A-3

Evaluation of Hydraulic Performance for SCA Final Cover Design

an affiliate of Geosyntec Consultants

CALCULATION PACKAGE COVER SHEET

Client:	Honeywell Project:	Onondaga L	ake SCA Final Cover Des	sign Project/Proposal #:	GD5497
TITLE C	DF COMPUTATIONS	EVALUATION	OF HYDRAULIC PERFO	RMANCE FOR SCA FINAL CO	VER DESIGN
COMPUT	ATIONS BY:	Signature Printed Name and Title	Ray Wa Senior Staff Engineer		08/20/15 DATE
ASSUMP PROCED	TIONS AND URES CHECKED BY:	Signature Printed Name and Title	Sowmya Bulusu, P.E. Senior Engineer	;;	08/20/15 DATE
COMPUT BY:	TATIONS CHECKED	Signature Printed Name and Title	Clinton Carlson Senior Staff Engineer	dsan	08/20/15 DATE
COMPUT BACKCH	CATIONS IECKED BY:	Signature Printed Name and Title	Ray Wu Senior Staff Engineer	OF NEW YOR	08/20/15 DATE
APPROV	ED BY:	Signature Printed Name and Title	Jay Beech, Ph.D., P.E. Senior Principal		5 DATE
APPROV	AL NOTES:			ROFESSIONA	/
REVISIO	NS (Number and initial all revi	isions)			
NO.	SHEET	DATE	BY C	CHECKED BY AP	PROVAL

		Beech and Bonaparte P engineering p.c.			
		an affiliate of Geosyntec Consultants			
		Page 2 of 55			
Written by: Ray Wu / Clinton Carlson	Date: 08/20/2015 Reviewed by:	Sowmya Bulusu / Jay Beech Date: 08/20/2015			
Client: Honeywell Project:	Onondaga Lake SCA Final Cover Design	Project/ Proposal No.: GD5497 Task No.: 03			

EVALUATION OF HYDRAULIC PERFORMANCE FOR SCA FINAL COVER DESIGN

INTRODUCTION

This package was prepared in support of the final cover design of the Sediment Consolidation Area (SCA) for the Onondaga Lake Bottom Site, located on Wastebed 13 (WB-13). This package presents an analysis of the hydraulic performance of the proposed SCA final cover system, which includes geosynthetics and soil components. The analysis presented in this package has three main objectives:

- 1. Evaluate the infiltration rate through the proposed SCA final cover system. The infiltration rate through the cover system is used to calculate the amount of liquid to be pumped through the base liner liquid management system (LMS) after placement of the final cover of the SCA in the calculation package titled "Sump and Riser Calculations for SCA Final Cover Design".
- 2. Evaluate the impingement rate on the proposed SCA final cover system. The impingement rate on the SCA final cover system is used to calculate the thickness of the geocomposite drainage layer and spacing of 4-inch diameter drainage collection pipes required to maintain an acceptable liquid head above the final cover geomembrane liner as discussed later in this package.
- 3. Calculate the liquid head on the proposed SCA final cover system. The liquid head on the SCA final cover system is used to analyze the veneer stability of the final cover system in the calculation package titled "Veneer Stability Analyses for SCA Final Cover Design".

METHODOLOGY

The water balance analysis of the SCA final cover system was performed using the "Hydraulic Evaluation of Landfill Performance" (HELP) software, Version 3.07 developed by the U.S. Environmental Protection Agency. HELP is a quasi-two-dimensional hydrologic model of water movement across, into, through, and out of landfills. The model accepts weather, soil, and design data and accounts for the effects of surface storage, snowmelt, runoff, infiltration, evapotranspiration, vegetative growth, lateral drainage, and leakage through liners [Schroeder et al., 1994]. The outputs from HELP were used to calculate the liquid head above the geomembrane

						Beech and Bonaparte P engineering p.c.			
						an affilia	te of Geosyntec	Consultants	
						Page	3	of	55
Written by:	Ray Wı Ca	ı / Clinton rlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay I	Beech Date	e: 08/20/	2015
Client: Ho	neywell	Project:	Onond Design	aga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03

and infiltration rate through the geomembrane as discussed below. It is noted that the HELP software is limited in only being able to model one slope per simulation.

Due to the varying slopes comprising the SCA final cover system (i.e., the downstream slope is steeper than the upstream slope), the design method for liquid collection layers on two different slopes proposed by Giroud et al. [2000] was used to calculate the maximum liquid head above the geocomposite drainage layer on the slopes of the SCA final cover. The upstream slope is defined as the gently sloping areas of the top and main decks, including the side slopes along the top deck (referred to as "SCA top area"). The downstream slope is defined as the side slopes along the main deck (referred to as "main deck side slopes").

The maximum liquid head on the upstream slope $(t_{up max})$ was calculated using the following equation [Giroud et al., 2000]:

$$t_{up\,max} \approx \frac{q_h(L_{up})}{k_{up}(\sin\beta_{up})}$$

where,

\mathbf{q}_{h}	=	liquid impingement rate (i.e., rate of liquid supply per unit horizontal area);
Lup	=	horizontal length of upstream slope;
kup	=	hydraulic conductivity of liquid collection layer on upstream slope; and
β_{up}	=	slope angle of liquid collection layer on upstream slope.

The maximum liquid head on the downstream slope (t_{down max}) was calculated using the following equation [Giroud et al., 2000]:

$$t_{down\,max} \approx \frac{q_h(L_{up} + L_{down})}{k_{down}(\sin\beta_{down})}$$

where,

 q_h = liquid impingement rate (i.e., rate of liquid supply per unit horizontal area);

 L_{up} = horizontal length of upstream slope;

L_{down} = horizontal length of downstream slope;

 k_{down} = hydraulic conductivity of liquid collection layer on downstream slope; and

 β_{down} = slope angle of liquid collection layer on downstream slope.

The liquid impingement rate was determined using the HELP model outputs. The above equations from Giroud et al. [2000] are applicable when a geosynthetic liquid collection layer (i.e.,

					Beech and Bonaparte P engineering p.c.				
					an affiliate of	Geosyntec	Consultants		
					Page	4	of	55	
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beed	c h Date	e: 08/20)/2015	
Client: Hone	eywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.: 0	D5497	Task No.:	: 03	

geocomposite) is present on both the downstream and upstream slopes. An example calculation of the maximum liquid head is included in Attachment 1.

The infiltration rate through the SCA final cover system was calculated using the calculated liquid head and equation proposed by Giroud [1997]:

$$Q_{leakage \ per \ area} = \frac{n * 0.976 * C_{qo} * \left[1 + 0.1 * \left(\frac{h}{t_u}\right)^{0.95}\right] * d^{0.2} * h^{0.9} * k_u^{0.74}}{A}$$

where,

Qleakage per area	=	leakage rate per geomembrane area;
А	=	geomembrane area;
n	=	number of defects per geomembrane area;
C _{qo}	=	contact quality factor;
h	=	hydraulic head on top of the geomembrane;
tu	=	thickness of the underlying soil layer;
ku	=	hydraulic conductivity of the underlying soil layer; and
d	=	diameter of circular defect.

The geomembrane was assumed to contain one hole per acre and have good contact with the soil layer below, both of which can typically be achieved during construction. The holes in the geomembrane were assumed to be 0.16 in^2 , following the recommendations of Giroud and Bonaparte [1989]. An example calculation of the infiltration rate through the geomembrane is included in Attachment 2.

SCA FINAL COVER DESIGN

In general, the SCA final cover system consists of gently sloping (i.e., approximately 1% slopes) areas of the top and main decks with maximum side slopes of 4 horizontal to 1 vertical (4H:1V or 25%) and 3.33 horizontal to 1 vertical (3.33H:1V or 30%) along the top and main decks, respectively.

The SCA final cover system consists of the following layers, from top to bottom, as shown in Figures 1 and 2:

		Beech and Bonaparte P engineering p.c.				
			an affiliate of	Geosyntec C	Consultants	
			Page	5	of	55
Written by: Ray Wu / Clinton Carlson	Date: 08/20	0/2015 Reviewed by:	Sowmya Bulusu / Jay Beed	ch Date:	08/20/2	015
Client: Honeywell Project:	Onondaga La Design	ke SCA Final Cover	Project/ Proposal No.: 6	GD5497	Task No.:	03

- Vegetative soil layer;
- Protective soil layer;
- Geocomposite drainage layer with drainage collection pipes;
- Geomembrane (GM) liner;
- Geotextile cushion layer; and
- Leveling layer.

The allowable maximum liquid head above the final cover geomembrane on the SCA top area was set to a target value of approximately 12 inches. An SCA final cover system without a geocomposite drainage layer was evaluated initially, which resulted in a saturated cover soil with a maximum peak daily liquid head greater than 24 inches. To reduce the maximum liquid head above the final cover geomembrane to the target value of approximately 12 inches, a geocomposite drainage layer and 4-inch diameter drainage collection pipes were added to the cover system. On the main deck side slopes, the allowable maximum liquid head must be contained within the geocomposite thickness.

CASES ANALYZED

Both the gently sloping areas of the SCA top area (i.e., upstream slope), and the main deck side slopes (i.e., downstream slope) have been considered as part of the analyses in this package. The target maximum peak daily liquid head above the GM cover is approximately 12 inches on the SCA top area and less than the thickness of the geocomposite drainage layer on the main deck side slopes.

For the SCA top area, the two following cases were evaluated:

- Case 1: SCA final cover system without a geocomposite drainage layer or 4-inch diameter drainage collection pipes; and
- Case 2: SCA final cover system with a geocomposite drainage layer and 4-inch diameter drainage collection pipes.

The geocomposite on the SCA top area is assumed to be single-sided with a nonwoven, needlepunched geotextile.

		Beech and en	Beech and Bonaparte P engineering p.c.				
		an affiliate of Geo	osyntec Consultants				
		Page	6 of 55				
Written by: Ray Wu / Clinton Carlson	Date: 08/20/2015 Reviewed	by: Sowmya Bulusu / Jay Beech	Date: 08/20/2015				
Client: Honeywell Project:	Onondaga Lake SCA Final Cov Design	er Project/ Proposal No.: GDS	5497 Task No.: 03				

For the main deck side slopes, the two following cases were evaluated:

- Case 3: SCA final cover system with a geocomposite drainage layer with the same thickness on the SCA top area; and
- Case 4: SCA final cover system with a thicker geocomposite drainage layer on the main deck side slopes.

For both of these cases, the geocomposite used for the drainage layer on the main deck side slopes is assumed to be double-sided with nonwoven, needle-punched geotextiles.

INPUT PARAMETERS

The HELP software accepts parameters for layer type, hydraulic conductivity (K) for each layer, drainage path length, slope, moisture storage values, and climate. These parameters are further discussed below.

Material Layer Properties

The material layers in the SCA final cover system include the vegetative soil layer, protective soil layer, geocomposite drainage layer, drainage collection pipes, GM liner, geotextile cushion layer, and leveling layer, as discussed above and shown in Figures 1 and 2. Specific properties for the different layers of materials are included in Table 1 and are discussed below. It is noted that the HELP default parameters were used to select the total porosity, field capacity, and wilting point of each layer, however, the hydraulic conductivity was modified to better represent expected or potentially critical conditions.

The proposed vegetative soil layer has a thickness of 6 inches and is modeled as a sandy silt with a hydraulic conductivity of 1.0×10^{-4} cm/s (based on the default hydraulic conductivity value [3.7×10^{-4} cm/s] for soils similar to sandy silts in HELP). The proposed protective soil layer has a thickness of 18 inches and is modeled as a sandy clay material with a hydraulic conductivity of 1.0×10^{-5} cm/s (based on the default hydraulic conductivity value [3.3×10^{-5} cm/s] for soils similar to sandy clays in HELP).

The purpose of the geocomposite drainage layer is to reduce the liquid head on the GM and in turn, improve the final cover veneer stability. A 200-mil, single-sided geocomposite with a measured transmissivity of $1.0 \times 10^{-3} \text{ m}^2/\text{s}$ (i.e., design hydraulic conductivity of approximately 2.7 cm/s considering reduction factors) was used for the SCA top area. Both 200-mil and 250-mil, double-sided geocomposites with measured transmissivities of $1.0 \times 10^{-4} \text{ m}^2/\text{s}$ (i.e., design hydraulic

					Beech and Bonaparte P engineering p.c.			
					an affiliate	e of Geosyntec (Consultants	
					Page	7	of	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay B	eech Date	: 08/20	/2015
Client: Hone	eywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03

conductivity of approximately 0.27 cm/s considering reduction factors) and $5.0 \times 10^{-4} \text{ m}^2/\text{s}$ (i.e., design hydraulic conductivity of approximately 1.1 cm/s considering reduction factors), respectively, were analyzed for the main deck side slopes. The design hydraulic conductivity of the geocomposites was calculated assuming the following reduction factors:

 RF_{CR} = Reduction factor for creep = 1.20; RF_{IN} = Reduction factor for delayed intrusion = 1.10; RF_{CD} = Reduction factor for chemical degradation = 1.20; RF_{PC} = Reduction factor for particulate clogging = 1.20; RF_{CC} = Reduction factor for chemical clogging = 1.20; RF_{BC} = Reduction factor for biological clogging = 1.30; and FS = Overall factor of safety = 2.50.

An example calculation of the design hydraulic conductivity for the single-sided geocomposite on the SCA top area is shown in Attachment 3.

Drainage collection pipes with a 4-inch diameter were added beneath the geocomposite drainage layer to reduce the length of the longest possible drainage path on the SCA top area. The spacing of the drainage collection pipes was selected such that the calculated liquid head was less than the target liquid head (approximately 12 inches) on the SCA top area.

The cover GM was modeled using the HELP model parameters for a low-density polyethylene (LDPE) liner, available in the HELP database. As discussed previously, the GM was assumed to contain one hole per acre and have good contact with the soil layer below.

The leveling layer and geotextile cushion layer are not intended to serve as a low permeability barrier, and is not expected to have a significant impact on the infiltration through the GM cover or the liquid head build-up on top of the GM cover. Therefore, these layers were not modeled as part of these analyses.

Drainage Path Lengths and Slopes

As mentioned previously, the final cover slopes on the gently sloping areas of the top and main decks will be a minimum of 1.0% towards the side slopes. The transition between the top and main decks has maximum side slopes of 4H:1V. The longest possible drainage path along the SCA top area to the main deck side slopes is approximately 1,300 ft in length without drainage collection pipes, as shown in Figure 3. With 4-inch diameter drainage collection pipes spaced at approximately 100 ft, the longest possible drainage path along the SCA top area is reduced to 150

					Beech and Bonaparte P engineering p.c.				
					an affiliai	te of Geosyntec	Consultants	5	
					Page	8	of	55	
Written by: Ray Wu / Carls	Clinton son	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay E	Beech Date	e: 08/2	20/2015	
Client: Honeywell	Project:	Onond Design	aga Lake SCA	A Final Cover	Project/ Proposal No.:	GD5497	Task No	o.: 03	

ft as shown in Figure 4. A slope of 1% has been conservatively assumed for the entire drainage path length along the SCA top area.

For the main deck side slopes, the drainage path length is approximately 100 ft. The minimum side slope is 4H:1V and the maximum side slope is 3.33H:1V based on final design grades.

Climate Data

The data for precipitation, temperature, humidity, and solar radiation were modeled using the HELP software synthetic data generation function for Syracuse, New York for a 100-year modeling period. This generation used recorded mean monthly data for Syracuse, shown in Table 2, to stochastically generate daily data with approximately the same statistical characteristics as the historic data. The precipitation data were manually adjusted to account for the design storm event of a 25-year, 24-hour rainfall. The rainfall corresponding to the design storm event was selected to be 4.4 inches based on recommendations from the Natural Resources Conservation Service [NRCS, 1986], as shown in Figure 5. The evaporative zone depth, which is the maximum depth from which water may be removed by evapotranspiration, was assumed to be 24 inches, corresponding to the total thickness of the vegetative soil layer and the protective soil layer in the final cover system. For this analysis, it was assumed that a good stand of grass will be established on the final cover system; therefore, the leaf area index (i.e., the dimensionless ratio of leaf area of active vegetation to the nominal surface area) of 3.5 was selected. Values of the climate parameters are shown in Table 3.

RESULTS OF ANALYSIS

The results of the HELP model analyses for Cases 1 through 4 are summarized in Table 4, and the HELP output files are included in Attachment 4. For the SCA top area, the initial calculation for a 1300 ft drainage length without a geocomposite drainage layer resulted in a calculated maximum liquid head of approximately 34 inches (see Case 1). To achieve the target maximum peak daily liquid head of approximately 12 inches, a 200-mil single-sided geocomposite drainage layer must be installed and a drainage length of approximately 150 ft must be achieved (see Case 2). A drainage length of 150 ft can be achieved by installing 4-inch diameter drainage collection pipes within the SCA final cover system.

For the main deck side slopes, the initial calculation for a 200-mil double-sided geocomposite and 100 ft drainage length resulted in a maximum peak daily liquid head of 0.53 inches, which is more than twice the thickness of the 200-mil (i.e., 0.2 inches) geocomposite drainage layer (see

						Beech and Bonaparte P engineering p.c.			
						an affilia	te of Geosynte	c Consultants	
						Page	9	of	55
Written by:	Ray	Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay H	Beech Da	te: 08/2	0/2015
Client: H	Ioneywell	Project:	Onond Design	aga Lake SCA	A Final Cover	Project/ Proposal No.:	GD5497	Task No	.: 03

Case 3). Using a 250-mil (i.e., 0.25 inches) thick double-sided geocomposite on the main deck side slopes results in a maximum peak daily liquid head of 0.14 inches, which can be contained within the geocomposites thickness (see Case 4).

SUMMARY AND CONCLUSIONS

This package presents the analyses of the hydraulic performance of the proposed SCA final cover system using the HELP model. The evaluation presented in this package has three main objectives: (i) evaluate the infiltration rate through the proposed SCA final cover system; (ii) evaluate the impingement rate on the SCA final cover; and (iii) evaluate the liquid head above the GM in the final cover system on the SCA. The analysis indicates a calculated average annual liquid infiltration rate through the SCA final cover system of approximately 0.1 gallons per minute. Additionally, the analysis indicates a calculated average annual liquid impingement rate on the SCA final cover system of approximately 0.02 inches per day.

To achieve the target liquid heads above the GM liner, a 250-mil double-sided geocomposite drainage layer is required on the main deck side slopes and a 200-mil single-sided geocomposite with 4-inch diameter drainage collection pipes spaced every 100 ft is required on the SCA top area. The drainage collection pipes should terminate where the geocomposite daylights in the SCA perimeter ditches at the base of the main deck side slopes. A cross section of the drainage collection pipes is shown in Figure 1, while a plan view of the layout of the drainage collection pipes is shown in Figure 4. When these components are included in the final cover system, the calculated peak daily liquid heads in the cover system are approximately 0.14 inches and 12 inches for the main deck side slopes and SCA top area, respectively.

		Beech a	Beech and Bonaparte P engineering p.c.				
		an affiliate oj	f Geosyntec Consultants				
		Page	10 of 55				
Written by: Ray Wu / Clinton Carlson	Date: 08/20/2015 Re	eviewed by: Sowmya Bulusu / Jay Bee	ch Date: 08/20/2015				
Client: Honeywell Project:	Onondaga Lake SCA Fin Design	al Cover Project/ Proposal No.: (G D5497 Task No.: 03				

REFERENCES

- Giroud, J.P. "Equations for Calculating the Rate of Liquid Migration Through Composite Liners Due to Geomembrane Defects", Geosynthetics International, Vol.4, No.3-4, 1997.
- Giroud, J.P. and Bonaparte, R. "Leakage Through Liners Constructed with Geomembranes, Part I: Geomembrane Liners", Geotextiles and Geomembranes, Vol.8, No.1, 1989.
- Giroud, J.P., Zornberg, J.G., and Beech, J.F "Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers Comprising Two Different Slopes", Geosynthetics International, Vol. 7, Nos. 4-6, 2000.
- Natural Resources Conservation Service (NRCS), "Urban Hydrology for Small Watersheds", 210-VI-TR-55, Second Edition, June 1986.
- Schroeder, P.R., et al. "The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3", EPA/600/9-94/xxx, U.S. EPA Risk Reduction Engineering Laboratory, Cincinnati, OH, 1994.

					Beech ar e an affiliate of G	nd Bon nginee Geosyntec (aparte ring p.c.	D
					Page	11	of	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beecl	n Date	: 08/2	20/2015
Client: Hor	eywell Project:	Onond Design	laga Lake SCA 1	Final Cover	Project/ Proposal No.: G	D5497	Task No	o.: 03

Tables

					Beech and Bonaparte P engineering p.c.				
					an affiliate	of Geosyntec (Consultants		
					Page	12	of	55	
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Be	ech Date	: 08/20	/2015	
Client: Hone	eywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03	

Table 1: Material Properties of Layers within SCA Final Cover System

Layer	Description ^[1]	Layer Type ^[2]	HELP Default ^[3]	HELP USCS Name	Thickness (in)	k (cm/s) ^[4]
1	Vegetative Soil Layer	1	8	ML	6.00	1.00E-04
2	Protective Layer	2	13	SC	18.00	1.00E-05
	Geocomposite Drainage Layer (200-mil Single-Sided)				0.20	2.66E+00
3	Geocomposite Drainage Layer (200-mil Double-Sided)	2	20	Drainage Net (0.5 cm)	0.20	2.70E-01
(Geocomposite Drainage Layer (250-mil Double-Sided)				0.25	1.06E+00
4	Geomembrane ^[5]	4	36	LDPE	0.04	4.00E-13

Notes:

- 1. This is a general description of each layer.
- 2. The following layer types are available in the HELP model: 1 = Vertical Percolation, 2 = Lateral Drainage, 3 = Barrier Soil Liner, 4 = Geomembrane Liner (GM).
- 3. This is the HELP default soil texture number. It is noted that the hydraulic conductivity of each layer may be changed from the HELP default to better represent expected or potentially critical conditions. All input parameters can be found in the HELP output files provided in Attachment 2.
- 4. Geocomposite hydraulic conductivity values represent the design hydraulic conductivity considering reduction factors as discussed in Attachment 3.
- 5. This layer was modeled as low density polyethylene (LDPE) GM, using typical values from the HELP database. Selection of a different GM type will not affect the results significantly.

					Beech and Bonaparte P engineering p.c.					
					an affiliat	e of Geosyntec	Consultants			
					Page	13	of	55		
Written by: Ray Wu / Carls	Clinton on	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay B	Beech Date	e: 08/20)/2015		
Client: Honeywell	Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03		

Table 2: Normal Mean Precipitation and Temperature Data for Syracuse, NY

Month	Precipitation (in.)	Temperature (°F)
January	2.61	22.80
February	2.65	24.00
March	3.11	33.30
April	3.34	46.10
May	3.16	57.00
June	3.63	66.30
July	3.76	70.90
August	3.77	69.30
September	3.29	62.10
October	3.14	51.30
November	3.45	40.60
December	3.20	28.30

Note:

These are the default normal mean monthly values of precipitation and temperature for Syracuse, NY, available in the HELP software.

					Beech and Bonaparte P engineering p.c.				
					an affiliate of Geosyntec Consultants				
					Page	14	of 55		
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/2015		
Client: Hone	eywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.: GD	5497	Task No.: 03		

 Table 3: Climate Parameters for Syracuse, NY and Other Parameters for the SCA Final Cover

 System (HELP Default Values Unless Stated Otherwise)

Parameter	Value	Units
Fraction of Area allowing Runoff	100%	percent of total area
Evaporative Zone Depth	24	inches
Latitude	43.07	degrees
Maximum Leaf Area Index	3.5 ^[3]	
Start of Growing Season (date)	124 ^[4]	
End of Growing Season (date)	284 ^[4]	
Planar Area ^[1]	1	acre
Average Annual Wind Speed	9.7	miles/hr
Average 1st Quarter Relative Humidity	72%	
Average 2nd Quarter Relative Humidity	68%	
Average 3rd Quarter Relative Humidity	75%	
Average 4th Quarter Relative Humidity	76%	
Peak Daily Rainfall, 25-year, 24-hour storm event ^[2]	4.40	inches

Notes:

- 1. The area was modeled as one acre to produce values on a per-acre basis. This was multiplied by the total number of acres to calculate total flow rates over the entire area of the SCA. The total area of the SCA is approximately 50 acres.
- 2. Value from National Resources Conservation Service data shown in Figure 5.
- 3. This value corresponds to a good stand of grass on top of the final cover.
- 4. These dates correspond to May 4 through October 11.

an affiliate of Geosyntec Consultants

						Page	15	of	55
Written by	Ray Wu / Carlso	Clinton on	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Bee	ech Date	: 08/20/2	2015
Client: I	Honeywell	Project:	Ononda Design	aga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03

Table 4: Results of HELP Modeling, Giroud [1997], and Giroud et al. [2000] Calculations for the SCA Final Cover System

		G 1			Peak Daily Values				Average Annual Values				
Taataa	C	Geocomposite	Drainage	Curve	Infiltration	Infiltration	Impingement	LL (in)	Infiltration	Infiltration	Impingement	Impingement	
Location	Case	1 nickness (mil)	Length (ft)	Number ^[1]	Rate	Rate	Rate	п _{MAX} (Ш)	Rate	Rate	Rate	Rate	H _{AVG} (in)
		(1111)			(ft ³ /ac-day)	(gal/min)	(in./day)	cover	(ft ³ /ac-yr)	(gal/min)	(in./yr)	(in./day)	cover
SCA Top Ama	1	-	1300	69.1	1.1	0.3	0.00	34.1	140.6	0.1	0.1	< 0.01	8.9
SCA Top Alea	2	200	150	72.8	0.4	0.1	0.24	12.2	18.3	< 0.1	6.6	0.02	0.1
Main Deck Side	3	200	100	75.9	< 0.1	< 0.1	0.33	0.53 ^[3]	0.2	< 0.1	6.5	0.02	< 0.1 ^[3]
Slopes	4	250	100	75.9	< 0.1	< 0.1	0.35	0.14 ^[3]	0.2	< 0.1	6.5	0.02	< 0.1 ^[3]

Notes:

-

- 1. The curve number was calculated by HELP based on model inputs.
- 2. The target maximum peak daily liquid head (H_{MAX}) above the GM cover is 12 inches on the SCA top area and less than the thickness of the geocomposite on the main deck side slopes.
- 3. The equations of Giroud et al. [2000] were used to calculate the maximum peak daily liquid head (H_{MAX}) and average annual daily liquid head (H_{AVG}) for the main deck side slopes since the calculations involved a change in slope.
- 4. The SCA was assumed to have a total acreage of 50 acres.
- 5. The HELP Output files are included in Attachment 4.

					Beech and er	d Bona 1gineeri	iparte P ing p.c.	
					an affiliate of Ge	osyntec Co	onsultants	
					Page	16	of 5	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/2	015
Client: Ho	neywell Project:	Onone	laga Lake SCA	A Final Cover	Project/ Proposal No.: GD	95497 [°]	Task No.:	03

Figures

Figure 1: Cross Section of Final Cover System for SCA Top Area (i.e., Gently Sloping Areas of the Top and Main Decks and Top Deck Side Slopes)

						Beech	and Boi enginee	naparte [©] ering p.c.	•
						an affiliai	e of Geosyntec	Consultants	
						Page	18	of	55
Written l	by: Ray	7 Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay F	Beech Date	e: 08/20/	2015
Client:	Honeywell	Project:	Onond Design	aga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03
					RUNOFF		.5' 1.5'		
		GEOCOMPOSITE DRAINAGE LAYER-			PROTECTIVE SOIL	LAYER	VARIES		
		SLOTTED DRAINA COLLECTION PIPE 4" DIA (MIN)——	GE	GE	OTEXTILE CUSHION	GEOTEXTILE TUBES			

Figure 2: Cross Section of Final Cover System for Main Deck Side Slopes

Figure 3: Design Top of Final Cover Grading Plan

Note:

The grading plan shown here is based on a topographic survey of the SCA conducted December 7, 2014. It is noted that minor revisions to the grading plan are not expected to significantly impact the HELP calculation results.

Figure 4: Plan View of Drainage Collection Pipe Layout (100 ft distance between pipes reduces drainage length to approximately 150 ft).

Note:

The grading plan shown here is based on a topographic survey of the SCA conducted December 7, 2014. Drainage collection pipes terminate where the geocomposite drainage layer daylights in SCA perimeter ditches at the base of the main deck side slopes.

					Beech and Bonaparte P engineering p.c.				
					an affiliate of Ge	eosyntec Co	nsultants		
					Page	21	of 55		
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/2015		
Client: Hone	eywell Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.: GD	5497	Гask No.: 03		

Figure 5: NRCS Map for Calculation of 25-year, 24-hour Storm Event [NRCS, 1986]

Note:

The value selected for the model is 4.40 inches, based on the approximate location of Onondaga Lake.

				Beech an er	d Bona ngineeri	ing p.c.	
				an affiliate of G	eosyntec Cc	onsultants	
				Page	22	of 5	55
Written by: Ray Wu / Clinton Carlson	n Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/2	015
Client: Honeywell Proj	ect: Onone Design	daga Lake SCA n	A Final Cover	Project/ Proposal No.: GE)5497	Task No.:	03

Attachment 1: Example Calculation of Liquid Head on Two Different Slopes [Giroud et al., 2000]

							Beec	h and en	d Bona	aparte ^v ing p.c.	
							an affilia	ate of Ge	eosyntec Co	onsultants	
							Page		23	of	55
en by: Ray W	ı / Clinton rlson	Date:	08/20	/2015	Reviewed by:	Sowmya Bu	ılusu / Jay	Beech	Date:	08/20)/201
		Onon	daga La	ke SCA F	Final Cover	Project/ Pro	posal No.:	GD	5497	Task No.:	
It: Honeywell	Projec	t: Desig	n 1.18E-07	7 m/s	< Peak Daily	Impingement I	Rate Calcula	ted in F	IELP		
Impingement Rate, Slope Geometry	Projec	t: Desig in./day	1.18E-07	7 m/s	< Peak Daily	Impingement F	Rate Calcula Main Deck Si	ted in F	IELP		
Impingement Rate, of Slope Geometry Upstream Slope (i.e. Drainage Length, D _{in}	Projec h 0.4 . SCA Top Are 150	t: Desig in./day ea)	1.18E-07	7 m/s	< Peak Daily Downstrea	Impingement F m Slope (i.e., N ength, D _{rlown}	Rate Calcula Main Deck Si 100 ft	ted in F de Slop	HELP Des) 30.48	m	
t: Honeywell Impingement Rate, of Slope Geometry Upstream Slope (i.e. Drainage Length, D _{up} Inclination, β _{up}	Projec h 0.4 SCA Top Are 150 0.57	t: Desig in./day :a) ft	1.18E-07 45.72 0.01	7 m/s m rad	< Peak Daily Downstrea Drainage L Inclination	Impingement F m Slope (i.e., Ν ength, D _{down}	Rate Calcula Main Deck Si 100 ft 14.03 °	ted in H de Slop	IELP Des) 30.48 0.24	m rad	
t: Honeywell Impingement Rate, Slope Geometry Upstream Slope (i.e. Drainage Length, D _{up} Inclination, β _{up} Horizontal Length, L	Projec 	t: Desig in./day ra) ft ft	1.18E-07 45.72 0.01 45.72	7 m/s m rad m	< Peak Daily Downstrea Drainage L Inclination Horizontal	Impingement F m Slope (i.e., N ength, D _{down} , β _{down} Length, L _{down}	Rate Calcula Main Deck Si 100 ft 14.03 ° 97 ft	ted in H de Slop	IELP Des) 30.48 0.24 29.57	m rad m	
t: Honeywell Impingement Rate, of Slope Geometry Upstream Slope (i.e. Drainage Length, D _{up} Inclination, β _{up} Horizontal Length, L	Projec 	t: Desig in./day ra) ft β _{up}	1.18E-07 45.72 0.01 45.72	7 m/s m rad m	< Peak Daily Downstrea Drainage L Inclination Horizontal	Impingement F m Slope (i.e., N ength, D _{down} , β _{down} Length, L _{down} Ldown	Rate Calcula Main Deck Si 100 ft 14.03 ° 97 ft η = D _{down} * β _d	ted in H de Slop : :	IELP Des) 30.48 0.24 29.57	m rad m	
t: Honeywell Impingement Rate, of <u>Slope Geometry</u> Upstream Slope (i.e. Drainage Length, D _{up} Inclination, β _{up} Horizontal Length, L	Projec Projec SCA Top Are 150 0.57 p 150 $L_{up} = D_{up} *$ ties of Geoco	t: Desig in./day a) ft β _{up} proposite Dr	1.18E-07 45.72 0.01 45.72	7 m/s m rad m	< Peak Daily Downstrea Drainage L Inclination Horizontal	Impingement Γ m Slope (i.e., N ength, D _{down} , β _{down} Length, L _{down} L _{down}	Rate Calcula Main Deck Si 100 ft 14.03 ° 97 ft $n = D_{down} * \beta_d$	ted in F de Slop : :	IELP 30.48 0.24 29.57	m rad m	
t: Honeywell Impingement Rate, Slope Geometry Upstream Slope (i.e. Drainage Length, D _{up} Inclination, β _{up} Horizontal Length, L Hydraulic Conductiv Geocomposite Used	Projec 	t: Desig in./day ft ft β _{up} pmposite Dr r, single-sid	1.18E-07 45.72 0.01 45.72 rainage La led, 200-n	7 m/s m rad m ayer nil	< Peak Daily Downstrea Drainage L Inclination Horizontal	Impingement f m Slope (i.e., Ν ength, D _{down} , β _{down} Length, L _{down} Lawn Lawn	Rate Calcula Main Deck Si 100 ft 14.03 ° 97 ft _n = D _{down} * β _d Biplanar, do	ted in F de Slop : : : : : : : : : :	HELP 9es) 30.48 0.24 29.57 ided, 250	m rad m ⊢mil	

t _{up,max} 0.02 m	t _{down,max} 3.45E-03 m
0.80 in	0.14 in

 $t_{up max} \approx \frac{q_h L_{up}}{k_{up} \sin \beta_{up}}$

 $t_{down max} = \frac{q_h \left(L_{up} + L_{down} \right)}{k_{down} \sin \beta_{down}}$

					Beech an e	l d Bona ngineeri	aparte ^P ing p.c.	•
					an affiliate of G	leosyntec Co	onsultants	
					Page	24	of	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/	2015
Client: Hon	eywell Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.: GI)5497	Task No.:	03

Attachment 2: Example Calculation of Infiltration Rate through Geomembrane [Giroud, 1997]

an affiliate of Geosyntec Consultants

						Page	25	of	55
Written	by: R	ay Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay B	eech Date	e: 08/20	0/2015
Client:	Honeywe	ll Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03

Input Parameters	Eng	lish Units	S	I Units
Geomembrane (GM) area, A	1	acre	4047	m ²
Liquid Head on top of GM, h	12.2	in	0.31	m
Thickness of underlying layer, t _u	2	ft	0.61	m
Permeability of underlying layer, k _u	1.85E-07	ft/s	5.65E-08	m/s
Contact quality factor, C _{go}	0.21	-	0.21	-
Number of defects, n	1	-	1	-
Diameter of circular defect, d	0.45	in.	0.01	m

Calculated Leakage Rate Per GM Area	En	glish Units	SI Units	
Q _{leakage per area}	3.00	gal/acre/day	3.29E-11 m ³ /s/m ²	

$$Q_{leakage \ per \ area} = \frac{n * 0.976 * C_{qo} * \left[1 + 0.1 * \left(\frac{h}{t_u}\right)^{0.95}\right] * d^{0.2} * h^{0.9} * k_u^{0.74}}{A}$$

					Beech an e	ld Bona ngineeri	iparte ^D	*
					an affiliate of C	Geosyntec Co	onsultants	
					Page	26	of	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/	2015
Client: Hor	eywell Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.: GI	05497	Task No.:	03

Attachment 3: Example Calculation of Geocomposite Transmissivity

					Beech and er	d Bona ngineer	aparte ⁽ ing p.c.	>
					an affiliate of Ge	eosyntec C	Consultants	
					Page	27	of	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20	/2015
Client: Hon	eywell Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.: GD	5497	Task No.:	03

The specified value of transmissivity measured in a laboratory can be converted to a design hydraulic transmissivity by accounting for several reduction factors and an overall factor of safety, with the following equation:

$$\theta_{des} = \frac{\theta_{lab}}{RF_{CR} * RF_{IN} * RF_{CD} * RF_{PC} * RF_{CC} * RF_{BC} * FS}$$

Where:

- θ_{des} = Transmissivity for Design;
- θ_{lab} = Laboratory Measured Transmissivity = 1.0x10⁻³ m²/s (i.e., 200-mil, single-sided geocomposite on SCA top areas);
- RF_{CR} = Reduction factor for creep = 1.20;
- RF_{IN} = Reduction factor for delayed intrusion = 1.10;
- RF_{CD} = Reduction factor for chemical degradation = 1.20;
- RF_{PC} = Reduction factor for particulate clogging = 1.20;
- RF_{CC} = Reduction factor for chemical clogging = 1.20;
- RF_{BC} = Reduction factor for biological clogging = 1.30; and
- FS = Overall factor of safety = 2.50.

Based on the above equation, the calculated design transmissivity for the geocomposite on the SCA top areas is 1.35×10^{-4} m²/s. This can be converted to hydraulic conductivity using the following equation:

$$k = \frac{\theta}{t}$$

Where:

- k = Hydraulic conductivity;
- θ = Geocomposite transmissivity = 1.35x10⁻⁴ m²/s (as calculated above); and
- $t = \text{Geocomposite thickness} = 5.08 \times 10^{-3} \text{ m}$ (i.e., 200 mil or 0.2 in.).

Therefore, the calculated hydraulic conductivity for design is 2.66 cm/s.

					Beech an er	d Bona ngineeri	iparte 🏳 ing p.c.	
					an affiliate of G	eosyntec Co	onsultants	
					Page	28	of 55	5
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/20	15
Client: Hor	eywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.: GI)5497	Task No.:	03

Attachment 4: HELP Output Files

					Beech an er	d Bona ngineeri	aparte [©] ing p.c.	>
					an affiliate of G	eosyntec Co	onsultants	
					Page	29	of	55
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20	/2015
Client: Hor	eywell Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.: GI	05497	Task No.:	03

CASE 1: SCA TOP AREA WITHOUT A GEOCOMPOSITE DRAINAGE LAYER OR DRAINAGE COLLECTION PIPE

engineering p.c. an affiliate of Geosyntec Consultants Page 30 of 55 Ray Wu / Clinton Written by: Date: 08/20/2015 Reviewed by: Sowmya Bulusu / Jay Beech Date: 08/20/2015 Carlson **Onondaga Lake SCA Final Cover** Project: Project/ Proposal No.: Client: Honeywell GD5497 Task No.: 03 Design ** * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY * * * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * * * * * ** * * PRECIPITATION DATA FILE: \OLPRECIP.D4 TEMPERATURE DATA FILE: \OLTEMP.D7 SOLAR RADIATION DATA FILE: \OLSOLAR.D13 EVAPOTRANSPIRATION DATA: \OL LAI35.D11 SOIL AND DESIGN DATA FILE: \1-NO GC.D10 OUTPUT DATA FILE: \1-NO_GC.OUT TIME: 12:1 DATE: 6/30/2015 ******* TITLE: Onondaga Lake SCA Closure NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. LAYER 1 _____ TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 108 THICKNESS = 6.00 INCHES 0.4630 VOL/VOL POROSITY = FIELD CAPACITY 0.2320 VOL/VOL = 0.1160 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = 0.4575 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-04 CM/SEC LAYER 2 ____ TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 113 THICKNESS 18.00 INCHES = 0.4300 VOL/VOL POROSITY = 0.3210 VOL/VOL FIELD CAPACITY = WILTING POINT = 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4317 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-05 CM/SEC = 1.00 PERCENT SLOPE = 1300.0 DRAINAGE LENGTH FEET

Beech and Bonaparte

						Bee	Beech and Bonapart engineering p.					
						an affi	liate of Ge	osyntec (Consultants			
						Page		31	of	55		
Written by:	Ray Wu / Cl Carlson	linton 1	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay	y Beech	Date	: 08/2	0/2015		
Client: Ho	neywell	Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.	: GD	5497	Task No	.: 03		
				layer 3								
		TYPI	E 4 - I	FLEXIBLE MEM	BRANE LINER							
	THICKNE	MZ	ATERIAI	L TEXTURE NU	MBER 36	IF S						
	POROSIT	Y		=	0.0000 VOL/	VOL						
	FIELD C	APACITY		=	0.0000 VOL/	VOL						
	WILTING	POINT	FFR COM		0.0000 VOL/	VOL						
	EFFECTI	VE SAT. H	HYD. CO	DND. = 0.	3999999993000E	-12 CM/SEC						
	FML PIN	HOLE DENS	SITY	=	0.00 HOLE	IS/ACRE						
	FML INS FMI. PI.A	CEMENT O	N DEFE(TALTTY	CTS = 3	1.00 HOLE	S/ACRE						
				-								
	SCS RUNOFF FRACTION O AREA PROJE	GOOD STAN AND A SLO CURVE NU F AREA AN CTED ON H	ND OF (DPE LEN JMBER LLOWIN(HORIZON	GRASS, A SUR IGTH OF 1300 G RUNOFF ITAL PLANE	FACE SLOPE OF . FEET. = 69.10 = 100.0 = 1.000	' 1.% PERCENT ACRES						
	EVAPORATIV	E ZONE DI	EPTH		= 24.0	INCHES						
	UPPER LIMI	TER IN EV T OF EVAI	PORATIN	TIVE ZONE /E STORAGE	= 10.516 = 10.518	INCHES						
	LOWER LIMI	T OF EVAL	PORATIV	/E STORAGE	= 4.674	INCHES						
	INITIAL SN	OW WATER	VED M7	יחביסדאד פ	= 0.000	INCHES						
	TOTAL INIT	IAL WATER	3.1717 1.17	TERIADS	= 10.516	INCHES						
	TOTAL SUBS	URFACE II	NFLOW		= 0.00	INCHES/YEAR						
		EVAPOTI	RANSPIE	RATION AND W	EATHER DATA							
	NOTE: EV	APOTRANSI	PIRATIO	ON DATA WAS	OBTAINED FROM	I						
		SIRACUSE		NEW	YORK							
	STATI	ON LATIT	JDE		= 43	.07 DEGREES						
	MAXIM	UM LEAF A	AREA IN	NDEX ASON (TUTTAN	= 3	124						
	END O	F GROWIN	G SEAS	N (JULIAN D	ATE) =	284						
	EVAPO	RATIVE ZO	ONE DEI	PTH	= 24	.0 INCHES						
	AVERA AVERA	GE ANNUAI GE 1ST OT	L WIND	SPEED RELATIVE HI	= 9 10 MTDTTY = 72	./U MPH						
	AVERA AVERA AVERA	GE 2ND QU GE 3RD QU GE 4TH QU	JARTER JARTER	RELATIVE HU RELATIVE HU	MIDITY = 68 MIDITY = 75 MIDITY = 76							

	Beech and eng an affiliate of Geos Page Page											
							Р	age	32	of	55	
ritten by:	Ray Wi Ca	u / Clinton arlson	Date:	08/20/201	5 Review	ved by: S	owmya Bul	usu / Jay Beech		: 08/20)/2015	
lient: H e	oneywell	Project:	Onond Design	aga Lake S	CA Final C	over I	Project/ Prop	osal No.: GI	05497	Task No.:	. 0.	
	NOTE:	PRECIPITAT COEFFICI	TION DAT	'A WAS SYI DR SYRA	NTHETICALI ACUSE	Y GENERAJ	TED USING EW YORK					
		NORMAL N	iean mon	THLY PRE	CIPITATION	(INCHES)						
	JAN/JUL	FEB/AUG	MAR/	SEP A	APR/OCT	MAY/NOV	/ JUN/	DEC				
	2.61 3.76	2.65 3.77	3. 3.	11 29	3.34 3.14	3.16 3.45	3. 3.	63 20				
	NOTE:	TEMPERATUF COEFFICI	RE DATA TENTS FO	WAS SYNTI DR SYRA	HETICALLY ACUSE	GENERATEI NE	D USING EW YORK					
	N	ORMAL MEAN N	IONTHLY	TEMPERAT	JRE (DEGRE	ES FAHREN	JHEIT)					
	JAN/JUL	FEB/AUG	MAR/	SEP 2	APR/OCT	MAY/NOV	/ JUN/	DEC				
	22.80 70.90	24.00 69.30	33. 62.	30 10	46.10 51.30	57.00 40.60	66. 28.	30 30				
	NOTE:	SOLAR RADI COEFFICI AND SI	ATION E ENTS FO ATION I	DATA WAS S DR SYRI ATITUDE	SYNTHETICA ACUSE = 43.07	ALLY GENEF NF DEGREES	RATED USIN EW YORK	G				
***	********* AVERA	************ GE MONTHLY \	******* /ALUES I	N INCHES	FOR YEARS	********** 5 1 THF	*********** ROUGH 100	****				
			JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC				
PR	ECIPITATIO	- N										
	TOTALS	_	2.59	2.72	3.16	3.27	3.09	3.71				
	STD. DEVIA	TIONS	0.70 1.67	0.96 1.76	1.19 1.60	1.19 1.16	1.31 1.19	1.57 0.76				
RU	NOFF											
	 TOTALS		0.889 0.055	1.771 0.023	5.193 0.039	2.052 0.252	0.492 1.048	0.308 1.446				
	STD. DEVIA	TIONS	0.970 0.413	1.706 0.165	2.501 0.182	1.404 0.561	0.701	0.666 1.062				

EVAPOTRANSPIRATION TOTALS
0.491
0.405
0.470
1.837
2.914
5.448
5.583
3.820
2.212
1.093
0.761
0.507

an affiliate of Geosyntec Consultants

							P	age	33	of	33
tten b	oy: Ray	y Wu / Clinton Carlson	Date:	08/20/2015	Reviewe	d by: S	owmya Bul	ısu / Jay Be	e ch Date	: 08/20	0/20 1
ent:	Honeywell	Project:	Onond Design	aga Lake SCA	A Final Co	ver	Project/ Prop	osal No.:	GD5497	Task No.	:
	STD. DE	VIATIONS	0.080 1.135	0.076 1.332	0.172 0.695	0.717 0.183	0.835 0.146	0.656 0.120			
	LATERAL D	RAINAGE COLLECT	ED FROM	i layer 2							
	TOTALS		0.0001	0.0000	0.0001	0.0005	5 0.0006 2 0.0005	0.0003 0.0006			
	STD. DE	VIATIONS	0.0001 0.0001	0.0000	0.0001 0.0001	0.0002	2 0.0001 3 0.0004	0.0001 0.0003			
	PERCOLATI	ON/LEAKAGE THRO	UGH LAY	ER 3							
	TOTALS		0.0045	0.0038	0.0045 0.0016	0.0100	5 0.0155 9 0.0103	0.0118 0.0117			
	STD. DE	VIATIONS	0.0013 0.0032	0.0004	0.0011 0.0038	0.0036	5 0.0005 5 0.0067	0.0013 0.0046			
	DAILY AVE	RAGE HEAD ON TO	P OF LA	YER 3							
	DAILY AVE	RAGE HEAD ON TO	P OF LA	YER 3							
	AVERAGE	RAGE HEAD ON TO	P OF LA 4.4064 4.7325	YER 3 3.8803 1.4559	4.3791 2.1355	13.9741 6.3271	L 20.8395 L 14.0326	16.2045 14.9159			
	AVERAGE STD. DE	RAGE HEAD ON TO	P OF LA 4.4064 4.7325 1.8106 4.2548	3.8803 1.4559 0.4340 3.6065	4.3791 2.1355 1.5550 5.2027	13.9741 6.3271 5.4595 8.7343	20.8395 14.0326 0.6349 9.3103	16.2045 14.9159 1.8954 6.4841			
**	DAILY AVE 	RAGE HEAD ON TO	P OF LA 4.4064 4.7325 1.8106 4.2548 *******	YER 3 3.8803 1.4559 0.4340 3.6065 ***********************************	4.3791 2.1355 1.5550 5.2027 ******** ********	13.9741 6.3271 5.4595 8.7343 ******** ********	L 20.8395 L 14.0326 5 0.6349 3 9.3103	16.2045 14.9159 1.8954 6.4841 ********* *********	*		
**	DAILY AVE 	RAGE HEAD ON TO	PP OF LA 4.4064 4.7325 1.8106 4.2548 ******* *******	.YER 3 3.8803 1.4559 0.4340 3.6065 ************************************	4.3791 2.1355 1.5550 5.2027 ********	13.9741 6.3271 5.4595 8.7343 ******** EARS 	L 20.8395 L 14.0326 5 0.6349 3 9.3103 ********** 1 THROUGH FEET	16.2045 14.9159 1.8954 6.4841 ********* 100 	*		
* * E	AVERAGE	RAGE HEAD ON TO S VIATIONS ************************************	P OF LA 4.4064 4.7325 1.8106 4.2548 ******* & (STE & (STE 	.YER 3 3.8803 1.4559 0.4340 3.6065 ************************************	4.3791 2.1355 1.5550 5.2027 ******** (S) FOR Y 4.823)	13.9741 6.3271 5.4595 8.7343 ******** EARS CU. H 	L 20.8395 L 14.0326 5 0.6349 3 9.3103 ********** 1 THROUGH FEET 	16.2045 14.9159 1.8954 6.4841 ********* 100 PERCENT 100.00	*		
** ** I F	AVERAGE	RAGE HEAD ON TO	PP OF LA 4.4064 4.7325 1.8106 4.2548 ******* & (STE 	.YER 3 3.8803 1.4559 0.4340 3.6065 ************************************	4.3791 2.1355 1.5550 5.2027 ******** (S) FOR Y 4.823) 3.4003) 2.5085	13.9741 6.3271 5.4595 8.7343 ******** EARS CU. H 1422 492	L 20.8395 L 14.0326 5 0.6349 3 9.3103 ********** 1 THROUGH FEET 279.7 254.68	16.2045 14.9159 1.8954 6.4841 ********* 100 PERCENT 100.00 34.618	*		
** ** F F E I	AVERAGE	RAGE HEAD ON TO S VIATIONS ************************************	PP OF LA 4.4064 4.7325 1.8106 4.2548 ******* & (STE 	.YER 3 3.8803 1.4559 0.4340 3.6065 ************************************	4.3791 2.1355 1.5550 5.2027 ******** (S) FOR Y 4.823) 3.4003) 2.5085) 0.00107)	13.9741 6.3271 5.4595 8.7343 ******** EARS CU. H 1422 492 927	L 20.8395 L 14.0326 5 0.6349 3 9.3103 ********** 1 THROUGH FEET 279.7 254.68 712.91 11.233	16.2045 14.9159 1.8954 6.4841 ********* 100 PERCENT 100.00 34.618 65.162 0.00790	*		
*** F F I I F	AVERAGE STD. DE STD. DE STD. DE AVERAGE AVERAG PRECIPITAT RUNOFF EVAPOTRANS CATERAL DR FROM LAY PERCOLATIO LAYER 3	RAGE HEAD ON TO S VIATIONS ************************************	PP OF LA 4.4064 4.7325 1.8106 4.2548 ******** * ******* * (STE 	<pre>3.8803 3.8803 1.4559 0.4340 3.6065 ***********************************</pre>	4.3791 2.1355 1.5550 5.2027 ******** (S) FOR Y 4.823) 3.4003) 2.5085) 0.00107) 0.02064)	13.9741 6.3271 5.4595 8.7343 ******** EARS CU. H 1422 492 927	L 20.8395 L 14.0326 5 0.6349 9.3103 ********** 1 THROUGH FEET 279.7 254.68 712.91 11.233 807.617	16.2045 14.9159 1.8954 6.4841 ********* 100 PERCENT 100.00 34.618 65.162 0.00790 0.21621	* * -		

engineering p.c. an affiliate of Geosyntec Consultants Page 34 of 55 Ray Wu / Clinton Written by: Date: 08/20/2015 Reviewed by: Sowmya Bulusu / Jay Beech Date: 08/20/2015 Carlson **Onondaga Lake SCA Final Cover** Project: Project/ Proposal No.: Client: Honeywell GD5497 Task No.: 03 Design CHANGE IN WATER STORAGE -0.002 (1.3963) -6.77 -0.005 PEAK DAILY VALUES FOR YEARS 1 THROUGH 100 _____ (INCHES) (CU. FT.) _____ _____ PRECIPITATION 4.40 15972.000 RUNOFF 4.342 15759.7324 DRAINAGE COLLECTED FROM LAYER 2 0.00003 0.12346 PERCOLATION/LEAKAGE THROUGH LAYER 3 0.000582 2.11189 AVERAGE HEAD ON TOP OF LAYER 3 24,000 MAXIMUM HEAD ON TOP OF LAYER 3 34.066 LOCATION OF MAXIMUM HEAD IN LAYER 2 377.3 FEET (DISTANCE FROM DRAIN) 9.62 SNOW WATER 34911.7891 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4383 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1948 *** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. FINAL WATER STORAGE AT END OF YEAR 100 _____ _____ _____ LAYER (INCHES) (VOL/VOL) ____ _____ ____ 2.7450 1 0.4575 2 7.5390 0.4188 0.0000 3 0.0000 SNOW WATER 0.046

Beech and Bonaparte

					Beech an e:	d Bona ngineeri	iparte 🗗	•		
					an affiliate of Geosyntec Consultants					
					Page	35	of	55		
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/	2015		
Client: Hor	eywell Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.: GI)5497	Task No.:	03		

CASE 2: SCA TOP AREA WITH A 200-MIL GEOCOMPOSITE DRAINAGE LAYER AND 4-INCH DIAMETER DRAINAGE COLLECTION PIPE

engineering p.c. an affiliate of Geosyntec Consultants Page 36 of 55 Ray Wu / Clinton Written by: Date: 08/20/2015 Reviewed by: Sowmya Bulusu / Jay Beech 08/20/2015 Date: Carlson **Onondaga Lake SCA Final Cover** Project: Project/ Proposal No.: Client: Honeywell GD5497 Task No.: 03 Design * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * DEVELOPED BY ENVIRONMENTAL LABORATORY * * * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * ** * * * * * * PRECIPITATION DATA FILE: C:\OLPRECIP.D4 TEMPERATURE DATA FILE: C:\OLTEMP.D7 SOLAR RADIATION DATA FILE: C:\OLSOLAR.D13 EVAPOTRANSPIRATION DATA: C:\OL LAI35.D11 SOIL AND DESIGN DATA FILE: C:\1-FN200D.D10 OUTPUT DATA FILE: C:\1-FN200D.OUT TIME: 33:50 DATE: 4/ 7/2015 TITLE: Onondaga Lake SCA Closure NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. LAYER 1 TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 108 THICKNESS INCHES = 6.00 POROSITY = 0.4630 VOL/VOL FIELD CAPACITY = 0.2320 VOL/VOL WILTING POINT = 0.1160 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4565 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-04 CM/SEC LAYER 2 _____ TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 113 THICKNESS = 18.00 INCHES 0.4300 VOL/VOL POROSITY = FIELD CAPACITY = 0.3210 VOL/VOL = WILTING POINT 0.2210 VOL/VOL 0.4109 VOL/VOL INITIAL SOIL WATER CONTENT =

Beech and Bonaparte

						Beech	Beech and Bonaparte P engineering p.c.			
						an affilia	te of Geos	yntec C	Consultants	
					F	age	,	37	of	55
Written by:	Ray Wu / Clinton Carlson	Date: 0)8/20/2015	Reviewed by:	Sowmya Bul	usu / Jay I	Beech	Date:	08/20/	2015
Client: Hon	eywell Project:	Onondag Design	a Lake SCA	A Final Cover	Project/ Prop	oosal No.:	GD54	197	Task No.:	03
	EFFECTIVE SAT.	HYD. CONE	D. = 0	.999999975000E	-05 CM/SEC					
			LAYER 3							
	THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WA EFFECTIVE SAT. SLOPE DRAINAGE LENGTH	TER CONTE HYD. CONE	= = = ENT = 0. = 2 =	0.20 INCH 0.8500 VOL/ 0.0100 VOL/ 0.0100 VOL/ 0.0100 VOL/ 2.66000009000 1.00 PERC 150.0 FEET	ES VOL VOL VOL CM/SEC ENT					
			LAYER 4							
	TYP M THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WA EFFECTIVE SAT. FML PINHOLE DEN FML INSTALLATIO FML PLACEMENT Q	E 4 - FLE ATERIAL T TER CONTE HYD. CONE SITY N DEFECTS UALITY	EXIBLE MEN EXTURE NU = = = ENT = 0. = 0 = 5 = 3 = 3	MBRANE LINER JMBER 36 0.04 INCH 0.0000 VOL/ 0.0000 VOL/ 0.0000 VOL/ 0.0000 VOL/ 399999993000E 0.00 HOLE 1.00 HOLE - GOOD	ES VOL VOL VOL -12 CM/SEC S/ACRE S/ACRE					
	GENERAL	DESIGN A	AND EVAPOR	RATIVE ZONE DA	TA					
	NOTE: SCS RUNOFF SOIL DAT GOOD STA AND A SL	CURVE NU A BASE US ND OF GRA OPE LENGI	JMBER WAS SING SOIL ASS, A SUI TH OF 150	COMPUTED FROM TEXTURE # 8 W RFACE SLOPE OF). FEET.	DEFAULT ITH A 1.%					

SCS RUNOFF CURVE NUMBER	=	72.80	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	10.136	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	10.518	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	4.674	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	10.138	INCHES
TOTAL INITIAL WATER	=	10.138	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

			Beech and Bonapart engineering p.							
					an affiliate of Geosyntec Consultants					
					Page	38	of	55		
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20	/2015		
Client: Hor	neywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.: GD	5497	Task No.:	03		

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM SYRACUSE NEW YORK

STATION LATITUDE	=	43.07	DEGREES
MAXIMUM LEAF AREA INDEX	=	3.50	
START OF GROWING SEASON (JULIAN DAT	E) =	124	
END OF GROWING SEASON (JULIAN DATE)	=	284	
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	9.70	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDI	ΓY =	72.00	00
AVERAGE 2ND QUARTER RELATIVE HUMIDI	ΓY =	68.00	010
AVERAGE 3RD QUARTER RELATIVE HUMIDI	ΓY =	75.00	90
AVERAGE 4TH QUARTER RELATIVE HUMIDI	ΓY =	76.00	90

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SYRACUSE NEW YORK

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.65	3.11	3.34	3.16	3.63
3.77	3.29	3.14	3.45	3.20
	FEB/AUG 2.65 3.77	FEB/AUG MAR/SEP 2.65 3.11 3.77 3.29	FEB/AUG MAR/SEP APR/OCT 2.65 3.11 3.34 3.77 3.29 3.14	FEB/AUG MAR/SEP APR/OCT MAY/NOV 2.65 3.11 3.34 3.16 3.77 3.29 3.14 3.45

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SYRACUSE NEW YORK

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
22.80	24.00	33.30	46.10	57.00	66.30
70.90	69.30	62.10	51.30	40.60	28.30

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR SYRACUSE NEW YORK AND STATION LATITUDE = 43.07 DEGREES

 AVERAGE MONTHLY VALUES IN INCHES FOR YEARS
 1 THROUGH
 100

 JAN/JUL
 FEB/AUG
 MAR/SEP
 APR/OCT
 MAY/NOV
 JUN/DEC

 PRECIPITATION
 ------ ------ ------ ------ ------

 TOTALS
 2.59
 2.72
 3.16
 3.27
 3.09
 3.71

 3.87
 3.95
 3.27
 2.95
 3.40
 3.22

an affiliate of Geosyntec Consultants

39 55 of Page

itten	by: Ray Wi	u / Clinton arlson	Date: 0	8/20/2015	Reviewe	d by: S	Sowmya Bulu	su / Jay B	eech Dat	e: 08/20/2	20
ent:	Honeywell	Project:	Onondaga Design	a Lake SCA	Final Cov	ver	Project/ Propo	sal No.:	GD5497	Task No.:	
	STD. DEVIA	TIONS	0.70 1.67	0.96 1.76	1.19 1.60	1.19 1.16	1.31 1.19	1.57 0.76			
	RUNOFF										
	TOTALS		0.506 0.031	1.384 0.035	4.816 0.062	1.516 0.039	0.049 0.067	0.080 0.256			
	STD. DEVIA	TIONS	0.713 0.211	1.475 0.150	2.374 0.204	1.470 0.163	0.193 0.217	0.292 0.496			
	EVAPOTRANSPI	RATION									
	TOTALS		0.490 4.158	0.404 3.533	0.468 2.211	1.855 1.141	2.949 0.788	5.254 0.510			
	STD. DEVIA	TIONS	0.081 1.412	0.077 1.227	0.174 0.713	0.734 0.197	0.830 0.149	0.736 0.122			
	LATERAL DRAII	NAGE COLLECI	ED FROM L	AYER 3							
	TOTALS		0.0484 0.0417	0.0000 0.0418	0.1201 0.0842	1.378 0.441	9 0.6625 5 1.1764	0.2505 1.1200			
	STD. DEVIA	TIONS	0.1498 0.1538	0.0000 0.2041	0.3439 0.2653	0.582 0.691	0 0.5506 9 0.8863	0.3269 0.8028	8		
	PERCOLATION/	LEAKAGE THRC	UGH LAYER	4							
	TOTALS		0.0084 0.0119	0.0000 0.0076	0.0355 0.0187	0.359	0 0.1667 2 0.2373	0.0747 0.2163			
	STD. DEVIA	TIONS	0.0264 0.0371	0.0000 0.0362	0.1000 0.0565	0.149 0.148	9 0.1341 8 0.2086	0.0653 0.1744			
-		AVERAGES OF	MONTHLY	AVERAGED	DAILY HE	ADS (IN	 CHES)		-		
	DAILY AVERAG	e head on tc)P OF LAYE	R 4							
	AVERAGES		0.0049 0.0047	0.0000 0.0046	0.0776 0.0167	0.667 0.089	8 0.1156 2 0.2918	0.0216 0.2201			
	STD. DEVIA	TIONS	0.0351 0.0383	0.0000 0.0301	0.2186 0.0668	0.330 0.229	7 0.2758 7 0.4472	0.0771 0.3309			
*	* * * * * * * * * * * * * *	* * * * * * * * * * * * *	*****	* * * * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * * * * * * * *	******	*		
Ŷ	AVERAGE AI	NNUAL TOTALS	5 & (STD.	DEVIATION	S) FOR Y	EARS	1 THROUGH	100			
-				INCHES		CU.	 FEET	PERCENT	-		

an affiliate of Geosyntec Consultants

40 of 55 Page

Writter	ı by:	Ray Wu / C Carlso	linton n	Date:	08/20/20	015	Reviewed by	: Sowmya	Bulusu / Jay B	eech Dat	e: 08/20/2	015
Client:	Hone	eywell	Project:	Onon Desig	daga Lake n	SCA	A Final Cover	Project/ F	Proposal No.:	GD5497	Task No.:	03
	PRECI	PITATION			39.20	(4.823)	142279.7	100.00			
	RUNOF	F			8.841	(2.4182)	32094.07	22.557			
	EVAPO	TRANSPIRATIC	N		23.762	(2.7230)	86255.23	60.624			
	LATER FRO	AL DRAINAGE M LAYER 3	COLLECTE	D	5.36610	(1.92120)	19478.934	13.69060			
	PERCO LAY	LATION/LEAKA ER 4	GE THROU	GH	1.22639	(0.42197)	4451.789	3.12890)		
	AVERA OF	GE HEAD ON T LAYER 4	OP		0.126 (0.060)					
	CHANG	E IN WATER S	TORAGE		0.000	(1.2771)	-0.39	0.000			
	*****	* * * * * * * * * * * *	* * * * * * * * *	* * * * * *	* * * * * * * * *	* * * *	* * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	*		
	* * * * * *	* * * * * * * * * * * *	******	* * * * * *	*******	* * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	·		
		PE	AK DAILY	VALUE	S FOR YEA	ARS	1 THROUGH	H 100				
							(INCHES)	(CU.	FT.)			
		PRECIPITATIC	N				4.40	1597	2.000			
		RUNOFF					4.213	1529	2.6318			
		DRAINAGE COL	LECTED FI	ROM LA	AYER 3		0.24285	5 88	1.55237			
		PERCOLATION/	LEAKAGE '	THROUG	GH LAYER	4	0.10726	54 38	9.36798			
		AVERAGE HEAD	ON TOP	OF LAY	YER 4		10.022					
		MAXIMUM HEAD	ON TOP	OF LAY	YER 4		12.203					
		LOCATION OF (DISTA	MAXIMUM I NCE FROM	HEAD I DRAIN	IN LAYER 1)	3	74.5 FEB	ΞT				
		SNOW WATER					9.62	3491	1.7891			
		MAXIMUM VEG.	SOIL WAY	IER (V	VOL/VOL)			0.4379				
		MINIMUM VEG.	SOIL WAY	TER (N	/OL/VOL)			0.1948				
		*** Maximu	um heads a	are co	omputed u	sing	g McEnroe's e	equations.	* * *			
		Refere	ence: Max by ASC Vol	ximum Bruce CE Jou 1. 119	Saturated M. McEni arnal of 1 M. No. 2,	d De roe, Envi Mai	epth over Lar University ironmental Er cch 1993, pp	ndfill Line of Kansas ngineering . 262-270.	r			
	* * * * * *	* * * * * * * * * * * *	* * * * * * * * *	* * * * * *	*****	* * * ;	* * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * *			

	Beech and Bonapar engineering p.							•	
					an affiliate of Geosyntec Consultants				
					Page	41	of	55	
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/	2015	
Client: Hone	eywell Project:	Onond Design	laga Lake SCA	A Final Cover	Project/ Proposal No.: GI)5497	Task No.:	03	

******	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	**********
FIN	AL WATER STOR	AGE AT END OF Y	YEAR 100
LA	YER (I	NCHES) (\	/OL/VOL)
	1	2.7450	0.4575
	2	7.3342	0.4075
	3	0.0020	0.0100
	4	0.0000	0.0000
SNOW	WATER	0.046	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	****
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	*******	*****

					Beech an er	d Bona ngineeri	iparte ^D ng p.c.	
					an affiliate of G	eosyntec Co	onsultants	
					Page	42	of 55	
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/2015	
Client: Hon	eywell Project:	Onond	laga Lake SCA	A Final Cover	Project/ Proposal No.: GI)5497	Task No.: 0.	3

CASE 3: SCA MAIN DECK SIDE SLOPES WITH A 200-MIL GEOCOMPOSITE DRAINAGE LAYER

engineering p.c. an affiliate of Geosyntec Consultants Page 43 of 55 Ray Wu / Clinton Written by: Date: 08/20/2015 Reviewed by: Sowmya Bulusu / Jay Beech 08/20/2015 Date: Carlson **Onondaga Lake SCA Final Cover** Project: Project/ Proposal No.: Client: Honeywell GD5497 Task No.: 03 Design ***** ** * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * DEVELOPED BY ENVIRONMENTAL LABORATORY * * * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * * * * * ** * * PRECIPITATION DATA FILE: \OLPRECIP.D4 TEMPERATURE DATA FILE: \OLTEMP.D7 SOLAR RADIATION DATA FILE: \OLSOLAR.D13 \OL LAI35.D11 EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE: \S-FN200A.D10 OUTPUT DATA FILE: \S-FN200A.OUT TIME: 18:45 DATE: 4/14/2015 ***** TITLE: Onondaga Lake SCA Closure NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. LAYER 1 _____ TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 108 THICKNESS = 6.00 INCHES 0.4630 VOL/VOL POROSITY = FIELD CAPACITY 0.2320 VOL/VOL = 0.1160 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = 0.4560 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-04 CM/SEC LAYER 2 ____ TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 113 = THICKNESS 18.00 INCHES 0.4300 VOL/VOL POROSITY = 0.3210 VOL/VOL FIELD CAPACITY = WILTING POINT = 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4115 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-05 CM/SEC

Beech and Bonaparte

						Beech	n and Bon enginee	aparte ^D ring p.c.	•		
						an affiliate of Geosyntec Consultants					
						Page	44	of	55		
Written by:	Ray Wu Car	/ Clinton Ison	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay H	Beech Date	: 08/20/2	2015		
Client: H o	oneywell	Project:	Onond Design	aga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03		
				LAYER 3							

TYPE 2 - LATERA	L DE	RAINAGE LAYE	IR	
MATERIAL TEXI	URE	NUMBER 220		
THICKNESS	=	0.20	INCHES	
POROSITY	=	0.8500	VOL/VOL	
FIELD CAPACITY	=	0.0100	VOL/VOL	
WILTING POINT	=	0.0050	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.27000011	000	CM/SEC
SLOPE	=	25.00	PERCENT	
DRAINAGE LENGTH	=	100.0	FEET	

LAYER 4

	TET	MEMDDANE IINED
IIPE 4 - FLEAID	L D I	MEMORANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICKNESS	=	0.04 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	=	0.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

GENERAL DESIGN AND EVAPORATIVE ZONE DATA -----

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 8 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 100. FEET.

SCS RUNOFF CURVE NUMBER	=	75.90	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	10.143	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	10.518	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	4.674	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	10.145	INCHES
TOTAL INITIAL WATER	=	10.145	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

							Beech	n and en	l Bon gineer	aparte ¹ ring p.c.	>
							an affilia	te of Ge	osyntec (Consultants	
							Page		45	of	55
vritten by:	Ray W	/u / Clinton arlson	Date:	08/20/2015	Reviewed by:	So	owmya Bulusu / Jay I	Beech	Date	08/20	/2015
lient: H o	oneywell	Project:	Onond Design	aga Lake SCA	Final Cover	Р	roject/ Proposal No.:	GD	5497	Task No.:	03
		EVAPOT	RANSPIF	RATION AND W	EATHER DATA						
	NOTE:	EVAPOTRANS SYRACUSE	PIRATIC	DN DATA WAS NEW	OBTAINED FRC	M					
	NOTE :	AXIMUM LEAF START OF GROWIN EVD OF GROWIN EVAPORATIVE Z AVERAGE ANNUA AVERAGE 1ST Q AVERAGE 2ND Q AVERAGE 3RD Q AVERAGE 4TH Q : PRECIPITAT	AREA IN ING SEA G SEASC ONE DEE L WIND UARTER UARTER UARTER UARTER	DEX SON (JULIAN D TH SPEED RELATIVE HU RELATIVE HU RELATIVE HU RELATIVE HU	= I DATE) = PATE) = (MIDITY = 7 MIDITY = 7 MIDITY = 7 MIDITY = 7 MIDITY = 7 MIDITY = 7	3.50 124 284 4.0 9.70 2.00 8.00 5.00 6.00	INCHES MPH % % % %				
		COEFFICI NORMAL M	ents fo Ean mon	DR SYRACU	ISE PITATION (INC	NE HES)	W YORK				
	JAN/JUL	FEB/AUG	MAR/	SEP APR	A/OCT MAY	/NOV	JUN/DEC				
	2.61 3.76	2.65 3.77	3. 3.	11 3 29 3	.34 3 .14 3	.16 .45	3.63 3.20				
	NOTE :	: TEMPERATUR COEFFICI	E DATA ENTS FC	WAS SYNTHET DR SYRACU	'ICALLY GENEF 'SE	ATED NE	USING W YORK				
	1	IORMAL MEAN M	ONTHLY	TEMPERATURE	(DEGREES FA	HREN	HEIT)				
	JAN/JUL	FEB/AUG	MAR/	SEP APR	/OCT MAY	/NOV	JUN/DEC				
	22.80 70.90	24.00 69.30	33. 62.	30 46 10 51	.10 57 .30 40	.00	66.30 28.30				
	NOTE :	: SOLAR RADI COEFFICI AND ST	ATION E ENTS FC ATION I	DATA WAS SYN DR SYRACU LATITUDE =	THETICALLY G ISE 43.07 DEGRE	ENER. NE ES	ATED USING W YORK				
****	*****	* * * * * * * * * * * * *	* * * * * * *	****	* * * * * * * * * * * *	* * * *	* * * * * * * * * * * * * * * * * * * *	*			
	AVERA	AGE MONTHLY V	ALUES I	N INCHES FO	R YEARS 1	THR	OUGH 100				
		J	AN/JUL	FEB/AUG M	IAR/SEP APR/	OCT	MAY/NOV JUN/DEC	:			
PR	ECTPTTATT	- DN			·						

2.592.723.163.273.093.713.873.953.272.953.403.22

TOTALS

an affiliate of Geosyntec Consultants

of 55 46 Page

tten ł	by: Ray Wu Ca	/ Clinton :lson	Date: (08/20/2015	Reviewe	d by:	Sowmya Bul	usu / Jay Bo	eech Dat	e: 08/20/2	201
ent:	Honeywell	Project:	Onondag Design	a Lake SCA	Final Cov	ver	Project/ Prop	osal No.:	GD5497	Task No.:	
	STD. DEVIAT RUNOFF	IONS	0.70 1.67	0.96 1.76	1.19 1.60	1.19 1.16	1.31 1.19	1.57 0.76			
	TOTALS		0.510 0.035	1.388 0.040	4.823 0.070	1.526 0.051	0.058 0.080	0.088 0.262			
	STD. DEVIAT	IONS	0.716 0.213	1.478 0.151	2.376 0.217	1.470 0.173	0.204 0.224	0.304 0.499			
	EVAPOTRANSPIR	ATION									
	TOTALS		0.490 4.163	0.404 3.531	0.468 2.208	1.854 1.139	2.949 0.787	5.252 0.510			
	STD. DEVIAT	IONS	0.080 1.409	0.077 1.225	0.174 0.712	0.733 0.197	0.831 0.148	0.738 0.122			
	LATERAL DRAIN	AGE COLLECT	TED FROM I	AYER 3							
	TOTALS		0.0466 0.0473	0.0000 0.0447	0.1571 0.0897	1.653 0.490	0 0.7225 3 1.3411	0.2818 1.2196			
	STD. DEVIAT	IONS	0.1503 0.1722	0.0000 0.2194	0.4386 0.2881	0.661 0.781	8 0.6178 5 1.0325	0.3567 0.9122			
	PERCOLATION/L	EAKAGE THRO	DUGH LAYEF	k 4							
	TOTALS		0.0034 0.0053	0.0000 0.0032	0.0063 0.0067	0.084 0.033	3 0.0715 8 0.0830	0.0374 0.0788			
	STD. DEVIAT	IONS	0.0109 0.0136	0.0000 0.0141	0.0179 0.0198	0.034 0.048	8 0.0270 0 0.0532	0.0232 0.0453			
		AVERAGES OF	7 MONTHLY	AVERAGED	DAILY HE	ADS (IN	 CHES)		-		
	DATLY AVERAGE	HEAD ON TO	POFIAYE						-		
	AVERAGES		0.0004	0.0000	0.0014	0.015 0.004	3 0.0065 4 0.0124	0.0026 0.0109			
	STD. DEVIAT	IONS	0.0013 0.0015	0.0000 0.0020	0.0039 0.0027	0.006 0.007	1 0.0055 0 0.0096	0.0033 0.0082			
*:	* * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	*****	* * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * * * *	*		
*:	**************************************	***********	*********** 6 & (STD.	DEVIATION	******** S) FOR Y	****** EARS	1 THROUGH	100	*		
				INCHES		 CU.	 FEET	PERCENT	-		
1	PRECIPITATION		 39.	20 (4.823)		 279.7	100.00			

an affiliate of Geosyntec Consultants

47 55 of Page

Writter	itten by: Ray Wu / Clinton Carlson		Date:	08/20/20	15	Reviewed by:	Sowmya B	ulusu / Jay B	eech Dat	e: 08/20/2	015
Client:	Honey	well Projec	t: Onon Desig	daga Lake n	SCA	A Final Cover	Project/ Pr	oposal No.:	GD5497	Task No.:	03
	RUNOFF			8.932	(2.4161)	32422.89	22.788			
	EVAPOTE	RANSPIRATION		23.756	(2.7218)	86235.50	60.610			
	LATERAI FROM	L DRAINAGE COLLEC LAYER 3	CTED	6.09367	(2.15624)	22120.031	15.54687			
	PERCOLA LAYEF	ATION/LEAKAGE THE R 4	ROUGH	0.41371	(0.13082)	1501.749	1.05549)		
	AVERAGE OF LA	e head on top Ayer 4		0.005 (0.002)					
	CHANGE	IN WATER STORAGE		0.000	(1.2799)	-0.49	0.000			
	 PF	PEAK DAI	LY VALUE	ES FOR YEA	1RS	1 THROUGH (INCHES) 4.40	100 (CU. 15972	FT.) .000			
	RU	JNOFF				4.215	15300	.2031			
	DF	RAINAGE COLLECTEI) FROM LA	AYER 3		0.32939	1195	.67102			
	PI	ERCOLATION/LEAKAO	E THROUG	GH LAYER	4	0.01076	6 39	.08068			
	A	VERAGE HEAD ON TO	OF LAY	(ER 4		0.091					
	MZ	AXIMUM HEAD ON TO	OP OF LAY	(ER 4	2	0.185					
	ΓC	DCATION OF MAXIMU (DISTANCE FI	IM HEAD I ROM DRAIN	IN LAYER 1)	3	0.0 FEE	Т				
	SI	NOW WATER				9.62	34911	.7891			
	MZ	AXIMUM VEG. SOIL	WATER (N	/OL/VOL)			0.4371				
	MI	INIMUM VEG. SOIL	WATER (\	/OL/VOL)			0.1948				
	ł	*** Maximum head	ls are co	omputed us	sing	g McEnroe's e	quations.	* * *			
		Reference:	Maximum by Bruce ASCE Jou Vol. 119	Saturated M. McEnr urnal of E M. No. 2,	l De coe, Invi Mar	epth over Lan University Fronmental En Sch 1993, pp.	dfill Liner of Kansas gineering 262-270.				
	* * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * *	* * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	r.		

							enginee	ering p.c.	
						an affilia	te of Geosyntec	Consultants	
						Page	48	of	55
Written by:	Ray Wu / Carl	Clinton son	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay H	Beech Date	e: 08/20	/2015
liont. II.	nevwell	Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	03
_nent: Hor			Design						
inent: Hor			Design						
*****	****	* * * * * * * * * *	******	****	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*		
*****	****	********** FINAL W	*******	**************************************	*************** D OF YEAR 10(**************************************	*		
*****	****	********** FINAL W. LAYER	******* ATER SI	**************************************	**************** D OF YEAR 10((VOL/VOL)	**************************************	*		
*****	****	*********** FINAL W. LAYER 1	*******	CORAGE AT EN 	**************************************	**************************************	*		
*****	*****	********** FINAL W. LAYER 1 2	*******	TORAGE AT EN (INCHES) 2.7450 7.3386	**************************************	**************************************	*		
-11ent: Hor *****	****	*********** FINAL W. LAYER 1 2 3	*******	CORAGE AT EN (INCHES) 2.7450 7.3386 0.0020	<pre>************************************</pre>	**************************************	*		
-nent: Hor *****	****	**************************************	****** ATER SI	CORAGE AT EN (INCHES) 2.7450 7.3386 0.0020 0.0000	**************************************	**************************************	*		

Beech and Bonaparte **>**

					Beech an er	d Bona ngineeri	ıparte ♥ ng p.c.	
					an affiliate of G	eosyntec Co	onsultants	
					Page	49	of 5	5
Written by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay Beech	Date:	08/20/20	015
Client: Hon	eywell Project:	Onond	laga Lake SCA	Final Cover	Project/ Proposal No.: GL) 5497	Task No.:	03

CASE 4: SCA MAIN DECK SIDE SLOPES WITH A 250-MIL GEOCOMPOSITE DRAINAGE LAYER

engineering p.c. an affiliate of Geosyntec Consultants Page 50 of 55 Ray Wu / Clinton Written by: Date: 08/20/2015 Reviewed by: Sowmya Bulusu / Jay Beech Date: 08/20/2015 Carlson **Onondaga Lake SCA Final Cover** Project: Project/ Proposal No.: Client: Honeywell GD5497 Task No.: 03 Design ***** ** * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY * * * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * * * * * ** * * **** PRECIPITATION DATA FILE: \OLPRECIP.D4 TEMPERATURE DATA FILE: \OLTEMP.D7 SOLAR RADIATION DATA FILE: \OLSOLAR.D13 EVAPOTRANSPIRATION DATA: \OL LAI35.D11 SOIL AND DESIGN DATA FILE: \s-FN250.D10 OUTPUT DATA FILE: \S-FN250A.OUT TIME: 20: 8 DATE: 4/15/2015 ******* TITLE: Onondaga Lake SCA Closure NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM. LAYER 1 _____ TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 108 THICKNESS = 6.00 INCHES 0.4630 VOL/VOL POROSITY = FIELD CAPACITY = 0.2320 VOL/VOL WILTING POINT = 0.1160 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4555 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-04 CM/SEC LAYER 2 _____ TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 113 THICKNESS INCHES = 18.00 POROSITY = 0.4300 VOL/VOL 0.3210 VOL/VOL FIELD CAPACITY = WILTING POINT = 0.2210 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4120 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.999999975000E-05 CM/SEC

Beech and Bonaparte

						Beec	h and Bo engine	naparte ⁽ ering p.c.	>
						an affilia	ate of Geosyntee	c Consultants	
						Page	51	of	55
Written by:	Ray Wu / Carl	Clinton son	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay	Beech Dat	te: 08/20)/2015
Client: H o	oneywell	Project:	Onond Design	laga Lake SCA	Final Cover	Project/ Proposal No.:	GD5497	Task No.:	: 03
				LAYER 3					
	THICK POROS	TYE M NESS ITY	PE 2 - I MATERIAI	LATERAL DRAI L TEXTURE NU = =	NAGE LAYER MBER 220 0.25 INCH 0.8500 VOL/	ies /vol			

FIELD CAPACITY	=	0.0100	VOL/VOL	
WILTING POINT	=	0.0050	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	1.0599999	4000	CM/SEC
SLOPE	=	25.00	PERCENT	
DRAINAGE LENGTH	=	100.0	FEET	

LAYER 4

TYPE 4 - FLEXIB	LE I	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICKNESS	=	0.04 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.39999993000E-12 CM/SEC
FML PINHOLE DENSITY	=	0.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

GENERAL DESIGN AND EVAPORATIVE ZONE DATA -----

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 8 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 100. FEET.

SCS RUNOFF CURVE NUMBER	=	75.90	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	10.148	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	10.518	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	4.674	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	10.151	INCHES
TOTAL INITIAL WATER	=	10.151	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

								Beecl	h and en	l Bon ginee	naparte ring p.c.	D
								an affilia	te of Geo	osyntec (Consultants	
								Page		52	of	55
ritten by:	Ray Wu Car	/ Clinton Ison	Date:	08/20/2015	Review	wed by:	Sowmya I	Bulusu / Jay I	Beech	Date)/2015
ient: H o	oneywell	Project:	Onond Design	laga Lake SC	CA Final C	Cover	Project/ P	roposal No.:	GD5	5497	Task No.	: 03
		F177 DO1	יסאאפסדנ	AMTON AND	MENTUED	ኮእሞአ						
	NOTE:	EVAPOTRANS	SPIRATIC	ON DATA WAS	G OBTAIN	ED FROM						
	ST MA ST EV AV AV AV AV	ATION LATIT XIMUM LEAF ART OF GROWIN D OF GROWIN APORATIVE 2 ERAGE ANNUA ERAGE 1ST (ERAGE 1ST (ERAGE 2ND (ERAGE 3RD (ERAGE 4TH (CUDE AREA IN VING SEA IG SEASC CONE DEB AL WIND QUARTER QUARTER QUARTER QUARTER	NDEX ASON (JULIAN PTH SPEED RELATIVE H RELATIVE H RELATIVE H RELATIVE H	AN DATE) DATE) HUMIDITY HUMIDITY HUMIDITY HUMIDITY	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	07 DEGREF 50 24 84 0 INCHES 70 MPH 00 % 00 % 00 % 00 %	2S 5				
	NOTE:	PRECIPITAT COEFFICI	TION DAT	TA WAS SYNT DR SYRAG	THETICALI CUSE	LY GENER	ATED USIN NEW YORK	NG				
		NORMAL N	iean moi	NTHLY PREC	IPITATIO	N (INCHE	S)					
	JAN/JUL	FEB/AUG	MAR/	SEP AI	PR/OCT	MAY/N	0V JU	JN/DEC				
	2.61 3.76	2.65 3.77	3. 3.	.11 .29	3.34 3.14	3.1 3.4	6 5	3.63 3.20				
	NOTE:	TEMPERATUR COEFFICI	RE DATA IENTS FO	WAS SYNTHE DR SYRAC	ETICALLY CUSE	GENERAT	ED USING NEW YORK					
	NO	RMAL MEAN N	IONTHLY	TEMPERATU	RE (DEGRE	EES FAHR	ENHEIT)					
	JAN/JUL	FEB/AUG	MAR/	SEP AI	PR/OCT	MAY/N	ov ju	JN/DEC				
	22.80 70.90	24.00 69.30	33. 62.	.30 4	46.10 51.30	57.0 40.6	0 6 0 2	56.30 28.30				
****	NOTE: *********** AVERAG	SOLAR RADI COEFFICI AND ST ************	TATION I TENTS FO TATION I	DATA WAS SY DR SYRA(LATITUDE =	YNTHETIC CUSE = 43.07 ********* FOR YEARS	ALLY GEN DEGREES ******** 5 1 T	ERATED US NEW YORK ********* HROUGH 1	SING *************** 100	* *			
		 : -	JAN/JUL	FEB/AUG	MAR/SEP	APR/OC	T MAY/NC	DV JUN/DEC	 C			
PR	ECIPITATION											
	TOTALS		2.59 3.87	2.72 3.95	3.16 3.27	3.27 2.95	3.09 3.40	3.713.22				

an affiliate of Geosyntec Consultants

53 55 Page of

nt:]	Honeywell STD. DEVIAT	Project:	Onondag Design	a Lake SCA	Final Co	vor				
H	STD. DEVIAT RUNOFF	IONS				vci	Project/ Propo	sal No.:	GD5497	Task No.:
- -	RUNOFF		0.70 1.67	0.96 1.76	1.19 1.60	1.19 1.16	1.31 1.19	1.57 0.76		
-										
	TOTALS		0.512 0.037	1.391 0.044	4.826 0.073	1.528 0.053	0.059 0.082	0.093 0.264		
	STD. DEVIAT	IONS	0.717 0.221	1.479 0.160	2.377 0.222	1.469 0.178	0.207 0.228	0.315 0.501		
Ι	EVAPOTRANSPIR	ATION								
-	TOTALS		0.490 4.168	0.404 3.530	0.468 2.205	1.854 1.139	2.949 0.786	5.256 0.510		
	STD. DEVIAT	IONS	0.080 1.408	0.077 1.223	0.174 0.708	0.732 0.197	0.831 0.148	0.736 0.122		
1	LATERAL DRAIN	AGE COLLECT	ED FROM L	AYER 3						
	TOTALS		0.0467 0.0495	0.0000 0.0453	0.1626 0.0916	1.701 0.508	1 0.7606 0 1.3934	0.2958 1.2583		
	STD. DEVIAT	IONS	0.1533 0.1786	0.0000 0.2222	0.4515 0.2922	0.668 0.805	5 0.6241 3 1.0617	0.3591 0.9364		
]	PERCOLATION/L	EAKAGE THRO	DUGH LAYER	4						
-	TOTALS		0.0012 0.0019	0.0000 0.0012	0.0026	0.034 0.013	1 0.0271 3 0.0329	0.0140 0.0307		
	STD. DEVIAT	IONS	0.0041 0.0054	0.0000 0.0055	0.0074 0.0077	0.013 0.018	6 0.0108 9 0.0212	0.0093 0.0185		
		AVERAGES OF	MONTHLY	AVERAGED	DAILY HE	ADS (IN	 CHES)		-	
I	DAILY AVERAGE	HEAD ON T(OP OF LAYE	R 4						
	AVERAGES		0.0001 0.0001	0.0000 0.0001	0.0004	0.004 0.001	2 0.0019 2 0.0035	0.0008 0.0031		
	STD. DEVIAT	IONS	0.0004	0.0000 0.0005	0.0011 0.0007	0.001 0.001	7 0.0015 9 0.0027	0.0009 0.0023		
***	* * * * * * * * * * * * *	* * * * * * * * * * *	*****	* * * * * * * * *	* * * * * * * *	*****	* * * * * * * * * * *	* * * * * * * * *	*	
;	* * * * * * * * * * * * *	* * * * * * * * * * * *	****	******	******	* * * * * * *	* * * * * * * * * * *	* * * * * * * *	*	
	AVERAGE AN	NUAL TOTALS	5 & (STD.	DEVIATION	S) FOR Y	EARS	1 THROUGH	100	_	
				INCHES		CU.	FEET	PERCENT		

an affiliate of Geosyntec Consultants

55 of 54 Page

Written	by: Ray Wu / Carls	Clinton son	Date:	08/20/20	015	Reviewed by:	Sowmya B	ulusu / Jay B	eech Dat	e: 08/20/2	2015
Client:	Honeywell	Project:	Onono Design	daga Lake 1	SC	A Final Cover	Project/ Pro	oposal No.:	GD5497	Task No.:	03
	RUNOFF			8.962	(2.4162)	32533.42	22.866			
	EVAPOTRANSPIRAT	ION		23.759	(2.7202)	86244.54	60.616			
	LATERAL DRAINAGI FROM LAYER 3	E COLLECTE	D	6.31278	(2.22009)	22915.404	16.10589			
	PERCOLATION/LEAN LAYER 4	KAGE THROU	GH	0.16169	(0.05215)	586.931	0.41252			
	AVERAGE HEAD ON OF LAYER 4	TOP		0.001 (0.000)					
	CHANGE IN WATER	STORAGE		0.000	(1.2801)	-0.64	0.000			
*	*************	*********** PEAK DAILY	****** VALUE	******** S FOR YE2	***; ARS	1 THROUGH	100	********			
						(INCHES)	(CU.	 FT.)			
	PRECIPITAT	ION				4.40	15972	.000			
	RUNOFF					4.216	15303	.1348			
	DRAINAGE CO	OLLECTED F	ROM LA	yer 3		0.34649	1257	.74072			
	PERCOLATION	N/LEAKAGE '	THROUG	H LAYER	4	0.00548	5 19	.91227			
	AVERAGE HEA	AD ON TOP	OF LAY	ER 4		0.025					
	MAXIMUM HEA	AD ON TOP	OF LAY	ER 4		0.034					
	LOCATION OF	F MAXIMUM I FANCE FROM	HEAD I DRAIN	N LAYER)	3	25.9 FEE	Γ				
	SNOW WATER					9.62	34911	.7891			
	MAXIMUM VE	G. SOIL WA'	TER (V	OL/VOL)			0.4372				
	MINIMUM VEC	G. SOIL WA'	TER (V	OL/VOL)			0.1948				
	*** Maxir	num heads	are co	mputed us	sing	g McEnroe's e	quations.	* * *			
	Refe	rence: Ma by AS Vo	ximum Bruce CE Jou l. 119	Saturated M. McEni rnal of F , No. 2,	d De coe, Env: Mai	epth over Lan , University ironmental En rch 1993, pp.	dfill Liner of Kansas gineering 262-270.				
*	* * * * * * * * * * * * * * * * * *	* * * * * * * * * *	* * * * * *	* * * * * * * * *	* * * ;	* * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *			

					Beec	ch and en	d Bor ginee	naparte ering p.c	
					Page	uie of Ge	55	of	, 55
Vritten by:	Ray Wu / Clinton Carlson	Date:	08/20/2015	Reviewed by:	Sowmya Bulusu / Jay	Beech	Date	e: 08/2	20/2015
				-				— 1.11	02
Client: Honey	well Proje	ect: Onon Desig	daga Lake SCA n	***********************	Project/ Proposal No.:	GD: **	5497	Task No	J U 3
Client: Honey	well Proje	ect: Onon Desig	daga Lake SCA n ***********************************	• Final Cover	Project/ Proposal No.: ************************************	GD: **	5497	Task No	03
Client: Honey	well Proje	ect: Onon Desig	daga Lake SCA n storage at en (INCHES)	. Final Cover	Project/ Proposal No.: ************************************	**	5497	Task No	03
Client: Honey	well Proje	ect: Onon Desig	daga Lake SCA n ***********************************	**************************************	Project/ Proposal No.: ************************************	GD:	5497	Task No	03
2lient: Honey ********	well Proje	ect: Onon Desig	daga Lake SCA n ***********************************	**************************************	Project/ Proposal No.: ************************************	GD :	5497	Task No	03
Client: Honey	well Proje	ect: Onon Desig	daga Lake SCA n STORAGE AT EN (INCHES) 2.7450 7.3398 0.0025 0.0000	**************************************	Project/ Proposal No.:	GD :	5497	Task No	03