Prepared for

Honeywell

Honeywell 301 Plainfield Road, Suite 330 Syracuse, NY 13212

GEOTECHNICAL INSTRUMENTATION INSTALLATION REPORT – 2010 AND 2011 ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA Camillus, New York

301 Plainfield Road, Suite 350 Syracuse, NY 13212 Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GJ4706A

1 November 2011

TABLE OF CONTENTS

1.	INTRODUCTION AND PROJECT BACKGROUND	1
2.	KEY PROJECT PERSONNEL	3
3.	2010 AND 2011 INSTRUMENTATION INSTALLATION	5
	3.1 Field Instrumentation Installation Schedule	5
	3.2 Instrumentation Installation Kick-Off Meeting	5
	3.3 Instrument Purchases and Pre-Installation Acceptance Testing	5
	3.4 Piezometer and Inclinometer Casing Installation	6
	3.5 Trenching	6
	3.6 Settlement Cell Installation	7
	3.7 Electrical Cable Installation and Junctioning	8
	3.8 Settlement Profiler Installation	9
	3.9 SAA Installation	10
	3.10 Datalogger System Installation	10
	3.11 Post-Installation Acceptance Testing	10
	3.12 Issues during Installation and Monitoring	11
4.	DOCUMENTATION OF FIELD WORK	12
5.	AS-BUILT DRAWINGS	12
6.	REMAINING INSTRUMENTATION INSTALLATION	12
7.	LIMITATIONS	13

ATTACHMENTS

1. INTRODUCTION AND PROJECT BACKGROUND

This report summarizes the instrumentation installation and oversight activities performed by Geosyntec Consultants, Inc. (Geosyntec), and provides as-built documentation of the 2010 and 2011 Instrumentation Installation work performed at the Onondaga Lake Sediment Consolidation Area (SCA) site. Onondaga Lake is a 4.6-square mile (or approximately 3,000-acre) lake located in Central New York State immediately northwest of the City of Syracuse. A major component of the selected lake remedy includes the dredging and onsite consolidation of sediments removed from the lake in the SCA site, located on Wastebed 13 (WB-13) in Camillus, New York. The purpose of the SCA is to contain dredged sediments from the Onondaga Lake remedial action using geotextile tubes (geo-tubes). The SCA will have a maximum footprint of approximately 70 acres and will include a perimeter berm, a liner system, a gravel drainage system, stacked geotextile tubes filled with dredged sediments, and a final cap. The SCA design includes a phased construction approach to facilitate the dredging schedule, odor mitigation, underlying Solvay waste consolidation, and/or final closure.

Honeywell obtained approval from the New York State Department of Environmental Conservation (NYSDEC) to install the geotechnical instrumentation and monitoring system as part of the 2010 construction. The installation started in 2010 and continued in 2011, as the liner system construction for Phases I and II were taking place. The geotechnical instrumentation and monitoring system consists of the following components:

• Seven sets of nested vibrating wire (VW) piezometers within the footprint of the SCA. Each set of nested piezometers consists of three piezometers at depths of 15 ft, 30 ft, and 45 ft, respectively. The piezometers will be used to monitor porewater pressures before, during, and after the SCA construction. In addition, two single VW piezometers were installed on the side slope of the existing northern Wastebed 13 perimeter dike at depths of 50 ft below ground. These new piezometers, together with three nearby existing piezometers, will be used to monitor any change of porewater pressures in the existing Wastebed 13 dike due to the SCA construction. It is noted that all the piezometers were installed as part of the 2010 instrumentation installation work.

- Five settlement profilers were installed along five sections. It is noted that originally only three settlement profilers along three sections were included as part of the design. However, after discussion with NYSDEC, it was decided to add Profilers 4 and 5 to provide additional monitoring capability. Each section has a single profile pipe placed in an excavated trench near the Wastebed surface. The profilers were planned to be used to monitor the settlement of the foundation SOLW under the loading from the SCA.
- A total of thirty-eight VW settlement cells were proposed to be installed within the footprint of the SCA. The settlement cells will be used to monitor the settlement of the foundation SOLW under the loading from the SCA. It is noted that only twenty-nine VW settlement cells (i.e., SC-G1 through G29) were installed as part of the 2010 and 2011 instrumentation installation work, composing the Phase I and Phase II instrumentation system. The remaining settlement cells will be located in the future Phase III footprint and will be installed if Phase III is constructed.
- Five manual inclinometers and one ShapeAccelArray (SAA) inclinometer were installed. The inclinometers are used to evaluate the amount of lateral movement of the foundation SOLW due to the SCA construction. Two manual inclinometers (i.e., SI-G1 and SI-G2) are located inside the SCA footprint near the proposed boundaries of Phase I. The other three manual inclinometers (i.e., SI-G3, SI-G4, and SI-G5) are located outside the SCA footprint at the toe of the SCA perimeter berm. In addition, one SAA inclinometer (i.e., SI-G3-SAA) was installed near the SCA perimeter berm in the Western stormwater basin area to provide continuous automated measurements of any lateral strains in the SOLW foundation. It is noted that the casing for the SAA was installed as part of the 2010 instrumentation installation work and the SAA inclinometer instrument itself was installed as part of the 2011 instrumentation installation work.
- A datalogger system was installed in the instrumentation trailer. The system includes one Campbell Scientific CR1000 datalogger, two AVW200 VW spectrum analyzer, and three AM16/32B relay multiplexers. Settlement cells SC-G1 through SC-G29, piezometers PZ-G1 through PZ-G5, and the SAA are connected to the datalogger system and recorded automatically.

The work required to install these instruments consisted of: (i) borehole installation of piezometers and inclinometer casings; (ii) trenching; (iii) placement and junctioning of electrical cables; (iv) placement and junctioning of the hydraulic tubing for settlement cells; (v) placement of Advanced Drainage System (ADS) pipe for the profilers; and (vi) backfilling of completed trenches.

Instrumentation installation work services were self-performed by Parsons using union labor. Oversight, CQA and support services were provided by Geosyntec. Geosyntec personnel performed: (i) full-time field monitoring/observations during placement and junctioning of cables, tubing, pipes and backfilling; (ii) verification of installation procedures; and (iii) verification and acceptance tests of installed instruments. Piezometers and inclinometer casings were installed before the presence of Geosyntec personnel on the site. As-built surveying for the project were provided to Geosyntec by Parsons after completion of the instrumentation installation in 2011.

The remainder of this report is organized to present the following:

- a list of key personnel involved with this project;
- a description of the CQA activities performed during instrument installation;
- documentation related to the field work and instrumentation installation activities;
- a summary of work remaining to be performed in 2012; and
- as-built survey drawings.

2. KEY PROJECT PERSONNEL

Key personnel involved in this project are as follows:

Honeywell (Client)

• Mr. Larry Somer (Manager – Remediation Design and Construction)

NYSDEC

• Mr. Tim Larson (NYSDEC Project Manager)

• Mr. Bill Zepetelli (NYSDEC On-Site Representative)

Parsons Construction Services (Project Manager)

- Mr. Al Steinhoff (Construction Project Manager)
- Mr. Ken Sommerfield (Construction Manager)
- Mr. William Moon (Health and Safety Manager)

Parsons Design Services (Project Manager)

- Mr. Paul Blue (Project Manager)
- Mr. Dave Steele (Engineer)
- Mrs. Laura Brussel (Technical Manager)

Geosyntec Consultants (Instrumentation Consultant)

- Dr. Jay Beech (Design Engineer)
- Dr. Ramachandran (Kula) Kulasingam (Project Manager)
- Mr. Joseph Sura (Instrumentation Engineer Onsite)
- Dr. Ali Ebrahimi (Instrumentation Engineer Onsite)
- Dr. Bob Bachus (Instrumentation Expert)
- Dr. Ming Zhu (Instrumentation Engineer Office Support)

3. 2010 AND 2011 INSTRUMENTATION INSTALLATION

The scope of the oversight activities performed by Geosyntec during the 2010 and 2011 instrumentation installation included:

- pre-installation instrumentation acceptance testing;
- field CQA operations;
- post-installation instrumentation acceptance testing; and
- preparation of 2010 and 2011 as-built report and drawings.

3.1 Field Instrumentation Installation Schedule

Geosyntec personnel were on site from 24 October 2010 to 7 December 2010, from 4 April 2011 to 29 September 2011, and from 24 October 2011 to 26 October 2011. Geosyntec's field schedule included full-time field monitoring and observations during instrumentation installation and post-installation acceptance testing. Due to a large snowfall on Saturday, 4 December 2010 and Sunday, 5 December 2010, the site was not active on Monday, 6 December 2010 and the site was formally shut down for winter on Tuesday, 7 December 2010. Instrumentation installation activities took place approximately from 7:30 am to 4:30 pm during weekdays. Instrumentation work was performed on Saturday, 13 November 2010 and a few weekends in August 2011.

3.2 <u>Instrumentation Installation Kick-Off Meeting</u>

An instrumentation installation kick-off meeting was held on 26 October 2010 at the site trailer. The meeting was attended by Mark Hoffmann (Parsons), Ken Sommerfield (Parsons), William Moon (Parsons), Alan Steinhoff (Parsons), and Joseph Sura (Geosyntec). The kickoff meeting involved a discussion of the drawings and the Geotechnical Instrumentation Installation Work Plan.

3.3 Instrument Purchases and Pre-Installation Acceptance Testing

The instruments used in SCA construction, including settlement cells, VW piezometers, VW handheld readout unit, portable digital inclinometer system, and the inclinometer casings, were directly purchased by Geosyntec from ITM Soil Instruments and shipped to the Geosyntec office in Kennesaw, GA on 9 September 2010. The instruments were shipped with calibration certificates provided by the manufacturer. Geosyntec used a

handheld VW readout box to verify that a single reading from the settlement cells and the piezometers, matched the calibration curve provided by the manufacturer. The calibration sheets and a summary of the pre-installation acceptance testing are included in Attachment A.

The data logger, multiplexers and other related instruments for automated monitoring were purchased from Campbell Scientific, Inc. and shipped to the Geosyntec office in Kennesaw, GA on 14 September 2010. The instruments were shipped with the associated cables and calibration certificates provided by the manufacturer. Geosyntec installed the software and tested the data logger programming to verify acceptability of the calibration. The calibration sheet for the data logger is included in Attachment A.

The SAA was purchased by Geosyntec from Measurand Inc. and was shipped directly to the SCA site on 4/21/2011 with calibration certificates provided by the manufacturer (See Attachment A).

The instrumentation cables were purchased by Geosyntec from Batt Cables after consultation with ITM and shipped directly to the SCA on 27 September 2010. The initially proposed polyvinyl chloride (PVC) water tubing was purchased from Vellano Brothers and shipped directly to the SCA during the week of 18 October 2010. The cross-linked polyethylene (PEX) water tubing was delivered directly to the SCA during the week of 22 November 2010. The t-junctions and connectors necessary for settlement cell connections with PEX tubing arrived on site during the week of 29 November 2010.

3.4 Piezometer and Inclinometer Casing Installation

A driller contracted to Parsons drilled the boreholes and installed the piezometers, the 2.75" inclinometer casings, and the 1" PVC casing for the SAA under the supervision of Parsons in October 2010. Geosyntec was not on the site during the boring and the installation of the piezometers and casings. Locations of the piezometers and inclinometers were established using a Trimble GPS surveying system prior to boring. The boring logs are prepared by Parsons and presented in Attachment B. The Measurand SAA inclinometer casing (i.e., SI-G3-SAA) was installed at a location approximately 20 ft from the manual inclinometer SI-G3.

3.5 <u>Trenching</u>

The alignment of the trenches was staked out by a surveyor employed by Parsons based on the AutoCAD drawings. The trenching was performed using a mini excavator. It is

noted that a portion of the trenching was completed prior to Geosyntec's arrival on site. It is noted that based on visual observation of the trenches, many of the trenches were observed to be deeper than the required minimum values shown in the Instrumentation Installation Drawings. This is considered acceptable.

3.6 <u>Settlement Cell Installation</u>

The settlement cells use hydraulic tubing lines to measure the head difference between a known static point (i.e., the reservoir) and the cell. The hydraulic lines were originally intended to be installed using 0.5" PVC water pipe in 20-ft long sections. Each section would be combined with a coupler. The PVC was placed during the week of 1 November 2010 in long straight lines without making any cell connections. NYSDEC had concerns with the number of connections and possible failure of the proposed PVC pipe due to the large number of couplers required. After discussion, NYSDEC, Parsons and Geosyntec agreed upon the use of 0.5" PEX tubing in 1000-ft rolls, instead of the PVC pipes. All installed PVC pipes were removed from the trenches.

After the new PEX tubing arrived on site, the PEX tubing was deployed by unrolling it from the 1000-ft spool in each lateral. No cell connections or PEX connectors were made. It was agreed that the PEX tubing would be bedded, snaked and then backfilled, per agreement with NYSDEC. The snaking was performed by using nylon cable ties to hold the PEX tubing to the already snaked electrical cable. Additionally, a laborer would hold the tubing to the side using stakes or a shovel during the backfilling to maintain adequate snaking. The stakes were removed after backfilling.

The settlement cells were placed inside holes that were approximately 1 ft wide, 1 ft long, and 2 ft deep and covered with sand. The settlement cells were connected with the hydraulic lines and electrical cables. There are four major hydraulic lines (also called legs) in Phase I and Phase II. Each settlement cell is connected to one of the four legs. The hydraulic lines were filled with non-toxic potable glycol to keep the lines from freezing during the winter time. The lines were flushed to get the air bubbles out of the tubings. The hydraulic lines and the connections were pressure tested. The pressure test records are included in Attachment C.

The four settlement cell legs were initially connected to one reservoir in the instrumentation trailer. Four reservoirs were built in October 2011 and each leg was connected to one individual reservoir. In addition, the far sides of each of the four legs were initially terminated inside the SCA footprint. Later in August 2011, they were extended and terminated outside the SCA footprint in order for future calibration or maintenance of settlement cell system, if needed. The two legs in Phase 1 (i.e., Leg 1

and Leg 2) were terminated to the south of Western Basin near the corner of the basin and the SCA berm. The two legs in Phase 2 (i.e., Leg 3 and Leg 4) were terminated outside of the southern SCA berm. Photos of the settlement cell reservoirs and terminations are presented in Attachment D.

3.7 Electrical Cable Installation and Junctioning

Electrical cables were installed by a certified instrumentation electrician provided by Parsons. In planning the instrumentation, Geosyntec proposed the use of multi-core cable to carry electrical signals. Therefore, each instrument (settlement cell or piezometer) would have two individual wires (referred to as "cores") within a larger multi-core cable. The types of cables ranged from 2-core (i.e., handles one single instrument only), 5-core (two instruments), 10-core (5 instruments), 20-core (10 instruments) and 47-core (23 instruments). It is noted that the cable manufacturer shipped 27-core cables instead of 20-core and 48-core instead of 47-core. However, because the planning was completed based on 20-core and 47-core, it was decided to follow the plan for 20-core and 47-core and merely leave unused cores as necessary. It is noted that each settlement cell included approximately 20 ft of cable and each piezometer included sufficient cable to reach the ground surface with an additional 20 ft outside the ground. These factory-provided lengths were used to allow for simple junctioning at the ground surface into the larger multi-core cable.

The junctioning procedure for 2-core and 5-core cables used the cable splice kits provided by ITM. The splice kits consisted of a plastic cylinder, a grounding sheath, a mechanical connection and epoxy. The wires were individually stripped, tinned, and junctioned together using a mechanical connection inside the plastic cylinder. The armoring from the cable was then connected using the grounding sheath to provide a single consistent ground. The cylinder was closed and then filled with epoxy to form a permanent water-tight seal.

The junctioning procedure for 10-core and larger cables did not use the cable splice kits due to the large cable size. Instead, the cables were junctioned inside of PVC junction boxes using butt splices to connect the cores. The grounding cable was kept continuous using a ground nut inside each junction box to hold the armoring from the various cables together. Liquid tapes were used to seal the splices and the silicon sealant was used to seal the junction boxes.

Immediately after installation, the cables were tested for electrical continuity by the electrician by measuring the flow of electricity through the junction (referred to as a "continuity check") and then by checking the individual cell with the VW readout box

(referred to as a "VW readout check"). The strength of the connections was also tested with a "jiggle test". The jiggle test was performed by connecting the handheld VW readout box to the end of the line for each cell and then shaking the electrical connections. If the connection is tight, the VW readout box should not show a change due to the shaking. The Phase I jiggle test performed on 23 November 2010 found one connection (cell SC-G9) that had a butt splice that was not fully tight and the connection for this cell was repaired. The jiggle test on 23 November 2010 also found that the cell used for SC-G11 was not operating properly. A test with the VW readout box determined that the issue is internal to the cell itself and not a fault of the electrical connection. Therefore, this cell was removed from the field and brought back for further testing and a new cell was placed as SC-G11. The new SC-G11 passed the jiggle test properly. The Phase II jiggle test performed on 30 November 2010 did not find any cells not operating correctly.

3.8 Settlement Profiler Installation

The settlement profiler was installed in a trench with a minimum depth of 16 in and a width of approximately 18 in. The installation procedure began with a bedding layer of 4 in of sand, followed by placement of the Advanced Drainage System (ADS) pipe in the trench. A 3/8 in polyethylene rope was placed in the pipe through use of a "push rod", a 120 ft long section of 0.5 in PVC pipe used to push the rope through the ADS pipe sections. An external coupling was then attached to hold the ADS pipe sections together. The external couplings have teeth to lock the ADS pipe into place to prevent the sections from coming apart. Nylon cable ties with 24-in length were also used to provide additional joint stability.

The settlement profiler monitoring equipment was designed and assembled by Geosyntec. It includes a pressure transducer torpedo connected by approximately 1300-ft long hydraulic line and electrical cable, a CR10X datalogger, and a laptop. The hydraulic line is connected to a movable tank. Both the tank and hydraulic lines are filled with glycol. The reading was recorded by the datalogger at every 10 ft as the transducer torpedo was pulled through the buried ADS pipes. The probe was calibrated before shipping to the site and was re-calibrated in the field by the so-called "ladder test". In the test, a reservoir was set up at the top of a ladder. The probe was first moved up and then down the ladder at 1-ft increments. Reading were taken from the probe at each increment and converted to the change in elevation. The field calibrate test results are included in Attachment A. The cables attached to the profiler probe were checked for the proper connectivity using an ohmmeter. The hydraulic line connected to the probe was visually checked for leak or presence of air bubbles.

3.9 **SAA Installation**

The SAA was installed into the PVC casing in April 2011. The SAA was connected to the data logger in the instrumentation trailer with approximately 2000-ft long cable. An external rechargeable battery was placed inside an 18-in diameter HDPE vault near the SAA to provide power supply to the SAA.

Geosyntec conducted a diagnostic test on the SAA in the field with a computer and the software SAARecorder provided by the manufacturer. The diagnostic test is to check if there is any damage or miscommunication of the sensors or errors in the readings. The diagnostic test performed by Geosyntec indicated that the SAA functioned properly.

3.10 <u>Datalogger System Installation</u>

The datalogger system, including the programming, was installed by Geosyntec in May 2011. Data from the settlement cells and piezometers in Phase I and Phase II and the SAA are automatically collected by the datalogger. Currently, the data is manually downloaded from the datalogger to a computer on a weekly basis and sent to Geosyntec for evaluation.

3.11 <u>Post-Installation Acceptance Testing</u>

The purpose of the post-installation acceptance testing is to verify that the installed instrumentation system is operating properly.

Settlement cell "lifting tests" were performed for the settlement cells in the field. Selected settlement cells were lifted by a known vertical displacement and waited until the readings by the datalogger in the instrumentation trailer became stable. The readings before and after the lifting were recorded. The difference in the readings was converted to the change in elevations and compared to the actual change. The test results were found to be reasonably accurate, indicating that the settlement cells are functioning properly as intended. The lifting test results of the selected settlement cells are included in Attachment C.

Initial readings were collected from the piezometers, SAA, and manual inclinometers and presented in Attachment C too. The readings are considered to be reasonable and indicate that these instruments are functioning properly as intended. The profiler pipes were tested with "dummy" profilers. All profiler pipes passed the "dummy" tests at some point of time during the testing that lasted several months. The issues encountered during the testing are further discussed in Section 3.12.

3.12 <u>Issues during Installation and Monitoring</u>

The following issues were encountered during the installation and post-installation monitoring:

- 1. As discussed in the report, a total of five settlement profiler pipes were installed in Phases I and II. These pipes were tested successfully on multiple occasions commencing in the Fall of 2010 using a "dummy" profiler probe (i.e., PVC pipe exhibiting a diameter larger than the prototype profiler) after installation of the pipes to verify that the pipes remained open. Testing during and following clay placement indicated that all of the settlement profile pipes have experienced blockages that prevent pulling of either the dummy or real profiler through the entire lengths of the pipes. Geosyntec and Parsons' field crews performed repairs to the sections of pipe that have prevented the advancement of the profiler/dummy. The blockages ranged from pipes being significantly out-of-round to near-complete collapse. Only a portion of Profiler P2 is still being monitored at the time when this report is prepared. The other four profilers have been abandoned as it is not feasible to successfully profile them. An alternate design for assessing the liner settlement using settlement monuments above the liner system has been selected.
- 2. Initial settlement cell readings appeared to be unstable. Several steps were taken by Geosyntec to improve the data quality. First, a barometer was set up in the instrumentation trailer to record the barometric pressure. The settlement cell data were corrected by the measured barometric pressures. Second, the hydraulic lines for the settlement cells were flushed several times to minimize the impact of air bubbles on the accuracy of the data. Third, the settlement cells were recalibrated. The settlement cell data recorded after these steps show that the readings became stable. In addition, the settlement cell "lift test" results (included in Attachment C) indicate that the accuracy of the settlement cells is within 0.2 foot.
- 3. On 27 October 2011, a leak was reported in Leg 4 in Phase II. The leak was estimated to be about 0.5 gallon per day. Geosyntec's instrumentation engineer went to the site and found the hydraulic line connection to one of the settlement cells was damaged. The leak was fixed and Leg 4 was re-flushed by Geosyntec. The settlement cell data collected by the datalogger for Leg 4 showed that the data went back to normal after the leak was fixed.

4. DOCUMENTATION OF FIELD WORK

A summary table showing the dates that instrumentation installation, testing and backfilling occurred is included in Attachment E. Photographic documentation of the instrumentation installation work is presented in Attachment D.

5. AS-BUILT DRAWINGS

The as-built survey for the instrumentation installation was performed by the surveyor in 2011 after completion of the instrumentation installation. Attachment F presents the as-built instrumentation drawings prepared by Geosyntec based on the surveying data provided by Parsons.

6. REMAINING INSTRUMENTATION INSTALLATION

Items remaining to be completed are summarized below.

• Inclinometer Casing: Manual inclinometer SI-G2 on the boundary between

Phase I and Phase II was damaged by construction

equipment and need to be fixed or replaced.

• Settlement Cells: Settlement cells in Phase III will be installed pending

upon the construction of Phase III.

Settlement Monuments: Settlement monuments will be constructed above the

liner system.

• Datalogger: A second datalogger will be installed near the northeast

corner of the SCA to automatically monitor

piezometers PZ-G6 through G9 in early 2012.

Remote Monitoring: A remote monitoring system will be installed before

the SCA operations start to remotely monitor the instruments in real-time once the internet connection is

available on the site.

7. LIMITATIONS

On most occasions during the field work, different crews worked simultaneously on different parts of the instrumentation to meet the project schedule. For example while trenching was taking place at one location, junctioning of electrical cables may have been taking place at another location. The on-site instrumentation engineer made a judgment as to which particular activity needs to be observed closely at any given time. The quality of work at other locations was checked by observing and verifying the procedure used by the installation crew, inspecting the finished product, and by performing acceptance tests.

ATTACHMENT A Calibration Sheets and Pre-Installation Acceptance Testing

ITM Calibration Certificates of VW Settlement Cells

Calculation of Engineering units from frequency-based units.

The mathematical relationship between the frequency of vibration of a tensioned wire and the force applying the tension, is an approximate straight line relationship between the square of the measured frequency and the applied force.

Engineering units of measurement maybe derived from the frequency-based units measured by vibrating wire readouts, in 3 traditional ways:-

From 'Period' units (t x 10^7) and from 'Linear'($f^2/1000$) units using two methods: a simple Linear equation or a Polynomial equation.

Calculation using 'Period' units.

The following formula is used for readings in 'Period' units.

 $E = K (10^7/P0^2 - 10^7/P1^2)$

Where,

E is the Pressure in resultant Engineering units, K is the Period Gauge Factor for units of calibration (from the calibration sheet) P0 is the installation Period 'base' or 'zero' reading P1 is the current Period reading.

This method of calculation is used by the Soil Instruments Vibrating Wire loggers' (models RO-1-VW-1 or 2 and with serial numbers starting VL or TVL) internal processors', for calculating and displaying directly on the loggers' LCD screen, the required Engineering based units.

The loggers' require 'Period' base or zero reading units for entering into their channel tables, to calculate and display correctly the required engineering units.

If an Engineering-based unit is required other than the units of calibration, then the correct K factor will have to be calculated using the standard relationship between Engineering units.

For example, if the units of calculation required were in mH2O and the calibration units were kPa, we can find out that 1kPa is equal to 0.1022mH2O, so we would derive the K factor for mH2O by multiplying the K factor for kPa by 0.1022.

Please see conversion factors in the user manual or www.soil.co.uk

Calculation using Linear units.

The following formula is used for readings in 'Linear' units.

E = G (R0 - R1)

Where,

E is the resultant Engineering unit,
G the linear Gauge factor for the units of calibration (from the calibration sheet)
R0 is the installation Linear 'base' or 'zero' reading
R1 is the current Linear reading.

Again the Linear gauge factor for units other than the units of calibration would need to be calculated using the same principles as stated in the last paragraph of the 'Period unit' section.

Linear unit calculation using a Polynomial equation.

Linear units maybe applied to the following polynomial equation, for calculation of Engineering units to a higher order of accuracy.

$$E = AR1^2 + BR1 + C$$

Where,

E is the resultant Engineering unit

A, B and C the Polynomial Gauge factors A, B and C, from the instrument's calibration sheet R1 is the current Linear reading.

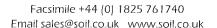
The value C is an offset value and relates to the zero value experienced by the transducer at the time of calibration. This value should be re-calculated at the installation time as follows:

$$C = - (AR0^2 + BR0)$$

Where,

A and B are as above

R0 is the installation Linear 'base' or 'zero' reading.


Please note that the sign of the re-calculated value of C, should be the same as the original value of C, so if the original is negative then the recalculated value should also be negative.

Conversion to engineering units other than the units of calibration, would best be done after conversion, using a factor calculated using the same principles as stated in the last paragraph of the 'Period unit' section.

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036728

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 27/01/2010

Gauge Factors in kPa

Ambient Temperature

: 20°C

Period Gauge Factor (K): 954.9698000

Barometric Pressure

: 1034 mbar

Linear Gauge Factor (G): (kPa/digit)0.0954970

Calibration Technician

: Wayne Diprose

Polynomial Gauge Factor A: 0.000000243700000

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.0981381700

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 599.516100

Regression Zero

: 6203.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	4014.8	6204.0	-0.043	-0.03	0.0	0.047	0.03
15.00	4066.6	6047.0	14.950	-0.03	-157.0	14.986	-0.01
30.00	4120.4	5890.0	29.943	-0.04	-157.0	29.937	-0.04
45.00	4176.8	5732.0	45.031	0.02	-158.0	44.995	0.00
60.00	4235.2	5575.0	60.024	0.02	-157.0	59.970	-0.02
75.00	4296.6	5417.0	75.113	0.08	-158.0	75.053	0.04
90.00	4360.2	5260.0	90.106	0.07	-157.0	90.052	0.03
105.00	4426.3	5104.0	105.003	0.00	-156.0	104.968	-0.02
120.00	4496.0	4947.0	119.996	0.00	-157.0	119.991	-0.01
135.00	4569.1	4790.0	134.990	-0.01	-157.0	135.026	0.02
150.00	4645.4	4634.0	149.887	-0.08	-156.0	149.977	-0.02

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.23900 kPa/°C

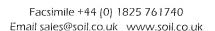
Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

..... Line MANAGER


^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036729

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 27/01/2010

Gauge Factors in kPa

Ambient Temperature

: 20°C

Period Gauge Factor (K): 1120.5400000

Barometric Pressure

: 1034 mbar

Linear Gauge Factor (G): (kPa/digit)0.1120540

Calibration Technician

: Wayne Diprose

Polynomial Gauge Factor A: 0.000000444142500

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1171879000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 737.285600

Regression Zero

: 6448.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3937.8	6449.0	-0.107	-0.07	0.0	0.013	0.01
15.00	3979.4	6315.0	14.909	-0.06	-134.0	14.956	-0.03
30.00	4022.6	6180.0	30.036	0.02	-135.0	30.027	0.02
45.00	4066.9	6046.0	45.051	0.03	-134.0	45.003	0.00
60.00	4112.8	5912.0	60.066	0.04	-134.0	59.994	0.00
75.00	4160.2	5778.0	75.082	0.05	-134.0	75.002	0.00
90.00	4209.3	5644.0	90.097	0.06	-134.0	90.025	0.02
105.00	4260.1	5510.0	105.112	0.07	-134.0	105.065	0.04
120.00	4312.1	5378.0	119.903	-0.06	-132.0	119.895	-0.07
135.00	4366.9	5244.0	134.918	-0.05	-134.0	134.966	-0.02
150.00	4423.7	5110.0	149.934	-0.04	-134.0	150.053	0.04

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R}\mathbf{0} - \mathbf{R}\mathbf{1})$

Temperature Coefficent 0.34770 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone

+44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036730

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 27/01/2010

Gauge Factors in kPa

Ambient Temperature

: 20°C

Period Gauge Factor (K): 1067.6120000

Barometric Pressure

: 1034 mbar

Linear Gauge Factor (G): (kPa/digit)0.1067612

Calibration Technician

: Wayne Diprose

Polynomial Gauge Factor A: 0.000000472753700

Polynomial Gauge Factor B: -0.1122389000

Calibration Equipment: Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 709.173600

Regression Zero

: 6494.9

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3923.5	6496.0	-0.121	-0.08	0.0	0.019	0.01
15.00	3966.8	6355.0	14.932	-0.05	-141.0	14.988	-0.01
30.00	4011.6	6214.0	29.986	-0.01	-141.0	29.976	-0.02
45.00	4057.9	6073.0	45.039	0.03	-141.0	44.983	-0.01
60.00	4105.8	5932.0	60.092	0.06	-141.0	60.008	0.01
75.00	4155.5	5791.0	75.146	0.10	-141.0	75.052	0.03
90.00	4206.7	5651.0	90.092	0.06	-140.0	90.008	0.01
105.00	4259.8	5511.0	105.039	0.03	-140.0	104.983	-0.01
120.00	4314.9	5371.0	119.985	-0.01	-140.0	119.976	-0.02
135.00	4372.3	5231.0	134.932	-0.05	-140.0	134.988	-0.01
150.00	4432.0	5091.0	149.878	-0.08	-140.0	150.018	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.27230 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . . .

..... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036750

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1022.5570000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1022600

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000155214800

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1040741000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 679.231700

Regression Zero

: 6590.7

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3895.2	6591.0	-0.028	-0.02	0.0	0.022	0.01
15.00	3939.0	6445.0	14.902	-0.07	-146.0	14.922	-0.05
30.00	3985.0	6297.0	30.035	0.02	-148.0	30.032	0.02
45.00	4032.4	6150.0	45.067	0.04	-147.0	45.047	0.03
60.00	4081.1	6004.0	59.996	0.00	-146.0	59.966	-0.02
75.00	4132.4	5856.0	75.130	0.09	-148.0	75.097	0.06
90.00	4184.5	5711.0	89.957	-0.03	-145.0	89.927	-0.05
105.00	4239.4	5564.0	104.989	-0.01	-147.0	104.969	-0.02
120.00	4296.6	5417.0	120.020	0.01	-147.0	120.017	0.01
135.00	4355.7	5271.0	134.950	-0.03	-146.0	134.970	-0.02
150.00	4417.7	5124.0	149.981	-0.01	-147.0	150.031	0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.01020 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . . .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036751

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1031.7710000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1031800

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000126593100

Calibration Equipment:

Polynomial Gauge Factor B: -0.1046701000

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 687.772100

Regression Zero

: 6623.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3885.4	6624.0	-0.048	-0.03	0.0	-0.008	-0.01
15.00	3928.8	6478.6	14.954	-0.03	-145.4	14.970	-0.02
30.00	3973.8	6332.7	30.007	0.00	-145.9	30.005	0.00
45.00	4020.4	6186.6	45.082	0.05	-146.1	45.065	0.04
60.00	4068.4	6041.7	60.032	0.02	-144.9	60.008	0.01
75.00	4118.3	5896.0	75.065	0.04	-145.7	75.038	0.03
90.00	4169.6	5752.0	89.922	-0.05	-144.0	89.898	-0.07
105.00	4223.8	5605.2	105.069	0.05	-146.8	105.053	0.04
120.00	4279.1	5461.3	119.916	-0.06	-143.9	119.913	-0.06
135.00	4337.7	5314.8	135.031	0.02	-146.5	135.047	0.03
150.00	4398.0	5170.0	149.971	-0.02	-144.8	150.011	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.02580 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . . .

. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036752

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1000.0600000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1000100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: -0.000000108945200

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.0987824400

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 633.177300

Regression Zero

: 6365.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
15.00	3963.7 4011.2 4060.2	6365.0 6215.0 6066.0	0.050 15.051 29.952	0.03 0.03 -0.03	0.0 -150.0 -149.0	0.013 15.036 29.954	0.01
45.00 60.00	4111.4 4164.5	5916.0 5766.0	44.953 59.954	-0.03 -0.03 -0.03	-149.0 -150.0 -150.0	29.954 44.967 59.976	-0.03 -0.02 -0.02
90.00	4219.7 4277.6 4337.6	5616.0 5465.0 5315.0	74.955 90.055 105.056	-0.03 0.04 0.04	-150.0 -151.0 -150.0	74.979 90.078 105.071	-0.01 0.05 0.05
135.00	4399.7 4465.0 4533.8	5166.0 5016.0 4865.0	119.957 134.958 150.059	-0.03 -0.03 0.04	-149.0 -150.0 -151.0	119.960 134.944 150.022	-0.03 -0.04 0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R}0 - \mathbf{R}1)$

Temperature Coefficent 0.02000 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036753

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1030.0900000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1030100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000067894920

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1038162000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 689.670200

Regression Zero

: 6672.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3871.4	6672.0	0.009	0.01	0.0	0.031	0.02
15.00	3914.2	6527.0	14.946	-0.04	-145.0	14.954	-0.03
30.00	3958.7	6381.0	29.985	-0.01	-146.0	29.984	-0.01
45.00	4004.8	6235.0	45.024	0.02	-146.0	45.016	0.01
60.00	4052.5	6089.0	60.064	0.04	-146.0	60.051	0.03
75.00	4101.7	5944.0	75.000	0.00	-145.0	74.986	-0.01
90.00	4152.6	5799.0	89.936	-0.04	-145.0	89.923	-0.05
105.00	4206.3	5652.0	105.079	0.05	-147.0	105.070	0.05
120.00	4261.3	5507.0	120.015	0.01	-145.0	120.014	0.01
135.00	4318.5	5362.0	134.951	-0.03	-145.0	134.960	-0.03
150.00	4378.6	5216.0	149.991	-0.01	-146.0	150.012	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.10300 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

.......................Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036754

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1072.5420000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1072542

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: -0.000000102436900

Calibration Equipment:

Polynomial Gauge Factor B: -0.1060590000

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 697.283700

Regression Zero

: 6533.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	3912.4	6533.0	0.059	0.04	0.0	0.029	0.02
	3954.7	6394.0	14.967	-0.02	-139.0	14.955	-0.03
	3998.7	6254.0	29.982	-0.01	-140.0	29.984	-0.01
45.00	4044.2	6114.0	44.998	0.00	-140.0	45.010	0.01
60.00	4091.4	5974.0	60.014	0.01	-140.0	60.032	0.02
75.00	4140.2	5834.0	75.029	0.02	-140.0	75.049	0.03
90.00	4190.4	5695.0	89.938	-0.04	-139.0	89.956	-0.03
105.00	4242.9	5555.0	104.953	-0.03	-140.0	104.965	-0.02
120.00	4297.4	5415.0	119.969	-0.02	-140.0	119.971	-0.02
135.00	4354.4	5274.0	135.092	0.06	-141.0	135.080	0.05
150.00	4413.0	5135.0	150.000	0.00	-139.0	149.970	-0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R}\mathbf{0} - \mathbf{R}\mathbf{1})$

Temperature Coefficent 0.00010 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

International Geotechnical Instrumentation Specialists

Soil Instruments Limited

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036755

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1011400

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000343144100

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1051006000

Period Gauge Factor (K): 1011.3980000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 669.976600

Regression Zero

: 6512.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3918.4	6513.0	-0.101	-0.07	0.0	0.012	0.01
15.00	3964.0	6364.0	14.969	-0.02	-149.0	15.014	0.01
30.00	4011.2	6215.0	30.039	0.03	-149.0	30.031	0.02
45.00	4059.5	6068.0	44.906	-0.06	-147.0	44.861	-0.09
60.00	4110.7	5918.0	60.077	0.05	-150.0	60.009	0.01
75.00	4163.4	5769.0	75.147	0.10	-149.0	75.072	0.05
90.00	4217.9	5621.0	90.116	0.08	-148.0	90.048	0.03
105.00	4274.1	5474.0	104.983	-0.01	-147.0	104.938	-0.04
120.00	4333.5	5325.0	120.053	0.04	-149.0	120.046	0.03
135.00	4394.6	5178.0	134.921	-0.05	-147.0	134.966	-0.02
150.00	4458.8	5030.0	149.889	-0.07	-148.0	150.003	0.00

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R}\mathbf{0} - \mathbf{R}\mathbf{1})$

Temperature Coefficent -0.00510 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

.....Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036756

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 998.2570000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.0998300

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000122694200

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1012378000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 653.470800

Regression Zero

: 6505.7

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3920.4	6506.4	-0.071	-0.05	0.0	-0.029	-0.02
15.00	3966.7	6355.4	15.003	0.00	-151.0	15.020	0.01
30.00	4014.6	6204.7	30.047	0.03	-150.7	30.044	0.03
45.00	4064.0	6054.7	45.021	0.01	-150.0	45.004	0.00
60.00	4115.3	5904.8	59.984	-0.01	-149.9	59.960	-0.03
75.00	4168.7	5754.4	74.998	0.00	-150.4	74.971	-0.02
90.00	4224.5	5603.4	90.072	0.05	-151.0	90.047	0.03
105.00	4282.0	5453.9	104.996	0.00	-149.5	104.979	-0.01
120.00	4342.2	5303.7	119.990	-0.01	-150.2	119.987	-0.01
135.00	4405.2	5153.2	135.013	0.01	-150.5	135.030	0.02
150.00	4470.5	5003.6	149.947	-0.04	-149.6	149.989	-0.01

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.02990 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036757

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1060.8870000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1060900

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000278361600

Calibration Equipment: Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1092179000

Polynomial Gauge Factor C**: 679.976600 **Regression Zero**

: 6327.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	3975.3	6328.0	-0.092	-0.06	0.0	-0.008	-0.01
15.00	4020.6	6186.0	14.973	-0.02	-142.0	15.006	0.00
30.00	4067.6	6044.0	30.038	0.03	-142.0	30.032	0.02
45.00	4115.9	5903.0	44.996	0.00	-141.0	44.963	-0.02
60.00	4166.3	5761.0	60.061	0.04	-142.0	60.011	0.01
75.00	4218.2	5620.0	75.019	0.01	-141.0	74.964	-0.02
90.00	4272.6	5478.0	90.084	0.06	-142.0	90.034	0.02
105.00	4328.6	5337.0	105.042	0.03	-141.0	105.009	0.01
120.00	4387.0	5196.0	120.001	0.00	-141.0	119.996	0.00
135.00	4447.7	5055.0	134.959	-0.03	-141.0	134.993	0.00
150.00	4511.1	4914.0	149.918	-0.05	-141.0	150.001	0.00

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficient 0.04250 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036758

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1014.6340000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1014600

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000075441020

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1023303000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 660.399600

Regression Zero

: 6484.4

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3927.2	6484.0	0.037	0.02	0.0	0.062	0.04
15.00	3972.4	6337.0	14.952	-0.03	-147.0	14.962	-0.03
30.00	4019.7	6189.0	29.969	-0.02	-148.0	29.967	-0.02
45.00	4068.6	6041.0	44.985	-0.01	-148.0	44.975	-0.02
60.00	4119.4	5893.0	60.002	0.00	-148.0	59.987	-0.01
75.00	4172.1	5745.0	75.019	0.01	-148.0	75.002	0.00
90.00	4226.9	5597.0	90.035	0.02	-148.0	90.020	0.01
105.00	4283.9	5449.0	105.052	0.03	-148.0	105.042	0.03
120.00	4342.9	5302.0	119.967	-0.02	-147.0	119.965	-0.02
135.00	4405.2	5153.0	135.085	0.06	-149.0	135.095	0.06
150.00	4469.0	5007.0	149.899	-0.07	-146.0	149.923	-0.05

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.06590 kPa/°C

Polvnomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036759

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1091.9390000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1091900

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000338060900

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 712.106800

Polynomial Gauge Factor B: -0.1130708000

Regression Zero

: 6420.3

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3946.5	6420.7	-0.046	-0.03	0.0	0.050	0.03
15.00	3989.3	6283.5	14.935	-0.04	-137.2	14.974	-0,02
30.00	4033.6	6146.3	29.917	-0.06	-137.2	29.911	-0.06
45.00	4079.8	6007.8	45.040	0.03	-138.5	45.002	0.00
60.00	4127.5	5869.7	60.120	0.08	-138.1	60.062	0.04
75.00	4176.5	5732.8	75.069	0.05	-136.9	75.005	0.00
90.00	4227.6	5595.1	90.105	0.07	-137.7	90.047	0.03
105.00	4280.3	5458.3	105.042	0.03	-136.8	105.004	0.00
120.00	4334.7	5322.0	119.925	-0.05	-136.3	119.919	-0.05
135.00	4392.0	5184.2	134.972	-0.02	-137.8	135.011	0.01
150.00	4451.1	5047.3	149.921	-0.05	-136.9	150.017	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.04370 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036760

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1023.5900000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1023600

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000246942100

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1052683000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 686.399800

Regression Zero

: 6622.6

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3885.6	6623.5	-0.091	-0.06	0.0	-0.011	-0.01
15.00	3929.4	6476.5	14.956	-0.03	-147.0	14.988	-0.01
30.00	3974.9	6329.2	30.034	0.02	-147.3	30.028	0.02
45.00	4021.9	6182.2	45.080	0.05	-147.0	45.048	0.03
60.00	4070.1	6036.5	59.994	0.00	-145.7	59.946	-0.04
75.00	4120.6	5889.5	75.041	0.03	-147.0	74.988	-0.01
90.00	4172.9	5742.8	90.057	0.04	-146.7	90.009	0.01
105.00	4227.0	5596.8	105.001	0.00	-146.0	104.970	-0.02
120.00	4283.8	5449.4	120.089	0.06	-147.4	120.084	0.06
135.00	4341.8	5304.8	134.890	-0.07	-144.6	134.922	-0.05
150.00	4403.2	5157.7	149.947	-0.04	-147.1	150.027	0.02

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent -0.00510 kPa/°C

Polvnomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

🚮 Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036761

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1010.0370000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1010000

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000266750600

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1040488000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 660.063300

Regression Zero

: 6449.6

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3937.4	6450.4	-0.083	-0.06	0.0	0.006	0.00
15.00	3983.6	6301.5	14.957	-0.03	-148.9	14.992	-0.01
30.00	4031.7	6152.1	30.047	0.03	-149.4	30.041	0.03
45.00	4081.1	6004.1	44.996	0.00	-148.0	44.960	-0.03
60.00	4132.7	5855.2	60.035	0.02	-148.9	59.982	-0.01
75.00	4186.0	5706.9	75.014	0.01	-148.3	74.955	-0.03
90.00	4242.0	5557.2	90.134	0.09	-149.7	90.081	0.05
105.00	4299.3	5410.0	105.002	0.00	-147.2	104.967	-0.02
120.00	4359.8	5260.9	120.061	0.04	-149.1	120.056	0.04
135.00	4422.1	5113.7	134.929	-0.05	-147.2	134.965	-0.02
150.00	4487.7	4965.4	149.908	-0.06	-148.3	149.996	0.00

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.02020 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036762

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1056.8570000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1056900

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000103009500

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1068430000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 671.902800

Regression Zero

: 6327.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3975.3	6327.8	-0.085	-0.06	0.0	-0.054	-0.04
15.00	4020.9	6185.1	14.997	0.00	-142.7	15.009	0.01
30.00	4068.1	6042.6	30.057	0.04	-142.5	30.055	0.04
45.00	4116.7	5900.8	45.043	0.03	-141.8	45.031	0.02
60.00	4167.3	5758.2	60.114	0.08	-142.6	60.095	0.06
75.00	4219.0	5618.0	74.931	-0.05	-140.2	74.910	-0.06
90.00	4273.4	5475.8	89.959	-0.03	-142.2	89.941	-0.04
105.00	4329.7	5334.4	104.903	-0.06	-141.4	104.891	-0.07
120.00	4389.3	5190.6	120.101	0.07	-143.8	120.099	0.07
135.00	4450.3	5049.2	135.045	0.03	-141.4	135.057	0.04
150.00	4513.7	4908.3	149.936	-0.04	-140.9	149.967	-0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

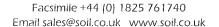
Temperature Coefficent -0.01590 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

... Line MANAGER


^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036763

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1076.7400000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1076700

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: -0.000000091083380

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1066488000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 678.102600

Regression Zero

: 6324.4

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3976.5	6324.0	0.039	0.03	0.0	0.013	0.01
15.00	4021.0	6185.0	15.006	0.00	-139.0	14.995	0.00
30.00	4067.3	6045.0	30.080	0.05	-140.0	30.082	0.05
45.00	4114.5	5907.0	44.939	-0.04	-138.0	44.950	-0.03
60.00	4163.8	5768.0	59.906	-0.06	-139.0	59.922	-0.05
75.00	4214.9	5629.0	74.873	-0.08	-139.0	74.890	-0.07
90.00	4268.7	5488.0	90.055	0.04	-141.0	90.071	0.05
105.00	4323.8	5349.0	105.022	0.01	-139.0	105.032	0.02
120.00	4381.5	5209.0	120.096	0.06	-140.0	120.098	0.07
135.00	4441.2	5070.0	135.063	0.04	-139.0	135.052	0.03
150.00	4502.9	4932.0	149.922	-0.05	-138.0	149.895	-0.07

Formulae:

Linear*

agel.

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.03230 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

.... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036764

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1037.0640000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1037100

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000022438550

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1039600000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 661.909600

Regression Zero

: 6375.7

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3960.3	6375.8	-0.014	-0.01	0.0	-0.007	0.00
15.00	4006.1	6230.9	15.013	0.01	-144.9	15.016	0.01
30.00	4053.3	6086.8	29.958	-0.03	-144.1	29.957	-0.03
45.00	4102.5	5941.6	45.016	0.01	-145.2	45.013	0.01
60.00	4153.4	5796.8	60.032	0.02	-144.8	60.028	0.02
75.00	4206.3	5651.9	75.059	0.04	-144.9	75.055	0.04
90.00	4260.9	5508.0	89.983	-0.01	-143.9	89.979	-0.01
105.00	4317.8	5363.9	104.927	-0.05	-144.1	104.924	-0.05
120.00	4377.6	5218.2	120.037	0.02	-145.7	120.036	0.02
135.00	4439.3	5074.2	134.971	-0.02	-144.0	134.973	-0.02
150.00	4504.2	4929.1	150.018	0.01	-145.1	150.025	0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficient 0.04670 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036765

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1017.6880000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1017700

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000123526600

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1032085000

Polynomial Gauge Factor C**: 672.175800

Vibrating Wire Data Recorder DR103

Regression Zero

: 6564.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
15.00 30.00 45.00 60.00 75.00 90.00 105.00 120.00		6564.8 6416.1 6269.4 6121.1 5974.5 5827.3 5679.0 5532.1 5384.5	-0.084 15.049 29.978 45.071 59.990 74.970 90.063 105.013 120.034	-0.06 0.03 -0.01 0.05 -0.01 -0.02 0.04 0.01	0.0 -148.7 -146.7 -148.3 -146.6 -147.2 -148.3 -146.9 -147.6	-0.044 15.065 29.976 45.055 59.966 74.944 90.039 104.997 120.031	-0.03 0.04 -0.02 0.04 -0.02 -0.04 0.03 0.00
	4369.3 4432.3	5238.1 5090.2	134.933 149.984	-0.04 -0.01	-146.4 -147.9	134.949 150.025	-0.03 0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.02040 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

..... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036766

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1175.2950000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1175300

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000428814600

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1225996000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 784.644500

Regression Zero

: 6549.2

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3907.3	6550.0	-0.091	-0.06	0.0	0.014	0.01
15.00	3946.1	6422.0	14.953	-0.03	-128.0	14.995	0.00
30.00	3986.0	6294.0	29.997	0.00	-128.0	29.990	-0.01
45.00	4027.2	6166.0	45.041	0.03	-128.0	44.999	0.00
60.00	4069.6	6038.0	60.084	0.06	-128.0	60.021	0.01
75.00	4113.1	5911.0	75.011	0.01	-127.0	74.941	-0.04
90.00	4158.4	5783.0	90.055	0.04	-128.0	89.992	-0.01
105.00	4205.2	5655.0	105.098	0.07	-128.0	105.057	0.04
120.00	4253.2	5528.0	120.025	0.02	-127.0	120.018	0.01
135.00	4302.9	5401.0	134.951	-0.03	-127.0	134.993	0.00
150.00	4354.4	5274.0	149.877	-0.08	-127.0	149.982	-0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.06470 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . !

.....Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036767

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1007.4470000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1007400

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000158973700

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1025220000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 643.039900

Regression Zero

: 6333.9

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3973.4	6334.0	-0.009	-0.01	0.0	0.044	0.03
15.00	4021.0	6185.0	15.002	0.00	-149.0	15.023	0.02
30.00	4070.0	6037.0	29.912	-0.06	-148.0	29.909	-0.06
45.00	4121.5	5887.0	45.024	0.02	-150.0	45.003	0.00
60.00	4174.3	5739.0	59.934	-0.04	-148.0	59.902	-0.07
75.00	4230.3	5588.0	75.147	0.10	-151.0	75.111	0.07
90.00	4287.5	5440.0	90.057	0.04	-148.0	90.025	0.02
105.00	4347.0	5292.0	104.967	-0.02	-148.0	104.946	-0.04
120.00	4410.0	5142.0	120.079	0.05	-150.0	120.075	0.05
135.00	4474.8	4994.0	134.989	-0.01	-148.0	135.010	0.01
150.00	4542.6	4846.0	149.899	-0.07	-148.0	149.952	-0.03

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.04030 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

..... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036768

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1066.9230000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1066900

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000346339200

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1106714000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 699.181800

Regression Zero

: 6446.8

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3938.4	6447.0	-0.024	-0.02	0.0	0.078	0.05
15.00	3981.9	6307.0	14.913	-0.06	-140.0	14.954	-0.03
30.00	4027.2	6166.0	29.957	-0.03	-141.0	29.950	-0.03
45.00	4074.0	6025.0	45.000	0.00	-141.0	44.959	-0.03
60.00	4122.5	5884.0	60.044	0.03	-141.0	59.982	-0.01
75.00	4172.8	5743.0	75.087	0.06	-141.0	75.019	0.01
90.00	4225.0	5602.0	90.131	0.09	-141.0	90.070	0.05
105.00	4278.8	5462.0	105.068	0.05	-140.0	105.027	0.02
120.00	4334.7	5322.0	120.005	0.00	-140.0	119.998	0.00
135.00	4392.9	5182.0	134.942	-0.04	-140.0	134.983	-0.01
150.00	4453.5	5042.0	149.879	-0.08	-140.0	149.981	-0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.01070 kPa/°C

Polvnomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

...Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www soil co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036769

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1026.4160000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.1026400

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000360919700

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1067431000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 669.691700

Regression Zero

: 6411.8

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3948.9	6412.8	-0.104	-0.07	0.0	0.012	0.01
15.00	3994.8	6266.2	14.943	-0.04	-146.6	14.990	-0.01
30.00	4042.4	6119.5	30.001	0.00	-146.7	29.993	0.00
45.00	4091.7	5973.1	45.028	0.02	-146.4	44.981	-0.01
60.00	4142.9	5826.3	60.096	0.06	-146.8	60.026	0.02
75.00	4195.7	5680.5	75.061	0.04	-145.8	74.984	-0.01
90.00	4250.8	5534.2	90.077	0.05	-146.3	90.008	0.01
105.00	4308.3	5387.5	105.135	0.09	-146.7	105.089	0.06
120.00	4367.0	5243.6	119.905	-0.06	-143.9	119.897	-0.07
135.00	4429.4	5097.0	134.952	-0.03	-146.6	134.999	0.00
150.00	4494.1	4951.3	149.907	-0.06	-145.7	150.023	0.02

Formulae:

Linear*

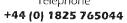
 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.04110 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.


^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1OL

Telephone

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036770

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Period Gauge Factor (K): 1071.0780000

Ambient Temperature Barometric Pressure

: 998 mbar

: 22°C

Linear Gauge Factor (G): (kPa/digit)0.1071100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: -0.000000057952920

Calibration Equipment: Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1064484000

Polynomial Gauge Factor C**: 682.491500

Regression Zero

: 6389.4

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
15.00 30.00 45.00 60.00 75.00 90.00	4045.9 4093.1 4141.6 4192.6 4245.5 4299.3	6389.0 6250.0 6109.0 5969.0 5830.0 5689.0 5548.0	0.044 14.932 30.034 45.029 59.917 75.020 90.122 104.903	0.03 -0.05 0.02 0.02 -0.06 0.01 0.08 -0.07	0.0 -139.0 -141.0 -140.0 -139.0 -141.0 -138.0	0.027 14.925 30.035 45.036 59.928 75.031 90.132 104.909	0.02 -0.05 0.02 0.02 -0.05 0.02 0.09 -0.06
120.00 135.00 150.00	4415.1	5269.0 5130.0 4988.0	120.005 134.893 150.102	0.00 -0.07 0.07	-141.0 -139.0 -142.0	120.006 134.886 150.085	0.00 -0.08 0.06

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.04290 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036771

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 23/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 990.2174000

Barometric Pressure

: 998 mbar

Linear Gauge Factor (G): (kPa/digit)0.0990217

Calibration Technician

: Gary Pickles

Polynomial Gauge Factor A: 0.000000025163100

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.0993133600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 649.616100

Regression Zero

: 6551.9

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	3906.7	6552.0	-0.013	-0.01	0.0	-0.005	0.00
15.00	3952.8	6400.0	15.038	0.03	-152.0	15.041	0.03
30.00	4000.3	6249.0	29.990	-0.01	-151.0	29.990	-0.01
45.00	4049.5	6098.0	44.942	-0.04	-151.0	44.939	-0.04
60.00	4101.0	5946.0	59.994	0.00	-152.0	59.989	-0.01
75.00	4154.4	5794.0	75.045	0.03	-152.0	75.039	0.03
90.00	4209.6	5643.0	89.997	0.00	-151.0	89.992	-0.01
105.00	4267.5	5491.0	105.049	0.03	-152.0	105.045	0.03
120.00	4327.4	5340.0	120.001	0.00	-151.0	120.000	0.00
135.00	4389.9	5189.0	134.953	-0.03	-151.0	134.957	-0.03
150.00	4455.7	5037.0	150.005	0.00	-152.0	150.013	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.00050 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: Vibrating Wire Settlement Cell

Serial No.

: 036772

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1099.3390000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1099339

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.000000158206300

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1118523000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 747.275300

Regression Zero

: 6744.9

	Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	15.00 30.00 45.00 60.00 75.00 90.00 105.00 120.00	3850.4 3889.8 3930.8 3973.1 4016.4 4061.6 4107.5 4156.2 4205.9 4257.4	6745.0 6609.0 6472.0 6335.0 6199.0 6062.0 5927.0 5789.0 5653.0	-0.015 14.936 29.997 45.058 60.009 75.070 89.911 105.082 120.033 134.984	-0.01 -0.04 0.00 0.04 0.01 0.05 -0.06 0.05 0.02	0.0 -136.0 -137.0 -137.0 -136.0 -137.0 -135.0 -136.0	0.029 14.954 29.994 45.040 59.982 75.041 89.885 105.064 120.030	0.02 -0.03 0.00 0.03 -0.01 0.03 -0.08 0.04 0.02
		4310.9	5381.0	149.935	-0.01	-136.0 -136.0	135.002 149.979	0.00 -0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.59350 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

..... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036773

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1075.1280000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1075128

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: -0.000000109597200

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1062339000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 698.607800

Regression Zero

: 6532.4

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	3912.7	6532.0	0.044	0.03	0.0	0.012	0.01
15.00	3955.0	6393.0	14.988	-0.01	-139.0	14.975	-0.02
30.00	3999.0	6253.0	30.040	0.03	-140.0	30.042	0.03
45.00	4044.2	6114.0	44.984	-0.01	-139.0	44.997	0.00
60.00	4091.0	5975.0	59.929	-0.05	-139.0	59.948	-0.03
75.00	4139.8	5835.0	74.980	-0.01	-140.0	75.002	0.00
90.00	4190.0	5696.0	89.925	-0.05	-139.0	89.944	-0.04
105.00	4242.9	5555.0	105.084	0.06	-141.0	105.097	0.06
120.00	4297.0	5416.0	120.028	0.02	-139.0	120.030	0.02
135.00	4353.2	5277.0	134.973	-0.02	-139.0	134.960	-0.03
150.00	4412.1	5137.0	150.024	0.02	-140.0	149.992	-0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent -0.02150 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell

Serial No.

: 036774

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1172.7060000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1172706

Calibration Technician

: Goran Vasilkovski

Calibration Equipment:

Polynomial Gauge Factor A: 0.000000083600400

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1182631000 Polynomial Gauge Factor C**: 774.029100

Regression Zero

: 6575.4

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3899.9	6575.0	0.043	0.03	0.0	0.063	0.04
15.00	3938.1	6448.0	14.936	-0.04	-127.0	14.944	-0.04
30.00	3977.8	6320.0	29.947	-0.04	-128.0	29.945	-0.04
45.00	4018.7	6192.0	44.957	-0.03	-128.0	44.949	-0.03
60.00	4061.2	6063.0	60.085	0.06	-129.0	60.073	0.05
75.00	4104.8	5935.0	75.096	0.06	-128.0	75.082	0.05
90.00	4149.4	5808.0	89.989	-0.01	-127.0	89.977	-0.02
105.00	4195.9	5680.0	105.000	0.00	-128.0	104.992	-0.01
120.00	4244.0	5552.0	120.011	0.01	-128.0	120.009	0.01
135.00	4293.4	5425.0	134.904	-0.06	-127.0	134.912	-0.06
150.00	4345.4	5296.0	150.032	0.02	-129.0	150.052	0.03

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.00590 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036775

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1089.8280000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1089827

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.0000000000000000

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1089827000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 752.763700

Regression Zero

: 6907.2

ripping reading calculated hiroryto himean survival	r %FS nomial)
0.00 3805.0 6907.0 0.020 0.01 0.0 0.020	0.01
15.00 3843.3 6770.0 14.951 -0.03 -137.0 14.951 -0	0.03
30.00 3883.1 6632.0 29.990 -0.01 -138.0 29.990 -0	0.01
45.00 3924.1 6494.0 45.030 0.02 -138.0 45.030	0.02
60.00 3966.5 6356.0 60.069 0.05 -138.0 60.069	0.05
75.00 4010.0 6219.0 75.000 0.00 -137.0 75.000	0.00
90.00 4054.9 6082.0 89.931 -0.05 -137.0 89.931 -0	0.05
105.00 4101.7 5944.0 104.970 -0.02 -138.0 104.970 -0	0.02
120.00 4150.1 5806.0 120.010 0.01 -138.0 120.010	0.01
135.00 4200.3 5668.0 135.050 0.03 -138.0 135.050	0.03
150.00 4252.0 5531.0 149.980 -0.01 -137.0 149.980 -0	0.01

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.31060 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

.... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036776

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1030.5400000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1030540

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: -0.000000074081630

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1021731000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 685.100200

Regression Zero

: 6673.2

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3871.1	6673.0	0.024	0.02	0.0	0.000	0.00
15.00	3913.9	6528.0	14.966	-0.02	-145.0	14.957	-0.03
30.00	3958.4	6382.0	30.012	0.01	-146.0	30.014	0.01
45.00	4004.5	6236.0	45.058	0.04	-146.0	45.068	0.05
60.00	4051.9	6091.0	60.001	0.00	-145.0	60.015	0.01
75.00	4101.0	5946.0	74.944	-0.04	-145.0	74.959	-0.03
90.00	4152.3	5800.0	89.990	-0.01	-146.0	90.004	0.00
105.00	4205.2	5655.0	104.933	-0.04	-145.0	104.942	-0.04
120.00	4260.9	5508.0	120.082	0.05	-147.0	120.083	0.06
135.00	4317.7	5364.0	134.921	-0.05	-144.0	134.912	-0.06
150.00	4378.1	5217.0	150.070	0.05	-147.0	150.047	0.03

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent -0.00520 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036777

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1052.2270000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1052227

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.000000235047100

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1079168000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 685.665500

Regression Zero

: 6443.4

							77 0/770
Applied	Reading	Reading	Calculated	Error %FS	Linear	Calculated	Error %FS
(kPa)	(Period)	$F^2/1000$	(Linear)	(Linear)	Increment	(Polynomial)	(Polynomial)
0.00	3939.3	6444.0	-0.062	-0.04	0.0	0.010	0.01
15.00	3983.8	6301.0	14.985	-0.01	-143.0	15.013	0.01
30.00	4029.4	6159.0	29.926	-0.05	-142.0	29.922	-0.05
45.00	4077.4	6015.0	45.079	0.05	-144.0	45.050	0.03
60.00	4126.4	5873.0	60.020	0.01	-142.0	59.977	-0.02
75.00	4177.6	5730.0	75.067	0.04	-143.0	75.019	0.01
90.00	4230.7	5587.0	90.114	0.08	-143.0	90.071	0.05
105.00	4285.5	5445.0	105.055	0.04	-142.0	105.027	0.02
120.00	4342.1	5304.0	119.892	-0.07	-141.0	119.887	-0.08
135.00	4401.8	5161.0	134.939	-0.04	-143.0	134.967	-0.02
150.00	4464.1	5018.0	149.986	-0.01	-143.0	150.057	0.04

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.01580 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . ,

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036778

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1084.4530000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1084454

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.000000376449900

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1128371000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 720.219400

Regression Zero

: 6523.9

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3914.8	6525.0	-0.123	-0.08	0.0	-0.015	-0.01
15.00	3957.2	6386.0	14.951	-0.03	-139.0	14.994	0.00
30.00	4001.0	6247.0	30.025	0.02	-139.0	30.017	0.01
45.00	4046.2	6108.0	45.099	0.07	-139.0	45.055	0.04
60.00	4092.7	5970.0	60.064	0.04	-138.0	59.999	0.00
75.00	4140.9	5832.0	75.030	0.02	-138.0	74.958	-0.03
90.00	4190.7	5694.0	89.995	0.00	-138.0	89.930	-0.05
105.00	4242.9	5555.0	105.069	0.05	-139.0	105.026	0.02
120.00	4296.6	5417.0	120.034	0.02	-138.0	120.028	0.02
135.00	4352.4	5279.0	135.000	0.00	-138.0	135.043	0.03
150.00	4410.0	5142.0	149.857	-0.10	-137.0	149.965	-0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent -0.01080 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036779

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1151.1860000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1151186

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.000000434622500

Calibration Equipment:

Polynomial Gauge Factor B: -0.1203443000

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 782.611800

Regression Zero

: 6662.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3874.0	6663.0	-0.057	-0.04	0.0	0.053	0.04
15.00	3912.4	6533.0	14.908	-0.06	-130.0	14.952	-0.03
30.00	3952.2	6402.0	29.989	-0.01	-131.0	29.981	-0.01
45.00	3993.0	6272.0	44.954	-0.03	-130.0	44.910	-0.06
60.00	4035.7	6140.0	60.150	0.10	-132.0	60.083	0.06
75.00	4079.1	6010.0	75.115	0.08	-130.0	75.041	0.03
90.00	4123.9	5880.0	90.081	0.05	-130.0	90.014	0.01
105.00	4170.3	5750.0	105.046	0.03	-130.0	105.002	0.00
120.00	4218.2	5620.0	120.011	0.01	-130.0	120.004	0.00
135.00	4267.5	5491.0	134.862	-0.09	-129.0	134.906	-0.06
150.00	4319.3	5360.0	149.942	-0.04	-131.0	150.053	0.04

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficient 0.00580 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

.....Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036780

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1282.0420000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1282042

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.000000873237900

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1385698000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 866.416900

Regression Zero

: 6519.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3916.3	6520.0	-0.116	-0.08	0.0	0.063	0.04
15.00	3951.9	6403.0	14.884	-0.08	-117.0	14.955	-0.03
30.00	3988.5	6286.0	29.884	-0.08	-117.0	29.872	-0.09
45.00	4026.8	6167.0	45.140	0.09	-119.0	45.067	0.04
60.00	4065.6	6050.0	60.140	0.09	-117.0	60.032	0.02
75.00	4105.5	5933.0	75.140	0.09	-117.0	75.020	0.01
90.00	4146.6	5816.0	90.140	0.09	-117.0	90.033	0.02
105.00	4188.9	5699.0	105.140	0.09	-117.0	105.069	0.05
120.00	4231.8	5584.0	119.883	-0.08	-115.0	119.871	-0.09
135.00	4276.9	5467.0	134.883	-0.08	-117.0	134.955	-0.03
150.00	4323.4	5350.0	149.883	-0.08	-117.0	150.062	0.04

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R}\mathbf{0} - \mathbf{R}\mathbf{1})$

Temperature Coefficent 0.03200 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

......Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: Vibrating Wire Settlement Cell

Serial No.

: 036781

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1080.1250000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1080125

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: -0.000000039257550

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1075627000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 692.513000

Regression Zero

: 6423.3

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3945.8	6423.0	0.029	0.02	0.0	0.018	0.01
15.00	3989.2	6284.0	15.043	0.03	-139.0	15.039	0.03
30.00	4033.7	6146.0	29.949	-0.03	-138.0	29.950	-0.03
45.00	4080.1	6007.0	44.963	-0.02	-139.0	44.967	-0.02
60.00	4128.1	5868.0	59.976	-0.02	-139.0	59.983	-0.01
75.00	4177.9	5729.0	74.990	-0.01	-139.0	74.998	0.00
90.00	4229.5	5590.0	90.004	0.00	-139.0	90.011	0.01
105.00	4283.1	5451.0	105.018	0.01	-139.0	105.022	0.01
120.00	4338.8	5312.0	120.031	0.02	-139.0	120.032	0.02
135.00	4396.7	5173.0	135.045	0.03	-139.0	135.041	0.03
150.00	4456.6	5035.0	149.951	-0.03	-138.0	149.940	-0.04

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.04860 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036782

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1028.8050000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1028805

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: -0.000000034006070

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 678.964800

Polynomial Gauge Factor B: -0.1024805000

Regression Zero

: 6610.9

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3889.3	6611.0	-0.009	-0.01	0.0	-0.020	-0.01
15.00	3932.9	6465.0	15.011	0.01	-146.0	15.007	0.00
30.00	3978.1	6319.0	30.032	0.02	-146.0	30.033	0.02
45.00	4024.5	6174.0	44.950	-0.03	-145.0	44.954	-0.03
60.00	4073.3	6027.0	60.073	0.05	-147.0	60.079	0.05
75.00	4123.2	5882.0	74.991	-0.01	-145.0	74.998	0.00
90.00	4175.0	5737.0	89.908	-0.06	-145.0	89.915	-0.06
105.00	4229.5	5590.0	105.032	0.02	-147.0	105.036	0.02
120.00	4285.5	5445.0	119.949	-0.03	-145.0	119.950	-0.03
135.00	4344.5	5298.0	135.073	0.05	-147.0	135.069	0.05
150.00	4405.2	5153.0	149.991	-0.01	-145.0	149.980	-0.01

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.01030 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

..... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co uk www soil.co uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : Vibrating Wire Settlement Cell Serial No.

: 036783

Instrument Range: 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1027.6520000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1027652

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: 0.000000202396300

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1050773000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 668.480200

Regression Zero

: 6441.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3939.9	6442.0	-0.093	-0.06	0.0	-0.029	-0.02
15.00	3985.7	6295.0	15.013	0.01	-147.0	15.039	0.03
30.00	4032.7	6149.0	30.017	0.01	-146.0	30.012	0.01
45.00	4081.5	6003.0	45.021	0.01	-146.0	44.995	0.00
60.00	4132.0	5857.0	60.024	0.02	-146.0	59.985	-0.01
75.00	4184.5	5711.0	75.028	0.02	-146.0	74.985	-0.01
90.00	4239.0	5565.0	90.032	0.02	-146.0	89.993	0.00
105.00	4295.8	5419.0	105.036	0.02	-146.0	105.010	0.01
120.00	4354.8	5273.0	120.039	0.03	-146.0	120.035	0.02
135.00	4416.0	5128.0	134.940	-0.04	-145.0	134.966	-0.02
150.00	4480.2	4982.0	149.944	-0.04	-146.0	150.009	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.02050 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within $\pm 0.10\%$ (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: Vibrating Wire Settlement Cell

Serial No.

: 036784

Instrument Range : 0.00 to 150.0 kPa

Calibration Date

: 24/08/2010

Gauge Factors in kPa

Ambient Temperature

: 22°C

Period Gauge Factor (K): 1066.2350000

Barometric Pressure

: 1007 mbar

Linear Gauge Factor (G): (kPa/digit)0.1066235

Calibration Technician

: Goran Vasilkovski

Polynomial Gauge Factor A: -0.000000006044995

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1065507000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 716.984900

Regression Zero

: 6726.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3855.9	6726.0	0.053	0.04	0.0	0.052	0.03
15.00	3896.6	6586.0	14.981	-0.01	-140.0	14.980	-0.01
30.00	3938.7	6446.0	29.908	-0.06	-140.0	29.908	-0.06
45.00	3982.8	6304.0	45.048	0.03	-142.0	45.049	0.03
60.00	4027.8	6164.0	59.976	-0.02	-140.0	59.977	-0.02
75.00	4074.7	6023.0	75.010	0.01	-141.0	75.011	0.01
90.00	4123.2	5882.0	90.044	0.03	-141.0	90.045	0.03
105.00	4173.2	5742.0	104.971	-0.02	-140.0	104.972	-0.02
120.00	4225.4	5601.0	120.005	0.00	-141.0	120.005	0.00
	4279.6	5460.0	135.039	0.03	-141.0	135.038	0.03
	4335.6	5320.0	149.966	-0.02	-140.0	149.964	-0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent -0.03730 kPa/°C

Polynomial**

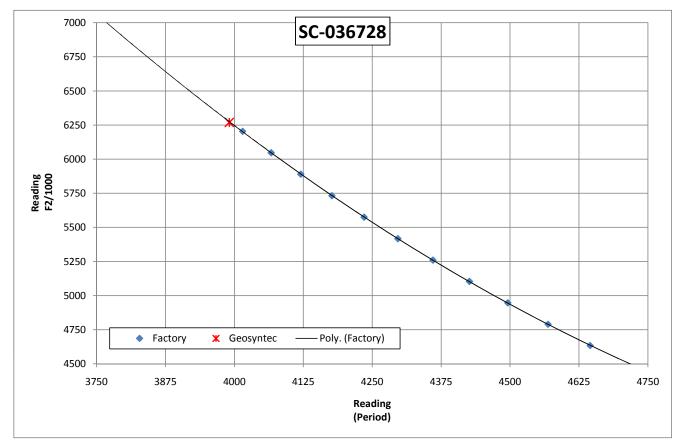
 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

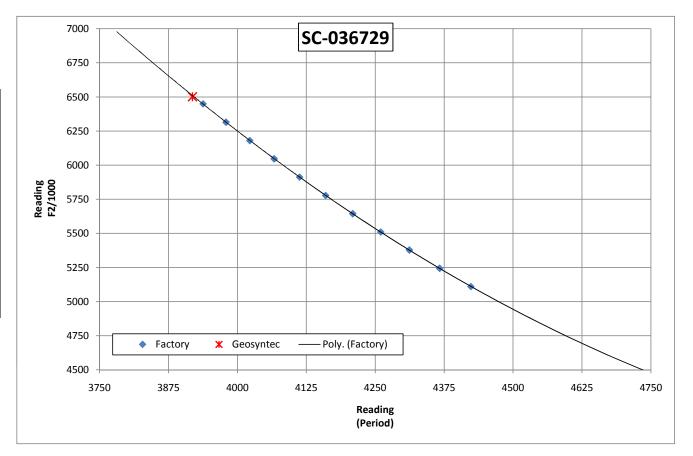
^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$


Geosyntec Pre-Acceptance Testing of VW Settlement Cells

Notes: The green-highlighted cell in the acceptance spreadsheet indicates the point measured by Geosyntec during pre-acceptance testing. It is noted that for each settlement cell, the point measured by Geosyntec aligns properly on the calibration curve provided by the manufacturer (ITM).

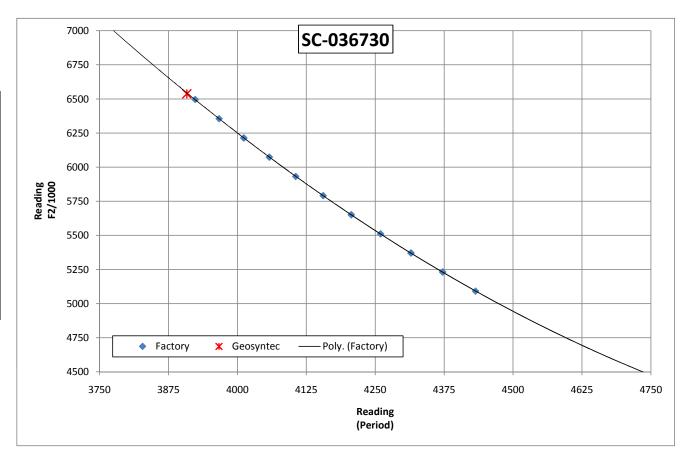
Serial No. (short) 28
Full Serial No. SC-036728

Regression Zero: 6203.5
Ambient Temp (Factory): 20.0
Measured Temp. (Geosyntec): 25.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	4014.8	6204.0
15	4066.6	6047.0
30	4120.4	5890.0
45	4176.8	5732.0
60	4235.2	5575.0
75	4296.6	5417.0
90	4360.2	5260.0
105	4426.3	5104.0
120	4496.0	4947.0
135	4569.1	4790.0
150	4645.4	4634.0
Geosyntec	3990.8	6269.0

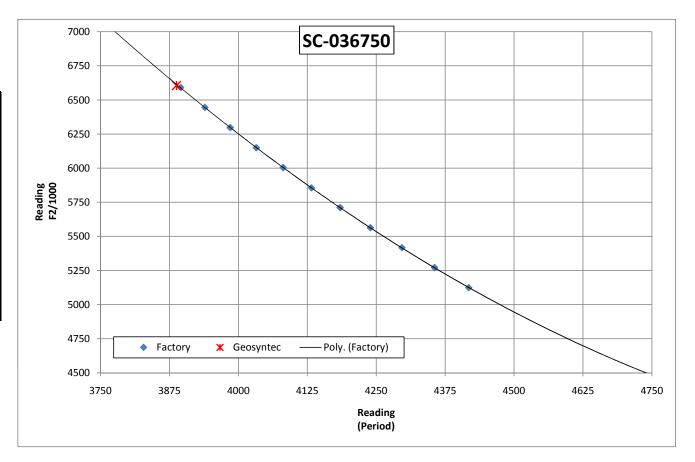
Serial No. (short) 29
Full Serial No. SC-036729

Regression Zero: 6448.0
Ambient Temp (Factory): 20.0
Measured Temp. (Geosyntec): 25.0


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3937.8	6449.0
15	3979.4	6315.0
30	4022.6	6180.0
45	4066.9	6046.0
60	4112.8	5912.0
75	4160.2	5778.0
90	4209.3	5644.0
105	4260.1	5510.0
120	4312.1	5378.0
135	4366.9	5244.0
150	4423.7	5110.0
Geosyntec	3918.5	6501.9

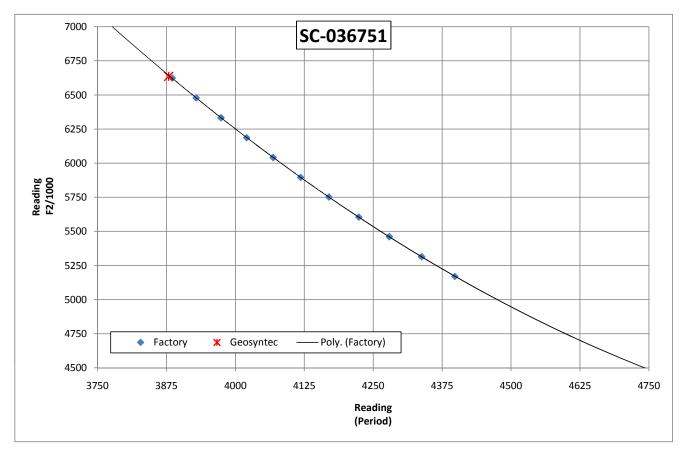
Serial No. (short) 30 Full Serial No. SC-036730

Regression Zero: 6494.9
Ambient Temp (Factory): 20.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3923.5	6496.0
15	3966.8	6355.0
30	4011.6	6214.0
45	4057.9	6073.0
60	4105.8	5932.0
75	4155.5	5791.0
90	4206.7	5651.0
105	4259.8	5511.0
120	4314.9	5371.0
135	4372.3	5231.0
150	4432.0	5091.0
Geosyntec	3908.2	6537.2

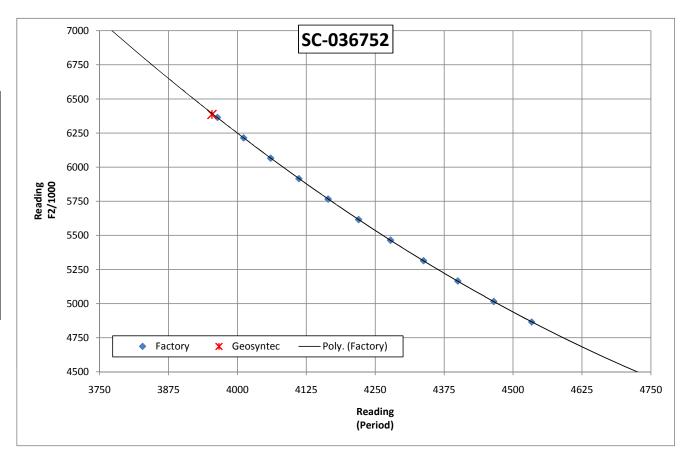
Serial No. (short) 50 Full Serial No. SC-036750

Regression Zero: 6590.7
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 28.1


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3895.2	6591.0
15	3939.0	6445.0
30	3985.0	6297.0
45	4032.4	6150.0
60	4081.1	6004.0
75	4132.4	5856.0
90	4184.5	5711.0
105	4239.4	5564.0
120	4296.6	5417.0
135	4355.7	5271.0
150	4417.7	5124.0
Geosyntec	3887.6	6605.9

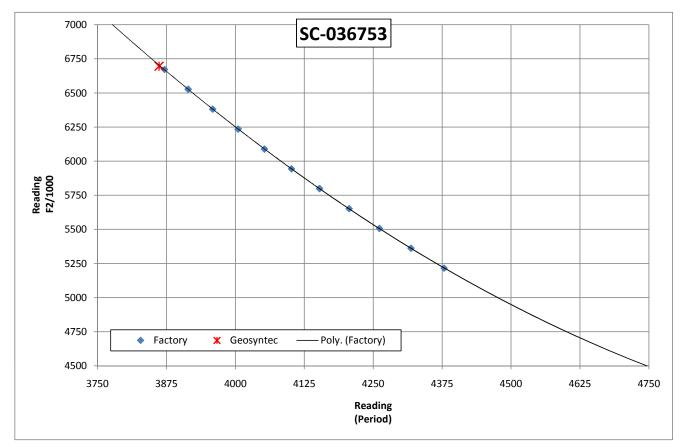
Serial No. (short) 51
Full Serial No. SC-036751

Regression Zero: 6623.5
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3885.4	6624.0
15	3928.8	6478.6
30	3973.8	6332.7
45	4020.4	6186.6
60	4068.4	6041.7
75	4118.3	5896.0
90	4169.6	5752.0
105	4223.8	5605.2
120	4279.1	5461.3
135	4337.7	5314.8
150	4398.0	5170.0
Geosyntec	3878.9	6636.2

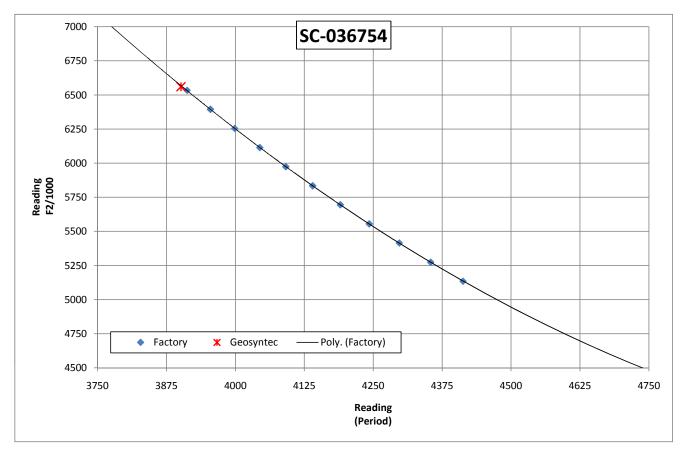
Serial No. (short) 52 Full Serial No. SC-036752

Regression Zero: 6365.5
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3963.7	6365.0
15	4011.2	6215.0
30	4060.2	6066.0
45	4111.4	5916.0
60	4164.5	5766.0
75	4219.7	5616.0
90	4277.6	5465.0
105	4337.6	5315.0
120	4399.7	5166.0
135	4465.0	5016.0
150	4533.8	4865.0
Geosyntec	3953.7	6386.7

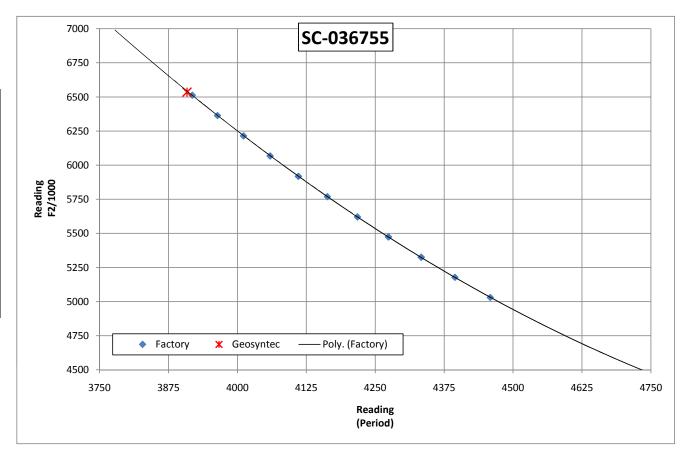
Serial No. (short) 53
Full Serial No. SC-036753

Regression Zero: 6672.1
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3871.4	6672.0
15	3914.2	6527.0
30	3958.7	6381.0
45	4004.8	6235.0
60	4052.5	6089.0
75	4101.7	5944.0
90	4152.6	5799.0
105	4206.3	5652.0
120	4261.3	5507.0
135	4318.5	5362.0
150	4378.6	5216.0
Geosyntec	3861.6	6695.6

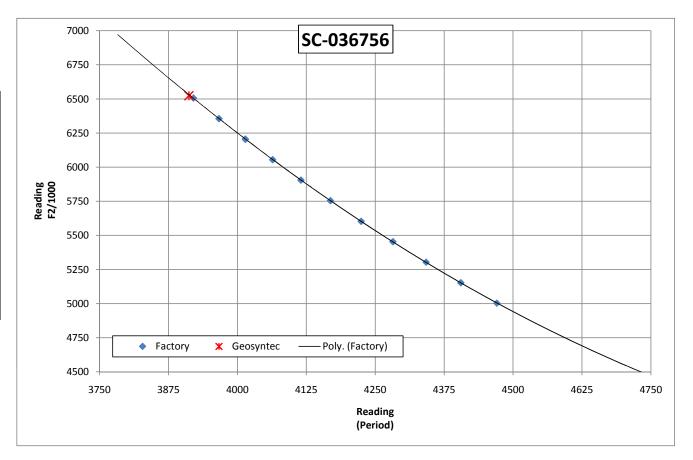
Serial No. (short) 54
Full Serial No. SC-036754

Regression Zero: 6533.5
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3912.4	6533.0
15	3954.7	6394.0
30	3998.7	6254.0
45	4044.2	6114.0
60	4091.4	5974.0
75	4140.2	5834.0
90	4190.4	5695.0
105	4242.9	5555.0
120	4297.4	5415.0
135	4354.4	5274.0
150	4413.0	5135.0
Geosyntec	3901.2	6559.7

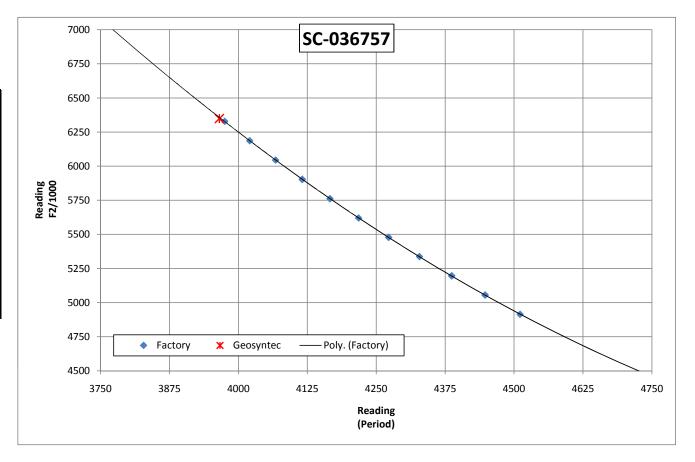
Serial No. (short) 55
Full Serial No. SC-036755

Regression Zero: 6512.0
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3918.4	6513.0
15	3964.0	6364.0
30	4011.2	6215.0
45	4059.5	6068.0
60	4110.7	5918.0
75	4163.4	5769.0
90	4217.9	5621.0
105	4274.1	5474.0
120	4333.5	5325.0
135	4394.6	5178.0
150	4458.8	5030.0
Geosyntec	3908.6	6535.1

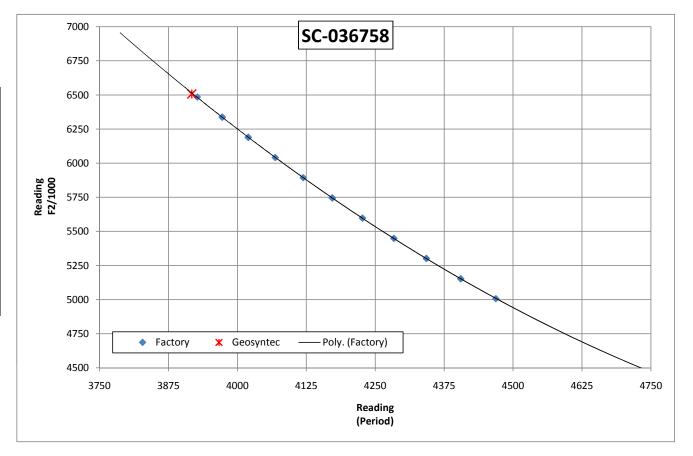
Serial No. (short) 56
Full Serial No. SC-036756

Regression Zero: 6505.7
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3920.4	6506.4
15	3966.7	6355.4
30	4014.6	6204.7
45	4064.0	6054.7
60	4115.3	5904.8
75	4168.7	5754.4
90	4224.5	5603.4
105	4282.0	5453.9
120	4342.2	5303.7
135	4405.2	5153.2
150	4470.5	5003.6
Geosyntec	3912.0	6523.4

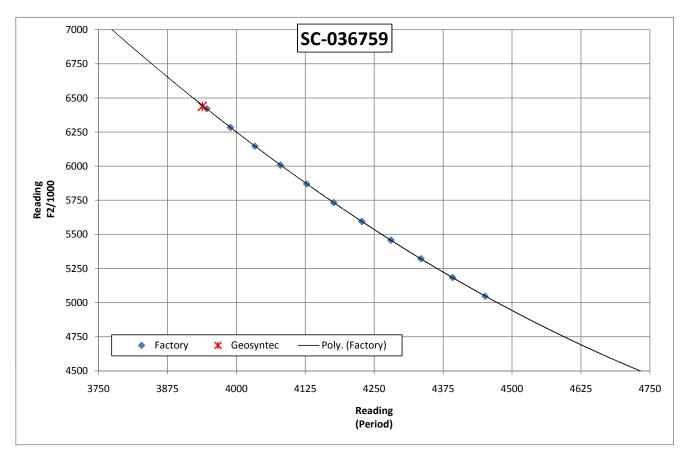
Serial No. (short) 57
Full Serial No. SC-036757

Regression Zero: 6327.1
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.7


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3975.3	6328.0
15	4020.6	6186.0
30	4067.6	6044.0
45	4115.9	5903.0
60	4166.3	5761.0
75	4218.2	5620.0
90	4272.6	5478.0
105	4328.6	5337.0
120	4387.0	5196.0
135	4447.7	5055.0
150	4511.1	4914.0
Geosyntec	3965.5	6349.3

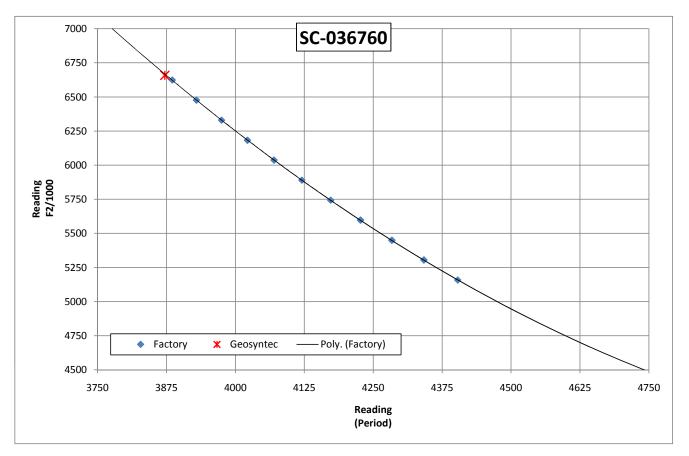
Serial No. (short) 58
Full Serial No. SC-036758

Regression Zero: 6484.4
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 26.4


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3927.2	6484.0
15	3972.4	6337.0
30	4019.7	6189.0
45	4068.6	6041.0
60	4119.4	5893.0
75	4172.1	5745.0
90	4226.9	5597.0
105	4283.9	5449.0
120	4342.9	5302.0
135	4405.2	5153.0
150	4469.0	5007.0
Geosyntec	3917.2	6507.0

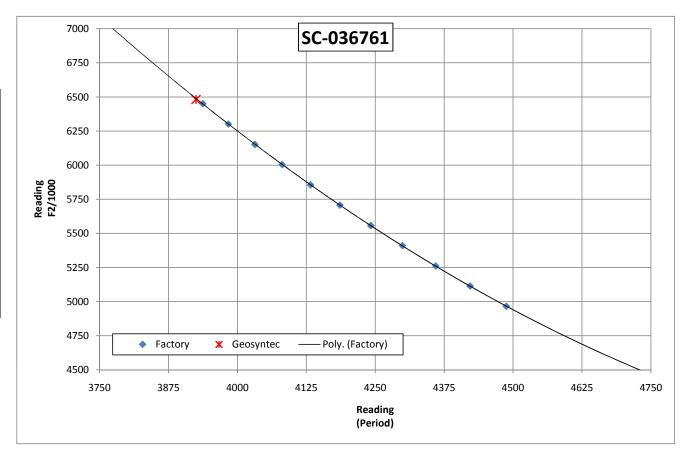
Serial No. (short) 59 Full Serial No. SC-036759

Regression Zero: 6420.3
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3946.5	6420.7
15	3989.3	6283.5
30	4033.6	6146.3
45	4079.8	6007.8
60	4127.5	5869.7
75	4176.5	5732.8
90	4227.6	5595.1
105	4280.3	5458.3
120	4334.7	5322.0
135	4392.0	5184.2
150	4451.1	5047.3
Geosyntec	3938.1	6437.8

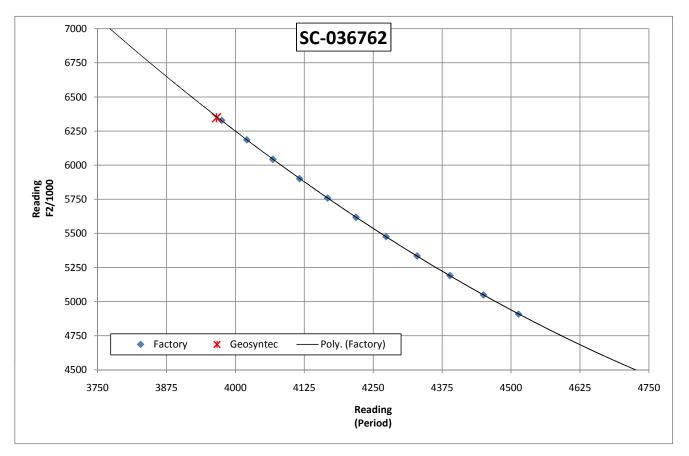
Serial No. (short) 60 Full Serial No. SC-036760

Regression Zero: 6622.6
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3885.6	6623.5
15	3929.4	6476.5
30	3974.9	6329.2
45	4021.9	6182.2
60	4070.1	6036.5
75	4120.6	5889.5
90	4172.9	5742.8
105	4227.0	5596.8
120	4283.8	5449.4
135	4341.8	5304.8
150	4403.2	5157.7
Geosyntec	3872.1	6658.4

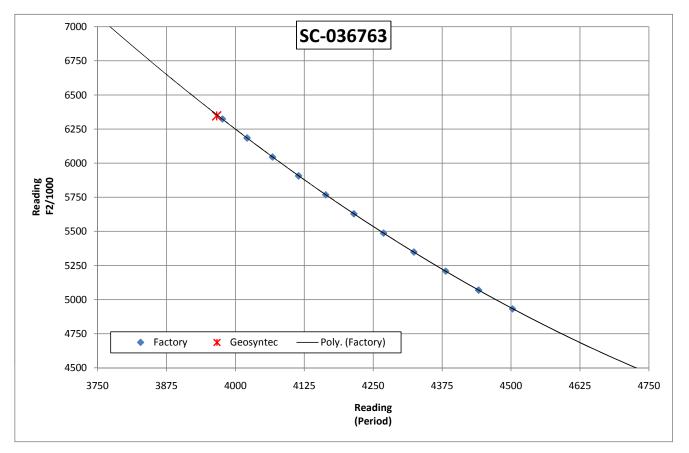
Serial No. (short) 61
Full Serial No. SC-036761

Regression Zero: 6449.6
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 26.0


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3937.4	6450.4
15	3983.6	6301.5
30	4031.7	6152.1
45	4081.1	6004.1
60	4132.7	5855.2
75	4186.0	5706.9
90	4242.0	5557.2
105	4299.3	5410.0
120	4359.8	5260.9
135	4422.1	5113.7
150	4487.7	4965.4
Geosyntec	3924.8	6481.6

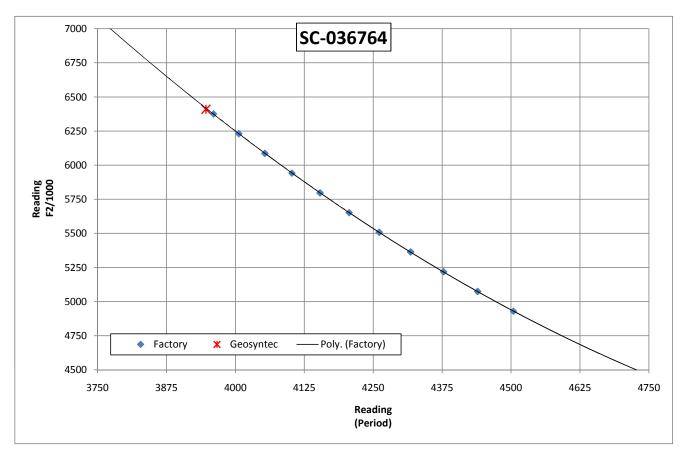
Serial No. (short) 62 Full Serial No. SC-036762

Regression Zero: 6327.0
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3975.3	6327.8
15	4020.9	6185.1
30	4068.1	6042.6
45	4116.7	5900.8
60	4167.3	5758.2
75	4219.0	5618.0
90	4273.4	5475.8
105	4329.7	5334.4
120	4389.3	5190.6
135	4450.3	5049.2
150	4513.7	4908.3
Geosyntec	3965.8	6347.8

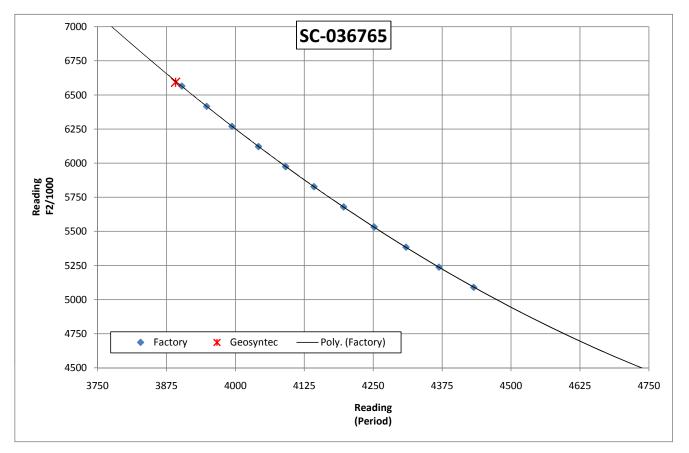
Serial No. (short) 63
Full Serial No. SC-036763

Regression Zero: 6324.4
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 26.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3976.5	6324.0
15	4021.0	6185.0
30	4067.3	6045.0
45	4114.5	5907.0
60	4163.8	5768.0
75	4214.9	5629.0
90	4268.7	5488.0
105	4323.8	5349.0
120	4381.5	5209.0
135	4441.2	5070.0
150	4502.9	4932.0
Geosyntec	3966.1	6346.8

Serial No. (short) 64
Full Serial No. SC-036764

Regression Zero: 6375.7
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3960.3	6375.8
15	4006.1	6230.9
30	4053.3	6086.8
45	4102.5	5941.6
60	4153.4	5796.8
75	4206.3	5651.9
90	4260.9	5508.0
105	4317.8	5363.9
120	4377.6	5218.2
135	4439.3	5074.2
150	4504.2	4929.1
Geosyntec	3946.5	6410.0

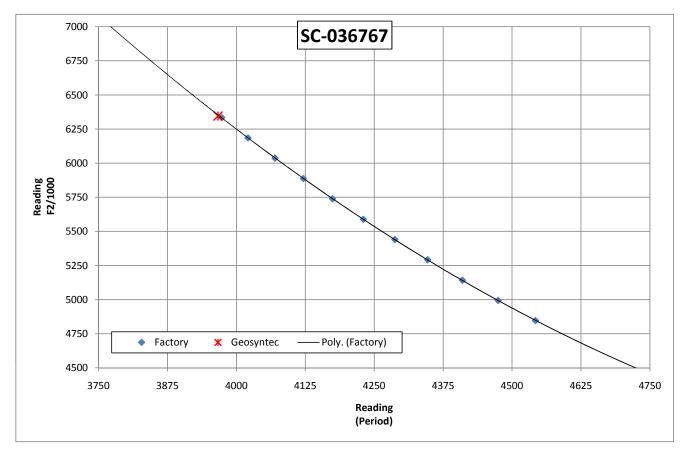
Serial No. (short) 65 Full Serial No. SC-036765

Regression Zero: 6564.0
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3902.9	6564.8
15	3947.9	6416.1
30	3993.8	6269.4
45	4041.9	6121.1
60	4091.2	5974.5
75	4142.5	5827.3
90	4196.3	5679.0
105	4251.6	5532.1
120	4309.5	5384.5
135	4369.3	5238.1
150	4432.3	5090.2
Geosyntec	3891.5	6593.0

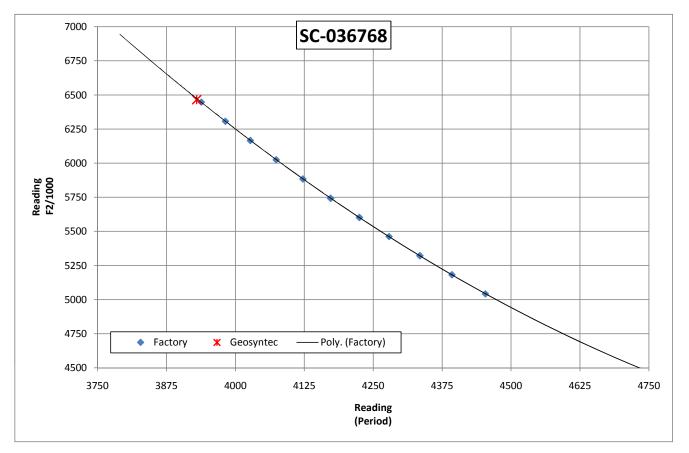
Serial No. (short) 66
Full Serial No. SC-036766

Regression Zero: 6549.2
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.0


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3907.3	6550.0
15	3946.1	6422.0
30	3986.0	6294.0
45	4027.2	6166.0
60	4069.6	6038.0
75	4113.1	5911.0
90	4158.4	5783.0
105	4205.2	5655.0
120	4253.2	5528.0
135	4302.9	5401.0
150	4354.4	5274.0
Geosyntec	3897.6	6571.0

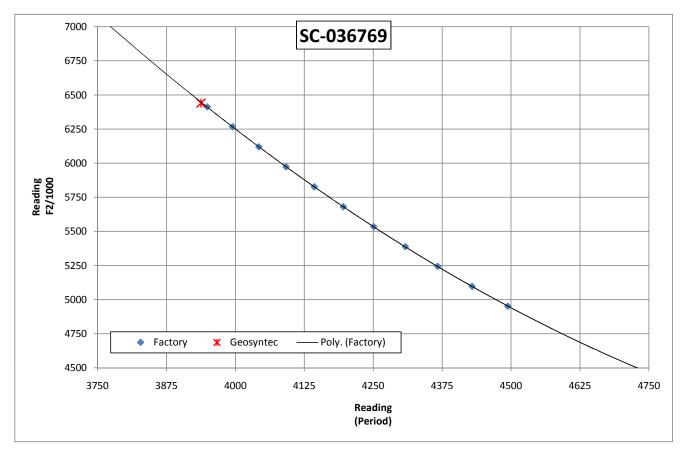
Serial No. (short) 67
Full Serial No. SC-036767

Regression Zero: 6333.9
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.0


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3973.4	6334.0
15	4021.0	6185.0
30	4070.0	6037.0
45	4121.5	5887.0
60	4174.3	5739.0
75	4230.3	5588.0
90	4287.5	5440.0
105	4347.0	5292.0
120	4410.0	5142.0
135	4474.8	4994.0
150	4542.6	4846.0
Geosyntec	3966.6	6344.8

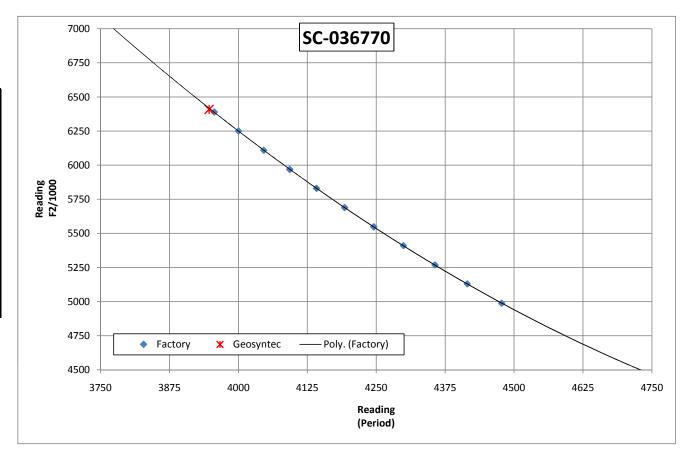
Serial No. (short) 68
Full Serial No. SC-036768

Regression Zero: 6446.8
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.7


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3938.4	6447.0
15	3981.9	6307.0
30	4027.2	6166.0
45	4074.0	6025.0
60	4122.5	5884.0
75	4172.8	5743.0
90	4225.0	5602.0
105	4278.8	5462.0
120	4334.7	5322.0
135	4392.9	5182.0
150	4453.5	5042.0
Geosyntec	3929.8	6465.3

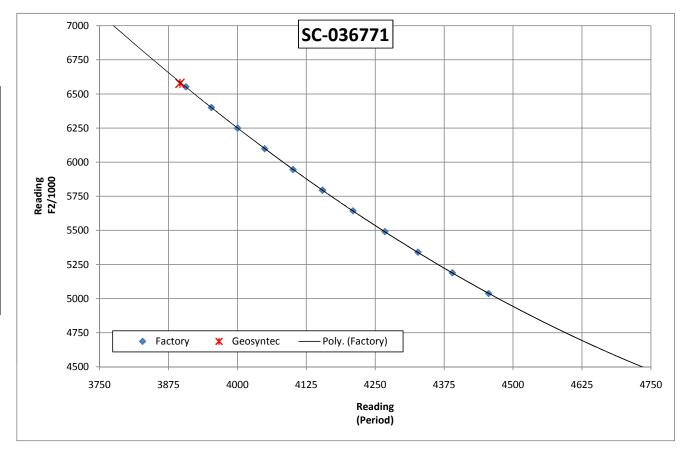
Serial No. (short) 69 Full Serial No. SC-036769

Regression Zero: 6411.8
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3948.9	6412.8
15	3994.8	6266.2
30	4042.4	6119.5
45	4091.7	5973.1
60	4142.9	5826.3
75	4195.7	5680.5
90	4250.8	5534.2
105	4308.3	5387.5
120	4367.0	5243.6
135	4429.4	5097.0
150	4494.1	4951.3
Geosyntec	3937.5	6439.9

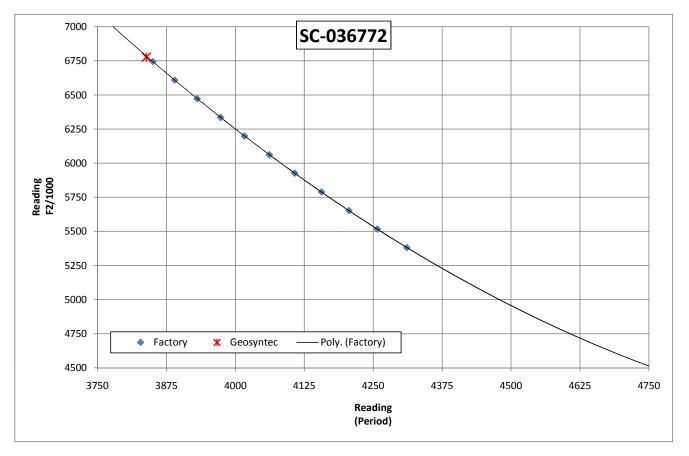
Serial No. (short) 70
Full Serial No. SC-036770

Regression Zero: 6389.4
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3956.2	6389.0
15	4000.0	6250.0
30	4045.9	6109.0
45	4093.1	5969.0
60	4141.6	5830.0
75	4192.6	5689.0
90	4245.5	5548.0
105	4299.3	5410.0
120	4356.5	5269.0
135	4415.1	5130.0
150	4477.5	4988.0
Geosyntec	3947.0	6408.9

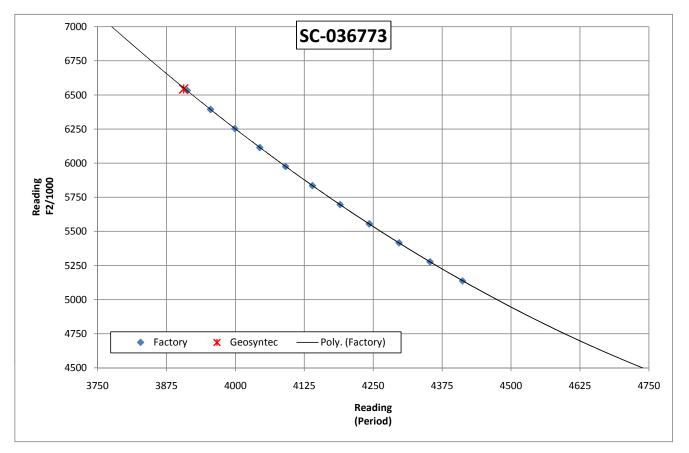
Serial No. (short) 71
Full Serial No. SC-036771

Regression Zero: 6551.9
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.0


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3906.7	6552.0
15	3952.8	6400.0
30	4000.3	6249.0
45	4049.5	6098.0
60	4101.0	5946.0
75	4154.4	5794.0
90	4209.6	5643.0
105	4267.5	5491.0
120	4327.4	5340.0
135	4389.9	5189.0
150	4455.7	5037.0
Geosyntec	3895.8	6578.1

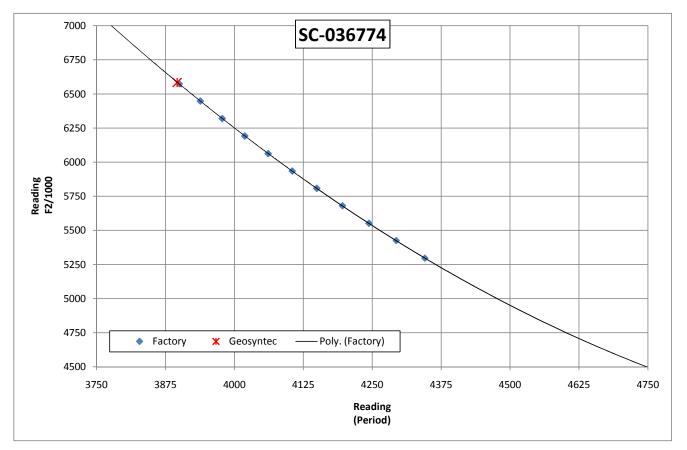
Serial No. (short) 72 Full Serial No. SC-036772

Regression Zero: 6744.9
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 26.2


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3850.4	6745.0
15	3889.8	6609.0
30	3930.8	6472.0
45	3973.1	6335.0
60	4016.4	6199.0
75	4061.6	6062.0
90	4107.5	5927.0
105	4156.2	5789.0
120	4205.9	5653.0
135	4257.4	5517.0
150	4310.9	5381.0
Geosyntec	3838.3	6777.1

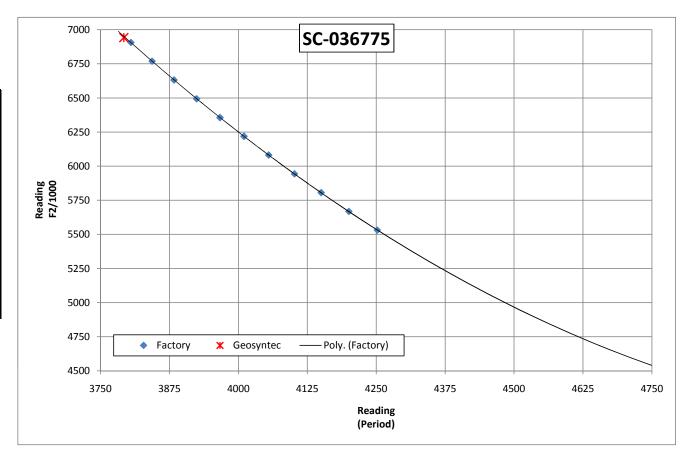
Serial No. (short) 73
Full Serial No. SC-036773

Regression Zero: 6532.4
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3912.7	6532.0
15	3955.0	6393.0
30	3999.0	6253.0
45	4044.2	6114.0
60	4091.0	5975.0
75	4139.8	5835.0
90	4190.0	5696.0
105	4242.9	5555.0
120	4297.0	5416.0
135	4353.2	5277.0
150	4412.1	5137.0
Geosyntec	3906.1	6543.3

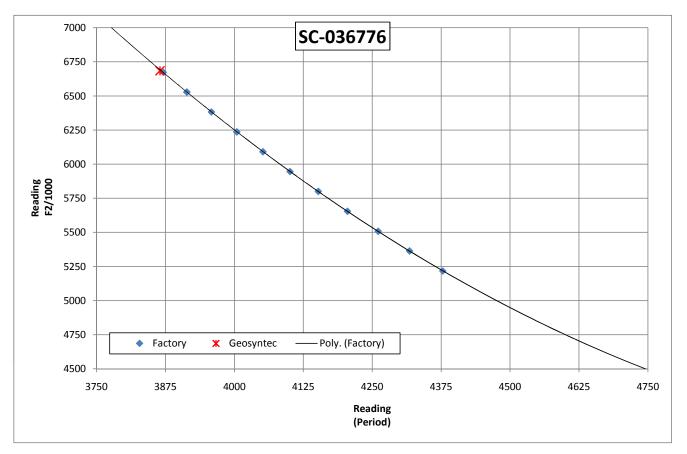
Serial No. (short) 74
Full Serial No. SC-036774

Regression Zero: 6575.4
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3899.9	6575.0
15	3938.1	6448.0
30	3977.8	6320.0
45	4018.7	6192.0
60	4061.2	6063.0
75	4104.8	5935.0
90	4149.4	5808.0
105	4195.9	5680.0
120	4244.0	5552.0
135	4293.4	5425.0
150	4345.4	5296.0
Geosyntec	3896.0	6583.3

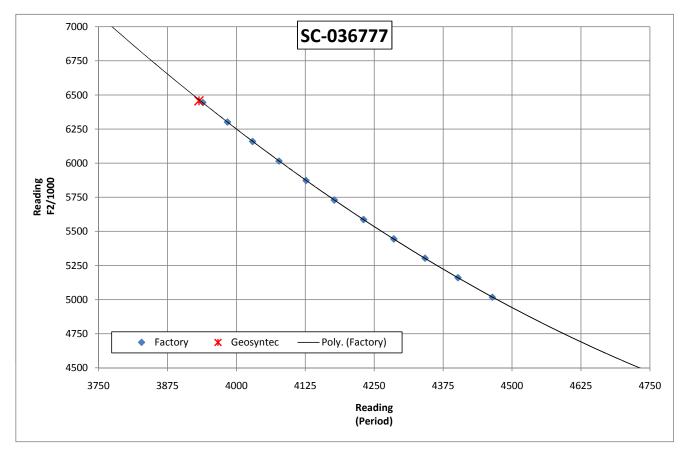
Serial No. (short) 75
Full Serial No. SC-036775

Regression Zero: 6907.2
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.0


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3805.0	6907.0
15	3843.3	6770.0
30	3883.1	6632.0
45	3924.1	6494.0
60	3966.5	6356.0
75	4010.0	6219.0
90	4054.9	6082.0
105	4101.7	5944.0
120	4150.1	5806.0
135	4200.3	5668.0
150	4252.0	5531.0
Geosyntec	3792.2	6942.6

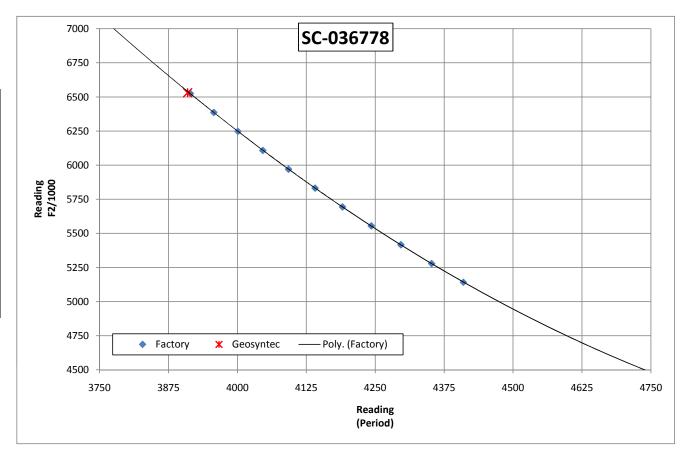
Serial No. (short) 76
Full Serial No. SC-036776

Regression Zero: 6673.2
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3871.1	6673.0
15	3913.9	6528.0
30	3958.4	6382.0
45	4004.5	6236.0
60	4051.9	6091.0
75	4101.0	5946.0
90	4152.3	5800.0
105	4205.2	5655.0
120	4260.9	5508.0
135	4317.7	5364.0
150	4378.1	5217.0
Geosyntec	3864.9	6684.2

Serial No. (short) 77
Full Serial No. SC-036777

Regression Zero: 6443.4
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3939.3	6444.0
15	3983.8	6301.0
30	4029.4	6159.0
45	4077.4	6015.0
60	4126.4	5873.0
75	4177.6	5730.0
90	4230.7	5587.0
105	4285.5	5445.0
120	4342.1	5304.0
135	4401.8	5161.0
150	4464.1	5018.0
Geosyntec	3932.1	6457.1

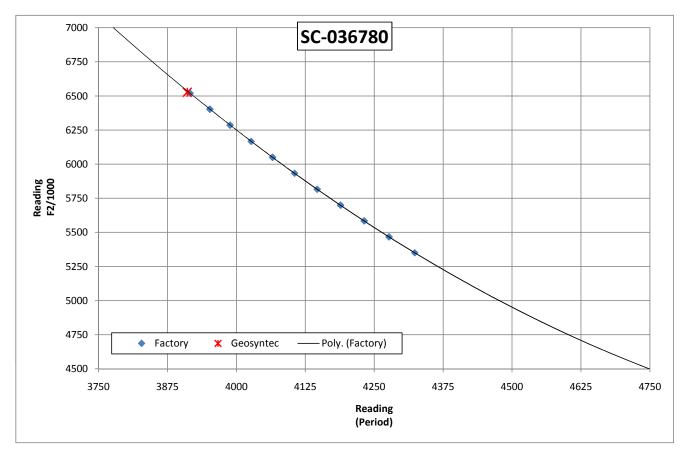
Serial No. (short) 78
Full Serial No. SC-036778

Regression Zero: 6523.9
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6


		p !:
	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3914.8	6525.0
15	3957.2	6386.0
30	4001.0	6247.0
45	4046.2	6108.0
60	4092.7	5970.0
75	4140.9	5832.0
90	4190.7	5694.0
105	4242.9	5555.0
120	4296.6	5417.0
135	4352.4	5279.0
150	4410.0	5142.0
Geosyntec	3909.7	6531.0

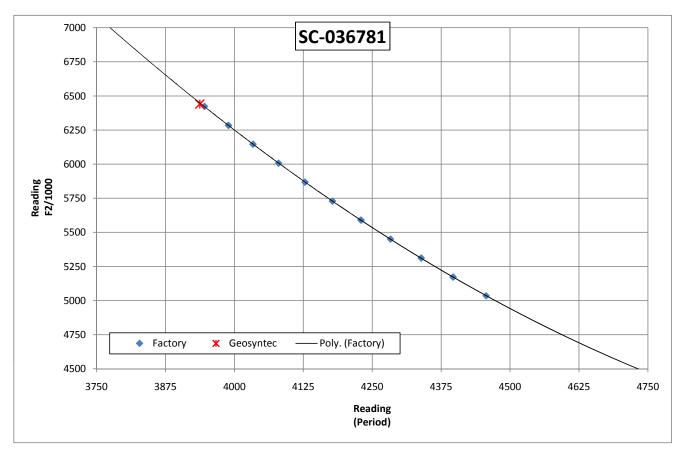
Serial No. (short) 79
Full Serial No. SC-036779

Regression Zero: 6662.5
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 26.1


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3874.0	6663.0
15	3912.4	6533.0
30	3952.2	6402.0
45	3993.0	6272.0
60	4035.7	6140.0
75	4079.1	6010.0
90	4123.9	5880.0
105	4170.3	5750.0
120	4218.2	5620.0
135	4267.5	5491.0
150	4319.3	5360.0
Geosyntec	3866.8	6677.0

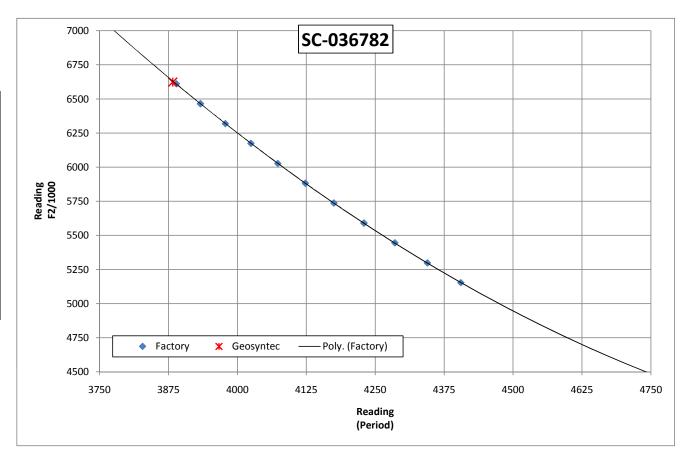
Serial No. (short) 80
Full Serial No. SC-036780

Regression Zero: 6519.1
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3916.3	6520.0
15	3951.9	6403.0
30	3988.5	6286.0
45	4026.8	6167.0
60	4065.6	6050.0
75	4105.5	5933.0
90	4146.6	5816.0
105	4188.9	5699.0
120	4231.8	5584.0
135	4276.9	5467.0
150	4323.4	5350.0
Geosyntec	3910.9	6527.5

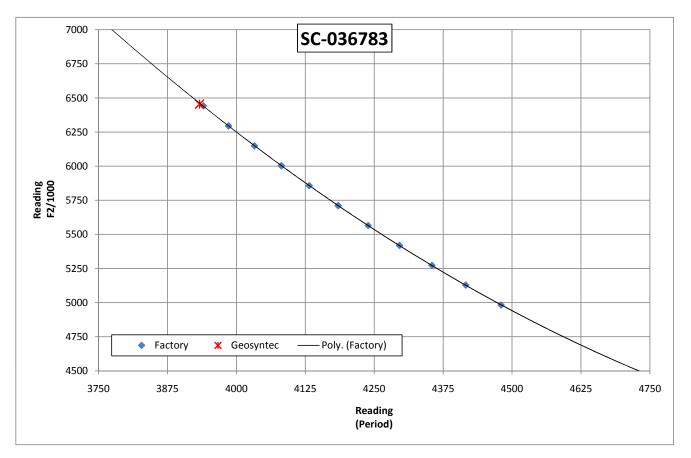
Serial No. (short) 81
Full Serial No. SC-036781

Regression Zero: 6423.3
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.9


	Reading	Reading
	Ö	Ü
Applied (kPa)	(Period)	F ² /1000
0	3945.8	6423.0
15	3989.2	6284.0
30	4033.7	6146.0
45	4080.1	6007.0
60	4128.1	5868.0
75	4177.9	5729.0
90	4229.5	5590.0
105	4283.1	5451.0
120	4338.8	5312.0
135	4396.7	5173.0
150	4456.6	5035.0
Geosyntec	3937.2	6439.9

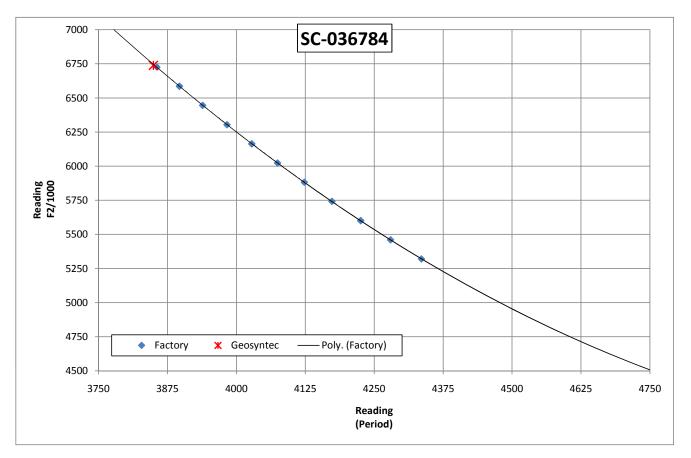
Serial No. (short) 82
Full Serial No. SC-036782

Regression Zero: 6610.9
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 24.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3889.3	6611.0
15	3932.9	6465.0
30	3978.1	6319.0
45	4024.5	6174.0
60	4073.3	6027.0
75	4123.2	5882.0
90	4175.0	5737.0
105	4229.5	5590.0
120	4285.5	5445.0
135	4344.5	5298.0
150	4405.2	5153.0
Geosyntec	3882.8	6622.9

Serial No. (short) 83
Full Serial No. SC-036783

Regression Zero: 6441.1
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3939.9	6442.0
15	3985.7	6295.0
30	4032.7	6149.0
45	4081.5	6003.0
60	4132.0	5857.0
75	4184.5	5711.0
90	4239.0	5565.0
105	4295.8	5419.0
120	4354.8	5273.0
135	4416.0	5128.0
150	4480.2	4982.0
Geosyntec	3933.1	6454.6

Serial No. (short) 84
Full Serial No. SC-036784

Regression Zero: 6726.5
Ambient Temp (Factory): 22.0
Measured Temp. (Geosyntec): 25.6

	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3855.9	6726.0
15	3896.6	6586.0
30	3938.7	6446.0
45	3982.8	6304.0
60	4027.8	6164.0
75	4074.7	6023.0
90	4123.2	5882.0
105	4173.2	5742.0
120	4225.4	5601.0
135	4279.6	5460.0
150	4335.6	5320.0
Geosyntec	3849.3	6738.1

ITM Calibration Certificates of VW Piezometers

<u>Calculation of Engineering units from frequency-based units.</u>

The mathematical relationship between the frequency of vibration of a tensioned wire and the force applying the tension, is an approximate straight line relationship between the square of the measured frequency and the applied force.

Engineering units of measurement maybe derived from the frequency-based units measured by vibrating wire readouts, in 3 traditional ways:-

From 'Period' units (t x 10^7) and from 'Linear'(f^2/1000) units using two methods: a simple Linear equation or a Polynomial equation.

Calculation using 'Period' units.

The following formula is used for readings in 'Period' units.

 $E = K (10^7/P0^2 - 10^7/P1^2)$

Where,

E is the Pressure in resultant Engineering units,
K is the Period Gauge Factor for units of calibration (from the calibration sheet)
P0 is the installation Period 'base' or 'zero' reading
P1 is the current Period reading.

This method of calculation is used by the Soil Instruments Vibrating Wire loggers' (models RO-1-VW-1 or 2 and with serial numbers starting VL or TVL) internal processors', for calculating and displaying directly on the loggers' LCD screen, the required Engineering based units.

The loggers' require 'Period' base or zero reading units for entering into their channel tables, to calculate and display correctly the required engineering units.

If an Engineering-based unit is required other than the units of calibration, then the correct K factor will have to be calculated using the standard relationship between Engineering units.

For example, if the units of calculation required were in mH2O and the calibration units were kPa, we can find out that 1kPa is equal to 0.1022mH2O, so we would derive the K factor for mH2O by multiplying the K factor for kPa by 0.1022.

Please see conversion factors in the user manual or www.soil.co.uk

Calculation using Linear units.

The following formula is used for readings in 'Linear' units.

E = G (R0 - R1)

Where,

E is the resultant Engineering unit,
G the linear Gauge factor for the units of calibration (from the calibration sheet)
R0 is the installation Linear 'base' or 'zero' reading
R1 is the current Linear reading.

Again the Linear gauge factor for units other than the units of calibration would need to be calculated using the same principles as stated in the last paragraph of the 'Period unit' section.

Calculation of Engineering units from frequency-based units.

The mathematical relationship between the frequency of vibration of a tensioned wire and the force applying the tension, is an approximate straight line relationship between the square of the measured frequency and the applied force.

Engineering units of measurement maybe derived from the frequency-based units measured by vibrating wire readouts, in 3 traditional ways:-

From 'Period' units (t x 10^7) and from 'Linear'($f^2/1000$) units using two methods: a simple Linear equation or a Polynomial equation.

Calculation using 'Period' units.

The following formula is used for readings in 'Period' units.

 $E = K (10^7/P0^2 - 10^7/P1^2)$

Where,

E is the Pressure in resultant Engineering units, K is the Period Gauge Factor for units of calibration (from the calibration sheet) P0 is the installation Period 'base' or 'zero' reading P1 is the current Period reading.

This method of calculation is used by the Soil Instruments Vibrating Wire loggers' (models RO-1-VW-1 or 2 and with serial numbers starting VL or TVL) internal processors', for calculating and displaying directly on the loggers' LCD screen, the required Engineering based units.

The loggers' require 'Period' base or zero reading units for entering into their channel tables, to calculate and display correctly the required engineering units.

If an Engineering-based unit is required other than the units of calibration, then the correct K factor will have to be calculated using the standard relationship between Engineering units.

For example, if the units of calculation required were in mH2O and the calibration units were kPa, we can find out that 1kPa is equal to 0.1022mH2O, so we would derive the K factor for mH2O by multiplying the K factor for kPa by 0.1022.

Please see conversion factors in the user manual or www.soil.co.uk

Calculation using Linear units.

The following formula is used for readings in 'Linear' units.

E = G (R0 - R1)

Where,

E is the resultant Engineering unit, G the linear Gauge factor for the units of calibration (from the calibration sheet) R0 is the installation Linear 'base' or 'zero' reading R1 is the current Linear reading.

Again the Linear gauge factor for units other than the units of calibration would need to be calculated using the same principles as stated in the last paragraph of the 'Period unit' section.

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036659

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1318.7970000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1318800

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000112854200

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1331425000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 891.289800

Regression Zero

: 6732.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3854.0	6732.6	-0.078	-0.03	0.0	0.010	0.00
30.00	3920.8	6504.9	29.951	-0.02	-227.7	29.986	0.00
60.00	3991.4	6276.9	60.020	0.01	-228.0	60.014	0.00
90.00	4065.8	6049.3	90.036	0.01	-227.6	90.000	0.00
120.00	4144.6	5821.6	120.065	0.02	-227.7	120.012	0.00
150.00	4227.8	5594.5	150.014	0.00	-227.1	149.956	-0.01
180.00	4316.5	5367.1	180.004	0.00	-227.4	179.951	-0.02
210.00	4411.3	5138.9	210.099	0.03	-228.2	210.064	0.02
240.00	4512.1	4911.9	240.036	0.01	-227.0	240.030	0.01
270.00	4620.1	4684.9	269.972	-0.01	-227.0	270.007	0.00
300.00	4736.1	4458.1	299.882	-0.04	-226.8	299.970	-0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.03960 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . . 4

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: W4 Vibrating Wire Piezometer

Serial No.

: 036660

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1293.2050000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1293200

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000055435770

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1299088000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 837.738500

Regression Zero

: 6466.2

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3932.5	6466.3	-0.018	-0.01	0.0	0.027	0.01
30.00	4005.0	6234.4	29.972	-0.01	-231.9	29.990	0.00
60.00	4081.6	6002.6	59.948	-0.02	-231.8	59.945	-0.02
90.00	4163.0	5770.1	90.015	0.01	-232.5	89.997	0.00
120.00	4249.4	5537.8	120.056	0.02	-232.3	120.030	0.01
150.00	4341.3	5305.9	150.046	0.02	-231.9	150.016	0.01
180.00	4439.4	5073.9	180.048	0.02	-232.0	180.021	0.01
210.00	4544.5	4842.1	210.025	0.01	-231.8	210.007	0.00
240.00	4657.3	4610.4	239.988	0.00	-231.7	239.985	0.00
270.00	4778.8	4378.9	269.926	-0.02	-231.5	269.944	-0.02
300.00	4910.9	4146.4	299.993	0.00	-232.5	300.038	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.00650 kPa/°C

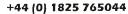
Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

Line MANAGER


^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: W4 Vibrating Wire Piezometer

Serial No.

: 036661

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1352.0710000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1352100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000121650300

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1365524000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 901.234400

Regression Zero

: 6638.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3881.0	6639.1	-0.079	-0.03	0.0	0.011	0.00
30.00	3947.6	6417.0	29.951	-0.02	-222.1	29.987	0.00
60.00	4017.9	6194.5	60.034	0.01	-222.5	60.028	0.01
90.00	4091.8	5972.8	90.010	0.00	-221.7	89.974	-0.01
120.00	4170.0	5750.8	120.026	0.01	-222.0	119.972	-0.01
150.00	4253.0	5528.6	150.069	0.02	-222.2	150.009	0.00
180.00	4340.9	5306.8	180.058	0.02	-221.8	180.004	0.00
210.00	4434.6	5085.0	210.047	0.02	-221.8	210.011	0.00
240.00	4534.5	4863.4	240.009	0.00	-221.6	240.003	0.00
270.00	4641.6	4641.6	269.998	0.00	-221.8	270.034	0.01
300.00	4756.2	4420.6	299.878	-0.04	-221.0	299.968	-0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.08110 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036662

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1282.5580000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1282600

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000223982600

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1306543000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 842.882300

Regression Zero

: 6522.8

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00 180.00 210.00	3915.0 3987.5 4063.9 4145.1 4231.0 4322.2 4420.2 4524.7	6524.3 6289.4 6054.9 5820.2 5586.2 5352.8 5118.3 4884.5	-0.196 29.932 60.008 90.109 120.121 150.056 180.132 210.118	-0.07 -0.02 0.00 0.04 0.04 0.02 0.04 0.04	0.0 -234.9 -234.5 -234.7 -234.0 -233.4 -234.5 -233.8	-0.012 30.005 59.995 90.035 120.011 149.933 180.022 210.045	0.00 0.00 0.00 0.01 0.00 -0.02 0.01 0.02
270.00	4636.6 4757.2 4888.4	4651.5 4418.7 4184.8	240.002 269.860 299.859	0.00 -0.05 -0.05	-233.0 -232.8 -233.9	239.990 269.933 300.043	0.00 -0.02 0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.06410 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: 4

. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: W4 Vibrating Wire Piezometer

Serial No.

: 036663

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1387.1020000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1387100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000141012900

Calibration Equipment:

Polynomial Gauge Factor B: -0.1403319000

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 952.166500

Regression Zero

: 6831.3

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3825.9	6831.9	-0.084	-0.03	0.0	0.015	0.00
30.00	3887.9	6615.7	29.905	-0.03	-216.2	29.944	-0.02
60.00	3953.2	6398.8	59.991	0.00	-216.9	59.984	-0.01
90.00	4022.0	6181.7	90.105	0.04	-217.1	90.065	0.02
120.00	4094.3	5965.5	120.094	0.03	-216.2	120.035	0.01
150.00	4170.7	5748.9	150.139	0.05	-216.6	150.073	0.02
180.00	4250.8	5534.2	179.920	-0.03	-214.7	179.860	-0.05
210.00	4336.8	5317.0	210.048	0.02	-217.2	210.008	0.00
240.00	4427.6	5101.1	239.995	0.00	-215.9	239.989	0.00
270.00	4524.5	4885.0	269.970	-0.01	-216.1	270.010	0.00
300.00	4627.9	4669.1	299.918	-0.03	-215.9	300.017	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.02770 kPa/°C

Polynomial**

 $\mathbf{E} = \mathbf{A}\mathbf{R}\mathbf{1}^2 + \mathbf{B}\mathbf{R}\mathbf{1} + \mathbf{C}$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036664

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1298.8070000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1298800

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000212494900

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1322750000

Vibrating Wire Data Recorder DR103

: 6787.6

Polynomial Gauge Factor C**: 888.208800

Regression Zero

	Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	30.00 60.00 90.00 120.00 150.00 180.00 210.00 240.00 270.00	4499.3 4608.0	6788.8 6557.1 6325.6 6094.3 5863.1 5631.9 5400.6 5169.8 4939.8	-0.156 29.937 60.005 90.046 120.074 150.103 180.144 210.121 239.993 269.892	-0.05 -0.02 0.00 0.02 0.02 0.03 0.05 0.04 0.00	0.0 -231.7 -231.5 -231.3 -231.2 -231.2 -231.3 -230.8 -230.0 -230.2	0.014 30.005 59.993 89.978 119.972 149.989 180.042 210.053 239.982 269.960	0.00 0.00 0.00 -0.01 -0.01 0.00 0.01 0.02 -0.01
	300.00	4725.1	4479.0	299.842	-0.05	-230.6	300.012	0.00

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.06490 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: W4 Vibrating Wire Piezometer

Serial No.

: 036665

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1331.2450000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1331200

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000213842300

Calibration Equipment:

Polynomial Gauge Factor B: -0.1354914000

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 893.062400

Regression Zero

: 6660.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3874.5	6661.3	-0.161	-0.05	0.0	0.002	0.00
30.00	3942.1	6435.1	29.952	-0.02	-226.2	30.017	0.01
60.00	4013.1	6209.4	59.998	0.00	-225.7	59.987	0.00
90.00	4088.1	5983.6	90.058	0.02	-225.8	89.992	0.00
120.00	4167.4	5758.1	120.077	0.03	-225.5	119.979	-0.01
150.00	4251.4	5532.6	150.097	0.03	-225.5	149.988	0.00
180.00	4340.9	5307.0	180.130	0.04	-225.6	180.032	0.01
210.00	4435.9	5082.0	210.083	0.03	-225.0	210.018	0.01
240.00	4537.4	4857.2	240.009	0.00	-224.8	239.999	0.00
270.00	4646.1	4632.5	269.922	-0.03	-224.7	269.988	0.00
300.00	4763.1	4407.8	299.835	-0.05	-224.7	299.998	0.00

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.00670 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

.. Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type: W4 Vibrating Wire Piezometer

Serial No.

: 036666

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1309.3800000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1309400

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000331785000

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 924.551900

Polynomial Gauge Factor B: -0.1348080000

Regression Zero

: 6976.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
0.00	3785.7	6977.5	-0.179	-0.06	0.0	0.082	0.03
30.00	3849.4	6748.5	29.806	-0.06	-229.0	29.911	-0.03
60.00	3917.0	6517.8	60.014	0.00	-230.7	59.995	0.00
90.00	3987.7	6288.6	90.025	0.01	-229.2	89.919	-0.03
120.00	4062.9	6057.9	120.232	0.08	-230.7	120.075	0.02
150.00	4141.8	5829.5	150.138	0.05	-228.4	149.964	-0.01
180.00	4226.0	5599.5	180.254	0.08	-230.0	180.098	0.03
210.00	4314.7	5371.5	210.108	0.04	-228.0	210.004	0.00
240.00	4409.4	5143.2	240.001	0.00	-228.3	239.984	-0.01
270.00	4510.5	4915.3	269.842	-0.05	-227.9	269.946	-0.02
300.00	4619.1	4686.8	299.761	-0.08	-228.5	300.022	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.03270 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . (

Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036667

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1340.5370000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1340500

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000067358330

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1348028000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 897.499900

Regression Zero

: 6679.8

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	3869.0	6680.4	-0.082	-0.03	0.0	-0.031	-0.01
	3935.7	6456.0	30.000	0.00	-224.4	30.020	0.01
60.00	4005.8	6231.9	60.042	0.01	-224.1	60.038	0.01
90.00	4079.7	6008.1	90.043	0.01	-223.8	90.022	0.01
120.00	4157.8	5784.7	119.990	0.00	-223.4	119.960	-0.01
150.00	4240.8	5560.5	150.045	0.02	-224.2	150.011	0.00
180.00	4328.4	5337.5	179.939	-0.02	-223.0	179.909	-0.03
210.00	4422.5	5112.8	210.061	0.02	-224.7	210.041	0.03
240.00	4522.6	4889.1	240.049	0.02	-223.7	240.045	0.01
270.00	4629.5	4665.8	269.983	-0.01	-223.3	270.003	0.02
300.00	4744.5	4442.4	299.931	-0.02	-223.4	299.981	-0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R}0 - \mathbf{R}1)$

Temperature Coefficent 0.03350 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036668

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

: 23°C

Period Gauge Factor (K): 1402.3930000

Ambient Temperature Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1402400

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000109928700

Calibration Equipment:

Polynomial Gauge Factor B: -0.1415153000

Mensor APC 600 Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 967.533800

Regression Zero

: 6873.1

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00	4006.0 4076.5 4151.3 4230.1 4312.9 4401.3	6873.8 6659.2 6445.2 6231.2 6017.7 5802.6 5588.6 5376.0 5162.2 4947.9	-0.096 30.000 60.011 90.022 119.963 150.129 180.140 209.955 239.938 269.991	-0.03 0.00 0.00 0.01 -0.01 0.04 0.05 -0.02 -0.02	0.0 -214.6 -214.0 -214.0 -213.5 -215.1 -214.0 -212.6 -213.8 -214.3	-0.020 30.030 60.006 89.992 119.918 150.079 180.095 209.925 239.933 270.022	-0.01 0.01 0.00 0.00 -0.03 0.03 -0.03 -0.02
300.00	4595.9	4734.3	299.946	-0.02	-213.6	300.022	0.01

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.00700 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036669

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1357.2950000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1357300

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000358813900

Calibration Equipment:

Mensor APC 600

Polynomial Gauge Factor B: -0.1399107000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 952.612200

Regression Zero

: 6930.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00 180.00 210.00 240.00 270.00	3860.5 3925.9 3994.8 4067.4 4143.9 4224.8 4310.5	6931.7 6709.9 6488.0 6266.4 6044.6 5823.5 5602.5 5381.9 5161.9 4941.5	-0.229 29.876 59.994 90.072 120.177 150.186 180.183 210.125 239.985 269.900 299.733	-0.08 -0.04 0.00 0.02 0.06 0.06 0.04 -0.01 -0.03	0.0 -221.8 -221.9 -221.6 -221.8 -221.1 -221.0 -220.6 -220.0 -220.4 -219.8	0.034 29.981 59.976 89.966 120.018 150.011 180.025 210.020 239.968 270.005 299.996	0.01 -0.01 -0.01 -0.01 0.01 0.00 0.01 -0.01 0.00

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.18320 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036670

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1481.4670000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1481500

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000179319700

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1504337000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 1101.856000

Regression Zero

: 7388.9

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
	3678.6	7389.9	-0.152	-0.05	0.0	-0.042	-0.01
	3730.3	7186.3	30.011	0.00	-203.6	30.055	0.02
60.00	3784.0	6983.9	59.996	0.00	-202.4	59.988	0.00
	3840.2	6781.0	90.054	0.02	-202.9	90.010	0.00
120.00	3898.9	6578.4	120.069	0.02	-202.6	120.003	0.00
	3960.3	6375.8	150.084	0.03	-202.6	150.010	0.00
180.00	4024.6	6173.7	180.024	0.01	-202.1	179.958	-0.01
210.00	4092.5	5970.6	210.113	0.04	-203.1	210.069	0.02
240.00	4163.3	5769.2	239.949	-0.02	-201.4	239.942	-0.02
270.00	4238.3	5566.9	269.919	-0.03	-202.3	269.964	-0.01
300.00	4317.6	5364.3	299.934	-0.02	-202.6	300.044	0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.05930 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co uk www soil.co uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036671

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1398.1820000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1398200

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000402147700

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 972.665600

Polynomial Gauge Factor B: -0.1444752000

Regression Zero

: 6861.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00	4502.9	6863.2 6647.4 6433.3 6217.1 6002.4 5786.9 5573.1 5358.0 5144.8 4931.9 4717.8	-0.232 29.941 59.876 90.104 120.123 150.254 180.147 210.222 240.032 269.799 299.734	-0.08 -0.02 -0.04 0.03 0.04 0.08 0.05 0.07 0.01 -0.07	0.0 -215.8 -214.1 -216.2 -214.7 -215.5 -213.8 -215.1 -213.2 -212.9 -214.1	0.046 30.051 59.857 89.993 119.956 150.069 179.981 210.112 240.014 269.910 300.011	0.02 0.02 -0.05 0.00 -0.01 0.02 -0.01 0.04 0.00 -0.03

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.03500 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified;

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036672

: 23°C

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

Period Gauge Factor (K): 1385.5650000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1385600

Calibration Technician

Vibrating Wire Data Recorder DR103

: John Kingshott

Calibration Equipment:

Polynomial Gauge Factor A: -0.000000017259990

Mensor APC 600

Polynomial Gauge Factor B: -0.1383602000

Polynomial Gauge Factor C**: 937.104900

Regression Zero

: 6767.3

Applied	Reading	Reading F ² /1000	Calculated	Error %FS	Linear	Calculated	Error %FS
(kPa)	(Period)		(Linear)	(Linear)	Increment	(Polynomial)	(Polynomial)
30.00 60.00 90.00 120.00 150.00 180.00 210.00 240.00 270.00	3844.2 3907.1 3973.3 4042.9 4116.4 4194.2 4276.6 4363.5 4456.7 4555.4 4661.5	6766.9 6550.9 6334.4 6118.2 5901.4 5684.6 5467.7 5252.1 5034.7 4818.9 4602.1	0.057 29.985 59.982 89.938 119.977 150.016 180.069 209.942 240.064 269.965 300.004	0.02 -0.01 -0.01 -0.02 -0.01 0.02 -0.02 -0.02 -0.01	0.0 -216.0 -216.5 -216.2 -216.8 -216.8 -216.9 -215.6 -217.4 -215.8 -216.8	0.045 29.980 59.983 89.943 119.985 150.025 180.077 209.947 240.065 269.960 299.992	0.01 -0.01 -0.02 -0.01 0.01 0.03 -0.02 0.02 -0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficient 0.03460 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . .

... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036673

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1316.9480000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1316900

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000164662700

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 865.936300

Polynomial Gauge Factor B: -0.1334736000

Regression Zero

: 6539.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00	4054.1 4132.7 4215.0 4303.2 4397.2 4497.3	6540.5 6311.6 6084.2 5855.2 5628.7 5400.3 5171.9 4944.2	-0.132 30.013 59.960 90.118 119.947 150.026 180.106 210.092	-0.04 0.00 -0.01 0.04 -0.02 0.01 0.04 0.03	0.0 -228.9 -227.4 -229.0 -226.5 -228.4 -228.4	-0.004 30.064 59.952 90.067 119.870 149.941 180.029 210.041	0.00 0.02 -0.02 0.02 -0.04 -0.02 0.01
270.00 300.00	4719.8	4716.5 4489.1 4263.3	240.079 270.027 299.763	0.03 0.01 -0.08	-227.7 -227.4 -225.8	240.071 270.078 299.891	0.02 0.03 -0.04

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.13830 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . /.

..... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036674

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1333.0740000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1333100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000185937900

Calibration Equipment: Mensor APC 600

Polynomial Gauge Factor B: -0.1354087000

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor C**: 909.005200

Regression Zero

: 6775.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00 210.00 240.00 270.00	3976.3 4048.9 4126.0 4207.4 4293.7 4385.4 4483.7 4588.3	6776.4 6550.1 6324.6 6099.8 5874.1 5649.0 5424.3 5199.7 4974.3 4750.0 4525.7	-0.182 29.986 60.047 90.014 120.102 150.109 180.063 210.004 240.052 269.952 299.853	-0.06 0.00 0.02 0.00 0.03 0.04 0.02 0.00 0.02 -0.02	0.0 -226.3 -225.5 -224.8 -225.7 -225.1 -224.7 -224.6 -225.4 -224.3	-0.040 30.042 60.037 89.958 120.017 150.015 179.979 209.948 240.043 270.009	-0.01 0.01 0.01 -0.01 0.01 -0.01 -0.02 0.01 0.00

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.05330 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

** The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036675

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1396.5250000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1396500

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000393855500

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1438021000

Polynomial Gauge Factor C**: 896.215300

Regression Zero

: 6340.5

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00	4358.2 4450.0 4547.6 4651.4	6341.4 6127.3 5911.5 5695.6 5479.8 5264.8 5049.9 4835.5 4622.0 4408.7 4194.0	-0.125 29.775 59.911 90.062 120.199 150.225 180.236 210.178 239.993 269.781 299.765	-0.04 -0.08 -0.03 0.02 0.07 0.07 0.08 0.06 0.00 -0.07	0.0 -214.1 -215.8 -215.9 -215.8 -215.0 -214.9 -214.4 -213.5 -213.3 -214.7	0.147 29.884 59.893 89.953 120.035 150.043 180.073 210.069 239.976 269.890 300.037	0.05 -0.04 -0.02 0.01 0.01 0.02 0.02 -0.01 -0.04

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.06280 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036676

Instrument Range: 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1309.6670000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1309700

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000261864900

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1339049000

Polynomial Gauge Factor C**: 892.689600

Regression Zero

: 6754.3

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00		6755.3 6526.4 6296.1 6066.6 5837.2 5607.8 5378.8	-0.134 29.844 60.006 90.063 120.106 150.150 180.141 210.120	-0.04 -0.05 0.00 0.02 0.04 0.05 0.05	0.0 -228.9 -230.3 -229.5 -229.4 -229.4 -229.0 -228.9	0.072 29.926 59.991 89.980 119.982 150.013 180.018	0.02 -0.02 0.00 -0.01 -0.01 0.00 0.01
240.00 270.00 300.00	4507.6 4615.9	4921.6 4693.3 4465.4	240.019 269.919 299.766	0.01 -0.03 -0.08	-228.3 -228.3 -227.9	210.038 240.006 270.002 299.972	0.01 0.00 0.00 -0.01

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficient 0.15720 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within ± 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:4

......... Line MANAGER

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036677

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1416.6960000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1416700

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000266597400

Polynomial Gauge Factor C**: 963.033800

Calibration Equipment:

Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1446982000

Regression Zero

: 6737.9

	Reading Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 3 60.00 3 90.00 4 120.00 4 150.00 4 210.00 4 240.00 4 270.00 4	3979.5 4048.1 4120.4 4196.5 4277.3 4362.2	6739.1 6526.4 6314.5 6102.3 5890.1 5678.3 5466.0 5255.3 5043.8 4832.3 4621.7	-0.174 29.960 59.979 90.042 120.104 150.110 180.186 210.036 239.999 269.962 299.798	-0.06 -0.01 -0.01 0.03 0.04 0.06 0.01 0.00 -0.01	0.0 -212.7 -211.9 -212.2 -212.2 -211.8 -212.3 -210.7 -211.5 -211.5	0.006 30.031 59.967 89.970 119.996 149.990 180.079 209.964 239.987 270.034 299.977	0.00 0.01 -0.01 -0.01 0.00 0.00 0.03 -0.01 0.00 0.01

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.10630 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036678

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1339.2680000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1339300

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000117236000

Calibration Equipment:

Mensor APC 600 Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1351418000

Polynomial Gauge Factor C**: 846.996800

Regression Zero

: 6301.3

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00	4133.4 4214.6 4301.6 4393.2 4491.8 4596.8 4708.8 4830.8	6302.0 6077.2 5853.2 5629.6 5404.4 5181.4 4956.3 4732.5 4510.0 4285.1 4062.0	-0.099 30.008 60.007 89.953 120.114 149.979 180.126 210.099 239.898 270.018 299.897	-0.03 0.00 0.00 -0.02 0.04 -0.01 0.03 -0.03 0.01	0.0 -224.8 -224.0 -223.6 -225.2 -223.0 -225.1 -223.8 -222.5 -224.9 -223.1	-0.011 30.043 60.001 89.918 120.061 149.921 180.073 210.064 239.892 270.053 299.985	0.00 0.01 0.00 -0.03 0.02 -0.03 0.02 0.02 -0.04 0.02 0.00

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.18750 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . L.

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036679

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

: 23°C

Period Gauge Factor (K): 1408.8410000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1408800

Calibration Technician

Ambient Temperature

: John Kingshott

Polynomial Gauge Factor A: 0.000000486090800

Calibration Equipment:

Mensor APC 600 **Vibrating Wire Data Recorder DR103**

Polynomial Gauge Factor B: -0.1460780000

Polynomial Gauge Factor C**: 916.070900

Regression Zero

: 6405.4

Applied	Reading	Reading F ² /1000	Calculated	Error %FS	Linear	Calculated	Error %FS
(kPa)	(Period)		(Linear)	(Linear)	Increment	(Polynomial)	(Polynomial)
30.00 60.00 90.00 120.00	4089.8 4164.4 4244.0 4327.8 4416.8 4511.2 4611.7 4719.1	6407.4 6194.1 5978.6 5766.4 5552.0 5339.0 5126.0 4913.7 4702.0 4490.3	-0.284 29.767 60.128 90.023 120.229 150.237 180.245 210.155 239.980 269.805 299.715	-0.09 -0.08 0.04 0.01 0.08 0.08 0.08 0.05 -0.01 -0.06 -0.10	0.0 -213.3 -215.5 -212.2 -214.4 -213.0 -213.0 -212.3 -211.7 -211.7	0.047 29.899 60.104 89.890 120.030 150.017 180.048 210.024 239.959 269.938 300.045	0.02 -0.03 0.03 -0.04 0.01 0.01 0.02 0.01 -0.01 -0.02 0.02

Formulae:

Linear*

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.17610 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified:

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type : W4 Vibrating Wire Piezometer

Serial No.

: 036680

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

Period Gauge Factor (K): 1308.1330000

Barometric Pressure

: 23°C : 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1308100

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000014509700

Polynomial Gauge Factor C**: 824.898900

Calibration Equipment: Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1309629000

Regression Zero

: 6303.0

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00 180.00 210.00	4730.6 4857.0	6302.8 6073.9 5844.8 5615.1 5385.3 5156.5 4926.5 4697.7 4468.6 4239.0 4009.8	0.031 29.974 59.943 89.991 120.052 149.982 180.069 209.999 239.969 270.003 299.986	0.01 -0.01 -0.02 0.00 0.02 -0.01 0.02 0.00 -0.01 0.00	0.0 -228.9 -229.1 -229.7 -229.8 -228.8 -230.0 -228.8 -229.1 -229.6 -229.2	0.042 29.979 59.943 89.987 120.045 149.975 180.062 209.995 239.968 270.008 299.997	0.01 -0.01 -0.02 0.00 0.02 -0.01 0.02 0.00 -0.01 0.00

Formulae:

Linear*

E = G(R0 - R1)

Temperature Coefficent 0.17010 kPa/°C

Polynomial**

 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: .

^{*} The zero reading should be established on site by the user on installation.

^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$

Bell Lane Uckfield East Sussex TN22 1QL

Telephone +44 (0) 1825 765044

Facsimile +44 (0) 1825 761740 Email sales@soil.co.uk www.soil.co.uk

VIBRATING WIRE INSTRUMENTS CALIBRATION CERTIFICATE

Instrument Type

: W4 Vibrating Wire Piezometer

Serial No.

: 036681

Instrument Range : 0.00 to 300.0 kPa

Calibration Date

: 02/08/2010

Gauge Factors in kPa

Ambient Temperature

: 23°C

Period Gauge Factor (K): 1360.2220000

Barometric Pressure

: 1013 mbar

Linear Gauge Factor (G): (kPa/digit)0.1360200

Calibration Technician

: John Kingshott

Polynomial Gauge Factor A: 0.000000286951300

Calibration Equipment: Mensor APC 600

Vibrating Wire Data Recorder DR103

Polynomial Gauge Factor B: -0.1390897000

Polynomial Gauge Factor C**: 884.955000

Regression Zero

: 6446.7

Applied (kPa)	Reading (Period)	Reading F ² /1000	Calculated (Linear)	Error %FS (Linear)	Linear Increment	Calculated (Polynomial)	Error %FS (Polynomial)
30.00 60.00 90.00 120.00 150.00 210.00 240.00 270.00	4080.6 4157.7 4239.3 4326.4 4418.6 4516.8 4620.9	6447.8 6227.1 6005.5 5784.8 5564.2 5342.5 5122.0 4901.7 4683.2 4461.5 4243.2	-0.147 29.873 60.015 90.035 120.042 150.198 180.191 210.156 239.877 270.033 299.727	-0.05 -0.04 0.01 0.01 0.07 0.06 0.05 -0.04 0.01 -0.09	0.0 -220.7 -221.6 -220.7 -220.6 -221.7 -220.5 -220.3 -218.5 -221.7 -218.3	0.062 29.956 60.001 89.951 119.916 150.058 180.065 210.073 239.863 270.118	0.02 -0.01 0.00 -0.02 -0.03 0.02 0.02 -0.05 0.04 -0.02

Formulae:

Linear*

then!

 $\mathbf{E} = \mathbf{G}(\mathbf{R0} - \mathbf{R1})$

Temperature Coefficent 0.23800 kPa/°C

Polynomial**

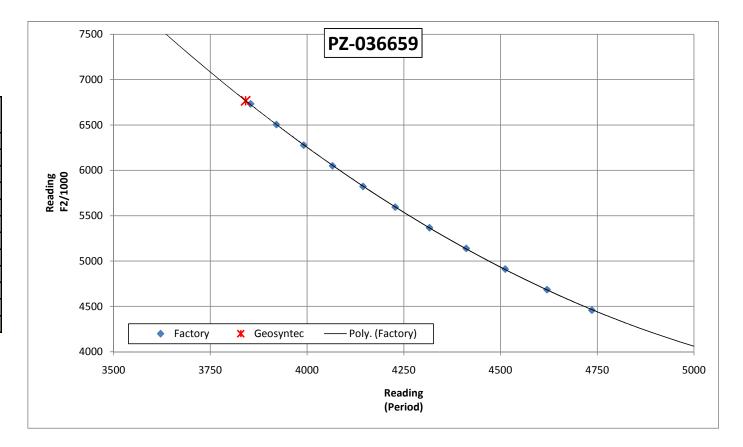
 $E = AR1^2 + BR1 + C$

The instrument detailed hereon has, as applicable, been inspected, tested and calibrated in accordance with ISO 9001:2008 approved procedures and, unless otherwise indicated, performs within \pm 0.10% (Polynomial) as specified. Thus, the instrument conforms in all respects to our relevant specifications and drawings.

Certified: . . .

^{*} The zero reading should be established on site by the user on installation.

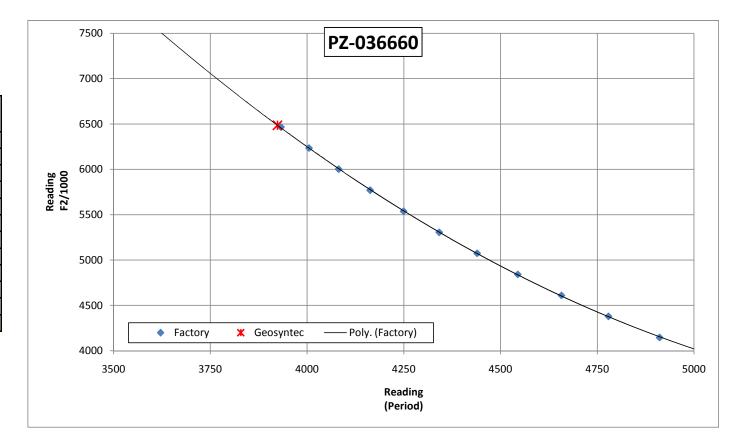
^{**} The site value of C must be calculated using the formula $C = -(AR0^2 + BR0)$


Geosyntec Pre-Acceptance Testing of VW Piezometers

Notes: The green-highlighted cell in the acceptance spreadsheet indicates the point measured by Geosyntec during pre-acceptance testing. It is noted that for each piezometer, the point measured by Geosyntec aligns properly on the calibration curve provided by the manufacturer (ITM)

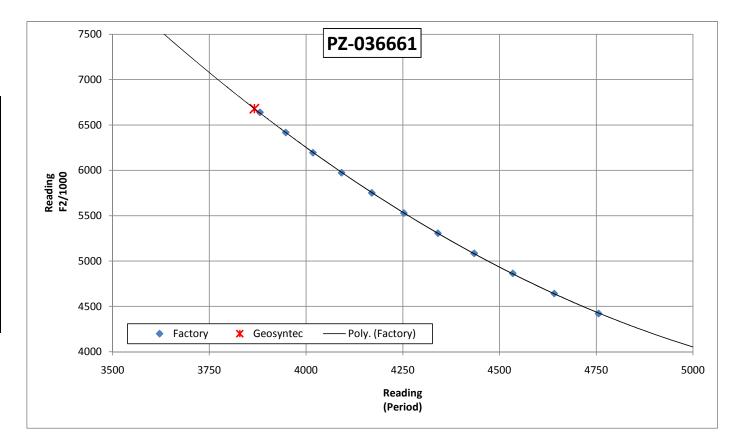
Serial No. (short) 59 Full Serial No. PZ-036659

Regression Zero: 6732.0
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.4


r	1	
	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3854	6732.6
30	3920.8	6504.9
60	3991.4	6276.9
90	4065.8	6049.3
120	4144.6	5821.6
150	4227.8	5594.5
180	4316.5	5367.1
210	4411.3	5138.9
240	4512.1	4911.9
270	4620.1	4684.9
300	4736.1	4458.1
Geosyntec	3841.4	6766.2

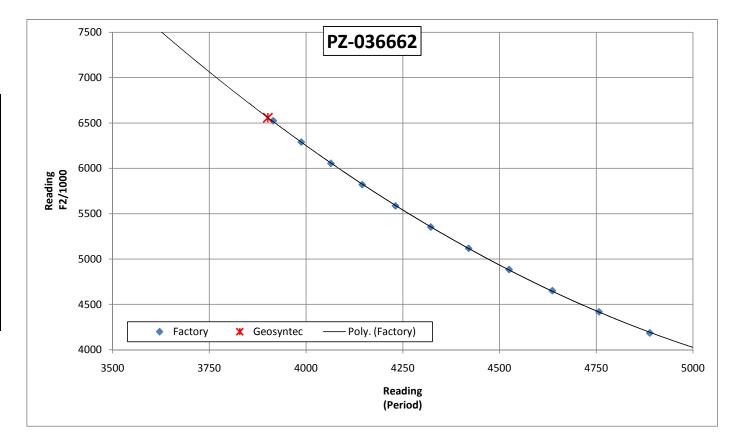
Serial No. (short) 60 Full Serial No. PZ-036660

Regression Zero: 6466.2
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.4


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3932.5	6466.3
30	4005	6234.4
60	4081.6	6002.6
90	4163	5770.1
120	4249.4	5537.8
150	4341.3	5305.9
180	4439.4	5073.9
210	4544.5	4842.1
240	4657.3	4610.4
270	4778.8	4378.9
300	4910.9	4146.4
Geosyntec	3923.6	6485.6

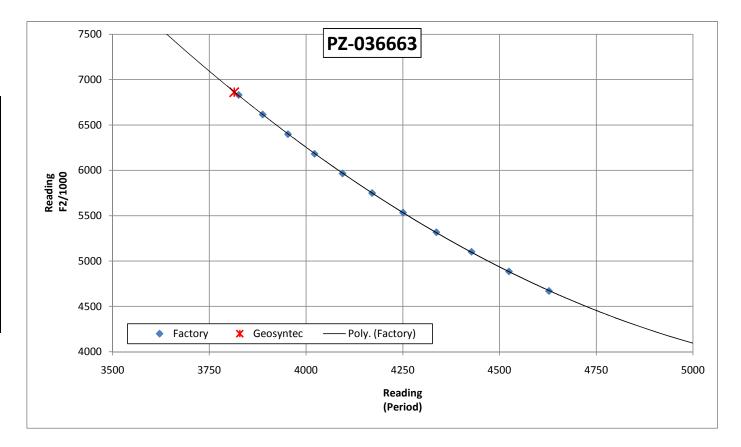
Serial No. (short) 61
Full Serial No. PZ-036661

Regression Zero: 6638.5
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.3


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3881	6639.1
30	3947.6	6417
60	4017.9	6194.5
90	4091.8	5972.8
120	4170	5750.8
150	4253	5528.6
180	4340.9	5306.8
210	4434.6	5085
240	4534.5	4863.4
270	4641.6	4641.6
300	4756.2	4420.6
Geosyntec	3866.3	6679.1

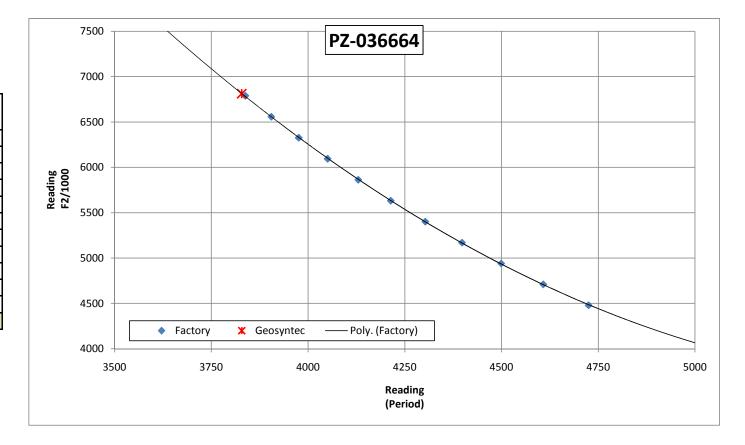
Serial No. (short) 62
Full Serial No. PZ-036662

Regression Zero: 6522.8
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.3


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3915	6524.3
30	3987.5	6289.4
60	4063.9	6054.9
90	4145.1	5820.2
120	4231	5586.2
150	4322.2	5352.8
180	4420.2	5118.3
210	4524.7	4884.5
240	4636.6	4651.5
270	4757.2	4418.7
300	4888.4	4184.8
Geosyntec	3901.4	6558.2

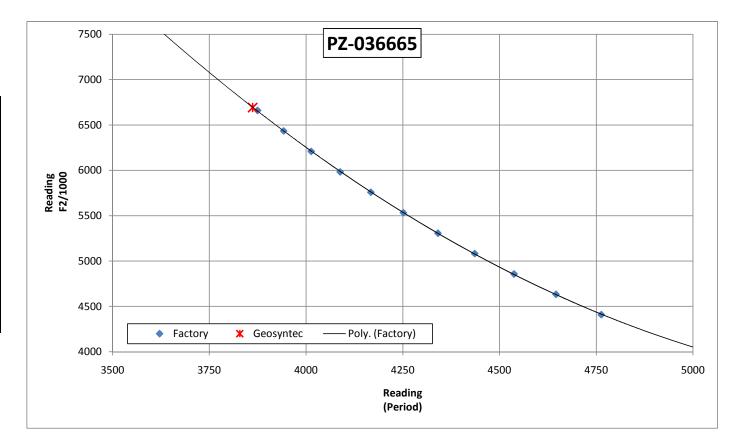
Serial No. (short) 63
Full Serial No. PZ-036663

Regression Zero: 6831.3
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.4


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3825.9	6831.9
30	3887.9	6615.7
60	3953.2	6398.8
90	4022	6181.7
120	4094.3	5965.5
150	4170.7	5748.9
180	4250.8	5534.2
210	4336.8	5317
240	4427.6	5101.1
270	4524.5	4885
300	4627.9	4669.1
Geosyntec	3814.5	6861.7

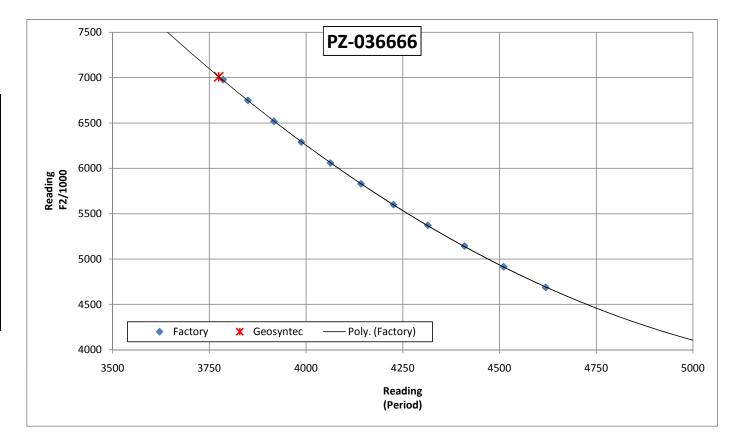
Serial No. (short) 64
Full Serial No. PZ-036664

Regression Zero: 6787.6
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.3


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3838	6788.8
30	3905.2	6557.1
60	3976	6325.6
90	4050.8	6094.3
120	4129.9	5863.1
150	4213.8	5631.9
180	4303.1	5400.6
210	4398.1	5169.8
240	4499.3	4939.8
270	4608	4709.6
300	4725.1	4479
Geosyntec	3828.4	6812.6

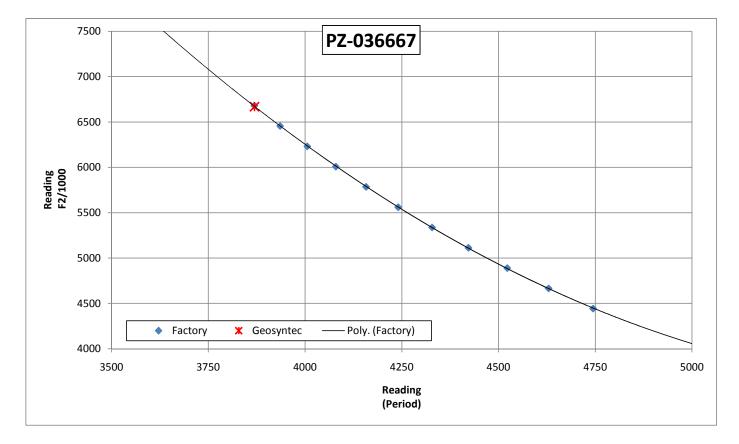
Serial No. (short) 65 Full Serial No. PZ-036665

Regression Zero: 6660.1
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.8


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3874.5	6661.3
30	3942.1	6435.1
60	4013.1	6209.4
90	4088.1	5983.6
120	4167.4	5758.1
150	4251.4	5532.6
180	4340.9	5307
210	4435.9	5082
240	4537.4	4857.2
270	4646.1	4632.5
300	4763.1	4407.8
Geosyntec	3862	6692.5

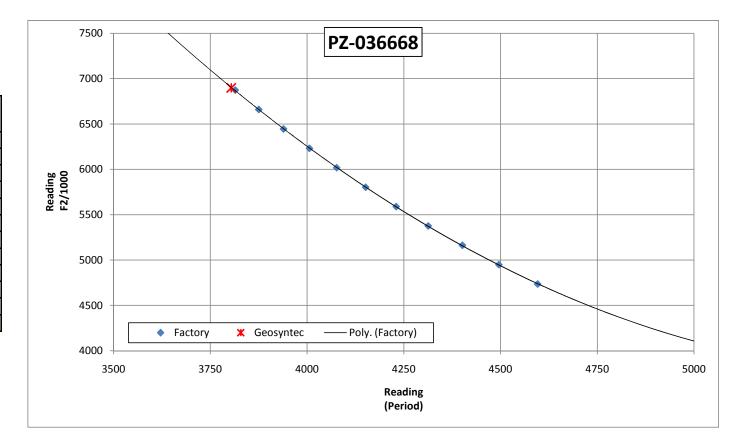
Serial No. (short) 66 Full Serial No. PZ-036666

Regression Zero: 6976.1
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.2


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3785.7	6977.5
30	3849.4	6748.5
60	3917	6517.8
90	3987.7	6288.6
120	4062.9	6057.9
150	4141.8	5829.5
180	4226	5599.5
210	4314.7	5371.5
240	4409.4	5143.2
270	4510.5	4915.3
300	4619.1	4686.8
Geosyntec	3774.3	7008.7

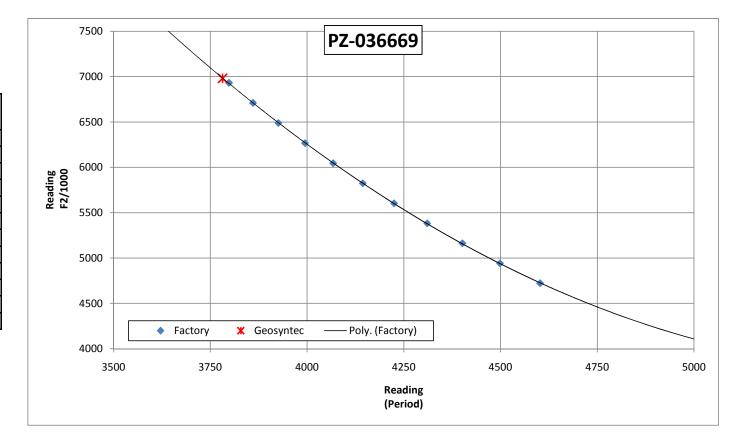
Serial No. (short) 67
Full Serial No. PZ-036667

Regression Zero: 6679.8
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.1


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3869	6680.4
30	3935.7	6456
60	4005.8	6231.9
90	4079.7	6008.1
120	4157.8	5784.7
150	4240.8	5560.5
180	4328.4	5337.5
210	4422.5	5112.8
240	4522.6	4889.1
270	4629.5	4665.8
300	4744.5	4442.4
Geosyntec	3869.5	6668.2

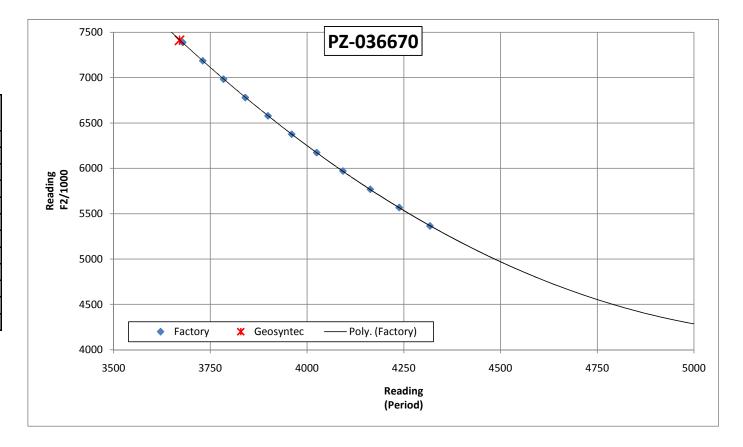
Serial No. (short) 68
Full Serial No. PZ-036668

Regression Zero: 6873.1
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3814.2	6873.8
30	3875.2	6659.2
60	3939	6445.2
90	4006	6231.2
120	4076.5	6017.7
150	4151.3	5802.6
180	4230.1	5588.6
210	4312.9	5376
240	4401.3	5162.2
270	4495.6	4947.9
300	4595.9	4734.3
Geosyntec	3804.2	6899

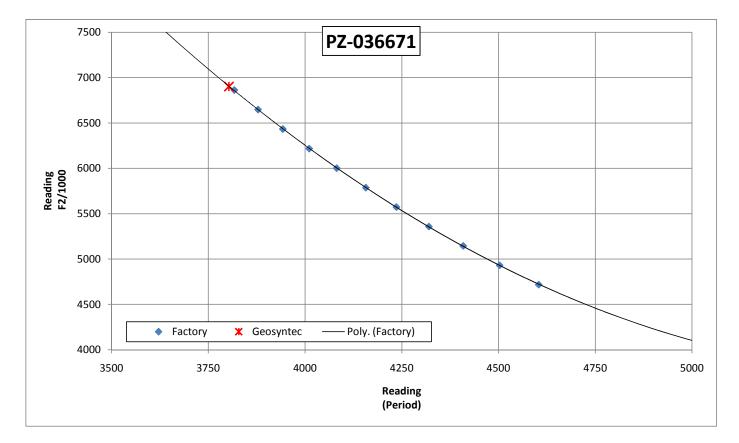
Serial No. (short) 69 Full Serial No. PZ-036669

Regression Zero: 6930.0
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.6


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3798.2	6931.7
30	3860.5	6709.9
60	3925.9	6488
90	3994.8	6266.4
120	4067.4	6044.6
150	4143.9	5823.5
180	4224.8	5602.5
210	4310.5	5381.9
240	4401.4	5161.9
270	4498.5	4941.5
300	4602	4721.7
Geosyntec	3781.9	6980.6

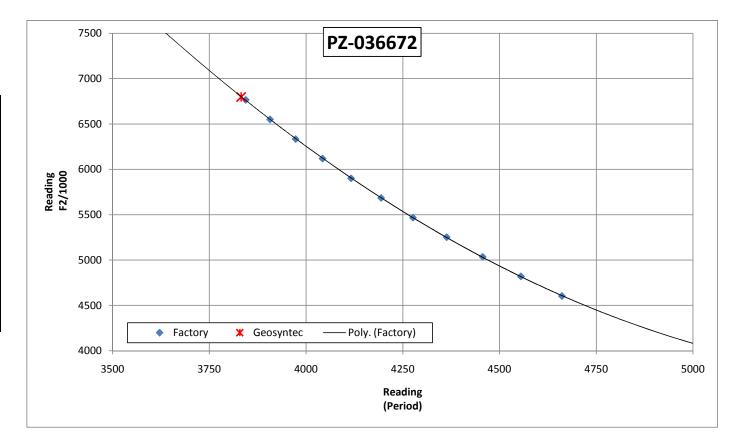
Serial No. (short) 70 Full Serial No. PZ-036670

Regression Zero: 7388.9
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.4


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3678.6	7389.9
30	3730.3	7186.3
60	3784	6983.9
90	3840.2	6781
120	3898.9	6578.4
150	3960.3	6375.8
180	4024.6	6173.7
210	4092.5	5970.6
240	4163.3	5769.2
270	4238.3	5566.9
300	4317.6	5364.3
Geosyntec	3670.5	7410.9

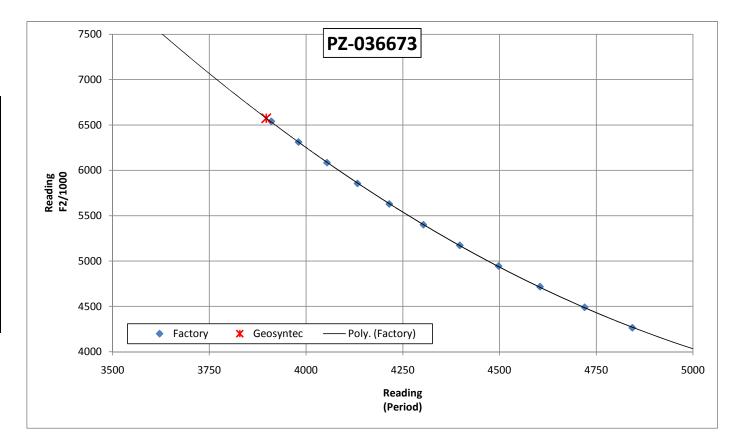
Serial No. (short) 71
Full Serial No. PZ-036671

Regression Zero: 6861.5
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.2


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3817.1	6863.2
30	3878.6	6647.4
60	3942.6	6433.3
90	4010.6	6217.1
120	4081.7	6002.4
150	4157	5786.9
180	4236	5573.1
210	4320.1	5358
240	4408.8	5144.8
270	4502.9	4931.9
300	4603.9	4717.8
Geosyntec	3803.2	6902.7

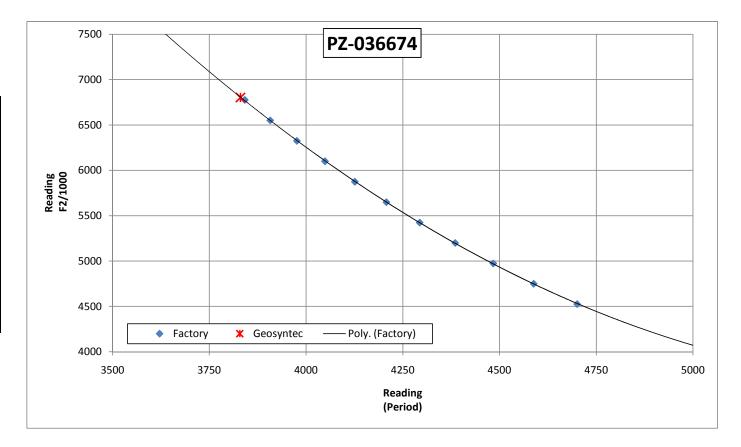
Serial No. (short) 72
Full Serial No. PZ-036672

Regression Zero: 6767.3
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.5


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3844.2	6766.9
30	3907.1	6550.9
60	3973.3	6334.4
90	4042.9	6118.2
120	4116.4	5901.4
150	4194.2	5684.6
180	4276.6	5467.7
210	4363.5	5252.1
240	4456.7	5034.7
270	4555.4	4818.9
300	4661.5	4602.1
Geosyntec	3832.1	6798.5

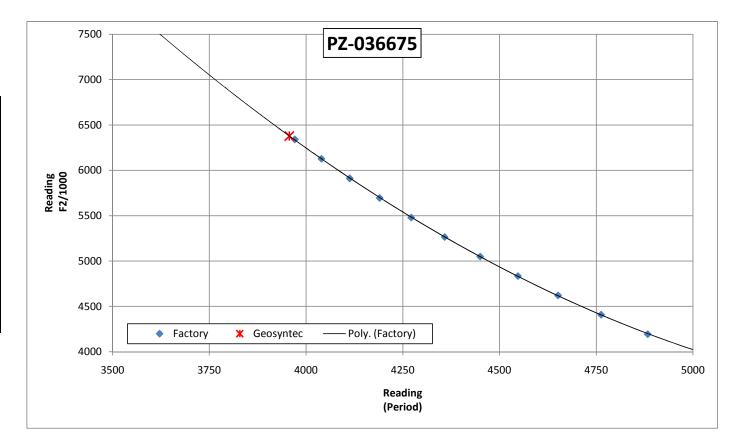
Serial No. (short) 73
Full Serial No. PZ-036673

Regression Zero: 6539.5
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.5


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3910.2	6540.5
30	3980.4	6311.6
60	4054.1	6084.2
90	4132.7	5855.2
120	4215	5628.7
150	4303.2	5400.3
180	4397.2	5171.9
210	4497.3	4944.2
240	4604.6	4716.5
270	4719.8	4489.1
300	4843.1	4263.3
Geosyntec	3897.2	6574

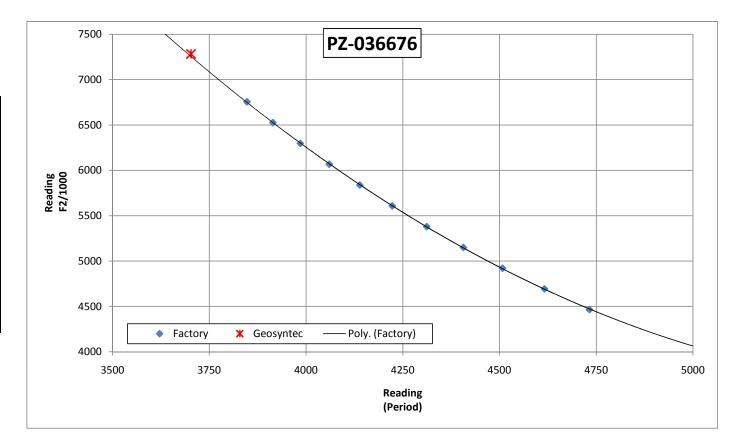
Serial No. (short) 74
Full Serial No. PZ-036674

Regression Zero: 6775.0
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.1


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3841.5	6776.4
30	3907.3	6550.1
60	3976.3	6324.6
90	4048.9	6099.8
120	4126	5874.1
150	4207.4	5649
180	4293.7	5424.3
210	4385.4	5199.7
240	4483.7	4974.3
270	4588.3	4750
300	4700.6	4525.7
Geosyntec	3830.4	6803.2

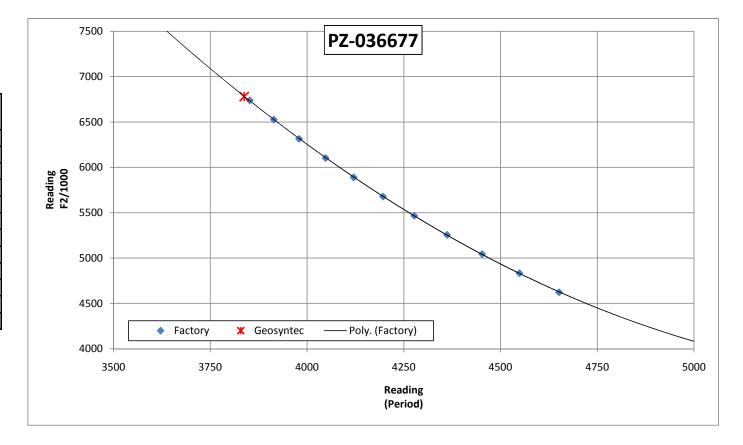
Serial No. (short) 75
Full Serial No. PZ-036675

Regression Zero: 6340.5
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.2


	1	
	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3971.1	6341.4
30	4039.9	6127.3
60	4112.9	5911.5
90	4190.2	5695.6
120	4271.9	5479.8
150	4358.2	5264.8
180	4450	5049.9
210	4547.6	4835.5
240	4651.4	4622
270	4762.6	4408.7
300	4883	4194
Geosyntec	3956.5	6377.1

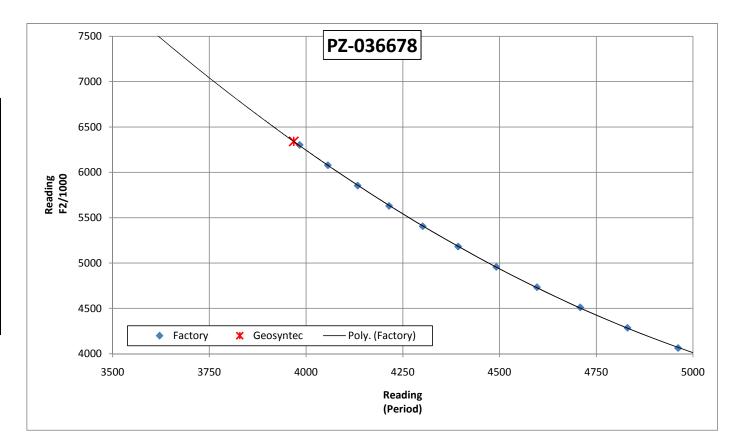
Serial No. (short) 76
Full Serial No. PZ-036676

Regression Zero: 6754.3
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 26.1


,		
	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3847.5	6755.3
30	3914.4	6526.4
60	3985.3	6296.1
90	4060	6066.6
120	4139	5837.2
150	4222.8	5607.8
180	4311.8	5378.8
210	4406.6	5149.9
240	4507.6	4921.6
270	4615.9	4693.3
300	4732.3	4465.4
Geosyntec	3702.7	7282.4

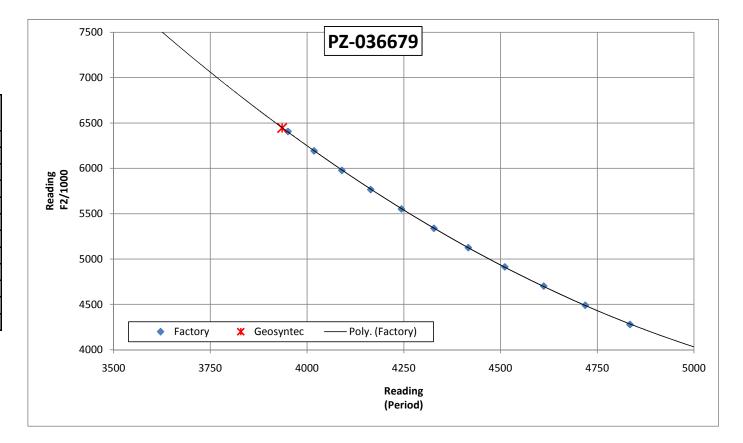
Serial No. (short) 77
Full Serial No. PZ-036677

Regression Zero: 6737.9
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.3


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3852.1	6739.1
30	3914.4	6526.4
60	3979.5	6314.5
90	4048.1	6102.3
120	4120.4	5890.1
150	4196.5	5678.3
180	4277.3	5466
210	4362.2	5255.3
240	4452.7	5043.8
270	4549.1	4832.3
300	4651.6	4621.7
Geosyntec	3837.4	6780.2

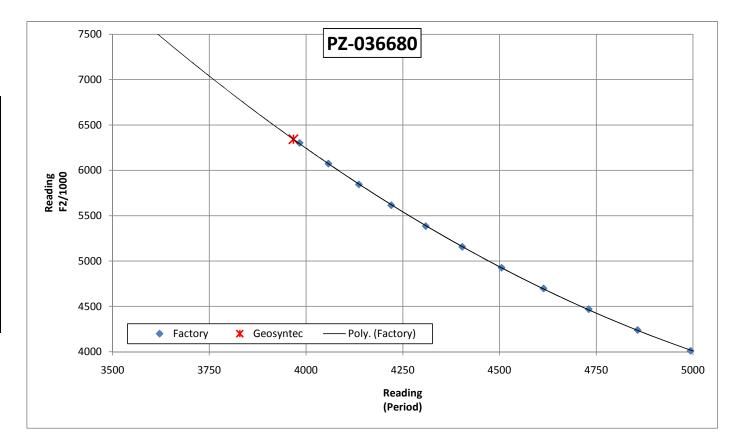
Serial No. (short) 78
Full Serial No. PZ-036678

Regression Zero: 6301.3
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 24.9


	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3983.5	6302
30	4056.5	6077.2
60	4133.4	5853.2
90	4214.6	5629.6
120	4301.6	5404.4
150	4393.2	5181.4
180	4491.8	4956.3
210	4596.8	4732.5
240	4708.8	4510
270	4830.8	4285.1
300	4961.7	4062
Geosyntec	3968.1	6340.8

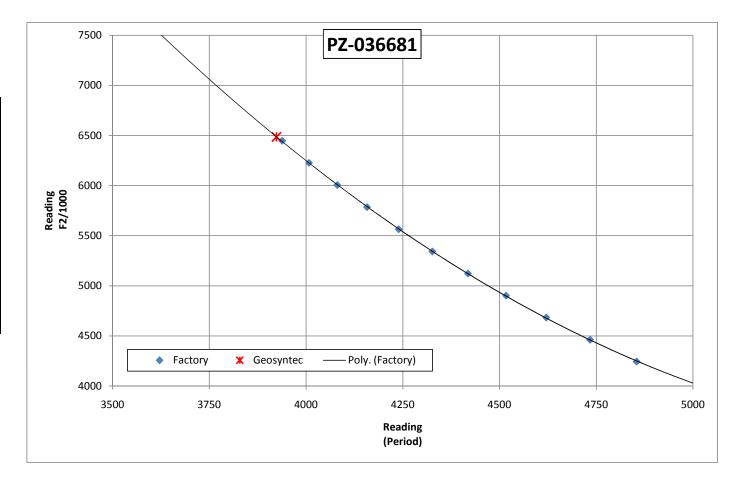
Serial No. (short) 79
Full Serial No. PZ-036679

Regression Zero: 6405.4
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 26.1


	Reading	Reading
	ı	
Applied (kPa)	(Period)	F ² /1000
0	3950.6	6407.4
30	4018	6194.1
60	4089.8	5978.6
90	4164.4	5766.4
120	4244	5552
150	4327.8	5339
180	4416.8	5126
210	4511.2	4913.7
240	4611.7	4702
270	4719.1	4490.3
300	4834.8	4278
Geosyntec	3935.7	6444.9

Serial No. (short) 80 Full Serial No. PZ-036680

Regression Zero: 6303.0
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.3


	-	
	Reading	Reading
Applied (kPa)	(Period)	F ² /1000
0	3983.2	6302.8
30	4057.6	6073.9
60	4136.3	5844.8
90	4220.1	5615.1
120	4309.2	5385.3
150	4403.7	5156.5
180	4505.4	4926.5
210	4613.8	4697.7
240	4730.6	4468.6
270	4857	4239
300	4993.9	4009.8
Geosyntec	3967.5	6342.8

Serial No. (short) 81
Full Serial No. PZ-036681

Regression Zero: 6446.7
Ambient Temp (Factory): 23.0
Measured Temp. (Geosyntec): 25.4

	Reading	Reading
	_	•
Applied (kPa)	(Period)	F ² /1000
0	3938.2	6447.8
30	4007.3	6227.1
60	4080.6	6005.5
90	4157.7	5784.8
120	4239.3	5564.2
150	4326.4	5342.5
180	4418.6	5122
210	4516.8	4901.7
240	4620.9	4683.2
270	4734.3	4461.5
300	4854.6	4243.2
Geosyntec	3923.5	6485.6

Calibration Sheet for Barometer

Vibrating Wire Pressure Transducer Calibration Report

Type: D

Date of Calibration: October 8, 2010

Serial Number: 1029378

Temperature: 24.4 °C

Pressure Range: 17 kPa

†Barometric Pressure: 986.9 mbar

Calibration Instruction: VW Pressure Transducers

Technician: Elica

Gage	Gage	Average	Calculated	Error	Calculated	Error
Reading	Reading	Gage	Pressure	Linear	Pressure	Polynomial
1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
4757	4754	4756	-0.026	-0.15	0.001	0.01
5278	5277	5278	3.417	0.10	3.416	0.10
5794	5793	5794	6.819	0.11	6.809	0.05
6306	6307	6307	10.20	0.01	10.19	-0.09
6821	6822	6822	13.60	-0.01	13.59	-0.05
7334	7337	7336	16.99	-0.07	17.00	-0.03
	Reading 1st Cycle 4757 5278 5794 6306 6821	Reading 1st Cycle Reading 2nd Cycle 4757 4754 5278 5277 5794 5793 6306 6307 6821 6822	Reading 1st Cycle Reading 2nd Cycle Gage Reading 4757 4754 4756 5278 5277 5278 5794 5793 5794 6306 6307 6307 6821 6822 6822	Reading 1st Cycle Reading 2nd Cycle Gage Reading Pressure (Linear) 4757 4754 4756 -0.026 5278 5277 5278 3.417 5794 5793 5794 6.819 6306 6307 6307 10.20 6821 6822 6822 13.60	Reading 1st Cycle Reading 2nd Cycle Gage Reading Pressure (Linear) Linear (%FS) 4757 4754 4756 -0.026 -0.15 5278 5277 5278 3.417 0.10 5794 5793 5794 6.819 0.11 6306 6307 6307 10.20 0.01 6821 6822 6822 13.60 -0.01	Reading 1st Cycle Reading 2nd Cycle Gage Reading Pressure (Linear) Linear (%FS) Pressure (Polynomial) 4757 4754 4756 -0.026 -0.15 0.001 5278 5277 5278 3.417 0.10 3.416 5794 5793 5794 6.819 0.11 6.809 6306 6307 6307 10.20 0.01 10.19 6821 6822 6822 13.60 -0.01 13.59

(kPa) Linear Gage Factor (G): -0.006595 (kPa/digit)

Regression Zero: 4759

Polynomial Gage Factors:

A: 1.951E-08

B: 0.006359

C: -30.688

Thermal Factor (K): -0.02493 (kPa/°C)

(psi) Linear Gage Factor (G): -0.0009565 (psi/digit)

Polynomial Gage Factors:

A: 2.82953E-09

B: 0.0009223

C: -4.4510

Thermal Factor (K): -0.003616 (psi/°C)

Calculated Pressures:

Linear, $P = G(R_0 - R_1) + K(T_1 - T_0) - (S_1 - S_0) **$

Polynomial, $P = AR_1^2 + BR_1 + C + K(T_1 - T_0) - (S_1 - S_0)^{**}$

†Barometric pressures are absolute. Barometric compensation is not required with vented and differential pressure transducers.

Factory Zero Reading:

GK-401 Pos. B or $F(R_0)$: Temp (T_0) : 21.4 °C †Baro (S_0) : 990.3 mbar

Date: December 20, 2010

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc. 133

^{*}Initial zero readings must be established in the field following the procedures described in the Instruction Manual. If the Polynomial equation is used the field value of C must be calculated by plugging the initial zero reading into the polynomial equation with the value of P set to zero.

Campbell Scientific Calibration Certificates of CR-1000 Data Logger

Certificate of Calibration

Customer Information:

Geosyntec Consultants 1255 Roberts Blvd Ste 200 Kennesaw, GA 30144 Contract/PO #: 9909898

RMA #: N/A

Model: CR1000

Serial Number: 35231

Temperature Option: Extended Temperature Tested

Test Panel Location: 7

CSI Calibration Number: 100722652

Calibration Procedures: TST12215A R12 TST12215C R15 PRC33A R16

Instrument Calibration Condition

Received Disposition: N/A

Returned Disposition: In Tolerance

Recommended Calibration Schedule

If the customer has not requested a calibration interval, a non-mandatory recommended interval is provided. Based on past experience and assumed normal usage, it is recommended that this instrument be calibrated by the due date stated below to insure sustained accuracy and reliable performance.

Calibration Date: 02-Sep-10 Calibration Due Date: 02-Sep-12

Report of Calibration Standards Used

Make/ModelSerial NumberCal. Due DateTrace NumberKrohn Hite 523CH5019329-Dec-10CH50193

CSI Oscillator 05/27 05 12-Apr-11 05/27 05

CSI certifies the above instrument meets or exceeds published specifications and has been calibrated using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology, an accepted value of a natural physical constant or a ratio calibration technique. The collective measurement uncertainty of the calibration process exceeds a 4:1 accuracy ratio. Policies and procedures at this facility comply with ISO-9001.

Document shall not be reproduced except in full, without the written approval of Campbell Scientific, Inc.

Instrument Data Report

Analog Inputs

S/N: 35231

Datalogger Option: Extended Temperature Tested

			Single-Ende	ed (Full Scale)	Diff	erential	
Range	Input (mV)	*Tolerance (mV)	Before (mV)	After (mV)	Before (mV)	After (mV)	Temp. (°C)
6	5000	<u>+</u> 3	N/A	5000.622	N/A	4999.496	26.2
6	-5000	<u>+</u> 3	N/A	-5001.396	N/A	-5001.01	26.2
5	2500	<u>+</u> 1.5	N/A	N/A	N/A	2499.916	26.2
4	250	<u>+</u> 0.15	N/A	N/A	N/A	250.0455	26.2
3	25	<u>+</u> 0.015	N/A	N/A	N/A	25.00556	26.2
2	7.5	<u>+</u> 0.0045	N/A	N/A	N/A	7.501618	26.2
1	2.5	<u>+</u> 0.0015	N/A	N/A	N/A	2.500684	26.2
1	-2.5	<u>+</u> 0.0015	N/A	N/A	N/A	-2.501015	26.2
6	5000	<u>+</u> 6	N/A	4999.919	N/A	4999.321	-25
6	5000	<u>+</u> 6	N/A	4999.625	N/A	5000.335	50
6	5000	<u>+</u> 9	N/A	4997.681	N/A	4999.317	-55
6	5000	<u>+</u> 9	N/A	5000.285	N/A	5001.001	85

^{*}Tolerance values are specified accuracy not including offset. Offset voltages are not included because an offset removal procedure is used to account for calibrator offset. Refer to CSI Process Control Document PRC7A.

Quiescent System Power

Tolerance Approx. (mA)	As Received (mA)	As Returned (mA)	Temp. (°C)	
~0.75	N/A	0.64	26.2	

Real-Time Clock

Tolerance (min/year)	As Returned(min/year)	Temp. (°C)
+ 3 minutes	Within Tolerance	-55 to +85

Laboratory temperature and relative humidity at the time of calibration

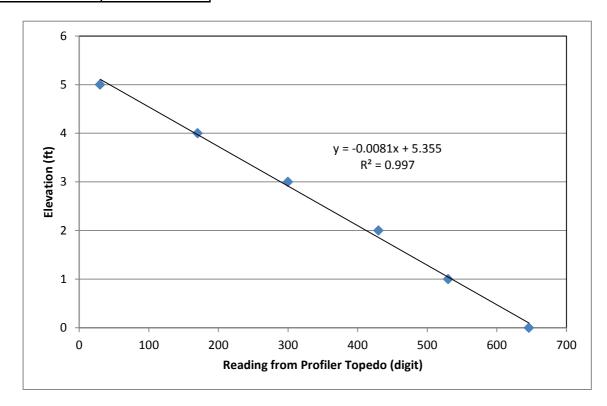
Temperature (°C): 26.2

Relative Humidity (%): 30.2

Functions tested per test document (see page 1)

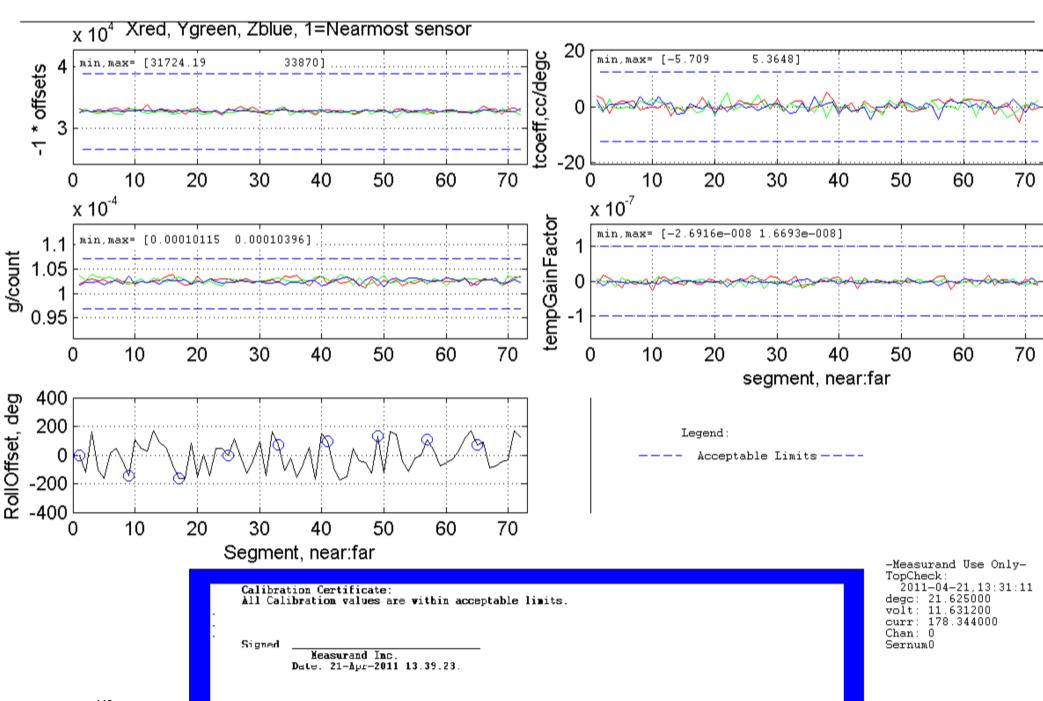
Excitation Channels
Analog Input Ranges
System Power

Pulse Counters
Period Averaging
Control Ports


Calibration Technician

Document shall not be reproduced except in full, without the written approval of Campbell Scientific, Inc.

Calibration of Profiler Pressure Transducer


Calibration of Settlement Profiler Sensor

Elevation (ft)	Reading (digit)
0	646
1	530
2	430
3	300
4	170
5	30

SAA Calibration Sheet

[9 Sernums: 50037, 50041, 51077, 50586, 50587, 51255, 51353, 51354, 51093]; [Seglength_mm: 304 8]

ATTACHMENT B Instrumentation Boring Logs

Northing: NA

Ground Elevation: NA

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G1

Start/End Date: 10/04/2010

Honeywell

Drilling Company: Atlantic Testing

Easting: NA **Driller: Mark Childs**

Logging Company: PARSONS

Geologist: A. Menges Rig Type: CME 850 Depth Units: Ft

Total Depth: 45.0 Ft

			`	Joologic		•	rug Typo. OINE 000		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratun
0						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots. 3 inches to 5 feet -wet, very soft, light gray, silt-grains, mothball odor.		
5			1-WH-WH-1	0		SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
†			1-WH-1-WH	1		SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	•
10			WH-WH-WH-WH	0		SOLW	Wet, very soft, gray grading to white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	Solvay Was
†			WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
†			WH-WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	, 2SS-140H	
15 —			WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	-
†			WH-WH-WH-1	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	-
†			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	-

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft

Depth Units: Ft

Boring No: PZ-G1

Start/End Date: 10/04/2010

Honeywell

Northing: NA Drilling Company: Atlantic Testing

Easting: NA Driller: Mark Childs

Ground Elevation: NA Logging Company: PARSONS

			6	eologisi	:: A. Me	nges	RIG Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS	0 11 5 1 11	Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
			WH-WH-WH-1	0		SOLW	Wet, very soft, light to dark gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
25 —			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
			WH-WH-1-WH	1		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
30 +			WH-WH-1-WH	1		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	Solvay Waste
			WH-WH-1-WH	1		SOLW	Wet, very soft, white-light gray, silt-like grains, little sand-like grains in last 2 inches, mothball od	or 2SS-140H	
			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
35 +			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
			WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
40 —									

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft Depth Units: Ft

Boring No: PZ-G1

Start/End Date: 10/04/2010

Honeywell

Northing: NA Drilling Company: Atlantic Testing

Easting: NA Driller: Mark Childs

Ground Elevation: NA Logging Company: PARSONS

Geologist: A. Menges Rig Type: CME 850

Depth	cov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			WH-WH-WH-WH	0		SOLW	Wet, very soft, white-light gray, silt-like grains, mothball odor	2SS-140H	
			WH-WH-1-WH	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand like grains, mothball odor	2SS-140H	Solvay Waste
45.0			WH-WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand like grains, mothball odor	2SS-140H	
45.0			M-4 N	Latte Carlota Carl	iit- DID		1-1		

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G2

Start/End Date: 09/28/2010 - 09/29/2010

Northing: 1120618.167

Honeywell

Drilling Company: Atlantic Testing

Total Depth: 45.0 Ft

Easting: 907249.472 Ground Elevation: 437.349 Driller: Mark Childs Logging Company: PARSONS Depth Units: Ft

Geologist: A. Menges

Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
0 -						SOLW	Hand Clear. 0 to 3 inches - topsoil, grass, roots. 3 inches to 5 feet - wet, very soft, light gray, silt-li grains, mothball odor	ke HandAuger	
5 +			WR-WR-WR-WR	0	0.0	SOLW	Wet, very soft, tan-gray grading to white, silt-like grains, mothball odor	2SS-140H	
			WH-WH-1-WH	1	0.0	SOLW	Wet, very soft, light tan-light gray, silt-like grains, mothball odor	2SS-140H	
10			1-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, trace cementations, mothball odor	2SS-140H	Solvay Waste
			WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
			WR-WR-WR-WR	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
15 +			WR-WR-1-WR	1	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
			1-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
			WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G2

Start/End Date: 09/28/2010 - 09/29/2010

Total Depth: 45.0 Ft Depth Units: Ft

Northing: 1120618.167 Drilling Company: Atlantic Testing

Easting: 907249.472 Driller: Mark Childs

Ground Elevation: 437.349 Logging Company: PARSONS

Dep	oth 3	Sample	Blow	N	PID	USCS		Sample	
F	t d	Z ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
	_		WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
	+		WH-WH-WH-1	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
25	_		WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
	+		WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
30			WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	Solvay Wasti
			WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
	+		WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
35	+		WH-1-10-8	11	0.0	SOLW	0 to 12 inches: Wet, very soft, gray-white, silt-like grains, mothball odor 12 to 24 inches: wet, dense, dark gray, sand-like grains, little silt-like grains, mothball odor	2SS-140H	
	-		1-1-1-2	2	0.0	SOLW	Wet, soft, dark gray, silt-like grains and sand-like grains, mothball odor	2SS-140H	
			1-WH-1-1	1	0.0	SOLW	Wet, very soft, dark gray, silt-like grains and sand-like grains, mothball odor	2SS-140H	

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G2

Start/End Date: 09/28/2010 - 09/29/2010

Total Depth: 45.0 Ft Depth Units: Ft

Honeywell

Northing: 1120618.167 Drilling Company: Atlantic Testing

Easting: 907249.472 Driller: Mark Childs

Ground Elevation: 437.349 Logging Company: PARSONS

Geologist: A. Menges Rig Type: CME 850

>								
	Sample	Blow	N	PID	USCS		Sample	
Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
		1-WH-1-1	1	0.0	SOLW	Wet, very soft, dark gray, silt-like grains and sand-like grains, mothball odor	2SS-140H	
		WH-6-1-2	7	0.0	SOLW	Wet, medium stiff, light gray-white, silt-like grains and coarse sand-like grains, mothball odor	2SS-140H	Solvay Waste
		WH-WH-WH	0		SOLW	Wet, very soft, light gray-white, silt-like grains and coarse sand-like grains, mothball odor	2SS-140H	
	Rec	OI S	₩H-WH-WH-WH	Ф ID Count Value 1-WH-1-1 1 WH-6-1-2 7 WH-WH-WH-WH 0	型 ID Count Value ppm 1-WH-1-1 1 0.0 WH-6-1-2 7 0.0 wh-wh-wh-wh 0	型 ID Count Value ppm Code	ID Count Value ppm Code Soil Description	ID Count Value ppm Code Soil Description Method

Note: Null fields indicate PID reading was not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft Depth Units: Ft

Boring No: PZ-G3

Start/End Date: 10/06/2010

Honeywell

Northing: 1120086.031 Drilling Company: Atlantic Testing

Easting: 906780.743 Driller: Mark Childs

Ground Elevation: 431.323 Logging Company: PARSONS

			۱,	eologist	: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS	0.115	Sample	0, ,
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratur
						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots. 3 inches to 5 feet -wet, very soft, light gray, silt-like grains, mothball odor		
, 41	,						No December		
			WH-WH-WH	0			No Recovery	2SS-140H	
			WH-WH-WH	0		SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	
10 +			WH-1-1-1	2		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	Solvay Was
			WH-1-1-1	2		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	-
			WH-1-WH-1	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	-
15 +			WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	-
†			WH-1-WH-WH	1		SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, some sand-like grains, trace cementations, mothball odor	2SS-140H	-
₂₀ \perp			1-WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, some sand-like grains, trace cementations, mothball odor		

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft

Depth Units: Ft

Boring No: PZ-G3

Start/End Date: 10/06/2010

Honeywell

Northing: 1120086.031 Drilling Company: Atlantic Testing

Easting: 906780.743 Driller: Mark Childs

Ground Elevation: 431.323 Logging Company: PARSONS

							<u> </u>		
Deptl	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20	-		1-WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, some sand-like grains, trace cementations, mothball odor Wet, very soft, gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
-	-		1-WH-WH-WH	0		SOLW		2SS-140H	
-	-		WH-WH-WH	0		SOLW	Wet, very soft, gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
25 -	-		WH-WH-WH	0		SOLW	Wet, very soft, gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
-			WH-WH-WH-1	0		SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
30	_		WH-1-WH-1	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, little sand-like grains, trace cementations.	2SS-140H	Solvay Waste
-	-		1-1-WH-1	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, little sand-like grains, trace cementations.	2SS-140H	
-	-		1-WH-WH-1	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, little sand-like grains, trace cementations.	2SS-140H	
35 -	-		1-1-2-1	3		SOLW	Wet, soft, light to dark gray, silt-like grains, little sand-like grains, trace cementations.	2SS-140H	
-	-		1-WH-WH-WH	0		SOLW	Wet, very soft, dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
40			WH-WH-WH	0		SOLW	Wet, very soft, dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	

Page 3 of 3

Honeywell

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G3

Start/End Date: 10/06/2010

Weather:

Northing: 1120086.031

Drilling Company: Atlantic Testing

Total Depth: 45.0 Ft

Easting: 906780.743

Driller: Mark Childs

Geologist: A. Menges

Depth Units: Ft

Ground Elevation: 431.323 Logging Company: PARSONS

Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			WH-WH-WH-WH	0		SOLW	Wet, very soft, dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			WH-1-WH-WH	1		SOLW	Wet, very soft, light gray, silt-like grains, mothball odor	2SS-140H	Solvay Waste
45.0			1-WH-WH-WH	0		SOLW	Wet, very soft, light gray, silt-like grains, mothball odor	2SS-140H	

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G4

Start/End Date: 09/30/2010 - 10/01/2010

Total Depth: 45.0 Ft

Depth Units: Ft

Northing: 1119546.742 Drilling Company: Atlantic Testing

Easting: 906312.648 Driller: M. Childs

Ground Elevation: 429.367 Logging Company: PARSONS

Crouna	Ground Elevation: 420.007				ist: A. Me	enges	Rig Type: CME 850		
Depth	,)	Sample	Blow	N	PID	USCS		Sample	
Ft	Recov	ID	Count	Valu	e ppm	Code	Soil Description	Method	Stratum
0 -						solw	Hand Clear. 0 to 3 inches -topsoil, grass, roots 3 inches to 5 feet -wet, very soft, light gray, silt grains, mothball odor	like	Solvay Waste
5 —			1-WH-WH-W	н 0		ML/SOLW	0 to 2 inches: Wet, soft, brown, SILT, trace org 2 to 4 inches: wet, very soft, white, silt-like gra mothball odor		Silt
+			WH-1-WH-W	н 1		SOLW	Wet, very soft, white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
10 —			WH-WH-1-W	н 1		SOLW	Wet, very soft, light to dark gray, silt-like grains little sand-like grains, mothball odor	2SS-140H	
			1-WH-WH-W	н 0		SOLW	Wet, very soft, light to dark gray, silt-like grains little sand-like grains, mothball odor	2SS-140H	Solvay Waste
			WH-WH-WH-W	<i>л</i> н О		SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	
15 +			WH-WH-WH-	-1 0		SOLW	Wet, very soft, light to dark gray, silt-like grains some sand-like grains, mothball odor	2SS-140H	
			1-WH-WH-W	н 0		SOLW	Wet, very soft, light to dark gray, silt-like grains some sand-like grains, trace cementations in la inches, mothball odor	s, ast 4 2SS-140H	
†			WH-WH-WH-W	лн О		SOLW	Wet, very soft, gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
20 —		L	L		_ L	L			L

Page 2 of 3

Honeywell

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G4

Start/End Date: 09/30/2010 - 10/01/2010

Northing: 1119546.742

Drilling Company: Atlantic Testing

Easting: 906312.648

Driller: M. Childs

Total Depth: 45.0 Ft Depth Units: Ft

Ground Elevation: 429.367

Logging Company: PARSONS

Geologist: A. Menges

Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			WH-WH-WH	0		SOLW	Wet, very soft, gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			WH-1-WH-WH	1		SOLW	Wet, very soft, gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
+			WH-1-1-1	2		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
25 —			WH-1-1-1	2		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
			1-1-1-WH	2		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
30 +			1-2-4-1	6		SOLW	Wet, medium stiff, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	Solvay Waste
			3-3-4-8	7		SOLW	Wet, loose, dark gray, sand-like grains, some silt-like grains, some cementations in bottom 4 inches, mothball odor	2SS-140H	
			2-5-6-3	11		SOLW	Wet, stiff, light to dark gray, silt-like grains, some sand-like grains, cemented crust in bottom 2 inches mothball odor	, 2SS-140H	
35 —			2-2-2-2	4		SOLW	Wet, soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-1-1-2	2		SOLW	Wet, soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
†			1-1-3-4	4		SOLW	Wet, soft, light to dark gray, silt-like grains, some cementations throughout, mothball odor	2SS-140H	

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G4

Start/End Date: 09/30/2010 - 10/01/2010

Northing: 1119546.742

Drilling Company: Atlantic Testing

Total Depth: 45.0 Ft

Easting: 906312.648

Driller: M. Childs

Honeywell

Depth Units: Ft

Ground Elevation: 429.367

Logging Company: PARSONS

Geologist: A. Menges

Rig Type: CME 850

Depth	cov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			1-1-3-4	4		SOLW	Wet, soft, light to dark gray, silt-like grains, some cementations throughout, mothball odor	2SS-140H	
			3-3-1-2	4		SOLW	Wet, soft, light to dark gray, silt-like grains, some cementations throughout, mothball odor	2SS-140H	Solvay Waste
45.0			1-WH-1-1	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
45 .0			Note:	Null fields in	dicate PID	reading not	taken	•	

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G5

Start/End Date: 09/27/2010 - 09/28/2010

Total Depth: 45.0 Ft Depth Units: Ft

Northing: 1119899.611 Drilling Company: Atlantic Testing

Easting: 907477.79 Driller: Mark Childs

Ground Elevation: 438.588 Logging Company: PARSONS

			۱,	eologist	. A. IVIE	liges	RIG Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS	2 11 2 1 1	Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratur
						SOLW	Hand Clear. o to 3 inches -topsoil, grass, roots. 3 inches to 5 feet -wet, very soft, light gray, silt-like grains, mothball odor	HandAuger	
; 			1-WH-WH-WH	0		SOLW	Wet, very soft, gray-white, silt-like grains, trace cementations, mothball odor	2SS-140H	
			1-WH-WH-WH	0		SOLW	Wet, very soft, light brown grading to gray-white, silt-like grains, some sand-like grains, trace cementations mothball odor	2SS-140H	
0 +			1-1-WH-WH	1		SOLW	Wet, very soft, light to dark gray-white, silt-like grains, trace sand-like grains, trace cementations, mothball odor	2SS-140H	Solvay Was
Ī			1-WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
Ī			WH-WH-WH	0		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, trace cementations, mothball odor	2SS-140H	
5			WH-WH-1-W1	1		SOLW	Wet, very soft, light to dark gray-white, silt-like grains, some cemented chunks, mothball odor	2SS-140H	
			2-1-1-2	2		SOLW	Wet, very soft, light to dark gray, silt and sand-like grains, some cementations, mothball odor	2SS-140H	
+			WH-1-WH-WH	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G5

Start/End Date: 09/27/2010 - 09/28/2010

Total Depth: 45.0 Ft Depth Units: Ft

Honeywell

Northing: 1119899.611 Drilling Company: Atlantic Testing

Easting: 907477.79 Driller: Mark Childs

Ground Elevation: 438.588 Logging Company: PARSONS

			۱,	eologist	. A. IVIE	nges	RIG Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS	2.112	Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratun
20			WH-1-WH-WH	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
Ī			1-1-WH-WH	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
-			WH-1-WH-1	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, trace cemented chunks, mothball odor	2SS-140H	
25 +			WH-WH-1-1	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, trace cemented chunks, mothball odor	2SS-140H	
† -			1-1-2-1	3		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, trace cemented chunks, mothball odor	2SS-140H	
30 +			1-1-1-2	2		SOLW	Wet, very soft, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	Solvay Was
+			2-3-3-3	6		SOLW	Wet, very soft, light-dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
-			1-WH-1-2	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
35 +			5-4-5-2	9		SOLW	Wet, stiff, light to dark gray, silt-like grains and sand-like grains, some cemented chunks, mothball odor	2SS-140H	
†			3-5-7-4	13		SOLW	Wet, stiff, light to dark gray, silt-like grains and sand-like grains, some cemented chunks, mothball odor	2SS-140H	
Ť			4-19-6-6	25		SOLW	Wet, very stiff, gray, silt-like grains, some cementations and crust, mothball odor	2SS-140H	

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G5

Start/End Date: 09/27/2010 - 09/28/2010

Total Depth: 45.0 Ft Depth Units: Ft

Honeywell

Northing: 1119899.611 **Drilling Company: Atlantic Testing**

Easting: 907477.79 **Driller: Mark Childs**

Ground Elevation: 438.588 Logging Company: PARSONS

> Geologist: A. Menges Rig Type: CME 850

Depth	cov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			4-19-6-6	25		SOLW	Wet, very stiff, gray, silt-like grains, some cementations and crust, mothball odor	2SS-140H	
			6-12-3-3	15		SOLW	Wet, stiff, light to dark gray, silt-like grains, trace cementations, mothball odor	2SS-140H	Solvay Waste
45.0			3-2-1-1	3		SOLW	Wet, soft, light to dark gray, silt-like grains, trace cementations, mothball odor	2SS-140H	
45 .0			Note:	Null fields in	dicate PID	reading not	taken		

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft

Depth Units: Ft

Boring No: PZ-G6

Start/End Date: 10/05/2010

Honeywell

Northing: 1120825.273 Drilling Company: Atlantic Testing

Easting: 905916.934 Driller: Mark Childs

Ground Elevation: 430.675 Logging Company: PARSONS

			'	eologisi	: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	ı
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
-						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots 3 inches to 5 feet -wet, very soft, light gray, silt-grains, mothball odor	-like HandAuger	
5 -			WH-1-WH-WH	1		SOLW	Wet, very soft, light to dark gray, silt-like grains little sand-like grains, mothball odor	, 2SS-140H	
			WH-1-1-WH	2		SOLW	Wet, very soft, light to dark gray, silt-like grains little sand-like grains, mothball odor	, 2SS-140H	
10			1-WH-WH-1	0		SOLW	Wet, very soft, light gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	Solvay Waste
			1-WH-WH-WH	0		SOLW	Wet, very soft, light gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-WH-1-WH	1		SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
15 —			1-WH-WH-1	0		SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
_			1-1-1-1	2		SOLW	Wet, very soft, light gray-white, silt-like grains and sand-like grains, mothball odor	2SS-140H	
			1-WH-WH-WH	0		SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	
20 —									

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft

Depth Units: Ft

Boring No: PZ-G6

Start/End Date: 10/05/2010

Honeywell

Northing: 1120825.273 Drilling Company: Atlantic Testing

Easting: 905916.934 Driller: Mark Childs

Ground Elevation: 430.675 Logging Company: PARSONS

				Geologisi	i. A. IVIE	liges	Rig Type. Civic 630		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			1-WH-WH-WH	0		SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	
			WH-2-6-10	8		SOLW	Wet, stiff, tan-white, silt-like grains and coarse sand-like grains, mothball odor	2SS-140H	
			10-6-1-1	7		SOLW	Wet, stiff, tan-white, coarse sand-like grains, mothball odor	2SS-140H	
25 —			1-1-1-WH	2		SOLW	Wet, very soft, white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			2-5-8-3	13		SOLW	Wet, medium dense, white-tan, sand-like grain some silt-like grains, mothball odor	s, 2SS-140H	
30 +			2-2-5-4	7		solw	Wet, loose, white-tan, sand-like grains and silt- grains, some cementations, mothball odor		Solvay Waste
			2-1-WH-1	1		SOLW	Wet, very soft, white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-2-1-2	3		SOLW	Wet, soft, white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
35 —			2-1-2-3	3		SOLW	Wet, very loose, dark gray, coarse sand-like gr some silt-like grains, mothball odor	ains, 2SS-140H	
			2-2-2-2	4		SOLW	Wet, soft, dark gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-2-2-3	4		SOLW	Wet, soft, dark gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
40 —		-	-	· – -		-	_ _	_	_

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft Depth Units: Ft

Boring No: PZ-G6

Start/End Date: 10/05/2010

Honeywell

Northing: 1120825.273 **Drilling Company: Atlantic Testing**

Easting: 905916.934 **Driller: Mark Childs**

Ground Elevation: 430.675 Logging Company: PARSONS

> Geologist: A. Menges Rig Type: CME 850

Depth	cov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			1-2-2-3	4		SOLW	Wet, soft, dark gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-WH-WH-WH	0		SOLW	Wet, very soft, dark gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	Solvay Waste
45.0			1-1-WH-1	1		SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
45 .0			Note.	Null fields inc	dicate PID	reading not	taken		

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft Depth Units: Ft

Boring No: PZ-G7

Start/End Date: 09/29/2010

Northing: 1121174.627 Drilling Company: Atlantic Testing

Easting: 907076.114 Driller: Mark Childs

Ground Elevation: 429.39 Logging Company: PARSONS

				Geologist	t: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
-						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots. 3 inches to 5 feet -wet, very soft, light gray, silt-lik grains, mothball odor		
5 +			1-WH-WH-WH	0	0.0	SOLW	Wet, very soft, gray-white, silt-like grains, mothba odor	2SS-140H	
+			1-WH-1-1	1	0.0	SOLW	Wet, very soft, gray-white, silt-like grains, some sand-like grains in bottom 1 inch, mothball odor	2SS-140H	-
10 +			WH-WH-3-1	3	0.0	SOLW	Wet, soft, white-light gray, silt-like grains, trace sand-like grains, trace cementations. mothbodor		Solvay Waste
			WH-WH-1-1	1	0.0	SOLW	Wet, very soft, white-light gray, silt-like grains, trace sand-like grains, trace cementations, mothbodor	pall 2SS-140H	
			1-WH-WH-1	0	0.0	SOLW	Wet, very soft, white-light gray, silt-like grains, trace sand-like grains, trace cementations, mothbodor	pall 2SS-140H	
15 +			WH-1-WH-1	1		SOLW	Wet, very soft, gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
†			1-1-1-1	2	0.0	SOLW	Wet, very soft, white-light gray, silt-like grains, little sand-like grains, mothball odor	2SS-140H	
			WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	-
20 —				- '					

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 45.0 Ft Depth Units: Ft

Boring No: PZ-G7

Start/End Date: 09/29/2010

Honeywell

Northing: 1121174.627 Drilling Company: Atlantic Testing

Easting: 907076.114 Driller: Mark Childs

Ground Elevation: 429.39 Logging Company: PARSONS

			l G	Seologist	: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	
			1-1-WH-WH	1	0.0	SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	
			1-WH-1-1	1	0.0	SOLW	Wet, very soft, white, silt-like grains, some sand-like grains, trace cementations	2SS-140H	
25 —			WH-1-1-1	2	0.0	SOLW	Wet, very soft, white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			2-3-2-1	5	0.0	SOLW	Wet, medium stiff, white-gray, silt-like grains and coarse sand-like grains, mothball odor	2SS-140H	
30 +			2-1-6-3	7	0.0	SOLW	Wet, medium stiff, white-dark gray, silt-like grains, sand-like grains, some cementations, mothball odor	2SS-140H	Solvay Waste
			3-2-3-1	5	0.0	SOLW	Wet, medium stiff, white-gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			WH-WH-WH-1	0	0.0	SOLW	Wet, soft, white-gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
35 —			WH-WH-1-WH	1	0.0	SOLW	Wet, soft, white-gray, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
-			WH-WH-3-1	3	0.0	SOLW	Wet, soft, white-gray grading to tan, silt-like grains, some sand-like grains, trace cementations, mothball odor	2SS-140H	
			1-2-10-13	12	0.0	SOLW	Wet, stiff, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
40 —									

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G7

Start/End Date: 09/29/2010

Northing: 1121174.627

Drilling Company: Atlantic Testing

Total Depth: 45.0 Ft

Easting: 907076.114

Driller: Mark Childs

Depth Units: Ft

Ground Elevation: 429.39 Logging Company: PARSONS

Honeywell

Geologist: A. Menges Ri

Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			1-2-10-13	12	0.0	SOLW	Wet, stiff, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
			13-26-23-19	49	0.0	SOLW	Wet, very stiff, light to dark gray, silt-like grains and sand-like grains, some hard cementations in last 4 inches	2SS-140H	Solvay Waste
45.0			WH-WH-5-3	5		SOLW	Wet, soft, dark gray, silt-like grains, some coarse sand-like grains, mothball odor	2SS-140H	

Note: Null fields indicate PID readings not taken

Page 1 of 3

Honeywell

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G8

Start/End Date: 11/02/2010 - 11/03/2010

Northing: 1121394.827

Drilling Company: Atlantic Testing

Easting: 906312.052

Driller: Mark Childs

Total Depth: 50.0 Ft Depth Units: Ft

Ground Elevation: 414.05

Logging Company: PARSONS

Geologist: A. Menges

Rig Type: CME 850

	· · · · · · · · · · · · · · · · · · ·	_					
Sample	Blow	N	PID	USCS		Sample	
ID	Count	Value	ppm	Code	Soil Description	Method	Stratun
	4-4-4	8	0.0	ML	Moist, stiff, red-brown, SILT, trace clay, trace fine gravel, trace organics	2SS-140H	
	3-7-4-5	11	0.0	ML	Moist, stiff, red-brown, SILT, trace clay, trace fine to coarse gravel	2SS-140H	-
	5-7-15-14	22	0.0	ML	Moist, very stiff, red-brown, SILT, trace clay, trace fine to coarse gravel	2SS-140H	-
	9-12-11-11	23			No Recovery	2SS-140H	
	10-14-11-12	25	0.0	ML	Moist, very stiff, red-brown, SILT, trace clay, trace fine to coarse gravel	2SS-140H	
	16-16-21-20	37	0.0	ML	Moist, hard, red-brown, SILT, trace clay, trace fine to coarse gravel	2SS-140H	- Fill
	12-14-16-14	30	0.0	ML	0 to 16 inches: Moist, very stiff, red-brown, SILT, trace fine to coarse gravel. 16 to 22 inches: moist, stiff, brown, SILT, little fine to coarse sand	2SS-140H	-
	21-20-27-23	47	0.0	ML	Moist, hard red-brown, SILT, trace fine to coarse gravel	2SS-140H	
	9-12-15-18	27	0.0	ML	Moist, very stiff, brown, SILT, trace fine gravel, trace fine sand	2SS-140H	
	23-17-10-7	27	0.0	ML	Moist, very stiff, brown, SILT, trace fine gravel, trace fine sand	2SS-140H	
	i .	1D Count 4-4-4-4 3-7-4-5 5-7-15-14 9-12-11-11 10-14-11-12 16-16-21-20 12-14-16-14 21-20-27-23	ID Count Value 4-4-4-4 8 3-7-4-5 11 5-7-15-14 22 9-12-11-11 23 10-14-11-12 25 16-16-21-20 37 12-14-16-14 30 21-20-27-23 47 9-12-15-18 27	ID Count Value ppm 4-4-4-4 8 0.0 3-7-4-5 11 0.0 5-7-15-14 22 0.0 9-12-11-11 23 10-14-11-12 25 0.0 16-16-21-20 37 0.0 12-14-16-14 30 0.0 21-20-27-23 47 0.0 9-12-15-18 27 0.0	ID	ID Count Value ppm Code Soil Description	ID Count Value ppm Code Soil Description Method

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G8

Start/End Date: 11/02/2010 - 11/03/2010

Total Depth: 50.0 Ft Depth Units: Ft

Northing: 1121394.827 Drilling Company: Atlantic Testing

Easting: 906312.052 Driller: Mark Childs

Ground Elevation: 414.05 Logging Company: PARSONS

				Geologist		-	RIG Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS	Soil Description	Sample	Stratum
Ft 20	α.	ID	Count 6-9-12-14	Value 21	0.0	Code ML	Moist, very stiff, brown, SILT, trace fine gravel, trace fine sand	2SS-140H	
+			4-6-7-7	13	0.0	ML/SM	Moist, stiff, brown, SILT and fine Sand, trace fine gravel in top 3 inches.	2SS-140H	
25 —			7-7-7-9	14	0.0	ML/SM	Moist, stiff, brown, SILT and fine Sand	2SS-140H	Silt&Sand
			4-4-5-6	9		ML/SM	Moist, stiff, brown, SILT and fine Sand	2SS-140H	
			58-30-21-16	51	0.0		0 to 4 inches: Moist, hard, brown, SILT and fine Sand. 4 to 12 inches: moist, dense, gray, coarse GRAVEL	2SS-140H	
30 +			19-18-17-14	35	0.0	GW	Moist, dense, gray, coarse GRAVEL	2SS-140H	
			2-6-6-7	12	0.0	ML	Moist, stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	
35 +			9-7-7-6	14	0.0	ML	Moist, stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	Fill
_			10-6-7-8	13	0.0	ML	Moist, stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	-
			10-7-7-6	14	0.0	ML	Moist, stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	-

Page 3 of 3

Honeywell

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G8

Start/End Date: 11/02/2010 - 11/03/2010

Northing: 1121394.827

Drilling Company: Atlantic Testing

Total Depth: 50.0 Ft

Easting: 906312.052

Driller: Mark Childs

Depth Units: Ft

Ground Elevation: 414.05

Logging Company: PARSONS

Geologist: A. Menges

Rig Type: CME 850

	_								
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			7-8-7-5	15	0.0	ML	Wet, stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	
			4-6-6-10	12	0.0	ML	Wet, stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	
45			14-23-29-26	52	0.0	ML	Wet, hard, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	Fill
			5-10-13-16	23	0.0	ML	Wet, very stiff, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	
50.0			13-26-25-20	51	0.0	ML	Wet, hard, red-brown, SILT, little fine to coarse sand, trace fine to coarse gravel	2SS-140H	

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G9

Start/End Date: 11/04/2010 - 11/05/2010

Total Depth: 50.0 Ft

Depth Units: Ft

Honeywell

Northing: 1121108.306 Drilling Company: Atlantic Testing

Easting: 905641.589 Driller: Mark Childs

Ground Elevation: 415.715 Logging Company: PARSONS

				Geologist	t: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
0			2-3-3-5	6		ML	Moist, medium stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
			4-4-5-10	9		ML	Moist, stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
5			6-6-7-10	13		ML	Moist, stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
Ī			10-13-8-6	21		ML	Moist, very stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
Ţ			6-10-6-6	16		ML	Moist, stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
10 +			16-8-7-8	15		ML	Moist, stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	Fill
			7-7-9-11	16		ML	Moist, very stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
15 —			10-11-11-12	22		ML	Moist, very stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	
			10-13-15-17	25		ML	Moist, very stiff, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	-
			10-35-21-11	56		ML	Moist, hard, red-brown, SILT, some clay, trace fine to coarse gravel	2SS-140H	-
20									L

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G9

Start/End Date: 11/04/2010 - 11/05/2010

Total Depth: 50.0 Ft

Depth Units: Ft

Northing: 1121108.306 Drilling Company: Atlantic Testing

Easting: 905641.589 Driller: Mark Childs

Ground Elevation: 415.715 Logging Company: PARSONS

				Coologic		900	Tig Typo. OME 000		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			26-12-10-10	22		ML	0 to 15 inches: Moist, very stiff, red-brown, SILT, trace clay, trace fine to coarse gravel. 15 to 20 inche moist, stiff, brown, SILT and fine Sand		Fill
†							Wet, stiff, brown, SILT and fine Sand		1
+			10-7-8-7	15		ML/SM		2SS-140H	
25			4-8-8-7	16		ML/SM	Wet, stiff, brown, SILT and fine Sand	2SS-140H	Silt&Sand
† 1							Wet, stiff, brown, SILT and fine Sand		Cintacana
+			2-4-5-4	9		ML/SM		2SS-140H	
+ 1		ŀ		+			Wet, stiff, brown, SILT and fine Sand		1
+			2-5-6-13	11		ML/SM		2SS-140H	
30 +							Moist, dense, gray, coarse GRAVEL, some silt		
+			13-15-28-20	43		ML		2SS-140H	
			16-15-15-61	30		ML	Moist, very stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	
†		l					Moist, hard, gray-brown, SILT and fine to coarse		1
35 —			41-27-27-18	54		ML	Gravel	2SS-140H	Fill
			8-7-8-8	15		ML	Moist, very stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	-
			14-9-10-16	19		ML	Moist, very stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	-
₄₀ ⊥ L									L

Northing: 1121108.306

Ground Elevation: 415.715

Easting: 905641.589

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Boring No: PZ-G9

Start/End Date: 11/04/2010 - 11/05/2010

Total Depth: 50.0 Ft

Depth Units: Ft

Honeywell

Drilling Company: Atlantic Testing

Driller: Mark Childs

Logging Company: PARSONS

Geologist: A. Menges

Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			16-14-14-12	28			No Recovery	2SS-140H	
			3-6-6-8	12		ML	Wet, stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	
45 —			4-5-5-10	10		ML	Wet, stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	Fill
			4-4-5-5	9		ML	Wet, stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	
50.0			5-5-5-5	10		ML	Wet, stiff, gray-brown, SILT and fine to coarse Gravel	2SS-140H	
50.0			Nata: N	ull fielde ier	dianta DID	reeding not	takan		

Note: Null fields indicate PID reading not taken

Page 1 of 4

Site: Onondaga Lake (Syracuse NY)

Boring No: SI-G1

Start/End Date: 10/07/2010 - 10/11/2010

Total Depth: 67.0 Ft

Depth Units: Ft

Northing: 1120002.032 Drilling Company: Atlantic Testing

Easting: 906806.194 Driller: Mark Childs

Ground Elevation: 432.11 Logging Company: PARSONS

			(Geologist	t: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
0 -						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots. 3 inches to 5 feet -wet, very soft, light gray, silt-like grains, mothball odor	HandAuger	
5 +			1-WH-WH-WH	0	0.0	SOLW	Wet, very soft, white, silt-like grains, mothball odor	2SS-140H	-
† †			WH-WH-1-WH	1	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
10 +			1-1-WH-1	1	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, little sand-like grains, mothball odor	2SS-140H	Solvay Waste
			1-WH-1-WH	1	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, trace coarse sand-like grains in bottom 2 inches mothball odor	2SS-140H	
			2-2-1-1	3	0.0	SOLW	Wet, very loose, light gray, coarse, sand-like grains, mothball odor	2SS-140H	
15 +			1-WH-1-WH	1	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
†			1-WH-1-WH	1	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-1-1-1	2	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
20 —		· = *	-	- -	- -	-			

Page 2 of 4

Site: Onondaga Lake (Syracuse NY)

Boring No: SI-G1

Start/End Date: 10/07/2010 - 10/11/2010

Total Depth: 67.0 Ft

Depth Units: Ft

Northing: 1120002.032 Drilling Company: Atlantic Testing

Easting: 906806.194 Driller: Mark Childs

Ground Elevation: 432.11 Logging Company: PARSONS

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20			1-1-1-1	2	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
Ī			1-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray-tan, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	
			1-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
25 —			WH-WH-WH	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
†			WH-1-1-1	2	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, little sand-like grains, mothball odor	2SS-140H	
30 —			WH-2-4-2	6	0.0	SOLW	Wet, medium stiff, light to dark gray, silt-like grains, some coarse sand-like grains in bottom 4 inches, mothball odor	2SS-140H	Solvay Waste
Ī			5-14-10-11	24	0.0	SOLW	Wet, very stiff, light to dark gray, silt-like grains, little sand-like grains, mothball odor	2SS-140H	
Ī			2-1-1-2	2	0.0	SOLW	Wet, soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
35 —			1-WH-1-1	1	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
			1-WH-1-1	1	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
1 †			1-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	

Page 3 of 4

Site: Onondaga Lake (Syracuse NY)

Boring No: SI-G1

Start/End Date: 10/07/2010 - 10/11/2010

Total Depth: 67.0 Ft

Depth Units: Ft

Northing: 1120002.032 Drilling Company: Atlantic Testing

Easting: 906806.194 Driller: Mark Childs

Ground Elevation: 432.11 Logging Company: PARSONS

Depth So	Sample	Blow	N	PID	USCS		Sample	
Ft 🖁	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40		1-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
+		WH-WH-1-WH	1	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
_		WH-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	-
45 —		1-WH-1-1	1	0.0	SOLW	Wet, very soft, dark gray, silt-like grains, mothball odor	2SS-140H	-
		WH-1-1-WH	2	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, some coarse sand-like grains in bottom 4 inches, mothball odor	2SS-140H	•
50 —		WH-WH-WH	0	0.0	SOLW	Wet, very soft, dark gray, silt-like grains, mothball odor	2SS-140H	Solvay Waste
+		WR-1-WH-1	1	0.0	SOLW	Wet, very soft, dark gray, silt-like grains, mothball odor	2SS-140H	
+		13-15-13-8	28	0.0	SOLW	Wet, medium dense, dark gray, coarse sand-like grains, some cementations throughout, mothball odor	2SS-140H	
55 +		2-1-WH-3	1	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
_		1-1-WH-1	1	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	-
+		WH-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	-

Page 4 of 4

Site: Onondaga Lake (Syracuse NY)

Boring No: SI-G1

Start/End Date: 10/07/2010 - 10/11/2010

Total Depth: 67.0 Ft

Depth Units: Ft

Honeywell

Northing: 1120002.032 Drilling Company: Atlantic Testing

Easting: 906806.194 Driller: Mark Childs

Ground Elevation: 432.11 Logging Company: PARSONS

Geologist: A. Menges Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
60			WH-WH-WH-1	0	0.0	SOLW	Wet, very soft, light to dark gray, silt-like grains, mothball odor	2SS-140H	
			1-4-10-14	14	0.0	SOLW/ML	0 to 18 inches -Wet, stiff, light to dark gray, silt-like grains, mothball odor. 18 to 24 inches -wet, stiff, brown, SILT, trace sand, trace gravel in last 2 inches, mothball odor	2SS-140H	Solvay Waste
25			11-13-14-8	27	0.0	GM	Wet, medium dense, brown, fine to coarse GRAVEL and fine to coarse Sand, some silt, slight mothball odor	2SS-140H	Gravel&Sand
65 +			3-4-9-8	13	0.0	GM	Wet, very stiff, brown, fine to coarse GRAVEL and fine to coarse Sand, some silt, slight mothball odor	2SS-140H	
67.0			Note: I	Null fields in	dicate PID	readings no	t taken		

Note: Null fields indicate PID readings not taken

Page 1 of 4

Site: Onondaga Lake (Syracuse NY)

Total Depth: 67.0 Ft Depth Units: Ft

Boring No: SI-G2

Start/End Date: 10/14/2010

Northing: 1120652.906 **Drilling Company: Atlantic Testing**

Easting: 906602.281 **Driller: Mark Childs**

Ground Elevation: 426.999 Logging Company: PARSONS

				Seologist	t: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
0 +						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots 3 inches to 5 feet -wet, very soft, light gray, silt grains, mothball odor	t-like HandAuger	
5 +			WH-WH-WH-W	0	0.0	SOLW	Moist, very soft, white-light gray, silt-like grains, trace organic material	2SS-140H	
-									
10 +			WH-WH-WH-WH	0	0.0	SOLW	Moist, very soft, white-light gray, silt-like grains	2SS-140H	Solvay Waste
15									
			WH-WH-WH	0	0.0	SOLW	Moist, very soft, white-light gray, silt-like grains	2SS-140H	
20									

Page 2 of 4

Site: Onondaga Lake (Syracuse NY)

Total Depth: 67.0 Ft

Depth Units: Ft

Boring No: SI-G2

Start/End Date: 10/14/2010

Honeywell

Northing: 1120652.906 Drilling Company: Atlantic Testing

Easting: 906602.281 Driller: Mark Childs

Ground Elevation: 426.999 Logging Company: PARSONS

					Geologist	t: A. Me	nges	Rig Type: CME 850		
Dept	th	Recov	Sample	Blow	N	PID	USCS		Sam	ple
Ft		Re	ID	Count	Value	ppm	Code	Soil Description	Metl	od Stratum
20	+			WH-WH-WH-WH	0	0.0	SOLW	Moist, very soft, white-light gray, silt-like grains	288-1	
25 -	<u>+</u> +									
	 			WH-WH-1-1	1	0.0	SOLW	Moist, very soft, white-light gray, silt-like grains	288-1	40H
	+									
30 -				WH-WH-1-1	1	0.0	SOLW	Moist, very soft, white-light gray, silt-like grains	288-1	Solvay Waste
35 -										
35	<u></u>			WH-WH-1-2	1	0.0	SOLW	Wet, very soft, light gray, silt-like grains	288-1	40H
	-									
40 -										

Page 3 of 4

Site: Onondaga Lake (Syracuse NY)

Total Depth: 67.0 Ft

Depth Units: Ft

Boring No: SI-G2

Start/End Date: 10/14/2010

Honeywell

Northing: 1120652.906 **Drilling Company: Atlantic Testing**

Easting: 906602.281 **Driller: Mark Childs**

Ground Elevation: 426.999 Logging Company: PARSONS

			0	Seologist	t: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	1 -
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			WH-1-WH-WH	1		SOLW	Wet, very soft, light gray, silt-like grains	2SS-140H	
45							Wet, very soft, light gray, silt-like grains		_
			WH-WH-WH	0	0.0	SOLW		2SS-140H	-
50 —							Wet, soft, light to dark gray, silt-like grains, trace sand-like grains, trace cementations, mothball		-Solvay Waste
			2-1-2-1	3		SOLW	odor	2SS-140H	
55 —							Wet very ceft light to dark gray cilt like grains		
			WR-WR-1-3	1		SOLW	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, trace cementations, mothball odor	2SS-140H	_
60									
60 -									

Page 4 of 4

Site: Onondaga Lake (Syracuse NY)

Total Depth: 67.0 Ft Depth Units: Ft

Boring No: SI-G2

Start/End Date: 10/14/2010

Honeywell

Northing: 1120652.906 **Drilling Company: Atlantic Testing**

Easting: 906602.281 **Driller: Mark Childs**

Ground Elevation: 426.999 Logging Company: PARSONS

> Geologist: A. Menges Rig Type: CME 850

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
60			WH-WH-3	0		solw	Wet, very soft, light to dark gray, silt-like grains, trace sand-like grains, trace cementations, mothball odor	2SS-140H	Solvay Waste
			10-30-48-65	78		ML	Wet, hard, red-brown, SILT, some clay, some fine to coarse gravel	2SS-140H	Silt&Clay
65 +			38-39-44-53	83		ML/SM	0 to 14 inches -Wet, hard, red-brown, SILT and Clay, some fine gravel, trace fine to coarse sand. 14 to 18 inches -wet, very dense, red-brown, fine to coarse SAND, trace silt	2SS-140H	
67.0									Sand
07.0			Note: Ni	ill fields inc	dicate PID	reading not	taken		

Note: Null fields indicate PID reading not taken

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 46.0 Ft

Depth Units: Ft

Boring No: SI-G3

Start/End Date: 10/12/2010

Honeywell

Northing: 1120057.621 Drilling Company: Atlantic Testing

Easting: 905846.698 Driller: Mark Childs

Ground Elevation: 424.641 Logging Company: PARSONS

				9	Seologist	t: A. Me	nges	Rig Type: CME 850		
Dep	th	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft		Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
0	-						SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots 3 inches ot 5 feet -wet, very soft, light gray, sili grains, mothball odor	i-like HandAuger	
5 -	+				+	-		Wet, very soft, light gray, silt-like grains, moth	nall	1
				WR-WH-1-WH	1	0.0	SOLW	odor	2SS-140H	
	+									
	Ť									
10 -	∔							Mat		Solvay Waste
				WH-WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
	+									-
	1									
15 -	T					1		Wet, very soft, light gray-white, silt-like grains, mothball odor		1
				WH-WH-WH-WH	0	0.0	SOLW	indipal cuci	2SS-140H	
	†				<u> </u>					1
	1									
	+									
20 -			_ '							

Ground Elevation: 424.641

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 46.0 Ft

Depth Units: Ft

Boring No: SI-G3

Start/End Date: 10/12/2010

Honeywell

Northing: 1120057.621 **Drilling Company: Atlantic Testing**

Easting: 905846.698 **Driller: Mark Childs**

Logging Company: PARSONS

					Geologist	t: A. Me	nges	Rig Type: CME 850		
Dept	th	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft		Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20				WH-WH-WH	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	
	-									
25 -				WR-WR-WR	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	- -
	-									
30 -	_			WR-WR-WR	0	0.0	SOLW	Wet, very soft, light gray-white, silt-like grains, mothball odor	2SS-140H	-Solvay Waste
	-									
35 -				2-3-1-2	4	0.0	SOLW	Wet, soft, light to dark gray, silt-like grains, trace sand-like grains, trace cementations, mo odor	thball 2SS-140H	- -
40 -	_ '		'					<u> </u>		-

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 46.0 Ft

Depth Units: Ft

Boring No: SI-G3

Start/End Date: 10/12/2010

Honeywell

Northing: 1120057.621 **Drilling Company: Atlantic Testing**

Easting: 905846.698 **Driller: Mark Childs**

Ground Elevation: 424.641 Logging Company: PARSONS

Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			1-WH-7-19	7	0.0		0 to 12 inches -Wet, very soft, light gray, silt-like grains, mothball odor. 12 to 24 inches -wet, brown, medium dense, fine to coarse SAND, little fine gravel, trace silt, mothball odor	2SS-140H	Solvay Waste
							Mat have your dames fine to see a CAND little		
_			39-56-50-50	106		sw	Wet, brown, very dense, fine to coarse SAND, little fine gravel, trace silt, mothball odor	2SS-140H	Sand&Gravel
							Wet, brown, very dense, fine to coarse SAND, little		
45 —			43-61-100/0.4	161	0.0	SW	fine gravel, trace silt, mothball odor	2SS-140H	
46.0			Note: Nu	ıll fields ind	i dicate PID	readings no	t taken	1	·

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 57.0 Ft Depth Units: Ft

Boring No: SI-G4

Start/End Date: 10/18/2010

Honeywell

Northing: 1121141.303 **Drilling Company: Atlantic Testing**

Easting: 906450.117 **Driller: Mark Childs**

Ground Elevation: 431.613 Logging Company: PARSONS

			(Geologist	: A. Me	nges	Rig Type: CME 850			
Dept	Recov	Sample	Blow	N	PID	USCS			Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description		Method	Stratum
-	-					SOLW	Hand Clear. 0 to 3 inches -topsoil, grass, roots 3 inches to 5 feet -wet, very soft, light gray, moodor	s. hthball	HandAuger	
5 -			1-1-1-5	2	0.0	SOLW	0 to 8 inches -Moist, soft, tan-white, silt-like grains, trace sand-like grains 8 to 12 inches: moist, medium dense, tan-white, coarse, sand and crust, mothball odor	-like grains	2SS-140H	
10 -	-									Solvay Waste
-	-		WH-1-WH-WH	1	0.0	SOLW	Wet, very soft, tan-white, silt-like grains, trace sand-like grains, mothball odor		2SS-140H	
-	-									
15 -	-		2-1-2-2	3		SOLW	Wet, soft, tan-white, silt-like grains, little sand-like grains, trace crust in nose of spoon, odor	mothball	2SS-140H	
-	-									
20	- 	 _		 .						

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 57.0 Ft

Depth Units: Ft

Boring No: SI-G4

Start/End Date: 10/18/2010

Honeywell

Northing: 1121141.303 Drilling Company: Atlantic Testing

Easting: 906450.117 Driller: Mark Childs

Ground Elevation: 431.613 Logging Company: PARSONS

Glouilu Elevatit	UII. 4 01.013			iy. FARO			
		Geologis	t: A. Me	nges	Rig Type: CME 850		
Depth S Ft ₩	Sample Blov	w N	PID	USCS		Sample	
	ID Cou	nt Value	ppm	Code	Soil Description	Method	Stratum
20	1-WH-V	<i>I</i> H-1 0		SOLW	Wet, very soft, light gray-white, silt-like grains, trace sand-like grains, mothball odor	2SS-140H	1
25 —					Wet, soft, light gray, silt-like grains and sand-lik grains, trace crust in nose of spoon, mothball o	re e	
-	WH-1-	1-4 2		SOLW	grains, trace crust in nose of spoon, mothball o	2SS-140F	1
30 —					West nost light group oils like groins and cond like		Solvay Waste
	5-1-2	-3 3	_	SOLW	Wet, soft, light gray, silt-like grains and sand-lik grains, some cementations throughout, mothba	all odor 2SS-140F	1
35							
	WH-WH-	WH-1 0		SOLW	Wet, very soft, light gray, silt-like grains, mothbodor	2SS-140F	1
-							
40 1				-	<u> </u>		±

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 57.0 Ft Depth Units: Ft

Boring No: SI-G4

Start/End Date: 10/18/2010

Honeywell

Northing: 1121141.303 Drilling Company: Atlantic Testing

Easting: 906450.117 Driller: Mark Childs

Ground Elevation: 431.613 Logging Company: PARSONS

			'	seologisi	t: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			WH-WH-1-10	1		SOLW	Wet, very soft, light gray, silt-like grains, trace fine gravel in nose of spoon, mothball odor		Solvay Waste
45 —							Wet, dense, light gray, fine to coarse GRAVEL,		
			21-24-22-39	46		GW	Wet, dense, light gray, fine to coarse GRAVEL, some fine to coarse sand, trace silt	2SS-140H	
50 —							Wet, dense, light gray, fine to coarse GRAVEL, some fine to coarse sand, trace silt		Gravel&Sand
-			18-26-48-40	74		GW	some line to coarse saild, trace sit	2SS-140H	
55 —									
			19-36-35-25	71		GW	Wet, hard, light gray, fine to coarse GRAVEL, som fine to coarse sand	2SS-140H	
57.0			Note: N	Iull fields ind	dicate PID	readings no	t taken		

Page 1 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 50.0 Ft Depth Units: Ft

Boring No: SI-G5

Start/End Date: 10/20/2010

Honeywell

Northing: 1119875.065 **Drilling Company: Atlantic Testing**

Easting: 907760.467 **Driller: Mark Childs**

Ground Elevation: 439.178 Logging Company: PARSONS

					Geologist	: A. Me	nges	Rig Type: CME 850		
Dept	h	Recov	Sample	Blow	N	PID	USCS	0.115	Sample	
Ft		Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
	-							Hand Clear. 0 to 3 inches -topsoil, grass, roots. 3 inches to 5 feet -wet, very soft, light gray, mothb odor	hall HandAuger	
5 -	-							Maint vary of tight group sit like groups		
				1-WH-WH-1	0	0.0	SOLW	Moist, very soft, light gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
	-									
10 -	-			1-1-WH-1	1	0.0	SOLW	Moist, very soft, light gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	
. 15 -	-									Solvay Waste
	-			1-2-WH-1	2	0.0	SOLW	Wet, very soft, light gray-tan, silt-like grains, trace sand-like grains, trace cementations through mothball odor	nout, 2SS-140H	
	-									
20 -			_ '	_ 						

Page 2 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 50.0 Ft

Depth Units: Ft

Boring No: SI-G5

Start/End Date: 10/20/2010

Honeywell

Northing: 1119875.065 Drilling Company: Atlantic Testing

Easting: 907760.467 Driller: Mark Childs

Ground Elevation: 439.178 Logging Company: PARSONS

				Geologist	: A. Me	nges	Rig Type: CME 850		
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re B	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
20 -			1-WH-3-4	3	0.0	SOLW	Wet, soft, light gray-tan, silt-like grains and sand-like grains, trace cementations throughout, mothl odor		
+									
25 -			4-5-5-4	10	0.0	SOLW	Wet, loose, light to dark gray, sand-like grains and silt-like grains, some cementations throughout, mothball odor	2SS-140H	-
+									
30 -			6-2-2-1	4	0.0	SOLW	Wet, soft, light to dark gray, silt-like grains, some sand-like grains, mothball odor	2SS-140H	Solvay Waste
-									
35 -			9-7-3-2	10	0.0	SOLW	0 to 18 inches: Wet, stiff, light to dark gray, silt-like grains and sand-like grains, trace cementations, mothl odor. 18 to 24 inches: wet, soft, light-dark gray, silt-like grains, mothball odor	2SS-140H	1
-					0.0				
40 -	. L	L l	L		L	L	L		-

Page 3 of 3

Site: Onondaga Lake (Syracuse NY)

Total Depth: 50.0 Ft Depth Units: Ft

Boring No: SI-G5

Start/End Date: 10/20/2010

Northing: 1119875.065 Drilling Company: Atlantic Testing

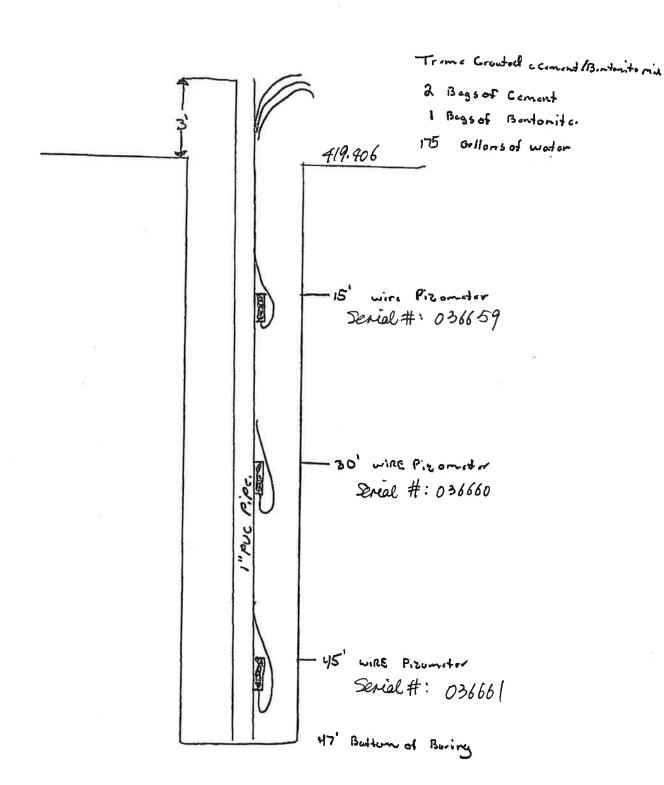
Easting: 907760.467 Driller: Mark Childs

Ground Elevation: 439.178 Logging Company: PARSONS

Geologist: A. Menges Rig Type: CME 850

	_								
Depth	Recov	Sample	Blow	N	PID	USCS		Sample	
Ft	Re	ID	Count	Value	ppm	Code	Soil Description	Method	Stratum
40			5-2-1-1	3	0.0	SOLW-ML	0 to 18 inches: Wet, soft, light to dark gray, silt-like grains, trace sand-like grains, mothball odor. 18 to 24 inches: wet, soft, brown, SILT, trace fine sand, mothball odor	2SS-140H	Solvay Waste
-									Silt
45 —			1-2-2-4	4	0.0	ML-SM	0 to 12 inches: Wet, very soft, brown, SILT, some fine sand, slight mothball odor. 12 to 22 inches: wet, very loose, fine SAND, some coarse sand, some silt, slight mothball odor	2SS-140H	
									Sand&Silt
			24-37-38-36	75	0.0	ML/GM	Wet, very stiff, SILT and Gravel, some fine to coarse sand, rock fragments in last 6 inches.	2SS-140H	Silt&Gravel
50.0					dicate PID	readings no	t taken		J.iluo

Note: Null fields indicate PID readings not taken


ATLANT C TESTING LABOR TORIES

C	Client: Parsons Job No.: CD3151 Project: Onondaga Lake Superfund Project Boring No: 4 7 and 1														
Pi	oject:	Onond	aga La	ke Sur	erfund	d Proje	ct								
Bo	oring:_	Syracus	e, Nev	v York										2-6-1	
														f <u>4</u>	
Sai	npler H	ammer										rag Unit	140::	(D61-57C	>
Atr	Sa:	fety	Date	Time	Casi	_	lole epth	Water Depth	Date	Dri	lled	HSA	Casing	Air / Wet	Rock
	ight: _				1		СРШ	Deput	-	From	То	Size	Size	Rotary	Core
	:		14												
	ing Har					-									
	ight: :														
		Driven			L										
			T	7. 11. 4				Τ.							
Sample	- S	mpled	10	Split Sp	7		Recovery	Depth of Change				and Drilli	_		B
Sarr	Fron	n To	1/6	6/12	12/18	18	Rec	Cha	(field te	sts perfor	med, loss	or gain of	water, wel es, boulder	l installation	Casing
	1	_	1	12	18	24	-							s) ————	
10	230	25.0	woll			-	24	1 1				Conc		Other (note)	_
								1 1	Simila	- Sails	wet	lu saturat	·d)		+-
1	25:0	27.0	MoH	=		-	24	1 [5.m.	a- Soi 15	(set	(ال و لاي م			+
	27.0	129 0	_	<u> </u>											
12	21.0	21.0	How	WeH	-	Men	24	} }	Simil	er soil	s (s	aturated)		
13	29.0	31.0	woH	нош	1	wolk	રુષ	- 1	· · ·		4 1.	aturated)			
5-40		-				-		İ	317	lor soil	12 (80	aterated)			-
14	31.0	33.0	MOH	MON	_1_	wo 13	24		sim.1	a- Soil	s (s	exturut ed)		
15	<u>سلا3</u>	25.	₩ H				-	-							
	مدد	اندا	₩ OO H				24	-	while Se	ducy u	ينالم (rey layer	s (Sut	ratul)	
16	35.0	370	wolf			7	24	r	Similar	Soils					
															-
17	370	39.0	Hew		-	P	22	-	simi.	lar Sa	ાંદ				
8	390	41.0						-			Ti s		- 11		
	J 1	1,10	MOW			-	24	-	\$	ular S	0.15	(Satur	at od)		
															-
\perp															-
		ated At:	<u>u</u>	70	_ Ca	ived At	<u> </u>	, wt. d	Finish Da	ate:	5-440	_ Time: _			
riller								-	Inspe	ector's S	ignature				
lelper			Co.	ry For	سنہ										

ATLAN C TESTING LABORATORIES

Cli	ent: P	arsons										Job No.:	C	D3151				
Pro	oject: <u>C</u>	nonda	ga Lal	ke Sup	erfund	Projec	et							G.A	•			
Bo	ring: <u>Sy</u>	racuse	, New	York				,				Sheet:	3. 0	4	į.			
Dri	ll Rig:		mE-85	OX										D-6V-570				
Sam	pler Han	nmer			1 -				1					2000	• //			
	Safe	•	Date	Time	Casin Depti	- 1	ole epth	Water Depth	Date		illed	HSA Size	Casing	Air/Wet	Rock			
	ght: <u>1</u> 4								 	From	То	Size	Size	Rotary	Core			
	3	- 1			-													
	ng Hamn ght:																	
						-	_											
	pun 🗆 I																	
	Sam	pled		Split Spr	on Blo	we.	2	T		-					_			
Sample Number	-		0/	16 /	1 12 /	18/	Recovery	Depth of Change	(field to			and Drilli	_		Casing			
S Z	From	То	6	12	18		1 %	집히	(Hold to	drillir	ined, ios ig diffici	ilties, cobbl	water, wer es, boulder	l installation s)	,			
									Top	soil:	Asphalt	; Conc	rete: (Other (note)	+-			
19	41.0	43.0	WOH				24					whereit and		Julier (Hote)				
20	42.0	1100								miler Soils (saturated)								
au	75.0	96.0	WOH	00 p		WOH	Sil	{	Simi	or Soi	15 (3	aturated)	V10 11 11 12 2					
								1 1		-					-			
															-			

								-										
								-							-			
										13	ag 303	Ground Honita Pou	wl .		-			
		_									3 124	100	~~		-			
		-						_										
				-	\rightarrow			-										
															-			
		_													 			
-+																		
			-+	-			-	_	·									
Boring 7	Cerminate	ed At:	u	7.0	C ₂	ved Ar			Cinich D			Time: _						
Oriller:																		
Telper:	3415								mspe	-ciui 2 3	ignature							

ATLAN -- C TESTING LABORATORIES

	Project	Onor	ndaga L	ake Sı	perfu	nd Pr	oiect					Job No.:_	C	D3151	1 00
	Boring	Syrac	use, Ne	w Yor	k							Boring No	O.: PZ-	. G2	
1	Drill Ri	g:										Sheet:	_l of	4	
S	Sampler i	Hammer										Rig Unit 1	No.:	0-GV-570	
-	Luto S	•	Date	Tim		sing epth	Hole Depth	Water Depth	Date		illed	HSA	Casing	Air/Wet	Rock
	Veight: _ all:		9-24	-	2	5.0	25.0	19.2	5-28	From	To	Size	Size	Rotary	Core
	asing Ha	_			+	-+			9-28	5.0	50	hund	Clear	d	
	eight: _		-						9-29	29.0	470				
	all:		 		+	-									
	Spun	Drive:													
	, S	ampled		Split S	ooon R	lows	7	ا بي ا		-	~				
amp	Number Second		0	6	12	18	Recovery	Depth of Change	: (Gold to	So	il Type a	and Drilling	Notes Notes		ا ها ا
S	₹ Fro	m To	6	12	\angle	1/	24 2	2 2	(tieta fea	drillin	med, loss g difficul	or gain of w	ater, well i	installation,	Casing
_				-					Tops			Concre			-
	1	+-	-	+	+-	+			band			wa 10.5.0		her (note)	-
1	50	7.0	won			1	P 24	-							_
		-					1	-	(mad)	ducy u	امهاه س	th Gray	and ton 1	eyering	
2	7.0	9.0	MOH	-	1	wor	1 14	—	- 200			140 wet)			
3	9.0	11 0		-		-		-		20113	Lmois	140 (41)			
	1.0	11.0	MOH	west	-	wo	H 24	-3	white s	uluuy .	ande,	Little Grey	Layerin	KI	-
4	110	13.0	, p	وردره	nord			_	_					-	
5	13.0	15.0	LVUH				P 20	-							
6									Similar	2015	<u> </u>	d)			
0	15.0	17.0	woH		==	-	24		imilar	كازهك	(w.H)				
7	17.0	190	How	wet	1	MOCH	23		similar	Soils	(my)				
8	19 0	51.0	1	шон -			20			i					
,	21.0	23.0	work								لسط	A. A. S.			
							51		Simila	- Soils	<u>, (</u> w	of to satu	rest rel		
oring	Termina	ted At:			C	aved A	t: _ 6,00	wid Fi	nish Data	. 4-7	BUD	Time:			
riller			mark												
elper									mapeo	or sorg	пациге:				_

ATLAN -- C TESTING LABORATORIES

1	Boring	: Syr	acus	se, Nev	v Yorl	pern k		roject					Job No.: Boring N			÷2
I	Drill R	ig: _			· I OII								Sheet: _	ع of	- 4	•
S	ampler	Hamn	er	_									Rig Unit	No.:	CD-CV-57	0
W Fa Ca	uto S eight: all: asing H	amme	-	. Date	Time		esing cpth	Hole Depth	Water Depth	Date	From	illed To	HSA Size	Casing Size	Air / Wet Rotary	Rock Core
	eight: _					+-	-									
	ll:				1											
	Spun			T												
Sample	Number Fro	Sample	To	0 6	Split Sp	12	71	Recovery 8	Depth of Change	(field tes	ts perform	med, loss	and Drilling or gain of values, cobble	Voter well	installation,	Casing
10	234	מ	5 o	wo H			\pm	-D 24			oil;	Asphalt;	Concre		her (note)	-
								- PS 24	l	5.mil	- Soils	(Se	Lucet od)			
_1,1	25.0	2 2	.0	WOH			1 4	24		s:m	lar s	0.14	(Saturale	1)		
12	27.0	29	٥	wish				24	-							
		+	\dashv				-				20.15		عصاسيسا وما			
13	290	31	.0	won			-	- > 18	-	a 2 .	0 0					
14	31.0	33.	+							20,11	Gicsy	Salvey 1	eyers ls	durated		
		33.		₩01+			F	16	-	Similar :	ان (ال احساما	V			
15	330	35	+	OOH -				3		s.milar s	oils (baturet.	J)			
10	35 .ა	37.0	1	~0#	=			¥ 24	-	lm'las	estra d	امرسا	,			
7	37 0	3h.J	1	0 A	,	10	8	20	-				- 13			_
-			1					20	<u> </u>	hite and	Gray 1		W110			
4	39.0	4, 5	\perp		1)	2	21	13	aht Grey	Sullay	1: h, m	1 20 40 50	(eved) Hundal)		
									_							
oring 1 riller:	ermina	ited A	t:	47. ork	0	Ca	ived A	it: Grou	J.D Fi	nish Date	9-2	9-10	Time:			
elper:			-	Corp	CWITC		-			Inspect	or's Sign	nature: _				

ATLAN TESTING LABORATORIES

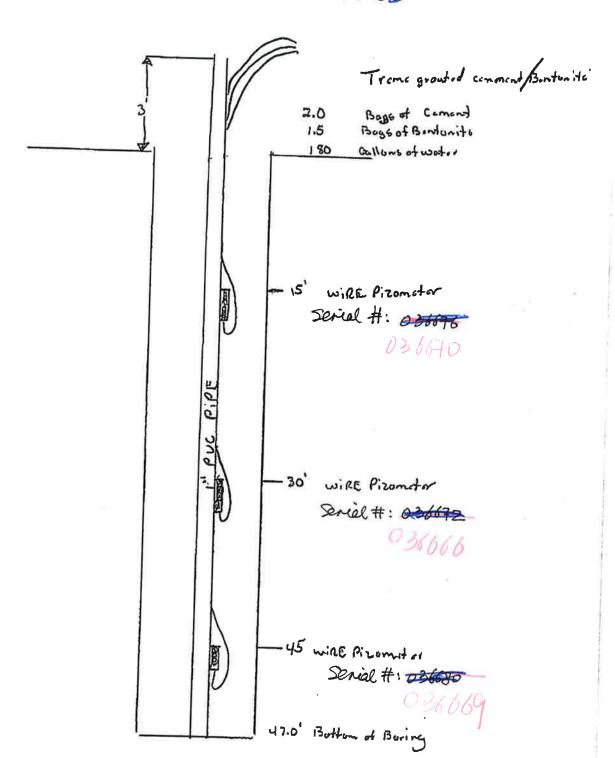
Bo	oject: <u></u> oring: <u>_S</u> ill Rig:	yracus	e, Ne	w York								Boring N Sheet: _	lo.: <u>pz</u> . 3 of	-GZ	ú
Sam	pler Har	nmer	_									Rig Unit	No.: _ c	0-61-570	•
Wei	Safe ght: 12	خط ^ا 10	Date	Time	Casi Dep	1	Hole Depth	Water Depth	Date	Dr. From	illed To	HSA Size	Casing Size	Air / Wet Rotary	Roc Core
Weig Fall:	ng Hamr cht:	_													
	oun 🗆 I		Ī-					r =							
Sample Number	From	To	0 6	Split Spe 6 12	12 18	18 24	Recovery	Depth of Change	(field tes	is perfort	ned, loss	and Drillin or gain of ties, cobble	Water well	installation,	Casing
19	41.0	43.0		ЖФЖ		1	24	-	light G	go with	dayers	Concre	ete; Other	her (note)	
کد	43.0	3.0 45.0 WON 6 1 2 24					٢٤			The sound of		Archa-utas			
								E	المراجعة المراجعة	d dewn	to 47	o'			
								-	15			*			_
	1								30 45						
								E		1½ r	dag B.	iment.			_
+								5							_
<u>. </u>							_ u	, –							
ing Te	minated	At: _	47. K e	n.185	Cave	ed At:	Coro	d.d Fi	nish Date	9-3	29-16	Time:			-

430.789 3 Bags of Comento 1/2 Bags of Bondonita. Trans Growt Piozomators implace. Serial#: 036662 0.12826 Derial #1 036663 30 45.D Derive #: 036665 47.0

ATLAN' C TESTING LABORATORIES

(Client:	Parso	ns													
F	Project:	Onon	daga La	ike Su	perfur	nd Pr	oiect					Job No.:_				
E	Boring:	Syracu	se, Nev	v Yor	k							Boring N	0.: <u>Pz-</u>	G30		
D	rill Ri	g:	cn	NE-85	οχ							Sheet:	of	<u> </u>		
Sa	mpler F	lammer		_	-			_			;	Rig Unit No.:				
	uto Sa	•	Date	Tim	C	sing pth	Hole Depth	Water Depth	Date	Dr	illed	HSA	Casing	Air / Wet	Rock	
	eight: _		Kolah	-	4	7.0	47-0	ال السامات	10.40	From	To	Size	Size	Rotary	Corc	
	II: sing Ha		-			-			10-6-10		5.0 47.0	Alund 4/kl	Cleura			
	eight:								1							
	11:		-		-	-										
	Spun [Driver	1				-									
	_ S	ampled		Split S	poon Bi	owe	7) u		*						
Sample	ě –	Ť	0	16	12	11		Depth of Change	(Gald ta			and Drillin			g.:	
S	乏 Froi	m To	6	12	1/	1 /	24	ទីជ	(tield tes	sis pertor drillin	med, loss g difficul	or gain of t ties, cobble	water, well s. houlders'	installation,	Casing	
									Tone	-					-	
***	-		-] [Aspnan;	Concre	ete; O	ther (note)	_	
—	50		-	+		+-] [
	130	70	الم مرس			+	70		NO Reco	ابدي						
	7.0	9.0	WOH		=	\pm	P 24	1 }	2014001							
							1 69	1	<u>: ئەلمىد</u>	بردياء	<u> ، مامه ، ،</u>	. ب _{ا س} یق هی د ک	- e - 1 h 24	ž.,		
3_	1:-	L! w	vior-	1	1	1	30		1.30 501		dd.		<u></u>	·		
4/	11.22	13.0	with		-	-		1	1.304.	ALCOHOL: NO				7455		
		12.0	1000		1-	H	12	-	Ten solo	4	Lida Fi	ne Gry 1	47-1-1-1			
5	13.0	150	west	1	WOH	1	10	i h	(Serie. 14	لانده	Sandy, 5	H like th	teral			
		 							2) 1 3, 14,	2016	rich 4" 2"4"	und ef				
k	15.3	17.0	Η٥υ		==		P 24		en Solve	z with	Owk C.	luge sof	Selvan			
7	ن <i>7</i> ا	19 0	50 6.30	TOP!	ı, orl	-		1	Seduciden	<u> </u>						
					0.07	00)	+ 24	-	similar s	<u>) خلنم</u>	لود ادرورنا مما)				
8	13.3	21.0	colo:	worr			24		عملور :	50.15	٠, ١,	1.1\				
9:	21.0	230	+			_										
7.	21.0	~30		NOH.			프 코닉	-	Similar	حليفك	(Sutura	(ل ا				
Boring	Termina	ited At:	_ 4	7.0	C	aved .	ـــــــــا At:ن		Finish Day							
Driller			Ch.Th			·			Finish Dat						umaser (fil)	
Helper			lory F						mspec	TOL 2 21	gnature:					
\												188				

ATLAN LC TESTING LABORATORIES


	Clien	t: _P	arsor	าร						_		·	- 6			
					ake S	uperfi	ınd Pro	niect.					Job No.:	C	D3151	_
	Borin	g: <u>S</u>	vracu:	se, Ne	w Yo	rk	aid I IC	JCC1					Boring N	lo.: _pz	-GB	
	Drill F	₹ig:		cr	1E - 85	50 X					_		Sheet: _	2 0	f <u>Y</u>	-
	Sample					-						_	Rig Unit	No.: _ c	0.CV-57	þ
1	Auto	Safe	ty	Date	Tin		asing epth	Hole	Water	Date	Di	rilled	HSA	Casing	T	
	Veight:					+-	Срш	Depth	Depth	Date	From	To	Size	Size	Air / Wet Rotary	Rock Core
	all:									1						
	Casing F															
	Veight: all:									1						
	Spun				J	_ f										
		Sam		T					_							
Sample	Number	SALLI	pied	0	7	poon E		Recovery	Depth of Change		Sc	oil Type	and Drillin	g Notes		
San	Fr	om	То	6	16/		18	/ §	Char	(field tes	sts perfor	med, loss	OF gain of	water well	installation,	Casing
				1-	+	2 1	8 2	4			drillin	ng difficul	ties, cobble	s, boulders)	Üā
10	27	٥.٥	25.0	WOH					1 1			Asphalt;		ete; O	ther (note)	
_								19 23	1 +	Sim.lar	Soils	(satural	(لاه			
11	25	O	27.0	HOGH				22	l	e' - 'I	91	(salue)	7			
-	-	+		-	-					21.74.127	20,15	15010-4	رالي			
12	27.	3	250	HOW		=	*)	23		Similar	ا دانعة	(Saturet.	A)			
12	29	J 7	110	чош	—		-	+	-							
						WOH	-	24	-	Grey on	d Tun	layers of	Solvay w	0576. (SA	westerl	
_11	31.0	13	3.0	1	_1_	woH	1	22	-	Sondy.	5. It like	5.13. (Aracent Con	\ \		
15	33.0	+	5.0			-					2011.2	raccos N	<u> ۱۹۵۰ (</u>	edured rel)		
	1 23.0	7	0.0		WOH	MOH	1	24		Similar s	زازه د	(satura	teel lave	sot Gran	Neple Pro	
16	350	3	ס.ר	Y	· ·		1		-						19.pr	م الانت
		4				_~_		24	-	Similar	Soils	(safu-a	1-1)			
17	37.0	39	0.6	1	400	WOH	won	ач		right C		S -1.	· Sur a sur a	MIR /MO 11/40		
18	390	١	+	-	-					(Sate	rated)	2 el na A	with spect	is of whi		
10	3,0	13	.0	Local	10/100			24		ight Go	y Sol	Va7 -1	alaxers of	1.4.4./1.	Selver	
									-		ret)				Salver	-
									-							
Boring	Termir	nated	At: _	٠,	7.0	_ C	aved At	: 6.0	ntail F	inish Date	: 10	-6-10	Γime:	_		
Oriller	-			mar	د ده	1,45				Inspeci	or's Sie	mature	Time:			
Helper	f:			Co	y Fo	· mer					.or 2 01F	suature:				-
					ď.					20						

ATLAN' C TESTING LABORATORIES

Project: On Boring: Sym Drill Rig: _ Sampler Hamm	cuse, Ne	w York	- 850)	¥						Boring No.: Pz-c-3 Sheet: 3 of 4 Rig Unit No.: ロームレーラン				
Weight: 140 Fall: 30 Casing Hammer Weight:		Time	Casing Depth		ole pth	Water Depth	Date	From	illed To	HSA Size	Casing Size	Air / Wet Rotary	Roc	
Fall: Driv								'						
N Namble Sample Sample	d :	Split Spoo	on Blow	s 18 24	Recovery	Depth of Change	(field tes	is perform	med. loss	nd Drillin or gain of i	g Notes water, well s, boulders)	installation,	Casing	
	O toros) WOR	woH -		24 ay		Similar	oil; Sails	Asphalt;	Concre		her (note)		
							Auguess	ldown	to 48.	oʻ				
			7											
ing Terminated At		.o'	Caved	At:	Gen	4.0 Fin	ish Date:	10-6	-10	l'ime:			_	

PZ-G\$

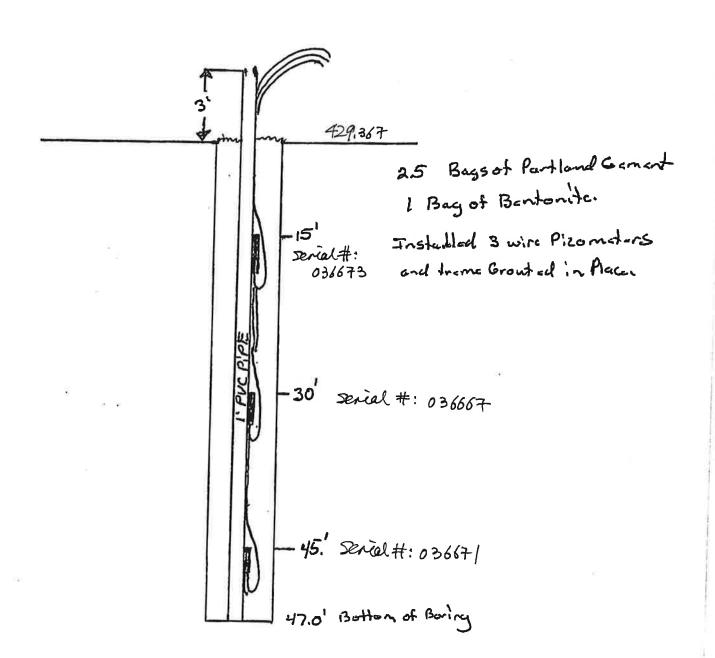
196

updated by Xiaodony

ATLAN C TESTING LABORATORIES

Cl	ient: _	Parso	ns								,	0			
			daga La	ke Su	nerfur	d De	nient					Job No.:			
Bo	ring:_	Syracu	se, Nev	v Yor	k	<u>u I I</u>	OJECL					Boring N			€8
												Sheet: _			
	npler H											Rig Unit	No.:c	DEV-57	0
Aut	Sai	fety	Date	Time	c Cas		Hole	Water	7	Dr	illed	HSA	Casing	Air (Nr.)	
Wei	ght: _	ALY .	-	+-	De	pun	Depth	Depth	Date	From	То	Size	Size	Air / Wet Rotary	Rock Corc
Fall	:	3 <i>2</i> *	10-1-10	=	2	50	25.0	30.8		ט ט	50				
	ng Han			-	-	_									
	ght:								-						
	pun L	Driver	1					7							
le le	Sa	mpled		Split Sp	poon Bl	ows	<u>5</u>	o e		So	oil Type :	and Drillin	or Notes		T
Sample Number	Fron	n To	0/	6	12/	18	Recovery	Depth of Change	(field tes	sts perfor	med, loss	or gain of	water, well	installation,	Casing
- 07 2	-	+	6	12	18	\vee	24			drillir	ng difficul	ties, cobble	s, boulders)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	-	+	+-	-	-	+-	_	1	Tops	oil;	Asphalt;	Concr	ete; O	ther (note)	
			+	┼	+	+-	_	+				0 65.0		()	
1	50	7.3		WOIS			D 4	1	1890 W						
				W613		\vdash	7 4	1 1	411.176	Solvey	weste	· (w = 4)		
_2	7.0	9.0	W619		Now	we	F1 7 "	1 1	2			_N			-
3		-	-		ļ	1_						-			-
	9.0	11.0	MOH	MON	1-	1101	1 31	-	1.4	Selven	wast.	$I_{s}B^{\dagger}_{s}$	layer in	4	
ч	11.0	13.0	1.1	WOH				{ }	C. Gr	· V 5-1	vey wa	34 C	1)	,	
				10011			4	1 1	5 lange	r 5 w. / .!					
5	13.0	150	MOH				23		white so	J.,		1)	121 3		
		-								Trans W	2772 (40	- T		. Cree	
6	13.0	120	MON			-+-	1:5	L		. 50.	5 (m.	1)			
7	17.0	14.0		r Ca H			¥ 20	-							
							7 24	-	11.7	els:	y 1-115/	11. 17/10			
8	19.0	24.6	word -				7 24		X	Sign. 1	· · · · · · · ·	ر در ی	(), ,	1. Satural	<u> </u>
													may 1		
1	210	23.0	for the	1	No. 1		7:1	-		Siew 5	ా కేల్మ	15 ((ا-يد		
oring T	ermina	ted Ar		7.2			At: <u>Gr</u>			44					
Oriller:			Jank			ivça /	ni: <u>•</u>	- WAR				Time: _			
lelper:			Cory						Inspec	tor's Si	gnature:				
icipei.			-	Cur	Wer										

ATLAN' C TESTING LABORATORIES


		Parsons						-				Job No.:	CI	D3151	
		Ononda				Proje	ct						ο.: _ ρ		•
		yracus											2 of		•
Dr	ill Rig:													CD -GV-5	טר
_	npler Ha	Y			Casii		1-1- 1		1	5.1					
	Safe	•	Date	Time	Dept		lole epth	Water Depth	Date	Dri From	То	HSA Size	Casing Size	Air / Wet Rotary	Rock
	ight:									110111	10	1	- CALL	Rotary	Core
	ing Ham				-		-								
	ght:										-				
						-	-								
	pun 🗆				1									LL	
	Sa	mpled	s	plit Sp	oon Blo	ws	Ţ,	e of			il Timo	and Dailli			1
Sample		T	0/	6/	12/	18/	Recovery	Depth of Change	(field te			and Drillin	-	l installation,	Casing
S Z	From	To	6	12	18	24	1 %	ات تم	(-1012 12	drillin	g difficul	ties, cobbl	es, boulders	; installation, 5)] 25
									Тор	soil;	Asphalt;	Conc	rete; O	ther (note)	+
10	10 23 25 2 wom 1 1 1 1 22 Similar Suils (well)														
11	25.0	77.0	-		-	<u> </u>	 .	}							
11 25.0 27.0 wor 1 1 1 1 24 Similar Soils (wol)													+		
15	27.0	290	1	_1		MOH	24		Sim	1147 50	112 /	(د ما)			+
120		1													
175	29.0	31.0	-1-	_2_	ч	1	581	-	Cour	Solvay .	~04L,	semal.	y > of 1	به الأمان	
14	<u>3</u> 1 u	35.3	3	.3	니	8				20		W			
				-					5,00	e- 50.15	<u> </u>	tenery l		~d)	-
15	330	35.0	2	5	لم	_3	19		Gery 5	وادهم س	. ye (ابدي			†
								-				724			
160	35 U	37 0	2	2	2	2	14	-	2.00.	er Soil	5_1.2	러)			
17	371.0	350.0		1		2	20		Samile	r 5=:15	1	<u>,</u>			-
146	39 V	41.0	1	-1-4	3	4	20	-	5:mile-	50.15	(my)			ě	3
+1	41.0	43.0	3	3		2	24	-	C		- 1c - 1				
									Gr.y	النبيين		ey see 1	16,2,5,1,as	+ would	-
3oring	Termina	ated At:	4.	7.0	_ C	aved A	<u></u> (6.	outil	Finish Da			Time: _			L
Orill er :		m	inh (in.lu	<u> </u>										
lelper			ory	Far	mer					300					
			/												

ATLAN' C TESTING LABORATORIES

	ient: <u>P</u>											Ioh No	C)	D2161			
Pro	oject: <u>C</u>	nonda	ga La	ke Sup	erfund	Proje	ct					Job No.:			-		
Bo	ring: <u>S</u> y	racuse	New	York								Sheet: _		2-64	•		
Dri	II Rig:													42-65 A	5.,,		
	pler Han											Idg Olit	140.:	ر حد الهجود			
	Safet	•	Date	Time	Casin Dept		lole epth	Water Depth	Date		lled	HSA Casing Air/Wet					
	ght:							Бора	-	From	То	Size	Size	Rotary	Rock Corc		
		— i				_											
	ng Hamn ght:					-											
	oun 🗆 I	- 4			L												
			T	Split Spo	on Blo		7	4									
Sample Number			0	6 /	12/	18/	Recovery	Depth of Change	(field to			and Drillin			in g		
SZ	From	То	6	12	18	/	Rec	집합	(Heid te	sıs pertori drillin	med, loss g difficul	or gain of ties, cobble	water, well s. boulders	installation,	Casing		
									Tops		·	Conci		ther (note)	-		
20	430	450	_1_	WOH	1	1	24			ar seil			cic, O	mer (note)	+-		
-		-															
								-									
								-			en i a	ullid ,.	ite Pin	on Hers	-		
											en i i a	3')'					
-+												45'					
					-	-		- -									
								-				and al	-11 0				
											2 /2 13	BATE	ile	. c	-		
											7.576.	, 12-24-1	5.4C.		-		
						-		-									
				_				-									
								<u> </u>	-								
												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
			-				_	_									
		-	\dashv					-									
Boring T	erminate	d At:			Cav	ed At			Finial Da	4							
Oriller:												Time: _					
lelper:		C	300	For m	~				mspe	COT'S SI	gnature:	S 	~~~				
- F																	

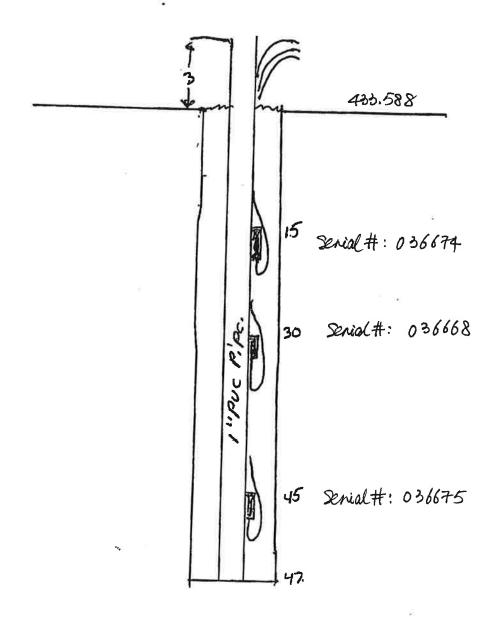
PZ-64

ATLAN C TESTING LABORATORIES

	Client:											- 05			
	Project	Onc	ndaga]	Lake S	Superfi	und Pr	oiect					Job No.:	C	D3151	
1	Boring	: Syrac	cuse, N	ew Yo	rk							Boring N	o: 65-	<u>65</u>	
i	Drill R	ig:										Sheet:	01	f _ -/ _	
	Sampler		r									Rig Unit	No.:	p-6v-570	
_	Auto S	•	Dat	c Tir		asing Cepth	Hole Depth	Water Depth	Date	Dr	illed	HSA	Casing	Air / Wet	D
	Veight:					350	39 0	.D-A	 	From	To	Size	Size	Rotary	Rock Core
	all: asing H	-	9-21	10 7:1	5	35.0	39.0	25.5	9-5-12	350	39.0 39.0	41/4			
	eight:					-			9-24	39.0	465	2 5900	sumplu,		
	all:			-	_										
	Spun		1												
1				157			-T-								
be e	[출]	Sampled		7	Spoon I	Blows	er,	l of		Sc	il Tyne	and Drillin	g Notes		1
Sam	Number Fro	m T	。 °	(6)	12	117	Recovery	Depth of Change	(field tes	ts perfor	med, loss	or gain of	Voton	installation,	Casing
-	+		-	5 1	2	8 2	24 ~	100		drillin	g difficul	ties, cobble	s, boulders)	uistananon,	\ \delta \text{ \text{\$\delta} \text
-	+-	_	-			-			Tops		Asphalt;	OTHER DESIGNATION OF THE PERSON OF THE PERSO		her (note)	—
			_	+-	+		-	{			wn to		OI	ner (note)	-
	5.0	7.		wo			_	-							
				100	-	+	7 18	} <u> -</u>	white s	olvery c	wast.	Consust la.	(المرب		
. 2	7.0	92	1	wor	,	=	P 14	-				man, su			
(100	+	#-	-						DN-16 50	duay u	س ماحمد	th layer of	Coray r	reist to we	
13	9.0	110			way	<u> </u>	4 20			ا برودا	-64-	Jia Lida	· · · ·		
4	11.0	13.0		-	-	-	-	٠	S Hein-re	,	رس	٠١)	o. C.		
		130	<u>'</u>	wuh	w co.	WOIS	23	-	Similar	Soils	(wd)			
5	13.0	15.0		wolt	1	woH	22	-	-						
						won	122	-	imlar	Sails	(wd)				
6	15.0	17.0	MOH	wo H			24	-	i milaa		(withor				
										20, 5	Cw.470 r	-0.5T			
7	570	ں. 19	12		1-	2	22	با	inite s	ul very	west.	sorie lugara	of Comme	(1	
જ	17.0	21.0	wė#	,				_					Gray	(maisi)	
			wer.		Mon	พอก	23		milar	50:15	(muis	(ادس تا			
9	21.0	23.0	LION	1	1	10011	23	-	. 17						
									21,7 1 31	50,15	(mo	(thu-			
Boring	Termina	ated At:		465	_ c	aved A	t: <u>Gro</u>	uded Fi	nish Date	: 9-2	8-10	Time:			
Drille	r:		mar								nature:				
Helper	:		_ Co	y F	urmo	_			pool	o. 3 01R	µiature;				
					100-10-10-10-10-10-10-10-10-10-10-10-10-										

Subsurface Investigation Field Log

Project: Onondaga Lake Superfund Project Boring: Syracuse, New York Drill Rig: Sampler Hammer Auto Safety Weight: 40 to Split Spoon Blows Sampled Split Spoon Blows Sampled Split Spoon Blows Sampled Split Spoon Blows Sampled Split Spoon Blows Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Spoon Split Split Spoon Split	(Client:	Parso	ns									- 8			
Boring: Syracuse, New York Drill Rig: Sampler Hammer Autio Safety Weight: Fall: Sampled Split Spoon Blows Sampled Split Spoon Blows Sampled Split Spoon Blows Sampled Split Spoon Blows Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Size Size Rotary Rock Core Rock Core Fall: So Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Size Size Rock Rock Core Fall: So Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Size Size Rock Rock Core Form To 6 12 18 24 24 25 18 24 25 18 25 15 (majerial) Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Size Size Rock Rock Core Fall: Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Size Size Size Value Va					ake S	unerfi	nd D	oiest					Job No.:	C	D3151	
Sheet: 2 of y	В	oring:	Syraci	ise, Ne	w Yor	·k	uiu Fi	oject					Boring N	lo.: <u>φz</u> .	G5	
Sampler Hammer Date Time Casing Depth	D	rill Rig	g:								-		Sheet: _	<u>2</u> of	_4	
Date Time Casing Hole Depth Depth Depth Depth Date Depth Depth Depth Depth Depth Depth Depth Date From To Size Size Rotary Core C													Rig Unit	No.:	Cp-GV-570	
South Size Size Size Rotary Core					: Tim						Dri	illed				
Fall:					-	1-	chai	Deptu	Depth	Date	From	To	-			
Weight: Fall:				-						$\exists \vdash$						
Fall: Spun Driven		_				-										
Spun Driven Sampled Split Spoon Blows Soil Type and Drilling Notes Gield tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Similar Soils Soil Type and Drilling Notes Gield tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Similar Soils Soilar Soils Similar Soils S										$\exists \vdash \vdash \vdash$						
Sampled Split Spoon Blows Soli Type and Drilling Notes Solid Ty					<u></u>											
Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Similar Soil Topsoil; Asphalt; Concrete; Other (note) Similar Soil Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders) Topsoil; Asphalt; Concrete; Other (note) Similar Soil Similar Soil Groy Solvey wad. with Impact of white (moist with) Groy Solvey wad. with Impact of white, fire logar of Sand (moist with) Conv. Solvey wad. with manufactured white, fire logar of Sand (moist with) Conv. Solvey wad. with manufactured white, fire logar of Sand (moist with)				1	Culti o			-	7	Γ						
10 27 0 25 0	를		anpieu	-	7	7		Very	h of		So	il Type	and Drillin	g Notes		T.,
10 270 250 10 1 1 2 1 19 20 20 20 20 20 20 20 2	Sal	From	n To	17	1/	1/	1 /	9	Cha	(field tes	ts perform	ned, loss	or gain of	water well	installation.	asing
11 250 27D wolf word 1 1 2D 12 270 290 1 1 2 1 19 13 290 310 1 1 1 2 20 14 31.0 33.0 2 3 3 3 3 24 15 33.0 35.0 1 wolf 1 2 23 16 350 37.0 5 4 5 2 20 17 29 39.0 3 5 7 4 22 18 \$7.0 39.0 3 5 7 4 22 19 \$\frac{\text{similar Soils}}{\text{corr}} \text{soils} \text{corr} c		1	1	1	1	2 1	8	24 -			מנונות)	g difficul	ties, cobble	s, boulders))	Üα
11 250 27D WOR WON 1 1 20 12 270 290 1 1 2 1 19 Similar Soils Living 13 290 310 1 1 1 2 20 Similar Soils (misting) 14 31.0 336 2 3 3 3 3 24 Similar Soils (misting)	10	270	25.0	T	H 1		+	-	-	Tops	oil;	Asphalt;	Concre	ete; Ot	her (note)	
12 29 0 31 0 1 1 2 1 19 Similar soils (maist - wait) 17 29 0 31 0 1 1 1 2 20 Similar soils (maist - wait) 18 31.0 33 2 2 3 3 3 3 24 Gray solvay wast, with layers of white (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait) General solvay wast, layered white, fire layers of said (maist - wait)		-				-	-	12	1 1	Sim.la	Soils					
12 29 0 31 0 1 1 1 2 20 Similar soils (might with) 13 29 0 31 0 1 1 1 2 20 Similar soils (might with) 14 31.0 33 2 2 3 3 3 24 Similar soils (might with) 15 33.0 35.0 1 woll 1 2 23 Gray Salvay wash, with layers of white (maist with) 16 350 37.0 5 4 5 2 20 Carry Salvay wash, layered white, Fire layers of Sand (maist with) 18 \$7.0 39.0 3 5 7 4 22 Gray Salvay with my mand a sand in moderial	7,	250	27.0	Wak	wo H	ı	1	1 20	1 1	5.00	e 52.15	1	• • •			
	124	=70	79.5	+		-	-				5011.9		٠			
31.0 33.0 2 3 3 3 3 24 Similar Sails (maisting) 5 33.0 35.0 1 woll 1 2 23 Gray solvay words with layers of white (moist-wail) 6 350 37.0 5 4 5 2 20 Corry solvay words, layered white, fine layers of Said (moist-wail) 8 57.0 39.0 3 5 7 4 22 Corry solvay with myand or said in moderial	,,,,		1210	4-	1	2	1	19		5	ur soils	(ma)	d · wat)			
31.0 33.0 2 3 3 3 3 24 Similar Soils (moist and) Gray Solvay words with layors of white (moist and) Gray Solvay words, with layors of white (moist and) Gray Solvay words, layors of white, fine layors of Sand (moist and) Gray Solvay words, layors of white, fine layors of Sand (moist and) Gray Solvay words, layors of white, fine layors of Sand (moist and) Gray Solvay words, layors of white, fine layors of Sand (moist and)	13	290	310	ı	1	1	12		H							
Gray Solvay word with layers of white (moist - wait) Gray Solvay word with layers of white (moist - wait) Gray Solvay word with layers of white (moist - wait) Gray Solvay word white fire layers of Sand (moist - wait) Gray Solvay word white fire layers of Sand (moist - wait) Gray Solvay word white fire layers of Sand (moist - wait)). 						1.0	F	Seender	20,12 6)			
Gray Salvay wash, with logared white (maisting) Gray Salvay wash, with logared white (maisting) Gray Salvay wash, layered white, Fire layered Sand (maisting) Gray Salvay wash, layered white, Fire layered Sand (maisting) Gray Salvay with my and we sand in moderial	14	31.0	33 (2	3	3	3	24		3, ~ 10.	Sail.	· (m	ان رو سه: .			
Gray Solvay words with layers of white (moist-wai) Gray Solvay words, layered white, Fire layers of Sand (moist-wai) Gray Solvay words, layered white, Fire layers of Sand (moist-wai) Gray Solvay words, layered white, Fire layers of Sand (moist-wai)	15	33.0	25.0	 		-	-						2			
(15 0 39.0 3 5 7 4 22 Cory solvey waster, largered white, Fire layers of Sand Cory solvey with months modered	10	47.0	33.0	-	woll		2	23	-	Groy 30	زوس بومرا	do with	1-7008 01	white	(maisting	(t.
(moist-will) Solvey with myand or south motorial	16	350	37.0	5	4	5	2	2011	H							
Corry solvery with month moderial	_			N .				7,0		Cmoint-a	24) ~ 140	1 largares	d white,	Fine layer	rof Sand	
(hau-higan)	18	\$7.0	39.0	3	S	7	4	22								
									-	Congist-u	(k)					-
								+	-							
	-1								-							
oring Terminated At: 465 Caved At: Growfold Finish Date: 9-28-10 Time:	oring 7	l'ermina	ted At:	_40	.5	_ c	aved A	11: <u>6-0</u>	whole	Finish Date	: 9-	28-10	Time:	-		
Inspector's Signature:	Jilliei.	_	1114	ak E	V' 192					Inspec	tor's Sig	nature:				
elper: Cary Furmer	lelper:	-	<u> </u>	<u>ι, λ</u>	Furm	64										•

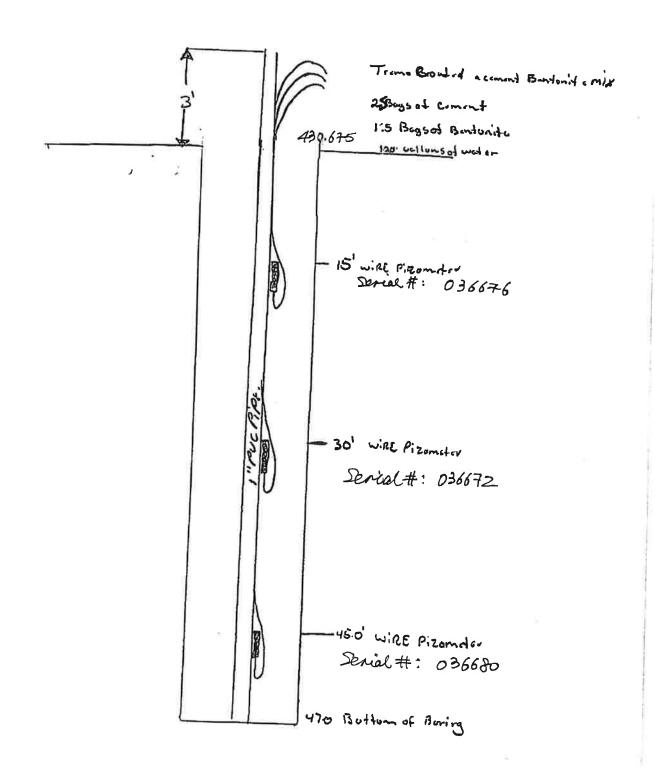

Revolution

Subsurface Investigation Field Log

	lient:											Job No.:	C	D3151	
R	roject: _ orina: S	Unond	aga La	ke Sur	erfun	d Pro	ject							-G5	
Dr	oring: S	yracus	e, Nev	y York								Sheet: _	3 of	<u>- 4</u>	
Sar	ill Rig: mpler Ha	mmer				-		-				Rig Unit	No.: _ ω	64-507	
	Safe		Date	Time	Cas		Hole	Water		Dri	illed	HSA		T	
	ight:	- "			Dep	oth	Depth	Depth		From	То	Size	Casing Size	Air / Wet Rotary	Rock Core
	:							29'6"	-						
	ing Ham				-	-									
	ght:														
	pun 🗆	- 1													
	_	npled	1	Tulli o		-	7.	1.							
Sample		T	0	Split Spo	7	-	Recovery	Depth of Change		So	il Type a	and Drillin	g Notes		an an
San	From	To	6	12	12/18	18	Rec	Cha	(field tes	ts perform	med, loss	or gain of	water well	installation,	Casing
			Ť	12	10	24	+	\vdash			THE RESERVE TO THE PERSON NAMED IN	ties, cobble			0,
19	39.0	41.0	પ	19	6	6	17	1	Tops	oil;	Asphalt;	Concr	ete; Ot	her (note)	
					i ii			1 1	(may)	H, 1:111-1	MF Sund	trace tran	1:41 Se	luey weeds	
20	41.0	430	ط	12	<u>\$</u>	3	13"				ine legare	s of solm	t made ((14)	-
	430	45.0	3	2		,	No. 12 or								
						<u>'</u>	24		Grey So	vay was	de, Say	arated) w	ith loyurs	0,4	
									1.00.40.3.	·· 1-29	mod. tra	er 3,15			
			-												
								+			u5'				
-		_						H	- hules	ap 1, e	الدة				
+				_							3.470				
\neg			\dashv	\dashv				-	In stull.	1 Paza	motor ut	45			
								-				30' 15'			
-											-	15			
	-+	-	-							·	50cl 31	Bags Ct	Portle	0	
+			_	-				-			1.5B	ags of Ben	tonite.		
ing T	erminate	d At: _	46.5	5	Ca	ved At	600	whell	Finish Date	5: L-	27010	Time:			
ller:		men	ic ch	ilds				· ·	Inspec	tor's Sin	matura	1 ime:			
				Farm						-o. 2 21B	mature:				

Rev Con

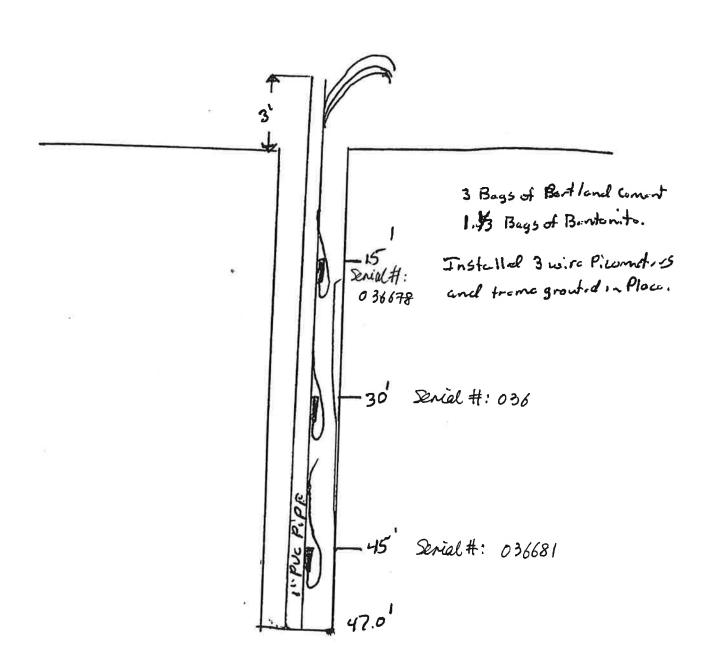
(Client:	Parso	ns												
	Project:			ake Sı	perfu	d Pro	niect			-			C		
1	Boring:	Syracu	se, Ne	w Yor	k	IG I IC	Ject					Boring N	lo.: <u>Pz</u>	-66	
I	Drill Ri _l	g:	cin	15 -450	V				·			Sheet: _	_1 01	4	
	ampler F								2.500			Rig Unit	<u>س_</u> :.No	6V-57D	
	Si UIO Si		Date	Tim		sing	Hole	Water][Dr	illed	HSA	Casing	Tai and T	
W	/eight: _	14013	10-5-1	<u>_</u>	_	pth	Depth	Depth	Date	From	То	Size	Size	Air / Wet Rotary	Rock Core
	all:					7.0	47.0	37'2	10.5.10	0.0	5.0	Hund	clear.d		
	asing Ha			-	-	-			10-5-10	10.0	47.0	47/4			
	eight: _ ll:												810		
	Spun [<u>L</u>											
														<u> </u>	
릠	Number Pro	ampled		Split S	poon Bl	ows	le Ty	ge ge		So	il Type	and Drillin	ng Notes		T^{-}
Sam	Fro	m To		16/	12/	18	Recovery	Depth of Change	(field tes	ts perfor	med, loss	or gain of	water, well	installation,	Casing
-	+-	+-	6	12	18	1/2	4 ~	100		drillin	g difficul	ties, cobble	es, boulders)	\ \mathcal{G} \overline{\alpha}
<u> </u>		+-		-	+	-			Tops	oil;	Asphalt;	Concr	ete; O	ther (note)	—
			-	+	-	+-		-	Hand	C) 80	red do	wa to	5.01	()	
1	50	7.0	wort	1	wolf	1_	-	-							
<u></u>							116	-	whis:	Salving	wasta	(wed)			
	7.0	9.5	wost	1	1	woll	- 24		sim.	10-5-17	115	Maduril, 3	fickly like	(101)	
	+-	-		-	<u> </u>							CW21)			
-	90	11.3	-	WOH	W0 7	1	22		uhita Sa	luay w	ازر ماید	h layors	of Gre	يع المالية	
4	11.0	13.0	1	wo#				-							
							P 24	-	simila	ar Soil	5 (w.	1)			
5	13.0	15.0	_1_	WOH		WOH	24		Similar	. S. 15	1	المارية والمارية	7		
6	115.0	G.בו	-										·as		
	13.0	11.5	-1-	HOW	HOW	٠	24	_	Similar	50.15	(Sat	wated			
7	ט.דו	19.0	1	-1	1		24	-							-
					,	-/-		-	imilar S	e'.15	154+	u-ad-d)			
8	190	21,0	4	W014			24		imilar	Soils	(sal	mated)			-
9	21,0	279. 3										100			
	2,10	25.0	WOH	2	6	10	23	-	Similar	Soils	(mais)	to Satu	rational)		
Boring	Termina	ted At:		17.0	Ca	ved A	t					Time:			
Driller	:		w.	vk c	_ 00 h.lee										
Helper								111	Inspec	tor's Si	gnature:				_
•				-/											



	Client:	Parso	ns								•	9			
				Lake Su	merfi	nd De	oiant					Job No.:	C	D3151	
3	Boring:	Sугас	use, Ne	ew Yor	k	nu I i	oject					Boring N	lo.: <u>pz</u>	-66	
I	Drill Ri	g:	cw	~E-85U)	· · · · ·				-			Sheet: _	2 0	f y	
	ampler F											Rig Unit	No.:	0-67-570	
	ruto s		Dat	e Tim		sing	Hole	Water] [Para	Dri	illed	HSA			
	eight:		-	-		epth	Depth	Depth	Date	From	To	Size	Casing Size	Air / Wet Rotary	Rock Core
	all:								1						
	asing Ha		-	-			-								
	eight: _ ill:								-						
	Spun [
			<u>"</u>				-								
릙	From S	ampled	1	Split S	poon B	lows	Recovery	Depth of Change		So	il Type	and Drillir	ng Notes		
Sarr	From	m ∫ To		6/	12/	18	Z o	Char	(field tes	ts perfor	med, loss	Or gain of	water well	installation,	Casing
	7	+	+	6 12		2	4			drillin ———	g difficul	lties, cobble	s, boulders)	Öä
10	23.0	25.	10	6	+	+		1 1			Asphalt;	Concr	ete; O	ther (note)	_
			1	1	+	+	18	l	Simile.	50,15	(wet)				
1	25.0	27.0	1			40	11 24	l	- · · ·	- W.	,				
-	-						-		Similar	Soils	(wat a	lo Saturat	(1)		
-/2	27.0	25.0	12	5	8	3	16		Similar :	soils of	race of	Corw.	()		-
13	27.0	31,0	12	2	5	+	-	-					N =====		
				-	3	4	22	-	Sim lar	5.a.15	(we	4)			
14	31.0	33.0	2	.1	шон	1	24	-							
	-	-	-						WAIT?	OI VAY	(Key)				
15	33.0	35.6	-	2		2	24		Similar	Soils	(wat))			
16	35 0	370	2	1	2	3	-	1							
					-	<u> </u>	20		similars	10:15	hange	to a Corry	Color	+	
_17	37.0	350	Q	2	2	2	21	-	36.0' 5./. Similar :	voy wast	Sancer	Elf like	materia	1. ,-013	7
.,,	56	0							B177(1704	30,13 (6	S.D				
18	39.0	41.0	1	2	2	3	24	L	similar	5-0,15	(w.+)				
			777					_							
								-							
Boring	Termina	ted At:	4	7.0	Ca	ved A	t: <u> </u>	utad F	inish Data	100	C .c	Time:			
Driller			Mack	childs				<u> </u>	Inches	or's Si-	3-70	lime:			
Helper				Furm					msheet	.01 2 21B	mature:				-
			7												

	lient: _l											Job No.:	C	D3151	
Pi	oject: (<u>Unond</u>	aga La	ke Sup	erfund	Proje	ct							66	-
В	oring: <u>S</u>	yracus	e, Nev	/ York								Sheet:	3 of	4	
	ill Rig:		cme -	150 X							==== <i>119</i>	Rig Unit	No.:	0-60-572	
	npler Hai				Casin								.,,,,	0 -50-8 //	?
~	Safe	•	Date	Time	Depti		lole epth	Water Depth	Date		lled	HSA Size	Casing	Air / Wet	Rock
	ight: :									From	То	Size	Size	Rotary	Соге
	ing Hami				+										
	ght:														
						-	\dashv								
□ s	pun 🗆 1	Driven													
١.,	San	apled	5	inlit Sno	on Blov	ve	7	4							-
Sample		j –	0	16 /	12	18/	Recovery	Depth of Change	/C=1.1 ·	So	il Type	and Drillir	ng Notes		gr :
Sa	From	То	6	12	18		Rec	집집	(Heid te	sts perfor drillin	med, los: g difficu	s or gain of Ities, cobble	water, well	installation,	Casing
								-	Ton				-		+
15	41.0	43	<u> </u>	WOH	wox	wotl	24		sim.	lar 5.	Aspnait;	Concratured and)	ete; O	ther (note)	-
20											12 (2	210-02-04)	10-10-		+
-	43.0	45	1	-	WOH	1	24	L	sim:	10- Soil	S (s.	tel			1
				-				-							
								-							
								-				-			
			_								***				-
						-			4						+
				\dashv				<u> </u>							
						-		-			-				
									-				-		
-+		\rightarrow	-+	=											
			-	-+				-		-					
			$\neg \vdash$		-	+	-	-	-11-1-1						
3oring T	erminate	d At:	۲).	7.0	Cave	ed At:	Gra	udal F	inish Dai	e:	-5-10	Time:			
oriller:	84	Y	Marie	ch, ld	83				Inspec	tor's Sig	gnature:				
lelper:			Cory	Fur	ner										

PZ -G6


	Client:											Joh No	C	D2161	
•	Project Borina	Ono	ndaga l	Lake S	uperfu	ınd Pro	pject					Boring N	No.: PZ	<u>U3151</u>	•
1	Boring:	Syrac	use, No	ew Yo	rk	-						Sheet:	of	· U	
	Orill Ri					_						Rig Unit	No.: _ LD	4-V-67+	
_	ampler I		Dat	- T:	C	asing	Hole	Water	ī —			1		34.376	
	Veight: _	•				epth	Depth	Depth	Date	From	illed To	HSA Size	Casing Size	Air / Wet	Rock
	all:		9-29-	υ <u>-</u>	-/'	7.0	47.0	Day	5-23-10	0.0	5.0	hand		Rotary	Corc
	asing Ha								-	5.0	47.0'	414	Augared		
	eight: _		-	+									-		
	dl:				_										
	Spun [J Drive	n												-
۵	s s	ampled	1	Split S	Spoon E	lows	2	T							_
l d	Number S		0	6	12	18	Recovery	Depth of Change	(field to	So	oil Type	and Drillin	ng Notes		1 20 1
S	Ž Fro	m Te	<u> </u>	5 1	2/1	/	4 2	2 2	(Heid les	drillin	med, loss g difficul	or gain of ties, cobble	water, well es, boulders)	installation,	Casing
_						_		-		oil;	Asphalt;	Concr	rete; Ot	her (note)	
-	+-	+	+-	-	-				Kona	O sar va	trom	0010	5.0		
	5.0	7.0	امدا	 1	we	+	P 3	F	Sal va	1 40510		(افنون			
2	7.0	9.0	1	wor	-	1	16	<u> </u>	Solvay	Medi					
3	90	11.0	LOL	mon	3	1	24	Ŀ	1.51			ه (رمع			
y	ال.ن	13.0	о шон	wolr	+-	1	دا ا	-							
5	-	-	-				,		5.m.	14- 500	ils (n	مسالة لخنمه)		
	13.6	15.0		AUW	முற	1	12	-	Simile	, soils	_ (me	:81 40 W E)		
Ь	J5.U	17.0	אנטצט	1	woH	1_	16		simil	er 50:1	5 Cma	ist to wat)	<u> </u>		
7	17.0	19.6	1	ı		1	22		Similar	ان.د	(mei	Fow of to	\		
8	19.0	21.0	mak				24	_			westo (
_											WE 570 (wey	-		
9	21.0	23.0	1	1		worl		- 1			(w.				
3oring	Termina	ited At:	4	7.8	_ C	aved A	Gro	uta F	inish Date	_ 9	28-10	Time:			
			417	Child					Inspect	or's Sig	nature	Tune			
leiper	·		ory	Farm	~										

	De .	JI: One	ondaga	Lake S	Super	fund P	roject					-	Job No.;		D3151	_
	DOLL	Syra	cuse, N	New Yo	rk								Boring N	No.: PZ	-67	
	Drill F -	lig: _	cn	^E - 450						7/11		-	Sheet: _	2 0	f 4	-
		Hamme	er _						0.7				Rig Unit	No.: _cu-	6r-570	_
_	Uto	•	Da	ite Ti		Casing Depth	Hole Depth	Water		Date	Dri	illed				
		14016					Бери	Depth	4	Date	From	To	HSA Size	Casing Size	Air / Wet Rotary	Roc
		30" ammer	-	-					4						restary	Cor
		ammer							٦Ŀ							
			-	+					╁							
		☐ Drive	<u>"</u>						11							
1			T	1,50												
岩	<u>ــاق</u>	Sampled		Split S	poon	Blows	<u> </u>	o b			G-1	:1 m				7
Sample	剔 Fin	om T	0	6	12	11	Recovery	Depth of Change	(fi	eld too	501 t	II I ype a	nd Drillin	g Notes		90
_	4-			6	2 /	18	24 2	٥٥	(11	014 163	drilling	ned, loss difficult	or gain of v	water, well i s, boulders)	installation,	Casing
10	-		_	-					-	Topso			-			Γ_{\circ}
10	23.	25.	이그	1	wo	# 1	7	l t	S		50:15	Asphalt;	Concre	te; Otl	ner (note)	
l)	25	0 27.	_	+	-	+				741101	2010			-		
		27.	اهد ٥	-	1	+1	24			simil	4r 50il	5	(4, 2)			
12	27.0	29.0	2 2	4	5	1	+-	-	_				•		~	
_	-				13	1	20	1		imila	- Sails	5 (we1)			
13	290	31.0	2	1	6	3	24	H	-							-
14	31.0	+	-	-				-		imila	- 50,15		<u> </u>	one Gray	solvey 4	ooster
	31.0	33.0	3	5	3	11	24									
5	330	350	WOH			1	-	_	_				Joste (
			WO II			71	24	<u> </u>	4.مار	c and	Gray	Solvey	wade ((16,00		
Lo	35 o	37.0	HOW	worl	1	WO H	1011	-	-							
-				-1152/07/07/07		30011	21	-	sin	silar	50.15	(w.4)				_
2	37.0	39.0	MOH	MOM	3	1	24	-	ζ.	.,		7 3				
-	_						Circ		21.	M. lar	Soils	(wet))			
_																
		-	-													
												911132				_
ring T	ermina	ted At:				wed A										-
iller:				دار		TOU A	: 1	Fi	nish	Date:		Т	ime:			
lper:				men				-	Ins	pecto	r's Signa	ature:				

В	roject: _ oring:_9	Onond	aga La	ke Su								Boring N	C lo.: _ρ _{_Z}	- G7	-
Di	rill Rig	7	COE	· OEO		-						Sheet: _	3 0	1 4	
	mpler Ha			*50					-			Rig Unit	No.: _ c	D-GV-570	
	Safe		Date	Time	Casi	-	Hole	Water		Dri	iled	HSA			
	ight:			-	Dep	ru i	Depth	Depth	Date	From	To	Size	Casing Size	Air / Wet Rotary	Rock Corc
	l:								-						
	ing Ham				+	-									
	ight:														
	pun 🗆														
			T				-	т т							
Sample	San	npled		Split Sp	oon Blo		Recovery	Depth of Change		So	il Type a	and Drillir	Ig Notes		1.
San	From	То	0	12	12/	18	1 8	Cha	(field tes	ts perform	ned, loss	or gain of	Water well	installation,	Casing
			T .	12	18	/ 24	-			on tituti	g difficult	ties, cobble	s, boulders)	0 4
18	39.0	41.0		4	10	13	24	l -			Asphalt;		ete; O	her (note)	
						1-3	- 24	-	Simile	Seils	Some Lucit)	soud lik	e matiera	l	
19	41.0	43.0	13	26	23	19	23		5	Sale	لسمل	47			-
70	430	45.0	and the second							2011	ع لعديات	3.)		-	-
	100	75.0	WOH	HOW	_5	3	21	-	Simila	c Soil	5 (w.	1)			-
								-		- AF - OF	- 11	7			
			_						De Deill	الما و لما	s-lo ₹7.0)			
						-		-			A CONTRACTOR OF THE PARTY OF TH				
					-			-							
-+															
			-+												
			\dashv			-	-	_							
								-							
-								-							
-		-	_												
oring T	erminata	d A4:	1_												
oriller:	erminate								inish Date	:		Time:			
lelper:									Inspect	or's Sig	nature:		- , i		

ATLANIAC TESTING LABOR TORIES

											Ioh No :	CI	2151	
roject:	Onone	daga La	ke Sur	erfund	l Proje	ect				_				•
oring:_	Syracu	se, Nev	v York								Sheet:	۰۰. <u>- ۲ د</u> ۰	- (2)	•
		- Cm	E-850	X							Rig Unit 1	No.: «	4	•
_		Date	Time				Water	Thata	Dr					
	•	Louble #1	-			-		Date	From	To	Size	Size	Rotary	Rock Core
1:	30	10-4-10	1.00	47.0			37.0	10-4-10	0.0	5.0		avid		
_				-	-			1 140	CHO	47.0	474			
]						
		ـــا,	V	<u></u>	\bot									
						Τ.	1		-					
	implea		7	/	,,	Very	th of		So	oil Type	and Drillin	ng Notes		<u>∞</u>
From	n To	1/	/			Reco	Cha	(field te	sts perfor	med, los	s or gain of	water, well	installation	Casing
	1	- J	12	18	24	+-				-	-			
							1 1						ther (note)	-
		-					l t	Henn	Clear	4 dow	ndo 5.0			+-
56.	J~U	1-1	woh	woh.	J	w		white s	alvey u	vaste				
7.0	42	1.	work	-										
							ŀ	white S	ol voy u	Josta				ļ
90	110	WOH				18		5,	lar Soils	(4))			ļ
110	130						- 1							
	73.0	- MON				24	-	5.15	<u>!</u>	()	<u>d</u>			
130	15.0	-0H			→	ટપ		Similar	soils ((ا-سا				-
15 U	17.0	wate-				22	E	Simile	or soils	(سنا)				
17.0	19.0	ного		>	1	24	-	Simile	. 50,15	— 1'	deres et	<u> </u>	Ummari - sa sa	
													IVAY VOS	-
19.0	21.0	wo R	HOW	=	4	24		white s	olvay w	ayle (الحدومة الدب			
21.0	23.0	400			-,	24	-	المارية	. s.'\c					
								J, 14,	-0.15				- :	
Termin	ated At		47.0	_ Ca	ved At		out.d	Finish Da	ate:	0-4-10	_ Time: _	_	2	_
	(n y)					-,,-						of P	3	
•		Cory	Farm or											¥.
	roject: oring: rill Rig impler H to Sa eight: l: Spun E South Fron 13.0 17.0 19.0 Termin	roject: Onone oring: Syracu rill Rig: mpler Hammer lib Safety eight: 140 ll: 30 sing Hammer light: li: Brun	oring: Syracuse, New rill Rig:	roject: Onondaga Lake Sur oring: Syracuse, New York rill Rig:	roject: Onondaga Lake Superfunctoring: Syracuse, New York rill Rig:	roject: Onondaga Lake Superfund Projecting: Syracuse, New York rill Rig: CME-450 X Impler Hammer Ito Safety eight: 140 It: 30 sing Hammer itis Sampled Split Spoon Blows Spun Driven Spun Driven Spun Driven 56. 7~ 1 work work 17.0 40 1 work 130 15.0 work 150 190 work 17.0 190 work 180 190 work 190 200 work 200 Caved Atternated Atterna	roject: Onondaga Lake Superfund Project oring: Syracuse, New York rill Rig:	roject: Onondaga Lake Superfund Project oring: Syracuse, New York rill Rig:	roject: Onondaga Lake Superfund Project oring: Syracuse, New York rill Rig:	roject: Onondaga Lake Superfund Project oring: Syracuse, New York rill Rig: Gract 1850 X Impler Hammer ID Safety sight: 140 II: 30 sing Hammer sight: — Sampled Split Spoon Blows Sampled Split Spoon Blows From To 6 12 18 24 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	roject: Onondaga Lake Superfund Project oring: Syracuse, New York rill Rig: Casing Depth Dept	roject: Onondaga Lake Superfund Project Boring N Sheet: Show Mew York rill Rig: Crost - Show Mew York Rig Unit: Rig Unit: Rig Unit: Sheet: Rig U	roject: Onondaga Lake Superfund Project Sonog: Syracuse, New York rill Rig: Syracuse, New York Rig Unit No.:	roject: Onondaga Lake Superfund Project oring: Syracuse, New York rill Rig: Spracuse, New York molec Hammer fine) Safety li: 30 sing Hammer li: 30 sing Hammer li: 30 Sampled Split Spoon Blows From To 0 6 12 18 24 From To 0 6 12 18

al

ATLAN C TESTING LABORAT TES, Limited

Proje	nt: ,, ect: ,				~				7			Bori	ng No ·	p2	-G8	
														of		
•	ler Hami	- 1	Date	Time	Casing Depth	Ho Dep		Water Depth	Date	Dri	Y		SA .	Casing	, Air/Wet	1
_	ht: <u> </u>		11-2-16		32	32	\rightarrow		-	From	То	3 1/4"			Rotary	4
		_	113-10		-51	51		Birty	11-3-10		320		1		-	1
	g Hamm		-			-				-24-	J.H.					t
	ht:		-			+	-									I
	un 🗆 D								1		 					7
برد ب			7=	742				7	J ———							_
힂충	Sam	pled		Split Spo	on Blov	vs	Ģ	Jo B		8	Soil Ty	pe and	Drilling	Notes		
Sample	From	То	0	6/12	12	18 24	Recovery	Depth of Change	(field t	ests perf drill	ormed, ling diff	loss or p iculties	gain of w , cobbles	ater, well boulders	installation,	,
_	 	_		-					То	osoil;	Asph	ıalt;	Concre	te; O	ther (note)	_
1	0.0	2.0	4	4	ч	4	7.	- 8				2270		e ville	- 1	
								1		mE .				1,416	organtic	1
2	2.0	40	3	1	4	5	10'							:14 50	mr clas	-
		-		-] .					517			•
3.	40	60	5	7	15	14	7.	-		lar Soi				4		
		<u> </u>		-	<u> </u>											
4	6.0	8.0	9	12	1	14	1/2	-	Coble	stude:	ndh.	Sho.				
5	8.0	ю.O	,0	14		12.	14	1	R.J.B.	wn T	il lik	عانوي	Cley	Same	MF Grave	-
-		-	1_	-				_	7:41	مادانك	mel s	and	(moist)			
6	10.0	12-0	lia	<u> </u>	21	10	18	-	لنصنك	ar Soil	ع (س	L'Esia	FIL			_
7	120	щ.о	12	14	16	14	12	1	Simil	ازه ک سم	S (honge	1 at	135	ton Brown	-
		_	-	-				4	Silty	Sand	chair	4)				
4	14.0	المال	124	26	27	23	24	-	Simil	× 5011	s (m	oist)				_
9	NoO	140	9	12	15	18	22		Brow	ما <i>دار-</i> 00	محرد :	s; ld anc	l mf som	d, son	e mF gra	_
10	14.0	20.0	23	+-	16	7	2	-		clay			<u> 17</u>			-
K		20,0	, 23	¥7.	10			1	3:00	اند عدا	(MB	(41)				_
11	20.00	22.0	6	9	12	н	5	"	Simil	or Suil	s Lm	ا اتعنت	وامه ندهما	le		
			-				-	-	ļ			(T				-
Boring	g Termin	ated A	\t:	51.0	(Caved A	\t: _	Grands	Finish	Date:	11-3	10	Time:			-
_	r's Sign			-	ork (•			

al

ATLAN C TESTING LABORAT RIES, Limited

Subsurface Investigation Field Log

	, jeet	· ; -			 -								No.: _			
Bo	ring Lo	cation:												.:		
												She	et:	of		
Wei	pler Har ight:		Date	Time	Casi Dep		Hole Depth	Water Depth	Date	Drii From	lled To	H 3 ¼"	SA.	Casing	Air / Wet	Ruci
	:			\$100	32	2	37.0	Dry		71011	10	3 74	4 1/4"		Rotary	Core
	ing Ham					+										-
	ght:												-	P. C.		
				-	-											
	pun 🗆		7				==									
ple Ple	Sai	mpled		Split Sp	oon BI	awo	'ery	Jo L		S	oil Tv	ne and	Drillin	g Notes		Γ
Sample	From	To	0	6/12	12	18	9	Depth of Change	(field to	sts perfo	rmed,	oss or g	ain of v	yater, well boulders)	installation,	Casing
18.	22.0	24.0	4	4	-	-			Тор	soil;	Asph		Concre		her (note)	-
				-	7	1-3	20			Fine	tun	F Sar	4. 6			
13	24.0	260	7	7	7	9	24	1	little s	7-1-1	T. (140)	,				
	-	-	-					1 1	5. 1/1	levs s	6715	(mo	1841			
14	26.0	26.0	4	4	-5	6	17		Sim	lar Sa	ا کا	اله يه	ro Sati	wated		-
15	280	3.0.0	58	30	21	160	10"							ulder.		
ماد	30.0	32.0				-	-	1						ulder.		-
-10	30.0	32.0	19) &	17	14	-19	-	Brown	1 Coray	mes.	-d , s	ins silt	1:411 6	Fgravel	
1.7	32.0	241-0	2	la	6	7	150			r 5.15	(mai	st)			-	
14	34.0	36.0	9	7	7	6	18	-								
						- 15.7	1.7	i i	Simil	sr Soils	(1+154)				
۱۶	36.0	38.0	-10	b	7	8	22		Simila	ar Soil	5 (0	rolet)				
20.0	38.0	40.0	10	ר	ス	6	19		Simil	an Sal	ls (r	noist				_
2,1	40.0	42.0	7	ક	7	5	15		Simil	ar Sai	15 (دوادو	J. al	-		
22.	42.0	44.0	ų	6	6	10	14			lar šo				6.		1
2,73	44.0	46.0	13	23	29	_86,		-							- '	
						-akt		-	21,50,1	or Soil	5	(Safa	extend			
	Termina				_	laved A	At:		Finish Da	ate:		Ť	ime:	•.	20 N.	
Priller'	's Signa	ture:		mark					Inspecto							
lelper:				Cony	Far					. u Digi	ment C,			J.,		-

D-11 Rev. 2701 PC-May Documenth's ormed Field Lev

ATLAN C TESTING LABORAL RIES, Limited Subsurface Investigation Field Log

Clie	nt:								5			_				
Proje	ect:	,			in the same	The latest designation of the latest designa					<u> </u>		Yo.: _	C		
Bori	ng Loc	ation:										Char	······································	(A P	GZ	
						,						Succ	·	01-		
	ler Ham		Date	Time	Casing Depth	Ho De		Water	Date	Dril	led		SA	Casing	Air / Wet	Rock
	ht:		-		Dojan	100	pin -	Depth		From	То	3 1/4"	4 1/4"	Casing	Rotary	Core
	g Hamm						-					-				
	ht:	1.												=====		-
						-	-									
	un 🗆 D											-				
	Sam			Split Spe	oon Blow	's	2	40			44 mm					
Sample Number	From	То	0	6	12/	18	Recovery	Depth of Change	(field to	ests perfe	mcd,	loss or p	ain of v	g Notes vater, well	installation,	Casing
V1 /4			6	12	18	24	~	Δ0		drilli	ing diff	iculties,	cobble	s, boulders)	0
24	46.0			-					Top	soil;	Asph	alt;	Concre	te; O	ther (note)	
0.1	70.0	48.0	_5_	10	13	16	154	1 1	Gray	Benier	5:11	seel 1	nF Gland	Same	Eng?	
25	48.0	50.0	13	21,	25	20	₹	1 1	Cernary	1(Sedur	ad-D	1			
							-	1 1	E) a (Argon	due Son	15	S and the	(العمال			-
								1 [-
			-													
			-	-	\vdash	-										
					-		-	}								
								1								-
																-
-				-												
\neg				-	-											
		-				-		-								
								1								
																-
																1
-								-								
								 -								_
																+
						. All										+
Boring '	Termina	ted At:			Ca	ved A	l:	The same of the sa	Finish I	Date:			Time:			-
		ture:		more	Chile	5			Inspec	lor's Sig	gnature	:				
Ielper:				Con	g For	عيداو										_
																$\mathbf{D}_{\mathbf{r}}$

mork childs Cory Former PZ-68 414.050 3 Bags of Ciment 1/2 Bass of Bentonnite Growt/Bersen. 4c 56.0 Serial #: 036664

aL

ATLAN' C TESTING LABORAT 2-IES, Limited

	Client:	ا، ــــــــــــــــــــــــــــــــــــ	Pa	sen!	Sı	ıhsu	rfac	e Inve	estigation Field Log
	Project	1	,	1			7.7.7.140	ret wastern	Job No.: co-3151
	Boring	Locatio	n:						Job No.: <u>cp-3151</u> Boring No.: <u>ρz-G</u> 9
								-	Sheet: of _3
	Sampler 1		Date	Tim		sing	Hole	Water	Drilled Vo
	Weight: Fall:	_	1141	اد			Depth	Depth	Date Drilled HSA Casing Air / West Rotary
	Casing H		11:57				36.0 36.0	Dry	11-10 0.0 360 May
	Waight:			1-	-				11-5-10 36.0 51.0
1	Fall:								
[Spun	Driver	<u> </u>	<u> </u>					
	v 6 3	Sampled		Split S	poon B	lowe	7 2	7 64	
	Number Number	om To	0	6	12	18	Recovery	Depth of Change	Soil-Type and Drilling Notes (field tests performed, loss or gain of water, well installation, drilling difficulties, cobbles, boulders)
	1 0.0	2.0	2	3	3	+-	+-		Topsoil; - phalt; Concrete; Other (note)
_				1 3	13	_5	15	1 1	Red Brown Sill and Clay Some me
_2	2.0	4.0	ų	4	5	10	6	1 1	mus (music)
3	ч.	4.0	-	-	-				Similar Soils
		7.0	1	Ç ₀	7	10	16	- I	Similar Soils (majed)
	6,0	\$ 8.0	lo	13	2	٤.,	14		Similar Sails Coming
5	8.0	10.0	6	15	4	6	-	} }	
-		4				3	18	1 -	similar soils (moist)
_ <u>t</u> o	10.0	12.0	1.Ca	9	7	f.	20		Similar Salts Como St
7	12.0	14.0	7	7	- Q-	11	-		· · · · · · · · · · · · · · · · · · ·
				· ·		42	20	-	Similar Sails (moist
_ %	14.0	Hero	10	ti	1200	12	1 _G -		Similar and the office of the original and the original a
9	IL D	+				•		*	Similar Sails Consist!
	156.0	13.0	15%	13	15	12	3		Smile Soils Congott Colors
10	14.0	25.0	1.2	3.5	U.S		4	-	
	×								Similar Soill
-11	20.0	12.0	22	2.5	. 19	10	97		Sie Joe soll out to
12	- 38			=y	37	ober 1			here soil control of sail
)	7			-1	. T	7.	,-	_	Martin Samuel Samuel Consenting
Borin	g Termin	ated At:	5	7.0		aved A			
Drille	er's Sign	ature;			-lk Ch	aved At	<u></u>		Finish Date: 11-5-10 Time:
Helpo		47	200		cy E			[nspector's Signature:

aL

ATLAN C TESTING LABORAT RIES, Limited

Subsurface Investigation Field Log Client: Job No.: _ 05-3151 Project: Boring No.: _ f2- c9 Boring Location: Sheet: 2 of 3 Sampler Hammer Casing Hole Water Date Time Drilled HSA Date Depth Air / Wet Weight: ____ Depth Rock Depth Casing From To 3 1/4" 4 1/4" Rotary Core 31 76 Fall: ____ Casing Hammer Weight: ____ Fall: _____ ☐ Spun ☐ Driven Sampled Split Spoon Blows Recovery Depth of Change Sample Number Soil Type and Drilling Notes (field tests performed, loss or gain of water, well installation, From To 18 drilling difficulties, cobbles, boulders) Topsoil: Asphalt; Concrete; Other (note) 260 24.7 Soil! 15 25 500 117 17 34 18 190 2001 Cran Fr 200 19 Oren Mit soul some silt, little pope 39,0 20 40.0 10 16 12 similar soils (moist 40.0 420 14 14 NA RECOVERY 420 44.0 Prown 514 1:146 Clay, 1446 MF years 4 Not to sexurated) 440 similar Soils seturited 46.0 12 24 46.0 48.0 Similar Sailly 48.0 50.0 Similar Sails Sollerd of Boring Terminated At: 50.0 Caved At: Grand Finish Date: 11-5-10 Time: Driller's Signature: _____ Morle Ch. lds Inspector's Signature: __

Farmer

Rev 201

Helper:

C	lient:	Parso	ns									J			
		Onor		ake S	unerfi	and Da						Job No.:	C	D3151	_
В	oring:	Syracı	ise. No	w Yo	rk	uid Pr	oject					Boring N	lo.: _ <u>5</u>	I-GI	_
D	rill Ri	g:		Cm	F -45	~~						Sheet: _	1 0:	f4	
		Hammer			2 00	<u> </u>						Rig Unit	No.:	CD-GV-570	5
AU	to s	afety	Date	Tin		asing	Hole	Water	11 .	Dr	illed	HSA	Contin	T T	
We	ight: _	140 14	5 10-7-1		_	epth	Depth	Depth	Date	From	То	Size	Casing Size	Air / Wet Rotary	Rock Core
Fal	l:	30"	10-11-10			5.0	<u>550</u>	Dry	10-7-10	6.0	50	Hund	3- jal		
Cas	ing Ha	mmer	16-11-10			1.0	67.0	45.8	w-7·10	5.0	55.0	41/4	- Price		
			1045-1	9	- 67	0.0	67.0	56.0	10-11-10	55.0	67-0	41/4			
Fall	:			1-	+-	-			NS-12-10			Install	od Inc	unomita	
	Spun [] Drive	n					L						Shorting	Casing
Sample	Fro	ampled m To	0	6	Spoon E	18	Recovery 7	Depth of Change	(field tes	ts perfor	med, loss	and Drilling or gain of ties, cobble	water well	installation,	Casing
-	-		-	-					Tops		Asphalt;			ther (note)	-
	+-	+-	-	+	+	-		1 1	0.0.5	o Alu.	d Class		0.0, 0	uler (note)	-
1	5.0	73	+	-	-	+-	_ -	4 1							-
	7.0	1.5	+-	WOK	'=	=	24	-	والمالية	Solvay	weste,	50.44	silf like	mtand	1
2	7.0	90			+	+-		-{			of to Sal.	لاسلما		1 -1 -4.1	1
			LANGE	MOM	1	we	14 24	 	Simile.	50115	المسا				
3	9.0	11.0		4	wen	1	24	1	Simile.	Suils	درب)			
ч	11.0	130		wo H	1	wo	H 24	-							
		-	-						Lecy or	white	double of	& Sulvay	waste		
5	13.0	15.0	3	3		1	4				enel				
6	15 v	ر.7	1_	# دس		wo I	1 24	-							
7	177-15	190	-	at sarown					similer s	eark ()	الجمد				
				mon		5001	21	-	Su., '	5.15 ((ادرین				
8	140	21.0		11	1	1	24		Similar	S =: 1 <	(-4)				
9	21.0	230		шож	Frow	,	24								
				2101	CIOIN		+		Similar So	sils (w.4)				_
oring T Priller: lelper:)	ated At: Mark Co	child	15		aved A	At: Gre	nut.d F	Finish Date	or's Sig	/2-/6 mature:	Time:			

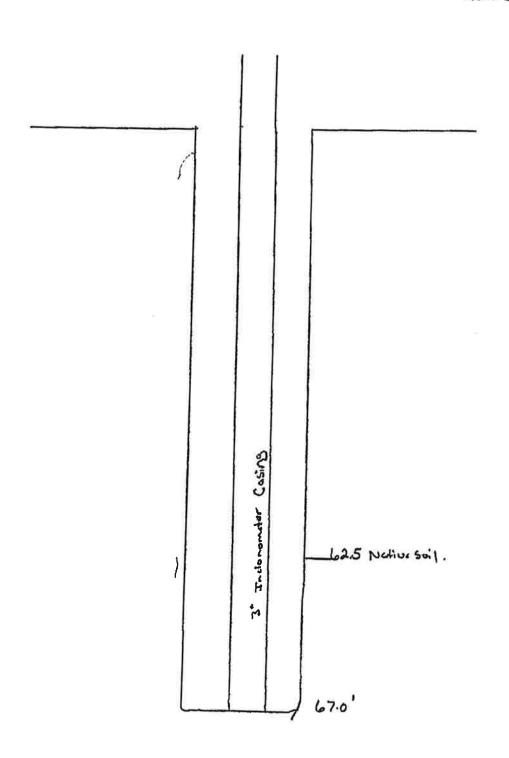
ATLANTAC TESTING LABOR TORIES

	nt: Pa		1 al-	- C	<u> </u>	D .							CI		
	ing: <u>Sy</u>			e Supe	rrund	Projec	<u> </u>						0.: <u>LD-</u>		
	Rig:												<u>೭</u> of No.: _ ಚ	<u>4</u> >4v 4570	
	ler Han Safet	- 1	Date	Time	Casin Depti		ole pth	Water	Date		lled	HSA	Casing	Air / Wet	Rock
Weig	ht: <u>14</u>	0			Depti	II De	pili	Depth		From	То	Size	Size	Rotary	Core
Fall:	30	<u></u>													-
	g Hamm					+	-		1						
	ht:										-				
	un 🗆 I								لللا						
<u>п</u> эр			1												Ţ
Sample Number	San	pled	0 /	Split Spo	on Blo	ws	Recovery	Depth of Change	ده دادا د			and Drilli	•		Casing Blows
S P	From	То	6	12	18	24	SS	ర్జార	(Heid te				les, boulder	l installation, s)	l a g
									Top	soil;	Asphal	; Con	crete;C	Other (note)	
10	230	25 0	1	wc F	عزدن	1	24		Similar	soils	(w.t)				
11	25.0	27.0					-			10.					-
-11	~2.0	-110	wox				14		Gray .	who while	Hen 1	cyuis (s.	Harated)		
12	270	29.0	MOH	1	,	1	20		Simi	lar Soil	ه (س	d)o satu.	nt up)		
13	25.0	31.0	₩ H	2	4	2	24		Simi	lar Soils	(w	.t)			
14	31.0	33.0	5	14	10	10	20		Simila	Soils	(wat)	Some	crust law or:	ndia solvery	
15	33 <i>c</i>	350	a	-	-,	2	21			Soils					
						_	- 21		Similar	Soils	(weg)				+
jio	35.0	37.0	_1_	Huw	1	1	24		Sim	,ler 50.12	(w.1)	Ú.			
n	370	39.0		wo4	1	Hay	24			Jac So	ils Lu	v 역)			+
18	310	41.0	دين	How	1	W017	건		Sin	niliar So.	15 (m ¹)			
19	41.0	430	mo H		1	MoH	24		s,m,l	ar Soils	(بپوز	1 to satura	tod)		
Oriller	-			570 hilds	_ c	Caved A	t: _&	mutel							
Helper		C	ry	Form	r	·									

	·	a	1	+	AT			CI	EST	'IN G	LAB	ORZ	($\setminus E$	S. L	im ited	. 7 - 8 8 .	
•		~					S	nbsi	urfac	a Inve	~4.5		1 7	Paris I				
	(Client	ببلے	4	The same of the sa				ui iați	e TifA6	stigat	ion F	'ield	Log				
	i	rojec	t: ر		•					The state of the s	-			Job	No.:	(D-G)	51	ň
	E	Boring	g Lo	cation	ı:			17								_5_		
	2	amples	. บ		_	T-				9				She	et:	3 of	4	
		ampler 'eight:			Date	Tim	ie Ci	sing pth	Hole	Water		Dri	lled	_	ISA			
		ill:		_			+-	-bui	Depth	Depth	Date	From	То	3 1/4"		Casing	Air/Wet Rotary	Rock
		sing F			-	-											Totaly	Core
.))	·W	eight:					+	-						-				-
		ll:									-							
	L	Spun		Driven	<u> </u>	<u></u>		\perp										_
	ي ا	5	San	npled		Split S	poon B	lowe	7		-							
	Samp	Number Fr	rom	То	0	6	12	118	/ 8	Depth of Change	(field te	sts perfo	rmed 1	099 OF B	Drilling		netallas:	Casing
	_					3	-	4	24	+		drilli	ng diffi	culties,	cobbles	ater, well i boulders)	nstatiation,	ď
	20	43	.0	45.0	400	1+		A .	24	1 1		soil;	Aspha		Concre	te; Oth	er (note)	_
	21	+-		-	-	_			24	1 }	S.mil	er Soils	(śa	du, 24 .c	d l		1.000	<u> </u>
		45	0	470	╀┸	اوری	4	1	20] [Simila	کا نوع مد	. 11 9 1000 5 10			- t		
	22	47	.p	49.0	wor	+	+-	+-] [20115	(36	uncol -()				
				7	1	4	+-	- No	H 24	1 1	S.milar	50,15	Contu	rat od)		-	
	23	49	0	51.0	Hern			1	PZI	1 -								==
1	24	+-	-	×	Sw	itched	to NW	Reds	1	1	Similar	Lois	Csate	+ + + + + +)			
l	- 64	51.	-	<u>53.0</u>	wol	+-	MOH	1	7.4		Sim'l.	كأنودس						
	25	53.	0	550	12	15	-	-				20.15	150	tured or	V			_
4					-13	12	13	8	24	L	Simila	r Soil	5 (80	afwat	al)			
ŀ	26	550	1	57.0 .	2	1	b)Ort	.3	24	-								_
ŀ	27	57.0	+	70.0					-63	F	Gray with	- whit	· lay.	chat s	سيرمله	unt e		_
r		-	۴	59.0		1	MOH	1	24		Simile	- Soi						
	24	59.0	, ,	٥, ك	WUH		-	-				201	18. LIA	14)				-
H			1					-	24		solvey .	vesto	(mo	U)				_
H	29	610	4	3.0	1	ч	10	14	24	<u> </u>								
1	50	43.0	+	_						13	olvay u	10 WL (<u> (test)</u>	Cha	rgal st	61'5"	lou	-,
r	30	93.0	16	5.0	11	13	14	8	11	G	rewn m	Je sund	dels r	rg ray	el (moi	1		_
	SL	45.0	1	70	3	4.	9	-	+		ome Si H	(Sade	arest co	y)	grave			- 7
L	\Box				_	_7_		8,	15		imilar	Soils		- b				-
B	oring	Termi	nate	d At:	J.	۵.6	C	aved A	ـــــــــــــــــــــــــــــــــــــ	-	2.0.1	·a Cos	ing de	eunto	4.5	1		
D	riller	's Sign	natu	re:		Mark	= Ch'1:15	··· vui E	\210	1 <u>01.60</u>	inish Date	e: <u>16-</u>	2-10	Tir	ne:			
H	elper			į			Form			I	aspector'	s Signa	ture: _					-

5I-G1 1 Bag of Bendenite 1 Bag of Cement 150 Gallons ofweder 3" Incinanda Casing Native soils

-67.0 Bottom of Boring hole



C	lient:	Parso	ns									T-1 31			
P	roject:	Onon	daga L	ake Sı	perfi	and Pro	piect				()			D3151	-
B	oring:	Syracu	ise, Ne	w Yor	k									r-Gz	
						×						Sheet:	01	3	
	mpler H				-							Kig Unit	No.: &	0-6V-570	£
	uto Sa	-	Date	Tim		Casing Depth	Hole Depth	Water Depth	Date	Dr	illed	HSA	Casing	Air/Wet	Rock
	eight: _		10-14-10	5130	_	ن.ري	67·0	GI'5"		From	То	Size	Size	Rotary	Core
	II:							J.,3	10-14-10	0.0	67.0	Hund 61	sured		
	sing Ha			-							05	174			
	eight: I:										-				
	Spun [
ſ			1		-		т.								
늴	<u>اة</u>	ampled		Split S	poon l	Blows	Ģ.	Depth of Change		So	oil Type	and Drillin	g Notes		T
Sample	From	m To	, 0	6	12	18	Recovery	Char	(field te	sts perfor	rmed, los	s or gain of	water, well	installation,	Casing
-	-	- -	- 6			18 2	24	100		drillir	ng difficu	lties, cobble	s, boulders)	ا ن ا
	-	+		-	-			4 1	Tops	soil;	Asphalt;	Concr	ete; O	ther (note)	1
1	5.0	7.0	اوسا		\perp		-\$ 12	4 1			to 5.0'				
			1 330.	1	+=		12	1 1	white s	bolvay so	rasta	silt like	met-rial	(moist)	
2	10.0	120	WD H	1	ļ.		D 19	1 1							
	-	-						1 - 1	3 mile	resoils (In Gray 1	yers of s	doining.	
3.	15.0	17.0	WOIT	=	+	+-	P 24] [3 milar						+
4	20.0	22.0	+		-			{							+-
	~	22.0	WOH		1	=	1.4	-	while so	lvay was	Ho ley.	roof Gray	Haining		
5	25.0	27.0	WO'H		_		P 24	-	(m4)						
,								-	Similar	50.15	(wed)				
6	30.0	35.2	won		1	WOH	24		Simila	, Soils	Lwd)			
7	350														
	50.0	37 0	-	MOH	2		24		Gray s	alvay w	osti, le	yers of w	bide/ton		
8	345	दाड	4	a	,	1	24	-	(ws	1)	(Sit gak	comat als)		
							29	-	Simila	er So	15 (we	1) hold	layers of	Solvey was	\$c
9	45.0	47	ധരവ				24		Similar	Sile	(a)				
									M.M.M.	20113	(WA)				
	Tar-!														
					-	Caved A	l: <u></u>	-4-d	Finish Dat	e:	-15-10	Time:			
Oriller Jelesen			4 Ch		-	-/-			Inspec	tor's Si	gnature:				
reiper	-		ory Fo	mer											-

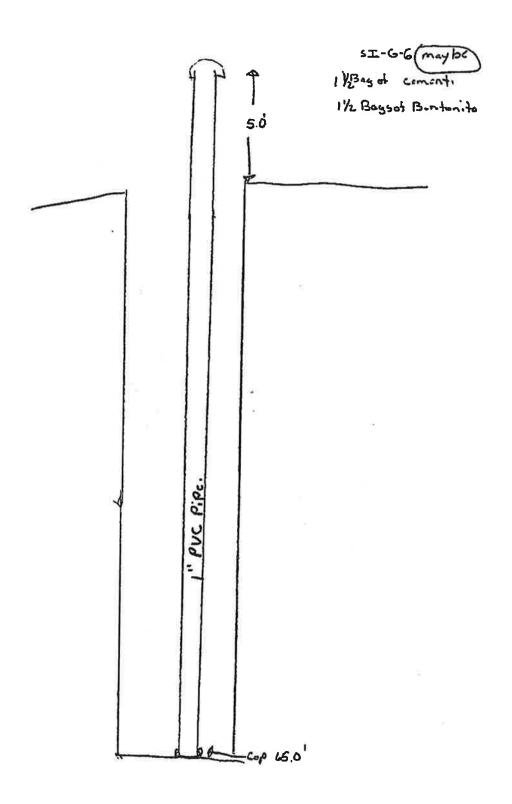
ATLAN C TESTING LABORAT RIES, Limited Subsurface Investigation Field Log

Clie	nt: 🛺	P	arson	5				- W	•	′ '		Joh 1	No.	AN - 1	, V	
Proj	ect:	·	Onc	ndag	a Lak		40.0	[uncl	Project					CI>- 315		
Bori	ng Loc	ation:		Sara	cuse N	¥.								: <u>5</u> of		
Samr	oler Ham	mer [Casing	11.	ole	112.4	1							٠,
	ht: <u>140</u>	- 1	Date	Time	Depth			Water Depth	Date	Dril		_	SA	Casing	Air/Wet	Rock
	<u>77</u> 3b	- 1				1			 	From	To	3 %"	4 1/4"		Rotary	Core
	g Hamm											-				
	ht:			-		-	_									-
							-		-							
	un 🗆 D												-			•
		pled		Split Spo	on Blos	ute .		4.	,							
Sample Number	Para	-	0/	6/	12/	18/	Recovery	Depth of Change	(field te			_		g Notes	installation,	Casing
ÖΖ	From	То	6	12	18	24	2	Ď.O		drill	ing diff	iculties,	cobble	s, boulders	neraliation,	ਹੈਂ
10	50.0	(2.2	-						Тор	soil;	Asph	alt;	Concre	te; O	ther (note)	
10	30.0	22.0	2	1	2	1	24	-							un / which a	
11	وعز	57.0	WAR	, son			-	-		(w						
		J.,,	COST	1301		_3_	24	1	Sin	ilar s	oils	Luit		1		
12	100.0	42.0	MoH		5	3	24	1 1								-
		H(2,	1 1	Sin	lar !	30.15			-		_
13	130	€\$.c	10	30	48	65	20	1 1	R-adish	· becar	-; (10	. Č1.	× \3	s rof gra		+
	-		-						Sens.	nt s	/	(5, 3	(2021)			1
14	C\$:0	17.20	38	39	4/4	53	13		simila	انهدي	ا ا	1)		N.		
				 		-		1 1								
					-			1 1				ncono	mdor	Casing.		
							-	1 1	<u>^</u>	d Gro	did					-
								1 1								+
								1 1					-	· .		+
											-					+
																+
			-					1 1								_
				-												\ <u></u>
			-	-				- 1						1		
								1			(6)				50	
		,	-	-				1 1								
				 				1 1							5	1
Boring	Termina	ated At	:	.7.0 ¹		ayed A	t: (book od	Finish 1	Onto:	14-1-	10	Ti			
Driller	's Signa	ature:		ma	rk ch	1643	··`		Inspect							43
Неірег					cory Fo				upool	الما م	Priarrit	· .				
				-	1											D-I
				- 5												Rev. 2/0

SI G-2 Short 3 of 3

ATLANT C TESTING LABORAT RIES, Limited Subsurface Investigation Field Log

Clie	ent: 🚣	ρ	arson	3			.ucc	TitAC	ougau	ion F	iela ,	0				
Pro	ject:	00	Land	364	Lake	5			Proje					CD - 315		
Bor	ing Lo	cation:	S	Vrac	446	N	SEE.	HOW.	Projec	<u> </u>				SI		
		1		1	CME -	850×	("	ork_				She	et:	of	2	
	pler Han		Date	Time	Casin	g H	ole	Water		Dri	lled	н	SA			
	ght: <u>14</u>				Deptl		pth	Depth	Date	From	To	3 1/4"		Casing	Air / Wet Rotary	Rock Core
	30		10-12-10	3:49	450		0.0	white	10.12.10	0.0	5.0		با نامر	·cf	10,	Core
	ng Hamr				75.		60	413"	10-15-10	00	45.0					
	ght:												-			
	pun 🗆 1					-	-									-
ت			$\overline{}$				닏					<u> </u>				
일본	San	npled		glit Sp	oon Blo	W8	Ş	, 4 g		•	oil Tw	30 ond	ביוויב	g Notes		T
Sample	From	То	0	6/12	12/18	18/24	Recovery	Depth of Change	(field te	sts perfe	ormed, l	oss or	gain of v		installation,	Casing
								1	Ton			No.				_
	Sam	1-d 1	with a	WRO	الا					soil;				ete; O	ther (note)	<u> </u>
		-			-] [CITACIO	aou	2070	5.0			-
	5.0	7.0	wor	HOW	1	WOH	24		white .	with G	-y la	ers of	Salvay	wast.	-	
2	10.0	12.0	work			>	 .	-	(mois	<i>t</i>)						1
je.			- Con			7-7	18,	1	Simila.	- Soils	(mois	1)				
3	15.0	77.0	wor	woh		P	24	1	Simila	ازمك	5 (maist				-
4	20-0	220	How		7	_1_	24		white	Solvay	wost	. 1.4/	e Gray	layersing	0	F
5	25.0	272	work			-	24		Simila	moist)					71	=
6	30-0	32,0	wor.			>	ટ્ય	}		ar 50						
7	35-∪	37-0	2	_3	1	2	22	}								
8	-10.0								(moist)	COST	1.14	16 JOYEN	s of white	waste.	-
	40.0	428		₩0 H	7	.19	10		5. m;	lor s	ه ان	ch	inge 1	u- B5	mP sand	
9	42.0	436	35	56	100		18.]					lu	15		-
_					1-44		18	1	(wd)	mfs	and, s	eme '	silł, .	lrace gra	ا م	=
10	44.0	460	43	Ы	100/4	-	18	-	Simila	r So:1	s (.	v4)				
									54 JA	clone	mier	en.7	44.5			-
	Termina					aved A										<u></u>
	's Signa	ture:							Inspecto							
lelper:	:		-	Cor	y Far	mer			-							
																D-11


AJS/C:/My Document/Form

ATLAN C TESTING LABORAT RES, Limited Subsurface Investigation Field Log

Che	ent: مم	L	Par	5005						(e) neo		Log				
Pro	ject: _	,	•			-		t secul		_				CD-31		
Bor	ing Lo	cation									-	Bori	ing No	.: <u>SI</u>	G4	
												She	et:	1 of	2	
	pler Har ght:		Date	Time	Casin Dept	_	lole epth	Water Depth	Date	Dril			SA	Casing	Air/Wet	Rock
			10-14-10	3.45	57.	0 4	7.0		10.115.11	From	То	3 ¼"	4 1/4"		Rotary	Core
Casi	ng Ham	mer	1019-10	\$100	57.	y y		455	10-18-10		57.0	Ja 68	1/4 nome	-		-
	ght:															
													-			
	oun 🗆	Driven														
ple Ser	Sar	mpled	_	Split Sp	oon Blo	ws	ķ	Jo I		s	oil Tvr	e and	Drillin	g Notes		
Sample Number	From	То	0 6	6/12	12/18	18/24	Recovery	Depth of Change	(field te	sts perfe	rmed, 1	oss or g	ain of v		installation,	Casing
_	<u> </u>	-	_						Top	soil;	Aspha	it.	Concre	ata: O	han ()	-
		+	-	ļ	-					Clem					ther (note)	-
r	S.u	7.0	1	-	-	 _ _		4 1								
	3.0	+"	-	-	+-	5	J.D	1 1	Tund	عاشموس ه	Sol	ر بودر	2480	moist		-
ż	10.0	12.0	WOA	1	1			1 1	l ruce o	carties						
			-		wor		24	1 }	Tan Jo	سيناد	Solve	1 Word	لملك	He Gray	layons	
3	15.0	17.0	2	1	2	2	12	1 - 1						(mount to	w.4)	
							12	i t	_5. m. l	er Soils	<u>(m</u>	o : e4 40	للاس			_
4_	200	220	1	HOW	wort	1	24		Similar	50:10	. (.1/				-
<u></u>		 	ļ						-Harrison	2011.						-
5	250	27.0	MOH	_)		4	20		Tan S	al voy	waste	Lud	7			<u> </u>
6	30.0	32.0	5	-	2	3		-								
		20.0			_	-3	14	-	Simila	- Soils	1 ayer	s of h	end Cr	ust. Los	sis f	
7	350	37.0	How		7	1	24	-	C' 'l	c . '14						
									(moist)	loyeres	at ta	n once	Grey sol	vyy weight	-
ક	400	420	bow		=1_	10	24				voste.	leave of	nF ami	ا ع ا ام		-
9	ц Б.0	.50	200		-				(mei	# Jowel)					_
	40.0	47.0	21	<u>a4</u>	22	39	16		Brownish	· Cory	E11 (Poss	ان عاط	1 Road		
10	50.0	520	_18	26	48									itk. G	uist)	
		330	-10	76	40	40	19	1	Brownish				ald B	- en)		
11	55.0	570	19	36	35	25.	18	-		<u> </u>			200 (0.22			
								t	F.II .	Similar	كارمك	(Po	184 101-	old Bur.	~	_
Boring '	Termina	ated At:	57	.0	_ c	aved A	l:	untel	Finish D	ate:	ים-וז-ור) 7	'ime'	1'00		
Oriller'	's Signa	ature;		Med	colle	45			Inspecto					1.00		
lelper:					لحط				P-000	u a Digi	natule;					_
-						100	*******					· ·	63			D-11
										57		10816	84	AJS/C:\Aly Doc	Re umeats\Forms\S1 Fie	

ATLANT C TESTING LABORAT RIES, Limited

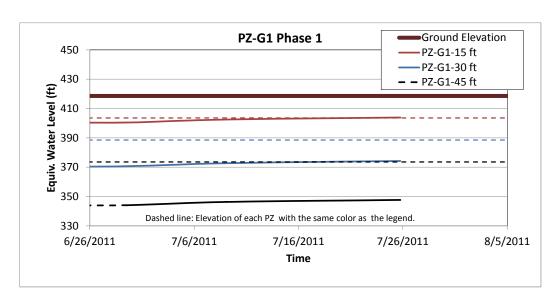
Clie	nt: 🚣	Par	sons		.311175				tigati	22		_				
Proje	ect:		•				- Toronto		,	_		100	No.: _	cp- 315	51	
	ng Loc										_	She	ng No. et:	: _ <u>s=-</u> 1 of _	66 (may	b.,)
-	ler Hami nt: <u>140</u>		Date	Time	Casing Depth	Ho Dep		Water Depth	Date	Dril From	led To	H 3 %"	SA 4 1/4"	Casing	Air / Wet Rotary	Rock Core
	30 g Hamm	<u> </u>	10-21-10		450	65		587 4450	10-21-0	0.0	65.0°					
Fall:	nt:	-														
□ Sp	un 🗆 D	riven L				<u> </u>										
Sample Number	Sam	pled	S	plit Spo	on Blov	vs 18 /	Recovery	Depth of Change	<i>(5</i> .11.					g Notes		Casing Blows
S Z	From	То	6	12	18	24	Rec	ទីជួ	(Heid fe	ests perio drilli	ing diffi	oss or p cultics	gain of v , cobble:	water, well s, boulders	installation,)	2 8 E
				<u> </u>			=			soil;					ther (note)	
				i i				1 1	* Awyer	down	40.40.	0 lh.	a slad	ed Samp	ding	ļ
	40.0	42-0	mail		7	ಒ	24		Tan 5	olvaz	wade	طانس	layer	s of Cor	y	
۸.	45.0	47.0	mald	=		p	24		Sim	ilar S	eils	ه:دس)	ام مه	4)		
3	50.0	52		WO H	How	wo∄'	16		Ton S	onah n	معود	loger	s of Co	nej (راءً ب	
4	52.5	54.5	32	34	고닉	20	20_		Black	- - 5/2 cm	grav.	1 1:44	le sund,	1:41-5;	H (w. d to Sa	1
5	<i>5</i> 5.0	51.0	25	24	25	23	 -7					2	nul, so	mi mfgi	and.	
							-		_1;#1 e	ill (Saturo	d cd)				-
		- '							ال ه يا	nm A	سع مه مد	l do	ot cen	66.0		
									we l	~Sall.	dal	Pi	ρο,			
								ļ						·		
																+-
-				-		-										
				3		y:										-
					7==5											+
	Termina 's Signa			15.0 Mal	C	^										
Helper		,			n F				mspec	IOF S SI	gnature	»: —	Anies -			th.tt

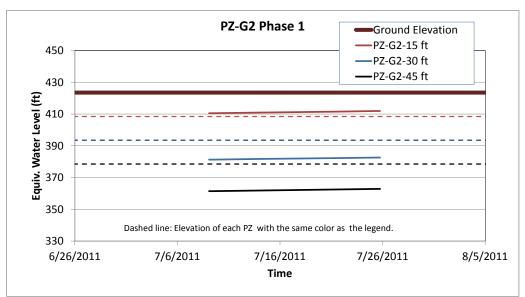
ATTACHMENT C Post-Installation Acceptance Testing

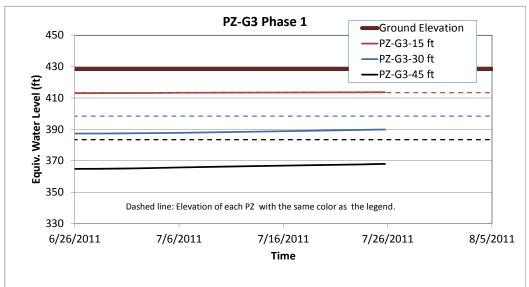
Settlement Cells and Piezometers Wires ID

PHASE I GROUPED CABLES

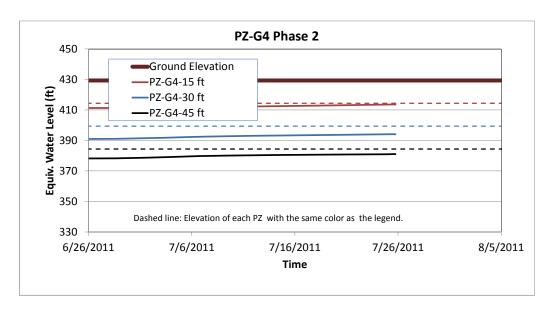
PHASE II GROUPED CABLES

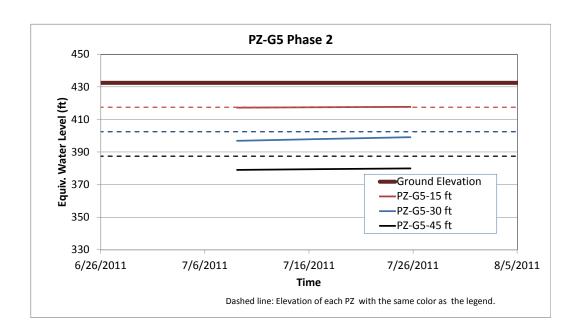

	44 p	air cable	in Phase I
Wire	Device	SN	Multiplexer Channel
1	SC-G01	036780	Ch 1
2	SC-G01	036780	
3	SC-G02	036770	Ch 2
4	SC-G02	036770	
5	SC-G03	036759	Ch 3
6	SC-G03	036759	
7	SC-G04	036761	Ch 4
8	SC-G04	036761	
9	PZ-G1A	036660	Ch 5
10	PZ-G1A	036660	
11	PZ-G1B	036661	Ch 6
12	PZ-G1B	036661	
13	PZ-G1C	036659	Ch 7
14	PZ-G1C	036659	
15	SC-G05	036728	Ch 8
16	SC-G05	036728	
17	SC-G06	036751	Ch 9
18	SC-G06	036751	
19	SC-G07	036767	Ch 10
20	SC-G07	036767	
21	SC-G09	036776	Ch 11
22	SC-G09	036776	
23	PZ-G3A	036666	Ch 12
24	PZ-G3A	036666	
25	PZ-G3B	036670	Ch 13
26	PZ-G3B	036670	
27	PZ-G3C	036669	Ch 14
28	PZ-G3C	036669	
29	SC-G08	036779	Ch 15
30	SC-G08	036779	
31	SC-G10	036775	Ch 16
32	SC-G10	036775	
33	SC-G11	36755	Ch 17
34	SC-G11	036755	
35	SC-G12	036757	Ch 18
36	SC-G12	036757	
37	SC-G13	036766	Ch 19
38	SC-G13	036766	
39	SC-G14	036762	Ch 20
40	SC-G14	036762	
41	SC-G15	036752	Ch 21
42	SC-G15	036752	
43	SC-G16	036764	Ch 22
44	SC-G16	036764	

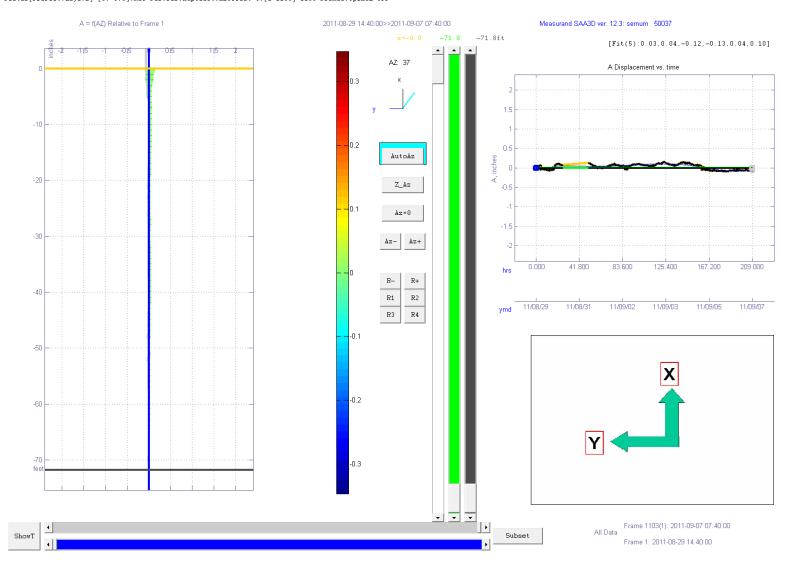

		10 pair	cable
Wire	Device	SN	Multiplexer Channel
1	PZ-G2A	036662	Ch 23
2	PZ-G2A	036662	
3	PZ-G2B	036663	Ch 24
4	PZ-G2B	036663	
5	PZ-G2C	036665	Ch 25
6	PZ-G2C	036665	


	44 p	air cable	in Phase II
Wire	Device	SN	Multiplexer Channel
1	SC-G17	036763	Ch 1
2	SC-G17	036763	
3	SC-G18	036771	Ch 2
4	SC-G18	036771	
5	SC-G19	036750	Ch 3
6	SC-G19	036750	
7	PZ-G4A	036667	Ch 4
8	PZ-G4A	036667	
9	PZ-G4B	036673	Ch 5
10	PZ-G4B	036673	
11	PZ-G4C	036671	Ch 6
12	PZ-G4C	036671	
13	SC-G20	036730	Ch 7
14	SC-G20	036730	
15	SC-G21	036758	Ch 8
16	SC-G21	036758	
17	SC-G22	036756	Ch 9
18	SC-G22	036756	
19	SC-G23	036768	Ch 10
20	SC-G23	036768	
21	SC-G24	036783	Ch 11
22	SC-G24	036783	
23	SC-G25	036784	Ch 12
24	SC-G25	036784	
25	SC-G26	036760	Ch 13
26	SC-G26	036760	
27	SC-G27	036772	Ch 14
28	SC-G27	036772	
29	SC-G28	036781	Ch 15
30	SC-G28	036781	
31	PZ-G5A	036674	Ch 16
32	PZ-G5A	036674	
33	PZ-G5B	036668	Ch 17
34	PZ-G5B	036668	
35	PZ-G5C	036675	Ch 18
36	PZ-G5C	036675	
37	SC-G29	036729	Ch 19
38	SC-G29	036729	

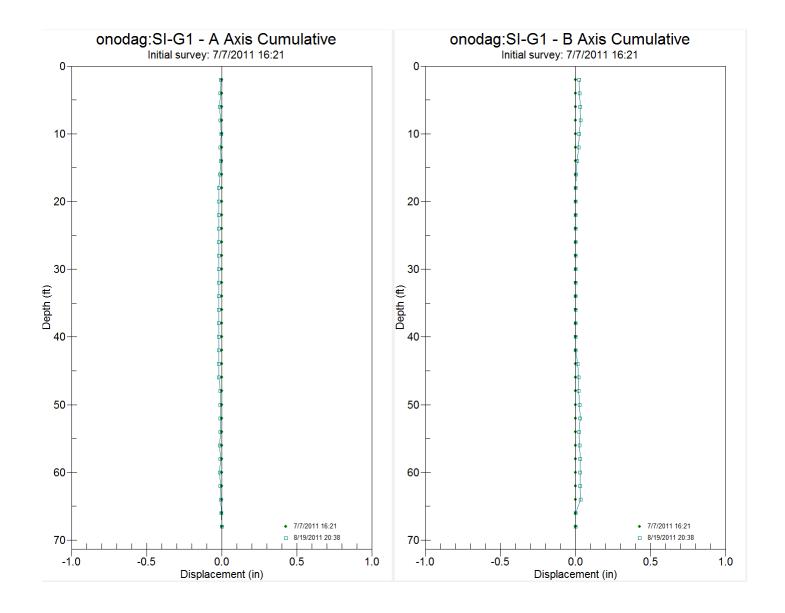
Post-Installation Piezometers Readings

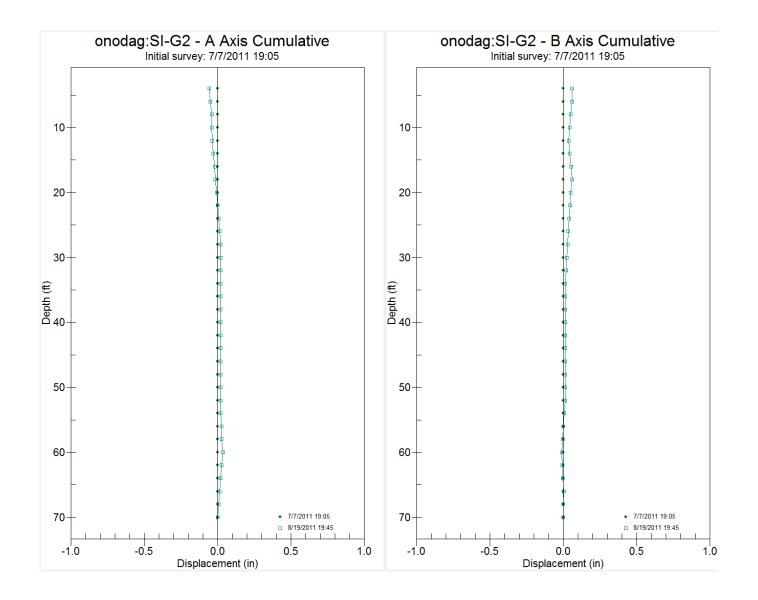

Cell ID	PZ-G1A	PZ-G1B	PZ-G1C	PZ-G2A	PZ-G2B	PZ-G2C	PZ-G3A	PZ-G3B	PZ-G3C
Serial No.	PZ-036660	PZ-036661	PZ-036659	PZ-03662	PZ-03663	PZ-03665	PZ-036666	PZ-036670	PZ-036669
Reg. Zero	6466.2	6638.5	6732	6522.8	6831.3	6660.1	6976.1	7388.9	6930
Linear Factor (G)	0.1	0.1	0.1	0.1	0.1	0.1	0.13094	0.14815	0.13573
Ref. Bar Pressure	1013.0	1013.0	1013.0	1013.0	1013.0	1013.0	1013	1013	1013
Ground Elevation	418.6	418.6	418.6	423.5	423.5	423.5	428.5	428.5	428.5
	418.6	418.6	418.6	423.5	423.5	423.5	428.5	428.5	428.5
Depth of PZ	30.0	45.0	15.0	15.0	30.0	45.0	30	15	45
EL of PZ	388.6	373.6	403.6	408.5	393.5	378.5	398.5	413.5	383.5
	388.6	373.6	403.6	408.5	393.5	378.5	398.5	413.5	383.5
Legend	PZ-G1-30 ft	PZ-G1-45 ft	PZ-G1-15 ft	PZ-G2-15 ft	PZ-G2-30 ft	PZ-G2-45 ft	PZ-G3-30 ft	PZ-G3-15 ft	PZ-G3-45 ft
6/23/2011 5:05	370.651	344.146	400.490				387.434	413.162	365.002
6/29/2011 13:16	370.65	344.15	400.49				387.43	413.16	365.00
7/9/11 2:10	372.78	346.37	402.54	410.51	381.32	361.45	388.12	413.43	366.16
7/25/2011 17:50	374.28	347.70	403.92	411.91	382.62	362.87	389.94	413.70	368.03

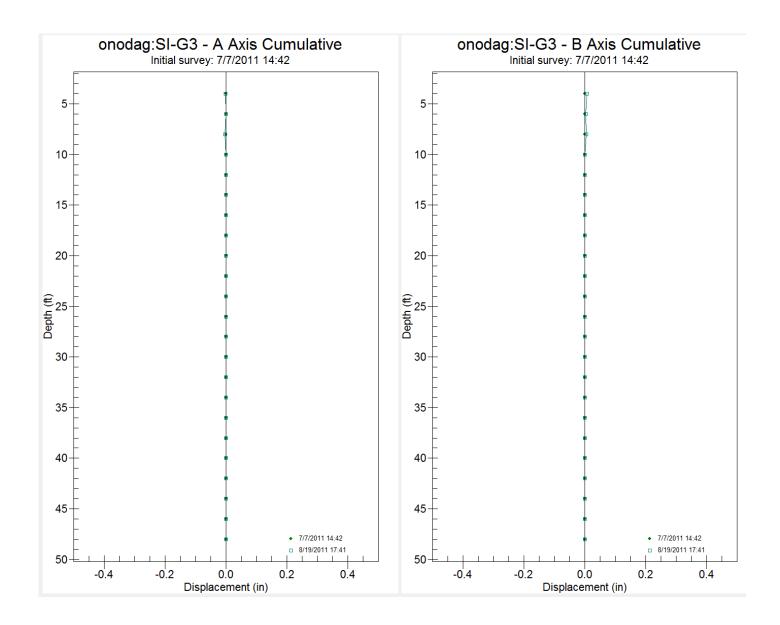


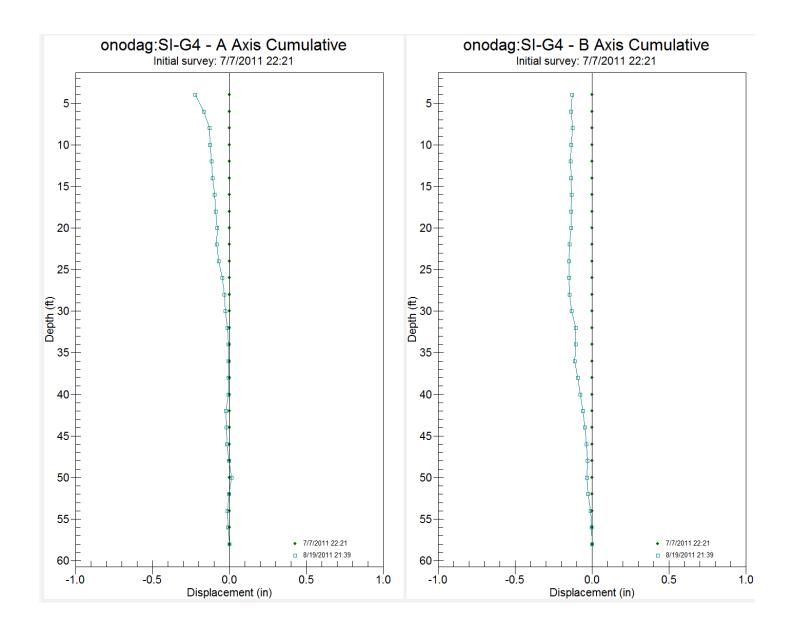


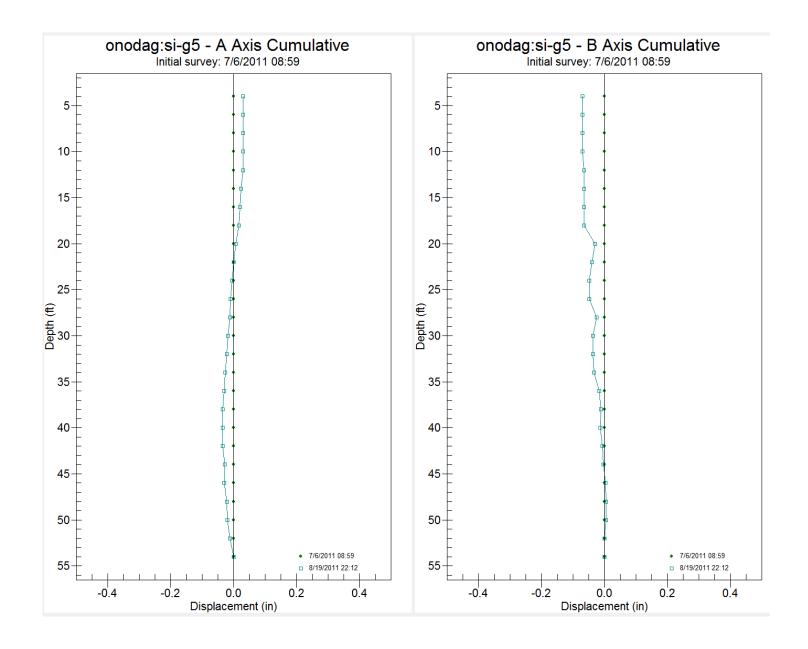
Cell ID	PZ-G4A	PZ-G4B	PZ-G4C	PZ-G5A	PZ-G5B	PZ-G5C
Serial No.	PZ-036667	PZ-036673	PZ-036671	PZ-0366674	PZ-036668	PZ-036675
Reg. Zero	6679.8	6539.5	6861.5	6775.0	6873.1	6340.5
Linear Factor (G)	0.1340500	0.1316900	0.1398200	0.1333100	0.1402400	0.1396500
Ref. Bar Pressure	1013.0	1013.0	1013.0	1013	1013	1013
Ground Elevation	429.4	429.4	429.4	432.5	432.5	432.5
	429.4	429.4	429.4	432.5	432.5	432.5
Depth of PZ	30.0	15.0	45.0	15	30	45
EL of PZ	399.4	414.4	384.4	417.5	402.5	387.5
	399.4	414.4	384.4	417.5	402.5	387.5
Legend	PZ-G4-30 ft	PZ-G4-15 ft	PZ-G4-45 ft	PZ-G5-15 ft	PZ-G5-30 ft	PZ-G5-45 ft
	391.18	411.39	378.40			
	391.18	411.39	378.40			
	392.79	412.06	380.10	417.29	396.95	379.08
	394.16	413.64	381.08	417.76	399.15	380.01






Post-Installation SAA Readings




Post-Installation Manual Inclinometers Readings

Post-Installation "Lift Test" for Settlement Cells

								-	
Leg	LEG 1								
Plate Elevation	420.1	421.9	420.5	424.3	424.552	424.488	422.214		
Cell ID	SC-G3	SC-G4	SC-G6	SC-G7	SC-G10	SC-G13	SC-G14		
Serial No.	SC-036759	SC-036761	SC-036751	SC-036767	SC-036775	SC-36766	SC-036762		
Reg. Zero	6420.3	6449.6	6623.5	6333.9	6907.2	6549.2	6327		
Linear Factor (G)	0.10919	0.101	0.10318	0.10074	0.1089827	0.11753	0.10569		
Initial manufac hz	2533.83	2539.61	2573.62	2516.72	2628.16	2559.14	2515.35		
Ref B Pres	998	998	998	998	1007	998	998		
Readings (Frequency)								•	
Local EL of SC = 0		2308.43				2372.37	2284.92		
Local EL of SC = 1		2301.48				2366.85	2278.39		
Calculated Elevation Change (ft)		-0.92				-0.87	-0.89	l	
						,	1		
Leg	LEG 2								
Plate Elevation	422.3	417.1	420.1	425.545	426.657	422.689	426.82	424.274	428.512
Cell ID	SC-G1	SC-G2	SC-G5	SC-G9	SC-G8	SC-G11	SC-G12	SC-G15	SC-G16
Serial No.	SC-036780	SC-036770	SC-036728	SC-036776	SC-036779	SC-036755	SC-036757	SC-036752	SC-036764
Reg. Zero	6519.1	6389.4	6203.5	6673.2	6662.5	6512	6327.1	6365.5	6375.7
Linear Factor (G)	0.1282042	0.10711	0.095497	0.103054	0.1151186	0.10114	0.10609	0.10001	0.10371
Initial manufac hz	2553.25	2527.73	2490.68	2583.25	2581.18	2551.86	2515.37	2522.99	2525.01
Ref B Pres	1007	998	1034	1007	1007	998	998	998	998
Readings (Frequency)						1			
Local EL of SC = 0	2367.55			2382.51					2337.16
Local EL of SC = 1	2361.99			2375.67					2330.57
Calculated Elevation Change (ft)	-0.95			-0.95					-0.90
	LEG 3	1	1	1	1	1	1		
Leg		420.4	420.7	420.6	420.2	422.0			
Plate Elevation	428.7	429.4	430.7	428.6	430.3	432.0			
Cell ID	SC-G19	SC-G21	SC-G22	SC-G24	SC-G28	SC-G29			
Serial No.	SC-036750	SC-036758	SC-036756	SC-036783	SC-036781	SC-036729			
Reg. Zero	6590.7	6484.0	6505.7	6441.1	6423.3	6448.0			
Linear Factor (G)	0.10226	0.1023	0.09983	0.1027652	0.1080125	0.1120540			
Initial manufac hz	2567.24	2546.37	2550.63	2537.93	2534.42	2539.29			
Ref B Pres	998	998	998	1007	1007	1034			
Dondings (Fraguency)		l	l	l	l	<u> </u>	l		
Readings (Frequency)		2250.25	2262.20	ı	2262.50	2202 56	i)		
Local EL of SC = 0	+	2359.35	2363.39	-	2362.58	2392.56			
Local EL of SC = 1	-	2352.81	2356.71		2356.44	2386.61			

Leg	LEG 4						
Plate Elevation	426.3	426.9	426.8	430.3	431.1	431.6	429.2
Cell ID	SC-G17	SC-G18	SC-G20	SC-G23	SC-G25	SC-G26	SC-G27
Serial No.	SC-036763	SC-036771	SC-036730	SC-03768	SC-03784	SC-036760	SC-036772
Reg. Zero	6324.4	6551.9	6494.0	6446.8	6726.5	6622.6	6744.9
Linear Factor (G)	0.10767	0.0990217	0.1122	0.10669	0.1066235	0.1023600	0.1099339
Initial manufac hz	2514.84	2559.67	2548.33	2539.05	2593.55	2573.44	2597.09
Ref B Pres	998	998	1034	998	1007	998	1007
Readings (Frequency)							
Local EL of SC = 0	2311.19	2350.40	2358.94		2425.54	2406.00	
Local EL of SC = 1	2305.35	2344.07	2353.06		2419.80	2399.99	
Calculated Elevation Change (ft)	-0.82	-0.83	-0.88		-0.84	-0.84	

-0.89

Note: Calculated Elevation Change is for lifting each settlement cell for approximately 1 ft.

Note: While a settlement cell was lifted for approximately 1ft, the reading for other cells stayed constant.

Calculated Elevation Change (ft)

Post-Installation Pressure Test of Hydraulic Lines

Date of Test:	May 10,2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) and Dan (parsons Labor
Phase Tested:	1A South side cells
Connections Tested:	SC-G15,SC-G16,SC-G12,SC-G11,SC-G8,SC-G9
Location of Pressurizer:	On main line Slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near eastern sump
Application of Pressure:	1:30pm
Removal of Pressure:	4:20pm
Time of Test:	2Hr. 50Min
Pressure at Start:	20.0Psi
Pressure at Removal:	20,0 Psi
Result:	Test passed

Additional Comments:

• Replaced connections at cells SC-G15 and SC-G11.

Date of Test:	5/25/2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) Dan (Parsons Labor)
Phase Tested:	Horizontal trench from SC-G14 to back of east berm in woods 1-A North line
Connections Tested:	One splice at toe of slope
Location of Pressurizer:	At SC-G14
Location of Downstream Gauge:	Woods east of berm
Application of Pressure:	3:00pm
Removal of Pressure:	7:30am.
Time of Test:	16hrs 30min
Pressure at Start:	50.0 PSI
Pressure at Removal:	50.0PSI
Result:	Passed

Date of Test:	May 10, 2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec)
Phase Tested:	Phase 1A – Southern Leg
Connections Tested:	SC-G15, SC-G16,SC-G12, SC-G11, SC-G8, SC-G9
Location of Pressurizer:	On main line slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near eastern sump.
Application of Pressure:	8:30am
Removal of Pressure:	9:45am
Time of Test:	1Hr, 15 Min
Pressure at Start:	50.0 Psi
Pressure at Removal:	50.0 Psi
Result:	Test passed

Date of Test:	May 17, 2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec)
Phase Tested:	Phase 1A – Southern Leg
Connections Tested:	SC-G15, SC-G16,SC-G12, SC-G11, SC-G8, SC-G9
Location of Pressurizer:	On main line slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near eastern sump.
Application of Pressure:	9:57 am
Removal of Pressure:	11:15 am
Time of Test:	1Hr, 18 Min
Pressure at Start:	20.0 Psi
Pressure at Removal:	20.0 Psi
Result:	Test passed

Date of Test:	May 3, 2011
Project:	Onondaga Lake SCA
Test Performed By:	Joseph Sura (Geosyntec)
Phase Tested:	Phase IA
Connections Tested:	SC-G9, SC-G8, SC-G11, SC-G12, SC-G15, SC-G16
Location of Pressurizer:	On main line slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near Eastern Sump
Application of Pressure:	11:20 AM
Removal of Pressure:	2:15 PM
Time of Test:	2 hr, 55 min
Pressure at Start:	30.5 psi
Pressure at Removal:	29.5 psi
Result:	Test passed

Date of Test:	May 9, 2011
Project:	Onondaga Lake SCA
Test Performed By:	Joseph Sura (Geosyntec) and Aaron Reeder (Geosyntec)
Phase Tested:	Phase IA
Connections Tested:	SC-G10, SC-G14, SC-G13
Location of Pressurizer:	On main line slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near Eastern Sump
Application of Pressure:	8:57 AM
Removal of Pressure:	12:08 PM
Time of Test:	3 hr, 11 min
Pressure at Start:	50.0 psi
Pressure at Removal:	47.0 psi
Result:	Test passed

Date of Test:	May 10,2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) and Dan (parsons Labor
Phase Tested:	1 South side cells
Connections Tested:	SC-G15,SC-G16,SC-G12,SC-G11,SC-G8,SC-G9
Location of Pressurizer:	On main line Slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near eastern sump
Application of Pressure:	1:30pm
Removal of Pressure:	4:20pm
Time of Test:	2Hr. 50Min
Pressure at Start:	20.0Psi
Pressure at Removal:	20,0 Psi
Result:	Test passed

Date of Test:	August 12,2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) and Dan (parsons Labor)
Phase Tested:	2 (Leg 4)
Connections Tested:	SC-G18,SC-G17,SC-G20,SC-G23,SC-G25,SC-G26 and 27
Location of Pressurizer:	On the far west side of cells- SC-G18 lateral
Location of Downstream Gauge:	near SC-G27
Application of Pressure:	1:30pm
Removal of Pressure:	4:20pm
Time of Test:	2Hr. 50Min
Pressure at Start:	20.0Psi
Pressure at Removal:	20,0 Psi
Result:	Test passed

Date of Test:	August 10,2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) and Dan (parsons Labor)
Phase Tested:	2 (Leg 3)
Connections Tested:	SC-G19,SC-G22,SC-G21,SC-G24,SC-G28,SC-G29
Location of Pressurizer:	On the far west side of cells- SC-G19 lateral
Location of Downstream Gauge:	near SC-G29
Application of Pressure:	2:30pm
Removal of Pressure:	5:20pm
Time of Test:	2Hr. 50Min
Pressure at Start:	20.0Psi
Pressure at Removal:	20,0 Psi
Result:	Test passed

Date of Test:	5/25/2011		
Project:	Onondaga Lake SCA		
Test Performed By:	Aaron Reeder (Geosyntec) Dan (parsons labor)		
Phase Tested:	Horizontal line from SC-G14 to back of east brem in woods. 1-A south line		
Connections Tested:	No connections		
Location of Pressurizer:	SC-G14		
Location of Downstream Gauge:	East of berm in woods		
Application of Pressure:	8:00am		
Removal of Pressure:	9:30am		
Time of Test:	1hr 30 min		
Pressure at Start:	50.0psi		
Pressure at Removal:	50.0 Psi		
Result:	Passed		

Date of Test:	May 10, 2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) And Dan (Parsons labor)
Phase Tested:	Phase 1A south side.
Connections Tested:	SC-G15, SC-G16,SC-G12, SC-G11, SC-G8, SC-G9
Location of Pressurizer:	On main line slightly west of SC-G9 lateral
Location of Downstream Gauge:	Diagonal trench out of SCA near eastern sump.
Application of Pressure:	8:30am
Removal of Pressure:	9:45am
Time of Test:	1Hr 15 Min.
Pressure at Start:	50.0 Psi
Pressure at Removal:	50.0 Psi
Result:	Test passed

Additional Comments:

 Test followed by connection of settlement cells (also on May 10, 2011) and tested at 20psi for 2Hrs. Test Passed.

Date of Test:	May 27, 2011
Project:	Onondaga Lake SCA
Test Performed By:	Aaron Reeder (Geosyntec) Dan (Parsons Labor)
Phase Tested:	Horizontal trench from cell G14 to office trailer.
Connections Tested:	Two splices at 18" culvert under road at trailer. One on the east side of north south berm (haul Road) and one at toe of slope inside cell.
Location of Pressurizer:	On main line at C14
Location of Downstream Gauge:	Office Trailer
Application of Pressure:	9:45pm
Removal of Pressure:	1:30pm
Time of Test:	4hrs
Pressure at Start:	50PSI
Pressure at Removal:	49PSI
Result:	Test Passed

ATTACHMENT D Photographic Documentation of Instrumentation Installation Activity

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 1

Comments:
Inclinometer SI-G3 SAA
gray PVC casing (left);
Termination of the SIG3-SAA and the HDPE
vault containing the
external battery (right).

Photograph 2

Comments: The HDPE vault contains the external battery.
The electrical circuits are grounded outside of the HDPE vault.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 3

Comments: Inclinometer SI-G3 casing (left); Termination of the SI-G3 (right).

Photograph 4

Comments: Piezometer PZ-G1; An additional metal rod is placed nearby and painted orange to serve as a visual warning to equipment.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 5

Comments: Settlement cell SC-G1 placed in field and ready for electrical cable connection.

Photograph 6

Comments: Electrical connection using ITM splice kit for SC-G1

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 7

Comments: Completed splice for SC-G1 with electrical tape over connectors; a green grounding rod was used.

Photograph 8

Comments: Filling completed splice with resin to seal the connection from water.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 9

Comments: Junction box used for connection of multiple cables.

Photograph 10

Comments: Trench excavation using the mini-excavator.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 11

Comments: PEX tubing being snaked in trench.

Note the use of a shovel to maintain snaking during backfilling.

Photograph 12

Comments: Use of nylon cable ties to hold PEX pipe to snaked electrical cable.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 13

Comments: Backfilling of PEX tubing. Note that a shovel is being used (as shown in Photograph 10) further down the line to maintain snaking.

Photograph 14

Comments: Backfilled trench after placement of PEX tubing and electrical cables.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

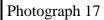
Photograph 15

Comments: Intersection of instrument trench and Profiler trench. Note that the PEX and instrument cables have been unrolled but are not yet bedded in the instrument trench.

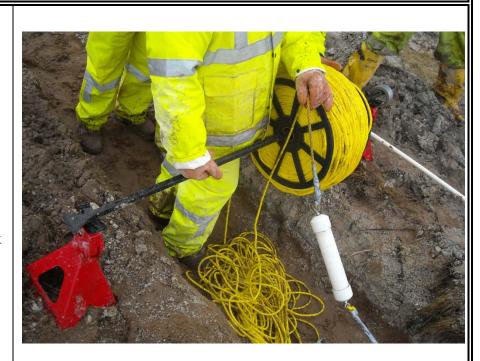
Photograph 16

Comments: ADS profiler pipe after placement with polyethylene rope inside.

Photographic Record


Client:

Honeywell


Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Comments: Pulling dummy profiler to check ADS pipe.

Photograph 18

Comments: Placement of sand around the springline of the ADS profiler pipe.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 19

Comments: Placement of sand backfill on top of springlined ADS profiler pipe.

Photograph 20

Comments: Cemented and coupled the 6" PVC sleeve for Profiler 3 crossing over western berm.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 21

Comments: Placement of sand backfill on top of PVC sleeve for Profiler 3 crossing through western berm.

Photograph 22

Comments: ADS profiler pipe exiting completed Profiler 3 crossing through western berm.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 23

Comments: Crossing of Profiler 1 and Profiler 3 before backfilling of the trench.

Photograph 24

Comments: Settlement cell SC-G21 (SC-036778) was damaged by a heavy equipment in the field and replaced with SC-036758

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 25

Comments: Liquid tape was used to seal the splices in the junction box. The inlets were sealed with the silicon tape.

Photograph 26

Comments: Flushing the hydraulic lines to remove the air bubbles from the hydraulic lines.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

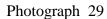
Photograph 27

Comments: Portable reservoir with a connected settlement cell to check the instrument cables in Phase 1 and Phase 2.

Photograph 28

Comments: Placement of an ADS pipe in a trench for the settlement profiler.

Photographic Record


Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Comments: Damage to the profiler pipe and blockage for profiler torpedo monitoring.

Photograph 30

Comments: Damage to the profiler pipe and blockage for profiler torpedo monitoring.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 31

Comments: Tilted SI-G2 during clay compaction around the inclinometer casing (at present). Currently, readings are not able to be taken from this inclinometer.

Photograph 32

Comments: Monitoring the profiler by pulling the probe out of the profiler pipe and taking readings every 10 ft.

Photographic Record

Client:

Honeywell

Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

Photograph 33

Comments: Data logger system

Photograph 34

Comments: Initial set-up of the reservoir in trailer with one main reservoir and all four legs being connected to the main reservoir (bottom). (see Photograph 35 for the revised set-up with four separate reservoirs.)

Photographic Record

Client:

Honeywell

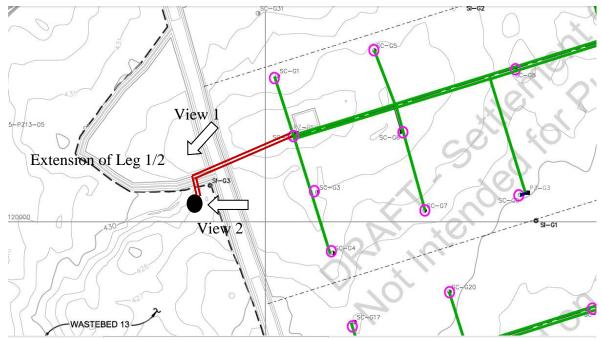
Project Number:

GJ4706A

Onondaga Lake SCA 2010 and 2011 Instrumentation Installation

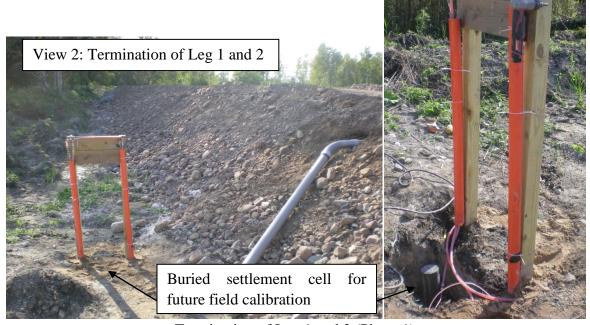
Photograph 35

Comments: Set-up of the four reservoirs in trailer: each settlement cell leg is connected to one reservoir.

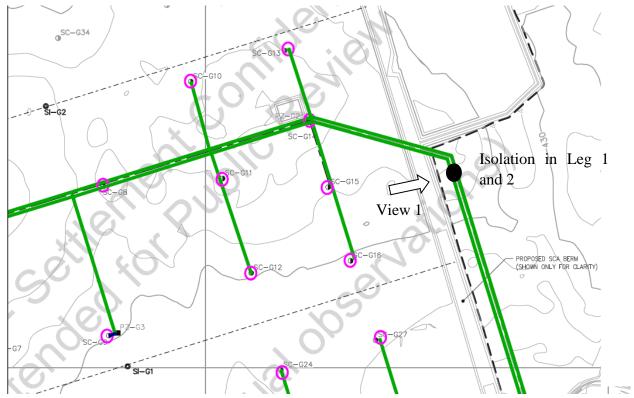


Photograph 36

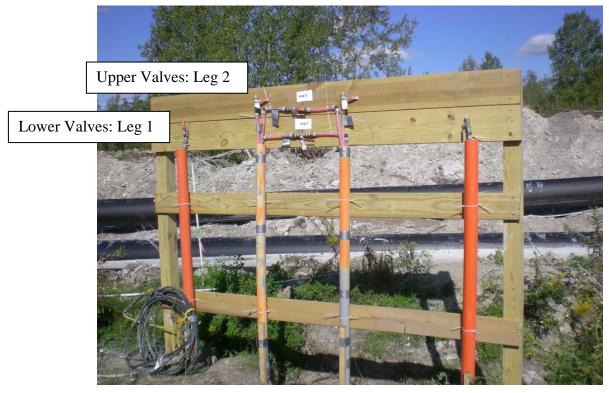
Comments: Pressure test on settlement cells hydraulic lines.

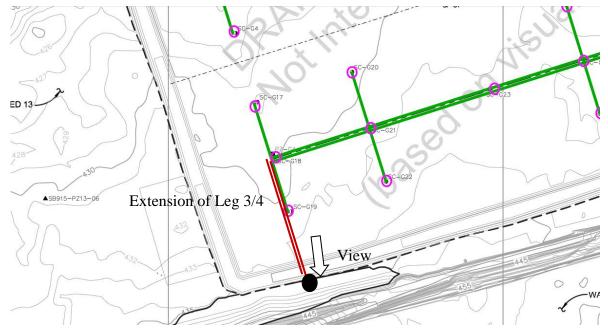


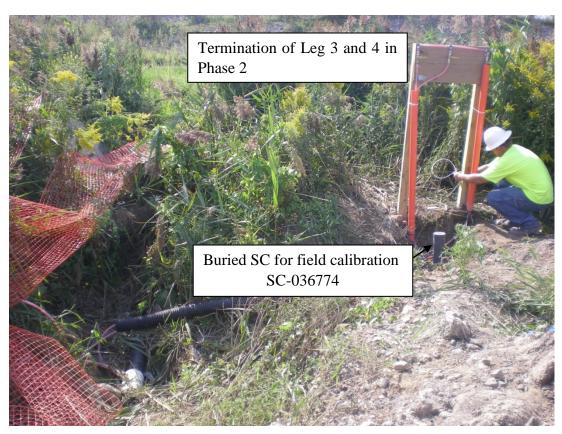
Extension of Hydraulic lines for Settlement Cells

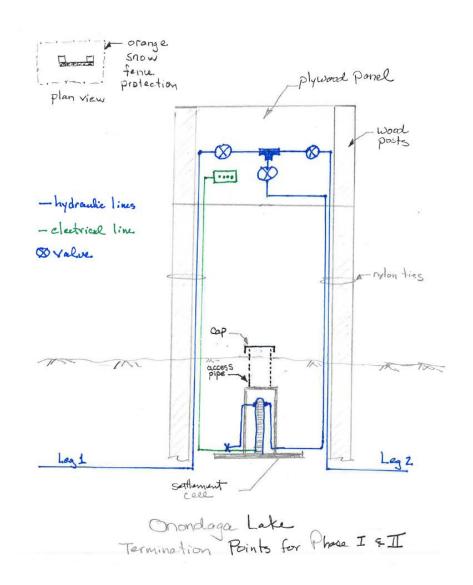


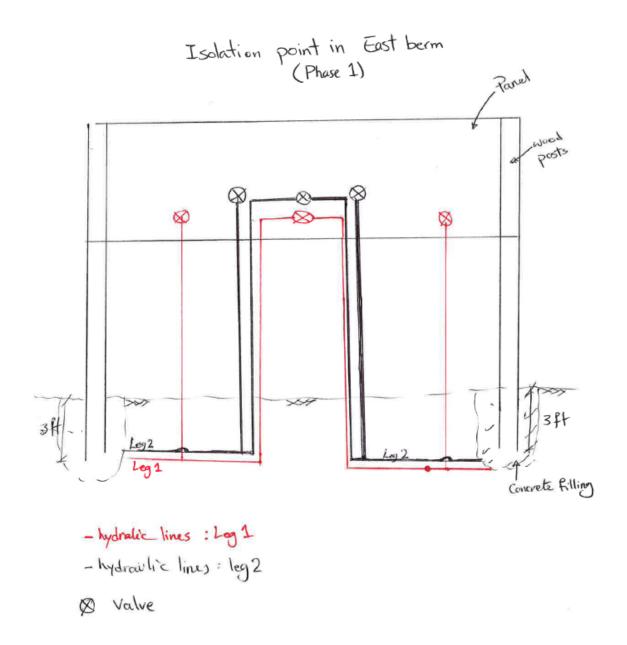
Schematic of the hydraulic lines termination (Phase 1) outside of West Basin




Termination of Leg 1 and 2 (Phase 1)


Isolation of Leg 1 and 2 between trailer and settlement cells in phase 1


Note: Photo taken from the east berm facing the isolation location for Leg 1 and 2 $\,$


Schematic of hydraulic lines termination for Phase 2 outside the south berm

Note: Photo taken from the south berm facing the termination of Leg 3 and 4 $\,$

Sketch of the termination details in Phase 1 and 2 (near the west and south berms)

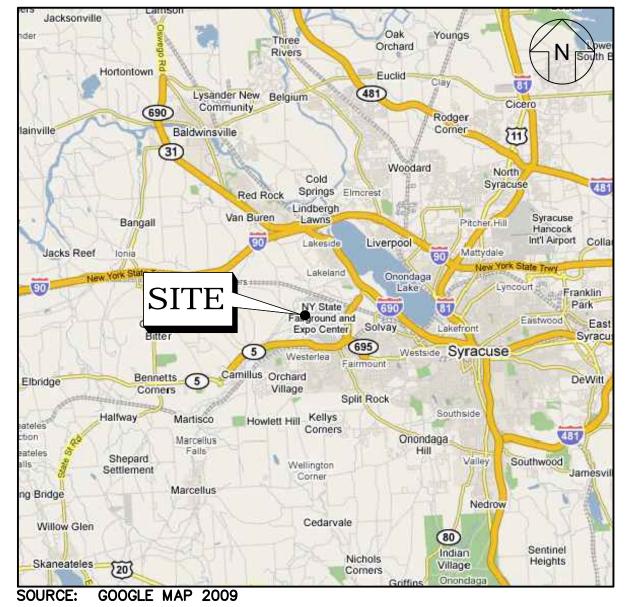
Sketch of the isolation details in Phase 1 (near the east berm)

ATTACHMENT E Summary of Installation Activities

Profiler	Profiler Section Location	Install	Backfill	Dummy
P1	North of Phase I/II Haul Road	Nov-10	Nov-10	Nov-10
P1	South of Phase I/II Haul Road	Nov-10	Nov-10	Nov-10
P1	Road Crossing of Phase I/II Haul Road	Nov-10	Nov-10	Nov-10
P1	Road Crossing of South Berm	May-11	May-11	May-11
P1	Road Crossing of Phase I/III Haul Road	Dec-10	Dec-10	May-11
P2	North of Phase I/II Haul Road	Nov-10	Nov-10	Nov-10
P2	South of Phase I/II Haul Road	Nov-10	Nov-10	May-11
P2	Road Crossing of Phase I/II Haul Road	Nov-10	Nov-10	May-11
P2	Road Crossing of South Berm	Nov-10	Nov-10	May-11
P2	Road Crossing of Phase I/III Haul Road	Nov-10	Nov-10	May-11
P3	Inside SCA West Stormwater Basin	May-11	May-11	May-11
P3	Road Crossing of West SCA Berm	Nov-10	Nov-10	May-11
P3	Section between P1 and West SCA Berm	May-11	May-11	May-11
P3	Section between P1 and P2	Nov-10	Nov-10	May-11
P3	Section between P1 and East SCA Berm	Nov-10	Nov-10	May-11
P3	Road Crossing of East SCA Berm	Nov-10	Nov-10	May-11
P3	Inside SCA East Stormwater Basin	Nov-10	Nov-10	May-11
P4	North of Phase I/II Haul Road	Dec-10	Dec-10	Dec-10
P4	South of Phase I/II Haul Road	Nov-10	Nov-10	May-11
P4	Road Crossing of Phase I/II Haul Road	Nov-10	Nov-10	Dec-10
P4	Road Crossing of South Berm	Nov-10	Nov-10	May-11
P4	Road Crossing of Phase I/III Haul Road	Nov-10	Nov-10	Dec-10
P5	North of Phase I/II Haul Road	May-11	May-11	May-11
P5	South of Phase I/II Haul Road	Dec-10	Dec-10	May-11
P5	Road Crossing of Phase I/II Haul Road	Nov-10	Nov-10	May-11
P5	Road Crossing of South Berm	Nov-10	Nov-10	May-11
P5	Road Crossing of Phase I/III Haul Road	Nov-10	Nov-10	May-11

Dhasa	Tubing Location PEX Tubing PEX Tub		PEX Tubing	Trench
Phase	Description	Installation Date	Snaking Date	Backfill Date
I	SC-G2 to SC-G1	Nov-10	Nov-10	Nov-10
I	SC-G2 to SC-G3	Nov-10	Nov-10	Nov-10
I	SC-G3 to SC-G4	Nov-10	Nov-10	Nov-10
ı	SC-G2 to J10	Nov-10	May-11	May-11
I	SC-G2 to J10	Nov-10	May-11	May-11
I	SC-G5 to J10	Nov-10	Dec-10	Dec-10
I	SC-G8 to J10	Nov-10	Dec-10	Dec-10
I	SC-G7 to SC-G8	Nov-10	Dec-10	Dec-10
ı	J10 to J13	Nov-10	May-11	May-11
ı	J10 to J13	Nov-10	May-11	May-11
l	SC-G9 to J13	Nov-10	May-11	May-11
ı	J13 to SC-G8	Nov-10	May-11	May-11
ı	J13 to SC-G8	Nov-10	May-11	May-11
l	SC-G8 to J17	Nov-10	May-11	May-11
I	SC-G8 to J17	Nov-10	May-11	May-11
I	SC-G10 to J17	Nov-10	May-11	May-11
l	SC-G11 to J17	Nov-10	May-11	May-11
I	SC-G12 to SC-G11	Nov-10	May-11	May-11
I	J17 to SC-G14	Nov-10	May-11	May-11
Ī	J17 to SC-G14	Nov-10	May-11	May-11
Ī	SC-G13 to SC-G14	Nov-10	May-11	May-11
I	SC-G15 to SC-G14	Nov-10	May-11	May-11
I	SC-G16 to SC-G15	Nov-10	May-11	May-11
I	SC-G14 to Trailer	May-11	May-11	May-11
I	SC-G14 to Trailer	May-11	May-11	May-11
II	SC-G17 to SC-G18	Nov-10	May-11	May-11
II	SC-G19 to SC-G18	Nov-10	May-11	May-11
II	SC-G18 to SC-G21	Nov-10	Dec-10	Dec-10
ll l	SC-G18 to SC-G21	Nov-10	Dec-10	Dec-10
II	SC-G20 to SC-G21	Nov-10	May-11	May-11
II	SC-G22 to SC-G21	Nov-10	May-11	May-11
ll l	SC-G21 to SC-G23	Nov-10	Dec-10	Dec-10
II	SC-G21 to SC-G23	Nov-10	Dec-10	Dec-10
II	SC-G23 to SC-G25	Nov-10	Dec-10	Dec-10
II	SC-G23 to SC-G25	Nov-10	Dec-10	Dec-10
II	SC-G24 to SC-G25	Nov-10	May-11	Aug-11
II	SC-G26 to SC-G25	Nov-10	May-11	Aug-11
<u>II</u>	SC-G25 to SC-G28	Nov-10	May-11	Aug-11
II	SC-G25 to SC-G28	Nov-10	May-11	Aug-11
II	SC-G27 to SC-G28	Nov-10	May-11	Aug-11
<u>II</u>	SC-G28 to SC-G29	Nov-10	May-11	Aug-11
II	SC-G28 to SC-G29	Dec-10	May-11	Aug-11
<u>II</u>	SC-G29 to Trailer	May-11	May-11	Aug-11
II	SC-G29 to Trailer	May-11	May-11	Aug-11

ID	Electrical Cable	Cable Junction	Continuity	VW Readout	limala Taat
ID	Junction Date	Method	Check	Check	Jiggle Test
SC-G01	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G03	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G04	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G05	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G06	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G07	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G08	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G09	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G10	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G11	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G12	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G13	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G14	Nov-10	Junction Box	Nov-10	Nov-10	May-11
SC-G15	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G16	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G17	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G18	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G19	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G20	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G21	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G22	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G23	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G24	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G25	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G26	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G27	Nov-10	Splice Kit	Nov-10	Nov-10	Nov-10
SC-G28	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
SC-G29	Nov-10	Junction Box	Nov-10	Nov-10	May-11
PZ-G1A	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G1B	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G1C	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G2A	May-11	Junction Box	May-11	May-11	May-11
PZ-G2B	May-11	Junction Box	May-11	May-11	May-11
PZ-G2C	May-11	Junction Box	May-11	May-11	May-11
PZ-G3A	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G3B	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G3C	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G4A	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G4B	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G4C	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G5A	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G5B	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G5C	Nov-10	Junction Box	Nov-10	Nov-10	Nov-10
PZ-G8	May-11	Junction Box	May-11	May-11	May-11
PZ-G9	May-11	Junction Box	May-11	May-11	May-11


ATTACHMENT F As-Built Drawings

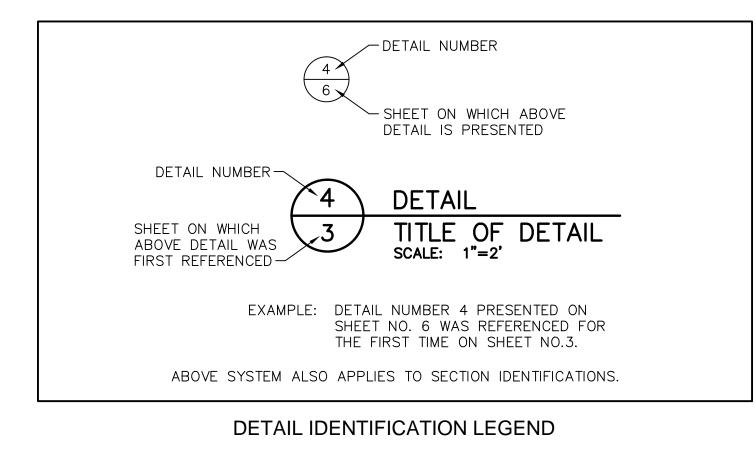
SEDIMENT CONSOLIDATION AREA 2011 AS-BUILT INSTRUMENTATION INSTALLATION CAMILLUS, NEW YORK

GJ4706A.02 **NOVEMBER 2011**

LIST OF DRAWINGS

DRAWING NO.	DRAWING TITLE
444853-103-C-001	COVER SHEET
444853-103-C-002	SITE CONDITIONS BEFORE INSTRUMENTATION INSTALLATION
444853-103-C-003	AS-BUILT INSTRUMENTATION AND MONITORING PLAN
444853-103-C-004	AS-BUILT TRENCHING PLAN
444853-103-C-005	AS-BUILT CABLING PLAN
444853-103-C-006	AS-BUILT SETTLEMENT CELL TUBING PLAN
444853-103-C-007	AS-BUILT INSTRUMENTATION DETAILS

LOCATION MAP NOT TO SCALE



VICINITY MAP NOT TO SCALE

PREPARED FOR:

Honeywell

301 PLAINFIELD ROAD, SUITE 330 SYRACUSE, NEW YORK 13212

Geosyntec > consultants

PREPARED BY:

1255 ROBERTS BOULEVARD, NW, SUITE 200 KENNESAW, GEORGIA 30144-3694 TELEPHONE: 678.202.9500

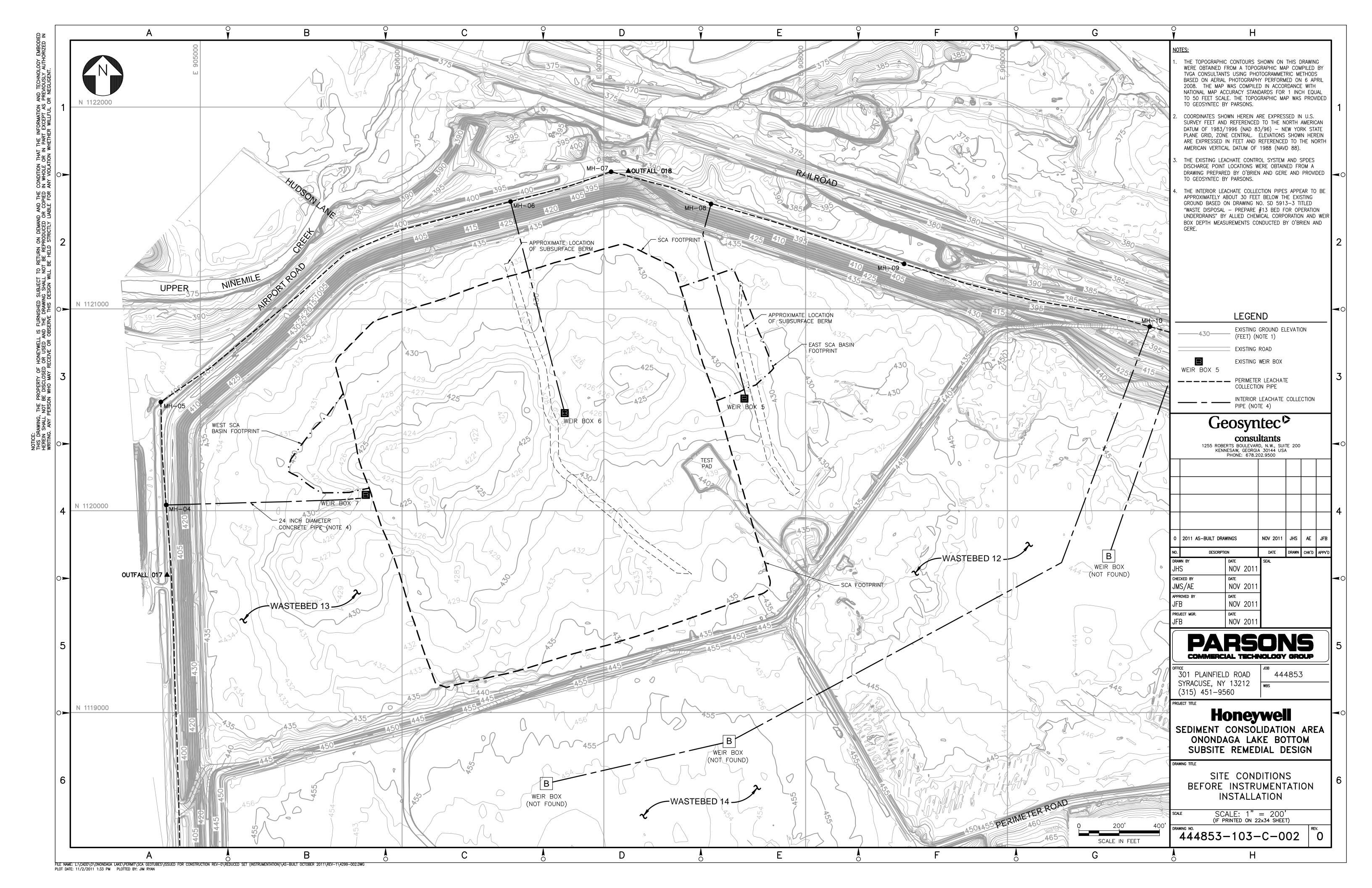
PARSONS

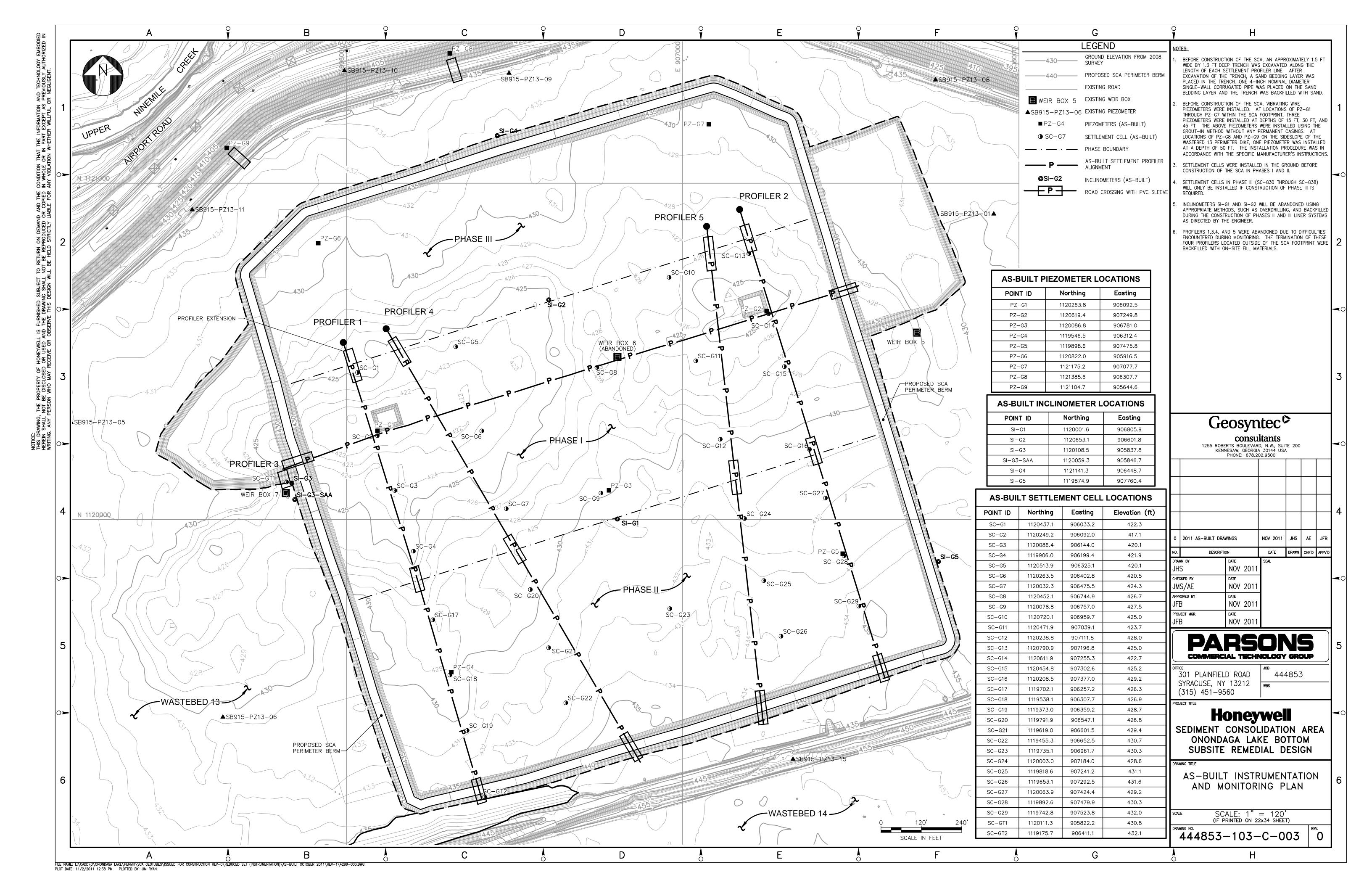
301 PLAINFIELD ROAD, SUITE 350 SYRACUSE, NEW YORK 13212 TELEPHONE: 315.451.9560

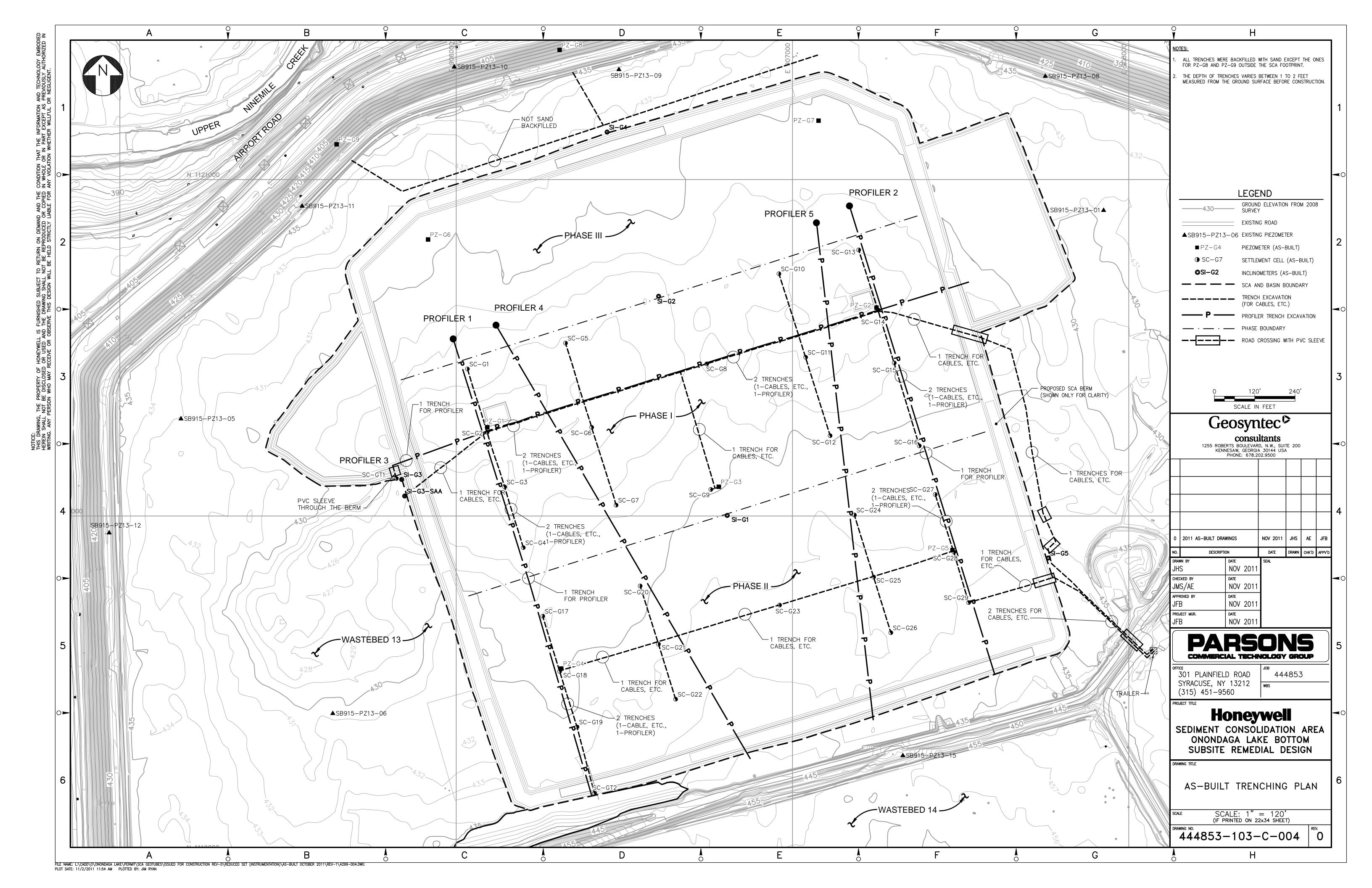
2011 AS-BUILT DRAWINGS DRAWN CHK'D APPV'D NOV 201 JMS/AE NOV 201 APPROVED BY NOV 201 PROJECT MGR. NOV 201

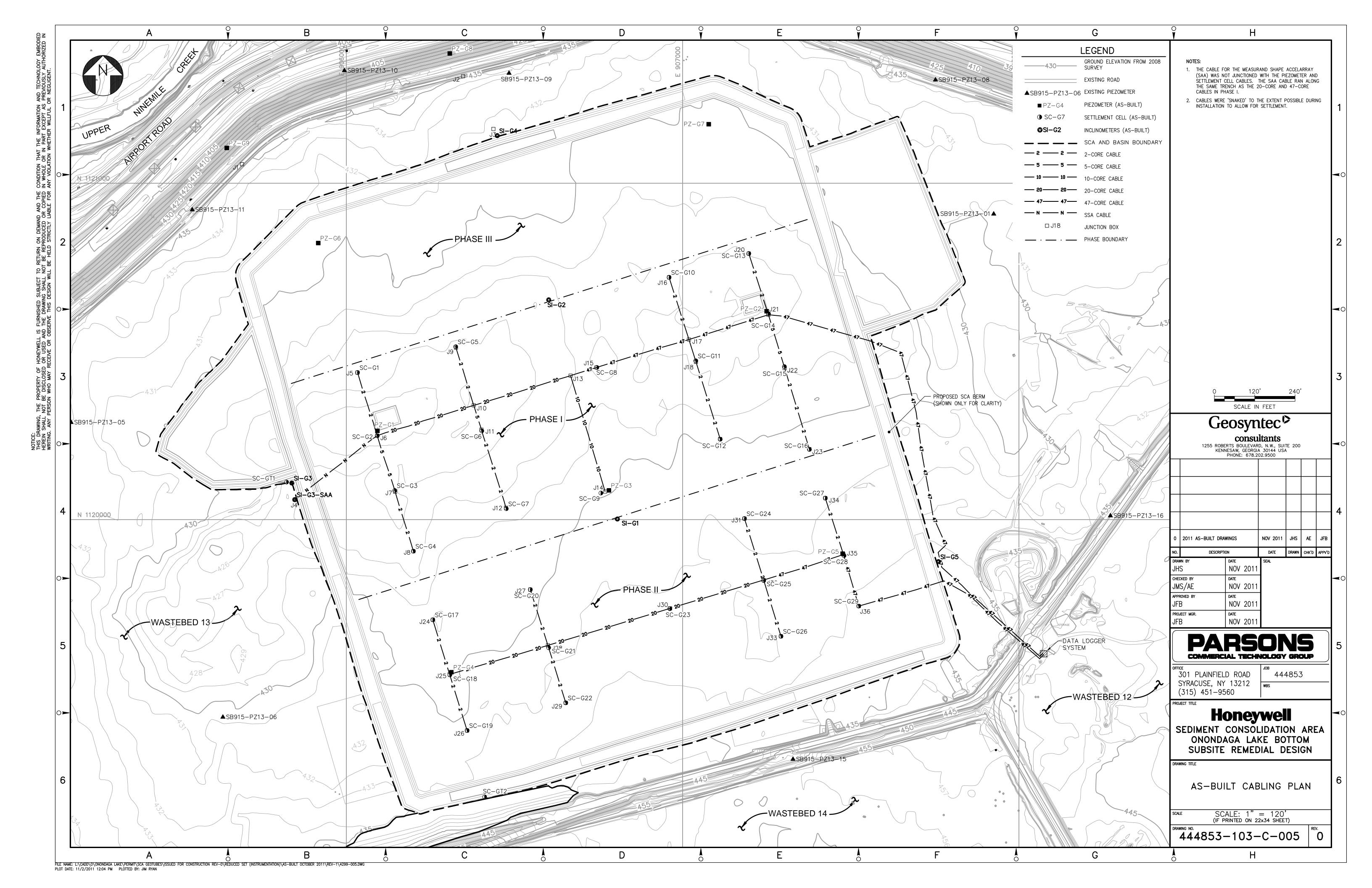
301 PLAINFIELD ROAD SYRACUSE, NY 13212 (315) 451-9560

Honeywell


SEDIMENT CONSOLIDATION AREA ONONDAGA LAKE BOTTOM SUBSITE REMEDIAL DESIGN


COVER SHEET


SCALE: NOT TO SCALE


444853-103-C-001

FILE NAME: L:\CADD\O\ONONDAGA LAKE\PERMIT\SCA GEOTUBES\ISSUED FOR CONSTRUCTION REV-O\REDUCED SET (INSTRUMENTATION)\AS-BUILT OCTOBER 2011\REV-1\4299-001.DW

