APPENDIX K

OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN

APPENDIX K.1

DESIGN OF SURFACE WATER MANAGEMENT SYSTEM FOR OPERATIONAL CONDITIONS

Geosyntec[▷]

consultants

COMPUTATION COVER SHEET

Client: <u>Honeywell</u> Project: <u>One</u>	ondaga Lake SCA Design	Project #:	GJ4299 Task #: 17
TITLE OF COMPUTATIONS	DESIGN OF SURFA FOR OPI	CE WATER MANA ERATIONAL CON	AGEMENT SYSTEM DITIONS
COMPUTATIONS BY:	Signature	L/12/2010 DATE	
	and Title Staff Engin	leer	
ASSUMPTIONS AND PROCEDURE CHECKED BY: (Peer Reviewer)	ES Signature	Mishnau	1/2/2010
	Printed Name Ganesh Kris and Title Associate	hnan	DAJE
COMPUTATIONS CHECKED BY:	Signature	ba	1/12/2010 DATE
	Printed Name Joseph Sura and Title Staff Engin	eer	DATE
COMPUTATIONS BACKCHECKED BY:	Signature	<u>}</u>	1/12/2010
(Originator)	Printed Name Jesus Sanoh and Title Staff Physicia	Ny Ninneen Con y Origina Bor oo I. H. Tanga	DATE
APPROVED BY: (PM or Designate)	Signature		12-5710 2010 DATE
(==========;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Printed Name Jay Beech and Title Principal	2000 200 2000 2	DITL
APPROVAL NOTES:		E O O REAL	
REVISIONS (Number and initial all re	evisions)		
NO. SHEET DAT	TE BY	CHECKED BY	APPROVAL
			_

							Geosyn					
										cor	nsultants	\$
							Page		1	of	19	
Written by:	¹ J	lesus Sa	nchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	hnan	Date	:	1/12/10	
Client:	Honey	ywell	Project:	Ono Desi	ndaga Lake S gn	SCA Final	Project No.:	GJ4	299	Task N	o.: 17	

DESIGN OF SURFACE WATER MANAGEMENT SYSTEM FOR OPERATIONAL CONDITIONS

BACKGROUND & PURPOSE

This package was prepared in support of the design of the Sediment Consolidation Area (SCA) for the Onondaga Lake Bottom Site, which will be constructed on Wastebed 13 (WB-13). Specifically, the package is intended to present the design and analysis of the surface water management system for operational conditions of the SCA.

The package addresses the surface water management system in place during the dewatering of the dredged lake sediment using geotextile tubes (geo-tubes) within the SCA, which is surrounded by a perimeter dike (SCA perimeter dike). For the purposes of the calculations conducted in this package, the SCA has a footprint corresponding to a capacity of up to 2.65 million cubic yards of dredged material. The calculations presented herein are conservative for reduced SCA volumes and interim operational phases. A separate package title Final Cover System Surface Water Management System Design (Appendix K of the SCA Final Design) presents the design analyses for the proposed surface water management system for the final cover system.

KEY CONSIDERATIONS AND LIMITATIONS

This package addresses surface water management within the limits of the SCA perimeter dike and the exterior detention basins (also referred to as stormwater basins) during the period when the geo-tubes are being filled, and does not address how surface water management will be implemented for the final cover. Surface water management outside the limits of the SCA perimeter dike, the detention basins, and the SCA support areas will be addressed as part of the Wastebed 9 through 15 Closure. While this package addresses the general surface water flow and the capacity of the system to convey surface water during operations, additional planning and control measures may be needed depending on geo-tube phasing and settlement patterns. For example, there may be a need to pump water using portable pumps from the top area of the SCA. These operational issues are not addressed in this package.

It is anticipated that the SCA will be used to actively dewater dredged sediment using geotubes for approximately four years. Settlement is expected to occur during the four-year period, and continue to occur after the final cover system is constructed. The calculations

					Geosynt				
				consult					
				Page	2	of 19			
Written by:	Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12/10			
Client:	Honeywell Project	Onondaga Lake Design	SCA Final	Project No.: GJ4	— 299 Ta	ask No.: 17			

performed herein are based on the proposed design elevation of the "Top of the Geo-tubes" of the SCA without considering any calculated settlements that are expected to occur during installation and placement of geo-tubes.

DESIGN CRITERIA

The surface water management system for operational conditions will serve two purposes. During construction and operation of the SCA, the system will convey filtrate and consolidation water from the geo-tubes (i.e., the water generated from dewatering the dredged material in the geo-tubes) to operational pumps located at the temporary perimeter basins/perimeter culverts (i.e., the low spots of the north-south dikes). Specifically, each of the reaches of the temporary perimeter channels will be designed to convey a filtrate and consolidation water flow rate of 6000 gpm (provided to Geosyntec Consultants by Parsons), while maintaining a minimum of six inches of freeboard. The operational pumps will convey the water to the water treatment plant. The exact locations and operation of these pumps will be discussed in more detail in the Sediment Management Intermediate and Final Design.

During rainfall events, the interim surface water management system will convey runoff from the SCA to the operational pumps and the detention basins. For the purposes of the calculations performed in this package, the system is designed to collect and convey runoff from the 25-year, 24-hour design rainfall event, assuming that the SCA will not be operating during this event. Basins and temporary perimeter channels are designed to convey and, combined with the detention basins, contain the calculated peak water elevations from the 25-year, 24-hour design rainfall event while maintaining a minimum of six inches of freeboard.

SURFACE WATER MANAGEMENT SYSTEM COMPONENTS

The surface water management system for operational conditions will include the components listed below. This calculation package will address the design of each of the components, which are shown in Figure 1.

• **Temporary Perimeter Channel and Basins** – The temporary perimeter channel is comprised of four drainage channels located between the SCA perimeter dike and the geo-tubes. These channels capture and convey runoff from the geo-tube side slopes to the perimeter culverts during construction/operation conditions. In addition to providing conveyance, the temporary perimeter channels will provide some

					Ge	USYL	llec
						consi	ıltants
				Page	3	of	19
Written by:	Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12	2/10
Client:	Honeywell Project	Onondaga Lake Design	e SCA Final	Project No.: GJ4	 299 Т	`ask No.:	17

Coormtoop

additional storage during high rainfall events when the water surface elevation in the exterior detention basins exceeds the bottom elevations in the temporary perimeter channels. Therefore, they are modeled as both channels and basins.

- **Perimeter Culverts** Perimeter culverts will be located at two locations beneath the SCA perimeter dike and will convey runoff from the temporary perimeter channels to the detention basins.
- **Detention Basins** Detention basins will be located west and east of the SCA to provide storage of surface water runoff received from the perimeter culverts.

ANALYSIS METHODOLOGY

Hydraulic and hydrologic analyses are conducted using methods presented in TR-20 (SCS, 1983) and TR-55 (SCS, 1986). Analyses are conducted using the computer program $HydroCAD^{TM}$ (HydroCAD, 2005). Computer program analyses are supplemented with other design calculation methods wherever applicable.

MAJOR ASSUMPTIONS

• Subcatchment Properties – For the purposes of the analyses conducted herein, the extent of the SCA is divided into 11 subcatchments – four top-deck subcatchments and seven side-slope subcatchments. Tables 1 and 2 summarize the important topographic features of the 11 subcatchments: area, longest travel path, and elevation maxima and minima.

	S1A	S2A	S3A	S4A
Area (acres)	7.9	14.4	18.3	9.8
Longest Path (ft)	1051	1536	1658	1159
Max. Elev. (ft)	463.3	468.1	468.1	463.3
Min. Elev. (ft)	429.2	429.2	425.6	425.6

Table 1 – Summary of Top-Deck Subcatchments

									con	sultants
						Page		4	of	19
Written by:	Jesus	Sanchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	shnan	Date:	1/	'12/10
Client:	Honeywell	Project	Ono Desi	ndaga Lak gn	e SCA Final	Project No.:	GJ429	9 1	ask No	.: 17

	S1B	S1C	S2B	S2C	S3B	S3C	S4B
Area (acres)	2.4	1.1	1.1	2.7	2.0	3.0	1.2
Longest Path (ft)	85	85	85	1055	85	1040	85
Max Elev. (ft)	463.3	462.9	468.1	468.1	467.4	468.1	463.3
Min. Elev. (ft)	433.3	432	437.1	429.2	437.1	426.2	433.3

Table 2 – Summary of Side Slope Subcatchments

Ceosyntec

- Hydrologic Soil Group (HSG) for Cover System For the purposes of this calculation, no Hydrologic Soil Group will be applied to the subcatchment surfaces. It is assumed that the synthetic material of the geo-tubes will result in a subcatchment surface that has the highest runoff potential possible, and it will be modeled as a generalized impervious area.
- **Runoff Curve Number (CN)** It is assumed that the geo-tubes are completely saturated, not allowing infiltration, and the synthetic material behaves like a highly impervious area. Based on these assumptions, a CN = 98 is selected for the subcatchment areas for operational conditions.
- Rainfall Distribution for Design Storm As shown on Attachment 1 (SCS, 1986), the site is located in a region designated under a SCS Type II Rainfall Distribution.
- Rainfall Depth for Design Storm The rainfall depth for 25-year 24-hour design storm event is 4.4 inches and was obtained from Attachment 2 (SCS, 1986).

HYDRAULIC AND HYDROLOGIC MODELING

- Nodal Network Diagram Attachment 3 presents a nodal network diagram showing the connectivity of the subcatchments and the surface water management system components listed below.
 - S1A through S4A Top Deck Subcatchments
 - \circ S1B through S4B Side Slope Subcatchments
 - \circ R1B through R4B Temporary Perimeter Channel Reaches
 - AxB" and CxD" Perimeter Culverts (do not appear on HydroCAD nodal diagram because they are outfall structures)
 - \circ TB1 and TB2 Temporary Perimeter Basins

								UU	USy		
									con	sultant	ts
						Page		5	of	19	
Writter by:	Jesus Sa	anchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	shnan	Date:	1/	′ 12/10	_
Client:	Honeywell	Project	Ono Desi	ndaga Lal gn	ce SCA Final	Project No.:	GJ429)9 7	lask No	.: 17	_

Cansymptor

◦ EDB and WDB – Detention Basins

• **Computer Modeling** – A hydraulic and hydrologic analysis was conducted using the aforementioned assumptions and system components using the computer program *HydroCADTM*. The results of the modeling are presented in Attachment 4.

DESIGN OF SURFACE WATER MANAGEMENT SYSTEM FOR OPERATIONAL CONDITIONS

• Temporary Perimeter Channel – The temporary perimeter channels are shown as R1B, R1C, R2B, R2C, R3B, R3C, and R4B in the HydroCAD nodal diagram and Figure 1. The cross-sectional area of the temporary perimeter channels varies on both the eastern and western half of the SCA. The temporary perimeter channels are designed to collect runoff (i.e., filtrate or surface water) from the side slopes (S1B/C, S2B/C, S3B/C, and S4B) during operations. This runoff is then conveyed to the temporary perimeter basin. During operational conditions the channel reaches were assumed to be earth, clean and straight with a corresponding Manning's n value of 0.025, as shown in Attachment 5 (HydroCAD, 2005). Due to the variability in crosssections throughout the SCA perimeter channel, only the sections with the lowest discharge capacities were evaluated to demonstrate that the target discharge rate (6000 gpm) could be met. The lowest capacity sections are combinations of small cross-sectional areas, relatively large wetted perimeters, and low longitudinal slopes. As a conservative approach, each of these lowest capacity sections was used to represent their entire respective reaches. The four main drainage channels were divided into seven reaches during the subcatchment delineation process, as shown in Figure 1. Using the lowest capacity sections provides a conservative estimate of channel depth during peak flow, which is used to evaluate the freeboard design criteria. The discharge rate for each reach of the temporary perimeter channels with six-inches of freeboard is shown below in Table 3. The minimum freeboard for the 25-year, 24-hour storm is shown below in Table 4. As can be seen in these tables, the discharge capacity with six inches of freeboard meets the target value, and the minimum freeboard during the design storm is greater than six inches.

Geosyntec^D consultants

									cons	sultants
						Page		6	of	19
Written by:	Jesus S	anchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	hnan	Date:	1/	12/10
Client:	Honeywell	Project:	Ono Desi	ndaga Lako gn	e SCA Final	Project No.:	GJ429	9 T	ask No	: 17

Table 3 – Discharge Rates with Six Inches of Freeboard for Reaches

Section	R1B	R1C	R2B	R2C	R3B	R3C	R4B
Area (sq. ft)	63.9	62.6	24.5	23.8	58.8	63.3	48.7
Wetted Perimeter (ft)	25.7	24.7	16.8	16.7	24.1	24.7	21.9
Longitudinal Slope (ft/ft)	0.0010	0.0045	0.0002	0.0067	0.0028	0.0079	0.0103
Discharge Capacity (gpm)	100,000	210,000	12,000	66,000	150,000	280,000	230,000

Table 4 – Minimum Freeboard for Reaches of Temporary Perimeter Channels

Reach	R1B	R1C	R2B	R2C	R3B	R3C	R4B
Freeboard (ft)	3.7	4.1	1.9	2.0	3.9	4.1	3.9

• Temporary Perimeter Basin – The temporary perimeter basins are shown as TB1 and TB2 in the HydroCAD nodal diagram and Figure 1. There are two temporary perimeter basins available in the temporary perimeter channels. The water flowing to these two basins is divided by the two high points in the temporary perimeter channels (i.e., where R4B and R1B start and where R3B and R2B start). An elevation-storage relationship was developed for each of these temporary perimeter basins by calculating the surface area inside each temporary perimeter channel from the bottom to the top of the channel. This calculation assumes that above 433.3 ft Mean Surface Elevation (MSE) (where R4B and R1B start, which is the highest point in the temporary perimeter channels) the temporary perimeter basins are not connected. These two elevation-storage relationships are summarized below in Table 5. The minimum freeboard in these basins for the 25-year, 24-hour storm is shown below in Table 6.

Table 5 – Elevation-Storage Relationship for Temporary Perimeter Basins

Elevation (ft)	426	427	428	429	430	431	432	433	434
TB1 Storage (acre-ft)	0	0	0	0	0	0.14	0.42	0.90	1.6
TB2 Storage (acre-ft)	0	0.01	0.06	0.16	0.34	0.60	1.0	1.5	2.2

							(JE	USY	Inec	,
									cons	sultants	3
						Page		7	of	19	
Written by:	Jesus Sa	nchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	hnan	Date:	1/	'12/10	
Client:	Honeywell	Project	Ono Desi	ndaga Lak gn	ke SCA Final	Project No.:	GJ4299	9 1	ask No	.: 17	

Coostantoop

Table 6 – Minimum Freeboard for Temporary Perimeter Basins

Temporary Basin	TB1	TB2
Freeboard (ft)	0.61	0.86

- **Perimeter Culverts** The perimeter culverts are shown as AxB" and CxD" in Figure 1. As indicated previously, these culverts were modeled as outfall structures for the temporary perimeter basins and therefore do not appear in the HydroCAD nodal diagram. These are culverts in place to convey the water stored in the temporary perimeter basins to the detention basins. These culverts were modeled as outlet structures at the lowest elevations in the detention basins and inlets approximately at the lowest elevations in the temporary perimeter channels. Both culverts, AxB" and CxD", have the same specifications listed below and only vary in length.
 - Pipe Dimensions
 - No. of Pipes = 4
 - Pipe Diameter = 24"
 - Manning's n = 0.013 (Round Concrete Pipe)
 - HDPE pipe is also an option as it typically has a smaller Manning's n value, which results in greater discharge capacity.
 - Longitudinal Slope = 1%
- Detention Basins The detention basins are shown as EDB and WDB in the HydroCAD nodal diagram and Figure 1; the catchment area corresponding to these detention basins is shown as EA and WA. The detention basins on the western and eastern sides on the exterior of the SCA perimeter dike are designed, in combination with the temporary perimeter basins, to store all of the runoff from the side slopes and the top of the geo-tubes during the 25-year, 24-hour design storm. These two elevation-storage relationships are summarized below in Table 7. The minimum freeboard for the 25-year, 24-hour storm is shown below in Table 8.

 Table 7 – Elevation-Storage Relationship for Detention Basins

Elevation (ft)	424	425	426	427	428	429	430	431	432	433	434
EDB Storage (acre-ft)	0	0	0	0	0	0.18	0.58	2.1	5.3	9.0	13
WDB Storage (acre-ft)	0	0.10	0.31	0.77	1.5	2.6	4.3	6.4	8.6	11	13

							,	JC	con:	sultants	3
						Page		8	of	19	
Written by:	Jesus S	anchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	hnan	Date:	1/	12/10	
Client:	Honeywell	Project	Ono Desi	ndaga Lak gn	e SCA Final	Project No.:	GJ4299	9 T	`ask No	.: 17	

Coostantoop

Table 8 – Minimum Freeboard for Detention Basins

Detention Basin	EDB	WDB
Freeboard (ft)	0.61	0.86

CONCLUSION

The components of the surface water management system for operational conditions for the SCA are designed to convey and contain the calculated discharge from a 25-year, 24-hour design storm within the SCA perimeter dike and its detention (i.e., stormwater) basins with a minimum freeboard of six inches. In addition, each reach of the temporary perimeter channels is designed to convey a filtrate and consolidation water flow rate of 6000 gpm while maintaining a minimum of six inches of freeboard. This package addresses surface water management within the limits of the SCA perimeter dike during operational conditions, and <u>does not</u> address how surface water management will be implemented outside the limits of the SCA perimeter dike, which will be addressed separately. Additional planning and control measures may be needed depending on the geo-tube phasing as localized ponding may occur within the SCA during operational conditions, which could require the use of portable pumping units.

REFERENCES

HydroCAD, "HydroCADTM Storm Water Modeling System, Version 7.1", HydroCAD Software Solutions LLC., Chocorua, New Hampshire, 2005.

SCS, "Computer Program for Project Formulation—Hydrology, Technical Release 20 (TR-20)", United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1983.

SCS, "Hydrology for Small Watersheds, Technical Release 55 (TR-55)", United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1986.

						Ge	osyr	ntec
							consi	ultants
					Page	9	of	19
Written by:	Jesus Sanchez	Date:	1/12/10	Reviewed by:	Ganesh Krishnan	Date	:: 1/12	2/10
Client:]	Honeywell Project:	Ono Desi	ndaga Lak gn	e SCA Final	Project No.: GJ	4299	Task No.:	17

Figures

19 1/12/10

of

10

Page

consultants

Geosyntec^D

Date:

Ganesh Krishnan

Reviewed by:

1/12/10

Date:

Jesus Sanchez

Written by: Figure 1: Operational Conditions Surface Water Management System Design

					Geo	osyntec ^D
						consultants
				Page	11	of 19
Writter by:	¹ Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12/10
Client:	Honeywell Project	t: Onondaga Lake Design	SCA Final	Project No.: GJ4	— 299 Ta	ask No.: 17

Attachment 1 – Rainfall Distributions (TR-55, SCS, 1986)

							I	Ge	osyı	ntec ⁽	>
									cons	ultants	
						Page		12	of	19	
Written by:	Jesus	Sanchez	Date:	1/12/10	Reviewed by:	Ganesh Kris	hnan	Date	: 1/1	2/10	
Client:	Honeywell	Project	Ono Desi	ndaga Lak gn	e SCA Final	Project No.:	GJ42	99	Гask No.:	17	

					Geo	osyntec ^D
						consultants
				Page	13	of 19
Written by:	Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12/10
Client:	Honeywell Project:	Onondaga Lake Design	SCA Final	Project No.: GJ4	299 Ta	ask No.: 17

Attachment 2 – Rainfall Depths (TR-55, SCS, 1986)

								Ge	osyı	ntec	>
						Page		14	cons	ultants	
Written by:	Jesus Sa	anchez	Date:	1/12/10	Reviewed by:	Ganesh Krisl	nnan	Date:	: 1/1	2/10	
Client:	Honeywell	Project:	Ono Desi	ndaga Lak gn	e SCA Final	Project No.:	GJ429	19 1	Гask No.:	: 17	

Figure B-6 25-year, 24-hour rainfall

					Geo	osyntec⊳
						consultants
				Page	15	of 19
Written by:	Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12/10
Client:	Honeywell Project	Onondaga Lake Design	SCA Final	Project No.: GJ4	299 T	ask No.: 17

Attachment 3 – Nodal Diagram

					Geo	osyntec⊳
						consultants
				Page	16	of 19
Written by:	Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12/10
Client:	Honeywell Project	Onondaga Lake Design	SCA Final	Project No.: GJ4	299 T	ask No.: 17

Attachment 4 – HydroCAD Analysis

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
6.250	98	(EA, WA)
63.660	98	Geotubes Cover (S1A, S1B, S1C, S2A, S2B, S2C, S3A, S3B, S3C, S4A, S4B)
69.910	I	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
69.910	Other	EA, S1A, S1B, S1C, S2A, S2B, S2C, S3A, S3B, S3C, S4A, S4B, WA
69.910		TOTAL AREA

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	TB1	429.61	429.00	61.0	0.0100	0.013	24.0	0.0	0.0
2	TB2	424.89	424.00	89.0	0.0100	0.013	24.0	0.0	0.0

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentEA: East Area	Runoff Area=3.860 ac 100.00% Impervious Runoff Depth=4.16" Tc=5.0 min CN=98 Runoff=24.92 cfs 1.339 af
SubcatchmentS1A: Top 1	Runoff Area=7.910 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,051' Tc=20.9 min CN=98 Runoff=31.79 cfs 2.745 af
SubcatchmentS1B: Side 1B	Runoff Area=2.370 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=15.30 cfs 0.822 af
SubcatchmentS1C: Side 1C	Runoff Area=1.070 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=6.91 cfs 0.371 af
SubcatchmentS2A: Top 2	Runoff Area=14.380 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,536' Tc=24.4 min CN=98 Runoff=53.13 cfs 4.990 af
SubcatchmentS2B: Side 2B	Runoff Area=1.050 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=6.78 cfs 0.364 af
SubcatchmentS2C: Side 2C	Runoff Area=2.680 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,055' Tc=16.2 min CN=98 Runoff=12.25 cfs 0.930 af
SubcatchmentS3A: Top 3	Runoff Area=18.290 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,658' Tc=24.4 min CN=98 Runoff=67.58 cfs 6.347 af
SubcatchmentS3B: Side 3B	Runoff Area=1.960 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=12.65 cfs 0.680 af
SubcatchmentS3C: Side 3C	Runoff Area=3.000 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,040' Tc=15.8 min CN=98 Runoff=13.85 cfs 1.041 af
SubcatchmentS4A: Top 4	Runoff Area=9.790 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,159' Tc=21.2 min CN=98 Runoff=39.12 cfs 3.397 af
SubcatchmentS4B: Side 4B	Runoff Area=1.160 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=7.49 cfs 0.403 af
SubcatchmentWA: West Area	Runoff Area=2.390 ac 100.00% Impervious Runoff Depth=4.16" Tc=5.0 min CN=98 Runoff=15.43 cfs 0.829 af
Reach R1B: Ditch 1B n=0.025	Avg. Flow Depth=0.66' Max Vel=1.29 fps Inflow=15.30 cfs 0.822 af L=1,251.0' S=0.0010 '/' Capacity=280.47 cfs Outflow=8.59 cfs 0.822 af
Reach R1C: Ditch 1C n=0.025	Avg. Flow Depth=0.57' Max Vel=2.47 fps Inflow=14.11 cfs 1.194 af L=638.0' S=0.0045 '/' Capacity=642.07 cfs Outflow=12.67 cfs 1.194 af
Reach R2B: Ditch 2B n=0.02	Avg. Flow Depth=0.73' Max Vel=0.66 fps Inflow=6.78 cfs 0.364 af 5 L=528.0' S=0.0002 '/' Capacity=40.65 cfs Outflow=4.20 cfs 0.364 af

interm_25yr	Type II 24-hr 25-yr Rainfall=4	1.40"
Prepared by Geosynte	c Consultants Printed 12/17/2	2009
HydroCAD® 9.10 s/n 0092	29 © 2009 HydroCAD Software Solutions LLC Pa	<u>ige 6</u>
Reach R2C: Ditch 2C	Avg. Flow Depth=0.54' Max Vel=2.90 fps Inflow=16.18 cfs 1.2 n=0.025 L=1,175.0' S=0.0067 '/' Capacity=219.74 cfs Outflow=13.83 cfs 1.2	94 af 94 af
Reach R3B: Ditch 3B	Avg. Flow Depth=0.66' Max Vel=2.06 fps Inflow=12.65 cfs 0.6 n=0.025 L=1,033.0' S=0.0028 '/' Capacity=406.82 cfs Outflow=9.40 cfs 0.6	80 af 80 af
Reach R3C: Ditch 3C	Avg. Flow Depth=0.67' Max Vel=3.55 fps Inflow=22.46 cfs 1.7 n=0.025 L=1,093.0' S=0.0079 '/' Capacity=834.84 cfs Outflow=20.36 cfs 1.7	21 af 21 af
Reach R4B: Ditch 4B	Avg. Flow Depth=0.23' Max Vel=3.43 fps Inflow=7.49 cfs 0.4 n=0.025 L=750.0' S=0.0103 '/' Capacity=611.76 cfs Outflow=6.53 cfs 0.4	03 af 03 af
Pond EDB: East Basin	Peak Elev=433.39' Storage=10.431 af Inflow=82.79 cfs 10.4 Outflow=0.00 cfs 0.0	31 af 00 af
Pond TB1: Temp Basin	1 Peak Elev=433.39' Storage=1.133 af Inflow=107.51 cfs 10.2 24.0" Round Culvert x 4.00 n=0.013 L=61.0' S=0.0100 '/' Outflow=79.94 cfs 9.0	23 af 92 af
Pond TB2: Temp Basin	2 Peak Elev=433.14' Storage=1.551 af Inflow=127.80 cfs 11.8 4.0" Round Culvert x 4.00 n=0.013 L=89.0' S=0.0100 '/' Outflow=91.95 cfs 10.3	68 af 20 af
Pond WDB: West Basin	Peak Elev=433.14' Storage=11.150 af Inflow=93.75 cfs 11.1 Outflow=0.00 cfs 0.0	50 af 00 af
Total Puna	ff Area = 60.010 as _ Bunoff Volume = 24.260 af _ Average Bunoff Donth -	- 1 1(

Total Runoff Area = 69.910 ac Runoff Volume = 24.260 af Average Runoff Depth = 4.16" 0.00% Pervious = 0.000 ac 100.00% Impervious = 69.910 ac

12-

10 8 6-4 2-0-

5 0

70 75 80 85 90 95 100 105 110 115 120

CN=98

Summary for Subcatchment EA: East Area

Runoff 24.92 cfs @ 11.96 hrs, Volume= 1.339 af, Depth= 4.16" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

	Area (ac)	CN De	escription							
*	3.8	360	98								
	3.8	360	10	0.00% Impe	rvious Area	l					
	Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description					
	5.0					Direct Entry	, Pond Sι	urface			
				S	ubcatchr	nent EA: Ea	ast Area				
	Hydrograph										
	Í									Runoff	
	26	24.92	2 cfs					· · · · · · · · · · · · · · · · · · ·			
	24						l ype	II 24-hr	25-yr		
	22						R	lainfall=	=4.40"		
	20					Rı	unoff A	rea=3.8	60 ac		
	187					Runo	off Volu	ıme=1.	339 af -		
	(cts)	+					Runoff	Depth=	=4.16"		
	NOIH 12-	+			++		+	Tc=5.	0 min		

55 60 65 Time (hours)

10 15 20 25 30 35 40 45 50

Summary for Subcatchment S1A: Top 1

Runoff = 31.79 cfs @ 12.12 hrs, Volume= 2.745 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

	Area	(ac) C	N Des	cription		
*	7.	910 9	98 Geo	tubes Cov	er	
	7.910 100.00% Impervious Ar			00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.4	300	0.0038	0.79		Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"
	9.5	666	0.0033	1.17		Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps
	5.0	85		0.28		Direct Entry, Steps
	20.9	1 051	Total			

Subcatchment S1A: Top 1

Summary for Subcatchment S1B: Side 1B

Runoff = 15.30 cfs @ 11.96 hrs, Volume= 0.822 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

Area	a (ac) CN	l Des	cription										
* 2	2.370 98	B Geo	tubes Cov	er									
2	2.370	100.	.00% Impe	rvious Are	ea								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs	/ Deso	criptio	on						
5.0	85		0.28		Dire	ct Er	ntry,	Step	s				
			S	Subcatcl	nment	S1E	3: Si	ide 1	В				
				Hydr	ograph								
17 16 13 12 11 13 12 11 10 10 10 10 10 10 10 10 10 10 10 10		Image: state					Růi	Typ noff ff Vo	Pe II Ra Olun Off D	24-r infal a=2 ne=0 eptr Leng	nr 2(1=4. .370).822 n=4. gth= 5.0 r CN	5-yr 40" 2 af 16" =85' min =98	Runoff
0 0) 5 10 15	20 25	30 35 40	45 50 55 Tin	60 65 ne (hours)	70	75 80) 85	90 95	100 10	05 110	115 120	

0

0 5

10 15 20 25 30 35 40 45 50

Summary for Subcatchment S1C: Side 1C

Runoff = 6.91 cfs @ 11.96 hrs, Volume= 0.371 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

Area (ac) CN	Description			
* 1.070 98	Geotubes Cov	/er		
1.070	100.00% Impe	ervious Area	1	
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description	
5.0 85	0.28		Direct Entry, Steps	
	:	Subcatch	ment S1C: Side 1C	
6.91 ct	S	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$		Runoff
			Type II 24-hr 25-yr	
	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1} -$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}$	Rainfall=4.40"	
			Runoff Area=1.070 ac	
5			Runoff Volume=0.371 af	
	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$	Runoff Depth=4.16"	
Flow			Flow Length=85'	
3			Tc=5.0 min	

55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time (hours)

Summary for Subcatchment S2A: Top 2

Runoff = 53.13 cfs @ 12.17 hrs, Volume= 4.990 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

	Area	(ac) C	N Des	cription		
*	14.	380 9	98 Geo	tubes Cov	er	
	14.	380	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.2	300	0.0062	0.96	<u>,</u>	Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"
	14.2	1,151	0.0044	1.35		Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps
	5.0	85		0.28		Direct Entry, Steps
	24.4	1,536	Total			

Subcatchment S2A: Top 2

3-

2

1

0-

5 0

10 15 20 25 30 35 40 45 50

55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time (hours)

Tc=5.0 min

CN=98

Summary for Subcatchment S2B: Side 2B

Runoff 6.78 cfs @ 11.96 hrs, Volume= 0.364 af, Depth= 4.16" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

Area (ac) CN	Des	cription							
* 1.0)50 98	Geo	tubes Cov	er						
1.0)50	100.	00% Impe	rvious Area	1					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
5.0	85		0.28		Direct Entry, S	teps				
	Subcatchment S2B: Side 2B Hydrograph									
7-	6.78 cf	S			 	Гуре І	l 24-hr	25-yr	Runoff	
6						R	ainfall	=4.40''		
/					Run	off Ar	ea=1.0)50 ac		
5-7					Runoff	f Volu	me=0.	364 af		
(cts)					Ri	Inoff	Depth=	=4.16"		
Flow						Flow	Leng	th=85'		

Summary for Subcatchment S2C: Side 2C

Runoff = 12.25 cfs @ 12.08 hrs, Volume= 0.930 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

	Area	(ac) (CN Des	cription		
*	2.	680	98 Geo	otubes Cov	er	
	2.680		100	.00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.6	300	0.0083	1.08	, <i>L</i>	Sheet Flow, Sheet Flow
	6.6	670	0.0069	1.69		Smooth surfaces n= 0.011 P2= 2.55" Shallow Concentrated Flow, Shallow Concentrated Paved Ky= 20.3 fps
	5.0	85		0.28		Direct Entry, Steps
	16.2	1,055	Total			

Subcatchment S2C: Side 2C

Summary for Subcatchment S3A: Top 3

Runoff = 67.58 cfs @ 12.17 hrs, Volume= 6.347 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

	Area	(ac) C	N Des	cription		
*	18.	290	98 Geo	tubes Cov	er	
	18.	290	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.3	300	0.0061	0.95		Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"
	14.1	1,273	0.0055	1.51		Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps
	5.0	85		0.28		Direct Entry, Steps
	24.4	1,658	Total			

Subcatchment S3A: Top 3

Summary for Subcatchment S3B: Side 3B

Runoff = 12.65 cfs @ 11.96 hrs, Volume= 0.680 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

Summary for Subcatchment S3C: Side 3C

Runoff = 13.85 cfs @ 12.07 hrs, Volume= 1.041 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

	Area	(ac)	CN De	scription		
*	3.	000	98 Ge	otubes Cov	er	
	3.000 100.00% Impervious Area			0.00% Impe	rvious Area	l
	Tc (min)	Length (feet)	Slope (ft/ft	velocity (ft/sec)	Capacity (cfs)	Description
	4.3	300	0.0098	1.15		Sheet Flow, Sheet Flow
	6.5	655	0.0069	9 1.69		Smooth surfaces n= 0.011 P2= 2.55" Shallow Concentrated Flow, Shallow Concentrated Paved Kv= 20.3 fps
	5.0	85		0.28		Direct Entry, Steps
	15.8	1,040	Total			

Subcatchment S3C: Side 3C

Summary for Subcatchment S4A: Top 4

Runoff = 39.12 cfs @ 12.13 hrs, Volume= 3.397 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

_	Area	(ac) C	N Des	cription		
*	9.	790 9	98 Geo	tubes Cov	er	
	9.	790	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	300	0.0043	0.83	Y/	Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"
	10.2	774	0.0039	1.27		Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps
	5.0	85		0.28		Direct Entry, Steps
_	21.2	1 159	Total			

Subcatchment S4A: Top 4

1

0

0 5

10 15 20 25 30 35 40 45 50

Summary for Subcatchment S4B: Side 4B

Runoff = 7.49 cfs @ 11.96 hrs, Volume= 0.403 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

Time (hours)

55 60 65 70 75 80 85 90 95 100 105 110 115 120

Summary for Subcatchment WA: West Area

Runoff = 15.43 cfs @ 11.96 hrs, Volume= 0.829 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

Area	(ac) C	N Des	cription									
* 2	.390 9	8										
2	.390	100	.00% Impe	rvious Are	а							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Desc	ription						
5.0					Direc	t Entr	y, Pon	d Area	1			
			S	ubcatchr	nent V	VA: W	/est A	rea				
				Hydro	ograph							
17 16 15 14 13 12 11 10 8 7 6 5	15.43	cfs				Run	unof off V Run	pe II Ra f Are off D	24-h infal ea=2. ne=0 Pepth Tc={	ir 25 I=4.4 .390 .829 i=4.4 5.0 r CN=	5-yr 40" ac 9 af 16" nin =98	Runoff
3 2 1 1												
0	5 10 1	5 20 25	30 35 40	45 50 55 Tim	60 65 e (hours)	70 75	80 85	90 95	5 100 10	5 110 1	115 120	

Summary for Reach R1B: Ditch 1B

 Inflow Area =
 2.370 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 15.30 cfs @
 11.96 hrs, Volume=
 0.822 af

 Outflow =
 8.59 cfs @
 12.03 hrs, Volume=
 0.822 af, Atten= 44%, Lag= 4.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 1.29 fps, Min. Travel Time= 16.1 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 19.3 min

Peak Storage= 8,318 cf @ 12.03 hrs Average Depth at Peak Storage= 0.66' Bank-Full Depth= 4.50', Capacity at Bank-Full= 280.47 cfs

Custom stage-perimeter table, n= 0.025 106 Intermediate values determined by Multi-point interpolation Length= 1,251.0' Slope= 0.0010 '/' Inlet Invert= 433.30', Outlet Invert= 432.00'

Depth (feet)	End Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.50	4.7	11.1	5,896	5.13
1.00	10.9	14.0	13,636	17.68
1.50	18.0	15.9	22,518	37.46
2.00	25.8	17.9	32,276	63.08
2.50	34.3	19.8	42,909	94.80
3.00	43.5	21.8	54,419	132.11
3.50	53.3	23.7	66,678	175.31
4.00	63.9	25.7	79,946	224.75
4.50	75.1	27.6	93,950	280.47

Reach R1B: Ditch 1B

Summary for Reach R1C: Ditch 1C

[61] Hint: Exceeded Reach R1B outlet invert by 0.57' @ 12.03 hrs

 Inflow Area =
 3.440 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 14.11 cfs @
 11.98 hrs, Volume=
 1.194 af

 Outflow =
 12.67 cfs @
 12.03 hrs, Volume=
 1.194 af, Atten=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 2.47 fps, Min. Travel Time= 4.3 min Avg. Velocity = 2.25 fps, Avg. Travel Time= 4.7 min

Peak Storage= 3,277 cf @ 12.03 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 5.00', Capacity at Bank-Full= 642.07 cfs

Custom stage-perimeter table, n= 0.025 100 Intermediate values determined by Multi-point interpolation Length= 638.0' Slope= 0.0045 '/' Inlet Invert= 432.00', Outlet Invert= 429.15'

Depth (feet)	End Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.50	4.3	10.1	2,743	9.67
1.00	9.9	12.9	6,316	32.97
1.50	16.4	14.7	10,463	70.08
2.00	23.6	16.6	15,057	118.54
2.50	31.4	18.4	20,033	178.14
3.00	39.8	20.3	25,392	247.68
3.50	48.8	22.1	31,134	328.75
4.00	58.5	23.9	37,323	422.10
4.50	68.8	25.8	43,894	525.60
5.00	79.7	27.6	50.849	642.07

Reach R1C: Ditch 1C

Summary for Reach R2B: Ditch 2B

 Inflow Area =
 1.050 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 6.78 cfs @
 11.96 hrs, Volume=
 0.364 af

 Outflow =
 4.20 cfs @
 12.03 hrs, Volume=
 0.364 af, Atten= 38%, Lag= 4.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 0.66 fps, Min. Travel Time= 13.4 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 16.9 min

Peak Storage= 3,373 cf @ 12.03 hrs Average Depth at Peak Storage= 0.73' Bank-Full Depth= 2.50', Capacity at Bank-Full= 40.65 cfs

Custom stage-perimeter table, n= 0.025 100 Intermediate values determined by Multi-point interpolation Length= 528.0' Slope= 0.0002 '/' Inlet Invert= 437.13', Outlet Invert= 437.00'

Deptil E	nu Area	Fenini.	Slorage	Discharge
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cfs)
0.00	0.0	0.0	0	0.00
0.50	3.9	9.4	2,059	2.02
1.00	9.3	12.4	4,910	7.16
1.50	15.8	14.6	8,342	15.53
2.00	22.9	16.4	12,091	26.68
2.50	30.8	18.3	16,262	40.65

Reach R2B: Ditch 2B

Summary for Reach R2C: Ditch 2C

[61] Hint: Exceeded Reach R2B outlet invert by 0.54' @ 12.14 hrs

 Inflow Area =
 3.730 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 16.18 cfs @
 12.06 hrs, Volume=
 1.294 af

 Outflow =
 13.83 cfs @
 12.14 hrs, Volume=
 1.294 af, Atten=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 2.90 fps, Min. Travel Time= 6.8 min Avg. Velocity = 2.75 fps, Avg. Travel Time= 7.1 min

Peak Storage= 5,604 cf @ 12.14 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 2.50', Capacity at Bank-Full= 219.74 cfs

Custom stage-perimeter table, n= 0.025 100 Intermediate values determined by Multi-point interpolation Length= 1,175.0' Slope= 0.0067 '/' Inlet Invert= 437.00', Outlet Invert= 429.15'

Depth (feet)	End Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.50	4.3	10.1	5,053	11.82
1.00	9.9	13.0	11,633	40.11
1.50	16.6	14.9	19,505	86.67
2.00	23.8	16.7	27,965	146.44
2.50	31.7	18.6	37,248	219.74

Reach R2C: Ditch 2C

Summary for Reach R3B: Ditch 3B

 Inflow Area =
 1.960 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 12.65 cfs @
 11.96 hrs, Volume=
 0.680 af

 Outflow =
 9.40 cfs @
 12.01 hrs, Volume=
 0.680 af, Atten= 26%, Lag= 3.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 2.06 fps, Min. Travel Time= 8.3 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 10.0 min

Peak Storage= 4,709 cf @ 12.01 hrs Average Depth at Peak Storage= 0.66' Bank-Full Depth= 4.50', Capacity at Bank-Full= 406.82 cfs

Custom stage-perimeter table, n= 0.025 106 Intermediate values determined by Multi-point interpolation Length= 1,033.0' Slope= 0.0028 '/' Inlet Invert= 437.13', Outlet Invert= 434.20'

Depth (feet)	End Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.50	3.1	7.7	3,215	5.41
1.00	7.6	10.7	7,851	19.15
1.50	13.4	13.6	13,842	42.00
2.00	20.7	16.3	21,383	76.85
2.50	28.7	18.2	29,647	123.09
3.00	37.4	20.0	38,634	179.71
3.50	46.8	21.9	48,344	245.80
4.00	56.8	23.8	58,680	321.17
4.50	67.4	25.6	69,624	406.82

Reach R3B: Ditch 3B

Summary for Reach R3C: Ditch 3C

[62] Hint: Exceeded Reach R3B OUTLET depth by 0.22' @ 12.26 hrs

 Inflow Area =
 4.960 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 22.46 cfs @
 12.04 hrs, Volume=
 1.721 af

 Outflow =
 20.36 cfs @
 12.10 hrs, Volume=
 1.721 af, Atten= 9%, Lag= 3.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 3.55 fps, Min. Travel Time= 5.1 min Avg. Velocity = 2.94 fps, Avg. Travel Time= 6.2 min

Peak Storage= 6,275 cf @ 12.10 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 5.00', Capacity at Bank-Full= 834.84 cfs

Custom stage-perimeter table, n= 0.025 100 Intermediate values determined by Multi-point interpolation Length= 1,093.0' Slope= 0.0079 '/' Inlet Invert= 434.20', Outlet Invert= 425.57'

Depth E (feet)	nd Area (sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.50	3.9	9.4	4,263	11.46
1.00	9.2	12.4	10,056	39.82
1.50	15.7	14.4	17,160	87.84
2.00	22.7	16.3	24,811	149.52
2.50	30.4	18.1	33,227	226.87
3.00	38.8	19.9	42,408	319.83
3.50	47.7	21.8	52,136	424.62
4.00	57.3	23.6	62,629	546.71
4.50	67.5	25.5	73,778	682.21
5.00	78.3	27.3	85,582	834.84

Reach R3C: Ditch 3C

Summary for Reach R4B: Ditch 4B

 Inflow Area =
 1.160 ac,100.00% Impervious, Inflow Depth =
 4.16" for 25-yr event

 Inflow =
 7.49 cfs @
 11.96 hrs, Volume=
 0.403 af

 Outflow =
 6.53 cfs @
 11.99 hrs, Volume=
 0.403 af, Atten=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Max. Velocity= 3.43 fps, Min. Travel Time= 3.6 min Avg. Velocity = 3.43 fps, Avg. Travel Time= 3.6 min

Peak Storage= 1,427 cf @ 11.99 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 4.00', Capacity at Bank-Full= 611.76 cfs

Custom stage-perimeter table, n= 0.025 104 Intermediate values determined by Multi-point interpolation Length= 750.0' Slope= 0.0103 '/' Inlet Invert= 433.30', Outlet Invert= 425.57'

Depth (feet)	End Area (sg-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)
0.00	0.0	0.0	0	0.00
0.50	4.2	9.8	3,150	14.41
1.00	9.6	12.3	7,200	49.11
1.50	15.8	14.1	11,850	102.86
2.00	22.6	16.0	16,950	171.69
2.50	30.1	17.8	22,575	257.81
3.00	38.2	19.7	28,650	358.45
3.50	46.9	21.5	35,175	476.03
4.00	56.3	23.3	42,225	611.76

Reach R4B: Ditch 4B

Summary for Pond EDB: East Basin

Inflow	Area	a =	33.320 ac,10	0.00% Impe	ervious,	Inflow Dept	th =	3.76	6" for	25-yr	event	
Inflow		=	82.79 cfs @	12.23 hrs,	Volume	= 10	.431 ส	af				
Outflov	N	=	0.00 cfs @	0.00 hrs,	Volume	= 0	.000 a	af, A	Atten=	100%,	Lag= 0.0 m	in

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.39' @ 120.00 hrs Surf.Area= 3.785 ac Storage= 10.431 af

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage	Description			
#1	428.00'	12.773 af	Custon	n Stage Data	(Conic)Listed	below (Recalc)	
Elevation (feet)	Surf.Are (acres	ea Inc.St s) (acre-fe	ore eet)	Cum.Store (acre-feet)	Wet.Area (acres)		
428.00	0.09	02 0.0	000	0.000	0.092		
429.00	0.27	7 5 0.1	175	0.175	0.275		
430.00	0.55	59 0.4	409	0.584	0.559		
431.00	2.76	64 1.	522	2.106	2.764		
432.00	3.62	. 3.	186	5.292	3.628		
433.00	3.74	0 3.0	683	8.975	3.746		
433.30	3.77	' 5 1.'	127	10.102	3.782		
433.50	3.79	.0 80	757	10.860	3.806		
434.00	3.85	56 1.9	913	12.773	3.866		

Pond EDB: East Basin

Summary for Pond TB1: Temp Basin 1

[63] Warning: Exceeded Reach R1C INLET depth by 1.39' @ 26.25 hrs [62] Hint: Exceeded Reach R2C OUTLET depth by 4.24' @ 26.09 hrs

Inflow Area	a =	29.460 ac,10	0.00% Impervious,	Inflow Depth = 4	4.16" for	25-yr event
Inflow	=	107.51 cfs @	12.14 hrs, Volume	e 10.223 a	ıf	
Outflow	=	79.94 cfs @	12.23 hrs, Volume	e 9.092 a	af, Atten= 2	8%, Lag= 5.5 min
Primary	=	79.94 cfs @	12.23 hrs, Volume)= 9.092 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.39' @ 26.02 hrs Surf.Area= 0.696 ac Storage= 1.133 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inve	ert Av	/ail.Storage	e Stor	age Description			
#1	430.0	0'	1.633 a	f Cus	tom Stage Data (Conic)Listed	l below (Recalc)	
Elevatio (fee 430.0 431.0 432.0 433.0 433.3 433.5 434.0	n Su t) (00 00 00 00 00 00 00	rf.Area 0.093 0.204 0.360 0.587 0.638 0.776 0.889	Inc. (acre (((((((((((((((((((Store -feet) 0.000 0.145 0.278 0.278 0.469 0.184 0.141 0.141	Cum.Store (acre-feet) 0.000 0.145 0.423 0.892 1.076 1.217 1.633	Wet.Area (acres) 0.093 0.204 0.360 0.588 0.639 0.777 0.890		
Device #1	Routing Primary		<u>Invert (</u> 429.61' 2 L In r	Dutlet D 24.0" R = 61.0' nlet / Or = 0.013	evices ound Culvert X 4 RCP, groove end utlet Invert= 429.6 Concrete pipe, s	. 00 d projecting, 1' / 429.00' \$ traight & clea	Ke= 0.200 S= 0.0100 '/' Cc= 0.900 an	

Primary OutFlow Max=79.31 cfs @ 12.23 hrs HW=433.17' TW=431.96' (Dynamic Tailwater) -1=Culvert (Outlet Controls 79.31 cfs @ 6.31 fps)

Pond TB1: Temp Basin 1

Summary for Pond TB2: Temp Basin 2

[62] Hint: Exceeded Reach R3C OUTLET depth by 7.57' @ 25.35 hrs [62] Hint: Exceeded Reach R4B OUTLET depth by 7.57' @ 25.30 hrs

Inflow Area	a =	34.200 ac,10	0.00% Impervious,	Inflow Depth = 4.	.16" for 2	25-yr event
Inflow	=	127.80 cfs @	12.13 hrs, Volume	= 11.868 af		
Outflow	=	91.95 cfs @	12.22 hrs, Volume	= 10.320 af	, Atten= 28	3%, Lag= 5.3 min
Primary	=	91.95 cfs @	12.22 hrs, Volume	= 10.320 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.14' @ 25.30 hrs Surf.Area= 0.641 ac Storage= 1.551 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Stora	ge Stora	age Description			
#1	426.00'	2.184	af Cust	om Stage Data	(Conic)Listed be	elow (Recalc)	
Elevation (feet)	Surf.Are	ea Ind s) (acr	c.Store e-feet)	Cum.Store (acre-feet)	Wet.Area (acres)		
426.00	0.00)3	0.000	0.000	0.003		
427.00	0.02	27	0.013	0.013	0.027		
428.00	0.07	72	0.048	0.061	0.072		
429.00	0.13	35	0.102	0.163	0.135		
430.00	0.2	16	0.174	0.336	0.217		
431.00	0.31	15	0.264	0.600	0.316		
432.00	0.41	17	0.365	0.965	0.419		
433.00	0.58	33	0.498	1.463	0.585		
433.30	0.70)8	0.193	1.656	0.710		
433.50	0.72	25	0.143	1.800	0.727		
434.00	0.8	12	0.384	2.184	0.815		
Device I	Routing	Invert	Outlet De	vices			
#1 6	Primary	424.89'	24.0" Ro L= 89.0' Inlet / Ou n= 0.013	RCP, groove en tlet Invert= 424.8 Concrete pipe, s	I.00 Id projecting, Ke 9' / 424.00' S= straight & clean	e= 0.200 0.0100 '/' C	c= 0.900

Primary OutFlow Max=91.05 cfs @ 12.22 hrs HW=432.44' TW=430.55' (Dynamic Tailwater) -1=Culvert (Outlet Controls 91.05 cfs @ 7.25 fps) Pond TB2: Temp Basin 2

Summary for Pond WDB: West Basin

[80] Warning: Exceeded Pond TB2 by 0.01' @ 119.99 hrs (5.13 cfs 29.199 af)

Inflow Ar	rea =	36.590 ac,10	0.00% Impervious,	Inflow Depth = 3.6	66" for 25-yr event
Inflow	=	93.75 cfs @	12.22 hrs, Volume	= 11.150 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af,	Atten= 100%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.14' @ 120.00 hrs Surf.Area= 2.315 ac Storage= 11.150 af

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Stora	ge Description		
#1	424.00'	13.163 af	West	ern Basin Data ((Conic)Listed	below (Recalc)
Elevation (feet)	Surf.Are (acre	ea Inc.S es) (acre-	store feet)	Cum.Store (acre-feet)	Wet.Area (acres)	
424.00	0.02	20 0	.000	0.000	0.020	
425.00	0.15	58 0	.078	0.078	0.158	
426.00	0.32	21 0	.235	0.313	0.321	
427.00	0.60	01 0	.454	0.767	0.602	
428.00	0.90	05 0	.748	1.514	0.906	
429.00	1.34	47 1	.119	2.633	1.348	
430.00	2.03	36 1	.680	4.313	2.038	
431.00	2.12	23 2	.079	6.392	2.128	
432.00	2.2	11 2	.167	8.559	2.219	
433.00	2.30	02 2	.256	10.815	2.314	
433.30	2.32	29 0	.695	11.510	2.342	
433.50	2.34	48 0	.468	11.978	2.362	
434.00	2.39	94 1	.185	13.163	2.410	

					Geo	osyntec ^D
						consultants
				Page	17	of 19
Written by:	Jesus Sanchez	Date: 1/12/10	Reviewed by:	Ganesh Krishnan	Date:	1/12/10
Client:	Honeywell Project	t: Onondaga Lake Design	SCA Final	Project No.: GJ4	299 Ta	ask No.: 17

Attachment 5 – Manning Coefficients (HydroCAD, 2005)

17 19 1/12/10 Task No.: of Date: Geosyntec[⊅] 18 consultants GJ4299 **Ganesh Krishnan** Page Project No.: Reviewed by: Onondaga Lake SCA Final Design 1/12/10 Date: Project: **Jesus Sanchez** Client: Honeywell Written by:

Type of channel and description	Minimum	Normal	Maximum	Type of channel and description	Minimum	Normal	Maximum
CLOSED CONDUITS FLOWING PARTLE FULL				R. LINED OR RUITAUD CHANNELS			
A-1. Dictal	0000	0.010	0.013	B-1. Metal			
b. Steel				a. Emooth steel surface			
1. Lockhar and welded	0.010	0.012	0.014	1. Uppainted	0.011	0.012	0.014
2. Riveted and spiral	0.013	0.016	0.017	2. Painted	0.012	0.013	0.017
c. Cast iron				b. Corrugated	0.021	0.025	0.030
1. Coated	0.010	0.013	0.014	B-2. Nonmetal			
2. Uncoated	0.011	0.014	0.016	a. Cement			
d. Wrought iron				1. Neat, surface	0.010	0,011	0.013
1. Black	0.012	0.014	0.015	2. Mortar	0.011	0.013	0.015
2. Galvanized	0.013	0.016	0.017	b. Wood			
Compated matel				 Planed, untreated 	0.010	0.012	0.014
1. Subdrain	0.017	0.019	0.021	2. Flaned, creosoted	0.011	0.012	0.015
2. Storm drain	0.021	0.024	0.030	3. Unplaned	0.011	0.013	0.015
A.P. Nonmetal				4. Plank with battens	0.012	0.015	0.018
a Tanita	800 0	0000	0.010	5. Lined with roofing paper	0.010	0.014	0.017
A Glam	0000	0.010	2.013	e. Conereta			
· Comont				1. Trowel finish	0.011	0.013	0.015
a Comente	0 010	110 0	0.013	2. Float finish	0.013	0.015	0.016
A. LIGHT BULLEUS	110 0	0.012	0.015	3. Finished, with gravel on bottom	0.015	0.017	0.020
A Consulta	110.0	010-0		4. Unfinished	0.014	0.017	0.020
1 Colvert straight and free of dahrie	0.010	0.011	0.013	5. Gunite, good section	0.016	0.019	0.023
2. Culvert with bends, connections.	0.011	0.013	0.014	6. Gunite, wavy section	0.018	0.022	0.025
and some debris				7. On good excavated rock	0.017	0.020	
3. Finished	0.011	0.012	0.014	8. On irregular excevated rock	0.022	0.027	
4. Sewer with manholes, inlet, etc.,	0.013	0.015	0.017	d. Concrete bottom float finished with	4		
etraioht				sides of	_		
5. Unfinished, steel form	0.012	0.013	0.014	1. Dressed stone in mortar	0.015	0.017	0.020
6. Thefnished smooth wood form	0.012	0.014	0.016	2. Random stone in mortar	0.017	0.020	0.024
7. Unfinished, rough wood form	0.015	0.017	0.020	Cement rubble masonry, plastered	0.016	0.020	0.024
Wood				4. Cement rubble masonry	0.020	0.025	0.030
1. Stave	0.010	0.012	0.014	Dry rubble or riprap	0.020	0.030	0.035
2. Laminated, treated	0.015	0.017	0.020	 Gravel bottom with sides of 			
f. Clay				1. Formed concrete	0.017	0.020	0.025
1. Common drainage tile	0.011	0.013	0.017	2. Random stone in mortar	0.020	0.023	0.026
2. Vitrified sewer	0.011	0.014	0.017	Dry rubble or riprap	0.023	0.033	0.036
3. Vitrified sewer with manholes, inlet,	0.013	0.015	0.017	J. Brick			
ete.				1. Glased	0.011	0.013	0.015
4. Vitrified subdrain with open joint	0.014	0.016	0.018	2. In cement mortar	0.012	0.015	0.018
g. Brickwork	,			g. Masoury		-	
1. Glazed	0.011	0.013	0.015	1. Comented rubble	10.0	0.020	0.000
2. Lined with cement mortar	0.012	0.015	0.017	 LUTY FUDDIG Theread achieve 	0.012	0.015	0.017
h. Canitary sewers coated with sewage	210.0	210.0	0.016	A denhalt			
slimes, with bends and connections			~~~~	1 Smooth	0 013	0.013	
4. Faved invert, sewer, smooth bottom	910.0	0.019	0.000	9 Bouch	0.016	0.016	
7. Jourone masonry, cemented	0.010	070.0	0.000	2 Voundal Bining			0.500

0

Appendix C: Manning's Number Tables

This table reprinted from OPEN CHANNEL HYDRAULICS by Ven Te Chow, Copyright 1959 by McGraw-Hill, with the permission of the publisher.

140

_

HydroCAD Technical Reference -

		of 19	1/12/10	ask No.: 17
¢ CO	ıts	19	Date:	
ynte	nsultar		ishnan	GJ4
Geos	CO	Page	Ganesh Kı	Project No.:
			Reviewed by:	SCA Final
			1/12/10	ndaga Lake gn
			Date:	Ono Desi
			unchez	Project:
			Jesus Sa	Honeywell
			Written by:	Client:

VALUES OF THE ROUGENESS C	OFFFICIENT	n (contin	(pan	VALUES OF THE ROUGHNESS C	OEPFICIENT	n (contin	(pon
Type of channel and description	Minimum	Normal	Maximum	Type of channel and description	Minimum	Normal	Maximum
C. EXCAVATED OR DEEDGED a. Earth straight and uniform				b. Mountain streams, no vegetation in channel, banks usually steep, trees			
1. Clean, recently completed	0.016	0.018	0.020	and brush along banks submerged at			
 Clean, after westhering Gravel, uniform section, clean 	0.022	0.025	0.080	1. Bottom: gravels, cobbles, and few	0.030	0.040	0.050
4. With abort grass, few weeds	0.022	0.027	0.033	boulders			
b. Earth, winding and sluggish				2. Bottom: cobbles with large boulders	0.040	0.050	0.070
1. No vegetation	0.023	0.025	0.030	D-2. Flood plains			
2. Grass, some weeds	0.025	0.030	0.083	a. Pasture, no brush	0.005	0.000	0.005
o. Dense weeds of squarto plants in deen channels	0.00	000-0	0.040	2. High grass	0.030	0.035	0.050
4. Earth bottom and rubble sides	0.028	0.030	0.035	b. Cultivated areas			
5. Stony bottom and weedy banks	0.025	0.035	0.040	1. No crop	0.020	0.030	0.040
6. Cobble bottom and clean sides	0:030	0.040	0.050	2. Mature row crops	0.025	0.035	0.045
c. Dragline-excavated or dredged		1		3. Mature field crops	0.030	0.040	0.050
1. No vegetation	0.025	0.028	0.033	c. Jsrush	0.005	020 0	0.000
2. Light brush on banks	0.035	0.00	0.050	1. CONTRETED DILLEN, DENVY WEEDS	200.0	0.000	0.000
a. Hock cuts	1 000	0.005	0.040	2. Light hrush and trees in minute	010	000	0.000
2. Jawad and irrentar	0.035	000	050.0	4. Medium to dense brush, in winter	0.045	010.0	0110
e. Channels not maintained, weeds and				5. Medium to dense brush, in summer	0.070	0.100	0.160
brush uncut				d. Trees	_		
 Dense weeds, high as flow depth 	0.050	0.080	0.120	1. Dense willows, summer, straight	0.110	0.150	0.200
2. Clean bottom, brush on sides	0.040	0.050	0.080	2. Cleared land with tree stumps, no	0.030	0.040	0.050
3. Same, highest stage of flow	0.045	0.070	0.110	sprouts		-	
4. Dense brush, high stage	0.080	0.100	0.140	3. Same as above, but with heavy	0.050	0.060	0.080
D. NATURAL STREAMS				growth of sprouts	000 0		001.0
D-1. Minor streams (top width at nood stage				4. DECVY SUADO OF LIMBER, & IEW DOWN	0.080	0.100	0.1.0
<100 It) a Streams on viain	,			below hranches			
1. Clean, straight, full stage, no rifts or	0.025	0.030	0.033	5. Same as above, but with flood stage	0.100	0.120	0.160
deep pools				reaching branches		_	
2. Same as above, but more stones and	0.030	0.035	0.040	D-3. Major streams (top width at flood stage			
weeds				>100 ft). The m value is less than that		_	
3. Clean, winding, some pools and	0.033	0.040	0.045	lor minor streams of similar description, herause hanks offer less effortive resistance			
4. Same as above, but some weeds and	0.035	0.045	0.050	a. Regular section with no boulders or	0.025		0.060
stones	_			brush			
5. Same as above, lower stages, more	0.040	0.048	0.055	b. Irregular and rough section	0.035	:	0.100
ineffective slopes and sections		0.010	000 0				
0. Dame as 4, but more stones	0.045	0.00	0.000				
 Suggau reactes, weary, usep prote Very weary reaches, deen mods, or 	0.075	0.100	0.150				
floodways with heavy stand of tim-							
ber and underbrush							

Appendix C: Manning's Number Tables (continued)

This table reprinted from OPEN CHANNEL HYDRAULICS by Ven Te Chow, Copyright 1959 by McGraw-Hill, with the permission of the publisher.

HydroCAD Technical Reference

141