		489	183				

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY Installer: ---

GTX #: 11670 06/08/12 Test Date:

Tested By: ad Report #: 17 5 of 10 Page: Checked By: bfs

W-14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE ATS pneumatic Dual Hot Wedge Weld Seaming Method: Grips: 1 in x 8 in

Specimen Size:

Sample ID: DS-6-058 Machine ID: VS Seam ID: 128/130 Welder ID: 06/08/12 Date Sampled:

Peel Strength Shear Strength Weld A Weld B Rupture Failure Seam **Failure** Seam Elongation, Specimen lb./in lb./in lb./in Separation, % Separation, % Type Mode Type Number both SE1 189 >50% SE1 145 132 both SE1 134 SE1 192 >50% 133 2 both SE1 197 >50% SE₁ 144 3 133 SE1 149 SE1 192 >50% both 130 195 >50% both 5 128 SE1 154 SE₁ 193 145 131 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II

Project Location: Camillus, NY
Installer: ---

GTX #: 11670 Test Date: 06/08/12

 Tested By:
 ad
 Report #: 17

 Checked By:
 bfs
 Page: 6 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-059
 Machine ID:
 W-5

 Seam ID:
 131/133
 Welder ID:
 AS

 Date Sampled:
 06/08/12

Peel Strength Shear Strength Weld A Weld B **Failure** Rupture Seam **Failure** Seam Elongation, Specimen lb./in lb./in lb./in Separation, % Separation, % Type Mode Type Number SE1 SE1 178 >50% 138 upper 1 127 125 SE1 141 SE1 175 >50% upper 2 SE1 141 SE1 177 >50% upper 3 130 SE1 133 SE1 174 >50% upper 4 126 5 121 SE1 126 SE1 180 >50% both 177 126 136 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/08/12 Tested By: ad Report #: Checked By: bfs Page: 7 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-060
 Machine ID:
 W-14

 Seam ID:
 133/135
 Welder ID:
 VS

 Date Sampled:
 06/08/12

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	144		SE1	141		SE1	187	>50%	upper	
2	141		SE1	137		SE1	184	>50%	иррег	
3	151	770	SE1	143	~ ~ ~	SE1	186	>50%	иррег	
4	143		SE1	145		SE1	184	>50%	upper	
5	148		SE1	139		SE1	189	>50%	upper	
Average	145			141		~-~	186			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/08/12 Tested By: ad Report #: Checked By: bfs Page: 8 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-061
 Machine ID:
 W-11

 Seam ID:
 130/132
 Welder ID:
 TS

 Date Sampled:
 06/08/12

			Peel St	Strength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	125		SE1	145		SE1	189	>50%	both	
2	123	***	SE1	147	***	SE1	188	>50%	both	
3	147	# # 4h	SE1	153	en en en	SE1	190	>50%	both	
4	130		SE1	145		SE1	186	>50%	both	
5	135		SE1	144		SE1	188	>50%	both	
Average	132			147		ana diser ala	188			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/08/12 Tested By: Report #: 17 Checked By: bfs Page: 9 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-062
 Machine ID:
 W-10

 Seam ID:
 132/134
 Welder ID:
 KC

 Date Sampled:
 06/08/12

			Peel St	itrength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	133		SE1	129		SE1	185	>50%	lower
2	135		SE1	129		SE1	186	>50%	lower
3	130		SE1	133		SE1	185	>50%	lower
4	131	~ · · ·	SE1	131		SE1	177	>50%	lower
5	132	~ ***	SE1	125		SE1	179	>50%	lower
Average	13 2			129			182		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/08/12 Tested By: ad Report #: 17 Checked By: Page: 10 of 10

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS-6-063
 Machine ID:
 W-11

 Seam ID:
 128/PHASE 1
 Welder ID:
 TS

 Date Sampled:
 06/08/12

l			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	145		SE1	145	**-	SE1	168	>50%	upper
2	141	***	SE1	143		SE1	164	>50%	upper
3	140	40 140 26	SE1	142	AP 40° 64	SE1	171	>50%	upper
4	143	and the last	SE1	148	~~~	SE1	167	>50%	upper
5	149		SE1	150		SE1	174	>50%	upper
Average	144			146			169		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Report #: 20 Tested By: meo Checked By: bfs Page: 1 of 12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-064
 Machine ID:
 W-11

 Seam ID:
 134/137
 Welder ID:
 TS

Welder ID: TS
Date Sampled: 06/14/12

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	141		SE1	145	1.442	SE1	181	>50%	lower	
2	124	***	SE1	130		SE1	175	>50%	lower	
3	138	600	SE1	136		SE1	172	>50%	lower	
4	126		SE1	144	***	SE1	177	>50%	lower	
5	129	***	SE1	118	-112	SE1	177	>50%	lower	
Average	132			134	/		176	***	-	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Tested By: meo Report #: Checked By: bfs Page: 2 of 12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Lower Geomembrane: Testing Speed: 2 in/min Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Sample ID: DS 6-065 Machine ID: W-10 Seam ID: 137/139 Welder ID: KC 06/14/12 Date Sampled:

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	134	4	SE1	137	(eee)	SE1	186	>50%	lower	
2	123	/***	SE1	129	144	SE1	185	>50%	lower	
3	126	349	SE1	128		SE1	174	>50%	lower	
4	124	***	SE1	128	***	SE1	176	>50%	lower	
5	127	/202	SE1	135	74	SE1	183	>50%	lower	
Average	127		120	132	***	(202)	181		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Tested By: meo Report #: 3 of 12 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Lower Geomembrane: Testing Speed: 2 in/min Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Sample ID: DS 6-066 Machine ID: W-11 Welder ID: TS Seam ID: 139/142 06/14/12 Date Sampled:

			Peel St	rength						
		Weld A			Weld B		Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	126		SE1	131		SE1	182	>50%	lower	
2	121		SE1	134		SE1	181	>50%	lower	
3	118		SE1	125	***	SE1	173	>50%	lower	
4	122		SE1	129		SE1	174	>50%	lower	
5	126		SE1	130		SE1	179	>50%	lower	
Average	123	224		130	444		178	300	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Report #: Tested By: meo Page: 4 of 12 Checked By: bfs

Date Sampled:

06/14/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in DS 6-067 Machine ID: W-5 Sample ID: Welder ID: AS Seam ID: 142/143

Peel Strength Shear Strength Weld A Weld B Seam Failure Seam Failure Elongation, Rupture Specimen lb./in lb./in lb./in Separation, % Mode Separation, % Type Type Number SE1 189 >50% upper 156 SE1 137 SE1 121 SE1 190 >50% upper 2 SE1 125 SE1 185 >50% upper 138 3 SE1 139 SE1 188 >50% upper 4 121 5 124 SE1 139 SE1 195 >50% upper 189 137 132 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Tested By: Report #: meo Checked By: bfs Page: 5 of 12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in DS 6-068 Machine ID: W-28 Sample ID:

Sample ID: DS 6-068 Machine ID: W-26

Seam ID: 143/146 Welder ID: VC

Date Sampled: 06/14/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	132		SE1	127	***	SE1	185	>50%	both	
2	126		SE1	129		SE1	181	>50%	both	
3	122	***	SE1	141	444	SE1	175	>50%	both	
4	127		SE1	133		SE1	177	>50%	both	
5	129	***	SE1	127	499	SE1	180	>50%	both	
Average	127	***	.222	131	***		180		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Report #: Tested By: meo 6 of 12 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Machine ID: W-28 DS 6-069 Sample ID: VC Welder ID: Seam ID: 146/148 06/14/12 Date Sampled:

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	119	14941	SE1	142	1 ***	SE1	192	>50%	upper
2	124	***	SE1	142	(44)	SE1	189	>50%	upper
3	123		SE1	144		SE1	186	>50%	upper
4	146	-	SE1	140		SE1	193	>50%	upper
5	125	9	SE1	144		SE1	196	>50%	upper
Average	127			142	/ave		191	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Report #: Tested By: meo Checked By: Page: 7 of 12 bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: 1 in x 8 in Specimen Size: Sample ID: DS 6-070 Machine ID: W-5 Welder ID: AS

 Sample ID:
 DS 6-070
 Machine ID:
 W-5

 Seam ID:
 148/150
 Welder ID:
 AS

 Date Sampled:
 06/14/12

	Weld A				Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	135	(955)	SE1	133		SE1	182	>50%	lower	
2	137	***	SE1	121		SE1	176	>50%	lower	
3	121		SE1	139	***	SE1	174	>50%	lower	
4	153		SE1	145	***	SE1	175	>50%	lower	
5	142	-	SE1	145	***	SE1	179	>50%	lower	
Average	138	200		137		***	177	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Tested By: Report #: 20 meo Page: 8 of 12 Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Machine ID: W-28

 Sample ID:
 DS 6-071
 Machine ID:
 W-28

 Seam ID:
 135/137
 Welder ID:
 VC

 Date Sampled:
 06/14/12

	Weld A				Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	122	:202	SE1	130		SE1	169	>50%	lower
2	107	***	SE1	120	***	SE1	166	>50%	lower
3	118	14-4	SE1	131		SE1	162	>50%	lower
4	111	***	SE1	123	-	SE1	163	>50%	lower
5	109	400	SE1	122	,ene	SE1	163	>50%	lower
Average	113	444		125		240	165		177

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: 11670 GTX #: 06/27/12 Test Date: Report #: 23 Tested By: meo Checked By: Page: 2 of 13 bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Upper Geomembrane: Testing Speed: 2 in/min 60 mil AGRU microspike HDPE Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in W-28 Machine ID: Sample ID: DS 6-072A 1 VC Seam ID: 153/155 Welder ID: Date Sampled: 06/26/12

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	115		SE1	146	***	SE1	176	>50%	upper
2	125		SE1	150		SE1	177	>50%	upper
3	119	***	SE1	156		SE1	181	>50%	upper
4	119		SE1	156		SE1	172	>50%	upper
5	119		SE1	152	250	SE1	183	>50%	upper
Average	119	100		152			178	***	7

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: Tested By: meo 1 of 4 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Upper Geomembrane: 2 in/min Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Machine ID: W-28

 Sample ID:
 DS 6-072A
 Machine ID:
 W-28

 Seam ID:
 146/PHASE I
 Welder ID:
 VC

 Date Sampled:
 06/20/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	143	***	SE1	147	***	SE1	152	>50%	upper	
2	128	***	SE1	146	***	SE1	152	>50%	upper	
3	131	***	SE1	148	1204	SE1	155	>50%	upper	
4	132	***	SE1	125	30%	ADBRK	154	>50%	upper	
5	144		SE1	152	***	SE1	155	>50%	upper	
Average	136	924		144	444		154			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Tested By: Report #: 23 meo 3 of 13 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 60 mil AGRU microspike HDPE Upper Geomembrane: Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in Sample ID: DS 6-072B Machine ID: W-28 Seam ID: 152/153 Welder ID: VC 06/26/12 Date Sampled:

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	127		SE1	146		SE1	165	>50%	lower	
2	115		SE1	132		SE1	166	>50%	upper	
3	122	1.00	SE1	151	994	SE1	166	>50%	both	
4	131		SE1	137		SE1	162	>50%	lower	
5	121	***	SE1	136	***	SE1	165	>50%	upper	
Average	123	***		140	-		165	-4-	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 06/28/12 Test Date: Tested By: Report #: meo Page: 1 of 5 Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Fillet Extrustion Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-072C
 Machine ID:
 MX-12

 Seam ID:
 148/CAP
 Welder ID:
 BTK

 Date Sampled:
 06/27/12

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	137		SE1		***		182	>50%	lower	
2	136		SE1	100			178	>50%	upper	
3	152	***	SE1		***		182	>50%	lower	
4	132		SE1	***			178	>50%	lower	
5	137		SE1		444		170	>50%	lower	
Average	139	202)	.400	***		***	178	444		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Camillus, NY Project Location: Installer: GTX #: 11670 Test Date: 06/18/12 20 Tested By: meo Report #: 9 of 12 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Machine ID: W-28 Sample ID: DS 6-072 VC Welder ID: Seam ID: 144/PHASE I 06/14/12 Date Sampled:

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	138	1000	SE1	156		SE1	170	>50%	upper
2	100	70%	ADBRK	147		SE1	167	>50%	upper
3	126	444	SE1	157	***	SE1	162	>50%	upper
4	136	3	SE1	157		SE1	164	>50%	upper
5	140		SE1	153	444	SE1	166	>50%	upper
Average	128			154			166	***	•••

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY

Installer:

GTX #: 11670 Test Date: 06/21/12

Report #: 21 Tested By: meo 2 of 4 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine; Instron 1123 Upper Geomembrane: 2 in/min Testing Speed: 60 mil AGRU microspike HDPE Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: 1 in x 8 in

Specimen Size:

Machine ID: W-5 Sample ID; DS 6-073A Welder ID: AS Seam ID: 148/150

06/20/12 Date Sampled:

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	147	***	SE1	123	***	SE1	172	>50%	lower	
2	134		SE1	129		SE1	172	>50%	lower	
3	122		SE1	137		SE1	173	>50%	lower	
4	126		SE1	135	744	SE1	171	>50%	lower	
5	145	-	SE1	134	***	SE1	174	>50%	lower	
Average	135	444	***	132	***		172			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science
Project Name: Onondaga SCA Phase I & II
Project Location: Camillus, NY

Installer:

GTX #: 11670 Test Date: 06/21/12

 Tested By:
 meo
 Report #: 21

 Checked By:
 bfs
 Page: 3 of 4

W-5

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

Sample ID: DS 6-073B Machine ID:

Seam ID: 149/150 Welder ID: AS

Date Sampled: 06/20/12

Peel Strength Shear Strength Weld B Weld A Seam Failure Seam Failure Elongation, Rupture Specimen lb./in lb./in lb./in Mode Separation, % Separation, % Type Type Number >50% lower SE1 155 SE1 160 140 lower SE1 150 SF1 159 >50% 2 146 SE1 161 >50% lower SE1 155 3 151 SE1 155 >50% lower 145 SE1 153 4 SE1 132 SE1 157 >50% lower 5 153 ---158 147 149 Average

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Tested By: Report #: meo 10 of 12 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in

DS 6-073 Machine ID: W-5 Sample ID: Welder ID: AS Seam ID: 49/50

Date Sampled: 06/14/12

			Peel St	rength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	133	***	SE1	156	1.20	SE1	163	>50%	upper
2	135	10%	ADBRK	153	***	SE1	161	>50%	upper
3	131	***	SE1	152	***	SE1	160	>50%	upper
4	150	o ≘i o	SE1	159		SE1	168	>50%	upper
5	136	15%	ADBRK	150		SE1	168	>50%	lower
Average	137	pos		154	***	***	164		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	(***)		
GTX #:	11670		
Test Date:	06/18/12		
Tested By:	meo	Report #:	20
Checked By:	bfs	Page:	11 of 12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-11 DS 6-074 Sample ID; TS Welder ID: Seam ID: 149/151 06/14/12 Date Sampled:

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	126		SE1	133	***	SE1	187	>50%	lower
2	127	***	SE1	131	***	SE1	184	>50%	lower
3	120		SE1	122	***	SE1	179	>50%	lower
4	121		SE1	126	•	SE1	183	>50%	lower
5	132	***	SE1	122	200	SE1	187	>50%	lower
Average	125	(444)		127	222		184	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/18/12 Tested By: Report #: 20 meo Checked By: bfs Page: 12 of 12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-075
 Machine ID:
 W-10

 Seam ID:
 149/153
 Welder ID:
 KC

 Date Sampled:
 06/14/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	126	242	SE1	116	***	SE1	181	>50%	upper	
2	120		SE1	145	***	SE1	180	>50%	upper	
3	129	100	SE1	149	***	SE1	177	>50%	lower	
4	132	***	SE1	158		SE1	180	>50%	lower	
5	128		SE1	151		SE1	181	>50%	lower	
Average	127			144	***		180	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: 1 of 11 Page: Checked By:

Date Sampled:

06/20/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-11 Sample ID: DS 6-076 Seam ID: 151/154 Welder ID: TS

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	132	-	SE1	138	***	SE1	182	>50%	lower	
2	140		SE1	140		SE1	179	>50%	lower	
3	133		SE1	146		SE1	181	>50%	lower	
4	131		SE1	136		SE1	177	>50%	lower	
5	145	444	SE1	129		SE1	180	>50%	lower	
Average	136			138	***	***	180	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: meo Page: 2 of 11 Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: W-10 Sample ID: DS 6-077 Machine ID:

 Sample ID:
 DS 6-077
 Machine ID:
 W-10

 Seam ID:
 154/157
 Welder ID:
 KC

 Date Sampled:
 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	119	244	SE1	137	***	SE1	158	>50%	upper	
2	114	4-4	SE1	143		SE1	160	>50%	upper	
3	114	+90	SE1	129		SE1	164	>50%	upper	
4	111	/464	SE1	148	***	SE1	162	>50%	upper	
5	109	-223	SE1	136	***	SE1	165	>50%	upper	
Average	113	***		139			162	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 06/21/12 Test Date: Report #: 22 Tested By: meo Page: 3 of 11 Checked By:

Date Sampled:

06/20/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: W-11 Sample ID: DS 6-078 Machine ID: Welder ID: TS Seam ID: 157/159

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	132		SE1	131		SE1	171	>50%	lower	
2	130		SE1	132	***	SE1	173	>50%	lower	
3	133	585	SE1	127		SE1	173	>50%	lower	
4	124	272	SE1	131	***	SE1	168	>50%	lower	
5	125	-	SE1	129	. Free	SE1	169	>50%	lower	
Average	129	***	***	130	4		171	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Onondaga SCA Phase I & II Project Name: Camillus, NY Project Location: Installer: 11670 GTX #: Test Date: 06/21/12 Report #: 22 Tested By: meo Page: 4 of 11 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

Sample ID: DS 6-079

Machine ID: W-10

 Sample ID:
 DS 6-079
 Machine ID:
 W-10

 Seam ID:
 159/162
 Welder ID:
 KC

 Date Sampled:
 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	119		SE1	119	715	SE1	174	>50%	lower	
2	118		SE1	117		SE1	177	>50%	upper	
3	117		SE1	121	-222	SE1	177	>50%	upper	
4	145		SE1	149	***	SE1	177	>50%	upper	
5	116	***	SE1	148	***	SE1	175	>50%	lower	
Average	123	***		131	***		176	1444	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: Tested By: meo 5 of 11 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Upper Geomembrane: Testing Speed: 2 in/min 60 mil AGRU microspike HDPE Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in DS 6-080 Machine ID: W-11

 Sample ID:
 DS 6-080
 Machine ID:
 W-11

 Seam ID:
 162/163
 Welder ID:
 TS

 Date Sampled:
 06/20/12

		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	137	***	SE1	141	***	SE1	180	>50%	lower
2	121		SE1	121	***	SE1	178	>50%	lower
3	141		SE1	116		SE1	180	>50%	lower
4	122		SE1	117	***	SE1	174	>50%	lower
5	131		SE1	126	***	SE1	177	>50%	lower
Average	130	3.4		124	-	***	178	-24	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: Page: 6 of 11 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-081
 Machine ID:
 W-28

 Seam ID:
 163/167
 Welder ID:
 VC

 Date Sampled:
 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	116		SE1	144	***	SE1	169	>50%	upper	
2	114		SE1	127	***	SE1	165	>50%	upper	
3	118		SE1	129	422	SE1	166	>50%	upper	
4	112		SE1	123	***	SE1	164	>50%	upper	
5	138	422	SE1	115	***	SE1	167	>50%	upper	
Average	120		***	128	***	***	166	1777	4	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: Tested By: 22 meo Page: 7 of 11 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-082
 Machine ID:
 W-28

 Seam ID:
 167/169
 Welder ID:
 VC

 Date Sampled:
 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	117	1444	SE1	121	***	SE1	166	>50%	lower	
2	115		SE1	117		SE1	162	>50%	lower	
3	128	***	SE1	121	***	SE1	164	>50%	lower	
4	129	***	SE1	118	***	SE1	161	>50%	lower	
5	122	***	SE1	125		SE1	165	>50%	lower	
Average	122		400	120	***	***	164	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: meo Page: 8 of 11 Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: W-28 Machine ID:

 Sample ID:
 DS 6-083
 Machine ID:
 W-28

 Seam ID:
 169/171
 Welder ID:
 VC

 Date Sampled:
 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	112		SE1	144	***	SE1	179	>50%	upper	
2	112	لين	SE1	141		SE1	174	>50%	upper	
3	100		SE1	147	. 222	SE1	179	>50%	upper	
4	108		SE1	142	***	SE1	174	>50%	upper	
5	114	***	SE1	144	***	SE1	176	>50%	upper	
Average	109	577		144	***		176		1494	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Camillus, NY Project Location: Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: meo 9 of 11 Page: Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE
Lower Geomembrane: 60 mil AGRU microspike HDPE
Testing Machine: Instron 1123
2 in/min
Seaming Method: Dual Hot Wedge Weld
Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-084
 Machine ID:
 W-10

 Seam ID:
 171/173
 Welder ID:
 KC

 Date Sampled:
 06/20/12

*			Peel St	rength					
		Weld A			Weld B		Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	125	***	SE1	120	***	SE1	171	>50%	lower
2	128	***	SE1	120	200	SE1	168	>50%	lower
3	136		SE1	121	***	SE1	174	>50%	lower
4	120	3-2	SE1	125	-2-	SE1	167	>50%	lower
5	127		SE1	136		SE1	169	>50%	lower
Average	127	i i i		124			170		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: meo 10 of 11 Checked By: bfs Page:

Date Sampled:

06/20/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Upper Geomembrane: Testing Speed: 2 in/min 60 mil AGRU microspike HDPE Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-10 Sample ID: DS 6-085 KC Welder ID: Seam ID: 173/174

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	146	1777	SE1	136	***	SE1	167	>50%	lower	
2	143		SE1	153	***	SE1	166	>50%	lower	
3	138		SE1	150	***	SE1	157	>50%	lower	
4	135	(***)	SE1	152	222	SE1	159	>50%	lower	
5	134		SE1	151	245	SE1	159	>50%	lower	
Average	139	- 222		148	***	4(4+)	162	24.	444	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/21/12 Report #: 22 Tested By: 11 of 11 Page: Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-11

 Sample ID:
 DS 6-086
 Machine ID:
 W-11

 Seam ID:
 171/174
 Welder ID:
 TS

 Date Sampled:
 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	145	***	SE1	135	***	SE1	171	>50%	lower	
2	130	4	SE1	120	***	SE1	173	>50%	lower	
3	136	***	SE1	124	***	SE1	171	>50%	lower	
4	129		SE1	149	•••	SE1	167	>50%	lower	
5	127	344	SE1	133	222	SE1	171	>50%	lower	
Average	133	447	1222	132	***	***	171	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY

Installer: GTX #: 11670

Test Date:

06/21/12 Tested By: Report #: 21 meo 4 of 4 Checked By: Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Upper Geomembrane: Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in

Machine ID: W-28 Sample ID: DS 6-087 Seam ID: 153/155 Welder ID: VC

Date Sampled: 06/20/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	124		SE1	150	***	SE1	177	>50%	upper	
2	130		SE1	142		SE1	173	>50%	upper	
3	130	***	SE1	149	246	SE1	176	>50%	upper	
4	125	***	SE1	150		SE1	172	>50%	upper	
5	126	444	SE1	147	***	SE1	177	>50%	upper	
Average	127		***	148	***		175	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Parsons Engineering Science Client: Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/29/12 Report #: Tested By: meo bfs Page: Checked By:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: Machine ID: W-28 DS 6-088A1

 Sample ID:
 DS 6-088A1
 Machine ID:
 W-28

 Seam ID:
 169/PHASE I
 Welder ID:
 VC

 Date Sampled:
 06/28/12

	Weld A				Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	153	242	SE1	154		SE1	171	>50%	upper	
2	149		SE1	154		SE1	168	>50%	upper	
3	154		SE1	163		SE1	173	>50%	upper	
4	162	14	SE1	161		SE1	168	>50%	upper	
5	153		SE1	159	***	SE1	169	>50%	upper	
Average	154	444	***	158	•••		170	1444		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: 11670 GTX #: Test Date: 06/27/12 Report #: 23 Tested By: meo Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Upper Geomembrane: Testing Speed: 2 in/min 60 mil AGRU microspike HDPE Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in W-28 Sample ID: DS 6-088A Machine ID: Seam ID: 167/PHASE I Welder ID: VC Date Sampled: 06/26/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	131	80%	ADBRK	147		SE1	178	>50%	upper	
2	159		SE1	154		SE1	179	>50%	upper	
3	151		SE1	161		SE1	175	>50%	lower	
4	155		SE1	151	144	SE1	178	>50%	upper	
5	150	***	SE1	156	***	SE1	178	>50%	upper	
Average	149	-		154	1997	***	178	-4-		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Report #: 23 Tested By: meo 5 of 13 Checked By: Page:

Date Sampled:

06/26/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 60 mil AGRU microspike HDPE Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: Specimen Size: 1 in x 8 in W-28 Machine ID: Sample ID: DS 6-088B VC Seam ID: 160/PHASE Welder ID:

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	147	444	SE1	154	***	SE1	169	>50%	upper	
2	148	***	SE1	147	***	SE1	168	>50%	upper	
3	142	(***)	SE1	154	-225	SE1	169	>50%	upper	
4	159		SE1	154	,,	SE1	167	>50%	upper	
5	138		SE1	150	***	SE1	171	>50%	upper	
Average	147	(***		152		***	169	7	24	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:			
GTX #:	11670		
Test Date:	06/26/12		
Tested By:	meo	Report #:	23
Checked By:	bfs	Page:	1 of 14

Date Sampled:

06/21/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Upper Geomembrane: Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min ATS pneumatic Dual Hot Wedge Weld Grips: Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-11 Sample ID: DS 6-089 TS Seam ID: 174/175 Welder ID:

		Weld A			Weld B			Shear Strength		
Specimen Number	lb./In	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	122		SE1	138	***	SE1	170	>50%	upper	
2	119	-	SE1	143		SE1	185	>50%	upper	
3	122		SE1	141	***	SE1	181	>50%	upper	
4	124	1444	SE1	136	***	SE1	183	>50%	upper	
5	117		SE1	127	***	SE1	186	>50%	upper	
Average	121	(deep)		137		***	181	4**	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo 2 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-090
 Machine ID:
 W-10

 Seam ID:
 176/178
 Welder ID:
 KC

 Date Sampled:
 06/22/12

			Peel Strength							
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	134	562	SE1	122	***	SE1	182	>50%	upper	
2	128	***	SE1	122		SE1	185	>50%	upper	
3	137		SE1	122		SE1	177	>50%	upper	
4	130	***	SE1	126		SE1	184	>50%	upper	
5	134		SE1	126	1000	SE1	188	>50%	upper	
Average	133	444		124	***		183	444	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: Tested By: meo 3 of 14 Page: Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-091
 Machine ID:
 W-11

 Seam ID:
 178/181
 Welder ID:
 TS

 Date Sampled:
 06/22/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	128		SE1	129		SE1	192	>50%	upper	
2	124		SE1	131	***	SE1	188	>50%	upper	
3	123		SE1	133	402	SE1	183	>50%	upper	
4	125	(***	SE1	126	نيد	SE1	187	>50%	upper	
5	138	***	SE1	132	***	SE1	192	>50%	upper	
Average	128			130	***	-	188			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo Checked By: bfs Page: 4 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123
Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min
Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic
Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-092
 Machine ID:
 W-10

 Seam ID:
 181/183
 Welder ID:
 KC

 Date Sampled:
 06/22/12

			Peel St	rength						
		Weld A			Weld B			Shear Strengt Ib./in Elongation, % 182 >50% 179 >50% 176 >50% 176 >50% 181 >50%		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in		Rupture Mode	
1	129		SE1	140		SE1	182	>50%	lower	
2	140		SE1	139		SE1	179	>50%	lower	
3	132		SE1	138		SE1	176	>50%	lower	
4	134	(100)	SE1	142	***	SE1	176	>50%	lower	
5	147	***	SE1	134	***	SE1	181	>50%	lower	
Average	136	(544)		139	***		179	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo 5 of 14 Checked By: Page: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: 1 in x 8 in Specimen Size: Machine ID: W-5 Sample ID: DS 6-093 BTK Welder ID: Seam ID: 183/185 06/22/12 Date Sampled:

			Peel St	rength						
		Weld A		Weld B				th		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	129		SE1	121	***	SE1	188	>50%	lower	
2	124		SE1	124		SE1	189	>50%	upper	
3	126	***	SE1	127	***	SE1	181	>50%	lower	
4	118		SE1	113	***	SE1	183	>50%	lower	
5	130	-	SE1	120		SE1	187	>50%	lower	
Average	125			121			186	444	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: 11670 GTX #: Test Date: 06/26/12 Report #: Tested By: meo 6 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-094
 Machine ID:
 W-28

 Seam ID:
 185/187
 Welder ID:
 VC

 Date Sampled:
 06/22/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	129	***	SE1	141	***	SE1	196	>50%	lower
2	125	***	SE1	141	***	SE1	191	>50%	upper
3	122		SE1	134		SE1	188	>50%	lower
4	100	***	SE1	144	lane.	SE1	188	>50%	lower
5	106		SE1	140	900	SE1	192	>50%	lower
Average	116	***	***	140			191		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	(848)		
GTX #:	11670		
Test Date:	06/26/12		
Tested By:	meo	Report #:	23
Checked By:	bfs	Page:	7 of 14

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: 2 in/min 60 mil AGRU microspike HDPE Testing Speed: Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in W-28 Machine ID: Sample ID: DS 6-095 VC Welder ID: Seam ID: 187/189 06/22/12 Date Sampled:

			Peel St	rength							
Specimen Number		Weld A			Weld B			Shear Streng	th		
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	106	144	SE1	145	***	SE1	190	>50%	lower		
2	116		SE1	134		SE1	186	>50%	lower		
3	113	(****)	SE1	138	***	SE1	184	>50%	lower		
4	112		SE1	149	***	SE1	184	>50%	lower		
5	107	Seesal?	SE1	137	***	SE1	190	>50%	lower		
Average	111	***		141	***		187		***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo 8 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in Machine ID: W-5 DS 6-096 Sample ID: Welder ID: BTK Seam ID: 173/176 Date Sampled: 06/22/12

			Peel St	rength						
Specimen Number		Weld A			Weld B			Shear Streng	th	
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	134	***	SE1	134		SE1	184	>50%	upper	
2	150	***	SE1	136	***	SE1	185	>50%	upper	
3	153		SE1	144	***	SE1	179	>50%	upper	
4	138	***	SE1	135		SE1	181	>50%	upper	
5	158	***	SE1	142	-	SE1	186	>50%	upper	
Average	147	***		138			183			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Camillus, NY Project Location: Installer: GTX #: 11670 06/29/12 Test Date: Report #: Tested By: meo Page: 2 of 4 Checked By: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane:60 mil AGRU microspike HDPETesting Machine:Instron 1123Lower Geomembrane:60 mil AGRU microspike HDPETesting Speed:2 in/minSeaming Method:Dual Hot Wedge WeldGrips:ATS pneumaticSpecimen Size:1 in x 8 in

 Sample ID:
 DS 6-097A
 Machine ID:
 W-5

 Seam ID:
 220/222
 Welder ID:
 BTK

 Date Sampled:
 06/28/12

			Peel St	rength						
		Weld A		Weld B				th		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	128	563	SE1	120		SE1	194	>50%	lower	
2	118		SE1	138	***	SE1	190	>50%	upper	
3	118	2	SE1	118		SE1	193	>50%	lower	
4	137		SE1	126	244	SE1	189	>50%	lower	
5	143	-	SE1	139	444	SE1	193	>50%	lower	
Average	129			128	1000		192	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	220		
GTX #:	11670		
Test Date:	06/29/12		
Tested By:	meo	Report #:	23
Checked By:	bfs	Page:	3 of 4

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Upper Geomembrane: Instron 1123 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: 1 in x 8 in Specimen Size: DS 6-097B Machine ID: W-5 Sample ID: Welder ID: BTK Seam ID: 183/185 Date Sampled: 06/28/12

			Peel St	rength							
		Weld A		Weld B				Shear Streng	th		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode		
1	136	(222)	SE1	130	***	SE1	187	>50%	upper		
2	113		SE1	135	1-2-2	SE1	182	>50%	upper		
3	137	***	SE1	128	443	SE1	186	>50%	upper		
4	141		SE1	128		SE1	185	>50%	upper		
5	129	· ***	SE1	135	224	SE1	188	>50%	lower		
Average	131		222	131	102		186	***	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 07/03/12 Report #: 23 Tested By: 1 of 2

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: Lower Geomembrane:

60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE

Checked By:

Testing Machine: Testing Speed: Grips:

2 in/min ATS pneumatic

Instron 1123

Seaming Method:

Fillet Extrusion Weld

Specimen Size:

1 in x 8 in

Page:

Sample ID:

DS 6-097C

Machine ID: MX12 Seam ID: 187/CAP Welder ID: **BTK** Date Sampled: 07/02/12

			Peel St	rength								
		Weld A		Weld B				Shear Streng	Elongation, Rupture			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode			
1	158	***	SE3			***	178	>50%	upper			
2	151		SE3		4		175	>50%	upper			
3	128		SE3		***		177	>50%	upper			
4	154		SE3				171	>50%	upper			
5	151		SE3				178	>50%	upper			
Average	148	W					176		•••			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo 9 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

 Upper Geomembrane:
 60 mil AGRU microspike HDPE
 Testing Machine:
 Instron 1123

 Lower Geomembrane:
 60 mil AGRU microspike HDPE
 Testing Speed:
 2 in/min

 Seaming Method:
 Dual Hot Wedge Weld
 Grips:
 ATS pneumatic

 Specimen Size:
 1 in x 8 in

 Sample ID:
 DS 6-098
 Machine ID:
 W-10

 Seam ID:
 191/198
 Welder ID:
 KC

 Date Sampled:
 06/22/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength Ib./in Elongation, % 178 > 50% 178 > 50% 181 > 50%		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in		Rupture Mode	
1	146		SE1	164	***	SE1	178	>50%	lower	
2	130		SE1	137	449	SE1	178	>50%	lower	
3	137	(400)	SE1	136	***	SE1	181	>50%	lower	
4	103	***	SE1	132		SE1	167	>50%	lower	
5	138	***	SE1	143	535	SE1	167	>50%	lower	
Average	131	***		142		***	174	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo 10 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Testing Speed: 2 in/min 60 mil AGRU microspike HDPE Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in W-10 Machine ID: Sample ID: DS 6-099 KC Welder ID: Seam ID: 190/212 Date Sampled: 06/22/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	126	***	SE1	130		SE1	170	>50%	lower
2	121		SE1	121	446	SE1	176	>50%	lower
3	123		SE1	127		SE1	167	>50%	lower
4	125	***	SE1	129		SE1	167	>50%	lower
5	126		SE1	126	***	SE1	168	>50%	lower
Average	124	-44	444	127			170	***	***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Report #: 23 Tested By: meo 11 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in W-11 Machine ID: Sample ID: DS 6-0100 Welder ID: TS Seam ID: 215/216 06/22/12 Date Sampled:

Specimen Number	Peel Strength									
	Weld A			Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	141	***	SE1	133		SE1	187	>50%	lower	
2	128		SE1	137		SE1	183	>50%	lower	
3	122		SE1	126		SE1	177	>50%	lower	
4	140	-	SE1	127	i des	SE1	176	>50%	lower	
5	147		SE1	123	400	SE1	181	>50%	lower	
Average	136	(***)	444	129	5-1	***	181	-	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: 11670 GTX #: Test Date: 06/26/12 Tested By: Report #: 23 meo 12 of 14 Checked By: Page: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in W-11 DS 6-0101 Machine ID: Sample ID: Welder ID: TS Seam ID: 209/210 06/22/12 Date Sampled:

Specimen Number	Peel Strength									
	Weld A			Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	127		SE1	124	***	SE1	183	>50%	lower	
2	119		SE1	118	-	SE1	178	>50%	lower	
3	111	***	SE1	111		SE1	173	>50%	lower	
4	125		SE1	124		SE1	176	>50%	lower	
5	117		SE1	121		SE1	178	>50%	lower	
Average	120	44		120			178	1444		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: 11670 GTX #: Test Date: 06/26/12 Tested By: Report #: 23 meo 13 of 14 Checked By: Page: bfs

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Lower Geomembrane: Dual Hot Wedge Weld ATS pneumatic Grips: Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-28 DS 6-0102 Sample ID: VC Welder ID: Seam ID: 205/206 06/22/12 Date Sampled:

Specimen Number	Peel Strength									
	Weld A			Weld B			Shear Strength			
	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	123	++-1	SE1	121	***	SE1	177	>50%	upper	
2	121	202	SE1	118		SE1	176	>50%	upper	
3	115		SE1	125	+	SE1	172	>50%	upper	
4	118		SE1	139	***	SE1	177	>50%	upper	
5	117	1,500	SE1	120		SE1	179	>50%	upper	
Average	119			125			176	221		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/26/12 Tested By: Report #: 23 meo 14 of 14 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in W-28 DS 6-0103 Machine ID:

 Sample ID:
 DS 6-0103
 Machine ID:
 W-28

 Seam ID:
 199/200
 Welder ID:
 VC

 Date Sampled:
 06/22/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	141	***	SE1	147	***	SE1	181	>50%	upper	
2	134	1999	SE1	146		SE1	181	>50%	upper	
3	125		SE1	144	***	SE1	172	>50%	upper	
4	121	***	SE1	148		SE1	179	>50%	upper	
5	115	200	SE1	124		SE1	183	>50%	upper	
Average	127	444		142			179			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Onondaga SCA Phase I & II Project Name: Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Report #: 23 Tested By: meo 6 of 13 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Instron 1123 Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Testing Speed: 2 in/min Lower Geomembrane: 60 mil AGRU microspike HDPE Dual Hot Wedge Weld ATS pneumatic Seaming Method: Grips: Specimen Size: 1 in x 8 in W-9 Machine ID: Sample ID: DS 6-104 VS Welder ID: Seam ID: 108/111 06/26/12 Date Sampled:

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	135	***	SE1	122		SE1	187	>50%	lower	
2	140	-	SE1	129		SE1	183	>50%	lower	
3	130	June 1	SE1	132		SE1	187	>50%	lower	
4	130	(***	SE1	134		SE1	183	>50%	lower	
5	130	568	SE1	131	3.00	SE1	185	>50%	lower	
Average	133		***	130	***	***	185	- Table		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Report #: 23 Tested By: meo Checked By: bfs Page: 7 of 13

Date Sampled:

06/26/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Grips: ATS pneumatic Seaming Method: Specimen Size: 1 in x 8 in Machine ID: W-11 Sample ID: DS 6-105 TS Seam ID: 111/113 Welder ID:

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	143	-44	SE1	142	***	SE1	197	>50%	lower	
2	138		SE1	140	***	SE1	198	>50%	lower	
3	141	***	SE1	146		SE1	197	>50%	lower	
4	139		SE1	142		SE1	191	>50%	lower	
5	138	***	SE1	136	***	SE1	194	>50%	lower	
Average	140		***	141		***	195	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Tested By: Report #: 23 meo Checked By: bfs Page: 8 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Machine ID: W-5 Sample ID: DS 6-106 Seam ID: Welder ID: AS 114/116 Date Sampled: 06/26/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	130	***	SE1	137		SE1	185	>50%	upper	
2	134		SE1	127	,202	SE1	184	>50%	upper	
3	137	(222)	SE1	131		SE1	187	>50%	upper	
4	124		SE1	140		SE1	184	>50%	upper	
5	135	***	SE1	141		SE1	187	>50%	upper	
Average	132		464	135			185			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Tested By: meo Report #: 23 Checked By: bfs 9 of 13 Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-107 W-10 Machine ID: Seam ID: 120/121 Welder ID: KC Date Sampled: 06/26/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	149		SE1	163	***	SE1	182	>50%	lower	
2	136	***	SE1	146	7	SE1	184	>50%	upper	
3	146		SE1	158		SE1	179	>50%	lower	
4	141	-	SE1	163	***	SE1	179	>50%	lower	
5	145	- 100	SE1	138	***	SE1	180	>50%	lower	
Average	143		-	154			181		44	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/29/12 Tested By: meo Report #: 23 Checked By: bfs Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Upper Geomembrane: Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-108-A1 Machine ID: W-5 Seam ID: 114/116 Welder ID: AS Date Sampled: 06/28/12

			Peel St	rength						
		Weld A		Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	142	***	SE1	146		SE1	185	>50%	upper	
2	145		SE1	118	***	SE1	188	>50%	upper	
3	142		SE1	126		SE1	189	>50%	upper	
4	143	***	SE1	127		SE1	183	>50%	upper	
5	126	***	SE1	129	-	SE1	189	>50%	upper	
Average	140	444		129			187	-44	444	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Tested By: meo Report #: 23 Checked By: bfs Page: 10 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: Machine ID: DS 6-108A W-5 Seam ID: 109/112 AS Welder ID: Date Sampled: 06/26/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	139		SE1	140		SE1	184	>50%	lower	
2	133		SE1	121	35%	ADBRK	186	>50%	lower	
3	96	50%	ADBRK	132		SE1	189	>50%	lower	
4	131	40%	ADBRK	135		SE1	185	>50%	lower	
5	138	***	SE1	125	- 515	SE1	186	>50%	lower	
Average	127		***	131	144	***	186			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY

06/27/12

Installer: GTX #: 11670 Test Date:

Tested By: meo Report #: Checked By: bfs Page: 11 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-108B Machine ID: W-5

Seam ID: 107/110 Welder ID: AS Date Sampled: 06/26/12

			Peel St	rength						
		Weld A		Weld B			Shear Strength			
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	145		SE1	146		SE1	198	>50%	lower	
2	143		SE1	146		SE1	197	>50%	lower	
3	1 45	-	SE1	158	***	SE1	199	>50%	lower	
4	142	***	SE1	139	***	SE1	195	>50%	lower	
5	141	***	SE1	133	***	SE1	198	>50%	lower	
Average	143			144		444	197	44		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 07/03/12 Tested By: eh Report #: 23 Checked By: bfs 2 of 2 Page:

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Fillet Extrusion Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-0108C Machine ID: MX12 Seam ID: 109/CAP Welder ID: BTK Date Sampled: 07/02/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	145	. ***	SE3	***	4		175	>50%	upper	
2	127		SE3	***	***	***	169	>50%	upper	
3	90		SE3				174	>50%	lower	
4	144	***	SE3		-		169	>50%	lower	
5	135		SE3	التنا			173	>50%	lower	
Average	128	422	***	244		777	172		***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Tested By: meo Report #: 23 Checked By: bfs Page: 12 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-109 Machine ID: W-11 Seam ID: 116/119 Welder ID: TS Date Sampled: 06/26/12

			Peel St	rength			Shear Strength			
		Weld A			Weld B					
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	138		SE1	144		SE1	191	>50%	upper	
2	126	***	SE1	146	442	SE1	188	>50%	upper	
3	138		SE1	147		SE1	191	>50%	lower	
4	127	ess	SE1	149	***	SE1	187	>50%	lower	
5	132	-	SE1	143	***	SE1	189	>50%	lower	
Average	132			146			189	***		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/27/12 Tested By: meo Report #: Checked By: bfs Page: 13 of 13

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Upper Geomembrane: Testing Machine: Instron 1123 Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-110 Machine ID: W-10 Seam ID: 119/121 Welder ID: KC Date Sampled: 06/26/12

			Peel St	rength						
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	129	***	SE1	132		SE1	186	>50%	upper	
2	128	1. 11. 1	SE1	130	Cons.	SE1	185	>50%	upper	
3	123	***	SE1	126	•••	SE1	185	>50%	upper	
4	127	•	SE1	136		SE1	180	>50%	upper	
5	130	***	SE1	148		SE1	182	>50%	upper	
Average	127	-		134	-	***	184	***	***	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/28/12 Tested By: Report #: meo 23 Checked By: Page: 2 of 5

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane:60 mil AGRU microspike HDPETesting Machine:Instron 1123Lower Geomembrane:60 mil AGRU microspike HDPETesting Speed:2 in/minSeaming Method:Dual Hot Wedge WeldGrips:ATS pneumaticSpecimen Size:1 in x 8 in

 Sample ID:
 DS 6-111
 Machine ID:
 W-28

 Seam ID:
 121/PHASE I
 Welder ID:
 VC

 Date Sampled:
 06/27/12

			Peel St	rength			29			
		Weld A			Weld B			Shear Strength		
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode	
1	154	1444	SE1	158		SE1	171	>50%	upper	
2	140	24	SE1	149		SE1	170	>50%	upper	
3	150	***	SE1	146	***	SE1	175	>50%	upper	
4	134		SE1	149		SE1	169	>50%	upper	
5	134		SE1	151	***	SE1	171	>50%	upper	
Average	142	(444)	***	151			171			

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:	***		
GTX #:	11670		
Test Date:	06/28/12		
Tested By:	meo	Report #:	23
Checked By:	bfs	Page:	3 of 5

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

60 mil AGRU microspike HDPE Instron 1123 Upper Geomembrane: Testing Machine: Lower Geomembrane: 60 mil AGRU microspike HDPE 2 in/min Testing Speed: Dual Hot Wedge Weld Seaming Method: ATS pneumatic Grips: Specimen Size: 1 in x 8 in Sample ID: DS 6-112 Machine ID: W-11

 Sample ID:
 DS 6-112
 Machine ID:
 W-11

 Seam ID:
 116/119
 Welder ID:
 TS

 Date Sampled:
 06/27/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	123	-	SE1	143		SE1	187	>50%	upper
2	121	200	SE1	127		SE1	185	>50%	upper
3	124		SE1	139	***	SE1	189	>50%	upper
4	119		SE1	133		SE1	184	>50%	lower
5	125	***	SE1	138	***	SE1	186	>50%	lower
Average	122	1242	Care .	136		1444	186	-44	

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client:	Parsons Engineering Science		
Project Name:	Onondaga SCA Phase I & II		
Project Location:	Camillus, NY		
Installer:			
GTX #:	11670		
Test Date:	06/28/12		
Tested By:	meo	Report #;	23
Checked By:	bfs	Page:	4 of 5

Date Sampled:

06/27/12

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Testing Machine: Upper Geomembrane: 60 mil AGRU microspike HDPE Instron 1123 Testing Speed: Lower Geomembrane: 60 mil AGRU microspike HDPE 2 in/min Dual Hot Wedge Weld Seaming Method: Grips: ATS pneumatic Specimen Size: 1 in x 8 in Sample ID: DS 6-113 W-5 Machine ID: Seam ID: 118/120 Welder ID: AS

			Peel St	rength			91		
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	134	444	SE1	152		SE1	185	>50%	lower
2	152		SE1	139		SE1	194	>50%	lower
3	135	***	SE1	153	***	SE1	194	>50%	lower
4	146	***	SE1	128		SE1	190	>50%	lower
5	136	- 111	SE1	152	***	SE1	182	>50%	lower
Average	141	***		145	1444	244	189		***

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

Client: Parsons Engineering Science Project Name: Onondaga SCA Phase I & II Project Location: Camillus, NY Installer: GTX #: 11670 Test Date: 06/28/12 Tested By: meo Report #: Checked By: bfs Page: 5 of 5

Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods by ASTM D 6392

peel & shear destructive test

Upper Geomembrane: 60 mil AGRU microspike HDPE Testing Machine: Instron 1123

Lower Geomembrane: 60 mil AGRU microspike HDPE Testing Speed: 2 in/min

Seaming Method: Dual Hot Wedge Weld Grips: ATS pneumatic

Specimen Size: 1 in x 8 in

 Sample ID:
 DS 6-114
 Machine ID:
 W-10

 Seam ID:
 119/121
 Welder ID:
 KC

 Date Sampled:
 06/27/12

			Peel St	rength					
		Weld A			Weld B			Shear Streng	th
Specimen Number	lb./in	Seam Separation, %	Failure Type	lb./in	Seam Separation, %	Failure Type	lb./in	Elongation, %	Rupture Mode
1	135		SE1	135	444	SE1	188	>50%	upper
2	123		SE1	131		SE1	186	>50%	upper
•3	145	***	SE1	129	***	SE1	188	>50%	upper
4	137		SE1	137		SE1	182	>50%	upper
5	124		SE1	126		SE1	187	>50%	upper
Average	133	144		132	444		186		

Comments:

Estimate of seam separation visually determined based upon area of separated bond to the nearest 5%.

Shear test halted for HDPE and LMDPE materials once specimen has elongated 50%. Shear test halted for PVC, fPP, LLDPE, VFPE and VLDPE once specimen has elongated past machine capacity.

Rupture mode for specimens with >50% elongation (HDPE and LMDPE) or > machine capacity (PVC, fPP, LLDPE, VFPE and VLDPE) interpreted as occurring in the membrane that exhibits yielding.

APPENDIX M

Geomembrane Repair Summary Logs

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	1.0		Location			-	Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ĬD	Date	Oper ID	Result (p/f)	Action	QA ID
5/17/2012	6-001		P	1-30-Phase I	Ī	ATT		8	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-002		P	1-30		11 S		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VTOK	DWH
5/17/2012	6-003		P	1-2-30		ATT		1	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-004		. P	2-3-30		ATT		3	2	-	MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-005	Ì	P	3-4-30		AT T		4	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-006		P	4-5-30		AT T		2	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-007	J.	P	5-6-30		ATT		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-008	1	P	6-7-30		AT T		3	I		MX-18	CAP	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-009	i	P	7-8-30		AT T		3	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VTOK	DWH
5/17/2012	6-010	1	P	8-9-30		AT T		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VTOK	DWH
5/17/2012	6-011		P	9-10-30		AT T		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-012		P	10-11-30		ATT		3	2		MX-18	CAP	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-013		P	11-12-30		ATT		2	I	L	MX-18	CAP	DWH	5/22/2012	втк	P	VTOK	DWH
5/17/2012	6-014		P	12-13-30		ATT		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-015		P	13-14-30		TTA		3	1		MX-18	CAP	DWH	5/22/2012	втк	P	VT OK	DWH
5/17/2012	6-016	1	Р	14-15-30		ATT		3	ī	1	MX-18	CAP	DWH	5/22/2012	BTK	: P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus New York

ProjNo: GJ4706B

Series: 6

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary

Primary / Secondary:

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/1 7/2 012	6-017		P	15-16-30		ATT		3	1		MX-18	CAP	DWH	5/22/2012	ВТК	P	VT OK	DWH
5/17/2012	6-018		P	16-30		10 S		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-019		P	16-17-30		AT T		6	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-020		P	17-18-30		AT T		3	2		MX-18	CAP	DWH	5/22/2012	втк	P	VT OK	DWH
5/17/2012	6-021		P	18-19-30		ATT		2	1	1	MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-022		P	19-20-30		ATT		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-023		P	20-21-30-31		ATT		6	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-024		P	21-22-31		ATT		2	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-025		P	22-23-31		AT T		6	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-026		P	23-24-31		AT T		3	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-027		P	24-25-31		ATT		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-028	6-004	P	25-31		11 N		5	2		MX-16	VC	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-029		P	25-26-31		АТТ		5	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/16/2012	6-030		P	26-31		13 N		4	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/16/2012	6-031		Р	26-28-31		АТТ		4	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-032		P	28-31		4 N		8	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair Date	Repair ID	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive 7	esting	
Dute	ID.		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/16/2012	6-033		P	28-29		4N		9	3		MX-16	VC	DWH	5/22/2012	BTK	P	VTOK	DWH
5/16/2012	6-034	1	P	28-29		11 N		3	2		MX-16	VC	DWH	5/22/2012	BTK	P	VTOK	DWH
5/16/2012	6-035		P	27-29		6 E		12	8		MX-16	VC	DWH	5/22/2012	BTK	Р	VTOK	DWH
5/16/2012	6-036		P	27-29		12 E		3	1		MX-16	VC	DWH	5/22/2012	ВТК	Р	VTOK	DWH
5/16/2012	6-037		Р	27-28-29		ATT		5	2		MX-16	VC	DWH	5/22/2012	втк	P	VT OK	DWH
5/16/2012	6-038		P	27-28	ĺ	9 E		2	1		MX-I6	VC	DWH	5/22/2012	BTK	Р	VTOK	DWH
5/16/2012	6-039		P	26-27-28		AT T		9	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-040		P	26-27		1 E		3	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-041		P	25-26		2 E		3	1		MX-16	VÇ	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-042		P	25-26		31 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-043		P	23-24		1 E		3	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-044		P	22-23		38 E		3	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-045		P	22-23		ΙE		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VTOK	DWH
5/17/2012	6-046	6-001	P	20-21		24 E		5	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-047		P	19-20		1 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-048		P	16-17		3 E		7	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive 1	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/17/2012	6-049	1	P	14-15		1 E		1	1		MX-16	VC	DWH	5/22/2012	ВТК	P	VT OK	DWH
5/17/2012	6-050	6-002	P	13-14		16 E		5	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-051		P	12-13		1 E		1	1		MX-16	VC	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-052		P	11-12	1 2 2	IE		2	2		MX-16	VC	DWH	5/22/2012	BTK	Р	VTOK	DWH
5/17/2012	6-053	1	P	10-11		1 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VTOK	DWH
5/17/2012	6-054	1	P	9-10		I E		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-055	1	P	7-8		1 E		1	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-056		P	6-7		1 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	: P	VTOK	DWH
5/17/2012	6-057		P	5-6		1 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-058	6-003	P	5-6		21 E		5	2		MX-18	CAP	DWH	5/22/2012	BTK	: P	VT OK	DWH
5/17/2012	6-059		P	4-5		1 E		1	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-060	1	P	3-4		1 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-061		P	2-3		1 E		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-062		P	1-2		IE		2	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-063	1	P	I-Phase I		I E		2	2		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-064	6-012	P	1-Phase I		20 E		5	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary Series: 6 Welder I.D. QA Non-Destructive Testing Repair Location Size Repair Repair DS No Date ID Type Mach ID Oper ID Oper ID Result Action QA ID Width Seam Panel Distance Offset Length Date (p/f) (ft.) (ft.) (ft.) (ft.) (ft.) DWH 5/22/2012 BTK P VT OK DWH MX-18 CAP 5/17/2012 6-065 30-32 611 N 3 ţ CAP DWH 5/22/2012 BTK VT OK DWH 30-32 545 N 9 MX-18 5/17/2012 6-066 P VTOK DWH 2 MX-18 BTK DWH - 5/23/2012 AS 30-32-33 AT T 3 5/21/2012 6-067 MX-18 VS DWH 5/23/2012 AS VT OK DWH 30-31-33 ATT 5/21/2012 6-068 Р 2 DWH 5/23/2012 DWH VS VT OK 5/21/2012 6-069 6-005 P 31-33 141 N 5 MX-18 VT OK DWH MX-18 VS DWH 5/23/2012 AS 33-35 225 N 5 2 5/21/2012 6-070 6-006 P VT OK DWH MX-18 DWH 5/23/2012 5/21/2012 6-071 Р 32-33-35 AT T 3 2 BTK AS **VTOK** DWH 35 9 E MX-18 BTK DWH 5/23/2012 AS 456 N 5/21/2012 6-072 VTOK DWH 5 2 CAP DWH 5/23/2012 AS 5/17/2012 6-073 6-013 P 34-35 10 E MX-18 BTK DWH 5/23/2012 VT OK DWH 32-34-35 3 2 MX-18 5/21/2012 6-074 P AT T DWH 5/23/2012 VT OK DWH 2 CAP AS P 5/17/2012 6-075 P 34-36-37 AT T 4 MX-18 DWH 5/23/2012 AS VT OK DWH P 36-37 7 E 2 MX-18 CAP 5/17/2012 6-076 VT OK DWH AT T 5 2 MX-16 VC DWH 5/23/2012 AS 5/17/2012 6-077 43-47-Phase I 2 MX-18 CAP DWH 5/23/2012 AS **VTOK** DWH 34-37 502 N 4 5/17/2012 6-078 P 2 CAP DWH 5/23/2012 P VT OK DWH 34-35-37 3 MX-18 AS 5/17/2012 6-079 P AT T 2 MX-18 VS DWH 5/23/2012 AS P VT OK DWH 6-080 35-37 303 N 5 5/21/2012 6-008

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Seco	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/21/2012	6-081		P	35-37-38	T	ATT		2	2	,	MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-082		P	35-38	1	IN		2	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-083		P	37-38-40	1	ATT		2	2		MX-18	VS	DWH	5/23/2012	AS	P	VT OK	DWH
5/21/2012	6-084		P	37-39-40		ATT		3	2		MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-085	6-007	P	39-40		13 E		5	2		MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-086	6-009	P	37-39		413		5	2		MX-18	BTK	DWH	5/23/2012	AS	Р	VT OK	DWH
5/17/2012	6-087		P	36-37-39		ATT		2	1		MX-18	CAP	DWH	5/23/2012	AS	P	VT OK	DWH
5/17/2012	6-088		P	39-41		616		5	2		MX-16	VC	DWH	5/22/2012	ВТК	P	VT OK	DWH
5/17/2012	6-089		P	39-41		606 N		1	1		MX-16	VC	DWH	5/22/2012	, втк	P	VT OK	DWH
5/17/2012	6-090		P	39-41		578 N		2	1		MX-16	VC	DWH	5/22/2012	ВТК	Р	VT OK	DWH
5/17/2012	6-091		P	39-41		566 N	10	2	1		MX-16	VC	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/21/2012	6-092	6-010	P	39-41		507 N		5	2		MX-18	BTK	DWH	5/22/2012	ВТК	Р	VT OK	DWH
5/21/2012	6-093		P	39-41		418 N		i	1		MX-18	BTK	DWH	5/22/2012	втк	P	VT OK	DWH
5/21/2012	6-094		P	39-41-42		AT T		9	2		MX-18	BTK	DWH	5/22/2012	ВТК	P	VT OK	DWH
5/21/2012	6-095		P	39-40-42		AT T		4	2		MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-096		P	41-42-44		ATT		4	2		MX-18	BTK	DWH	5/22/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary Series: 6

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/21/2012	6-097		P	41-44-45		ATT		4	3		MX-18	BTK	DWH	5/22/2012	BTK	P	VT OK	DWH
5/21/2012	6-098		P	41-43-45		ATT		4	3		MX-18	BTK	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/21/2012	6-099	6-011	P	41-43		550 N		6	2		MX-18	BTK	DWH	5/22/2012	ВТК	P	VT OK	DWH
5/21/2012	6-100	1	P	43-45-47		ATT		3	2		MX-18	BTK	DWH	5/22/2012	BTK	P	VT OK	DWH
5/21/2012	6-101		P	44-45-46-47	1	ATT		4	2		MX-18	BTK	DWH	5/22/2012	AS	P	VT OK	DWH
5/23/2012	6-102		P	46-49	1	2 N :		2	2		MX-16	VC	DWH	5/23/2012	A\$	Р	VT OK	DWH
5/21/2012	6-103		Р	46-49	7	194 N	****	6	2	11/2-20	MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-104	1	P	46-48-49		ATT		3	2		MX-18	VS	DWH	5/23/2012	AS	P	VT OK	DWH
5/21/2012	6-105		P	46-47-48		ATT		2	1		MX-18	BTK	DWH	5/23/2012	· AS	Р	VTOK	DWH
5/21/2012	6-106	1	P	48-50-51		АТТ		2	2		MX-18	VS	DWH	5/23/2012	: AS	Р	VT OK	DWH
5/21/2012	6-107	1	P	48-49-51		ATT		2	2		MX-18	VS	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-108		P	49-51		2 N		3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/21/2012	6-109		P	50-51-53	1	ATT		2	1		MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-110		P	50-53-54		ATT		2	I		MX-18	BTK	DWH	5/23/2012	AS	Р	VTOK	DWH
5/21/2012	6-111		P	50-52-54		ATT		5	1		MX-18	VS	DWH	5/23/2012	AS	Р	VT OK	DWH
5/21/2012	6-112	6-014	P	43-47		600 N		5	2		MX-18	BTK	DWH	5/22/2012	BTK	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Sec	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Desti	ructive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/21/2012	6-113	6-015	P	44-46	T	250 N		5	2		MX-18	VS	DWH	5/23/2012	AS	P	VTOK	DWH
5/21/2012	6-114	6-016	P	47-48		550 N		5	2		MX-18	BTK	DWH	5/23/2012	AS	P	VT OK	DWH
5/21/2012	6-115	6-017	P	46-47		13 E		5	2		MX-18	BTK	DWH	5/23/2012	AS:	P	VT OK	DWH
5/21/2012	6-116	6-018	Р	48-51		350 N		5	2	n	MX-18	VS	DWH	5/23/2012	AS	P	VT OK	DWH
5/17/2012	6-117	6-019	P	51-53		150 N		5	2		MX-18	VS	DWH	5/22/2012	LS	P	VT OK	DWH
5/17/2012	6-118		P	30-32-Phase I		ATT		7	2		MX-18	CAP	DWH	5/18/2012	BTK	P	VT OK	DWH
5/17/2012	6-119		P	32 Phase I		6 W		3	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-120		P	32-34-Phase I	i	ATT		4	2		MX-18	CAP	DWH	5/22/2012	LS	P	VT OK	DWH
5/17/2012	6-121		P	34-36-Phase I	1	AT T		3	2		MX-18	CAP	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-122		P	36 Phase I	1	12 E		3	1		MX-18	CAP	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-123		P	36-39-Phase I		ATT		15	2		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-124		P	39-Phase I	4	14 E		6	2		MX-16	VC	DWH	5/22/2012	BTK	Р	VT OK	DWH
5/17/2012	6-125		Р	47-Phase I		12 E		2	1		MX-16	VC	DWH	5/22/2012	втк	Р	VT OK	DWH
5/17/2012	6-126		P	39-41-Phase I		ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/17/2012	6-127		P	41-Phase l		12 E		6	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/17/2012	6-128		P	41-43-Phase I	1	ATT		2	T		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location	The second secon			Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/17/2012	6-129		P	43-Phase I		12 E		4	3		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/17/2012	6-130		P	8-9		1 E		1	1		MX-16	VC	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-131		P	3-30		9 N		1	1		MX-18	CAP	DWH	5/22/2012	BTK	P	VT OK	DWH
5/17/2012	6-132		P		Phase I	29 E	12 N	1	Ī		MX-18	CAP	DWH	5/22/2012	ВТК	P	VTOK	DWH
5/17/2012	6-133		P		6	10 S	10 W	1	1		MX-18	CAP	DWH	5/22/2012	втк	P	VT OK	DWH
5/21/2012	6-134		P	47-48-Phase I		AT T		2	2		MX-16	VC	DWH	5/22/2012	LS	Р	VT OK	DWH
5/21/2012	6-135	Ì	P	48 Phase l		5 E		2	1		MX-16	VC	DWH	5/22/2012	LS	Р	VT OK	DWH
5/21/2012	6-136	Î	P	48-50 Phase I		ATT		2	1		MX-16	VC	DWH	5/22/2012	LS	P	VT OK	DWH
5/21/2012	6-137		P	50-Phase I		5 E		2	2		MX-16	VÇ	DWH	5/22/2012	LS	Р	VT OK	DWH
5/21/2012	6-138		P	50-52-Phase I		ATT		2	2		MX-16	VC	DWH	5/22/2012	LS	P	VT OK	DWH
5/21/2012	6-139		P	52-Phase I		5 E		2	1		MX-16	VC	DWH	5/22/2012	LS	Р	VT OK	DWH
5/21/2012	6-140		Р	52-56-Phase I		ATT		8	2		MX-16	VC	DWH	5/22/2012	LS	Р	VT OK	DWH
5/21/2012	6-141		P	52-54-56	1	ATT	0.71	3			MX-18	BTK	DWH	5/22/2012	LS	P	VT OK	DWH
5/21/2012	6-142		P	53-54-56		ATT		2	1		MX-18	BTK	DWH	5/22/2012	LS	Р	VT OK	DWH
5/22/2012	6-143		P	53 - 55-56		AT T		2	1		MX-16	VC	DWH	5/22/2012	LS	P	VT OK	DWH
5/23/2012	6-144	6-020	P	53-55	1	100 N		5	2	-	MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dla. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/22/2012	6-145	6-021	P	55-57		197 N		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/23/2012	6-146		P	55-57-58	T	ATT	×	2	1		MX-16	VC	DWH	5/23/2012	AS	Р	VTOK	DWH
5/22/2012	6-147		Р	55-56-58		ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-148		P	58-59-61		ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	Р	VTOK	DWH
5/30/2012	6-149	i	P	81-84-NTI		ATT		3	2		MX-16	JS	ЈМВ	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-150	1	P	58-60-61		ATT		9	2		MX-16	VC	DWH	5/22/2012	LS	P	VT OK	DWH
5/22/2012	6-151	6-022	P	58-60		300 N		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-152		P	57-58-60		ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-153	6-035	P	57-58		9 W		5	2		MX-16	VC	DWH	5/23/2012	AS	P.	VTOK	DWH
5/23/2012	6-154		P	60-63	1	103 N		3	2		MX-16	VC	DWH	5/23/2012	AS	Р	VTOK	DWH
5/22/2012	6-155		P	60-62-63		ATT	- 1	3	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-156	6-023	P	60-62		398 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/22/2012	6-157		P	60-61-62		ATT	/ == 1	2	1		MX-16	VC	DWH	5/22/2012	LS	Р	VTOK	DWH
5/22/2012	6-158		P	59-61-62		ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/22/2012	6-159	6-024	P	62-65		AT T		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/17/2012	6-160		P	62-64-65	1	ATT		2	1 ,		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair	Repair	DS No	Repair		Location			/	Size		Welde	er I,D,	QA .		Non-Destr	uctive T	esting	
Date	ĬD		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
5/22/2012	6-161	6-033	P	64-65		9 W		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-162		P	62-63-64		ATT		2	1		MX-16	VC	DWH	5/23/2012	! AS	P	VT OK	DWH
5/23/2012	6-163	6-027	P	64-67	111111	50 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-164	1	Р	64-65-67		ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-165		P	65-67-68	1	AT T		3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-166		P	65-66-68	1	ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-167	6-025	P	65-66		600 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-168		P	66-68-69		ATT		2	I		: MX-16	VC	DWH	5/23/2012	AS	P	VT QK	DWH
5/22/2012	6-169	6-026	P	68-69		518 N		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-170		P	67-68-69		AT T		3	2		MX-16	VC	DWH	5/23/2012	AS	Р	VTOK	DWH
5/22/2012	6-171	1	P	67-69-70		ATT		3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-172	6-028	P	67-70		150 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-173		P	69-70-71	-	ATT		2	2		MX-16	· VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-174		P	69-71-72	-	ATT		4	2	r.	MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-175	6-029	P	69-72	1	275 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012		-	P	69-72	1111	525 N		4	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	The state of the last	3, 30,303	Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA IE
5/22/2012	6-177		P	72-74		491 N		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-178	6-030	P	72-74		346 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-179		P	72-74		276 N		2	I		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-180		P	71-72-74	í	ATT		2	1		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-181		P	71-74		177 N		3	2		MX-16	VC	DWH	5/23/2012	A\$	P	VT OK	DWH
5/22/2012	6-182		P	71-74-75		AT T		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-183		! P	71-73-75		AT T		11	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-184		P	73-75-76		AT T		2	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-185		Р	74-75-76		AT T		3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-186		P	74-76-77		ATT		2	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-187	6-031	P	74-77		466 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-188		P		77	522 N	1 W	1	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-189	6-032	: P	77-78		550 N		5	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-190		P	76-77-78		ATT	1	3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-191		P	76-78-79	İ	ATT		3	2		MX-16	VC	DWH	5/23/2012	AS	Р ,	VT OK	DWH
5/22/2012	6-192		P	56-Phase I	4	5 E		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/22/2012	6-193		P	56-58-Phase I		AT T		3	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-194		P	58-Phase I		5 E		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-195		P	58-59-Phase I		AT T		3	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-196		P	59-Phase I		5 E		3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-197		P	59-62-Phase I		AT T		3	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-198		P	62-Phase I		5 E		2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-199		P	62-65-Phase I		ATT		2	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-200		P	65-Phase I		5 E		2	1		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-201		P	65-66-Phase I		ATT		2	2		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-202		P	66-Phase I	1	5 E		3	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/22/2012	6-203		P	66-69-Phase 1	1	ATT		7	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-204	6-034	P	69-Phase I	1	W 01		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VTOK	DWH
5/22/2012	6-205		P	69-72-Phase 1		ATT		7	2		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/22/2012	6-206		P	72-74-Phase I		AT T		9	2		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/22/2012	6-207	1	P	74-77-Phase I		AT T		5	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/22/2012	6-208		P	77-78-Phase I		AT T		6	2		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH

Geosyntec D

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair	Repair	DS No Re		,	Location				Size		Weld	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		уре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	<i>Dia</i> , (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA IE
5/22/2012	6-209		P	78-Phase I	T	12 E		3	2		MX-16	VC	DWH	5/22/2012	AS	Р	VT OK	DWH
5/15/2012	6-210		С	53-54		11 E		22.5	2		MX-18	VC	DWH	5/22/2012	LS	P	VT OK	DWH
5/23/2012	6-211		P		Phase I	150 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-212		P		Phase I	154 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-213		P		Phase I	167 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-214		P		Phase I	295 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/23/2012	6-215		P		Phase I	305 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/23/2012	6-216		Р		Phase I	310 E	1 N	3	1		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/23/2012	6-217		P		Phase I	312 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-218		P		Phase I	316 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-219		P		Phase I	318 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-220		P		Phase I	320 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	A\$	Ρ.	VT OK	DWH
5/23/2012	6-221		P		Phase I	321 E	1 N	2	100		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/23/2012	6-222		P		Phase I	325 E	1 N	2	I		MX-16	VC	DWH	5/23/2012	AS	P	VTOK	DWH
5/23/2012	6-223		P		Phase I	327 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-224		P		Phase I	330 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus. New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair	Repair	DS No			Location			li	Size	() + () - () () - () () () () () ()		er I.D.	QA		Non-Destr	uctive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia, (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/23/2012	6-225		P		Phase I	340 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-226		P		Phase I	346 E	IN	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-227		P		Phase I	344 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-228	-	P		Phase I	458 E	1 N	2	1		MX-16	VC	DWH	5/23/2012	AS	P	VT QK	DWH
5/23/2012	6-229		P		Phase I	466 E	1 N	1	1		MX-16	VC	DWH	5/23/2012	AS	Р	VT OK	DWH
5/23/2012	6-230		P		Phase I	485 E	1 N	1	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-231		P		Phase I	487 E	1 N	1	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-232		P		Phase I	490 E	1 N	1	1		MX-16	VC	DWH	5/23/2012	A\$	P	VT OK	DWH
5/23/2012	6-233		P		Phase I	491 E	1 N	1	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/23/2012	6-234		P		Phase I	494 E	IN	1	1		MX-16	VC	DWH	5/23/2012	AS	P	VT OK	DWH
5/25/2012	6-235	1	P	78-81		400 N		2	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-236		P	78-79-81		ATT		2	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VT OK	DWH
5/25/2012	6-237		P	79-81-82		ATT		4	2		MX-16	.IS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-238		P	79-80-82		AT T		3	3		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-239	6-036	P	79-80		13 N		5	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VT OK	DWH
5/25/2012	6-240	6-037	P	80-83		55 N		4	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	ructive 7	Festing	-
Date	ID	į	Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
5/25/2012	6-241		P	80-82-83		ATT		2	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-242	1	P	81-82-83		AT T		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-243		P	81-83-84		ATT		4	3		MX-16	JS	DWH	5/29/2012	BTK	Р	VT OK	DWH
5/25/2012	6-244		P	83-84-86		ATT		3	2		MX-16	JS	DWH	5/30/2012	BTK	. P	VT OK	JMB
5/25/2012	6-245		P	83-85-86		ATT		3	2		MX-16	JS	DWH	5/29/2012	втк	P	VTOK	DWH
5/25/2012	6-246	6-038	P	83-85	1	104 N		4	2		MX-16	JS	DWH	5/30/2012	BTK	P	VTOK	ЛМВ
5/25/2012	6-247		P	85-87-89		ATT		8	3		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-248		P	85-88-89		ATT		3	2		MX-16	JS	DWH	5/29/2012	втк	P	VT OK	DWH
5/25/2012	6-249	6-039	P	85-88		165 N		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-250		P	85-86-88		AT T		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VTOK	DWH
5/25/2012	6-251	Ì	P	88-90-91		AT T		2	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-252	6-040	P	88-90		208 N		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-253		P	88-89-90		AT T		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VTOK	DWH
5/25/2012	6-254		P	87-89-90		ATT		3	2		MX-16	JS	DWH	5/30/2012	BTK	P	VTOK	DWH
5/25/2012	6-255		P	90-92		180 N		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-256	6-041	P	90-92		260 N		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH

Geosyntec D

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Seco	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location				Size		Welde	r I.D.	QA		Non-Destr		esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/25/2012	6-257		P	90-92-93	THE REST OF THE PERSONS	ATT	/a	3	2		MX-16	JS	DWH	5/29/2012	втк	Р	VT OK	DWH
5/25/2012	6-258		P		93	270 N	2 E	1	1		MX-16	JS	DWH	5/29/2012	BTK	Р	VT QK	DWH
5/25/2012	6-259		Р	90-91-93		ATT		3	2		MX-16 :	JS	DWH	5/29/2012	ВТК	P	VT OK	DWH
5/25/2012	6-260		P	93-95-96		ATT		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-261	6-042	P	93-95		310 N		4	2		MX-16	JS	DWH	5/29/2012	ВТК	P	VT OK	DWH
5/25/2012	6-262		P	92-93-95		AT T		3	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VTOK	DWH
5/25/2012	6-263		Р	92-95		119 N		3	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VT OK	DWH
5/25/2012	6-264		P	92-94-95		AT T		3	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VTOK	DWH
5/25/2012	6-265		P	94-98		25 N		3	2		MX-16	12	DWH	5/30/2012	BTK	P	VT OK	DWH
5/25/2012	6-266		P	94-95-98	1	ATT		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-267		C	95-97-98-99	-	ATT		23	4		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-268	6-043	Р	95-97		350 N		4	2		MX-16	JS	DWH	5/29/2012	втк	P	VT OK	DWH
5/25/2012	6-269		P	95-96-97		ATT		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-270	6-044	: P	97-100		405 N		4	2		MX-16	JS	DWH	5/29/2012	втк	P	VT OK	DWH
5/25/2012	6-271		P	97-99-100		AT T		4	2		MX-16	JS	DWH	5/29/2012	втк	P	VT OK	DWH
5/25/2012	6-272		P	98-99		4 N	4.7	8	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prin	nary / Seco	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No		**************************************	Location				Size		Welde	er I.D.	QA		Non-Dest	ructive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/30/2012	6-273		P	99-101-102	i	ATT		3	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-274		P	99-100-102		ATT		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/29/2012	6-275	6-045	Р	100-102		450 N		5	2		MX-16	VC	DWH	5/30/2012	BTK	P	VT OK	DWH
5/29/2012	6-276	1	P	100-102-103	1	АТТ		2	2		MX-16	VC	DWH	5/29/2012	BTK	Р	VT OK	DWH
5/29/2012	6-277		С	102-103		0-22.5		22,5	2		MX-16	VC	DWH	5/29/2012	BTK	P	VTOK	DWH
5/25/2012	6-278	6-046	P	102-104	1	506 N		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-279		P	102-104-105		ATT		3	2		MX-16	JS	DWH	5/29/2012	втк	P	VT OK	DWH
5/25/2012	6-280		Р	101-102-105	1	ATT		10	3		# MX-16	JS	DWH	5/30/2012	BTK	P	VT OK	DWH
5/25/2012	6-281		P	104-105-106	1	ATT		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-282	1	P	104-106-107		AT T		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/24/2012	6-283	6-053	Р	106-107		7 E	1 1	5	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-284	6-047	P	104-107		560 N		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VTOK	DWH
5/29/2012	6-285	6-048	P	107-109		599 N		5	2		MX-16	VC	DWH	5/29/2012	BTK	P	VTOK	DWH
5/25/2012	6-286		P	107-109		320 N		3	3		MX-16	JS	DWH	5/29/2012	BTK	P	VTOK	DWH
5/25/2012	6-287	V	P	106-107-109		ATT		3	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-288		С	106-109	1	192 N	4	13	2		MX-16	JS	DWH	5/30/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ΊD		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	<i>Dia.</i> (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/29/2012	6-289		P	106-109		188 N		4	2		MX-16	VC	DWH	5/31/2012	AS	Р	VT OK	DWH
5/25/2012	6-290		Р	106-108-109	1	ATT		3	2		MX-16	JS	DWH	5/30/2012	BTK	P	VT OK	DWH
5/25/2012	6-291	6-054	P	105-106		110 N		4	2		MX-16	JS	DWH	5/30/2012	BTK	P	VT OK	DWH
5/30/2012	6-292	ř	P	78-81-Phase I		ATT		4	3		MX-16	JS	JMB	5/29/2012	ВТК	P	VT OK	DWH
5/25/2012	6-293	6-050	P	78-81		450 N		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VT OK	DWH
5/25/2012	6-294	1	Р	79-80		IN		4	2		MX-16	JS	DWH	5/29/2012	BTK	P	VTOK	DWH
5/25/2012	6-295	6-051	P	84-86		500 N		3	2		MX-16	JS	DWH	5/29/2012	BTK	Р	VT OK	DWH
5/25/2012	6-296	6-052	P	88-91		550 N		4	2		MX-16	JS	DWH	5/30/2012	BTK	Р	VT OK	JMB
5/29/2012	6-297		P	107-109-110		ATT		4	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-298	17	P	84-86-Phase I	1	AT T		3	2		MX-16	JS	JMB	5/29/2012	BTK	Р	VT OK	DWH
5/30/2012	6-299		P	86-88-Phase I		ATT .		3	2		MX-16	JS	JMB	5/29/2012	BTK	Р	VT OK	DWH
5/30/2012	6-300		P	88-91-Phase 1	4	ATT		3	2		MX-16	JS.	JMB	5/29/2012	BTK	P	VT OK	DWH
5/30/2012	6-301		P	91-93-Phase I		AT T		4	2		MX-16	JS	JMB	5/29/2012	BTK	Р	VT OK	DWH
5/30/2012	6-302		P	93-96-Phase I		AT T		4	2		MX-16	JS	JMB	5/29/2012	BTK	Р	VT OK	DWH
5/30/2012	6-303	1	P	96-97-Phase I		ATT		б	4		MX-16	JS	JMB	5/29/2012	BTK	P	VT OK	DWH
5/30/2012	6-304		P	97-100-Phase I		ATT		4	2		MX-16	JS	JMB	5/29/2012	BTK	Р	VTOK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Sec	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location				Size		Welde	er I,D.	QA		Non-Desti	ructive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (fl.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
5/30/2012	6-305		P	100-103-Phase I		TTA		4	2	1000	MX-16	JS	JMB	5/29/2012	BTK	Р	VT OK	DWH
5/30/2012	6-306	6-049	P	103-Phase I		. 9 W	-	5	2		, MX-16	VC	DWH	5/31/2012	AS	P	VTOK	DWH
5/30/2012	6-307		Р	103-Phase I	,	15 E		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-308		Р	103-104-Phase I		ATT		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-309		P	104-Phase I	1	17 E		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-310		P	104-107-Phase I		AT T		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-311		P	107-Phase I		17 E		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-312		P	107-110-Phase I		ATT		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/30/2012	6-313		P	110-Phase I	-	ATT		2	2		MX-16	VC	DWH	5/31/2012	AS	P	VTOK	DWH
5/30/2012	6-314		P	84-Phase I		10 E		3	1		MX-16	JS	ЛМВ	5/29/2012	BTK	P	VT OK	DWH
5/31/2012	6-315	6-049 B	Р	97-Phase I		13 E	- 0	5	2		MX-16	VS	DWH	5/31/2012	AS	P	VT OK	DWH
5/31/2012	6-316	6-049 A	P	104- Phase I		4 E		5	2		MX-16	VS	DWH	5/31/2012	AS	P	VT OK	DWH
6/4/2012	6-317	4	. c	81-110-Phase I		0-292		292	2		MX-16	VS	DWH	6/5/2012	AS	P	VTOK	DWH
5/31/2012	6-318		P	91-Phase I	Phase I	10 W	1 N	1	I		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
5/31/2012	6-319	1	Р	91-Phase I	Phase I	4 W	1 N	2	2		MX-16	VC	DWH	5/31/2012	AS	P	VTOK	DWH
5/31/2012	6-320		i P	96-Phase I	Phase I	8 E	1 N	2	1		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Desti	uctive 7	esting `	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA IE
5/31/2012	6-321		P	97-Phase I	Phase I	2 W	3 N	1	1		■ MX-16	VC	DWH	5/31/2012	AS	Р	VT OK	DWH
5/31/2012	6-322		P	103-Phase I	Phase I	3 W	3 N	1	1		MX-16	VC	DWH	5/31/2012	AS	Р	VT OK	DWH
5/31/2012	6-323	6-034 B	P	66-Phase I		2 W		5	2		MX-16	VC	DWH	5/31/2012	AS	Р	VT OK	DWH
5/31/2012	6-324	6-034 A	P	72-Phase I		6 E		5	2		MX-16	VC	DWH	5/31/2012	AS	Р	VTOK	DWH
5/31/2012	6-325		С	66-Ph I to 72-Ph I		0-40		40	2		MX-16	VC	DWH	5/31/20[2	AS	Р	VT OK	DWH
5/31/2012	6-326		Р		Phase I	215 E	3 N	4	2		MX-16	VC	DWH	5/31/2012	AS	Р	VT OK	DWH
5/31/2012	6-327		P		Phase I	118 E	2 N	1	1		MX-16	VC	DWH	5/31/2012	AS	P	VT OK	DWH
6/7/2012	6-328		P	108-111		1 N		2	2		MX-18	KC	DWH	6/7/2012	TS	P	VT OK	DWH
6/7/2012	6-329		P	108-111		66 N		2	2		MX-18	KC	DWH	6/7/2012	TS	P	VT OK	DWH
6/7/2012	6-330		P	108-109-111		AT T	7	4	2		MX-18	KC	DWH	6/7/2012	TS	P	VT OK	DWH
6/6/2012	6-331		P	109-111		396 N		2	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-332		P	109-111-112		AT T		2	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-333		P	109-112		521 N		5	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-334		P	109-110-112	Į	ATT		3	2		* MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
7/6/2012	6-335		P	110-112		654 N		5	2		MX-16	KC	DWH	7/6/2012	BTK	Р	VT OK	DWH
6/6/2012	6-336		P	111-112-114		ATT		3	2		MX-16	VS	DWH	6/6/2012	AS	P	VTOK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

Series: 6

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location			1	Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	,
Date	ID		Туре	Seam	Panel	Distance (ft,)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/6/2012	6-337		P	111-114		416 N		4	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-338		P	111-114		354 N		9	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-339		P	111-113-114		ATT		8	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/4/2012	6-340	19	P	108-111		57 N		4	2		MX-16	VS	DWH	6/7/2012	TS	P	VT OK	DWH
6/4/2012	6-341		P	108-111		35 N		4	2		MX-16	VS	DWH	6/7/2012	TS	Р	VT OK	DWH
6/6/2012	6-342		: P	113-115-117		ATT		10	2		MX-16	VS	DWH	6/6/2012	AS	Р	VTOK	DWH
6/6/2012	6-343	1	. Р	113-117		137 N		7	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-344	i	P	113-116-117		ATT		12	2		MX-16	VS	DWH	6/6/2012	AS	P	VTOK	DWH
6/6/2012	6-345		P	113-114-116		ATT		7	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-346		P	116-118-119		ATT		3	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-347		С	116-117-118	1	TTA		45	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-348		P	115-117-118	Ÿ	ATT		7	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT QK	DWH
6/7/2012	6-349		P	118-120		48 N		5	2		MX-18	KC	DWH	6/7/2012	TS	P	VT OK	DWH
6/6/2012	6-350		. P	118-120-121		ATT		8	3	-11-5	MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-351	1	P	118-121		298 N		5	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-352		P	118-119-121		AT T		4	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prin	nary / Sec	ondary:	Primary				Serie	s: 6										
Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	1D		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/4/2012	6-353	6-049 B1	P	100-103		657 N		5	2		MX-16	VS	DWH	6/5/2012	AS	P	VT OK	DWH
6/6/2012	6-354		P	113-115		91 N		2	2		MX-16	VS	DWH	6/7/2012	TS	P	VTOK	DWH
6/6/2012	6-355		Р	113-115		104 N		4	2		MX-16	VS	DWH	6/6/2012	AS	Р	VTOK	DWH
6/6/2012	6-356	1	P	116-118		233 N		2	2		MX-16	VS	DWH	6/6/2012	AS	P.	VT OK	DWH
6/6/2012	6-357		Р	116-118		290 N		3	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-358		P	114-116	400	381 N		3	1		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/6/2012	6-359		C	112-114-Phase I		0-45		45	2		MX-16	VS	DWH	6/6/2012	AS	P	VTOK	DWH
6/6/2012	6-360	1	P	116-Phase I		15 E		2	1		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-361		P	116-119-Phase I		ATT		4	2		MX-16	VS	DWH	6/6/2012	AS	Р	VT OK	DWH
6/6/2012	6-362	1	P	I 19-Phase I		13 E		4	2		MX-16	VS	DWH	6/6/2012	AS	P	VTOK	DWH
6/6/2012	6-363		P	119-121-Phase I		ATT		4	2		MX-16	VS	DWH	6/6/2012	AS	P	VTOK	DWH
6/6/2012	6-364		Р	121-Phase I		12 E		2	2		MX-16	VS	DWH	6/6/2012	AS	P	VT OK	DWH
6/5/2012	6-365	6-049 C	P	93-Phase I		5 W		5	2		MX-16	VS	DWH	6/5/2012	AS	P	VT OK	DWH
6/26/2012	6-366	6-104	. P	108-111		44 N		10	2		MX-16	KC	DWH	6/26/2012	JG	P	VT OK	DWH
6/26/2012	6-367	6-108	Р	109-112		500		10	2		MX-16	KC	DWH	6/26/2012	JG	Р	VT OK	DWH
6/7/2012	6-368	1	P	119-Phase I		7 E		5	2	V	MX-16	KC	DWH	6/7/2012	TS	P	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prit	nary / Sec	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/26/2012	6-369	6-105	P	111-113		150 N	-	10	2		MX-16	KC	DWH	6/26/2012	JG	P	VT OK	DWH
6/26/2012	6-370	6-106	P	114-116		346 N		10	2		MX-16	KC	DWH	6/26/2012	JG	P	VT OK	DWH
6/26/2012	6-371	6-107	P	120-121		11 E		10	2		MX-16	KC	DWH	6/26/2012	JG.	P	VT OK	DWH
6/26/2012	6-372	6-109	P	116-119		567 N		10	2		MX-16	KC	DWH	6/26/2012	JG	P	VTOK	DWH
6/26/2012	6-373	6-110	P	119-121		639 N		10	2		MX-16	KC	DWH	6/26/2012	JG	P	VT OK	DWH
6/8/2012	6-374		P		40	128 N	6 W	1	1		MX-16	VS	DWH	6/8/2012	KC	Р	VT OK	DWH
6/8/2012	6-375		Р		40	122 N	5 W	ı	1		MX-16	VS	DWH	6/8/2012	KC	Р	VT OK	DWH
6/8/2012	6-376		: P		40	128 N	13 W	2	L		MX-16	VS	DWH	6/8/2012	KC	P	VTOK	DWH
6/8/2012	6-377		P		40	122 N	11 W	4	2		MX-16	VS	DWH	6/8/2012	KC	P	VT OK	DWH
6/8/2012	6-378	1	P		40	122 N	17 W	1	1		MX-16	VS	DWH	6/8/2012	KC	Р	VTOK	DWH
6/8/2012	6-379		P	120-122		5 N		2	1		MX-16	VS	DWH	6/11/2012	AS	Р	VTOK	DWH
6/6/2012	6-380	6-055	P	120-122		41 N		5	2		MX-16	VS	DWH	6/11/2012	AŞ	P	VTOK	DWH
6/8/2012	6-381		P	120-122-124		ATT	1	2	2		MX-16	VS	DWH	6/11/2012	AS	P	VTOK	DWH
6/8/2012	6-382		P	120-123-124		ATT		4	2		MX-16	vs	DWH	6/11/2012	AS	Р	VT OK	DWH
6/8/2012	6-383		P	120-123		233 N		3	2		: MX-16	VS	DWH	6/11/2012	AS	P	VT OK	DWH
6/8/2012	6-384		P	120-121-123		ATT		3	2		MX-16	VS	DWH	6/11/2012	AS	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive I	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/7/2012	6-385		P	121-123		376 N		2	1		MX-18	KC	DWH	6/7/2012	AS	Р	VT OK	DWH
6/7/2012	6-386		P	121-123		470 N		4	2		MX-18	KC	DWH	6/7/2012	AS	P	VT OK	DWH
6/7/2012	6-387		P	121-123		481 N		3	1		MX-18	KC	DWH	6/7/2012	AS	P	VT OK	DWH
6/11/2012	6-388		P	121-123		581 N		2	1		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-389		P	121-123		660 N		2	1		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-390	1	P	123-126		559 N		3	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-391		P	123-125-126		AT T	3	4	2	(MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/8/2012	6-392		P	123-125	1	283 N		2	2		MX-16	VS	DWH	6/11/2012	AS	P	VT OK	DWH
6/8/2012	6-393	6-056	P	123-125		176 N		5	2		MX-16	VS	DWH	6/11/2012	AS	Р	VT OK	DWH
6/8/2012	6-394		P	123-124-125		ATT		2	2		MX-16	VS	DWH	6/11/2012	AS	P	VT OK	DWH
6/8/2012	6-395		. P	122-124-125		ATT		2	2		MX-16	VS	DWH	6/11/2012	AS	Р	VT OK	DWH
6/11/2012	6-396		P	125-127		114 N		2	2		MX-16	KC	DWH	6/11/2012	AS	Р	VTOK	DWH
6/11/2012	6-397		P	125-127-128		ATT	14	3	2		MX-16	KC	DWH	6/11/2012	AS	Р	VT OK	DWH
6/11/2012	6-398	6-057	P	125-128		300 N		5	2		MX-16	KC	DWH	6/11/2012	AS	Р	VT OK	DWH
6/11/2012	6-399		P	125-126-128		ATT		2	ı		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-400		P	128-129-131		ATT		6	2		MX-16	KC	DWH	6/11/2012	AS	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
6/11/2012	6-401		P	128-131		536 N		2	1		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-402		P	128-130-131		AT T		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-403	6-058	P	128-130		400 N		5	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-404		P	127-128-130		AT T		3	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-405	6-061	P	130-132		300 N		5	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-406		P	130-132-133		ATT		3	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-407		P	130-131-133		ATT		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-408	6-059	P	131-133		512 N		5	2		MX-16	KC	DWH	6/11/2012	AS	P	VTOK	DWH
6/11/2012	6-409		P	129-131-133		ATT		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-410	6-060	P	133-135	ř	565 N		5	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-411		Р	132-133-135	1	ATT		3	2		MX-16	, KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-412		P	132-134-135	1	ATT		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-413	6-062	P	132-134		190 N		5	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-414		P	121-123-Phase I		ATT		3	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-415		P	I 23-Phase I		12 E		4	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-416		P	123-126-Phase I		ATT		2	. 1		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	r I.D.	QA		Non-Desti	uctive 7	l'esting	
Date	ĪD		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/11/2012	6-417		P	126-Phase I		12 E		3	2		MX-16	KC	DWH	6/11/2012	AS	P	VTOK	DWH
6/11/2012	6-418		Р	126-128-Phase I	Ī	ATT		2	1		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-419		P		! Phase I	673 W	1 N	9	3		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-420	6-063	P	128-Phase I	1	15 E		6	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-421		P	128-129-Phase I		ATT		2	1		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-422		P	129-Phase I		12 E		3	2		MX-16	KC	DWH	6/11/2012	AS	Р	VT OK	DWH
6/11/2012	6-423		P	129-133-Phase I	1	ATT		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-424		P	133-Phase I		12 E		6	2		MX-16	KC	DWH	6/11/2012	AS	p	VT OK	DWH
6/11/2012	6-425		P	133-135-Phase I		ATT		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-426		P	135-Phase I	1	12 E		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/11/2012	6-427		P	121-123		628 N		2	2		MX-16	KC	DWH	6/11/2012	AS	P	VT OK	DWH
6/15/2012	6-428		P	134-136-137		ATT		2	2		MX-16	KC	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-429	6-064	P	134-137	1	61 N		5	2		MX-16	KC	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-430		P	134-135-137	1	ATT		2	2		MX-16	KC	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-431		P	135-137	1	246 N		4	2		MX-16	KC	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-432		P	138-Phase I	1	10 E		4	2		MX-12	BTK	DWH	6/20/2012	BTK	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Series: 6

Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
6/15/2012	6-433		P	135-137-138	-	ATT		2	2		MX-12	втк	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-434		P	135-138		596 N		13	2		MX-12	ВТК	DWH	6/20/2012	BTK	Р	VT OK	DWH
6/15/2012	6-435		P	135-138	ŀ	617 N		5	2		MX-12	BTK	DWH	6/20/2012	втк	P	VTOK	DWH
6/15/2012	6-436		С	135-138-Phase I	1	ATT		30	2		MX-12	BTK	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-437		P	137-138-140		ATT		3	2		MX-12	втк	DWH	6/20/2012	втк	P	VT OK	DWH
6/15/2012	6-438		P	137-139-140		ATT		4	2		MX-16	KC	DWH	6/20/2012	BTK	Р	VTOK	DWH
6/15/2012	6-439	6-065	P	137-139		150 N		5	2		MX-16	KC	DWH	6/20/2012	втк	P	VTOK	DWH
6/15/2012	6-440		P	136-137-139		ATT		2	2		MX-16	KC	DWH	6/20/2012	BTK	Р	VTOK	DWH
6/15/2012	6-441		P	139-141-142		ATT		2	2		MX-16	KC	DWH	6/20/2012	ВТК	Р	VT OK	DWH
6/15/2012	6-442	6-066	P	139-142	1	250 N		5	2		MX-16	KC	DWH	6/20/2012	BTK	P	VT OK	DWH
6/15/2012	6-443		P	139-140-142		ATT		2	2		MX-16	KC	DWH	6/20/2012	BTK	Р	VTOK	DWH
6/15/2012	6-444		P	142-143-144		ATT		3	2		MX-I6	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/15/2012	6-445	6-067	P	142-143		300 N		5	2		MX-16	KC	DWH	6/20/2012	BTK	Р	VTOK	DWH
6/15/2012	6-446		P	141-142-143		ATT		2	2		MX-16	KC	DWH	6/20/2012	ВТК	Р	VT OK	DWH
6/15/2012	6-447		P	143-145-146		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/15/2012	6-448	6-068	P	143-146		370 N		5	2		MX-16	KC	DWH	6/25/2012	1G	Р	VT OK	DWH

Thursday, April 04, 2013

Page 28 of 42

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prin	nary / Seco	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location	- American			Size	1	Welde	r I.D.	QA.		Non-Destr	uctive T	esting	
Date	1D		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/15/2012	6-449		P	143-[44-146		ATT		2	1		MX-16	KC	DWH	6/25/2012	IG	Р	VT OK	DWH
6/15/2012	6-450		P	144-146		570 N		4	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/15/2012	6-451	6-071	P	135-137		500 N		5	2		MX-12	BTK	DWH	6/20/2012	ВТК	P	VT OK	DWH
6/15/2012	6-452	6-069	Р	146-148		431 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/15/2012	6-453		P	146-148		356 N		6	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/15/2012	6-454		Р	145-146-148		ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/15/2012	6-455	11	P	145-147-148		AT T		2	2		MX-16	КC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/15/2012	6-456		P	147-148-149		AT T		3	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/15/2012	6-457		P	148-149		269 N		5	2		* MX-16	KÇ	DWH	6/25/2012	JG	Р	VTOK	DWH
6/15/2012	6-458		P	148-149-150		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/15/2012	6-459	6-070	P	148-150		550 N		5	2		MX-16	KC	DWH	6/25/2012	1G	P	VT OK	DWH
6/20/2012	6-460	1	P	150-152-153		ATT		3	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/15/2012	6-461		P	149-150-152		AT T		2	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/15/2012	6-462	6-073	P	149-150		9 W		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/15/2012	6-463	6-075	P	149-153		450 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/15/2012	6-464		P	149-151-153		ATT		4	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

A LT CONTRACT CONTRACTOR

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Sec	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location			ĺ	Size		Welde	er I.D.	QA	1	Non-Destr	uctive 7	Cesting	
Date	ID		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	<i>Dia.</i> (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/20/2012	6-465	6-074	P	149-151	11777	200 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT QK	DWH
6/15/2012	6-466	6-055 A	P	120-122		48 N		5	2		MX-16	KC	DWH	6/15/2012	TS	P	VT OK	DWH
6/15/2012	6-467	6-055 B	P	120-122	,	23 N		5	2		MX-16	KC	DWH	6/15/2012	TS	P	VTOK	DWH
6/15/2012	6-468	6-055 A1	P	120-122		85 N		5	2 :		MX-16	KC	DWH	6/15/2012	TS	P	VTOK	DWH
6/15/2012	6-469	6-055 B1	P	122-124		3 W		5	2		MX-16	KC	DWH	6/15/2012	TS	P	VTOK	DWH
6/15/2012	6-470		С	120-122		0-100		100	2		MX-16	KC	DWH	6/15/2012	TS	P	VTOK	DWH
6/15/2012	6-471		P	138-140-Phase I	-	ATT		2	1		MX-12	BTK	DWH	6/25/2012	JG	P	VTOK	DWH
6/15/2012	6-472		P	140-Phase I		8 E		1	1		MX-12	BTK	DWH	6/25/2012	JG.	Р	VT OK	DWH
6/15/2012	6-473		P	140-142-Phase 1		ATT		12	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/15/2012	6-474		P	142-144-Phase I		ATT		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/15/2012	6-475		P	144-Phase I		10 E		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/15/2012	6-476	6-072	P	144-146-Phase I		6 W		8	2		MX-16	KC	DWH	6/20/2012	ВТК	Р :	VTOK	DWH
6/15/2012	6-477		P	146-Phase I		8 E		2	1		MX-12	BTK	DWH	6/25/2012	JG.	Р	VTOK	DWH
6/15/2012	6-478		Р	146-148-Phase I		ATT		2	1		MX-12	BTK	DWH	6/25/2012	JG	P	VTOK	DWH
6/15/2012	6-479	Ì	P	148-Phase I		8 E		2	1		MX-12	BTK	DWH	6/25/2012	BTK	Р	VTOK	DWH
6/20/2012	6-480		P	148-150-Phase I		ATT		I	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH

Thursday, April 04, 2013

Page 30 of 42

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No			Location				Size		Welde	er I.D.	QA		Non-Destr	uctive I	esting	
Date	ID	1	Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/20/2012	6-481	Ī	P	150-Phase I	-	8 e		2	1		MX-16	КС	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-482		P	150-152-Phase I	1	ATT		4	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-483		P	152-Phase I	1	6 e		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-484		P	151-154-155		AT T		4	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-485		P	151-153-155		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-486		P	152-153-155		AT T		2	2		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/20/2012	6-487		P	155-156-158		TTA		3	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/20/2012	6-488		P	155-157-158	1	ATT		4	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-489		P	154-155-157		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-490		P	157-159-160		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-491	İ	P	157-158-160		AT T		3	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/20/2012	6-492		P	156-158-160		TTA		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-493		P	159-160-162		ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-494		P	159-161-162	1	ATT		2	2		MX-16	KÇ	DWH	6/25/2012	JG	Р	VTOK	DWH
6/20/2012	6-495		P	161-162-163		ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-496		P	162-163-165		ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

A CO - Labour Hyris and

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/20/2012	6-497	T	P	162-164-165		ATT !		2	2	-	MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-498		P	164-165-167		T TA		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-499		Р	163-165-167		ATT		3	I		: MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-500		P	163-166-167	I	ATT		3	2		MX-16	KC	DWH	7/2/2012	SZ	P	VT OK	DWH
6/22/2012	6-501	1	P	166-168-170	-	ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-502		P	166-169-170	-	ATT		2	2		, MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-503		P	166-167-169		ATT	5	3	1		MX-16	KC	DWH	6/25/2012	1G	P	VT OK	DWH
6/22/2012	6-504		P	167-169	1	549 N		6	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-505		Р	169-171-172		ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-506		P	169-170-172	Ì	ATT		2	1		MX-16	KC	DWH	6/25/2012	1G	P	VTOK	DWH
6/20/2012	6-507		P	168-170-172		ATT		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-508		P	171-172-174		ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/22/2012	6-509		P	171-173-174		ATT		3	2		MX-16	КC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-510	6-076	P	151-154	ī	43 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-511	6-077	P	154-157		100 N		5	2		MX-16	KC	DWH	6/25/2012	.IG	Р	VTOK	DWH
6/20/2012	6-512	6-078	P	157-159		188 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair	Repair	DS No	Repair		Location	97.7			Size		Welde	er I.D.	QA		Non-Destr	uctive 1	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft,)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
6/20/2012	6-513	6-079	P	159-162		302 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-514	6-080	P	162-163		400 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-515	6-081	P	163-167	1	459 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-516	6-082	P	167-169		507 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/20/2012	6-517	6-083	P	169-171	11	582 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-518	6-084	P	171-173		455 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/22/2012	6-519	6-085	P	173-174		4 E		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-520	6-086	P	171-174	1	296 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-521	6-087	P	153-155		500 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/25/2012	6-522	6-088	P	162-Phase I		9 E		5	2		MX-12	втк	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-523	İ	P	152-155-Phase (AT T		2	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-524		P	155-Phase I		6 E		6	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-525		P	155-156-Phase I		ATT		2	ı		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-526		P	156-Phase I	33	6 E		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-527		P	156-160-Phase I		ATT		2	1		MX-16	KC	DWH	6/25/2012	1G	P	VT OK	DWH
6/20/2012	6-528		P	160-Phase I		5 E		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	r I.D.	QA		Non-Destr	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft,)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
6/20/2012	6-529		P	160-162-Phase I		AT T		2	1		MX-16	КС	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-530	1	P	162-Phase I		5 E		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-531		P	162-164-Phase I		ATT		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-532	1	P	164-Phase I		3 E		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-533		P	164-167-Phase I		AT T		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
5/20/2012	6-534		P	167-Phase I		4 E		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/20/2012	6-535		P	167-169-Phase I		AT T		6	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/20/2012	6-536		P	169-171-Phase I		TTA		6	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/25/2012	6-537		Р	171-173-Phase I	1	ATT ;		6	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
5/22/2012	6-538		P	173-174-176	i i	ATT		2	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
5/22/2012	6-539		Р	174-176-177	i	ATT		8	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-540		P	174-175-177		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
5/22/2012	6-541		P	175-177-178		AT T		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
5/22/2012	6-542	1	P	176-177-178		AT T		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
5/22/2012	6-543		Р	176-178-179		ATT		3	2		MX-16	KC	DWH	6/25/2012	,IG	P	VTOK	DWH
5/22/2012	6-544		P	179-180		562 N		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Sec	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location				Size		Weld	er I.D.	QA		Non-Destr	uctive 7	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/22/2012	6-545		Р	178-179-180		ATT		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-546		P	178-180-181		ATT		2	1		MX-16	KC	DWH	6/22/2012	JG	Р	VT OK	DWH
6/25/2012	6-547		P	181-183-184		ATT		3	2		: MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-548		Р	180-181-183		ATT		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-549		P	180-182-183		ATT		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/22/2012	6-550		P	182-183-185		AT T		3	1		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/25/2012	6-551		P	183-185-186		AT T		3	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/25/2012	6-552		P	183-184-186		AT T		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/22/2012	6-553		P	185-186-188		AT T		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/22/2012	6-554		P	185-187-188		ATT		2	1		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/25/2012	6-555		P	185-187		605 N		6	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/25/2012	6-556		P	187-189-191		AT T		2	1		MX-16	KC	DWH	6/26/2012	JG	Р	VT OK	DWH
6/25/2012	6-557		P	187-190-191		AT T		2	1		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/22/2012	6-558		P	187-188-190		ATT		4	2		MX-16	KC	DWH	6/25/2012	JG	Р	VTOK	DWH
6/25/2012	6-559		P	190-219-220-221		ATT		4	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-560		P	220-221		158		6	2		MX-16	KC	DWH	6/26/2012	EC	Р:	VT OK	DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	
Date	ID	ļ	Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	<i>Dia.</i> (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/25/2012	6-561	1	P	190-216		10 N		4	1		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-562		P	220-221-222-223		AT T		3	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-563	Ť.	P	190-218-219		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-564		Р	190-217-218		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-565		P	190-216-217		AT T		3	1		MX-16	KC	DWH	6/26/2012	: EC	P	VT OK	DWH
6/25/2012	6-566		P	190-215-216		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-567		P	190-214-215		ATT		2	2		MX-16	КC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-568		Р	190-213-214		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-569		P	190-212-213		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-570		P	190-211-212		ATT		3	2		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-571		P	190-210-211		AT T		2	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-572		P	190-209-210		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-573		P	190-208-209		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-574		P	190-207-208		AT T		2	2		MX-16	КC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-575		P	190-206-207		ATT		2	1		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-576		P	190-205-206		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

Series: 6

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair	Repair	DS No			Location				Size		Welde	er I.D.	QA		Non-Destr	uctive T	esting	d
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/25/2012	6-577		P	190-204-205		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-578	AL E	P	190-203-204		ATT		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-579		P	190-202-203		ATT		1	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-580		P	190-201-202		ATT		2	1		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-581		P	190-200-201		ATT		1	1		MX-16	KC	DWH	6/26/2012	EC	Р	VTOK	DWH
6/25/2012	6-582		P	190-199-200		ATT		3	1		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-583		P	190-191-199		ATT		2	1		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-584		P	191-198-199		ATT		3	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-585	6-098	P	191-197-198		AT T		6	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-586		P	191-196-197		ATT		1	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-587		P	191-195-196		AT T		2	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-588		P	189-191-195		ATT		1	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-589		P	189-194-195	Ī	ATT		2	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-590		P	189-193-194		AT T		3	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-591		P	189-192-193	1	ATT		2	1		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-592		P	173-176-Phase I		ATT		6	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH

consultants

Repair Summary Log

6/22/2012

6-608

6-091

178-181

Project: Onondaga Lake Sediment Consolidation Area (SCA)

ProjNo: GJ4706B TaskNo: 200 Location: Camillus, New York

Description: Construction Quality Assurance for SCA Phase II

Prir	nary / Sec	ondary:	Primary				Serie	es: 6										
Repair	Repair	DS No	Repair		Location			1	Size		Welde	er 1.D.	QA		Non-Destr	uctive 1	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/25/2012	6-593		P	176-179-Phase I		AT T		6	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-594		P	179-180-Phase I		ATT		6	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/22/2012	6-595		P	I 80-182-Phase I		ATT		4	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-596		P	182-185-Phase I		AT T		4	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-597		P	185-187-Phase I		ATT		4	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-598	Tennes.	P	187-189-Phase I		AT T		6	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-599		P	189-192-Phase I		AT T		5	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-600		P	192 Phase I		I W		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/22/2012	6-601	6-073 A	C	148-150		505 N		10	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-602	6-073 B	P	149-150		9 W		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-603		С	149-150		0-22.5		22.5	2		MX-16	KC	DWH	7/2/2012	SZ	P	VT OK	DWH
6/22/2012	6-604	6-072 A	P	146-Phase I		8 E		5	2		MX-16	KC	DWH	6/27/2012	EC	P	VT OK	DWH
6/27/2012	6-605		С	138-152-Phase I		0-176		176	2		MX-12	BTK	DWH	6/27/2012	EC	P	VT OK	DWH
6/22/2012	6-606	6-089	P	174-175		50 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-607	6-090	P	176-178		182 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH

277 N

KC

MX-16

DWH 6/25/2012

JG

VT OK DWH

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary:

Primary

Repair Date	Repair ID	DS No	Repair		Location				Size		Welde	er I,D,	QA		Non-Desta	uctive 7	esting	
Date	ID.		Туре	Seam	Panel	Distance (ft.)	Offset (fl.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA II
6/22/2012	6-609	6-092	P	181-183		365 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-610	6-093	P	183-185		426 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VT OK	DWH
6/22/2012	6-611	6-094	P	185-187		500 N		5	2		MX-16	кс	DWH	6/25/2012	JG	P	VT OK	DWH
6/25/2012	6-612	6-095	P	187-189		600 N		5	2		MX-16	KC	DWH	6/25/2012	JG	P	VTOK	DWH
6/22/2012	6-613	6-096	Р	173-176		592 N		5	2		MX-16	KC	DWH	6/25/2012	JG	Р	VT OK	DWH
6/25/2012	6-614	6-097	P	I 82-Phase I		10 W		5	2		MX-16	KC	DWH	6/27/2012	EC	P	VT OK	DWH
6/25/2012	6-615	6-099	P	190-212		201 N		5	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-616	6-100	P	215-216		27 W		5	2		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/25/2012	6-617	6-101	P	209-210		28 W		5	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-618	6-102	P	205-206		29 W		5	2		MX-16	KC	DWH	6/26/2012	EC	Р :	VT OK	DWH
6/25/2012	6-619	6-103	P	199-200		27 W		5	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/25/2012	6-620		P	220-222		1 N		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
6/25/2012	6-621		P	222-223		INW		2	2		MX-16	KC	DWH	6/26/2012	EC	P	VT OK	DWH
5/25/2012	6-622		P	189-Phase I		6 E		2	I		MX-16	KC	DWH	6/29/2012	SZ	P	VT OK	DWH
5/25/2012	6-623		P		191	529 N	6 W	2	1		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/26/2012	6-624	6-049 A1	P	111-113		IN		5	2		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH

Geosyntec >

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary

Repair Date	Repair ID	DS No	Repair		Location				Size		Welde	er l.D.	QA		Non-Destr	uctive 7	esting	
Date	110		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA IL
6/26/2012	6-625	6-108 A	P	109-112		516 N		5	2		MX-16	KC	DWH	6/26/2012	EC	Р	VT OK	DWH
6/26/2012	6-626	1	С	109-112		453-663	1	210	2		MX-16	BTK	DWH	6/26/2012	EC	P	VT OK	
6/26/2012	6-627	6-108 B	C	107-110	+	653 N		10	2		MX-16	KC	DWH	6/26/2012	EC	P	VTOK	DWH
6/26/2012	6-628		Р	185-Phase I	1	8 E		3	2		MX-12	BTK	DWH	6/26/2012	EC	P :	VTOK	DWH
6/26/2012	6-629		Р	180-Phase I		15 E		3 1	2		MX-12	BTK	DWH	6/26/2012	EC	P	VTOK	DWH
6/27/2012	6-630	6-072 B	Р	152-153		5 W		5	2		MX-12	BTK	DWH	6/27/2012	EC	P	VTOK	DWH
6/27/2012	6-631	6-072 A1	Р	153-155		349 N		5	2		MX-12	втк	DWH	7/2/2012	SZ	P	VTOK	DWH
6/27/2012	6-632	6-111	Р	121-Phase [4 W		5	2		MX-12	BTK	DWH	6/27/2012	EC	P	VT OK	DWH
6/27/2012	6-633	6-112	P	116-119		659 N		5	2		MX-12	BTK	DWH	6/27/2012	EC	Р	VTOK	DWH
6/27/2012	6-634	6-113	Р	118-120	1	266 N		5	2		MX-12	BTK	DWH	6/27/2012	EC ·	P	VTOK	DWH
6/27/2012	6-635	6-114	P	119-121	1	660 N		5	2		MX-12	BTK	DWH	6/27/2012	EC	Р	VT OK	
6/27/2012	6-636	6-072 C	P	148-Cap		6 W		5	2		MX-12	BTK	DWH	6/27/2012	EC	P	VTOK	DWH
6/27/2012	6-637	6-088 B	P	160-Phase I	i i	3 W	- 1	5	2		MX-12	BTK	DWH	6/27/2012	EC	P	VT OK	DWH
6/27/2012	6-638	6-088 A	P	167-Phase I		8 E		5	2		MX-12	BTK	DWH	7/2/2012	SZ	P	VTOK	DWH
6/27/2012	6-639		С	160-169-Phase I		0-70		70	2		MX-12	ВТК	DWH	6/29/2012	EC	P	VTOK	DWH
7/2/2012	6-640	6-108 A1	С	114-116		285 N		10	2		MX-16	BTK	DWH	7/2/2012	SZ	P	VT OK	DWH

consultants

Repair Summary Log

Project: <u>Onoπdaga Lake Sediment Consolidation Area (SCA)</u>

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary Series: 6

Repair	Repair	DS No	Repair		Location				Size		Welde	er I.D.	QA		Non-Dest	ructive 7	Testing	
Date	TD		Type	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
6/29/2012	6-641	6-088 A1	P	169-Phase I		7 E		5	2		MX-12	BTK	DWH	6/29/2012	EC	Р	VTOK	DWH
7/2/2012	6-642	6-097 B	P	183-185		254 N		5	2		MX-16	BTK	DWH	7/2/2012	EC	P	VT OK	DWH
7/2/2012	6-643	6-097 A	P	220-222	Ī	14 N		5	2		MX-16	BTK	DWH	7/2/2012	SZ	P	VTOK	DWH
7/2/2012	6-644		С	221-223		0-20		20	2		MX-16	ВТК	DWH	7/2/2012	SZ	P	VT OK	DWH
6/28/2012	6-645	1	С	176-192-Phase 1		0-204		204	2		MX-12	втк	DWH	6/29/2012	SZ	P	VT OK	DWH
6/22/2012	6-646		Р	133-Phase I	Phase I	IN	2 E	2	2		MX-16	KC	DWH	6/27/2012	EC	P	VT OK	DWH
6/22/2012	6-647		P	133-Phase I	Phase 1	6 N	4 E	2	2		MX-16	KC	DWH	6/27/2012	EC	P	VT OK	DWH
6/26/2012	6-648	1	P	176-Phase I	Phase I	3 N	3 E	2	2		MX-12	BTK	DWH	6/27/2012	EC	Р	VTOK	DWH
6/27/2012	6-649	ž.	Р		Phase I	250 W	1 N	2	2		MX-12	BTK	DWH	6/29/2012	EC	P	VT OK	DWH
6/26/2012	6-650		P		Phase I	216 W	1 N	5	2		MX-12	BTK	DWH	6/27/2012	EC	P	VTOK	DWH
7/2/2012	6-651	6-108 C	P	109-Cap		55 N		5	2		MX-16	втк	DWH	7/2/2012	SZ	P	VTOK	DWH
7/2/2012	6-652	6-097 C	P	187-Cap		10 E		5	2		MX-16	втк	DWH	7/2/2012	SZ	P	VTOK	DWH
7/2/2012	6-653		Р		Phase I	263 W	1 N	4	2		MX-16	BTK	DWH	7/2/2012	SZ	P	VTOK	DWH
9/17/2012	6-654		P		91	218 S	7 E			5	MX-14	MB	DW	9/17/2012	MB	р	VTOK	DW
10/3/2012	6-655		P		47	18 \$	7 E			3	MX-1	MB	DW	10/3/2012	MB	р	VTOK	DW
1/13/2012	6-656		P		120	70 N	1 E	1	1		X6	BTK	JWC	11/13/2012	AS	D	VTOK	JWC

consultants

Repair Summary Log

Project: Onondaga Lake Sediment Consolidation Area (SCA)

Location: Camillus, New York

ProjNo: GJ4706B

TaskNo: 200

Description: Construction Quality Assurance for SCA Phase II

Primary / Secondary: Primary Series: 6

Repair	Repair	DS No	Repair		Location				Size		Welde	r I.D.	QA		Non-Desti	uctive T	esting	
Date	ID		Туре	Seam	Panel	Distance (ft.)	Offset (ft.)	Length (ft.)	Width (ft.)	Dia. (ft.)	Mach ID	Oper ID	ID	Date	Oper ID	Result (p/f)	Action	QA ID
11/13/2012	6-657		В		137	290 N	8 W	1	1	*********	X6	BTK	JWC	11/13/2012	AS	р.	VTOK	JWC
1/13/2012	6-658		P		155	79 S	8 W	2	2		X6	втк	JWC	11/13/2012	AS	р	VTOK	JWC
1/13/2012	6-659	1	P		167	90 S	8 E	1.5	1		X6	втк	JWC	11/13/2012	AS	р	VTOK	JWC
1/13/2012	6-660		P		188	207 N	7 E	1	1		X6	BTK	JWC	11/13/2012	AS	р	VTOK	JWC
1/13/2012	6-661		P		183	197 N	3 E	1	1.5		X6	BTK	JWC	11/13/2012	AS	р	VTOK	JWC
1/13/2012	6-662		В		151	195 N	2 W	1	I		X6	BTK	JWC	11/13/2012	AS	р	VTOK	JWC
1/13/2012	6-663		P		142	25 N	3 W	1	1.5		X6	втк	JWC	11/13/2012	AS	р	VTOK	JWC
1/14/2012	6-664		P		200	7 W	3 S	1	1		X-12	ВТК	JWC	11/14/2012	AS	P	VTOK	JWC
4/3/2013	6-665		P	ZATA T	110	652 N	1 W			1	. X-12	СР	JB	4/3/2013	CP	p	VTOK	JB

APPENDIX N

Geomembrane Leak Location Survey

Electrical Leak Testing of the 60-mil Geomembrane Liner For Phase II Honeywell Sediment Consolidation Area Camillus, New York

Prepared for:

Parsons
301 Plainfield Rd.
Suite 305
Syracuse, New York 13212
November 20, 2012

Prepared by:

THG Geophysics Ltd.
4280 Old William Penn Highway
Murrysville, Pennsylvania 15668
(724) 325-3996
www.geo-image.com
THG Project No. 4510

TABLE OF CONTENTS

1.0	INTRODUCTION	2
2.0	LEAK TEST INVESTIGATION	3 4
3.0	CONCLUSION	6
4.0	REFERENCES	7
	LIST OF FIGURES	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.	Site Location Map Cell Location Map Cell A Cell B Cell C Cell D Cell E Cell F Cell G Cell H Cell I Cell J Sensitivity Test Cell G Northern Part of Cell B Northern Part of Cell C Northern Part of Cell D Northern Part of Cell E North Truck Ramp 0-300 ft North Truck Ramp 600-750 ft South Truck Ramp 0-300 ft South Truck Ramp 300-600 ft South Truck Ramp 300-600 ft South Truck Ramp 300-600 ft	

1.0 INTRODUCTION

The Sediment Consolidation Area (SCA) is constructed to provide containment of sediments dredged as part of the Onondaga Lake Remedy. The SCA is constructed in phases, with the second phase consisting of 25 acres of a 60-mil HDPE geomembrane on compacted clay and subsequently covered with one foot of 4" minus drainage gravel (Figure 1).

Parsons engaged THG Geophysics, Ltd. (THG) to perform a leak test of the geomembrane in accordance with ASTM Standards. The leak test is an electrical conductivity test of the geomembrane based upon the *mise-à-la-masse* geophysical survey method (ASTM D 7007 and ASTM D 7703). The *mise-à-la-masse* survey is an electrical resistivity method that has been used in the mining industry since the 1920s for delineating electrically conductive subsurface ore bodies. Within the landfill and other industrial operations that require impermeable geomembrane liners, this test is very effective in detecting holes in the geomembrane by using water as an electrically conductive medium.

Following the passage of Sub-Title D, landfills were required to line waste cells with a geomembrane. The regulatory agencies realized the potential for the creation of liner holes and tears in the geomembrane during and post construction. THG was requested in 1991 by the Pennsylvania Department of Environmental Protection and several landfill companies to find methods to test geomembranes for holes. THG recognized that a leak test using DC current would be effective in detection of holes and tears; this method was subsequently developed into ASTM standards D 7707 and 7703, the two standards used to test the geomembrane at the SCA. Since then THG has conducted dozens of electrical leak tests totaling over 700 acres, the largest test consisting of 30 acres.

2.0 LEAK TEST INVESTIGATION

2.1 Background

A leak test of the SCA Phase II cell geomembrane was conducted from May 2012 through November 2012 (Figure 2). Two methods of liner leak investigation were used. The dipole method (ASTM D 7007) was used after drainage gravel had been installed. The water lance method (ASTM D 7703) was used in selected areas prior to gravel placement (as a preliminary check) and in areas where drainage gravel is not to be installed. Prior to geomembrane installation, a series of wires was placed under the geomembrane to ensure better communication with the ground.

2.2 Dipole Method (ASTM D 7007)

Approximately 22 acres of Phase II of the SCA are covered with drainage gravel. This area was divided into 10 roughly 300-foot by 300-foot test cells, labeled Cell A through Cell J (Figures 3 through 12). The 10 cells were tested for leaks in accordance with ASTM D 7007. The survey was conducted on the areas of the SCA that were covered in gravel at the time of the survey. Any area where the liner was exposed within the cell being tested was checked at a later date (Figures 14 through 17). After completion of the initial 10 cells, portions of Cells C,D,E,H,I and J were retested at the locations where truck access ramps existed (Figures 18 through 23).

The electrical continuity survey consists of applying an electrical potential between the geomembrane and protective cover. Cathodes were placed roughly in the center of each cell. An electrical potential of between 300 and 700 volts DC was placed into each cell between the cathode and the anode, which in this case consisted of the wires placed under the geomembrane. Note that each 300'-sq cell is a separate test and each operator judges, based upon the current gravel saturation conditions and a cell-specific sensitivity test, how much current to apply to the cell to effectively detect a leak.

The electrical potential causes electric current to flow through holes in the insulating geomembrane material. The current density around the leak is used to detect and locate the leak. The cover material at the site is a coarse gravel (4" minus) and as such the survey was conducted in the rain (when practical) to ensure electrical communication. If rain was not occurring at the time of the survey then an industrial hose was deployed to saturate the gravel.

2.2.1 Leak Detection Sensitivity

A leak sensitivity test was performed at each cell in accordance with ASTM D 7007 Annex A3 (Procedures for leak detection sensitivity test for surveys with earth material covering the geomembrane using an artificial leak) (Figure 13). An artificial leak (i.e., a small circular metal plate) was placed beneath the drainage gravel at each of the 10 cells and a series of measurements were recorded to determine the leak signal and background noise level for each of the 10 cells (Figures 2 and 13).

The background noise level (N) is the ambient noise with the current to the cell turned on but the artificial leak turned off (i.e., disconnected) and is measured as the difference between the maximum and minimum measured potential (Figure 13). The background noise level in the 10 cells ranged from 0.02 V to 0.07 V.

The signal (S) plus noise is the current reading from the artificial leak with the current turned on and the artificial leak turned on. The signal plus noise potential ranged from 0.28 V to 0.51 V.

The data farthest from the artificial leak with an R value less than 3 determines the maximum distance to detect the artificial leak:

In all cases, the R-value was greater than 3 for the 5-foot spaced survey; consequently, the survey was conducted using a 5-foot spacing. Figure 13 shows an example of the work performed to determine the R-value from a sensitivity survey.

2.2.2 Electrical Continuity Survey

Stainless steel electrodes connected to a multi-meter probe were inserted into the drainage gravel to measure the flow of electricity at a spacing of every 5 square feet. The multimeter is connected to a datalogger (Polycorder; Omnidata, Logan, UT), and the datalogger is triggered to collect the measurement for subsequent download to a computer. Further the multimenter is integrated with a multi-test detector (Texas Research Institute, Austin Texas). Over 35,000 records were collected and a potential map of the electric field confirmed the locations of 12 anomalies (Figure 2).

Maps of the electrical potential for each cell were used to ensure no anomalies were overlooked during data collection (Figures 3 through 12 and 14 through 23). These maps show the voltage potential that exists within each cell at the time of the testing. Anomalies are those readings that show a low voltage or high voltage and are assumed to be a hole; and thus require additional testing. If the retested anomaly proved to be a false positive then the anomaly was ignored. Note that the maps are not modified after retesting. Consequently, these figures are only useful for the initial survey.

Anomalies that are detected and flagged in the field and anomalies indicated on these maps were retested by repositioning the cathode and testing each anomaly. The retesting also helped to locate the holes more precisely.

The 12 locations were exhumed, and 9 holes were repaired, and retested both electrically and with a vacuum box. All repairs tested as tight and were properly sealed.

2.3 Water Lance Method (ASTM D 7703)

The east and west berms consist of approximately 50 feet by 650 feet of exposed 60-mil geomembrane. The method used to test the exposed geomembrane on these berms was the water lance method (ASTM D 7703).

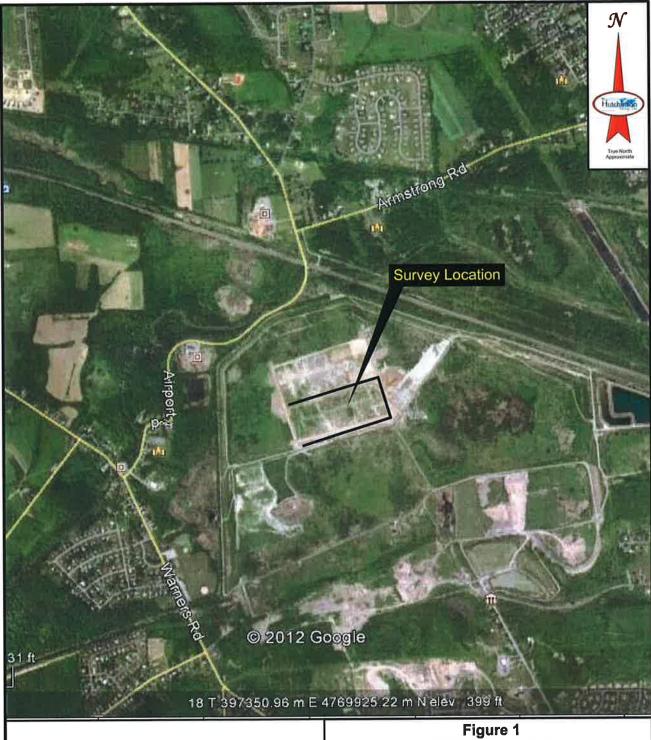
The water lance consists of a hydraulic tube with 2 detection electrodes separated by 1 meter

Leak Liner Test Phase II Honeywell Sediment Consolidation Area Camillus, New York November 20, 2012

that are within the flow of water. Approximately 12 volts DC is applied to the water (and upstream of the detection electrodes). The water lance test uses a multi-test meter that produces an increased beeping per second, a string of lights, a volt meter, and an arrow system to show the direction of the leak. The ground is an electrode tied to the network of wires beneath the 60-mil liner.

Water is jetted through the lance to the exposed liner. Water penetrating the liner will complete the circuit and the increased electrical potential will be detected by the multi-test meter. This method has a significant advantage over other methods since the operator must look at the liner and thus the entire exposed liner is carefully inspected for dimples, cuts, poor repairs and other penetrations of the liner in addition to the electrical leak test.

One hole was detected on the east berm (Figure 2).


3.0 CONCLUSIONS

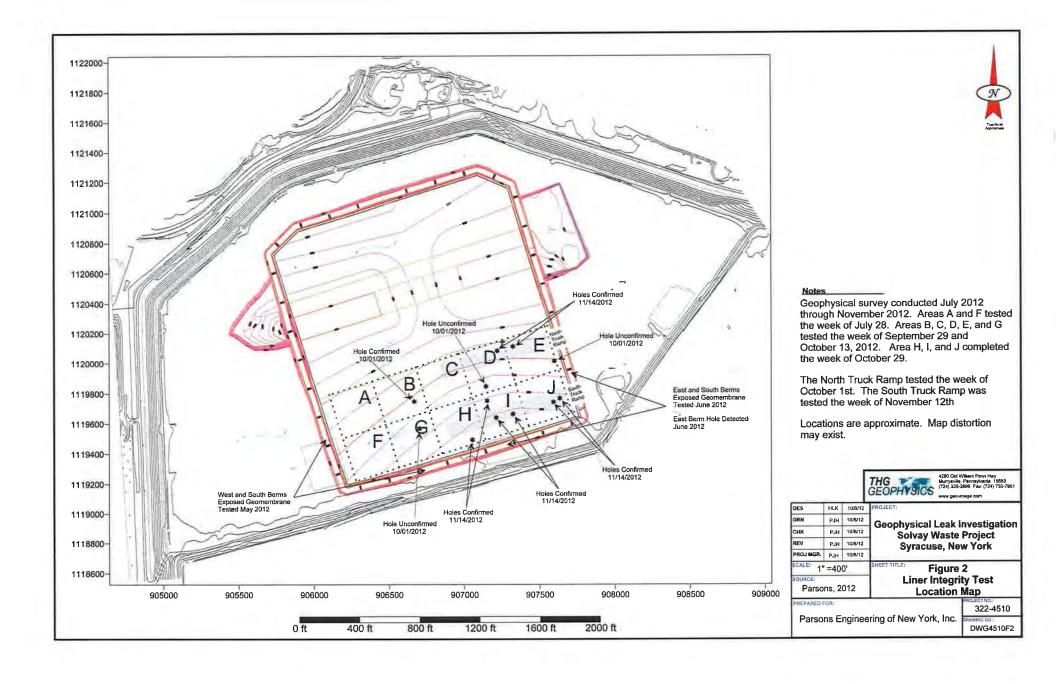
SCA Phase II consists of approximately 22 acres of drainage gravel covering HDPE geomembrane and approximately 2.5 acres of exposed geomembrane. Two methods of liner leak investigation were used. The dipole method (ASTM D 7007) was used after drainage gravel had been installed. The water lance method (ASTM D 7703) was used in selected areas prior to gravel placement (as a preliminary check) and in areas where drainage gravel is not to be installed. The portion of SCA Phase II that was covered with drainage gravel was divided into 10 cells with cathodes placed into the center of each cell and the anode (ground) was attached to wires that were placed beneath the liner. An approximately 300-volt low amperage potential field was established at each cathode; and a total of approximately 35,000 records were collected. The exposed portions of the geomembrane were tested by the water lance method. The liner leak investigation was performed by THG Geophysics crews under the direction of Peter J. Hutchinson, PhD, PG.

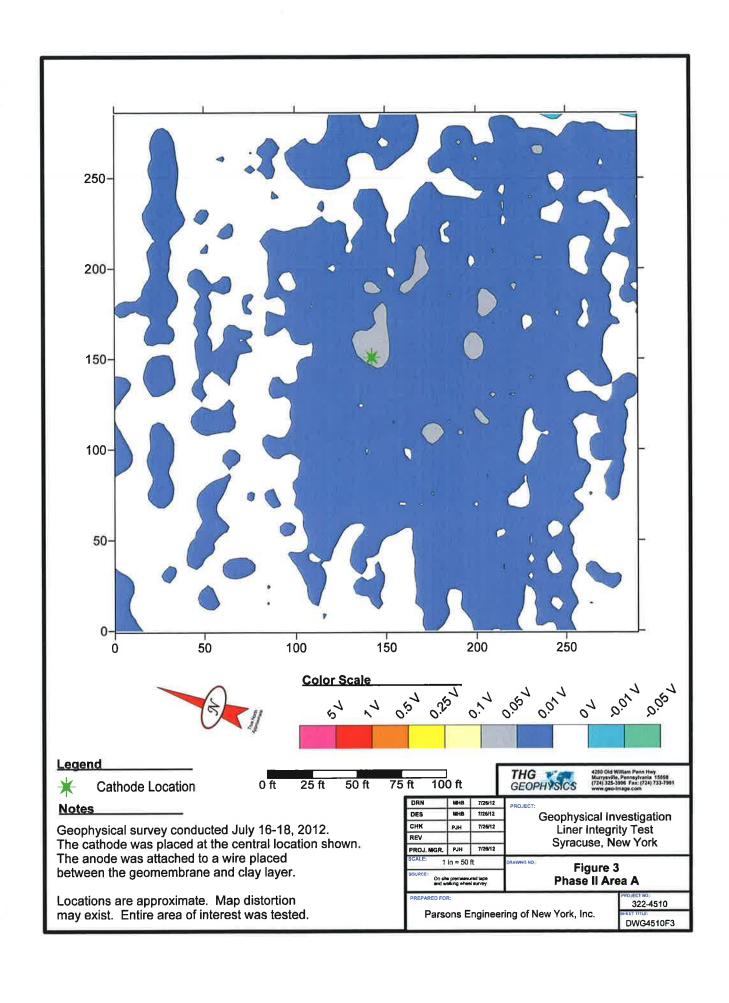
The leak detection survey confirmed the presence of 9 holes beneath the drainage gravel and one hole on the east berm. The holes were subsequently repaired and tested as tight.

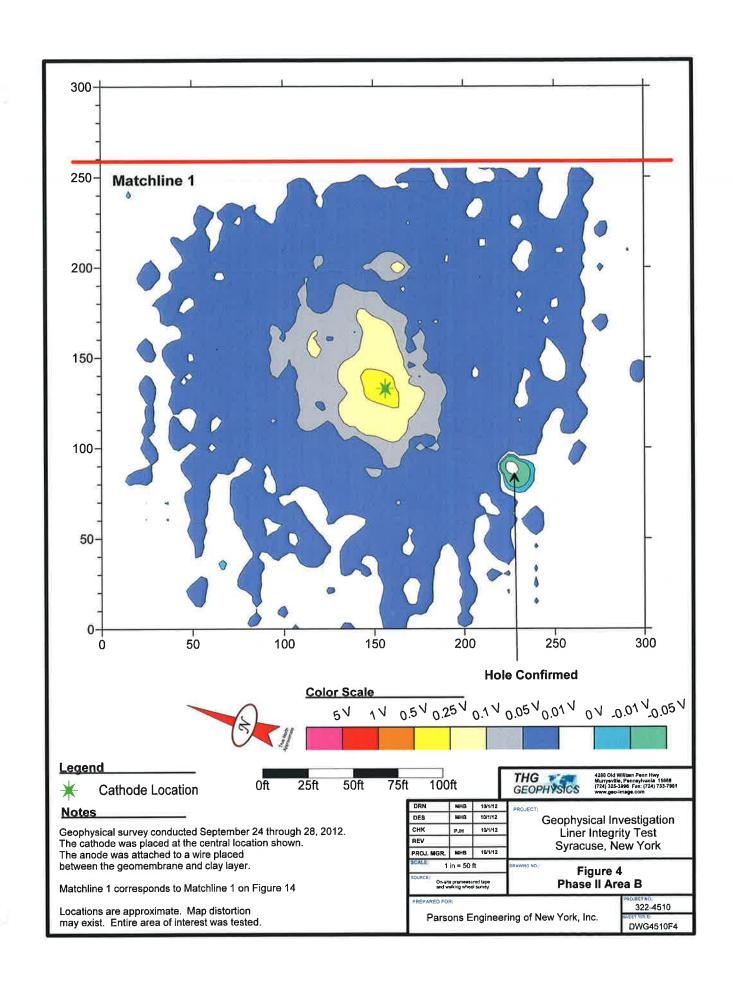
4.0 REFERENCES

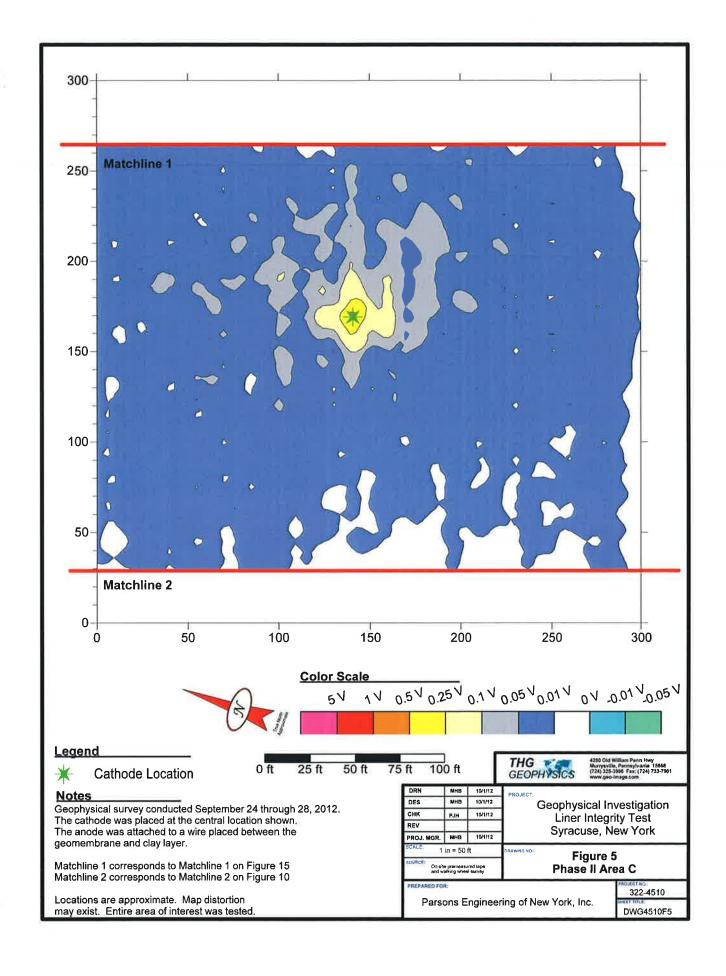
- ASTM D6747-12. Standard Guide for Selection of Techniques for Electrical Detection of Leaks in Geomembranes
- ASTM D7007-09. Standard Practices for Electrical Methods for Locating Leaks in Geomembranes Covered with Water or Earth Materials
- ASTM D7703-11. Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance System
- Boryta, D. A., and M. N. Nabighain (1985). "Method for determining a Leak in a Pond Liner of Electrically Insulating Sheet Material." US Patent No. 4,543,525; September 24, 1985.
- Boryta, D. A., and P. M. Brown (1988). "Method for Determining the Location of a Leak in a Pond Liner Formed of Electrically Insulating Material" US Patent No. 4,771,246; September 13, 1988.
- Darilek, G. T. and J. O. Para (1988). The Electrical Leak Location Method for Geomembrane Liners. San Antonio, TX, Southwest Research Institute.
- Fountain, L. (1988). Detection and location of leaks in geomembrane-lined liquid waste impoundments using an electrical technique. San Antonio, TX, Department of Geosciences Southwest Research Institute: 117-126.

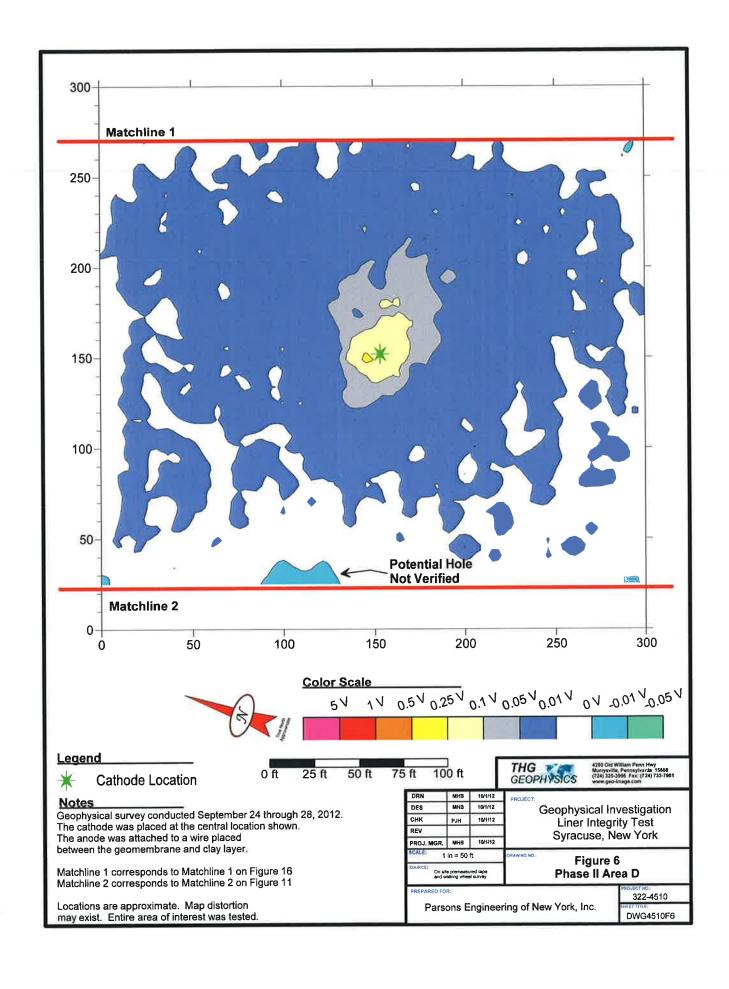
4280 Old William Penn Hwy Murrysville, Pennsylvania 15668 (724) 325-3996 Fax: (724) 733-7901

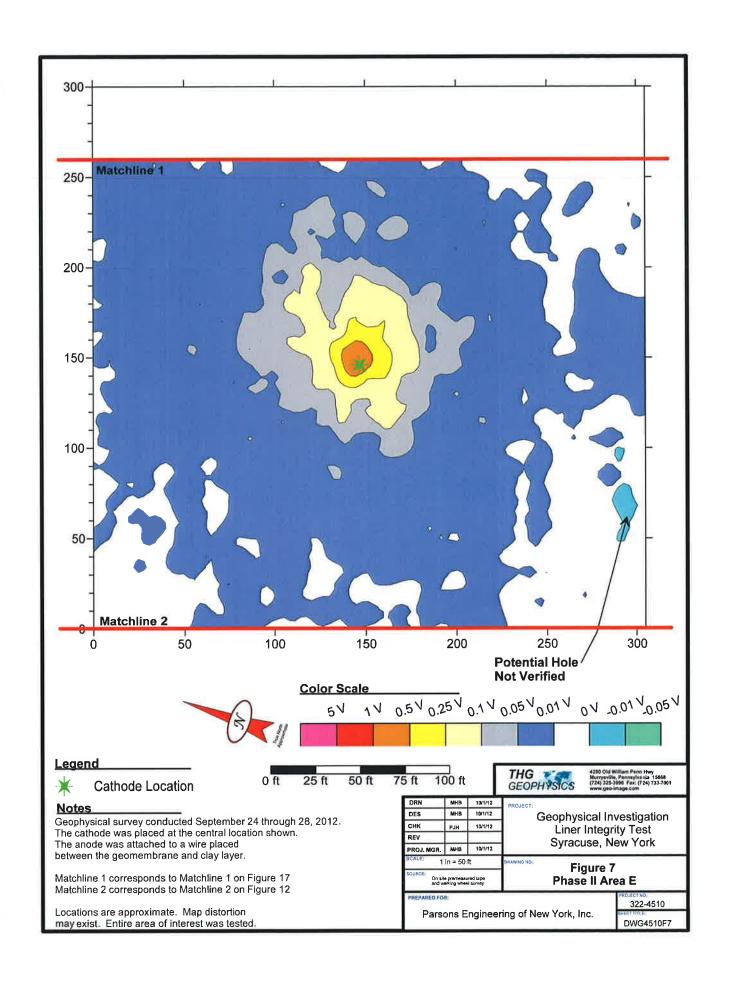

www.geo-lmage.com

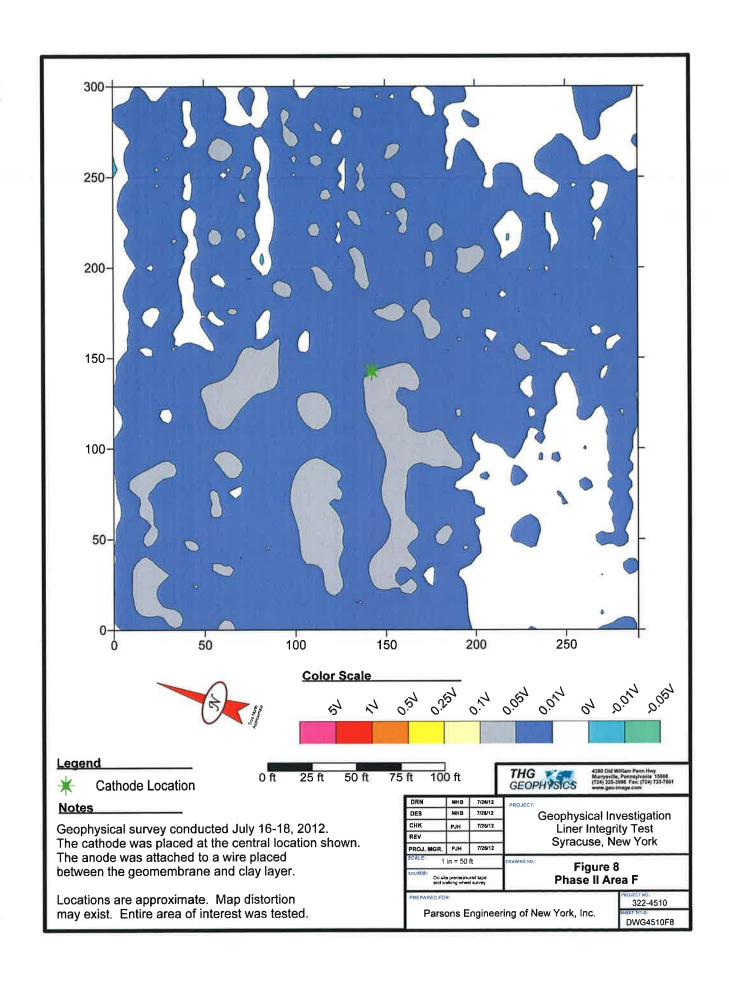

3000 ft 1000 ft 2000 ft

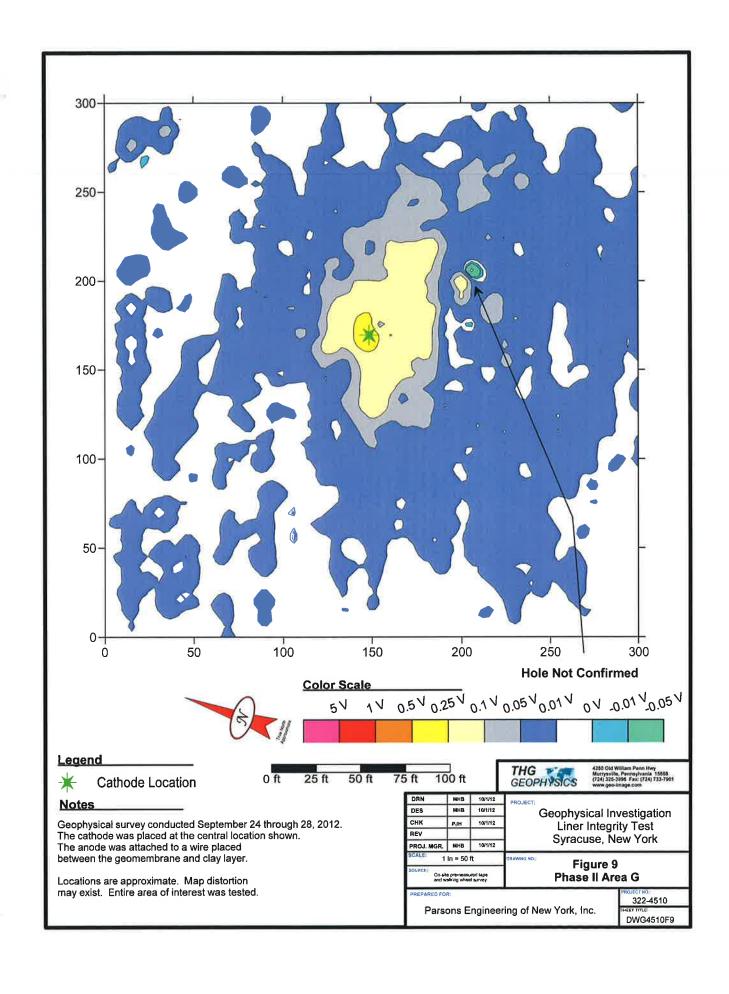

Site Location Map

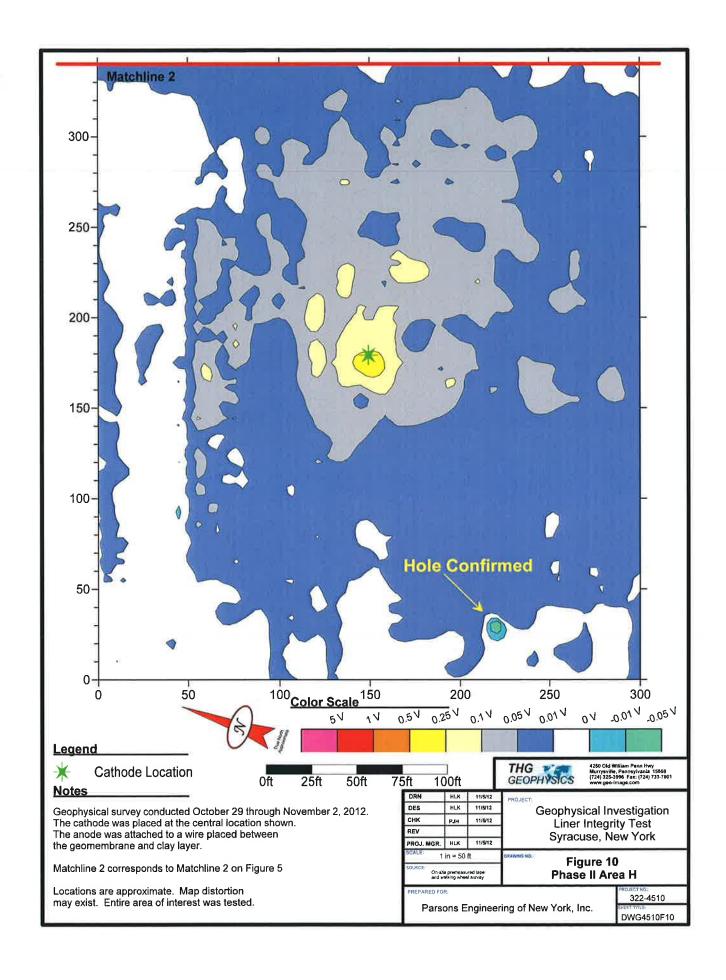

Leak Location Survey Solvay Waste Project, Phase II Syracuse, New York

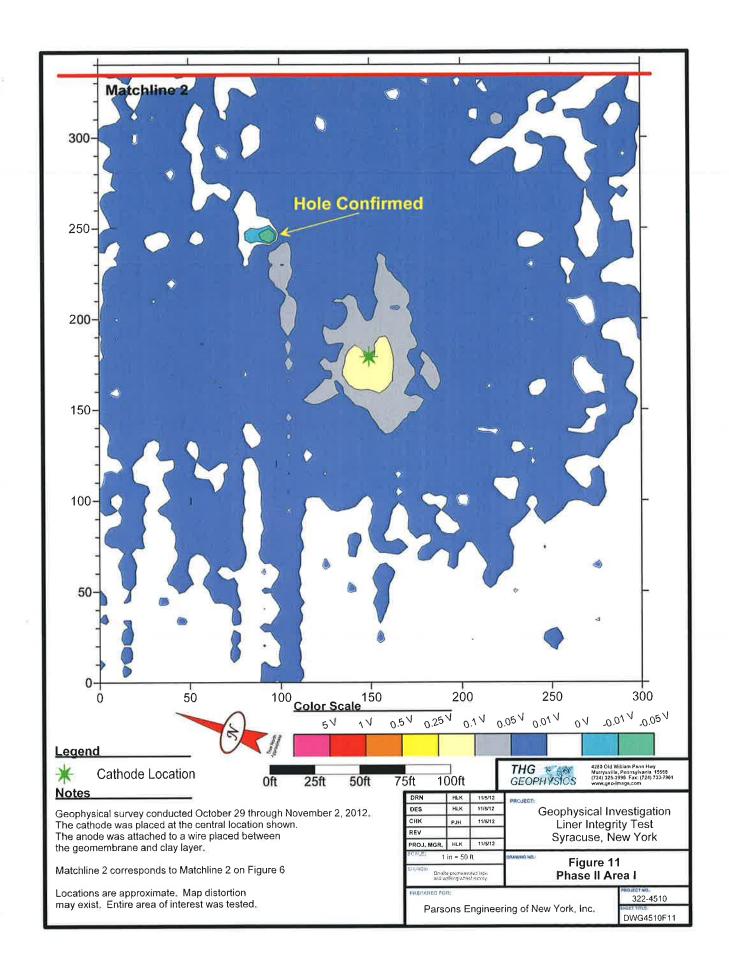

SCALE: 1:24,000	PROJECT NO.:	DRAWING NO.:
DATE: 5/13/12	322-4510	DWG4510F1
DRAWN BY: PJH	SOURCE:	
CHECKED BY: PJH	2012 Google I	Map Aerial Photograph

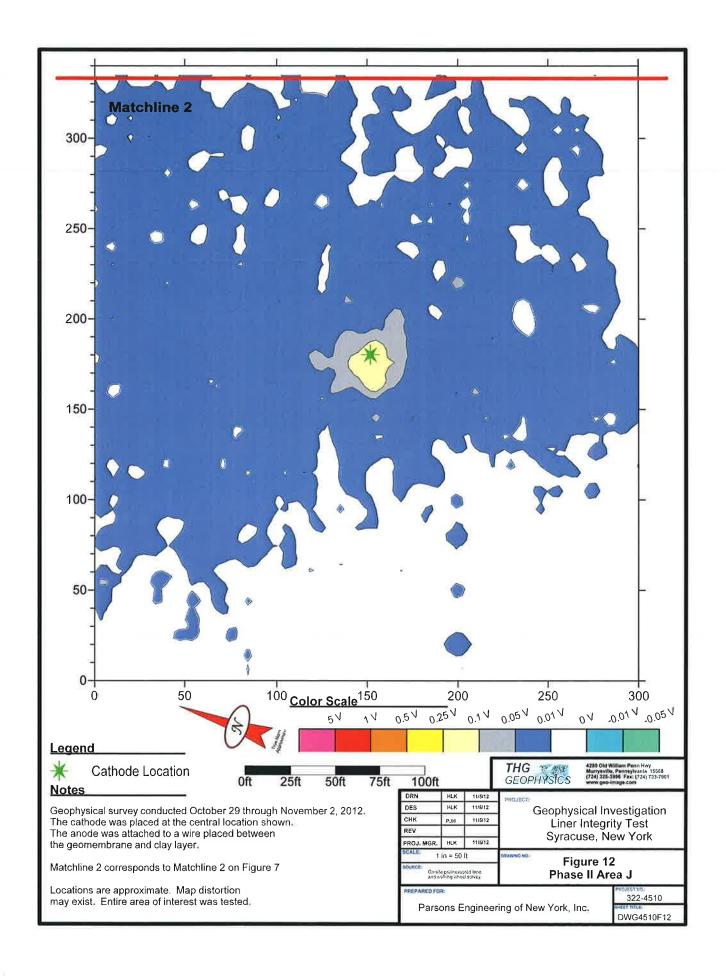


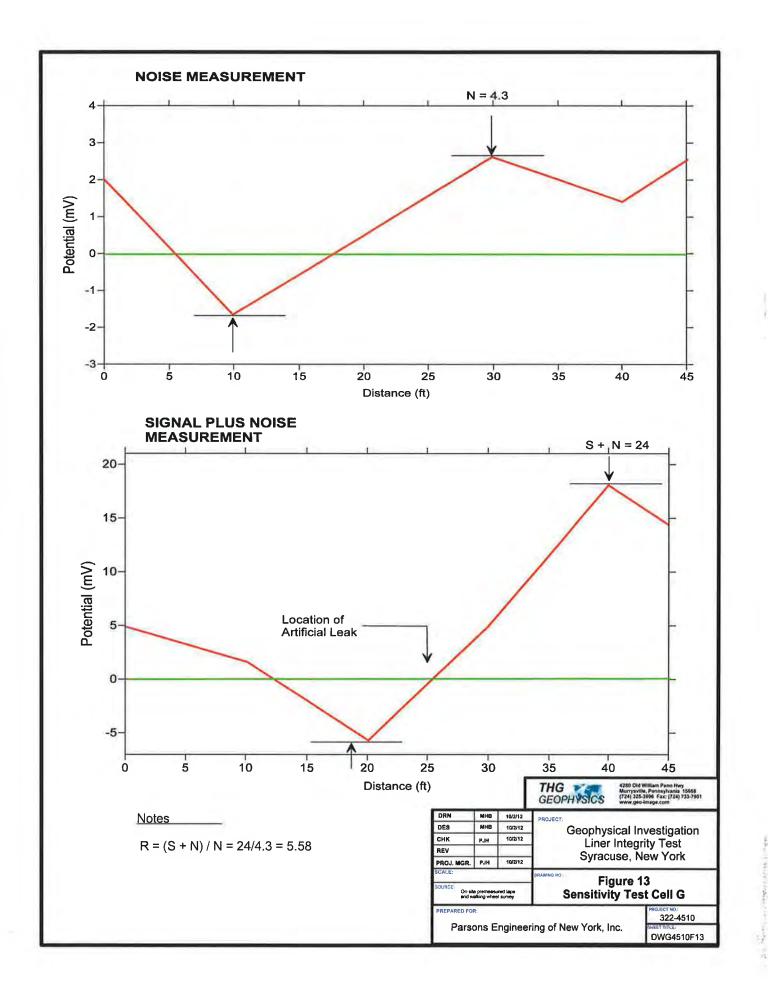


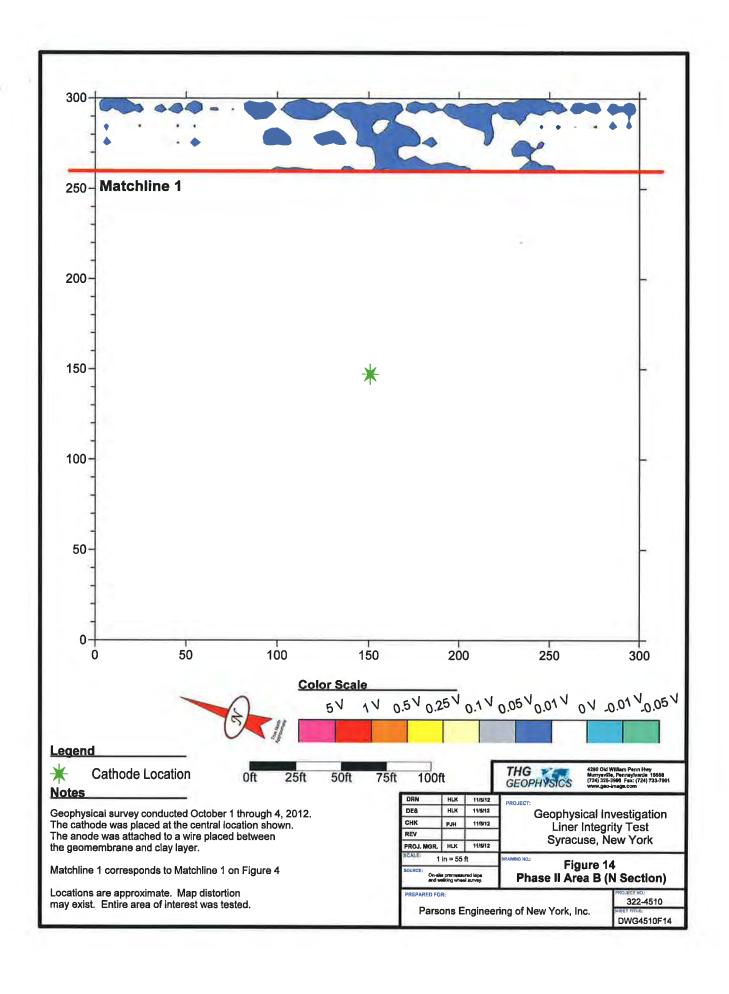


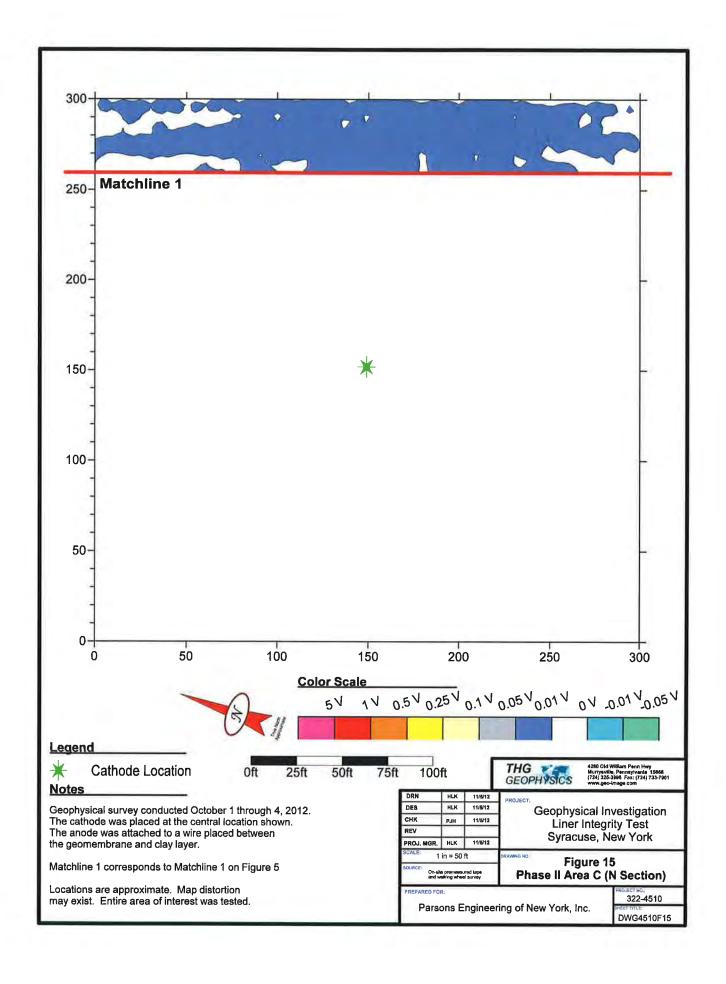


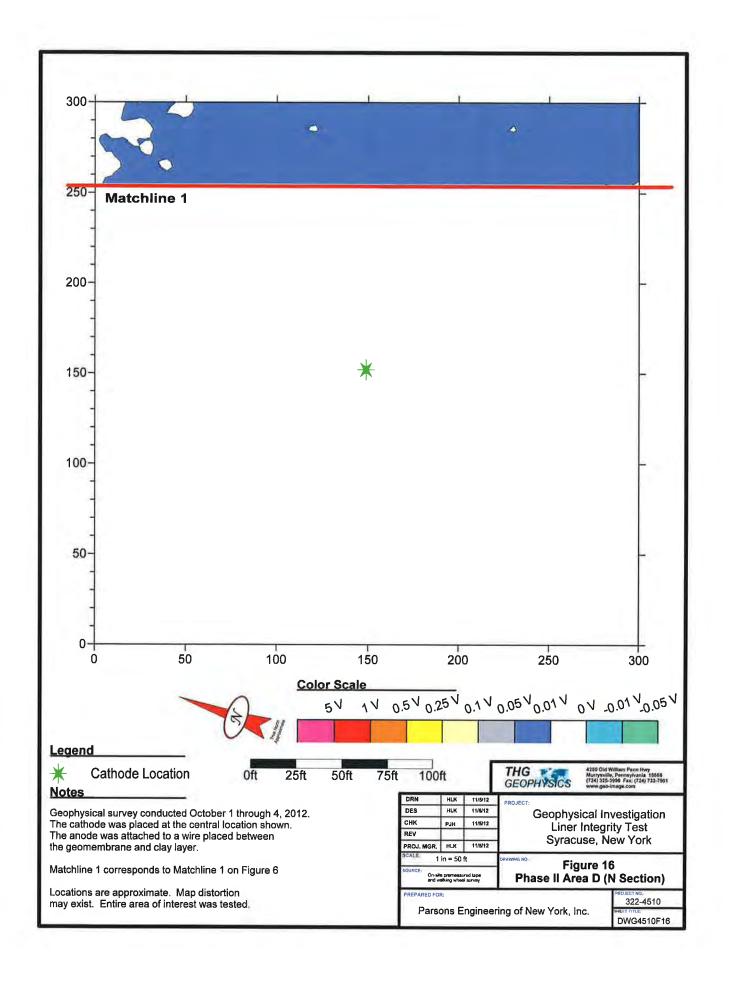


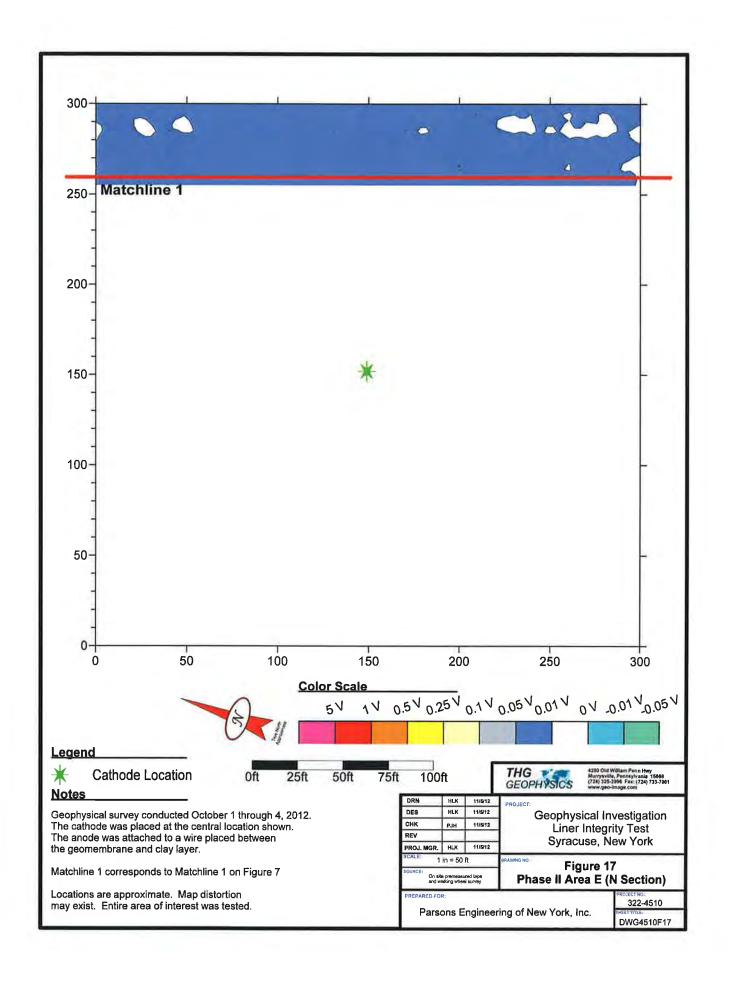


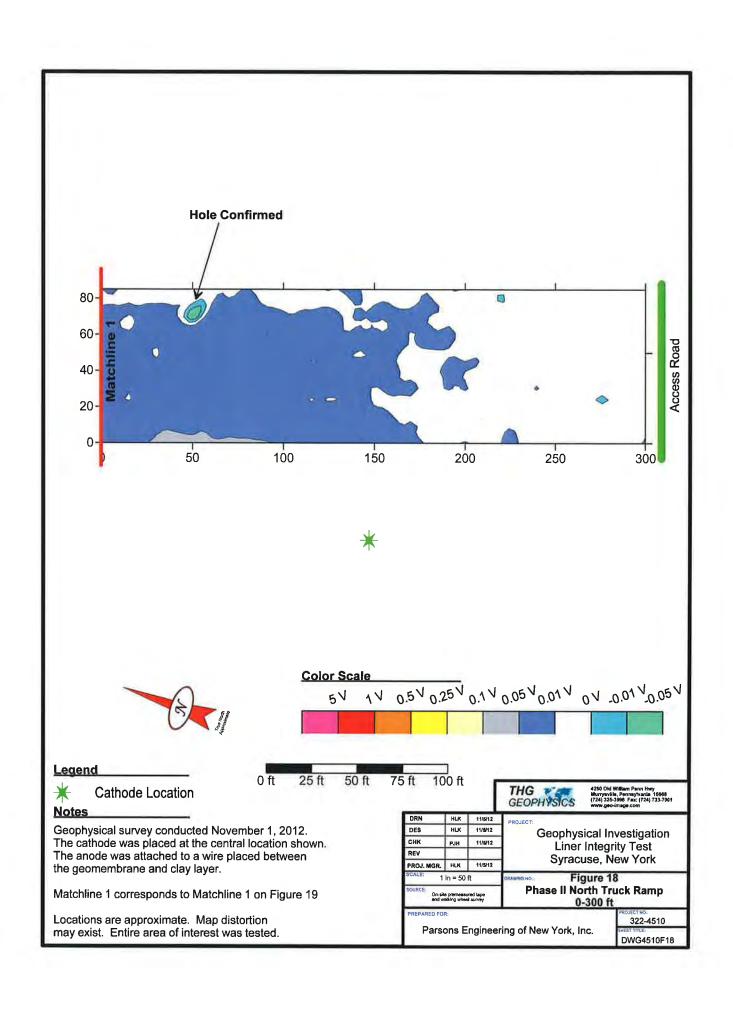


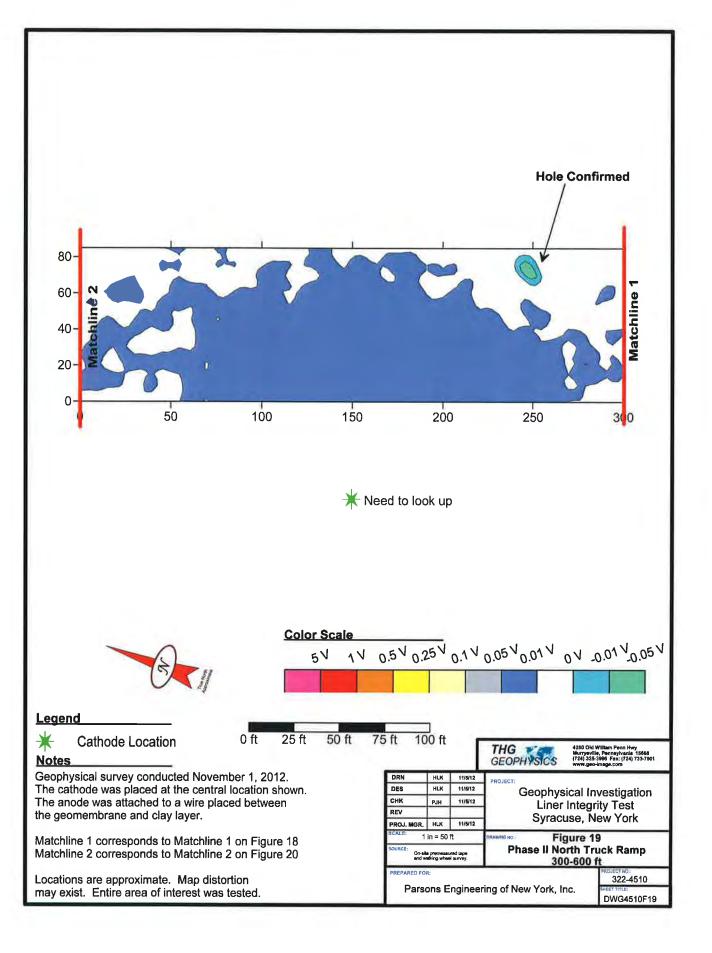


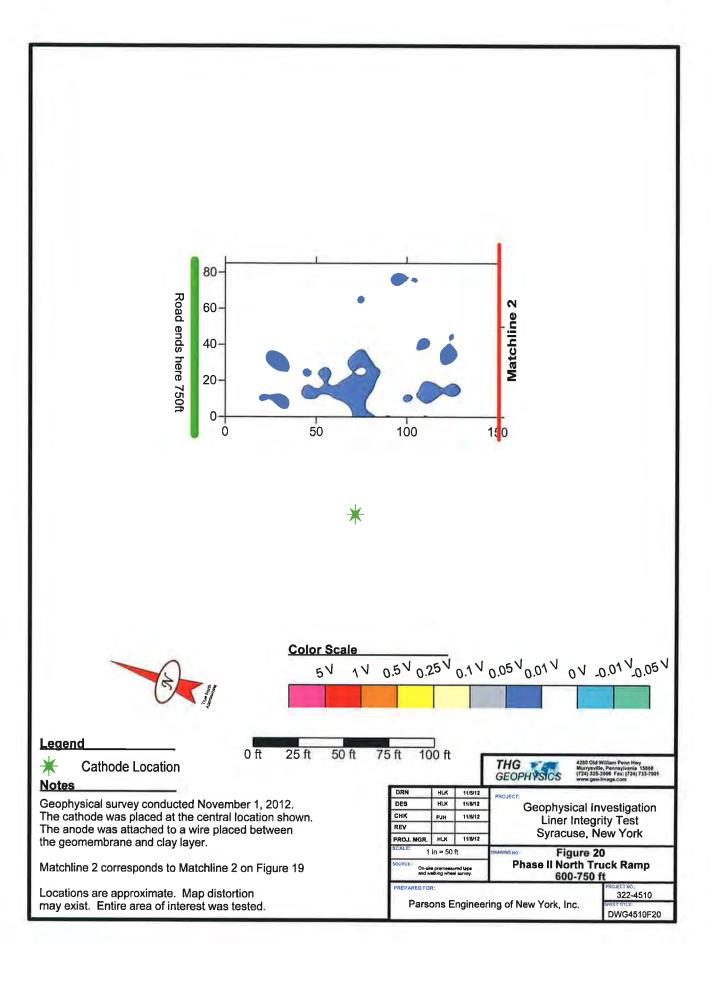


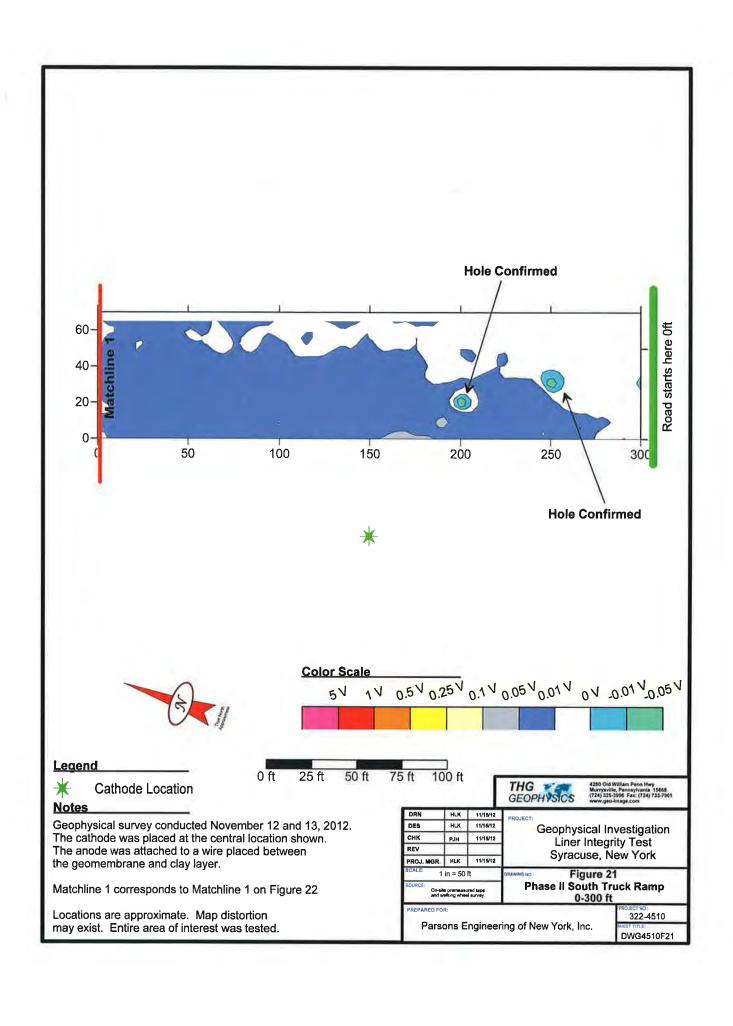


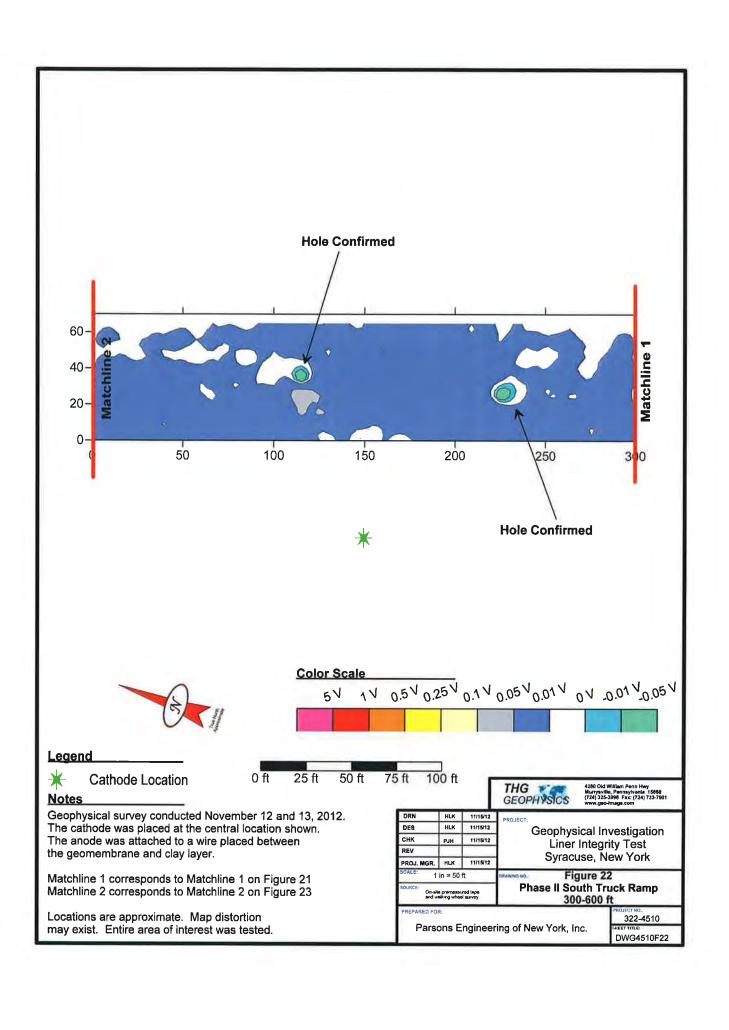














APPENDIX O

Well Decommission Letter

ATLANTIC TESTING LABORATORIES

Canton

6431 U.S. Highway 11 P.O. Box 29 Canton, NY 13617 315-386-4578 (T) 315-386-1012 (F)

March 27, 2013

Parsons 301 Plainfield Road, Suite 350 Liverpool, New York 13212

Attn: Mr. William A. Mathe

Re: Subsurface Investigation Services

Well Abandonment Services

Inclinometer S1-G1

SCA Project - Wastebed 13

Syracuse, Onondaga County, New York

ATL No. CD3151D-02-03-13

Ladies and Gentleman:

At the request of Mr. William A. Mathe, representing Parsons, and in accordance with Task Order No. 446199.60000.09 Revision 1, dated September 1, 2010, and in accordance with our Task Order Addendum (ATL No. CD3151-10-10 Addendum 3 dated October 11, 2012), Atlantic Testing Laboratories, Limited (ATL) performed well abandonment services for the referenced project. The field services were performed on March 14, 2013. The driller's field log is attached.

Inclinometer S1-G1 was abandoned on March 14, 2013 utilizing the following procedure:

- The inclinometer casing was tremie-grouted with cement-bentonite grout from the bottom of the casing at a depth of 67.0 feet to the ground surface.
- The inclinometer casing was over-drilled utilizing 4¼-inch hollow stem augers to a depth of 15.0 feet below ground surface.
- 3. The inclinometer casing was pulled from the ground. The casing broke off at a depth of 16.0 feet below ground surface. The 16.0-foot portion of casing was removed from the borehole, while the remaining 51.0-foot portion was left in the ground.
- 4. The borehole was tremie-grounted with cement-bentonite grout to the ground surface.
- The hollow stem augers were removed from the borehole. Cement-bentonite grout was added to the borehole to bring it back to level with ground surface.

It is important that the abandoned well be monitored for settlement or subsidence. This will be the responsibility of Parsons, and/or their client. ATL assumes no liability for loss or damage resulting from borehole settlement.

Please contact our office should you have any questions, or if we may be of further service. We look forward to our continued association to obtain a successful completion of the project.

Sincerely,

ATLANTIC TESTING LABORATORIES, Limited

- E Mackey

Adrienne E. Mackey

Geologist

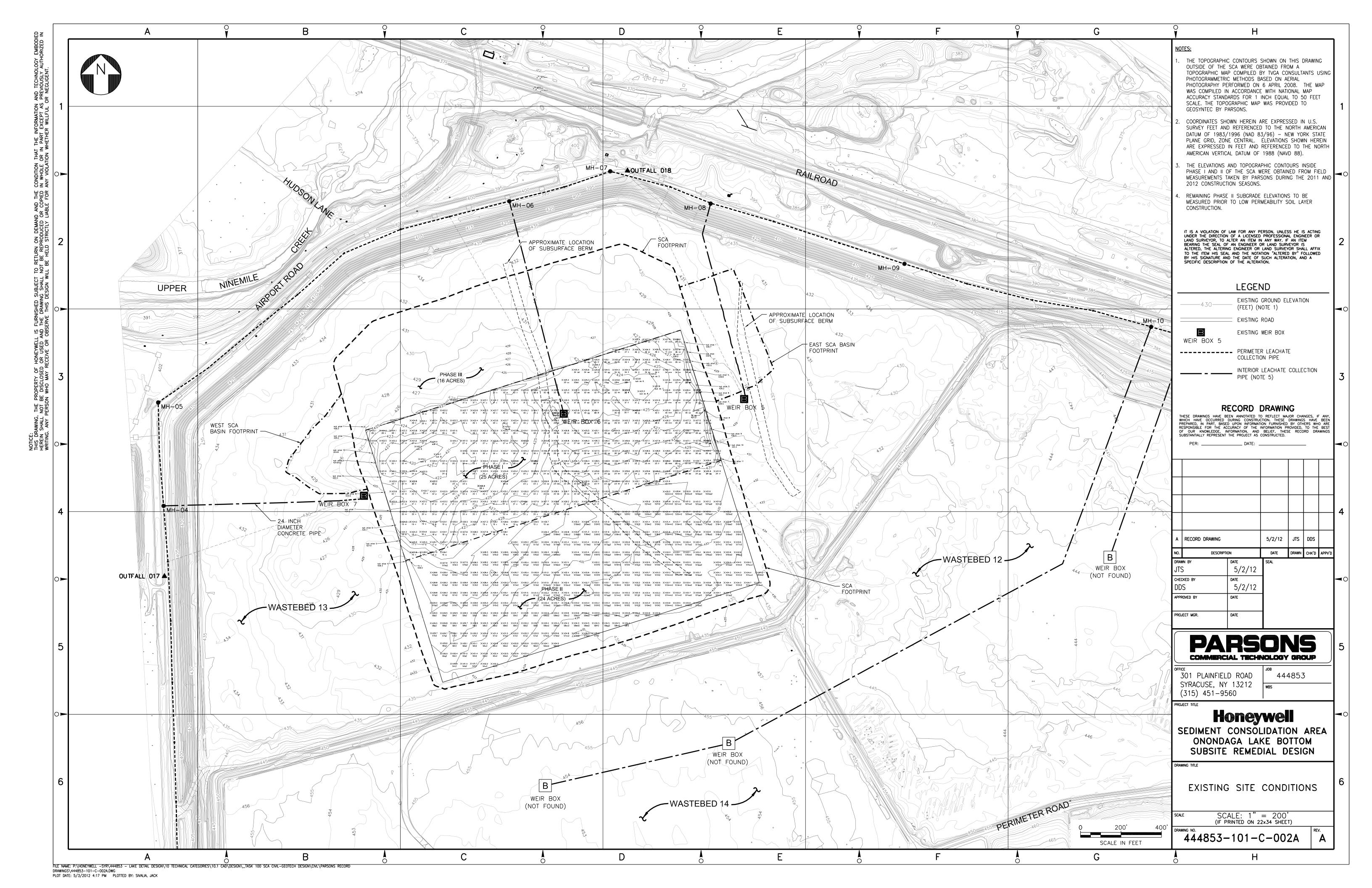
AEM/TJG/aem Enclosure

ATLANTIC TESTING LABORATORIES

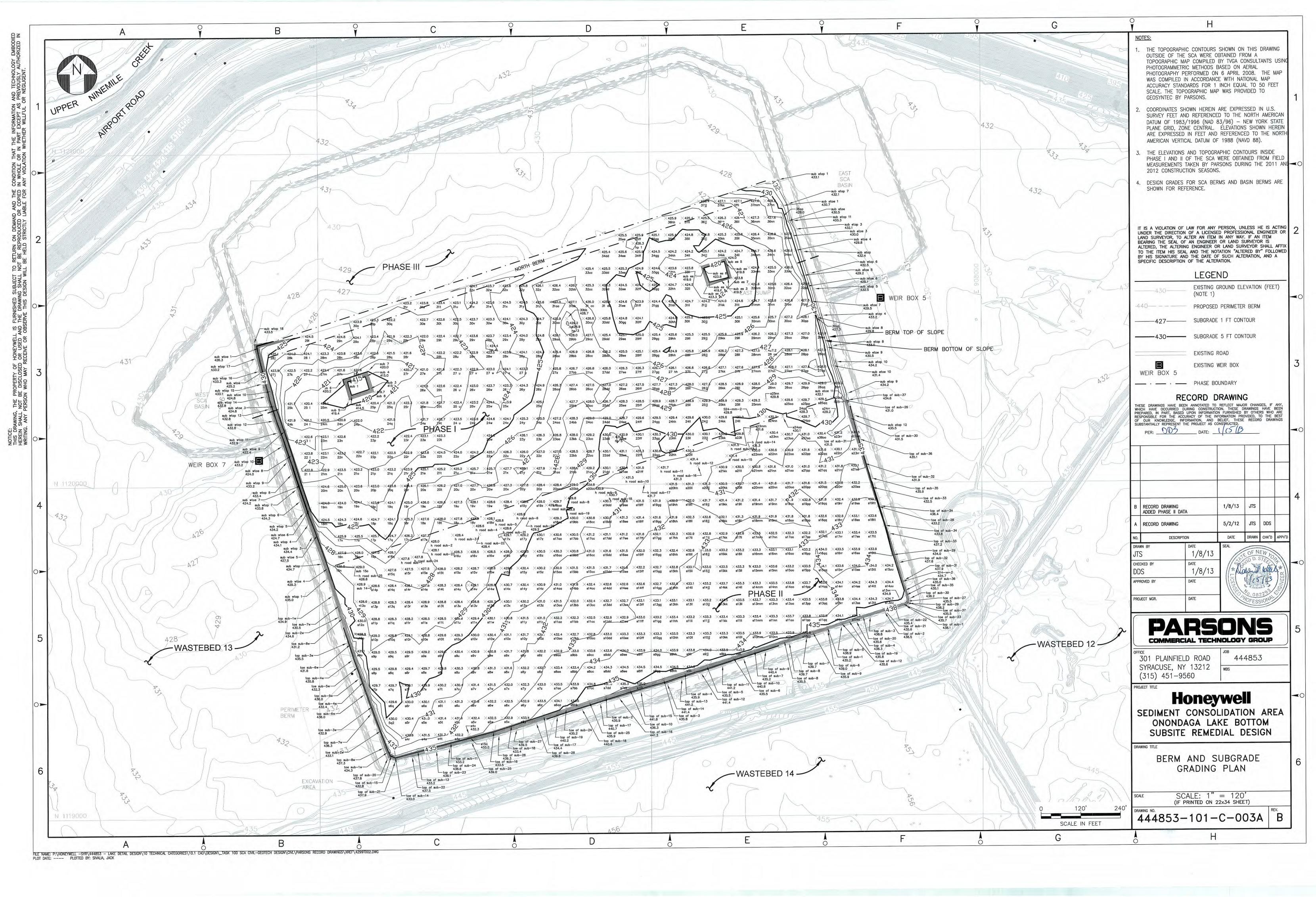
Subsurface Investigation Field Log

Client: Parsons								Job No.: <u>CD3151</u>							
Project: SCA Project Wastebed 13									Boring No.: ST G1						
	ıg: <u>Syra</u>											Sheet: of			
Drill	Rig: _		C	mt-8	50X							Rig Unit	No.: <u>ت</u>	6v-570	
	er Hamn				r	1			· —			1	1	1	
Auto Safety			Date	Time	Casing Depth	Hole Depth		Water Depth	Date 3-14-15	From	illed To	HISA Size	Casing Size	Air / Wet Rotary	Rock Core
Weight: NA		31415		67.0						67.0	s contain				
Fall: NA								3-14-13		150	474	144			
-	g Hamme					1	_						 		
Weight:															
					_] [l	<u> </u>		<u> </u>		
	un 🗆 D	riven					· · · ·	1							
و <u>د</u>	Sampled			Split Spo	on Blows		very	h of nge	Soil Type and Drilling Notes				Casing Blows		
Sample Number	From To		0 6	6/12	12	18 24	Recovery	Depth of Change	(field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders)					Cas	
									Topsoil; Asphalt; Concrete; Other (note)						
	Coronal and Includence Piper														
	,,				Then over dillal pipe to 15.0 and po				pulled.						
						-	Then our dilled pipe to 15.0' and pulled out 16'st pipe Comutail do the surface.								
			+					-		<u>ullid a.</u>	ed Aper	Augers, -	Topped o	H andly	
				-				1	grand						
			1]							
															_
			<u> </u>		 			-							
	-				1			-	ļ			.,			-
				-	 									· · · · · · · · · · · · · · · · · · ·	
			_					1							
]							
				_								·			
-				_	-										
			_		+			{							
		-			+			1						<u> </u>	
			+	—	1			1							
Borin	g Termin	ated A	At:		c	aved A	լ։ <u>գ</u> յ	e tal	Finish	Date: _	3-40	ري Time:			
Drille	_			childs								ure:			
Uala				S 0b.											

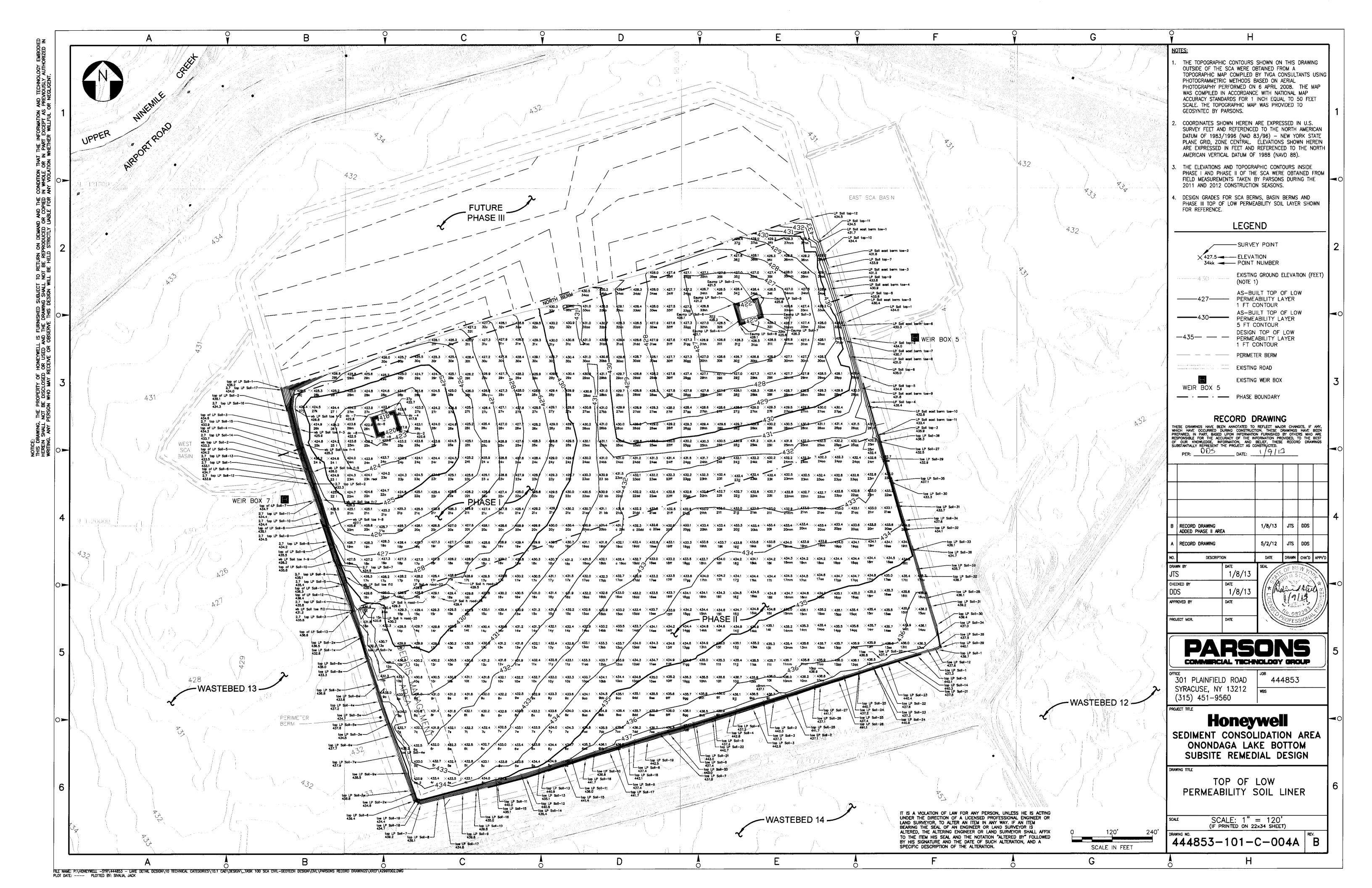
APPENDIX P

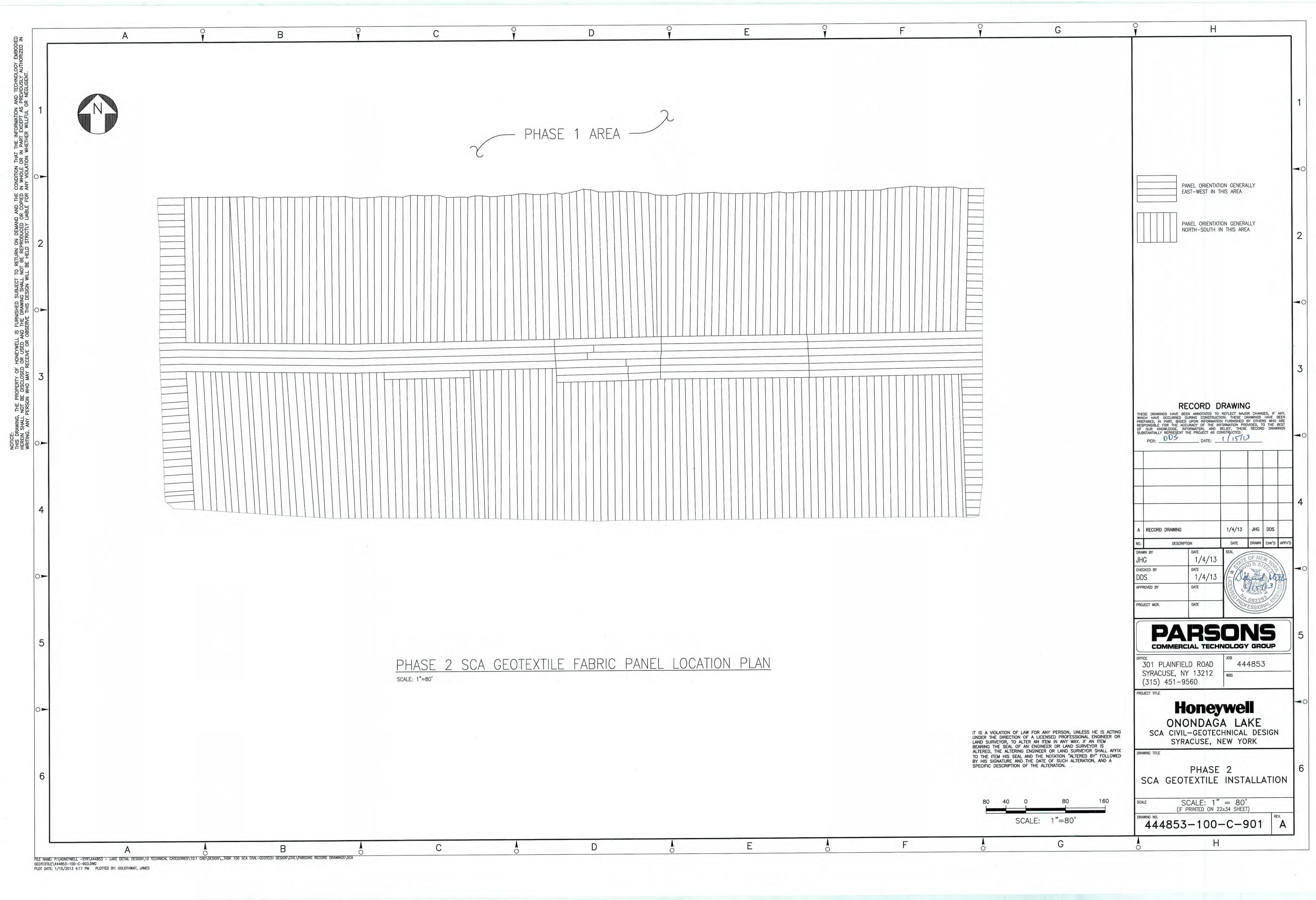

Record Drawings

- Contractor's Record Drawings
- Geomembrane Panel Layout and Seam Repair/Destructive Sample Location Drawings

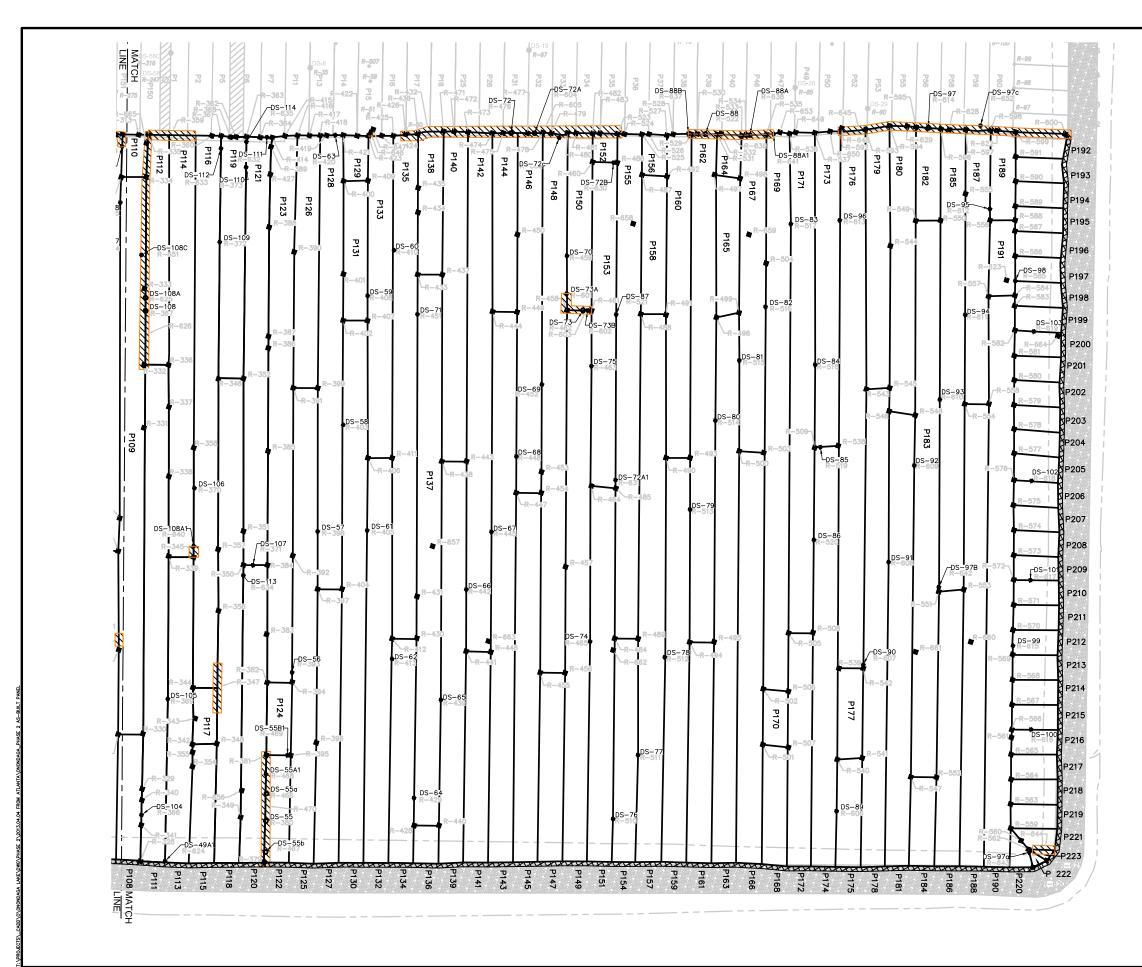

Contractor's Record Drawings

- Existing Site Conditions
- Subgrade
- Low-Permeability Soil Liner
- Geotextile Panel Layout
- Gravel Drainage Layer


Existing Site Conditions


Subgrade


Low-Permeability Soil Liner

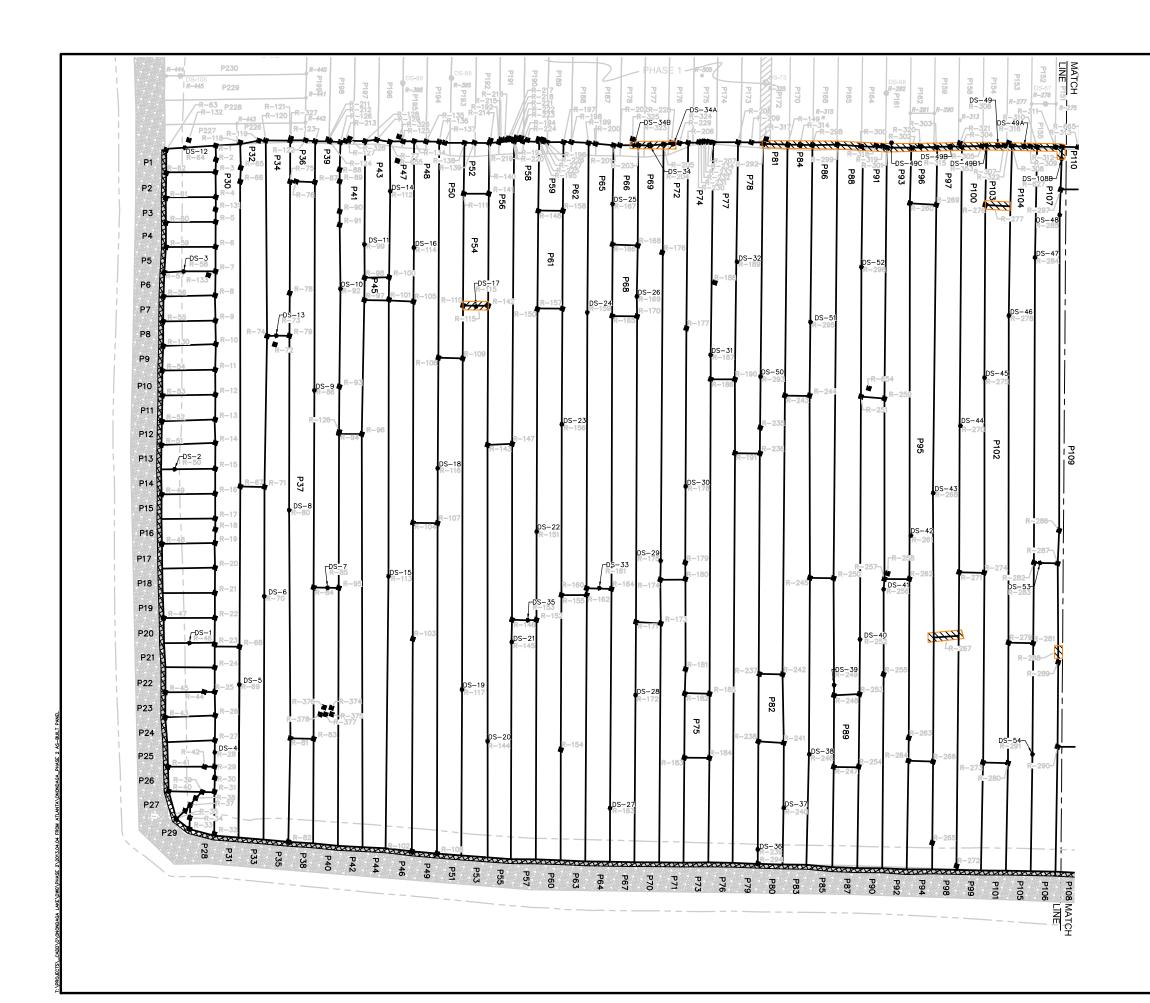

Geotextile Panel Layout

Gravel Drainage Layer

Geomembrane Panel Layout and Seam Repair/Destructive Sample Location Drawings

LEGEND

P3 PHASE II GEOMEMBRANE PANEL ■ R-1 PHASE II PATCH REPAIR ● DS-1 PHASE II DESTRUCTIVE SAMPLE **o**^{DS-2} PHASE II PHASE II DESTRUCTIVE SAMPLE (FAIL) PHASE II CAPPED SEAM PHASE II LINER SEAM KKKKKKKKK PHASE II ANCHOR TRENCH TOE OF SLOPE P3 PHASE I GEOMEMBRANE PANEL PHASE I PATCH REPAIR ■ R-1 PHASE I DESTRUCTIVE SAMPLE (PASS) ⊕ DS-1 PHASE I PHASE II DESTRUCTIVE SAMPLE (FAIL) ODS-2 PHASE I CAPPED SEAM PHASE I LINER SEAM PHASE I ANCHOR TRENCH


NOTES:

- PANEL LOCATIONS BASED ON FIELD SURVEYS CONDUCTED BY PARSONS FIELD PERSONNEL USING GLOBAL POSITIONING SYSTEM (GPS) DURING THE INSTALLATION. PANELS ARE SHOWN AS MEASURED BY THE SURVEY (I.E. TWO DIMENSIONS).
- 2. ALONG THE PERIMETER SLOPE, A SACRIFICIAL GEOMEMBRANE WAS INSTALLED OVER THE CUSHION GEOTEXTILE.

PHASE 2 GEOMEMBRANE PANEL DRAWING ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA CAMILLUS, NEW YORK

Geo	ACTON, MA		
DATE:	2013 APRIL		AS SHOWN
PROJECT NO			
DOCUMENT	NO. 12 GJ4706	FIGURE NO.	1 OF 2

LEGEND

P3 PHASE II GEOMEMBRANE PANEL ■ R-1 PHASE II PATCH REPAIR ● DS-1 PHASE II DESTRUCTIVE SAMPLE **o**^{DS-2} PHASE II PHASE II DESTRUCTIVE SAMPLE (FAIL) PHASE II CAPPED SEAM PHASE II LINER SEAM MANAMAKKA M PHASE II ANCHOR TRENCH TOE OF SLOPE P3 PHASE I GEOMEMBRANE PANEL PHASE I PATCH REPAIR ■ R-1 PHASE I DESTRUCTIVE SAMPLE (PASS) DS−1 PHASE I PHASE II DESTRUCTIVE SAMPLE (FAIL) O DS-2 PHASE I CAPPED SEAM PHASE I LINER SEAM PHASE I ANCHOR TRENCH

NOTES:

- PANEL LOCATIONS BASED ON FIELD SURVEYS CONDUCTED BY PARSONS FIELD PERSONNEL USING GLOBAL POSITIONING SYSTEM (GPS) DURING THE INSTALLATION. PANELS ARE SHOWN AS MEASURED BY THE SURVEY (I.E. TWO DIMENSIONS).
- 2. ALONG THE PERIMETER SLOPE, A SACRIFICIAL GEOMEMBRANE WAS INSTALLED OVER THE CUSHION GEOTEXTILE.
- 3. DESTRUCTIVE SEAM SAMPLES WERE REPAIRED BY EXTRUSION WELDING A CAP/PATCH. AS PART OF THE REPAIR OF FAILING DESTRUCTIVE SAMPLES (DS), (I) DS— 49 IS BOUNDED ON THE BEFORE SIDE BY DS—4981 AND ON THE AFTER SIDE BY DS—4941, AND (II) DS—108B IS A BOUNDING REPAIR FOR DS—108 (SHOWN ON SHEET 1) ON THE BEFORE SIDE.
- 4. THE INDICATED LOCATION OF REPAIRS R-374 THROUGH R-378 ARE APPROXIMATE.

PHASE 2 GEOMEMBRANE PANEL DRAWING ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA CAMILLUS, NEW YORK

Geos	ACTON, MA			
DATE:	2013 APRIL		AS SHOWN	1
PROJECT NO.	GJ4706B	FILE NO.		
DOCUMENT N	o. 12 GJ4706	FIGURE NO.	2 OF 2	