APPENDIX B DREDGE PRODUCTIVITY CALCULATIONS

Client: Honeywell By: XDH Date: Subject: Dredge Production Assessment Checked: MTO

Appendix B Dredging Productivity Calculations

Rev. 1

1.0 Introduction

This calculation presents the dredging productivity of 5000 gpm slurry at 10% solids content by weight. Calculations under other slurry flow rate and solids content use the same set of equations and procedures and the results are summarized in **Section 2.1.2**.

2. 0 Assumptions

Water density: $\rho_w \coloneqq 62.4 \frac{lb}{ft^3}$

Maximum flow rate: q := 5000gpm

Slurry solids content by weight: $P_c := 10\%$

Average specific gravity, based on Appendix A:

Remediation Area A: $Gs_A := 2.68$

Remediation Area B: $Gs_B := 2.80$

Remediation Area C: $Gs_C = 2.80$

Remediation Area D: $Gs_D = 2.54$

Remediation Area E: $Gs_E := 2.63$

In-situ average water content, based on Appendix A:

Remediation Area A: $WC_A := 80.7\%$

Remediation Area B: $WC_R := 68.4\%$

Remediation Area C: $WC_C := 68.4\%$

Remediation Area D: $WC_D = 148.5\%$

Remediation Area E: $WC_E = 61.3\%$

Note: Specific gravity and water content of Remediation Area B are assumed to be the same as Remediation Area C.

Dredge volume (base plus contingency volume):

$$cy := 27ft^3$$

Remediation Area A: $V_A := 171000 \text{cy}$

Remediation Area B: $v_B := 25000 cy$

Remediation Area C: $v_C = 49000cy$

Remediation Area D: $v_D = 1204000cy$

Remediation Area E: $V_E = 723000 \text{cy}$

Total volume: $V_T := V_A + V_B + V_C + V_D + V_E$ $V_T = 2.172 \times 10^6 \text{ cy}$

Date: 2/24/2010

Sheet: 2 of 4

3.0 Slurry Water Content

$$WC_{slurry} := \frac{1 - P_s}{P_s}$$

4.0 In-situ Dry Density

$$\mbox{Remediation Area A:} \quad \rho_{d_A} \coloneqq \frac{\rho_w}{\frac{1}{Gs_A} + wc_A}$$

$$\rho_{d_A} = 52.9 \frac{lb}{ft^3}$$

$$\mbox{Remediation Area B:} \quad \begin{array}{c} \rho_{d_B} \coloneqq \frac{\rho_w}{\frac{1}{Gs_B} + WC_B} \end{array} \qquad \qquad \rho_{d_B} = 59.9 \frac{lb}{ft^3}$$

$$\rho_{d_B} = 59.9 \frac{lb}{ft^3}$$

Remediation Area C:
$$\rho_{d_C} \coloneqq \frac{\rho_w}{\frac{1}{Gs_C} + wc_C}$$

$$\rho_{d_C} = 59.9 \frac{lb}{ft^3}$$

$$\mbox{Remediation Area D:} \quad \rho_{d_D} \coloneqq \frac{\rho_w}{\frac{1}{Gs_D} + wc_D}$$

$$\rho_{d_D} = 33.2 \frac{lb}{ft^3}$$

Remediation Area E:
$$\frac{\rho_{d}}{\frac{1}{Gs_{E}} + WC_{E}}$$

$$\rho_{d_E} = 62.8 \, \frac{\text{lb}}{\text{ft}^3}$$

5.0 Weight of Total Dry Solids

$$W_{s_A} := V_A \cdot \rho_{d_A}$$

$$W_{s_A} := V_A \cdot \rho_{d_A}$$
 $W_{s_A} = 1.221 \times 10^5 \text{ ton}$

$$W_{s_B} := V_B \cdot \rho_{d_B}$$

$$W_{s_B} := V_B \cdot \rho_{d_B}$$
 $W_{s_B} = 2.023 \times 10^4 \text{ ton}$

$$W_{s_C} := V_C \cdot \rho_{d_C}$$
 $W_{s_C} = 3.965 \times 10^4 \text{ ton}$

$$W_{s,D} := V_{D} \cdot \rho_{d,D}$$

$$W_{s,D} = 5.399 \times 10^5 \text{ ton}$$

$$W_{s_E} := V_E \cdot \rho_{d_E}$$

$$W_{s-E} := V_{E} \cdot \rho_{d-E}$$
 $W_{s-E} = 6.132 \times 10^{5} \text{ ton}$

6.0 Slurry Specific Gravity

$$Gsm_A := \frac{1 + WC_{slurry}}{\frac{1}{Gs_A} + WC_{slurry}}$$

$$Gsm_A = 1.07$$

$$Gsm_B := \frac{1 + WC_{slurry}}{\frac{1}{Gs_{D}} + WC_{slurry}}$$

Sheet: <u>3 of 4</u> Date: <u>2/24/2010</u> Rev. 1

Remediation Area C: $Gsm_C := \frac{1 + WC_{slurry}}{\frac{1}{Gs_C} + WC_{slurry}}$ $Gsm_C = 1.07$

Remediation Area D:
$$Gsm_D := \frac{1 + WC_{slurry}}{\frac{1}{Gs_D} + WC_{slurry}}$$

$$Gsm_D = 1.06$$

Remediation Area E:
$$Gsm_E := \frac{1 + WC_{slurry}}{\frac{1}{Gs_E} + WC_{slurry}}$$

$$Gsm_E = 1.07$$

7.0 Dry Solids Flow Rate

Remediation Area A: Solids_A :=
$$q \cdot Gsm_A \cdot \rho_W \cdot P_s$$
 Solids_A = 2.67 × 10⁵ $\frac{lb}{hr}$

$$\mbox{Remediation Area B:} \qquad \mbox{Solids}_B := \mbox{q-Gsm_B-$$\rho$_w$-P_S} \qquad \qquad \mbox{Solids}_B = 2.674 \times \mbox{10^5} \frac{\mbox{lb}}{\mbox{hr}} \label{eq:solids}$$

$$\mbox{Remediation Area C:} \qquad \mbox{Solids}_{C} \coloneqq \mbox{q·Gsm_C·} \mbox{ρ_{W}} \cdot \mbox{P_{S}} \qquad \qquad \mbox{Solids}_{C} = 2.674 \times 10^{5} \frac{\mbox{lb}}{\mbox{hr}}$$

Remediation Area D: Solids_D :=
$$q \cdot Gsm_D \cdot \rho_W \cdot P_s$$
 Solids_D = $2.664 \times 10^5 \frac{lb}{hr}$

Remediation Area E:
$$Solids_E := q \cdot Gsm_E \cdot \rho_W \cdot P_S$$
 $Solids_E = 2.668 \times 10^5 \frac{lb}{hr}$

8.0 Production Rate

Remediation Area A:
$$PR_A := \frac{Solids_A}{\rho_{d_A}}$$
 $PR_A = 187 \frac{cy}{hr}$

Remediation Area B:
$$PR_B := \frac{Solids_B}{\rho_{d_B}}$$
 $PR_B = 165 \frac{cy}{hr}$

Remediation Area C:
$$PR_C := \frac{Solids_C}{\rho_{d_C}}$$
 $PR_C = 165 \frac{cy}{hr}$

Remediation Area D:
$$PR_D := \frac{Solids_D}{\rho_{d-D}}$$
 $PR_D = 297 \frac{cy}{hr}$

Remediation Area E:
$$PR_E := \frac{Solids_E}{\rho_{d_E}}$$
 $PR_E = 157 \frac{cy}{hr}$

9.0 Dredging Time Required

9.1 Dredge days for each Remediation Area

Assuming 17 working hours per day, which is approximately 70%.

Remediation Area A:
$$\mathrm{DAY}_A \coloneqq \frac{\mathrm{V}_A}{\mathrm{PR}_A \cdot 70\%}$$
 $\mathrm{DAY}_A = 54\,\mathrm{day}$

Remediation Area B:
$$DAY_B := \frac{V_B}{PR_B \cdot 70\%}$$
 $DAY_B = 9 \text{ day}$

Sheet: 4 of 4 Date: 2/24/2010

Rev. 1

Remediation Area C:
$$DAY_C := \frac{V_C}{PR_C \cdot 70\%}$$

$$DAY_C = 18 day$$

$$\mbox{Remediation Area D:} \qquad \mbox{DAY}_D \coloneqq \frac{\mbox{V}_D}{\mbox{PR}_D \cdot 70\%}$$

$$DAY_D = 241 day$$

$$\label{eq:payeq} \text{Remediation Area E:} \quad \ \, \text{DAY}_E \coloneqq \frac{v_E}{\text{PR}_E \cdot 70\%}$$

$$DAY_E = 274 day$$

9.2 Total dredge days

$$\mathsf{DAY}_T \coloneqq \mathsf{DAY}_A + \mathsf{DAY}_B + \mathsf{DAY}_C + \mathsf{DAY}_D + \mathsf{DAY}_E \ \ \mathsf{DAY}_T = \mathsf{596}\,\mathsf{day} \qquad \quad \mathsf{DAY}_T = \mathsf{85.1}\,\mathsf{week}$$

$$DAY_T = 85.1$$
 week

9.3 Total working days in one season

Assume each dredge season is 30 weeks (Apr. 15 to Nov. 15), total 210 days. Assume 32 Metro shutdown days

Season :=
$$210day - 32day$$

$$Season = 178 day$$

9.4 Total seasons required

$$Season_T := \frac{DAY_T}{Season}$$

 $Season_T = 3.35$