Appendix F

Phase 2A (2000) and Historic (1976) Sediment Core Logs Appendix F1

Phase 2A (2000) Sediment Core Logs

APPENDIX F1. PHASE 2A SUBSURFACE SEDIMENT CORE LOGS

Introduction

This appendix contains the logs of cores collected during the Phase 2A sampling event in 2000. The Phase 2A coring logs submitted by Honeywell are presented for information only. Several discrepancies between the draft logs and field notes transmitted to NYSDEC in November and December of 2000 and the final logs included in this appendix, as well as several instances of non-conformance with applicable standards, were identified and are discussed below. Also, many logs were not included in the RI; specifically, the 30 cm cores from Stations S356, S361, S362, S364, and S366 through S369. However, because NYSDEC/TAMS personnel were not present for the entirety of the coring operation, the logs will not be revised to eliminate errors and/or to reflect proper description convention.

Specific Comments

1. The soil descriptions included on the 30 cm and 2 m core logs do not universally comply with the Unified Soil Classification System (USCS) for naming soils, as outlined in American Society for Testing and Materials (ASTM) D-2487 (Standard Classification of Soils for Engineering Purposes [USCS]) and 2488 (Standard Procedure for Description and Identification of Soils [Visual-Manual Procedure]) (ASTM, 1991) and Exponent SOP 49 (Field Classification of Soil).

The USCS describes soils by their components (gravel, sand, silt, clay, etc.), grain-size distribution (for granular material) or consistency (e.g., stiff or loose clay), and color. Different soil types may contain more than one identifiable component (e.g., silty sands or sandy gravels). The component fractions are identified by the conjunctive modifiers "trace" and "some," which identify the fractions on a percent-by-weight basis. A two-letter group symbol is assigned to a soil by the USCS, based on the relative fractions (for example, a silty sand is type SM). The Exponent and Blasland, Bouck & Lee (BBL) logs uniformly omitted the group symbols; frequently omitted one or more of the component, grain-size distribution, and/or color descriptors; and used inappropriate conjunctive modifiers, such as "with" or "and."

- 2. The draft field logs of Stations S324, S325, S326, and S329 include descriptions of the water column retained in the core tube, which were omitted from the final logs.
- 3. For Station S327, depth interval 66 to 140 cm, the word "dirt" is not an appropriate soil classification.

- 4. The draft field log of Station S329, depth interval 0 to 15 cm, reads "coarse sandy w/some sand." An additional soil identifier (gravel, silt, etc.) should be present after the "sandy" modifier in this description. The final log indicates only sand.
- 5. The draft field log of Station S330, depth interval 100 to 199 cm, reads "coarse sand, silt." The final log indicates only "sand."
- 6. The stratum interface lines in the log of Station S331 do not match the location of the interface as indicated by the text of the soil descriptions.
- 7. Field logs of Stations S332, S352, and S434 are not included in the package of coring logs forwarded to NYSDEC on November 28, 2000.
- 8. The field logs indicate that two cores were taken at Station S334, but do not explain the reason. The final log does not indicate that two cores were taken.
- 9. The field log for Station S339 indicates that the coring was repositioned. The final log does not indicate that the coring location was repositioned, or why the repositioning was necessary.
- 10. The field log for Station S340 indicates the presence of hard "hockey pucks" throughout the core. This was omitted from the final log.
- 11. The field log for Station S342 indicates a core length of 2.19 m and a "black layer @ 2.2 m w/pure mothball odor." This is omitted in the final log, which indicates that the total length of the core was only 2.0 m.
- 12. The size description "quarter-sized" for Station S346, 0 to 2 cm interval, is an inappropriate measure of size. For comparison, a quarter is approximately 25 mm across.
- 13. The field log for Station S349, 15 to 35 cm interval, indicates "silty sand." The final log indicates "sand and silt." The modifier "and" is not included in the USCS.
- 14. At Station S371, 28 to 30 cm interval, the modifier "and" is not included in the USCS.

References

American Society for Testing and Materials (ASTM). 1991. Annual Book of ASTM Standards, Sec. 4, Vol. 04.08. Philadelphia, PA.

Phase 2A: 30-cm Cores

Client: Ho Contract N	neywell lumber:	8600BCP.003 080	Da)1 Fie	Date: August 16, 2000Station Number: S357Field Scientist: Cristin CorlessExponent				
Location:	Location: Onondaga Lake, New York				: 30 cm			
Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description			
SF0003	1445				SAND: fine grained with trace organics, algae			
SF0004	1430		-		SAND: medium to fine grained, medium brown			
			10 -		SAND: medium grained, light gray, oncolites and shells present			
SF0005	1430		-		description not available			
			20 -					
			30 -					

Client: Ho Contract N Location:	oneywell lumber: Onondag	8600BCP.003 ga Lake, New \	Da 0801 Fie ⁄ork To	Date: Augsut 16, 2000Station Number: \$358Field Scientist: Cristin CorlessExponentTotal Depth: 30 cmExponent				
Sample Number	Time	Photo Number	D Depth (cm)	Symbol	Sediment Description			
SF0006	1300				GRAVEL: with pebbles, algae SAND: fine to medium grained with trace silt, light brown			
			-	대 11 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년	SILTY SAND: with pebbles of same oncolites seen elsewhere, trace shells, light gray			
	10 -	кадалассадаластабан наничанананан канаказанананан канаказананананана						
SF0007, MS/MSD	SF0007, MS/MSD 1300	-	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = = = = = = = = = = = = = = = = = = =	SILTY SAND: with pebbles of same oncolites seen elsewhere, trace shells, light gray				
		20 -	त्त्रतत्रत्तत्त्रत्तत्त्र सन्तर्भत्रत्वत्त्रत्त्रत्त् सन्तर्भत्तर्भत्तर्भत्त्रत्त्र सन्तर्भत्तन्त्रत्त्वत्त्रत्त्वत्					
			30 -	Hadacchadaaccadaa 199499411941941941 1994941941941941941 1994941941941941941941				

Client: Ho Contract N Location:	Client: Honeywell Contract Number: 8600BCP.003 0801 Location: Onondaga Lake, New York					st 16, 2000 Station Number: S359 tist: Cristin Corless :: 30 cm Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
SF0008 SF0009	Е 1215 1215	£		-0 	Sy	SAND: fine grained with some silt, brown SAND: trace silt and medium gravel, medium brown, roots and branches present
				- 30 —		

Client: Ho Contract N Location:	oneywell lumber: Onondag	8600BCP.003 ga Lake, New `	Da 0801 Fie York To	Date: August 16, 2000Station Number: \$360Field Scientist: Cristin CorlessExponentTotal Depth: 30 cmExponent			
Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description		
SF0010, SF0066 (field rep) SF0011,	1015, 1100 0945,				SILT: olive brown		
SF0164 (field rep)	1100		10 -		SILT: very dark gray, organic decomposing odor		
SF0012, SF0169 (field rep)	0945, 1100		20 -	내티머니머니머니머니머니머니머니머니머니머니머니머니머니머니머니머니머니머니머니	SILTY SAND: same color as above		

Client: Ho Contract N Location:	oneywell Number: Onondag	8600BCP.003 ga Lake, New `	Da 0801 Fie York To	Date: August 15, 2000Station Number: \$363Field Scientist: Cristin CorlessExponentTotal Depth: 30 cmExponent		
Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description	
SF0175, SF0018 (field dup)	1450, 1450		10 -		SAND: olive SAND: olive brown to gray to medium gray, laminated	
SF0019	1450		20 -		SILT: compacted, dark nitrile green	

Client: Ho Contract N Location:	neywell lumber: Onondag	8600BCP.00 ga Lake, Nev)3 0801 v York	Dat Fie Tot	te: Augu Id Scient al Depth	st 15, 2000 t ist: Cristin Corless n: 30 cm	Station Number: S365 Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description	
SF0023	1215					SILT: black SILT: dark nitrile green	minated clacareous material

.

Client: Ho Contract N Location:	8600BCP.00 ga Lake, Nev)3 0801 v York	Date: August 17, 2000Station Number: \$370Field Scientist: Cristin CorlessExponentTotal Depth: 30 cmExponent				
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description	
03 SF0033 SF0034	i 1510 1455 1455	ά.		0 	 9 9 	SAND: fine to medium grained with trace silt and trace organics, brown SAND: fine to medium grained with trace silt, color change to dark olive brown SAND: same as above with medium grained oncolites	
				20		SILT: trace sand and trace shells, light gray	

Client: Ho Contract N Location:	neywell lumber: Onondag	8600BCP.00 ga Lake, Nev)3 0801 v York	Dat Fie Tot	te: Augu Id Scient al Depth	st 17, 2000 Station Number: S371 tist: Cristin Corless a: 30 cm Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
SF0036	1400					SILT: trace sand, olive brown, organics SILT: same color as above, grading to silt and sand at 28-30 cm, trace organics SAND AND SILT: trace organics

Client: Ho Contract N Location:	Client: Honeywell Contract Number: 8600BCP.003 0801 Location: Onondaga Lake, New York					st 17, 2000 Station Number: S372 tist: Cristin Corless a: 30 cm Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
SF0039, SF0165 (field dup)	1725 1125, 1825					SAND: with abundant aquatic vegetation on surface and gastropod and shell fragments, grayish brown (2.5Y 5/2) description not available

Client: Ho Contract N Location:	Client: Honeywell Contract Number: 8600BCP.003 0801 Location: Onondaga Lake, New York					st 17, 2000 i st: Cristin Corless : 30 cm	Station Number: S373 Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description	
SF0040 SF0041	0955 0955					SILT: olive brown	e color as above
SF0042	0940					SILT: trace sand, dark olive	brown

Client: Honeywell Contract Number: 8600BCP.003 0801 Location: Onondaga Lake, New York					te: Augu Id Scient al Depth	st 17, 2000 Station Number: S374 tist: Cristin Corless : 30 cm Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
SF0043	0915			-0 -		SAND: fine to medium grained with trace silt, light beige, some shells present
				30 —		

0.3 meter core descriptions are not available for the following stations: S356, S361, S364, S366, S367, S368, and S369.

-14

1

Phase 2A: 2-m Cores

Date: July 13, 2000

Station Number: S324

Contract Number: 8600BCP.003 0801 F

Location: Onondaga Lake, New York

Field Scientist: Cristin Corless

Total Depth: 196 cm

Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description
SF0092	1830		10		SILT: with trace fine sand and organic debris, very dark gray (2.5Y 3/1), anerobic odor, wet.
SF0093	1835	Photo 18	20	· · · · · · · · · · · · · · · · · · ·	
SB0001, SB0068 (dup)	1800		30 -		SILT: with coarse sand and rock-like pieces (removed from sample), some organic debris, very dark gray (N3/), slight petroleum odor.
			50		
			60		
			80		
			90 -		
SB0002	1750	Photo 19	100 110		SILT: very soft fine material, white (2.5Y 8/1) with pale yellow (5Y 8/4) from 166-196 cm, wet.
		Photo 21	120-		
			130		
			150-		
			160		
			170- 180-	·	
			190-		

Date: July 14, 2000

Station Number: S325

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Cristin Corless

Total Depth: 200 cm

her		er			
Num		dmuh	(cm)	_	
Sample	Time	Photo N	Depth	Symbo	Sediment Description
SF8895	1859				SILT: with sand, dark greenish gray (10Y 4/1), very wet
SE0096	1055		10 -	·	SILT: with trace fine sand and little detrital, 2-6 cm light gray (10YR 7/1) and 6-15 cm very dark gray (2.5Y 2.5/1), anaerobic odor
	1000		20 -		SILT: with trace fine sand and small amount of fibrous detritus, black (7.5YR 2.5/1), petroleum odor
SB0003 (NYSDEC	1105		30 -	·	SILT: with fibrous organic material, same color as above with some
split)			40 -	· · · · · · · · · · · · · · · · · · ·	white gray streaking, petroleun-like ouor
			50 -	· · · · · ·	
			60 -		
	1		70 -	· · ·	
			80 -	· · · · · · · · · · · · · · · · · · ·	
			90 -		
SB0004	1110		100-		SILT: with trace fine sand and fibrous detrital matter, dark gray
			110-	· · · · · ·	160 cm, petroleum odor
			120		
			130-		
			140-	· · · ·	
			150		
			160		
			170-		
			180-	· · · · · · · · · · · ·	
			190-		
			200		

Date: July 14, 2000

Station Number: S326

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Cristin Corless

Total Depth: 200 cm

5	· · · · ·		1			
ple Numbe	e	to Number		ath (cm)	lođr	
Sam	Time	Pho		Dep	Syn	Sediment Description
SF0097	1400			-0 10 -		SILT: with trace sand, very dark gray
SF0098	1402		1	20 _	· · · · · · · · ·	SILT: with some fine sand, very dark gray (10YR 3/1) with black streaking, anaerobic odor
SB0005	1405			30 - 40 -		SILT: with "fluffy"-like texture and light in weight, black (7.5YR 2.5/1) with some dark grayish brown (7.5YR 4/1), petroleum odor
:				50 -		
		i	60 – 70 –			
				80 -		
			90 -			
SB0006	1408			100 110		SILT: with coarse granular material, black (7.5YR 2.5/1), bottom 1 cm is gray streaked (bottom of core-outside of sample-is gray to white), petroleum odor
				120	· · · · · · · · · · · · · · · · · · ·	
				130		
i				140-		
				160		
				170		
				180- 190-	· · · · · · · · · · · · · · · · · · ·	
				200-		

Client: Ho	neywell			Da	te: Augu	st 5, 2000 Station Number: S327			
Contract N	lumber:	8600BCP.00	03 0801	Fie	Id Scien	tist: Jane Sexton			
Location:	Ononda	ga Lake		То	Total Depth: 196 cm Exponent				
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description			
				0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190		SILT: black (10YR 2/1) with streak of light brownish gray (10YR 6/2) from 17-27 cm, petroleum odor, very high water content SAND: coarse, very dark gray (10YR 3/1), petroleum odor reddish brown dirt (5YR 5/3), compacted, diesel and kerosene odor, dry SILT: like "pudding", very dark gray (5YR 3/1) with streaks of reddish brown (5YR 6/3), very moist, petroleum odor			

Client: Ho	neywell			Dat	e: July 1	5, 2000 Station Number: S328
Contract N	lumber:	8600BCP.00	3 0801	Fiel	ld Scient	t ist: Cristin Corless
Location:	Ononda	ga Lake, New	v York	Tot	al Depth	Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
SF0101	1040	Photo 23		10		SAND: coarse with very large pebbles (oncolites?) and few shell fragments, top 1 cm is brown, 1-10 cm is black with petroleum odor and 10-15 cm is gray with yellow tint
SF0102	1042			20		SAND AND SILT: with large rocks, and a few shell fragments, light gray with yellow tint
SB0009 (NYSDEC split)	1046			30 40 50 60 70 80 90 90		SILT: with coarse sand and shell fragments, light gray with yellow tint, slight sulfur odor
SB0010	1050			100 110 120 120 130 140 150 160		SILT: with coarse sand and abundant shell fragments, darker gray than above with yellow tint, strong sulfur odor

Client: Ho	neywell			Dat	te: July 1	6, 2000 Station Number: S329
Contract N	lumber:	8600BCP.00	03 0801	Fie	ld Scien	tist: Cristin Corless
Location:	Ononda	ga Lake, Nev	v York	Tot	al Depth	Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
SF0103	1130	Photo 24		10		SAND: coarse with amphipods, chrinomids, and oncolites (pea size to gravel size), gray to light gray (5GY 6-1)
SF0104	1133			20		SAND AND SILT: sand/silt with 70% oncolites (coarse sand size to gravel size), light greenish gray (5GY 7-1)
SB0011	1150			30 40 50 60 70 90 90		SAND AND SILT: sand/silt with 70% oncolites (coarse sand size to gravel size), light greenish gray (5GY 7-1)
SB0012	1154			100 110 120 120 130 140 150 160 170 180 190 200		SAND AND SILT: 100-120 cm softer texture, no oncolites. 160-180 cm increased oncolites and shell (bivalve) fragments, light greenish gray to greenish gray (5GY 7/1 to 5GY 6/1 to 5GY 5/1)

Client: Ho	neywell			Dat	e: July 1	6, 2000 Station	Station Number: S330	
Contract N	lumber:	8600BCP.00	3 0801	Fiel	ld Scien	ist: Cristin Corless		
Location:	Ononda	ga Lake, Nev	VYork	Tot	al Depth	199 cm	Exponent	
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description		
SF0105	1530	Photo 25		10		SAND: medium to fine sand with silt, a diameter), green algae layer on top, da black)covered oncolites and chironom	bundant oncolites (1-3 cm ark colored (almost ds	
SF0106	1545			20		SAND: medium to coarse sand with si onoclites (1-5 cm diameter), few white	it, 4-5 cm black layer, many shell fragments	
SB0013	1535			30 40 50 60 70 80 90		SAND: coarse sand with silt, oncolites white shell fragments, light greenigh g	(up to 5 cm diameter), few ay (5GY 7/1), sulfur odor	
SB0014 (NYSDEC split)	1540			100 110 120 130 140 150 160 170 180 190		SAND: same as above with oncolites (shell fragments	gravel size 1-3 cm) and no	

Client: H	oneywell			Da	te: July 1	16, 2000	Station Number: S331
Contract Location:	8600BCP.00 ga Lake, Nev	03 080 v York	f Fie To	ld Scien tal Depth	tist: Cristin Corless n: 200 cm	Exponent	
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description	
SF0107	1730	Photo 25		10 -		SILT: 0-4 cm very soupy (4-8 cm very dark gray (5G cm very dark gray (5GY 3	pudding), dark brown-dark gray (2.5Y 3/1), Y 3/1), 8-11 cm olive/gray (5Y 3/2), 11-15 /1), 4-15 cm is slightly more congealed
SF0108	1735			20 -		SILT: black, oily, shiny, st	ong petroleum odor
SB0015	1740			40 -		SILT: 30-90 cm is loose, le petroleum odor. 90-100 c odor	ess dense (fluffy), black, shiny, strong m is gray/dark gray (NA), strong petroleum

SB0016 (NYSDEC split)

SILT: 100-120 cm is same as 90-100 cm above. 120-200 cm is black, shiny, strong petroleum odor

Client: Honeywell Date: August 10, 2000 Station Number: S332 Contract Number: 8600BCP.003 0801 Field Scientist: Cristin Corless Exponent Location: Onondaga Lake, New York Total Depth: 230 cm Sample Number Photo Number Depth (cm) Symbol Time Sediment Description θ description not available 10 SF0110 1415 SANDY SILT: medium gray, slight petroleum odor . . . 20 (MS/MSD) • • • 30 SB0017 1415 SAND: with some silt, gray, very light petroleum odor 40 50 60 70 80 90 100 SB0018 1415 SAND: with silt, gray, slight petroleum odor 110 120 130 140 150 160 170 180 190 200

Contractor/Operator: Sigma-S. Klein

210

220

230

Core Type/Method: Vibro piston corer

SAND: dark gray with sheen, strong petroleum odor

Date: August 2, 2000

Station Number: S333

Exponent

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist:

Total Depth: 193 cm

Sample Number Photo Number Depth (cm) Symbol Time Sediment Description SILTY SAND: silty sand, fine grained, fairly well sorted, gray (5YR Л, 5/1), "puck layer" at 6 cm, moderate oil odor, grass shoots 10 SILT: black (N2.5/), sheen, moderate oil odor 20 SILT: same as above with more sheen than previous layer SAND: transition zone between black and gray sand, moderate oil 30 odor SAND: dark gray (7.5YR 4/1) 40 SILT: some shells, white (2.5Y 8/1) 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Client: Ho	neywell			Dat	e: Augu	st 2, 2000 Station Number: S334
Contract N	lumber:	8600BCP.00	3 0801	Fie	ld Scien ⁻	tist: Jane Sexton
Location:	Ononda	ga Lake, New	York	Tot	al Depth	Exponent
Sample Number	Time	Photo Number		^D Depth (cm)	Symbol	Sediment Description
San		Pho		$\begin{bmatrix} 10 \\ 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	[1] [1] <th>Sediment Description SANDY SILT: black (2.5/), sheen, petroleum odor SILT: compacted, very dark gray, sheen, petroleum odor SANDY SILT: black (2.5/), sheen, petroleum odor SANDY SILT: black (2.5/), sheen, petroleum odor SANDY SILT: black (2.5/), sheen, petroleum odor SAND: progressively coarser grained, gray (N5/) SILTY SAND: white (N8/) SANDY SILT: silt with sand, streaks of light brown gray (2.5Y 6/2) throughout interval, abundant organic debris, at 134 cm drops of oil observed, sheen from 110-130 cm, petroleum odor</th>	Sediment Description SANDY SILT: black (2.5/), sheen, petroleum odor SILT: compacted, very dark gray, sheen, petroleum odor SANDY SILT: black (2.5/), sheen, petroleum odor SANDY SILT: black (2.5/), sheen, petroleum odor SANDY SILT: black (2.5/), sheen, petroleum odor SAND: progressively coarser grained, gray (N5/) SILTY SAND: white (N8/) SANDY SILT: silt with sand, streaks of light brown gray (2.5Y 6/2) throughout interval, abundant organic debris, at 134 cm drops of oil observed, sheen from 110-130 cm, petroleum odor
				160 170 180 190		

Client: Ho	neywell			Date: August 2, 2000 Station Number: S335						
Contract N	lumber:	8600BCP.00	3 0801	Field Scientist: Jane Sexton						
Location:	Location: Onondaga Lake, New York					Total Depth: 190 cm				
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description				
				10		SILT: with sand, black (N2.5/)				
				20 -		SAND: with gravel and rock, same color as above, strong petroleum odor				
				40 -		SILT: dark gray (2.5Y 4/1) with streaks of gray 2.5Y 6/1) and pale yellow (2.5Y 8/2), petroleum odor, vegitative material				
				60 - 70 - 80 -		SILT: with 60% vegitative material, black (N2.5), petroleum odor, drops of oil at 72 cm				
				90 90 100 110 120 130 140 150 160 170		SAND: with some silt, pale yellow (2.5Y 8/2) to light gray (2.5Y 7/2), shells throughout				
				180-						

Client: Honeywell		Dat	Date: August 3, 2000 Station Number: S336				
Contract Number: 8	600BCP.003 0801	Fiel	Field Scientist: Jane Sexton				
Location: Onondaga	a Lake, New York	Tot	Total Depth: 200 cm Exponent				
Sample Number Time	Photo Number	Depth (cm)	Symbol	Sediment Description			
		$\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 100 \\ 110 \\ 120 \\ 100$		GRAVEL: very dark gray (10YR 2/1) with dark gray brown (10YR 3/2), rocks at surface removed SILT: black (N3/) with streaks of brown (10YR 5/3) throughout, shiney with petroleum odor			

Client: Ho	neywell			Dat	te: Augu	st 3, 2000 Station Number: S337
Contract Number: 8600BCP.003 0801					Id Scien	tist: Jane Sexton
Location:	Ononda	ga Lake, Nev	v York	Tot	tal Depth	: 178 cm Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
				10 20 30 40 50 60 70 80		SILT: black (10YR 2/1), sheen, petroleum odor, very high water content SILT: same as above with organic debris
				90 100 110		SILT: with little sand, dark gray brown (10YR 4/2), sheen, petroleum odor
				120 130 140 150 160 170		,

Date: August 3, 2000

Station Number: S338

Contract Number: 8600BCP.003 0801 Field Scientist: Jane Sexton

Location: Onondaga Lake, New York

Total Depth: 200 cm

Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
				10 20 30 40		SILT: black (N2.5/), some organic debris, sheen from 0-30 cm, petroleum odor
				50 -	•	SILT: brown (7.5YR 5/4) band, petroleum odor
			1	60		Sich, second brown band, same color as above, petroleum odor
				90 -		SILT: black (N2.5/), slanted interface, petroleum odor
				100		
	1			110-		
				120-		
				140		SILT: compacted, white (5YR 8/1) with streaks of brown (7.5 YR 5/2) and gray (5YR 5/1; 5YR 6/1), light green gray (5G 8/1) at 150-152 cm, 130-152 cm much drier and compact, 152-200 cm moister, petroleum odor at 138 cm
				150 -		
				160		
				1/0-		
				190-	· · · · · ·	
				200-	·	

Date: August 3, 2000

Station Number: S339

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Jane Sexton

Total Depth: 200 cm

mple Number	e	oto Number		spth (cm)	nbol	
Sai	Tin	Чд		ٽ 	ŝ	
				0 10 20 30 40 50 60		SILT: black (N2.5/), shiney, sheen from 0-30 cm, petroleum odor, large rock (4 cm diameter) removed
					· · · · ·	SILT: gray (5YR 6/1), petroleum odor
				80 -	• • • • • •	SIL I: DIACK with vegitative debris, petroleum odor
				90		
				100-	· · · · · ·	SILT: gray (5YR 6/1), more compact, petroleum odor
				110-	· · · · · ·	SILT: strips of gray (5YR 6/1) and black (N2.5/), petroleum odor
				120-		
				130-		
				140-		
				150-		SILT: dark gray (5YR 4/1), chunky section, petroleum odor
				160-		
				170-		SILT: striations of pale green (5G 8/2; 5G 7/2; 5G 6/2), grayish green (5G 6/2), and gray (7.5 YR 5/1), chemical odor
				180-		
			1	190-		
L			l	200 –		

Date: August 3, 2000

Station Number: S340

Contract Number: 8600BCP.003 0801 Field Sc

Location: Onondaga Lake, New York

Field Scientist: Jane Sexton

Total Depth: 200 cm

Ŀ		>				
qur		nbei		(F		
۲ ۶		Nun		(сп	-	
npl,	e	oto		pth	dr	On dimensional Descention in the
Sar	Tin	μ̈́Α		De	sy	Sealment Description
						little silt with gravel and organic debris, reddish brown (5YR 4/4),
				10 -		chemical odor
						SILT: with hard striations, light bluishgray (5B 8/1)
				20 -		SILT: with hard striations white (N/8)
				-	· · · · · · · · · · · · · · · · · · ·	
				30 -		CII T: with hard attictions, white (10VD 8/1) with attacks of light group
				-		(10YR 7/1) and gray $(10YR 6/1; 10YR 5/1)$, pale brown (10YR 6/3)
				40 –	· · · · · ·	band from 155-158 cm
					·	
				50 -		
				60 -	·	
				00 -		
		1		70 -	· · · · · · · · · · · · · · · · · · ·	
				-		
				80 -		
				-		
				90 -		
				100-		
				110-		
					· · · · · ·	
				120-	· _ · _ ·	
				130 -	· · · · · · · · · · · · · · · · · · ·	
				140-	÷	
				150-		
				160-		
				- 100		
				170-	· · · · · · · · ·	
				-	· · · · · · · · · ·	
				180-	· · · · · · ·	
				-		
				190-		
	l	L,,,	I	200 –	L	

Date: August 4, 2000

Station Number: S341

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Jane Sexton

Total Depth: 200 cm

Sample Number	Time	Photo Number	² Depth (cm)	Symbol	Sediment Description					
			10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200		SILT: with sand and chunks of carbonate, dark gray (N4/), chemical odor SILT: compacted with carbonate chunks, bluish gray (5B 5/1), chemical odor SILT: compacted with carbonate chunks, white (10YR 8/1) with streaks of greenish gray (5BG 5/1), chemical odor SILT: compacted, white (10YR 8/1) with light brown gray (10YR 6/2) from 58-60 cm, chemical odor SILT: gray (N/6), light gray (N7/), dark gray (N4/) with band of strong brown from 125-126 cm, chemical odor SILT: compacted, white (10YR 8/1), chemical odor					
Client: Ho			Date: July 27, 2000 Station Number: S342							
---------------	--------------	--------------	--	---	---	---	--	--	--	--
Contract N	lumber:	8600BCP.00	3 0801	Fie	Field Scientist: Cristin Corless, Klein, Murray					
Location:	ga Lake, New	/ York	Tot	Total Depth: 200 cm Exponent						
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description				
SF0130	1530			10		SAND: with silt, brown and black from 0-4 cm and light to medium gray from 4-15 cm, strong sewage odor, chunks of calcareous material (2 hard 2-cm layers removed)				
SF0131	1535			20		SAND: with silt, very stiff with calcareous material, light gray to dark gray with black flecks, strong sewage odor, dry				
SB0037	1540			30 40 50 60 70 80 90		SILT: large chuncks of calcereous material break with force, sediment is tannish with black speck, light green to dark green, some flecks of red gold crusty material, strong off-sewage odor				
SB0038	1540			100 110 120 130 140 150 160 170 180		SILT: with calcareous material, light to dark green with some darker gray banding, strong off-sweage odor				

190

200

Client: Honeywell

Date: August 4, 2000

Station Number: S343

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Jane Sexton

Total Depth: 200 cm

Exponent

Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description
Sampl	θË	Photo	Image: state of the state	•••	Sediment Description SAND AND SILT: sand is brown (7.5YR 4/4), silt is dark gray (7.5YR 4/1), odor SILT: white (N8/), odor SILTY SAND: gray (N5/), odor SILT: compacted with some sand, white (N/8) with streaks of light bluish gray (5B 7/1) throughout, carbonate chunks at 40-75 cm and 100-135 cm, odor SAND: gray (5YR 4/1), odor
			150		SILT: compacted, white (2.5Y 8/1) with carbonate chuncks, odor
			170 180 190		

Client: Honeywell

Date: July 27, 2000

Station Number: S344

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Corless/Klein

Total Depth: 175 cm

Exponent

Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description
SF0111	1000		10		SILT: clayey silt with some fine sand, dark gray, sheen on surface, petroleum-like odor, wet
SF0112	1005		20 –	· · · · · · · · · · · · · · · · · · ·	SILT: with trace clay, medium light gray, very shiny, petroleum-like and sulfide odor, moist
SB0019, SB0070 dup (MS/MSD)	1010, 1015		30 -		SILT: 30-90 cm is dark gray to white medium gray, strong petroleum odor. 80-100 cm is dry with calcareous material in spots. 90-100 cm is grayish-white with black specks with greenish material that will break with force, dry
			50 – 60 –		
			70 –	· · · · · · · · · · · · · · · · · · ·	
			80 - 90 -		
SB0020	1020		100-		SILT: greenish gray with black specks and green, dark green, and
split)			110		brownish layering
			120- 130-		
			140-		
			150-		
			160 – 170 –		

Client: Honeywell					te: Augu	st 4, 2000 Station Number: S345			
Contract N	lumber:	8600BCP.00	03 0801	Fie	Id Scient	tist: Jane Sexton			
Location: Onondaga Lake, New York					Total Depth: 200 cm Exponent				
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description			
				10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200		SILT: compacted, chunky, white (5YR 8/1) with gray (5YR 6/1; 5YR 5/1), odor			

Client: Honeywell

Date: August 4, 2000

Station Number: S346

Exponent

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Jane Sexton

Total Depth: 200 cm -----

Sample Number	Time	Photo Number	² Depth (cm)	Symbol	Sediment Description
			10 20 30 40 50 60 70 80 90 100 110 120 130 140 150		GRAVEL: with chironomids (quarter size), brown (10YR 4/3), chemical odor SILT: white (10YR 8/1) with gray (10YR 5/1) and light gray (10YR 7/1), chemical odor, drops of oil at 10 cm SILT: compacted layer, light green gray (5BG 7/1), chemical odor SAND: very dark gray (10YR 3/1), chemical odor SILT: with some sand and carbonate chunks, white (10YR 8/1) with streaks of very dark gray, gray, and light gray, chemical odor
			160 170 180		SAND AND SILT: very dark gray with streaks of brown, light gray, and gray, spots of oil, sheen, and petroleum odor
			190- 200-		

Client: Honeywell Contract Number: 8600BCP.003 0801 Location: Onondaga Lake, New York					te: Augu Id Scient al Depth	st 4, 2000 Station Number: S347 tist: Jane Sexton : 200 cm Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
				10 20 30 40 50 60 70 90 110 120 130 140 150 160 170 180 190 200		SAND: brown (10YR 4/3) SILT: compacted layers throughout, white (10YR 8/1) with streaks of very dark gray (10YR 4/1), dark gray (10YR 5/1), gray (10 YR 6/1; 10YR 5/1) and light gray (10YR 7/1), odor from 4 to 200 cm

ſ

Client: Honeywel	I	Date: Augu	Date: August 5, 2000 Station Number: \$348			
Contract Number	∵ 8600BCP.003 080 aga Lake, New York	1 Field Scier Total Dept	htist: Jane Sexton h: 200 cm Exponent			
Sample Number	Photo Number	² Depth (cm) Symbol	Sediment Description			
		0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190	SILT: with some medium grained sand from 0 to 20 cm, white (2.5Y 8/1) and blotch of weak red (10YR 5/3) at 71 to 75 cm and at 93 cm, chemical odor, moderate moisture content, oil drops at 94 cm SILT: chunky sediment with bands of very dark gray (10YR 3/1), dark gray (10YR 4/1), gray (10 YR 6/1; 10YR 5/1) and light gray (10YR 7/1), moderate moisture content, petroleum odor, rocks and filamentous algae on surface, few streaks of pale green (5G 6/2)			

|--|

Date: August 5, 2000

Station Number: S349

Contract Number: 8600BCP.003 0801

Location: Onondaga Lake, New York

Field Scientist: Jane Sexton

Total Depth: 200 cm

Exponent

	······		1	r		
sample Number	ime	Photo Number		Depth (cm)	Symbol	Sediment Description
0					• • • •	SAND: coarse, black (N 2.5/), chemical odor
				10 -		SILT: with sand, light green gray (5G 7/1), chemical odor
				20 -		SAND AND SILT: silty sand, black (N2.5) with dark green gray silt (5G 4/1), white (10YR 8/1), 20% vegetative material, chemical odor
				30 -		
				40 -	•	SAND: dark gray (N4/), chemical odor; compacted, layered sand at 40 cm,
				50 -		SILT: compacted layers at 65 cm and 75-80 cm, light green gray (5G 8/1) with streaks of pale green (5G 7/2) and gray (N5/), bands of pinkish gray (5YB 7/2) at 75 and 90-93 cm, chemical order
				60 -	· · · · · · · · · · · · · · · · · · ·	
				70 -	· · · · · · · · · · · · · · · · · · ·	
				80 -	· ·	
				90 -	·	
				100-	· · · · · ·	SILT: compacted layers at 120 cm, light green gray (5G 8/1) with
				110	· · · · · · · · · · · · · · · · · · ·	Sireaks of gray (NS/), chemical odor
				120-	· · · · · · · · · · · · · · · · · · ·	
				130	· · · · · ·	
				140		SILT: very pale brown (10YR 7/4) with pale green (5G 6/2) (60%
				150-	· · · · · · · · · · · · · · · · · · ·	brown and 40% green), chemical odor
				160-	· · · · · · · · · · · · · · · · · · ·	
				170-		SILT: band of dark gray green (5G 3/2), chemical odor
				180-	· ·	SILT: compacted layers at 175-181 cm, pale green (5G 8/2) with sections of light green gray (5G 8/1), dark greenish gray (5G 4/1),
				190-		and some pale green (5G 6/2), chemical odor
			l	200-		

Client: Ho	neywell			Da	Date: August 5, 2000Station Number: \$350				
Contract N	lumber:	8600BCP.00	3 0801	Fie	Field Scientist: Jane Sexton				
Location: Onondaga Lake, New York					Total Depth: 200 cm Exponent				
ample Number	ime	hoto Number		Jepth (cm)	symbol	Sediment Description			
<i>v</i> õ	ЦЦ.	۵.		-0	<u> </u>				
				10 -		SILT: with coarse sand from 10-15 cm, surface sediment less than 1 cm is dark gray (N4/), 1-15 cm is bands of pale green (5G 8/2), pale green (5G 7/2), and dark gray (N4/)			
				20 -		SILT: soft, white (2.5Y 8/1), oil drops at 20 cm			
				30 -		SILT: white (2.5Y 8/1) with slim black (N/2.5) at 64 cm			
				40 - 50 -					
				60 -	· · · · · · · · · · · · · · · · · · ·				
				70 -					
				80 -					
				90 -		SILT: white with bands of gravish green (5G 5/2)			
				100-		SILT: with bands of gray (N6/ and N5/), dark gray (N4/), and very dark gray (N3/)			
				110-					
				120-	· · ·				
				140-					
				150-		SILT: black (N2.5/) with few gary (N6/) bands			
				160-					
				170-					
				180- 190-					
				200-		SAND: black (N2.5/)			

٦

Client: Honeywell		Date: August 5, 2000 Station Number: S351					
Contract Number:	8600BCP.003 080	Field Scientist: Jane Sexton					
Location: Ononda	ga Lake, New York	Total Dept	h: 180 cm Exponent				
Sample Number Time	Photo Number	^D Depth (cm) Symbol	Sediment Description				
		10	SILT: with sand increasing in amount and size with depth, shiny, black (N2.5/), petroleum odor SAND: coarse sand increasing in size to gravel with silt, black (N2.5), some wood debris at 20 cm with large piece 2 cm x 3 cm, petroleum odor				
		40	SILT: light gray (7.5YR 7/1) with streaks of black (7.5YR 2.5/1), oil at 72 cm, petroleum odor				
		70 80 90	SILT: black (N2.5/), vegetative material, petroleum odor				
			SILT: light grav (7.5YR 7/1)				
		120 120 130 140 150 160 170	SILT: black (N2.5/) with streak of light gray at 132 cm				

.

.

Client: Ho Contract N	neywell lumber:	8600BCP.00)3 0801	Date: August 10, 2000 Field Scientist: Cristin Corless			Station Number: S352
Location:	Ononda	ga Lake, Nev	v York	Tot	tal Depth	: 214 cm	Exponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description	
SF0151	1140					SILTY SAND: dark gray	, slight petroleum odor
SF0152	1140			10 — 20 —			
SB0057	1140			30 -			
SB0058	1140			40 50 60 70 80 90 100 110 120 130 140 150	(1 3 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SILTY SAND: light gray	
				170 180 190 200 210	1		

Contractor/Operator: Sigma-S. Klein Core Type/Method: Vibro piston corer

Client: Ho	neywell		Date: July	27, 2000 Station Number: S353						
Contract N	lumber:	8600BCP.003 08	01 Field Scier	ntist: Corless, Klein, Murray						
Location:	Ononda	ga Lake, New Yorl	Total Dept	Total Depth: 200 cm EXPOREM						
Sample Number	Time	Photo Number	Depth (cm) Symbol	Sediment Description						
SF0113	1300		10	SAND: fine to coarse sand with trace silt, dark gray brown, petroleum/sewage odor						
SF0114	1305		20	SAND: silty sand with organic root material, dark gray to brown						
SB0021 (NYSDEC split)	1310		30 40 50 60 70 80 90	SAND: coarse sand with trace silt, dark gray from 30-70 cm then tan to brown with greenish tinge, slight sewage-like odor, shells						
SB0022 (MS/MSD)	1315		110 120 120 130 140 150 160 170 180 190 200	SAND: fine sand with trace silt, increasing sand with depth, tan to brown with greenish tinge, very strong sewage-like odor, abundant shell gragments (gastropods)						

Client: Ho Contract N Location:	neywell I umber: Onondag	8600BCP.00 ga Lake, Nev	03 0801 / York	Da Fie To	te: Augua Id Scient tal Depth	st 13, 2000Station Number: \$354tist: Jane SextonExponent
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description
				10 20 30 40 50 60 70 80 90 110 120 130 140 150 140 150 140 120 210 220		SILT: with high gas content (*mousse-like*), very dark grey, petroleum odor

Contractor/Operator: Ocean Surveys, Inc.

Core Type/Method: Vibra core

Client: Ho	neywell			Dat	t e: Augu	st 13, 2000 Station Number: S355			
Contract N	lumber:	8600BCP.00	3 0801	Fie	Id Scien	tist: Jane Sexton			
Location:	Ononda	ga Lake, Nev	v York	Tot	Total Depth: 200 cm Exponent				
Sample Number	Time	Photo Number		Depth (cm)	Symbol	Sediment Description			
				10 10 20 30 40 50 60 70 100 100 110 120 130 140 150 160 170 180		SILT: with gas bubbles throughout, very dark grey (black), petroleum odor, extremely saturated			

190

200

Client: Ha	oneywell		Date:	Augus	st 9, 2000 Station Number: S434				
Contract N	lumber:	8600BCP.003 080	1 Field S	Field Scientist: Cristin Corless					
Location:	Ononda	ga Lake, New York	Total [Total Depth: 185 cm Exponent					
Sample Number	Time	Photo Number	Depth (cm)	Symbol	Sediment Description				
SF0170	0900				SAND: brown and black with oncolites				
SF0171	0900		10 - 20 -		SAND: white to gray with yellowish hue, slight sulfur odor				
SB0100	0900		30 40 50 60 70 80 90						
SB0101	0900		100 110 120 120 130 140 150 160 170 180		SAND: finer than 5-100 cm sand, white to gray with yellowish hue, slight sulfur odor				

Phase 2A: 8-m Cores

OLP-fater RifFS cc: Schening Alls Tipton , NY

Exponent 15375 SE 30th Place Suite 250 Bellevue, WA 98007

> telephone 425-643-9803 facsimile 425-643-9827 www.exponent.com

September 23, 2002

Exponent

Mr. Tim Larson New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7016

Subject: Transmittal of S301–303 Coring Logs for Onondaga Lake Project No. 8602124.001

Dear Tim:

Enclosed you will find sediment coring logs for Stations S301–303 from the Onondaga Lake RI/FS supplemental data Phase 2A investigation conducted in 2000. As I mentioned in my letter to you dated August 23, 2002, these logs were inadvertently omitted from the electronic core log file. They should have been included in Appendix G of the RI/FS report. I am also sending these logs to you in electronic JPEG format by e-mail.

Please feel free to contact me at (518) 370-5132 or Al Labuz at (315) 431-4443 if you have any questions regarding this transmittal.

Sincerely,

Betsy Henry, Ph.D. Managing Scientist

Enclosures

cc: Al Labuz, Honeywell

Client: Ho	neywell			Dat	Date: July 22, 2000 Station Number: S301					
Contract N	lumber:	8600BCP.003	8 0801	Fie	ld Scien	tist: Don Johnson				
Location:	Onondag	a Lake, New	York	Tot	al Depth	: 7.3 m Exponent				
Sample Number	Time	Photo Number		Depth (meters)	Symbol	Sediment Description				
	1552					 SAND AND SILT: sand is very fine, dark gray (10YR 4/1) and brown (10YR 5/3), wet (saturated). Water has high surface tension, is shiry but no iridescence; oil may be present. SILT: organic, low cohesion, nonplastic, wet. Colors are as follows: 0.05-0.15 m gray (10YR 6/1); 0.15-0.23 m very dark gray (10YR 3/1); and 0.23-0.32 m gray (10YR 5/1). SILT: organic with trace clay, black (10YR 2/1), very soft, wet. SILT: calcaric material (?), pale yellow (2.5Y 8/4) 0.37-0.46 m, gray (2.5Y 6/1) 0.46-0.48 m, gray (2.5Y 6/1) 0.48-0.53 m, and pale yellow (2.5Y 8/4) 0.53-0.535 m. SILT: organic with calcaric material (?), gray (2.5Y 6/1), low cohesion, nonplastic, very soft, wet. Fine (less than 2 mm thick) layers of white (2.5Y 8/1) and dark gray. SILT: organic, very dark gray (2.5Y 4/1), low cohesion, nonplastic, very soft, wet. Black layer (3 mm thick) at 1.24 m. SILT: organic with trace clay, grayish brown (10YR 5/2), low cohesion, nonplastic, wet. SILT: organic, very dark gray in thick) at 1.24 m. SILT: organic, very dark gray in thick at 1.24 m. SILT: organic, very dark grayish brown (10YR 5/2), low cohesion, nonplastic, wet. SILT: organic, very dark grayish brown (10YR 3/2), low cohesion, nonplastic, wet. SILT: organic, very dark grayish brown (10YR 3/2), low cohesion, nonplastic, wet. SILT: organic with calcaric material (?), gray (10YR 6/1), with black (10YR 2/1) layers less than 0.5 cm thick at irregular intervals throughout section. SILT: organic with trace clay, dark gray (10YR 7/1), white (10YR 8/1), low cohesion, low plasticity, wet. SILT: organic with trace clay, dark gray (10YR 7/1), white (10YR 8/1), from 2.72-2.80 m, noncohesive, nonplastic, very soft, wet. SILT: organic with trace clay, black (10YR 2/1) and light gray (10YR 7/1) layers at irregular intervals with widths ranging from 3 mm to 6 cm. Light gray (10YR 7/1) layer at 3.73-3.76 m appears to be calcaric mat				
	1744			4 —		SILT: organic with trace clay, very dark gray (10YR 3/1), low cohesion, nonplastic, very soft. Colored varved interval 4.09-4.15 m alternating 3-4 mm of light vellowish brown (10YR 6/4), very dark				

Contractor/Operator: Sigma-S. Klein Core Type/Method: Vibro piston corer

Client: Ho Contract I Location:	3600BCP.003 080 a Lake, New York	Dat 1 Fie Tot	Date: July 22, 2000Station Number: \$301Field Scientist: Don JohnsonExponentTotal Depth: 7.3 mExponent				
Sample Number	Time	Photo Number	Depth (meters)	Symbol	Sediment Description		
			5		alternating 3-4 mm of light yellowish brown (10YR 6/4), very dark grayish brown (10YR 3/2). CLAY: withtrace silt, grayishbrown (10YR 5/2), moderately cohesive, moderate plasticity, firm, moist. Very small gastropods 2 mm wide, whitish yellow.		
			6 -		CLAY: same as above with pelecypods.		
			7		CLAY: with some silt, grayish brown (10YR 5/2) with black (10YR 2/1) silt (?) layers 4 mm thick. At 7.18 m, material is clay and silt, black (10YR 2/1), moderately cohesive, low plasticity, soft, moist. Bottom of core at 7.3 m.		

ntract cation	Number: 8 : Onondag:	8600BCP.003 0 a Lake, New Yo	1801 Field ork Tota	Field Scientist: Don Johnson Total Depth: 7.61 m Exponent					
Sample Number	Time	Photo Number	Depth (meters)	Symbol	Sediment Description				
	0909				SILT: with trace clay, gray (10YR 3/1), low cohesion, nonplastic, tra organics, wet. SILT: color change to dark gray (2.5Y 4/1). SILT: color change to white (2.5Y 8/1). SILT: color change to light gray (2.5Y 7/2). SILT: color change to white (2.5Y 8/1). SILT: color change to light gray (2.5Y 7/2). SILT: organic with trace clay, gray (10YR 5/1), loose, wet. SILT: organic with little clay, brown (10YR 4/3), soft, wet, five bla layers (streaks) at 1.44-1.45 m and 1.49-1.50 m. SILT: organic with trace clay, brown (10YR 5/3), loose, moderate cohesive, low plasticity, wet.				
					SILT: organic with trace clay, white (10YR 8/1), soft, wet, possib calcium carbonate material (?). SILT: organic, gray (10YR 5/1) grading to very dark gray (10YR 3 at 3.2 m, soft, wet. 3.36-3.59 m sheen observed on loose silt. She is not irridescent but very shiny with isolated flecks of oil (?). SILT: organic, very dark gray (10YR 3/1), wet. SILT: organic with little clay, very dark gray (10YR 3/1), moderate cohesive, low plasticity, soft, wet. SILT: organic with little clay, gray (10YR 6/1) and very dark gray (10YR 3/1), moderately cohesive, low plasticity, colors are alternal layered without pattern. Layers are 1-17 cm thick with olive brow (2 SY 4/2) lower et 4.2 m.				

Contractor/Operator: Sigma-S. Klein Core Type/Method: Vibro piston corer

Contract Number: 8600BCP.003 0801 Location: Onondaga Lake, New York			Fie Tot	Field Scientist:Don JohnsonExponentTotal Depth:7.61 m					
Sample Number	цще	Photo Number	Depth (meters)	Symbol	Sediment Description				
	1144		5		SILT: clayey, organic, light gray (10YR 7/1), very dark gray (10YR 3/1), and light brownish gray (10YR 6/2) layers each 0.5 cm thick, finely laminated, soft, moist, varve sequence. CLAY AND SILT: organic, dark gray brown (10YR 4/2) and black (10YR 4/1), mottled, moist. SILT: clayey, very dark grayish brown (10YR 3/2) with black (10Yf 2/1), mottled, moderately cohesive, medium plasticity, soft to firm, moist. CLAY: with little silt, very dark grayish brown (10YR 3/2), moderate to highly cohesive, medium plasticity, moist. Bottom of core at 7.61 m.				

Sample Number	Time	Photo Number	Depth (meters)	Symbol	Sediment Description
	1255				SILT: with trace clay, very dark gray (10YR 2/1), few organics, wet (saturated). Dark olive brown (2.5Y 3/3) layers 0.75 cm thick at 4 cm intervals along section from 0.1-0.8 m.
			1 -		SILT: organic, very dark gray (10YR 3/1), low cohesion, low plasticity very soft, wet. Varved layers: (10YR 5/2), gray (10YR 6/1), and ligh gray (10YR 7/2) 1 cm between 1.13 and 1.23 cm. 3 cm long and 1.5 mm wide twig observed at 1.47 m.
			2 -		SILT: organic with some clay, brown (10YR 4/3), moist.
	1427		3		SILT: color change to very dark gray (10YR 3/1), moderately cohesive, medium plasticity, soft. CLAY: organic with little silt, very dark gray (10YR 3/1), moderately cohesive, medium plasticity, soft, moist.
					CLAY: organic with trace silt, dark grayish brown (10YR 4/2), highly cohesive, medium plasticity, soft, moist. Very dark gray (10YR 3/1) layer 4.13-4.16 m, same consistency as previous.

Client: Ho Contract M Location:	neywell lumber: { Onondaga	3600BCP.003 080 a Lake, New York	Da D1 Fio To	Date: July 22, 2000Station Number: \$303Field Scientist: Don JohnsonExponentTotal Depth: 6.81 mExponent				
Sample Number	Time	Photo Number	Depth (meters)	Symbol	Sediment Description			
			5 -		CLAY: with trace silt, gray (10YR 5/1), hightly cohesive, moderate to high plasticity, moist. Very fine (less than 0.1 mm thick) streak-like layers throughout length of section. Bottom of core at 6.81 m.			

Client: Honeywell International

Location:

Syracuse Remediation Program

Syracuse, New York

Soil Boring No: S304

Total Depth = 7.27 meters

Client: Honeywe Location: Syracus Syracus	ell Interna e Remedia e, New Yoi	tional tion Pr	ograi	n			Soil Boring No: S304 Total Depth = 7.27 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) (IIA	Geotechnical Test	Geologic Column	Stratigraphic Description
-	3						(1.25-3.00m) - Wet, gray (NYR 5/1), Calcareous Material, little black (N 2.5/) organic Silt, trace (F) Sand, few voids in sediment, soft. (2.56-2.83m) - Several (approx. 15) 1-2mm round yellow (2.5Y 8/6) blebs spaced throughout, blebs are firm, appear to be Solvey waste.
— 3 — —							(3.00-3.25m) - Wet, light gray (10YR 7/1) Calcareous Material, little (F) Sand and organic Silt, low cohesion, firm. (3.01-3.02m) - White (10YR 8/1). (3.25-3.66m) - Wet, gray (10YR 6/1), Calcareous Material, some Silt, low cohesion, soft.
	2						(3.57-3.59m) - Very dark gray (10YR 3/1), trace (F) Sand and Organic Material (plants), soft.
_ _ 							(3.665-4.16m) - Wet, gray (10YR 5/1), Calcareous Material and SILT, trace (VF) Sand, Organic Material (plants), low cohesion, soft.
BLASLAN engina Project: 131.53.	D. BOUCK & Bers & sca 300	LEE, I tent1s Script: Date:	NC. its	ell /01	bgs =	(s: Belon	I Ground Surface.

Client:

Honeywell International Location:

Soll Boring No: S304

Total Depth = 7.27 meters

Syracuse Remediation Program Syracuse, New York

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqa) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
							(3.665-4.16m) - Wet, gray (10YR 5/1), Calcareous Material and SILT, trace (VF) Sand, Organic Material (plants), low cohesion, soft.
-							-
							(4.16-4.18m) - White (10YR 8/1), Calcareous Material, low cohesion, non-plastic, soft.
	:						(4.18-4.39m) - Wet, dark gray (10YR 8/1), Calcareous Material and organic SILT, low cohesion.
							(4.20m) - Wet, gray (10YR 5/1), (F-M) SAND, loose.
							-
– 1							/A 20-A AAm) - Mikito /IOVD B/II Colorrown Material Investories and the d
							(4.30-4.44m) - White (101R o/1), Calcareous Material, Iow Conesion, non-plastic, soft.
45							(4.44-4.60m) - Wet, gray (10YR 5/1), Calcareous Material and organic SILT, low cohesion, soft.
							-
	2						(4.60-4.66m) - Wet, gray (10YR 5/1). (F-M) SAND, little Silt, sheep, and black oil 1 gastropod shell
	-						unconsolidated, firm.
F							(4.00-4.1m) - White (101K 8/1), Calcareous Material, low cohesion non-plastic, soft.
							(4.71-4.81m) - Wet, gray (10YR 5/1), Calcareous Material, some organic Silt, trace (VF) Sand, low cohesion, soft.
–					Į		
			ĺ				(4.81-4.84m) - White (10YR 8/1), Calcareous Material, low cohesion non-plastic, soft.
							(4.84-4.98m) - Wet, gray (10YR 8/1), Calcareous Material, some organic Silt, several 1 mm voids,
			ĺ		ĺ		
5							(4.98-5.25) - Wet, gray (10YR 5/1), (F) SAND, little to some Silt, little Gravel (slag),
							(5.04m) - White (10YR 8/10, Calcareous Material 2mm thick
-							(5.08-5.07m) - Wet, (F-M) SAND, Organic Pieces (plant and wood material), 1 gastropod shell,
					ļ	=	sheen observed.
F					ŀ	<u> </u>	(3.14-3.13m) - Wet, (F-M) SANU, Urganic Pieces (plant and wood material), I gastroped shell, sheen observed.
					-	— — —	(5.25-5.33m) - Wet, gray (10YR 5/1), (F) SAND, some Silt, little calcarious material, little Gravel (slag), loose.
	1						to so so simple or by flork o/i), Sill and Calcareous Material, little (F) Sand, low cohesion, non-plastic, soft.
j l							}
55					Ē		
0.0				[F		
				Re	mark	s:	Saturated Zones
)	1		bgs =	Below	Ground Surface. Date / Time Elevation Depth
BLASLAN	D. BOUCK &	LEE I	NC				
engine	ers & sci	entis	sts				
Project: 131.53.	300	Script	: hnyw 02/27				Page: 4 of 6

Client: Honeywell International

Location:

Syracuse Remediation Program

Soil Boring No: S304

Total Depth = 7.27 meters

Syracuse, New York

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test Geologic Column	Stratigraphic Description
					(5.33-5.9m) - Gray (10YR 6/1), SILT and Calcareous Material, little (F) Sand, low cohesion, non-plactic, soft. (5.51-5.52m) - White, Calcareous Material, non-plastic, wet.
— 6					(5.91-5.90m) - Wet, very dark gray (10YR 3/1), (F) SAND, little Silt & Gravel, Organic Pieces (plant material), slight sheen observed, unconsolidated, hard. (5.99-0.60m) - Wet, light Gray (10YR 7/1), SILT & Calcareous Material, little (F) Sand, Organic Material (plants), low cohesion, soft to firm.
	1				(6.31–6.32m) – White (10YR 8/1), Calcareous Material. (6.34–6.35m) – White (10YR 8/1), Calcareous Material.
-					(6.60-7.27m) - Wet, gray (10YR 5/1), SILT, some (F) Sand & Calcareous Material, small (1-2mm) blebs of sheen throughout, no cohesion, soft to firm. (6.80m) - White, Calcareous Material (1-2mm thick). (6.82m) - White, Calcareous Material (1-2mm thick).
7 BLASLA engli Project: 131.5	BBB ND, BOUCK & Deers & sca 3.300	LEE, 1 lent1s	NC.	emarks: Dgs = Below	Ground Surface.

(6.00-7270) - Het gray. (0/07 5/0), SUT, sone (F) Savd & Calcareous Hateria, san blebs of sheen broughout, to colesion, soft to fin.	DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
Boring terminated at 7.27m bgs.	-	1					(6.60-7.27m) - Wet gray (10YR 5/1), SILT, some (F) Sand & Calcareous Material, sma blebs of sheen throughout, no cohesion, soft to firm.
	-						Boring terminated at 7.27m bgs.
	7 <u>.5</u>						
	-						
	- 8						
8.5	_						
	.5						

Date Start/F Drilling Compo Drilling Metho Rig Type: Po Spoon Size:	Inish: 07/2 any: Ocear Id: Vibraco ntoon Boa N/A in.	21/00 1 Surv ire t	/ 07// eys, I	21/00 nc.	Bo	rehol	e Depth: 7.37 meters	Soll Boring No: S305 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
			1			Geolo	gist: Donald Johnson	
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column		Stratigraphic Description
							ι	
						;		
-							Material (plants), non-cohesive, soft.	
-								-
-							(0.37–1.37m) – Gray (10YR 6/1), orga	nic SILT and Calcareous Material, trace (VF) Sand, little
— .5	4						Organic Material (plants), frequent (-	2mm round voids, low cohesion, soft. -
~								
-								-
- 1								-
BLASLAN engin	BB D. BOUCK & Sers & Sc.		J INC. sts	Re	emar bgs =	(S: • Belo	w Ground Surface.	Saturated Zones Date / Time Elevation Depth

Client: Honeyw Location: Syracus Syracus	ell Interna e Remedia e, New Yo	itional ation Pr irk	ogram			Soll Boring No: S305 Total Depth = 7.37 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)		Geotechnical Test Geologic Column	Stratigraphic Description
-	4					(0.37–1.37m) – Gray (10YR 6/1), organic SILT and Calcareous Material, trace (VF) Sand, little Organic Material (plants), frequent 1–2mm round volds, low cohesion, soft. –
					10 10 10 10 10 10 10 10 10 10 10 10 10 1	(1.37-3.37m) - Wet, gray (10YR 6/1), SILT, Calcareous Material, trace (VF) Sand, trace Organic Material (plants), 1-2mm round voids throughout, low cohesion, soft.
- 2	3					(1.75m) - Very dark gray (10YR 3/1).
						(2.02-2.07m) - Very dark gray (10YR 3/1). (2.24-2.25m) - White (10YR 8/1), Calcareous Material. (2.28-2.30m) - Very dark gray (10YR 3/1).
				Rema	arks:	(2.35-2.41m) - Very dark gray (10YR 3/1). (2.47-2.48m) - White (10YR 8/1), Calcareous Material. Saturated Zones
BLASLAN engine Project: 131.53.	D, BOUCK & Pers & sc. 300	LEE, IN tentis	L L ts	bg	s = Below	Ground Surface. Date / Time Elevation Depth Page: 2 of 6

Client: Honeywe Location: Syracuse Syracuse	ell Internat e Remedia e, New Yor	tional tion Pri k	ogram			Soll Boring No: S305 Total Depth = 7.37 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test	Geotogic Column	Stratigraphic Description
-						(1.37–3.37m) – Wet, gray (10YR 6/1), SILT, Calcareous Material, trace (VF) Sand, trace Organic Material (plants), 1–2mm round voids throughout, low cohesion, soft. –
-	3					(2.75-2.85m) - Very dark (10YR 3/1). - (2.87-2.88m) - White (10YR 8/1), Calcareous Material.
— 3 —						
-						(3.37-5.37m) - Wet, gray (10YR 5/1), SILT, some Calcareous Material, trace (VF) Sand. few I-2mm
3.5						round voids, low cohesion, non-plastic, soft.
-	2					(3.87m) - White (IOYR 8/1), Calcareous Material. -
4				Remark	9:	(3.92-3.94m) - Very dark gray (10YR 3/1). (3.95m) - White (10YR 8/1), Calcareous Material. Saturated Zones
BLASLAN engine Project: 131.53	D, BOUCK &	LEE, IN Lent1s Script:		bgs =	Below	Ground Surface.

Date: 02/27/01

۰.

Page: 3 of 6

Client: Soil Boring No: S305 Honeywell International Total Depth = 7.37 meters Location: Syracuse Remediation Program Syracuse, New York (meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Section Description **JEPTH** PID (3.37-5.37m) - Gray (10YR 5/I), SILT, some Calcareous Material, trace (VF) Sand, few 1-2mm round voids, low cohesion, non-plastic, soft. (4.20-4.23m) - Very dark gray (10YR 3/1). (4.23-4.26m) - White, Calcareous Material. (4.33-4.34m) - Very dark gray (10YR 3/1). (4.36-4.37m) - Very dark gray (10YR 3/1). 4.5 (4.59-4.60m) - White (10YR 8/I), Calcareous Material. 2 (4.78-4.79m) - White (IOYR 8/1), Calcareous Material. (4.86-4.87m) - White (IOYR 8/I), Calcareous Material. - 5 (5.10-5.11m) - Very dark gray (10YR 3/1). (5.22-5.27m) - Several (6) tmm layers, white, Calcareous Material. (5.37-6.35m) - Wet, gray (IOYR 5/I), SILT, some Calcareous Material, little (VF) Sand, trace Organic Material (plants), few 1-2mm voids, low cohesion, non-plastic, firm. 1 ----(5.38-5.39m) - Very dark gray (10YR 3/1). 5.5 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC engineers & scientists

Project: 131.53.300

Script: hnywell Date: 02/27/01

Client: Soil Boring No: S305 Honeywell International Total Depth = 7.37 meters Location: Syracuse Remediation Program Syracuse, New York (meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Section Description DEPTH PIO (5.37-6.35m) - Wet, gray (IOYR 5/I), SILT, some Calcareous Material, little (VF) Sand, trace Organic Material (plants) few 1-2mm volds, low cohesion, non-plastic, firm, (5.51-5.52m) - Very dark gray (10YR 3/1). (5.60-5.5im) - Very dark gray (10YR 3/1). (5.81-5.88m) - White (10YR 8/1), Calcareous Material layers (Imm thick), soft. 6 1 (6.35-6.39m) - Wet, gray, (F-M) SAND, unconsolidated, firm. (6.39-6.54m) - Light gray (10YR 7/1), Calcareous Material, some Silt, low cohesion, soft. -6.5 (6.54-6.59m) - Pale yellow, (5YR 7/4), may be hardened Solvay waste, firm (1-2mm layers). (6.59-6.92m) - Wet, gray to dark gray (10YR 6/1-4/1) laminated SILT, little to some (VF) Sand, low cohesion, firm. (6.92-7.37m) - Moist, gray (IOYR 6/1) - last 20cm, brown, (VF-F) SAND, little Silt, trace Clay, few gastropods, moderately cohesive, slightly plastic, unconsolidated, firm. 7 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC engineers & scientists

Project: 131.53.300

Script: hnywell Date: 02/27/01

DEPTH (meters) ELEVATION Section	Number Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-	1					(8.82–7.37m) – Moist, gray (10YR 6/1) – last 20cm, brown, (VF-F) SAND, little Silt, trace gastropods, moderately cohesive, slightly plastic, unconsolidated, firm.
						(7.37m) – Boring terminated at 7.37m bgs.
-7.5						
			İ			
-						
- 8						
- -						
-					- - -	

Date Start/Finis Drilling Company Drilling Method: ' Rig Type: Ponto	sh: 07/21/00 :: Ocean Surv Vibracore on Boat	/ 07/21/00 reys, Inc.	Borehol	e Depth: 7.32 meters	Soll Boring No: S308 Client: Honeywell International Location: Syracuse Remediation Program	
Spoon Size: N/A	۱ in.		Geolo	o gist: Donald Johnson	Syracuse, New York	
DEPTH (meters) ELEVATION	Section Number Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test Geologic Column		Stratigraphic Description	
					ROUND SURFACE	
				(0-0.04m) - Saturated, black (7.5YR firm.	2.5/1), (F) SAND, little Silt, few gastropods, unconsolidated,	
-				(0.04-1.29m) - Saturated, grayish bro (plants and rootlets), trace Clay, gas	own (10YR 5/2), (F) SAND, little Silt and Organic Material tropods throughout, unconsolidated, firm.	
	4		아파 아	(0.49-0.50m) - Light gray layer.	- - - - - - - - - -	
P		Re	marks:	Li Cround Durite	Saturated Zones Date / Time Elevation Depth	
BLASLAND, E	BOUCK & LEE,	INC.	ogs = 8610	w Ground Surtace.		
Project: 131.53.300) Scrip	t: hnywell			Page: 1 of £	

-

.

Page: 1 of 6
Clie Hi Loc S' S	int: oneywe ation: yracuse yracuse	ell Interna e Remedia e, New Yo	tional Ition Pr rk	ograi	n			Soll Boring No: S308 Total Depth = 7.32 meters
DEPTH (meters)	ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
		4						(0.04-1.29m) - Saturated, grayish brown (10YR 5/2), (F) SAND, little Silt and Organic Material (plants and rootlets), trace Clay, gastropods throughout, unconsolidated, firm. - (1.17m) - Light gray layer (2mm thick) .
								(129—3.29m) - Wet, grayish brown (10YR 5/2), (F) SAND, little Silt and Organic Material (plants), few gastropods, trace Clay, unconsolidated, firm.
2 2		3						
- -								- (2.34m) - Yellow (10YR 7/6), (F-M) SAND (1mm thick). -
2.5	BLASLAN engine	BB D. BOUCK & Bers & Sc 300	LEE, 1 LEE, 1 Script		Re	emark bgs =	(S: Below	Ground Surface.

Client: Honeywe Location: Syracuse Syracuse	ell Internat e Remediat e, New Yor	ional tion Pro k)gram		Soil Boring No: S308 Total Depth = 7.32 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test Geologic Column	Stratigraphic Description
-					(1.29-3.29m) - Wet, grayish brown (10YR 5/2), (F) SAND, little Silt and Organic Material (plants), few gastropods, trace Clay, unconsolidated, firm. -
- 3	3				-
-					-
					(3.29-5.29m) - Wet, dark gray brown (10YR 4/2), (VF) SAND and SILT, few gastrolpods and bivalves, trace Clay and Organic Material (plants), moderate cohesion, low plasticity, unconsolidated, firm. (3.38m) - Light gray (10YR 7/2), tmm layer.
-	2				
					(3.85m) – Brown, 2mm thick wood fragment.
BLASLAN engine Project: 131.53.	BBB D, BOUCK & Ders & Sci 300	LEE, IN ent1st	R C. ts hnywell 2/27/01	emarks: bgs = Below	Ground Surface. Saturated Zones Date / Time Elevation Depth Page: 3 of 6

.

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York Soil Boring No: S308

Total Depth = 7.32 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test Geologic Column	Stratigraphic Description
	2					 (3.29-7.32m) - Wet, dark gray brown (IOYR 4/2), (VF) SAND and SILT, trace Clay, trace gastropots and bivalves, trace Organic Material (plants), moderate cohesion, low plasticity, unconsolidated, firm.
BLASLAN	BB D, BOUCK & Pers & sca	LEE, II	/ 1 <u>10.</u> ts	Rem bg	arks: s = Below	Ground Surface.
Project: 131.53.	300	Script: Date: (hnywell 02/27/01			Page: 4 of 6

Honeywell International

Client:

Location:

Syracuse Remediation Program Syracuse, New York Soil Boring No: S306

Total Depth = 7.32 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	1 1 Geologic Column	Stratigraphic Description
 6.5	1						(5.20-7.32m) - Wet, dark gray brown (IOYR 4/2), (VF) SAND and SILT, trace Clay, trace gastropods and bivalves, trace Organic Material (plants), moderate cohesion, low plasticity, hard, dense.
							(6.58m) – 3mm round brown rootlet/wood fragment. -
BLASLAN engin Project: 131.53	BB ND. BOUCK & eers & sc .300	LEE, I lentis	NC. sts	Re	mark bgs =	(s: Belov	Ground Surface.

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) OIA	Geotechnical Test	Geologic Column	Stratigraphic Description
-	1						(5.29–7.32m) – Wet, dark gray brown (10YR 4/2), (VF) SAND and SILT, trace Clay, trace gastropods and bivalves, trace Organic Material (plants), moderate cohesion, low plasticit dense.
							(7.32m) - Boring terminated at 7.32m bgs.
-							
- 8							

Date Start/F Drilling Compo Drilling Metho Rig Type: Po Spoon Size:	inish: 07/1 any: Ocear ad: Vibracc ntoon Boa N/A in.	8/00 h Survi ire t	/ 07/ eys, 1	18/00 nc.	Bo	rehok Geolo	Be Depth: 5.79 meters Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
							GROUND SURFACE (0-0.09m) - Super saturated, very dark gray (N3/), coarse interval (excess water has drained off), round (F-M) GRAVEL, ≤ 2 cm diamter, Oncalites with calcium carbonate centers, little (F-M) Sand, trace Silt, non-cohesive. (0.09-0.85m) - Wet, light gray (10YR 7/1), (F-M) GRAVEL, trace Silt, non-cohesive.
5 	3			1.25			(0.85-1.30m) - Wet, light gray (10YR 7/1), (F) subround GRAVEL and (C) SAND, trace Silt,
BLASLAN engan	B B B, BOUCK & PEC'S & SC. 300		INC. sts	Re I	marl >gs =	(S: Belo)	pelecypods and gastropods from 0.18-1.75m (2-4mm long), non-cohesive.

Client: Honeywe Location: Syracus Syracus	ell Interna e Remedia e, New Yoi	tional tion Pr 'k	ogran	1			Soll Boring No: S307 Total Depth = 5.79 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
_							(0.85-1.30m) - Wet, light gray (10YR 7/1), (F) subround GRAVEL and (C) SAND, trace Silt, pelecypods and gastropods from 0.18-1.75m (2-4mm long), non-cohesive. -
	3			1.25			(1.30–1.61m) – Wet, light gray (IDYR 7/1), (F-M) SAND, some Silt, non-cohesive. -
							(1.61-1.75m) - Wet, light gray (10YR 7/1), (M) SAND, some subrounded (F) Gravel, little Silt, non-cohesive. (1.75-1.98m) - Same as 1.61-1.75m, but 2 gastropods (~5mm long) at 1.89m and 1.98m.
_ 2 _	2			2.0			(1.98-2.72m) - Wet, (7.5YR 6/1) gray, (M) SAND and organic SILT, gastropods (≤ 4mm long), non-cohesive. -
 _							
2.5 BLASLAN engine Project: 131.53.	BBB D. BOUCK & BEFS & SC 300	LEE, 1 lent1s	<u>₩C.</u> ts	ell	mark bgs =	S: Below	Ground Surface.

Client: Honeywell Inter Location: Syracuse Reme Syracuse, New	national diation Progra York	Э m		Soll Boring No: S307 Total Depth = 5.79 meters
DEPTH (meters) ELEVATION Section Mumber	Sample/Int/Type Recovery (meters)	PID (ppm)	Geologic Column	Stratigraphic Description
- 3 2		2.0	(1.98-2.72m) – Wet, non-cohesive. (2.72-3.38m) – Wet, trace grass and root	7.5YR 6/I) gray, (M) SAND and organic SILT, gastropods (≤ 4mm long), ght gray (7.5YR 7/I), organic SILT and (M) subangular SAND, little Clay, ets, moderate cohesion, low plasticity.
— 3.5 —			(3.42-3.58m) - Wet, g non-plastic. (3.58-3.75m) - Same	ray (7.5YR 6/1), organic SILT, some (C) subangular SAND, low-cohesion,
- 1 - 4		1.5	(3.75-4.34m) - Wet, ç	ray (10YR 6/1), (F) angular SAND, appears to be Calcareous Material. -
BLASLAND, BOUCK engineers & Project: 131.53.300	SLEE, INC. scientists Script: hny Date: 02/2	Rema bgs well 7/01	rks: = Below Ground Surface.	Saturated Zones Date / Time Elevation Depth Page: 3 of 5

Client: Honeywe Location: Syracuse Syracuse	I Internat Remediat , New Yor	ional ion Pri k	ogran	n			Soll I Tota	Boring No: S307 I Depth = 5.79 meters	
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqa) OIA	Geotechnical Test	Geologic Column	Stratig Descr	raphic Iption	
-	s			1.5			(5.37–5.56m) – Wet, grayish brown (10YR 5/2), or (5.56–5.79m) – Moist, very dark gray brown (10YI	ganic SILT, little Clay, soft. R 3/2), (VF-F) SAND, trace Silt, non-cohesi	ve
							Boring terminated at 5.79m bgs.		
									-
									-
-									-
- 7	BB			Re	emark bgs =	(s: Belov	Ground Surface.	Saturated Zones Date / Time Elevation D	Depth
BLASLAN engine Project: 131.53.), BOUCK & ers & sca 300	LEE, I lentis	NC. ts : hnym					Page	e: 5 of 5

.

Date Start/F Drilling Comp Drilling Metho Rig Type: Po Spoon Size:	Thish: 07/1 any: Ocean ad: Vibracc ntoon Boa N/A in.	18/00 n Survi pre t	/ 07/ eys, 1	18/00 nc.	Bc	orehol Geola	Soll Boring No: S308 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
5	3			2.5			GROUND SURFACE (0-0.16m) - Super saturated (excess water drained from tube), black (I0YR 2/I), organic SILT, Organic Material (twigs, leaves, and roots), non-cohesive. (0.16-0.33m) - Wet, grayish brown (2.5Y 5/2), organic SILT, Organic Material as above. (0.21m) - Alternating grayish brown (2.5Y 5/2) and black (I0YR 2/I), varves (2mm thick layer). (0.23m) - Wet, grayish brown (2.5Y 5/2) and black (I0YR 2/I), varves (2mm thick layer). (0.23m) - Alternating grayish brown (2.5Y 5/2) and black (I0YR 2/I), varves (2mm thick layer). (0.25m) - Alternating grayish brown (2.5Y 5/2) and black (I0YR 2/I), varves (2mm thick layer). (0.27m) - Alternating grayish brown (2.5Y 5/2) and black (I0YR 2/I), varves (2mm thick layer). (0.27m) - Alternating grayish brown (2.5Y 5/2) and black (I0YR 2/I), varves (2mm thick layer). (0.33-1.36m) - Wet, black (I0YR 2/I), organic SILT, Hitle Organic Material, trace Clay, appears sthry buy no Iridescence, moderate cohesion, low plasticity.
1 BLASLAN engine Project: 131.53.	BB D, BOUCK & Sers & sc. 300		NC. sts	R	emar bgs -	K s:	Ground Surface.

Client: Soil Boring No: S308 Honeywell International Total Depth = 5.93 meters Location: Syracuse Remediation Program Syracuse, New York (meters) Geotechnical Test Sample/Int/Type DEPTH (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Description Section PID (0.33-1.38m) - Wet, black (10YR 2/1), organic SILT, little Organic Material, trace Clay, appears shiny but no iridescence, moderate cohesion, low plasticity. (1.38-1.57m) - Wet, light gray (10YR 7/1), organic SILT, trace Clay. 3 2.5 -15 (1.57-1.87m) - Wet, black (IOYR 2/1), organic SILT, trace Organic Material (rootlets), low cohesion, low plasticity. (1.76m) - Light gray (10YR 7/1), thin layer of organic SILT. (1.87-2.27m) - Same as 1.57-1.87m. - 2 2 1.5 (2.27-2.59m) - Wet, gradational change from black (10YR 2/1) to light brown gray (10YR 6/2), organic SILT, trace of Clay, infrequent gastropods. (2.28-2.4m) - Color streak of black (IOYR 2/I) and light gray (N7/), not distinct layer. (2.4-2.59m) - Color streak of black (IOYR 2/1) and light brown gray (IOYR 6/2), not distinct layer. 25 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists

Project: 131.53.300

Script: hnywell Date: 02/27/01

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S308

Total Depth = 5.93 meters

		U	rs)		st		
ters		/Typ	mete		al Te		
(me		/Int/	ıry (Ē	hnica	ပိပ	Stratigraphic Description
PTH EVA	ction	mple	cove		otec	igolo	Description
B H	S S S	ß	Re	Ηd	Ge	Ge	
							(2.27-2.59m) - Wet, gradational change from black (10YR 2/1) to light brown gray (10YR 6/2), organic SILT, trace of Clay, infrequent gastropods.
-						<u> </u>	(2.59-3.87m) - Moist, light brown gray (10YR 6/2), organic SiLT and CLAY, infrequent gastropods
							(~2mm long), moderate cohesion, low plasticity.
F							-
							-
-							_
- 3							
						·····	-
-	2			1.5			
							-
							-
					ł		-
					ļ		
_							-
-					ŀ		
			Γ				(3.87-5.93m) - Molst, light brown gray (10YR 6/2), organic CLAY and SILT, grading to CLAY with little Silt, trace rootlets, small (<2mm long) sample appears very consistant event that they
4	1			2.0			percentage increases and Silt decreases, moderate to high cohesion at lower part of core (5.9m), very soft to soft.
			I	Re	mark		Saturated Zones
	56	5			bgs =	Below	Ground Surface.
BLASLAN	ID, BOUCK &	LEE, I	NC.				
engin	eers & sc.	Series	ts				
10/201. 131.33		Date:	02/27	/01			Page: 3 of 5

Client: Honeywell International

Location:

Location.

Syracuse Remediation Program

Soll Boring No: S308

Total Depth = 5.93 meters

															C 10 10 10 10					10 A 10 A 10		 	 A. B. B. B. B. B.				A. S. S. S. S. S.									
		C - C - C -																						 									10.000			
			1.1.1.1.1	- 1 A A A												A & R & A							 	 											1.1.1.1.1.1	
		_	1 Carter 1 Cart	1 Control 10																			 												1 1 1 1 1	
	_		_																																	
•														1 1 1 1		1 1 1 1						 	1111						A. A. A. A. A. A.							
																1.1.1.1.1.1							11111											10.000		
		-																					 	 											1.1.1.1	C 10 10 10
																		10.00								1.										
		1.00																C 61 6 1 6 1 6	10 C 10 C 10																	
			A 2. Aug	A 1 March 1		1														100 C 100 C 10																
		_																																		
																					0.000.000	 														
										2 S I I I I I I I I I I I I I I I I I I		NAME OF TAXABLE PARTY O									5 A A A A A	 	 													
																																10.00				
										*****			- 1 A A		10.00							 		1											1.5.5.5	
														111111	1.1.1.1.1.1									 1 4 1 1 1	100 C 100 C										1.1.1.1.1.1	
	10.000																						 	 												
																						 • • • • • • • •							101010-001							
- C. C.								1.1.1.1	1.1.1.1.1.1.1													 100 B 100 B 10	 							10.000	C 1 1 1 1 1 1 1					
		· • •			_							101000												 									100 B 100			
															1.11.11.1								 													
																1.1.1.1.1.1						F		 		100 C C C C										A 14 14 14
		_				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	 	 												
			_	_																																
	_	_	_																																	
														Sec. 20.									 													
											100 C 100 C																									
1.11																						 	 													
	0 Y Y Y Y	C 6 1 6 1															1.1.1.1.1							 		100 C 100 C 10										1.1.1.1
																		an an an an										10.000								
					test for the	A 1 1 1	- 10 M M	10 A 10 A 10												10100																
				_	-													- market - 1			1.1.1.1.4							1.1.1.1.1.								
								_		6 1 1			_																							
						_																 														
		_																					 													
													~ .				1. A							 												
		1.1.1		1.1.1.1.1											1.1.1.1.1.1.1	C 10 C 10 C 10 C					1.1.1.1.1.1.1.				100 C 100 C 100											1.1.1.1
																				10.000																
										C C C C C C C											4 1 1 4 4 4															
													C 10 10 10 10																							C
			- 1 C - 1 C																			 														
				_					_													 1111111111	 		1. A.											C. C. C. C. C.
	- C. C.				10 C 10 C 10																	* * * * *	1.1.1.1.1.1	 									1.1			
					100 B (1)				_													 			100 A 100 A 100											1.1.1.1.1.1
					_					1.1						1 1 1 1 1						 		 												
					-		_												1.1.1.1.1.1																	
				1. A. A. A. A.				1.11.11								ALC: NO 10			1 A A A A A	1.1.1.1				- 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			11111									
								1 1 1 1								A					1.1.1.1.1.1	 1 B. B. M. M. M.								1.1.1.1.1.1.1.1						
1.1.1.1												1111111										• • • • • • •									1.1.1.1.1.1.1					

Soli Boring No: S308

Total Depth = 5.93 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
_							(3.87-5.93m) - Moist, light brown gray (10YR 6/2), organic CLAY and SILT, grading to CLAY with little Slit, trace rootlets, small (≤ 2mm long) sample appears very consistant except that Clay percentage increases and Slit decreases, moderate to high cohesion at lower part of core (5.9m), very soft to soft.
-	1			2.0			(5.72m) – Large (1.5cm long) gastropod (black-blue) found broken.
6							Boring terminaled at 5.93m bgs.
-							
_							
6.5				1			-
-							-
-							-
7 BLASLAN	BB D, BOUCK &			Re	mark bgs =	s: Below	Ground Surface.
Project: 131.53.	300	Script	555 : hnyw 02/27	rell /01			Page: 5 of

Date Start/F Drilling Comp Drilling Metho	Finish: 07/: any: Ocear od: Vibraco	20/00 n Surv pre	/ 07, eys, 1	/20/00 Inc.			Soll Boring No: S309 Client: Honeywell International
Rig Type: Po	ntoon Boa	t			Bc	Geolo	gist: Donald Johnson
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
						• •-	GROUND SURFACE (0-0.30m) - Super saturated (water draining from core) black (10YR 2/1), S1LT, Organic Pieces,
5 	4			3.0	,	10 14 14 14 14 14 14 14 14 14 14 14 14 14	(0.30-0.74m) - Wet, S0/50 mixture of very dark gray (10YR 3/1), (VF-F) angular SAND and SILT and very pale brown (10YR 8/2), fine grained Calcareous Material, low cohesion, non-plastic. -
-							(0.74-1.27m) - Wet, white (10YR 8/1), Calcareous Material, with some gray (10YR 5/1), (VF) Sand, very firm. Interval is deformed in tube. (0.87-0.91m) - (C) SAND with traces of medium brown oil on grains.
1							- (1.0-1.06m) ~ Vertical section of (M) subround SAND, surrounded (grains) with trace of brown oil, isolated in core sample.
BLASLAN engine Project: 131.53.	BB D. BOUCK & Sers & Sc; 300	LEE, I tent1:	NC. sts	Re	bgs =	-1 (S: • Below	Ground Surface.

Client: Honeywell International

Location:

Syracuse Remediation Program

Soil Boring No: S309

Total Depth = 7.89 meters

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S309

Total Depth = 7.89 meters

			_				
(s.		,pe	ters)		Test	ç	
neter DN		1t/T)	(me	_	cal	Colum	Stratigraphic
H (r ATIC	er o	le/Ir	(ery	mdd	chni	gic (Description
ILEV	iecti	amp	eco		eote	eolo	
	0, 2	6	С.	<u>م</u>	о –	9	
							(1.86-2.72m) - Moist, White (10YR 8/1), Calcareous Material, interval is hard to ~2.54m.
-					1		
┢							
							(2.72-2.79m) - Moist, gray (5YR 5/1), same apparent consistency as above, soft.
-							(2.79-2.85m) - Moist, white (7.5YR 8/1), fine grained calcareous material same consistency as
							above.
							(2.83-2.835m) - Moist, very dark gray (10YR 3/1), as above.
							(2.93-3.86m) - Moist, white (10YR 8/1), fine grained calcareous material, soft.
— 3							
F							
_	3			3.0			_
_							_
-							-
		Í					
3.5							(2.5m) = Crossish grav. (EC.5.(1) - Looph
							(3.5 m) - Greenish gray (30 57) streak.
							(3.65m) - 1cm long x 3mm wide crevice with very dark brown (10YR 2/2) oil.
							
					Ē		4
			┝				(3 5R-3 0.4m) - Hold ubits (000 5/4 10- 0-10-00 1000
-	2			3.0	Ē		(2000 2004III) - MUISL, MINCE (10TK 0/1), THE CAICAREOUS MATERIAL
_4	_			5.0			(3.94-3.95m) - Moist, very dark gray (10YR 3/1), fine grained Calcareous Material, some (F) Sand, / hard.
				Re	mark	s:	Saturated Zones
	515		,		bgs =	Below	Ground Surface. Date / Time Elevation Depth
BLASLAN	D, BOUCK &	LEE. T	NC.				
engini	eers & sci	entis	its				
Project: 131.53.	.300	Script: Date:	: hnyw 02/27	ell /01			Page: 3 of 6

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soll Boring No: S309

Total Depth = 7.89 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) OI4	Geotechnical Test	Geologic Column	Stratigraphic Description
-							 (3.95-4.06m) - Moist, pale yellow (2.5Y 8/2), to white (10YR 8/1), fine grained Calcareous Material, soft. (4.08-4.07m) - Moist, greenish gray (56 5/1), very fine grained Calcareous Material, trace of fine grained Calcareous Material. (4.07-4.24m) - Moist, light gray (10YR 7/1), very fine grained Calcareous Material. (4.23m) - Dark gray (10YR 4/1), thin horizontal layer. (4.24-5.86m) - Moist, white (10YR 8/1), very fine to fine grained Calcareous Material, firm from 5.2 to 5.7m. (4.36m) - Dark gray (10YR 4/1), thin horizontal layer.
4.5 	2			3.0			(4.42m) - Dark gray (10YR 4/1), thin horizontal layer. (4.44m) - Dark gray (10YR 4/1), thin horizontal layer. (4.64-4.66m) - Greenish gray (5G 5/1).
- 5 							(4.93m) - Dark gray (10YR 4/1), thin horizontal layer. (4.96m) - Dark gray (10YR 4/1), thin horizontal layer. (4.99m) - Dark gray (10YR 4/1), thin horizontal layer. (5.01m) - Dark gray (10YR 4/1), thin horizontal layer.
							- (5.42m) - Dark gray (10YR 4/1), thin horizontal layer.
BLASLAN engini Project: 131.53	BB D, BOUCK & Bers & Sci 300	LEE, 1 ent1s Script: Date:	NC.	Re 1	mark >gs =	s: Below	Ground Surface. Saturated Zones Date / Time Elevation Depth

Client: Honeywe Location: Syracus Syracus	ell Internal e Remedia e, New Yor	tional tion Pr k	ograi	m			Soll Boring No: S309 Total Depth = 7.89 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqd) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
-	2			3.0			(4.24-5.86m) - Moist, white (10YR 8/1), very fine to fine grained Calcareous Material, firm from 5.2 to 5.7m. - (5.78m) - Dark gray (10YR 4/1), thin horizontal layer.
6 6.5	1			3.0			(5.86-6.27m) - Moist, light green gray (10Y 8/1), very fine grained Calcareous Material, soft. Dark brown oil in pocket in calcareous material-no PID response. (6.02-6.05m) - Dark gray (N4/) layer. (6.08-6.14m) - Dark gray (N4/) layer. (6.27-6.96m) - Moist, white (2.5Y 8/1), fine grained calcareous material, soft, low cohesion, non-plastic.
- - - BLASLAN engine Project: 131.53.	BBB D. BOUCK & Pers & sci 300	LEE I script: Date:	NC. hnyw	Re I	imarks bgs = E	: delow	(6.87-6.92m) - Color variation, 8 grayish green (56 4/2) layers, each 4mm thick, at 2mm spacings. White (2.5Y 8/1), Calcareous Material, hard, within 2mm spacings.

DEPTH (meters) DEPTH (meters) ELE VATION ELE VATION ELE VATION Section Number Number Number PID (ppm) PID (ppm) PID (ppm) Ceologic Column	Stratigraphic Description
(0-0.36m) - Super 	
	GROUND SURFACE saturated (water draining), very dark gray (N3/), Organic Pieces and SILT,
	, black (IOYR 2/1), Organic Pieces and SILT, including rootlets (few), moderate ic, very soft. , Organic Pieces and SILT, very soft, moderate cohesion, non-plastic. k gray (N4/). y dark gray (N3/). k gray (N4/). ck (N2.5/).
(0.80-0.81m) - Black (0.82-0.87m) - Black (0.82-0.87m) - Black (0.87-0.93m) - Wet, (0.93-11m) - Wet, gr (0.93-11m) - Wet, gr (0.93-11m) - Wet, gr (0.93-11m) - Wet, gr	k (N2.5/). k (N2.5/). gray (N5/), organic SILT, little Clay grading into Calcareous Material, soft. ay (N5/), fine grained Calcareous Material, soft, low cohesion, low plasticity. Saturated Zones Date / Time Elevation Depth

Honeywell International

Location:

Soll Boring No: S310

Total Depth = 7.19 meters

Syracuse Remediation Program Syracuse, New York

neters) NN		t/Type	(meters)		cal Test	column	Chrokingshin
DEPTH (m ELEVATIO	Section Number	Sample/In	Recovery	PID (ppm)	Geotechni	Geologic C	Description
							(0.93-Ltm) – Wet, gray (N5/), fine grained Calcareous Material, soft, low cohesion, low plasticity.
╞							(1,1-1,24m) - Molst, light green gray (10Y 8/1) fine grained Calcareous Material soft low ophesion
	4			2.0		-	non-plastic.
F							-
]						(1.24-1.34m) - Wet, very dark gray (N3/), fine grained organic SILT, littl Clay, very soft.
F							(1.34-2.21m) - Wet, greenish gray (56 6/1), fine grained Calcareous Material gradually becoming very fine grained, soft.
—15							-
-							-
	Í						(1.66m) - Very dark gray (10YR 3/1) layer, 2mm thick.
-							(1.68m) - Very dark gray (10YR 3/1) layer, 2mm thick
							(1.7tm) - Very dark gray (10YR 3/1) layer, 3mm thick.
							(1.13-1.130m) - Tellow green (pistacio) layer.
					Ē		
	3			2.0	Ē		(194-203m) - Very dark gray /INVP 2/1 layor
- 2							(1694 2.0.5m) - VELY UNIX GRAY (1011 3/1) Hayer.
							1
- 1							
							(2.13-2.14m) - Yellow green (pistacio) layer.
							(2.19-2.20m) - Yellow green (pistacio) layer.
	ł				E		(2.21-3.24m) - Wet, white (10YR 8/1), Calcareous Material, fine grained.
-					Ē		4
					Ē		
-					Ē		(2.39–2.40m) – Black (10YR 2/1).
2.5					Ē		
				Re	mark	g.	Saturated Zones
F	36				ogs =	Below	Ground Surface. Date / Time Elevation Depth
BLASLAN	D, BOUCK &	LEE. I	NC.		-		
engina	ers & sci	entis	ts				
Project: 131.53.	300	Script: Date: (hnyw 02/27	ell /01			Page: 2 of 6

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S310

Total Depth = 7.19 meters

Client: Honeywe Location: Syracuse Syracuse	Interna Remedia New You	tional tion Pr rk	ograi	n		Soil Boring No: S310 Total Depth = 7.19 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Fest Geologic Column	Stratigraphic Description
-4.5	2			2.0		4.58-5.24m) - Wet, light green gray (506 7/1), Calcareous Material with very dark gray (10YR 1) layers, ~0.5cm thick throughout interval, ~15 such layers.
				2.0	narks	Saturated Zones
BLASLAND engine Project: 131.53.3	BOUCK &	LEE, 1 Ventis			iidi nə. igs = Below Grou	nd Surface.

Client: Honeywell International

Location:

Soil Boring No: S310

Total Depth = 7.19 meters

Syracuse Remediation Program Syracuse, New York

DEPTH (met ELEVATION Section Number Sample/Int/ Recovery (1 PID (ppm)	Geo de certuica Geo de certuica C C C Descript Descript	phic tion
	(5.24-5.6im) - Wet, light green gray (10Y 8/1), fine g (pistacio) layers, ~4mm wide throughout interval. Th toward bottom of core from deformation by vibracore	grained Calcareous Material with yellow-green ese layers are tapered down concentrically e.
	(5.61-6.53m) - Wet, white (IOYR 8/1), Calcareous Mat	ierial.
-6.5	(6.37-6.38m) - 2 gray (2.5Y 3/1) layers, each 3mm ti	hick. -
	(8.53-7.24m) - Wet, gray (2.5Y 5/1), Calcareous Matu	erial.
	(0.30-0.00m) - very dark gray (2.5Y 3/1) layer.	-
	(6.67-6.74m) - Very dark gray (2.5Y 3/1) layer.	-
	(6.78-6.8tm) ~ Very dark gray (2.5Y 3/1) layer.	-
	l E	Saturated Zones
BLASLAND, BOUCK & LEE, INC.	bgs = Below Ground Surface.	Date / Time Elevation Depth
engineers & scientists		

Client: Honeywe Location: Syracus Syracus	ell Internat e Remediat e, New Yor	ional tion Progr k	am		Soll Boring No: S310 Total Depth - 7.19 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type Recovery (meters)	(mqq) OI	Geotechnical Test Geologic Column	Stratigraphic Description (8.53-7.24m) - Wet, gray (2.5Y 5/1). Calcareous Material.
	1		2.0		(7.08-7.19m) - Wet, dark gray (2.5Y 4/1), Calcareous Material, low cohesion, non-plastic.
_					(7.19m) - Boring terminated at 7.19m bgs.
-					
-					
7.5					
-					
-					
_					
- 8					
-					
-					
-					
-					
8.5					
BLASLAN	D. BOUCK &	LEE, INC. entists	Re	m arks: bgs = Below	I Ground Surface.

Date Start/F Drilling Compo Drilling Metho Rig Type: Por	inish: 07/; any: Ocear d: Vibracc ntoon Boa	20/00 n Surv pre t	/ 07, eys, 1	/20/00 nc.	Bc	rehol Geolo	e Depth: 5.94 meters Inglist: Donald Johnson	Soll Boring No: S311 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York	
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column		Stratigraphic Description	
							G (0-0.045m) - Wet, brown (10YR 4/3), (0.045-0.09m) - Wet, pale green (56 material), hard at top 3mm.	ROUND SURFACE weeds, coarse SAND and SILT, non-cohesive. i 7/2), fine sand-size grained (possibly calcium carbonate	
_							(0.09-0.15m) - Wet, white (2.5 8/1), fil non-plastic. (0.15-0.28m) - Wet, light gray (2.5 7/ cohesion, non-plastic, black (10YR 2/ (0.28-0.32m) - Wet, very dark gray (hard. Some black (10YR 2/1), angular (0.32-0.61m) - Wet, white (2.5Y 8/1), (ne sand-size grained Calcareous Material, soft, low cohesion, 1), fine sand-size grained Calcareous Material, moderate 1), angular (F) Sand – possibly ash, soft. 2.5Y 3/1), fine sand-size grained Calcareous Material, firm to (F) Sand – possibly ash. Calcareous Material.	
5 	3			3.5			(0.55m) - Gray (2.5Y 5/1), angular (F. (0.57m) - Gray (2.5Y 5/1), angular (F. (0.59m) - Gray (2.5Y 5/1), angular (F. (0.61-0.67m) - Moist, gray (2.5Y 6/1), SAND (50%/50%). (0.67-0.71m) - Moist, very dark gray hard, solidified. (0.71-0.93m) - Moist, white (2.5Y 8/1),) SAND layer.) SAND layer.) SAND layer. hard Calcareous Material and black (10YR 2/1), angular (F) (2.5Y 3/1), fine sand-size grains of Calcareous Material, , Calcareous Material, firm, non-plastic.	
1 BLASLAN engine Project: 131.53.	D. BOUCK & D. BOUCK & Pers & sc: 300	LEE, J LEE, J Script	NC. sts	Re	mari bgs =	<s: • Belov</s: 	(0.93-120m) - Moist, yellow-green (p non-plastic, low cohesion. w Ground Surface.	Istacio), fine sand-size grained Calcareous Material, soft, Saturated Zones Date / Time Elevation Date / Time Elevation	

Client: Honeywe Location: Syracuse Syracuse	ell Internat e Remedia e, New Yor	tional tion Pr k	ograi	m			Soll Boring No: S311 Total Depth = 5.94 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
 	3			3.5			(1.02-1.05m) - Moist, light pink (5R 8/2), fine sand-size grained Calcareous Material with irregular shape. (1.20-1.39m) - Moist, yellow-green (pistacio), fine sand-size Calcareous Material, soft, low cohesion, non-plastic. (1.39-1.59m) - Moist, white (10YR 8/1), very fine sand-size grained Calcareous Material, some light pink (5R 8/3), mottled blotches and streaks within, soft.
- - - 2	2			2.5			(1.92–1.95m) - Molst, very pale brown (10YR 8/2), Calcareous Material, fine sand-sized grains, distinct imm depositional layers laminar. (1.95–2.48m) - Molst, white (10YR 8/1), Calcareous Material, soft, low cohesion, non-plastic.
25 BLASLAN engine Project: 131.53.	D. BOUCK & BERS & SC 3	LEE, I entis		rell	:mari bgs =	s: Belon	Ground Surface:

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S311

Total Depth = 5.94 meters

		e و	ers)		st		
ters		Typ/	mete		al Te	Umu	
ION (me		'Int,)	Ê	nice	ပိ	Stratigraphic
TH VAT	tion	ple/	over	dd)	tech	logic	Description
DEF	Sec	San	Rec	PID	Geo	Geo	
							(2.48-2.59m) - Molst, light brown gray (10YR 6/2), very fine to fine Calcareous Material and little
L							Saiki.
							(2.59-2.65m) - Moist, white (10YR 8/1), fine to medium sand-size grained Calcareous Material, trace of very dark gray (10YR3/1), Sand, soft, non-cohesive.
-							(2.85-3.0im) - Noist, white (2.5Y 6/I), fine sand-size grained Calcareous Material.
							(2.74–2.75m) - 1cm thick layer with some (F) Sand at 45 degree angle.
-							(2.79-2.8m) - 1cm thick layer with some (F) Sand at 30 degree angle.
-							-
							(2.94–2.948m) - Moist, pinkish white (10YR 8/2), streaky layer of Calcareous Material.
- 3							(3.01-3.02m) - Molet white (2.5V.8/1) fine condicional arctic of Colorison Multiple (1.1
							Cohesion, non-plastic.
Γ							-
_						_	(3.17-3.25m) - light pink (5R 8/2).
	2			2.5			1
-							
							(3.32-3.35m) - light pink (5R 8/2).
_							(3.38-3.39m) - light pink (5R 8/2).
		ł			Ē		
							(3.50-3.51m) - light pink (5R 8/2)
			[Ē		
-					Ē		(3.59-3.63m) - light pink (5R 8/2).
_					Ē	-	
					Ē		1
					Ē		
					Ē		1
_					Ē		
Δ	1		ſ	2.0	Ē		(3.92-4.62m) - Moist, white (2.5Y 6/1), fine grained Calcareous Material, firm, moderate cohesion, non-plastic. Depositional laminations-hard, each layer is -3mm thick at 3.92-3.99m.
 					F		Saturated Zones
				He	m ark Das =	s: Below	Ground Surface Date / Time Elevation Depth
BLASLA	ND, BOUCK &	LEE. T	NC.				
engin	eers & sci	entis	its				
Project: 131.53	.300	Script: Date: (: hnyw 02/27	rell /01			Page: 3 of 5

Client: Honeywe Location: Syracus Syracus	∦ Internat e Remedia e, New Yo	tional tion Pr rk	.ogra	m			Soil Boring No: S311 Total Depth – 5.94 meters
DEPTH (meters) ELEVATION	Section Number	Sampte/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
							(3.92-4.62m) - Moist, white (2.5Y 6/1), fine grained Calcareous Material, firm, moderate cohesion, non-plastic. (4.05-4.07m) - light pink (5R 8/2), layer.
-							- - -
—4.5 —							(4.62-4.70m) – Moist, very light lime green layer, firm, moderate cohesion, non-plastic.
-	1			2.0			(4.70-5.94m) - Moist, white (10YR 8/1), Calcareous Material, soft, low cohesion, non-plastic. - (4.87-4.89m) - Moist, firm-hard, gray (10YR 5/1), Calcareous Material, angled in core tube.
— 5 —							(4.91m) – Very dark gray (10YR 3/1), 1.5mm thick layer. -
-							-
				Re	emarl	(s:	(5.36m) - Very dark gray (10YR 3/1), 15mm thick layer. Saturated Zones
BLASLAN	D. BOUCK &	LEE, I	NC.		bgs =	Below	/ Ground Surface.

Script: hnywell Date: 02/27/01

Project: 131.53.300

Client: Honeyw Location: Syracus Syracus	ell Internat se Remedia se, New Yor	tional tion Pr	ograi	n			Soil Boring No: S311 Total Depth = 5.94 meters	
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description	
	1			2.0			(4.70–5.94m) – Moist, white (10YR 8/1), Calcareous Material, soft, low cohesion, non-plastic (5.75–5.77m) – Moist, light pink (5R 8/2) layer, Calcareous Material, soft, low cohesion, non-plastic.	-
- 6 							(5.94m) - Boring terminated at 5.94m bgs.	
								-
								-
7 BLASLA eng 17 Project: 131.5	BBB ND, BOUCK S Deers S SC 3.300	LEE 1 ent 1	INC. sts	well 7/01	emar bgs =	ks: = Belo	W Ground Surface.	95 Depth ge: 5 of 6

Date Start/f Drilling Comp Drilling Metho Rig Type: Po	Finish: 07/1 any: Ocear ad: Vibracc ntoon Boa	9/00 a Surv pre t	/ 07, eys,	/19/00 Inc.	Bo	orehol Geolo	e Depth: 1.71 meters Igist: Donald Johnson	Soll Boring No: S312 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) UI9	Geotechnical Test	Geologic Column		Stratigraphic Description
	4			0.0			(0-0.1m) - Super-saturated (excess SAND and SILT ~50%/50%. SAND is t (0.1-0.36m) - Wet, white (10YR 8/1), s green (56 6/2) beneath white when m cm. (0.23-0.24m) - Light gray (10YR 7/1) (0.29-0.292m) - Dark gray (10YR 7/1) (0.34-0.341m) - Yellow brown (10YR 4 (0.38-0.366m) - Wet, pale green (56 (0.366-0.75m) - Wet light gray (10YR	SROUND SURFACE water drained from sedment), dark gray (10YR 4/1), (M-C) plack sub-angular, may be ash (bottom). SILT, few Clay. Color variations in layers ~2 mm thick. Core is naterial is removed from core with spoon for sampling 15-30 , layer with consistency as above.), layer with consistency as above. 5/8), layer with consistency as above. 5/8), layer with consistency as above. 5/8), Isyer With consistency as above.
	D. BOUCK & Bers & sca	LEE I Script	NC. Sts	rell	:mar bgs =	(s:	(0.62-0.65m) - Very pale brown (10Y (0.70-1.71m) - Grain size of SILT and portions non-cohesive, non-plastic. (0.75-0.77m) - Wet, white (10YR 8/1), (0.77-0.775m) - Wet, dark gray (10YF (0.775-0.97m) - Wet, gray (10YR 7/1) (0.83-0.86m) - Wet, pale green (56 6 (0.94-0.97m) - Wet, pale green (56 6 (0.94-0.97m) - Same as 0.94-0.97m v Ground Surface.	R 7/4), layer. Calcareous Material is larger, material appears less cohesive, SILT, few Clay. R 4/1), (F-M) SAND, subangular, bottom possibly ash. , SILT, few Clay. B/2), SILT and Calcareous Material. B/2), SILT and Calcareous Material. Dut a distinct dense layer and more compact. Saturated Zones Date / Time Elevation Depth Date / Time Elevation Depth

Date Start/ Drilling Comp Drilling Meth Rig Type: Po	Finish: 07/ pany: Ocea od: Vibraci pntoon Boa	20/00 n Surv ore it	/ 07 eys,	/20/00 Inc.	Bo	Borehole Depth: 6.97 meters Soll Boring No: S312B Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York Syracuse, New York		
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description	
							GROUND SURFACE (0-0.06m) - Wet, white (N8/), solidified Calcareous Material, can be broken in hand with considerable pressure. Little dark gray (N4/), (VF) SAND-bottom possible ash It appears that a pozzalanic reaction may have occurred within this material. (0.06-0.13m) - Wet, gray (N6/), time sand-sized Calcareous Material, non-solidified, streaks of (M) SAND, angular fragments-possibly ash. (0.13-0.5m) - Wet, white (N8/), fine sand-sized grained Calcareous Material, soft, moderate cohesion, non-plastic.	
5 	4			2.0			 (0.5-0.53m) - Wet, gray (N6/), (F) SAND, little white Calcareous Material, solidified at top of interval. (0.53-0.05m) - Moist, white (I0YR 8/I) fine sand-sized grains of Calcareous Material, soft, moderate cohesion, non-plastic. (0.71m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. (0.73m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. (0.76m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. (0.77m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. (0.77m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. (0.79m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. (0.81m) - Very dark (N3/) streaks of (VF) SAND, <1mm thick. 	
1 BLASLAN Engine Project: 131.53.	3 BBB D, BOUCK & Sers & sca 300	LEE, II LEE, II Script:		2.0 Rei	mark >gs =	s: Below	(0.95-1.4m) - Noist, white (10YR 08/I), fine sand-sized grains of Calcareous Material, soft, moderate cohesion, non-plastic Ground Surface.	

Client: Soil Boring No: S312B Honeywell International Total Depth = 8.97 meters Location: Syracuse Remediation Program Syracuse, New York (meters) Seotechnical Test Sample/Int/Type (meters) Geologic Column EVATION Stratigraphic (mdd) Recovery Section Number Description DEPTH P10 Ш (0.95-1.41m) - Moist, white (10YR 08/1), fine sand-sized grains of Calcareous Material, soft, moderate cohesion, non-plastic, (1.19-1.195m) - Moist, gray (N5/), very fine sand-sized grains of Calcareous Material, soft, moderate cohesion, non-plastic. (1.41-1.46m) - Moist, gray (N6/) and white (N8/), Calcareous Material, hard, solidified. (1.46-2.10m) - Moist, white (10YR 8/1), Calcareous Material, soft. -15 3 2.0 (1.87-1.89m) - Dark gray "blotch" in core of same composition as surrounding material. 2 (2.10-2.14m) - Moist, white (10YR 8/1), Calcareous Material-solidified but no gray Sand. (2.14-2.26m) - Moist, gray (10YR 6/1), Calcareous Material, very soft, moderate cohesion, non-plastic. (2.26-2.32m) - Moist, white (IOYR 8/I), fine sand-sized grains of Calcareous Material. (2.27-2.31m) - Dark gray (10YR 4/1), streaks of (VF) SAND, 1.5mm wide. (2.32-2.42m) - Moist, white (10YR 8/1), fine grained, sand-sized, Calcareous Material, soft. (2.42-2.70m) - Moist, pale yellow (2.5Y 8/4) fine sand-sized grains of Calcareous Material. 2.5 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists Project: 131.53.300 Script: hnywell Date: 02/27/01

Page: 2 of 5
Honeywell International

Location:

Syracuse Remediation Program

Syracuse, New York

Soil Boring No: S312B

Total Depth = 8.97 meters

(meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Section Number Description DEPTH DID (2.42-2.70m) - Moist, pale yellow (2.5Y 8/4) fine sand-sized grains of Calcareous Naterial. (2.58-2.582m) - Very dark gray (10YR 3/1), layer of fine sand-sized Calcareous Material (no sand present). 3 2.0 (2.582-2.70m) – Very thin $(<\!imm)$ laminar layers (lines) of gray (IOYR 4/I), material that appears to be same composition as rest of interval observed at frequent intervals. (2.70-2.74m) - Moist, white (10YR 8/1), Calcareous Material, soft, moderately cohesive, non-plastic. (2.74-4.26m) - Moist, white (2.5Y 8/I), fine sand-sized grains of Calcareous Material, soft, low cohesion, non-plastic. Goups of fine sand-sized grains are clumped into coarse sand-sized particles throughout. (2.89m) - Yellow brown (10YR 5/8), <1mm thick. (2.92m) - Very dark gray (10YR 3/1), 3mm thick. - 3 (3.18-3.87m) - Very dark gray (10YR 3/1), and light yellow brown (2.5Y 6/4) layers, <icm-4cm thick. 2 3.0 -3.5 (3.87-3.83m) - Grayish green (5G 4/2) layers, 1-2mm thick. (4.0-4.06m) - Dark gray (N4/) layers, 4mm thick, hard. Δ Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC engineers & scientists Project: 131.53.300 Script: hnywell Date: 02/27/01 Page: 3 of 5

Client: Honeywell Ir Location: Syracuse Re Syracuse, N	nternation emediation ew York	al I Prograi	n		Soll Boring No: S312B Total Depth = 6.97 meters
DEPTH (meters) ELEVATION	Section Number Samolo/Tot//Times	Recovery (meters)	PID (ppm)	Geotechnical Test Geologic Column	Stratigraphic Description
	2		3.0		(2.74-4.26m) - Moist, white (2.5Y 8/I), fine sand-sized grains of Calcareous Material, soft, low cohesion, non-plastic. Goups of fine sand-sized grains are clumped into coarse sand-sized particles throughout. (4.26-4.6fm) - Moist, yellow-green (pistaclo), fine sand-sized grains of Calcareous Material, soft, grain sizels consistent. (4.61-4.84m) - Moist, yellow-green (pistaclo), fine sand-sized grains of Calcareous Material, soft, grain sizels consistent.
5 5.5	1		3.0		(4.95–5.57m) – Moist, white (2.5Y 8/1), fine sand-sized grains of Calcareous Material. - (5.15–5.33m) – Dark gray (2.5Y 4/1), thin layers, <1mm thick, ~50 layers.
BLASLAND, BU BLASLAND, BU engineers Project: 131.53.300	B OUCK & LEE S & Scien	INC. tists ript: hnyw te: 02/27	/ell	marks: bgs = Below	Ground Surface. Saturated Zones Date / Time Elevation Depth Page: 4 of 5

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soll Boring No: S312B

Total Depth = 6.97 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
							(4.95-5.57m) - Moist, white (2.5Y 8/1), fine sand-sized grains of Calcareous Material.
L							(5.57-5.577m) - Molst, gray (2.5Y 5/1), same consistency as above.
							(5.577-5.6m) - Moist, white (2.5Y 8/1), same consistency as above.
							(5.61-5.65m) - Moist, very dark gray (2.5Y 3/1), same consistency as above.
							(5.65-6.08m) - Moist, dark gray (2.5Y 4/1) layers, <3mm thick each, ~20 at irregualarly spaced
–							
Γ							-
- 6							-
L						_	
i							(0.06°0.9/m) - Moist, white (2.57 8/1), the sand-size grains of Calcareous Material, dense, firm, low cohesion, low-plasticity.
—							-
	1			3.0			
 						-	
				Í			
-				-		-	
6.5							
					Ē		
				1	Ē		
-				1			4
		ļ		ļ	Ę		
-					Ē		
					ŧ		1
		ļ	Í		Ē		(878m) - Imm thick very dark gray (25V 2/1) laver
				1	Ē		(0.70m) * mmil theck, very dark gray (2.31 57) layer.
					Ē		
⊢		Í			Ē		(6.90-8.9tm) - i inti velinu trovo (2.57.6/3) izvar zamo opsisionov
			ł		Ē	<u> </u>	עניינים אישוואר בואוג זכווטא שרטאור (בער ערט) ומזיבו, Same Curbistency.
_ 7					F		(6.97m) - Boring terminated at 6.97m bas.
							Saturated Zones
				""		3, 5-1	Date / Time Flevation Benth
		2	1		Dgs =	Below	Ground Surface.
BLASLAN	D, BOUCK &	LEE, I	<u>NC.</u>				
engin	eers & sci	lentis	sts				
Project: 131.53.	.300	Script Date:	: hnyv 02/27	/ell /01		•	Page: 5 of 5

Date Start/F Drilling Comp Drilling Metho Rig Type: Po	Finish: 07/ any: Ocean od: Vibracc ntoon Boa	18/00 / n Surve pre t	/ 07/ 2ys, 1	18/00 nc.	Bo	orehol Geolo	e Depth: 7.96 meters gist: Donald Johnson	Soll Boring No: S313 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column		Stratigraphic Description
_							(0-0.34m) - Wet (excess water drai twigs, etc.) with little Silt, little (C) Si No odor. (0.30m) - 1.25cm diameter stick. (0.34-0.56m) - Wet, light gray (10YR layers), as above, moderate cohesion	GROUND SURFACE ned from tube), black (10YR 2/1), Organic Pieces (rootlets, and. Sand is subangular to subrounded, trace of (M) Gravel, Sand is subangular to subrounded, trace of (M) Gravel, and Sand is subrounded, tr
5 - - -	4			1.0			(0.56–0.62m) – Wet, dark gray (N4/) moderate cohesion, low plasticity. (0.62–1.15m) – Wet, light gray (XOYR 7 cohesion, low plasticity.), Organic Pieces (rootlets and grass) and organic SILT, 7/1), organic SILT, trace Clay, trace of (VF) Sand, low
BLASLAN engine Project: 13153	BBB D, BOUCK & Ders & sca	LEE, II		ell	marl ogs =	•••••••• (S: • Belon	r Ground Surface.	Saturated Zones Date / Time Elevation Dep

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S313

Total Depth = 7.96 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description		
-							(0.62-1.15m) - Wet, light gray (10YR 7/1), organic SILT, trace Clay, trace of (VF) Sand, low cohesion, low plasticity. -		
-							(1.15-1.25m) - Wet, very dark gray (10YR 3/1), Organic Pieces (twigs and rootlets), some (M) Sand, non-cohesive.		
-							(1.25–1.38m) ~ Wet, light gray (10YR 7/1), organic SILT, trace Clay, few rootlets.		
-	4			10			(1.38-1.44m) - Wet, very dark gray (10YR 3/1), organic SILT, trace Clay, moderate cohesion, low plasticity. (1.44-1.52m) - Wet, light gray (10YR 7/1), organic SILT, trace Clay moderate cohesion, medium		
15						•••	(1.52-1.59m) - Wet, black (10YR 2/1), Organic Pieces (twigs and rootlets), low cohesion, low plasticity, soft.		
_							(1.59-1.63m) - Wet, very dark gray (10YR 3/1), organic SILT, some Clay, moderate cohesion, medium plasticity, soft. (1.63-1.96m) - Wet, very dark gray (10YR 3/1), organic SILT, trace Clay, moderate cohesion, low plasticity, strong petroleum-like odor		
_							(1.70m) ~ Half of men's hair comb found.		
_						· · · · · ·	· -		
<u> </u>			ŀ				(1.98-2.01m) - Wet, organic SILT with trace of rootlets, low cohesion, low plasticity.		
-	3			175			(2.01–2.25m) – Wet, dark gray (10YR 4/1), organic SILT, trace of Clay, moderately cohesive, low plasticity.		
					1		(2.25-2.29m) - Wet, light gray (10YR 7/1), organic SILT with trace of (VF) Sand, low cohesion, low		
_							(2.29-2.59m) ~ Moist, very dark gray (10YR 3/1), Organic Pieces (rootlets and grass), moderate cohesion, medium plasticity.		
2.5						••			
BLASLAN	BBB D, BOUCK &	LEE, 1	NC.	Re	mark ogs =	s: Below	Ground Surface.		
Project: 131.53.	300	Script: Date: 0	hnyw 02/27	ell /01			Page: 2 of 6		

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S313

Total Depth = 7.96 meters

Honeywell International

Syracuse Remediation Program

Syracuse, New York

Soil Boring No: S313

Total Depth = 7.98 meters

Client: Soil Boring No: S313 Honeywell International Total Depth = 7.96 meters Location: Syracuse Remediation Program Syracuse, New York (meters Geotechnical Test Sample/Int/Type (meters) Column EVATION Stratigraphic (mqq) Recovery Section Number Geologic Description DEPTH PID Ш (5.50-5.96m) - Moist, very pale brown (10YR 7/3), organic SILT, trace Clay, trace of gastropods, low cohesion, low plasticity. Irregular spaced varves (6 layers observed) between very pale brown noted above and very pale brown (10YR 8/4) layers ~3mm thick. 2 1.5 (5.90-5.96) - Very pale brown (10YR 8/4), continuous. (5.96-7.96m) - Moist, very pale brown (IOYR 8/4), organic SILT, trace Clay, trace of Organic - 6 Pieces (pine fibers and grass), gastropods present but infrequent. (6.2m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.25m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.275m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.29m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (8.34m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.38m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.42m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. 1 1.25 -6.5 (6.50m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.515m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.52m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.56m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.58m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.62m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.66m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.84m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (6.89m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (7.0m) ~ Pale yellow (2.5Y 8/4) varves ~2mm thick Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE. INC engineers & scientists Project: 131.53.300 Script: hnywell Date: 02/27/01

Page: 5 of 6

Client: Honeywell International Location:

Soil Boring No: S313

Total Depth = 7.96 meters

Syracuse Remediation Program Syracuse, New York

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
	1			1.25			(5.96-7.96m) - Moist, very pale brown (IOYR 8/4), organic SILT, trace Clay, trace of organic pieces (pine fibers and grass), gastropods present but infrequent. (7.15m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (7.25m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (7.35m) - Pale yellow (2.5Y 8/4) varves ~2mm thick. (7.35m) - Pale yellow (2.5Y 8/4) varves ~2mm thick.
							- (7.96m) - Boring terminated at 7.96m bgs. - -
8.5 BLASLAN eng Ind	BBB D. BOUCK & Sers & Sca 300	LEE, I LEE, I Script Date:	NC. 5ts : hnyk 02/27	rell //01	imar) bgs =	(s: • Below	Ground Surface.

Date Start/F Drilling Comp Drilling Metho Rig Type: Po	Finish: 07/ any: Ocea od: Vibraco ntoon Boa	19/00 n Surv ore It	/ 07/ eys, I	19/00 Inc.	Bo	orehole Geolo	Soll Boring No: S314 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
							GROUND SURFACE (0-0.16m) - Wet very dark gray (N3/), Organic Pieces and SILT, low cohesion, non plastic. (0.16-0.29m) - Wet, gray (10YR 5/1), Organic Pieces and SILT, as above.
 5 	4			2.75			(0.29-0.33m) - Wet, very dark gray (10YR 3/1), (F) SAND, some Silt, non-cohesive. (0.33-1.3m) - Wet, light brown gray (10YR 6/2), organic SILT, trace of Organic Pieces, fine rootlets. Varving at every 3 cm with layers of same composition, very dark brown (10YR 3/2).
- BLASLAN engin	BD 10, BOUCK & eers & sc .300	LEE, 1ent1		Re	:mar bgs :	ks:	(0.88-0.95m) - Olly petroleum-like film, dark brown (not clear match with color guide at 0.89m). Coating trace to few (F) SAND grains found in this interval, no odor, smears on glass. Saturated Zones Date / Time Elevation Depth

.

Client: Soil Boring No: S314 Honeywell International Total Depth = 8.08 meters Location: Syracuse Remediation Program Syracuse, New York (meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column EVATION Stratigraphic (mqq) Recovery Section Description DEPTH DI O Ш (0.33-1.3m) - Wet, light brown gray (IOYR 6/2), organic SILT, trace of Organic Pieces, fine rootlets. Varving at every 3 cm with layers of same composition, very dark brown (10YR 3/2). . (1.3-2.06m) – Wet, light brown gray (10YR 6/2), organic SILT, some Clay, alternating layers of light gray (10YR 7/2). Light brown gray layers are thicker (≤ 8 cm), intervals are irregular. Very dark brown (10YR 3/2) layers (~3 mm thick) also present at irregular intervals in this section of the core. -15 4 2.75 - 2 (2.06-2.16m) - Wet, white (NOYR 8/1), organic SILT, little Clay, little Organics. 2 small open areas with dark brow materials that appears to be petroleum based (thick oil) directly over thin ~2 mm thick layer of organics - wood, roots, etc. (2.16-2.41m) - Moist, dark gray (N4/), organic SILT, little Clay, trace of Organic Pieces - roots, grass. Sample is moderately cohesive, low-medium plasticity. 3 (2.41-2.91m) - Molst, light gray (10YR 7/1), organic SILT, little Clay, trace of fine Organic Pieces. 2.5 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists Script: hnywell Date: 02/27/01 Project: 131.53.300 Page: 2 of 6

Honeywell International

Soil Boring No: S314

Total Depth = 8.08 meters

Syracuse Remediation Program

Syracuse, New York

Client:

Location:

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soll Boring No: S314

Total Depth = 8.08 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) (DIA	Geotechnical Test	Geologic Column	Stratigraphic Description
- - - 6	2			3.0			(5.45-6.06m) - Moist, black (10YR 2/1), organic SILT, little Clay. Gray (10YR 6/1) layer, 1.5cm thick at 5.45m. Sample is moderately cohesive, low plasticity. (5.53m) - Gray (10YR 6/1) layer, 1.5cm thick.
 6.5	1			3.5			(6.06-6.57m) - Moist, organic SILT, very gray (10YR 3/1), moderately cohesive, low plasticity.
- 7							(6.57-6.67m) - Moist, white, organic SILT, little Clay, trace of rootlets. (8.62m) - Gray (10YR 6/1) layer, 1.5cm thick. (6.67-7.45m) - Moist, color varies from light gray (10YR 7/1), to black (10YR 2/1), in streaks at irregular intervals and thickness.
BLASLAN engin	BB ND, BOUCK & Pers & sc. 300	LEE, II lent 1s	NC. ts	Re	bgs =	(s: Below	I Ground Surface.

Client: Honeywe Location: Syracuse Syracuse	ell Internat Remedia Row Yor	tional tion Pr	ograi	n			Soll Boring No: S314 Total Depth = 8.08 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
 	1			3.5			(6.67-7.45m) - Moist, color varies from light gray (IOYR 7/I), to black (IOYR 2/I), in streaks at irregular intervals and thickness. (7.45-7.51m) - Moist, white (IOYR 8/I), SILT, little Clay. (7.51-7.89m) - Moist, as 6.67-7.45m with 3mm black (IOYR 2/I), organic layer at 7.51. (7.60-8.08m) - Moist, very dark gray (IOYR 3/I), organic SILT, little Clay, low cohesion, low plasticity.
- 8							- (8.08m) - Boring terminated at 8.08m bgs. -
8.5 BLASLAN eng in Project: 131.53	BBB D, BOUCK & Bers & sc 300	LEE, 1 1ent1: Script Date:	NC. sts	Vell Vol	emari bgs =	ks: = Belov	w Ground Surface.

Date Start/F Drilling Comp Drilling Metho Rig Type: Po	Inish: 07/1 any: Ocear Id: Vibracc ntoon Boa	9/00 / n Surve re t	/ 07/ ⊇ys, I	19/00 nc.	Boi	rehok Geolo	Soli Boring No: S315 Client: Honeywell International Location: Syracuse Remediation Program Syracuse; New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
							GROUND SURFACE (0-0.3m) - Super saturated (excess water draining from sediment), black (N2.5/), loose Organic Pieces, twigs and roots, grass, leaves, etc., little organic Silt.
5	4			3.0			(0.25-0.29m) - Dark gray (N4/). (0.3-0.62m) - Same as 0-0.3m, but not as loose, low cohesion, non-plastic.
1							(0.62-1.64m) - Wet, very dark gray (N3/), SILT and Organic Pieces, same consistency throughout, low cohesion, non-plastic. (0.83m) - Light gray (IOYR 7/1) varve (2mm thick). (0.9m) - Light gray (IOYR 7/1) varve (2mm thick). (0.96m) - Light gray (IOYR 7/1) varve (2mm thick).
BLASLAN engine Project: 131.53.	D, BOUCK & Bers & sc 300	LEE, I lentis	NC. sts	Re	mark bgs =	(s : Beloi	W Ground Surface.

Honeywell International

Location:

Syracuse Remediation Program

Syracuse, New York

Soil Boring No: S315

Total Depth = 7.67 meters

(meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Section Number Description DEPTH PID (0.62-1.64m) - Wet, very dark gray (N3/), SILT and Organic Pieces, same consistancy throughout, low cohesion, non-plastic. (1.09m) - Light gray (10YR 7/1) varve (2mm thick). (1.2m) - Light gray (10YR 7/1) varve (2mm thick), 3.0 4 -15 (1.64-2.36m) - Wet to moist, black (10YR 2/1), Organic Pieces (rootlets and fine fibers prevelent), trace to little Silt, low to moderate cohesion, non-plastic. - 2 3 2.5 (2.36-2.37m) - Wet, gray (N6/), loose Organic Pieces, some Silt, non-cohesive. (2.37-2.49m) - Wet, light gray (N7/), organic SILT, few Clay. 25 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists Script: hnywell Date: 02/27/01 Project: 131.53.300 Page: 2 of 6

Client: Honeywe Location: Syracus Syracus	ell Interna e Remedia e, New Yo	tional tion Pi rk	ogra	m			Soll Boring No: S315 Total Depth = 7.87 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description (2.49-2.84m) - Wet dark grav (N4/) Organic Pieces Hitle Sill
-							(2.64-2.65m) - Wet, light gray (N7/), Organic Pieces, little Silt.
-							(2.65-3.64m) - Moist, very dark gray (N3/), organic SILT, low to moderate cohesion, low plasticity.
							(2.89–2.91m) - Light gray (N7/), organic SILT, few clay layers, moderate cohesion, low plasticity. –
~	3			2.5			
_							
3.5							
					-		- (3.64-4.67m) - Wet to moist, black (N2.5/), organic SILT, some Clay, trace of fine Organic Pieces, moderate cohesion, low plasticity.
-	2			2.5			
-4 BLASLAN	BBB D, BOUCK &		NC.	Re	mark bgs =	s: Below	Ground Surface.
Project: 131.53.	300	Script	: hnyw 02/27				Page: 3 of 6

Client: Honeywo Location: Syracus Syracus	ell Interna e Remedia e, New Yo	tional Ition Pr rk	ograr	n		Soil Boring No: S315 Total Depth = 7.87 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) (IIA	Geotechnical Test Geologic Column	Stratigraphic Description
	2			2.5		(3.64-4.67m) - Welt to moist, black (N2.57), organic SILT, some Clay, trace of fine Organic Pieces, moderate cohesion, low plasticity. (4.05-4.055m) - Layer of light gray (N77), organic SILT, some Clay. (4.47-4.49m) - Layer of grayish brown (IOYR 5/2), organic SILT, some Clay, moderate cohesion, low plasticity. (4.67-5.64m) - Moist, light brown gray (IOYR 6/2), organic CLAY, few Silt, trace fine rootilets, varved with alternating black (N2.57) layers (2mm-5cm thick), >50 varves within this section of the core.
BLASLAN engine Project: 131.53.	BBB D, BOUCK & Sers & sc. 300	LEE, II Lent1s Script: Date: (₩ <u>C.</u> ts		marks: ogs = Below	Ground Surface. Saturated Zones Date / Time Elevation Depth Page: 4 of 6

Client: Honeywell International Location:

Soil Boring No: S315

Total Depth = 7.67 meters

Syracuse Remediation Program

Syracuse, New York

Client: Honeywell Int Location: Syracuse Ren Syracuse, Net	ernational Iediation Pro W York	gram		Soil Tota	Boring No: S315 Il Depth = 7.87 meters
DEPTH (meters) ELEVATION Section	Number Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test Geologic Column	Stratig Descr	praphic iption
		2.75		(8.73-7.87m) - Molst, brown (10YR 4/3), organic long), moderate cohesion, medium plasticity.	SILT and CLAY, infrequent gastropods (~2mm - - - -
- 8				Boring terminated at 7.87m bgs.	-
- 8.5 BLASLAND, BOU engineers	BI CK & LEE, ING S scientist	Re	marks: >gs = Below	Ground Surface.	Saturated Zones Date / Time Elevation Depth

Date Start/Finish: 07/15/00 / 07/15/00 Drilling Company: Ocean Surveys, Inc. Drilling Method: Vibracore Rig Type: Pontoon Boat						le Depth: 8.00 meters o gist: Donald Johnson	Soll Boring No: S318 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	RIU (PPm) Geotechnical Test	Geologic Column		Stratigraphic Description
						(0-0.1m) - Saturated, dark brown (10	GROUND SURFACE DYR 3/3) (F-W) SAND.
						(0.1-0.25m) - Saturated, dark brown (0.25-0.35m) - Saturated, dark brow (0.35-0.36m) - Saturated, dark brow (0.36-1.02m) - Saturated, brown (10)	(10YR 3/3), (F-M) SAND, some gastropods. n (10YR 3/3) (F-M) SAND. n (10YR 2/2) SILT, some (F) Sand. (R 3/3) (F-M) SAND, few gastropods
— .5 — —	4						-
	8B			Rema	rks: = Belo	(1.0-1.02m) - Some gastropods. w Ground Surface.	Saturated Zones Date / Time Elevation Depth
BLASLAN engine Project: 131.53.	D, BOUCK & Pers & sc. 300	LEE, 1 tent 1s Script Date:	NC. Sts : hnywell 02/27/01				Page: 1 of 6

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

(meters) **Geotechnical Test** Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic Recovery (mqq) Section Number Description DEPTH DIG (1.02-1.06m) - Saturated, dark brown (10YR 2/2), SILT. (1.06-1.12m) - Saturated, gray brown (25Y 5/2), (F-M) SAND, few Silt. (1.12-L17m) - Saturated, gray brown (25Y 5/2), (F-M) SAND, few Silt. (1.17-1.44m) - Saturated, light gray (2.5Y 7/I), (F-M) SAND, trace Silt, little to some gastropods (larger at bottom). (1.44-1.90m) - Saturated, white (10YR 8/1), (F-M) SAND, little to trace Silt, some gastropods,. -15 4 (1.70-1.73m) - Ang. bedding, wf shell hash? (1.9-2.0tm) - White (10YR 8/1), (F) SAND, little Silt. - 2 (2.01-2.36) - Saturated, light gray (10YR 7/2), (F-M) SAND, trace Silt and (F) Gravel, gastropods. 3 (2.36-2.44m) - Saturated, light gray (10YR 7/2), (F) SAND, few Silt, little gastropods. (2.44-2.47m) - Saturated, light gray (10YR 7/2), (F) SAND, few Silt, some gastropods. 2.5 Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists Project: 131.53.300 Script: hnywell Date: 02/27/01

Soil Boring No: S316

Total Depth = 8.00 meters

Page: 2 of 6

Client: Honeywell Int Location: Syracuse Ren Syracuse, Ne	ernational nediation Pro w York	gram	Soll Boring No: S318 Total Depth = 8.00 meters
DEPTH (meters) ELEVATION Section	Number Sample/Int/Type	Recovery (meters) PID (ppm)	t c i
-			(2.66m) - Brown layer ~2mm thick. (2.68-3.14m) - Saturated, light gray (IOYR 7/2), (F-M) SAND, few gastropods.
- - 3 -			
- 3			(3.14-3.16m) - Saturated, white (10YR 8/1), (F) SAND, little Silt, cohesive. (3.16-3.38m) - Light gray (10YR 7/2), (F) SAND, trace Silt.
			(3.38-3.52m) - Saturated, light gray (IOYR 6/1), (F-M) SAND, little Silt, trace root fibers. (3.52-3.64m) - Saturated, light gray (IOYR 6/1), (F-M) SAND, little Silt, little gastropods.
-			(3.64-3.68m) - Saturated, white (IOYR 8/I), (F-M) SAND, few Silt, some gastropods. (3.68-4.01m) - Saturated light gray (IOYR 6/I), (F) SAND, little Silt, few gastropods.
BLASLAND, BOU	BI CK & LEE, IN	Rem	arks: gs = Below Ground Surface: Bate / Time Elevation Depth
engineers (Project: 131.53.300	Scientist Script: Date: 0		Page: 3 of 6

Client: Honeywe Location: Syracus Syracus	ell Internat e Remediat e, New Yor	ional ion Pr k	ogram			Soll Boring No: S318 Total Depth = 8.00 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-						(4.01-4.37m) - Saturated, gray (10YR 6/1), (F) SAND, little to trace Silt, few gastropods.
4.5						(4.37-4.60m) - Saturated, gray/white (10YR 6/1/10YR 8/1), (F) SAND, little Silt, few shells.
						(4.60-4.67m) - Saturated, brown (10YR 3/3), (F) SAND, little Silt, few shells.
-			ĺ			(4.67-4.72m) - Saturated, light gray (10YR 7/2), (F-M) SAND, trace Silt, few gastropods.
- 5	2					(4.72-5.0m) - Saturated, gray (10YR 6/1) with light gray streaks (~1mm), (F) SAND, trace to little Silt, few gastropods.
- 0						(5.0-5.03m) - Saturated, brown (10YR 3/3), (F-M) SAND, little Silt, few gastropods.
-						(5.09-5.20m) - Saturated, prown (10YR 3/3), (F-M) SAND, trace Silt, little gastropods, few fibers (wood/roots). (5.09-5.20m) - Saturated, brown (10YR 3/3), (F) SAND, little Silt, few castropods
_						
						(5.20-5.25m) - Saturated, dark brown (10YR 3/3), (F-M) SAND, trace Silt, few to trace gastropods, trace fibers.
						(5.25–5.27m) – Brown (IOYR 3/3), (F) SAND, little Silt.
	[(5.27-5.32m) - Wet, light brown, (F) SAND, trace Silt, some fibers, trace shells. (5.32-5.40m) - Wet, brown (10YR 3/3), (F) SAND, little Silt, few gastropods, little fibers.
						(5.40-5.43m) - Wet, brown (10YR 3/3), SILT and (F) SAND, little fibers, medium plasticity,
5.5						
BLASLAN engin	BB D. BOUCK & Bers & sci	LEE, I lentis	NC.	Remarl	ks: = Below	Ground Surface.

Pro	inc	44	12	15	2	2/	าก
110	Jec	ι.	IJ	1.0	J.	5	50

Script: hnywell Date: 02/27/01

Client: Honeywel	l Internat	ional					Soll Boring No: S318
Syracuse Syracuse	Remedial New Yor	tion Pr k	ograi	n			i utal Deptri = 0.00 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqa) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
-							(5.43-5.70m) - Wet, dark brown (10YR 3/3), (F) SAND, few gastropods, little fibers, occ. white (16YR 3/3) streaks, 1-2mm thick. -
- 6	2						(5.70–6.01m) – Wet, dark brown, (F) SAND, little to some Silt, trace gastropods. -
		、					(6.01-7.38m) - Wet to moist, dark brown (IOYR 3/3), (F) SAND and SILT, little gastropods, trace fibers.
	1						
-							(0.0Jm) - White streak.
	BOUCK &	LEE, I rentis	NC.	Re	mark bgs =	.s: Below	I Ground Surface.
Project: 131.53.3	00	Script:	: hnyn	rell			

Client: Honeywell Interna Location: Syracuse Remedia Syracuse, New Yo	itional ation Program rk		Soil Boring No: S318 Total Depth = 8.00 meters
DEPTH (meters) ELEVATION Section Number	Sample/Int/Type Recovery (meters) PID (pom)	Geotechnical Test Geologic Column	Stratigraphic Description
			(6.01-7.38m) - Wet to moist, dark brown (IOYR 3/3), (F) SAND and SILT, little gastropods, trace fibers. (7.01m) - White streak.
			(7.38-8.0m) - Moist, dark brown (10YR 3/3), (F) SAND and SILT, few gastropods, stiff, cohesive
- 8			(8.0m) - Boring terminated at 8.0m bgs.
-			
8.5 BLASLAND, BOUCK & engineers & sc Project: 131.53.300	LEE, INC. 1ent1sts Script: hnywell Date: 02/27/01	Remarks: bgs = Belo	W Ground Surface.

Date Start/F Drilling Comp Drilling Metho Rig Type: Po	F inish: 07/1 any: Ocear od: Vibracc ntoon Boa	5/00 n Surv ore t	/ 07/1 eys, 1	5/00 nc.	Bo	reholi Geolo	e Depth: 6.86 meters L gist: Donald Johnson	iol Boring No: S317 Ilent: Ioneywell International ocation: Iyracuse Remediation Program Iyracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	St D	ratigraphic escription
							GRO (0-0.24m) - Super saturated, black (10Yf odor.	DUND SURFACE R 2/1), SILT and CLAY, Organic Pieces, no significant
	4						(0.24–0.63m) – Saturated, black (10YR 2/ (0.43m) – Medium to light gray (N7/) strea (0.46m) – Medium to light gray (N7/) strea	/1), SILT, Organic root fibers, no significant odor.
							(0.63-0.8im) - Saturated, black (10YR 2/1 significant odor. (0.81-1.5m) - Saturated, black (10YR 2/1), plasticity.	1), SILT and (F) SAND, trace Clay, Organic Pieces, no SILT, trace Clay, Organic Pieces, low to medium
1 BLASLAN engin Project: 131.53	3 BBBB ID, BOUCK & eers & sc .300	LEE, Jent1	INC. sts	RI Pla	emari bgs =	(s: Belor	(U.O/M) - Gray (N//) streaks (~3MM). WGround Surface.	Saturated Zones Date / Time Elevation Depth Page: 1 of 5

Honeywell International

Location:

Soil Boring No: S317

Total Depth = 8.88 meters

Syracuse Remediation Program Syracuse, New York

neters) DN		it/Type	(meters)		cal Test	Column	Stratigraphic
DEPTH (n ELEVATIO	Section Number	Sample/Ir	Recovery	PID (ppm)	Geotechni	Geologic (Description
							(0.81-1.5m) - Saturated, black (10YR 2/1), SILT, trace Clay, Organic Pieces, low to medium plasticity.
							(1.10m) - Gray (N7/) streaks (~3mm).
							(1.23m) — Gray (N7/) streaks (~3mm).
-						· · _	
-							
15							(1.50-1.87m) - Saturated, very dark brown (10YR 2/2), SILT, Organic Pieces, sheen (occ).
_							
	3						•
-						· ·]	-
				5			(1.87-1.89m) - Saturated, gray brown (10YR 5/2), (VF) SAND and STI T.
					ſ	• • •	(1.89-2.12m) - Saturated, black (10YR 2/1), SILT, Organic Pieces, occ. sheen, odor.
— 2					4	•••	-
-							
							(2.12-2.16m) - Saturated, light gray (10YR 4/1), SILT, little (F) Sand.
	,					_ : _ _ : _	12.10-2.40m) - Black (10TH 2/1), SILT, trace (F) Sand, Organic Pieces- root fibers.
-							
					- , -		
-	[.	-		
2.5					-	<u> </u>	
	<u>NR</u>			Re	mark	S:	Saturated Zones
BLASLAN	D, BOUCK &	LEE. I	NC.		⊳ິຂ.∍	DEIOM	
engine Project: 131.53	ers & sci	entis	sts hove	eli			
		Date:	02/27				Page: 2 of 5

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S317

Total Depth = 8.86 meters

s)		pe	(ers)	-	est	c	
ñ eter		t/Ty	(met		cal T	olum	
T (m	5 5	e/In	ery	(mqc	chni	D Sit	Description
EV.	ectio	Idme	SCOV	5	ote	Solo	
	ο ž	Š	Be	E	99	ğ	
							(2.46-2.59m) - Moist, very dark gray brown (10YR 3/2), SILT, trace to little (F) Sand, Organic Pieces-root fibers, low plasticity.
-	3						(2.59-2.67m) - Saturated, very dark gray brown (IOYR 3/2), (F) SAND, wood fibers.
							(2.67-2.81m) - Very dark gray brown (10YR 3/2), (VF) SAND and SILT, trace Clay, Organic Pieces, thick wood chips, sheen, odor, Organic matter packet at 2.67-2.68m
_			1				(2.81-3.15m) - Wet, medium dark brown (10YR 2/2), SILT, cohesive, medium plasticity. Organic
							Pieces, 1 smail gastropod, slight odor.
						· · -	-
- 3				ĺ			
-							
						· · _	(315-320m) - Wat yory dark brown (INVR 2/2) CTIT accords
-			,		ł		(3.20-3.80m) - Wet, dark brown (10YR 3/3) SII T Organic Pieces slight acc sheen adar Pine
							cone, (~1/2" long) found at 3.8.
-						· · -	-
	2						1
—3.5					·		
					ŀ		-
-					.]
-							-
-					÷		(3.80-4.17m) - Dark brown (10YR 3/3), SILT, trace (F) SAND, abundent wood strips, some Organic
							Pieces.
				[[-
4	·		_		<u> </u>		
				Re	mark	s:	Saturated Zones
			1	ł	ogs =	Below	Ground Surface. Date / Time Elevation Depth
BLASLAN	D, BOUCK &	LEE, I	<u>NC.</u>				
Project: 13153	300	Script:	cs hovwell				
		Date: 0	02/27/0	1			Page: 3 of 5

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S317

Total Depth = 6.86 meters

(meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column EVATION Stratigraphic (mqq) Recovery Section Number Description DEPTH PID Ш (3.80-4.17m) - Dark brown (10YR 3/3), SILT, trace (F) SAND, abundent wood strips, some Organic Pieces. (4.17-4.43m) - Dark brown (10YR 3/3) with black SILT, trace Clay and Sand, plastic, cohesive. (4.22-4.24m) - Sheen. (4.27-4.29m) - Sheen. 2 (4.43-4.45m) - Wet, black (10YR 2/I), SILT, trace Clay, slight sheen, organic, cohesive, non-plastic. 4.5 (4.45-4.57m) - Very dark brown (IOYR 2/2), SILT, little (F) Sand, wood. . . (4.57-4.81m) - Wet, very dark brown (10YR 2/2), organic SILT, little medium Sand, trace Clay, few wood pieces, cohesive, low-medium plasticity. (4.81-5.29m) - Wet, very dark brown (10YR 2/2), SILT, trace Clay, trace Organic Pieces-root fibers, cohesive, medium plasticity. - 5 1 (5.29-5.44m) - Wet, black (10YR 2/1), SILT with gray streaks (~3mm), Organic Pieces. (5.44-5.71m) - Wet, dark brown (10YR 3/3), SILT, little (F) Sand. 5.5 **Saturated Zones Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC engineers & scientists Project: 131.53.300 Script: hnywell Date: 02/27/01

Client: Honeywell International Location: Syracuse Remediation Pr Syracuse, New York	ogram	Soll Boring No: S317 Total Depth = 6.86 meters
DEPTH (meters) ELEVATION Section Number Sample/Int/Type	Recovery (meters) PID (ppm) Geotechnical Test Geologic Column	Stratigraphic Description
-		(5.44-5.71m) - Wet, dark brown (10YR 3/3), SILT, little (F) Sand.
-		(5.78-5.83m) - Wood pieces.
- 6		gastropods, cohesive, moderate plasticity.
_		-
7		(6.86m) - Boring terminated at 6.86m bgs. -
BLASLAND, BOUCK & LEE, engineers & scientit	Remarks: bgs = Below	Ground Surface.

Date Start/Finish: 07/14/00 / 07/14/00 Drilling Company: Ocean Survey, Inc. Drilling Method: Vibracore Rig Type: Pontoon Boat	Soil Boring No: S318 Borehole Depth: 7.85 meters Borehole Depth: 7.85 meters Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION Section Number Number Sample/Int/Type Recovery (meters) PID (ppm)	ts Unit L Unit Stratigraphic Description
	GROUND SURFACE (0-0.34m) - Super saturated (excess water now drained from core tube), very dark gray (N3/), (F-W) SAND, with trace of Silt and Organic Pieces such as rootlets, sediment is non-cohesive.
5 4	(0.34-0.96m) - Super saturated, dark gray, (F-M) SAND, non-cohesive.
BLASLAND, BOUCK & LEE, INC. engineers & scientists	(0.96-1.02m) - Wet, light gray (IOYR 7/I), (F) SAND. Narks: Date / Time Elevation Dept

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York Soil Boring No: S318

Total Depth = 7.85 meters

(meters) **Geotechnical Test** Sample/Int/Type DEPTH (meters) Geologic Column **EVATION** Stratigraphic (mdd) Recovery Section Number Description PIO Ш (1.02-1.09m) - Wet, oval-shaped sphere of (F) SAND, surrounded by Organic Material. (1.09-1.84m) - Wet, gray (IOYR 6/I), (F-M) SAND with trace of Silt, non-cohesive. Trace of gastropods and pelecypods, small pieces of Organics. 4 -15 (1.84-1.85m) - Wet, gray (10YR 5/1), SILT with some Clay. (1.85-2.0m) - Wet, dark gray (IOYR 5/1), SILT with trace of (VF-F) Sand, trace of organic fibers and rootlets, trace of 1-2mm long gastropods and diameter pelecypods. 2 (2.0-2.36m) - Wet, gray (10YR 6/1), (F-M) SAND and SILT, small (0.5cm long x 0.25cm diameter) piece of wood at 2.0m. Thin seam (~3mm thick) of dark brown (10YR5/2), possibly peat. Interval is non-plastic, septic odor. 3 (2.36-3.25m) - Wet, gray (2.5Y 8/1), SILT with trace of (VF) SAND, trace of Organic Pieces, and trace of gastropods and pelecypods. Thin seam (~3mm thick) of black (10YR 2/1), organic SILT with trace of gastropods and pelecypods 1-3mm long and diameter, respectively. Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists

Project: 131.53.300

Script: hnywell Date: 02/27/01

Client: Soil Boring No: S318 Honeywell International Total Depth = 7.85 meters Location: Syracuse Remediation Program Syracuse, New York pe ers) est 6

DEPTH (meter: ELEVATION	Section Number	Sample/Int/Ty	Recovery (met	Geotechnical T	Geologic Columr	Stratigraphic Description
	3					(2.36-3.25m) - Wet gray (2.5Y 6/I), SILT, with trace of organic Pieces, trace gastropods and pelecypods I-3mm long and diameter, respectively.
-						(3.65-3.70m) - Wet, varved pale yellow (2.57 8/2) and gray (10YR 5/1), alternating layers. Pale yellow layers are 1-2mm thick, gray layers are 3mm thick. There are 4 layers of each alternating back and forth, SILT with little Clay, septic odor. (3.70-3.85m) - Wet, gray (10YR 5/1), SILT with trace of gastropods and pelecypods, septic odor.
4	2					(3.85-4.60m) - Wet, gray (2.5Y 7/1 - 2.5Y 6/1), (VF) SAND and SILT with trace of Clay, trace of gastropods and pelecypods, septic odor. _
BLASLAN engine Project: 131.53.	BBB D. BOUCK & Sers & sch 300	LEE, IN entis	C. ts	Remarl bgs =	(S: Below	Ground Surface. Saturated Zones Date / Time Elevation Depth Page: 3 of C

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S318

Total Depth = 7.85 meters

(meters) Geotechnical Test Sampte/Int/Type (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery OEPTH Section Number Description PID (3.85-4.60m) - Wet, gray (2.5Y 7/1 - 2.5Y 6/1), (VF) SAND and SILT with trace of Clay, trace of gastropods and pelecypods, septic odor. (4.45m) - Yellow (2.5Y 8/6 pale) layer (3mm thick). 4.5 (4.60-4.80m) - Wet, gray (25Y 6/I), (VF) SAND and SILT, trace of gastropods and pelecypods, septic odor. (4.67-4.68m) - 2 pale yellow (2.5Y 8/2) streaks. 2 (4.76-4.78m) - 3 pale yellow (2.5Y 8/2) streaks. (4.80-5.73m) - Wet gray (2.5Y 6/I), SILT with trace (F) SAND, trace of gastropods and pelecypods. - 5 (5.13m) - 2 pale yellow (2.5Y 8/2) streaks (not distinct layers). (5.24m) - 1 pale yellow (2.5Y 8/2) streak (not distinct layer). (5.36-5.43m) - 6 alternating layers of pale yellow (2.5Y 8/2) and brown (10YR 4/3). 5.5 (5.47-5.54m) - 5 alternating layers of same pale yellow and brown as above. Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC engineers & scientists

Project: 131.53.300

Script: hnywell Date: 02/27/01
Client: Soil Boring No: S318 Honeywell International Total Depth = 7.85 meters Location: Syracuse Remediation Program Syracuse, New York ters) Test /pe [S]

H (mete ATION on er er fint/T	very (me (ppm) schnical gic Colur	Stratigraphic Description
DEP1 Section Samp	PID - Geolo	
		(4.80-5.73m) - Wet gray (2.5Y 6/1), SILT with trace (F) SAND, trace of gastropods and pelecypods.
2		(5.62-5.67m) – 4 alternating layers of same pale yellow and brown as above.
		(5.73-5.85m) - Wet, gray (2.5Y 6/1), (F) SAND, with some Silt, trace Clay, trace of gastropods and pelecypods, septic odor.
- 6		(5.85-7.85m) - Moist, gray (2.5Y 6/1), SILT with trace of Clay, trace gastropods and pelecypods.
-		
- 1		(6.40–6.44m) – 3 pale yellow (2.5Y8/2) streaks.
		(6.60-6.66m) - 3 pale yellow streaks as above.
		(6.70–6.72m) – 2 pale yellow streaks as above.
-		(6.83–6.86m) – 3 pale yellow streaks as above.
		(6.95m) ~ 1 pale yellow streak as above.
DDI	Remarks:	Saturated Zones
BLASLAND, BOUCK & LEE, INC engineers & scientist	bgs = Below	Ground Surface.
Project: 131.53.300 Script: I		Page: 5 of

Page: 5 of 6

Client: Honeywe Location: Syracus Syracus	ell Interna e Remedia e, New Yoi	tional tion Pr 'k	ogran	1			Soil Boring No: S318 Total Depth = 7.85 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-							(5.85–7.85m) – Molst, gray (2.5Y 6/1), SILT with trace of Clay, trace gastropods and pelecypods. - (7.21–7.24m) – 4 pale yellow streaks as above.
	1						
-							(7.85m) ~ Boring terminated at 7.85m bgs.
— 8 — . —							
- 8.5				Re	mark		Saturated Zones
BLASLAN engine Project: 131.53.	D, <u>BOUCK &</u> Bers & sc. 300	LEE, 1 tent1s	NC.		bgs =	Below	Ground Surface.

Date Start/Finish: 07/ Drilling Company: Ocea Drilling Method: Vibrac	/14/00 / an Surve ore	07/14/00 ys, Inc.		_	Soll Boring No: S319 Client: Honeywell International
Rig Type: Pontoon Bo	ət		Geolo	e Depth: 8.03 meters ogist: Donald Johnson	Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION Section Number	Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test Geologic Column		Stratigraphic Description
			0 0 0 0	G (0-0.65m) - Super saturated (excess SILT with little decaying vegetation a	ROUND SURFACE s water), very dark gray (N3/) and dark gray (N4/), organic nd rootlets. Low cohesion , non-plastic.
5 4				(0.32m) – Brown (7.5YR 1/2), organic (0.35m) – Brown (7.5YR 1/2), organic (- SILT layer. SILT layer. -
				(0.65-1.43m) - Wet, very dark gray (N present. Petroleum odor noticed as sa (0.72m) - Brown (7.5YR 5/2) layer, 3m	43/), organic SILT (as above), roots and fine grass (few) ample collection begins. am thick.
BLASLAND, BOUCK & engineers & sc Project: 131.53.300	LEE, IN LEE, IN Jent1st	C. Es hnywell 2/27/01	marks: bgs = Below	Ground Surface.	Saturated Zones Date / Time Elevation Depth Page: 1 of 6

Honeywell International

Location: Syracuse Remediation Program Syracuse, New York

Soil Boring No: S319

Total Depth = 8.03 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-							(0.65–1.43m) – Wet, very dark gray (N3/) organic SILT (as above), roots and fine grass (few) present. Petroleum odor noticed as sample collection begins. (1.15m) – Brown (7.5YR 5/2) layer, 3mm thick. (1.20m) – Brown (7.5YR 5/2) layer, 4mm thick.
-						• • • • • • • • • •	(1.33m) - Brown (7.5YR 5/2) layer, 0.5mm thick. (1.43m) - Brown (7.5YR 5/2) layer, Icm thick. (1.43-1.87m) - Wet, shiny (slight sheen), loose, black (10YR 2/1) and very dark brown (10YR 3/2) mixed colors not layered (Vragine Research Sill T. Esiph solitation adv.
15 	4					• 1 • 1 • 1 • 1 • 1 • 1 • 	mixed colors not layered, organic rieces and SLLT. Faint periodem goor.
_							(1.87-1.88m) - Moist, brown (7.5YR 5/2), CLAY with some Silt. (1.88-1.97m) - Moist, black (10YR 2/1), Organic Pieces and SILT. Rootlets clearly visible, no odor of sheen observed moderately cobesive
- 2							(1.97-2.46m) - Moist black (10YR 2/1), Organic Pieces and SILT, no odor, (F-M) Sand present in the top 1.5 cm of this interval. (2.14-2.21m) - Grayish-brown (10YR 5/2) color.
-	3						- (2.32-2.35m) - Grayish-brown (10YR 5/2) color. -
_2.5			_				(2.48-2.55m) - Moist, grayish-brown (IDYR 5/2), (VF-F) SAND, with trace Sill.
BLASLAN engine	BBB D, BOUCK & Ser's & SCI	LEE 1 entis	NC.	Re	bgs =	(S: Below	Ground Surface.

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S319

Total Depth = 8.03 meters

			<u> </u>				
ers)		ype	eters		Test	LE	
on mete		nt/T	Ŭ.	<u>-</u>	lical	Colu	Stratigraphic
(ATI	er io	le/I	very	mqq)	echn	ogic	Description
JEP1	Sect	Samp	Reco	8	seot.	seolo	
				<u>а</u>			(2.46-2.55m) - Maist. (10)285/2) gravish-Mown. (VE-E) SAND with trace Sit
						•	(255-3 83m) - Molet Mack / (myp 2/i) anatolic Cli T (range of fully and restlete
 -							
ļ						••••	
-						• •-	-
	(1		•— •- • —	
F						• •- •_	
-							-
2						•••	
- 3						; ; ;	
						• •-	
			Í	Í	ĺ	• •- • • •-	-
_				ļ			
	3				ł	• •-	-
						••	
						• •-	
-							-
3.5					•		
						• •-	
-						••-	-
					Ē		(3.63-3.64m) - Moist very dark gray-brown (10YR 3/2), organic SILT with some Clay.
-					Ē		(3.64-3.68m) - Moist, black (IOYR2/I), organic SILT, low cohesion, non-plastic. (3.68-3.69m) - Same as 3.63-3.64m above.
					-		(3.69-3.97m) - Moist, black (10YR2/1), organic SILT with few Clay.
-					<u> </u>		-
_					-		
_	[1			-		1
4	2						
		Т		Rei	mark	s:	Saturated Zones
	\mathbf{M}			l't	ogs =	Below	Ground Surface. Date / Time Elevation Depth
BLASLAN	D, BOUCK &	LEE, I	VC.				
engine	ers & sci	entis	ts				
Project: 131.53.	300	Script: Date: (hnywell 02/27/01			-	Page: 3 of 6

Client: Honeywell International

Location:

Syracuse Remediation Program

Soil Boring No: S319

Total Depth = 8.03 meters

Syracuse, New York (meters) Geotechnical Test Sample/Int/Type (meters) Column EVATION Stratigraphic (mqq) Recovery Geologic Section Description DEPTH DIG Ш (3.97-4.40m) - Moist black (IOYR2/I), organic SILT with few to little Clay, sediment is moderately cohesive, medium plasticity. (4.40-4.425m) - Wet, dark gray (10YR4/1), (VF) SAND with trace of Silt. A large bivalve clam shell measuring 8cm long is located within the sediment at 4.4m. Both halves are intact, archived. (4.425-4.446m) - Moist, dark gray-brown (IOYR 4/2), organic SILT and CLAY, Black (10YR 2/1) -4.5 streaks at irregular intervals, trace of Organic Pieces such as rootlets present. (4.446-4.447m) - Same as 4.40-4.425m. (4.447-4.52m) - Same as 4.425-4.446m. (4.52-4.53m) - Same as 4.446-4.447m. (4.53-5.23m) - Same as 4.447-4.52m. 2 - 5 (5.23-5.55m) - Moist, gray (10YR 5/1) organic SILT, moderate cohesion, non-plastic. (5.234-5.2355m) - Grayish-brown (IOYR 5/2), 1.5mm thick organic layer wood and twigs. (5.46-5.465m) - 5mm layer of organic pieces with the same composition as at 5.234m. 5.5 **Saturated Zones Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC.

engineers & scientists

Script: hnywell Date: 02/27/01

Honeywell International

Location:

Soil Boring No: S319

Total Depth = 8.03 meters

Syracuse Remediation Program Syracuse, New York

neters) NN		it/Type	(meters)		cal Test	Column	Stratigraphic
DEPTH (m ELEVATIO	Section Number	Sample/In	Recovery	PID (ppm)	Geotechni	Geologic (Description
						· · _	(5.23-5.55m) - Hoist, gray (10YR 5/1), organic SILT, moderate cohesion, non-plastic.
-	2						(5.55-5.79m) - Molst, dark gray-brown (10YR 4/2), organic SILT, small white pelecypods are present but infrequent, sediment is moderately cohesive, non-plastic.
							(5.793-5.97m) - Molst Dlack (10YR 2/1) layer of organic SILT. (5.793-5.97m) - Same as 5.55-5.79m.
<u> </u>						 	
							(5.07-8.03m) - Molet dark grav-brake (IOVE 4/0) ergenie CITT trans of the second
						+ + +-	white gastropods and pelecypods also present.
						• •-	
-						• •-	
						+-	
-						•	
_	[ĺ		Í		• •-	-
		ľ					
6.5	1					• •-	
						••••	
				ļ		••••	-
						•	
	(ľ	•	-
	1						
							-
						• •	
						•	
7						• <u> </u>	
		Τ		Re	mark	:s:	Saturated Zones
			1		bgs =	Below	Ground Surface. Date / Time Elevation Depth
BLASLAN	D, BOUCK &	LEE, I	<u>NC.</u>				
engine Project: 131.52	ers & sci	entis	sts				
Project: 131.53.	300	Date:	. nnyw 02/27	/01			Page: 5 of

			1 A A A A A A A A A A A A A A A A A A A													 	 			 					 	 	 		
						 										 	 	A 100 100 10				 	 		 				
_	_		_																		 	 							
_																 	 					 	 	 					
_		_														 	 							 		 	 		
		_				 						A . A . A .	~~~~		1 C C C C C C C C C C C C C C C C C C C						 	 	 						
					_												 		 	 							 		
			_	_		 																					 		
						 														 		 							_
		-	_			 		_								 	 		 				 			 	 		
	_		_	_	_									_									 	 	 				
								_								 			 	 • • • • • •	 					 			
				-	_					_						 	 								 				
					-											 						 	 	 					
						 	_		_		_			_					 	 						 	 		
		_		_		 						_				 	 						 	 	 		 		
						 											 		 	 						 	 	A	

Soll Boring No: S319

Total Depth = 8.03 meters

Location:

Client:

Syracuse Remediation Program Syracuse, New York

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratig Descr	raphic iption		
	1						(5.97-8.03m) - Moist, dark gray-brown (10YR 4/ white gastropods and pelecypods also present. (7.20m) - Piece of dark brown (10YR 2/2) wood to 900 - Piece of dark brown (10YR 2/2) wood to (8.03m) - Boring terminated at 8.03m bgs.	2), organic SILT, trace of (~2.5cm long and 1cm wide	f tiny rootlets, s ;).	məli - - - - - - -
BLASLAN Project: 131.53	BBBB B. BOUCK & eers & sc. .300		NC. sts	Re	emark bgs =	(S: Below	v Ground Surface.	Satura Date / Time	ted Zone Elevation	-

Date Start/F Drilling Comp Drilling Metho Rig Type: Po	Inish: 07/1 any: Ocean id: Vibracc ntoon Boa	3/00 / n Surve pre t	' 07/13/ eys, Inc		Bore	eolo	e Depth: 7.03 meters gist: Donald Johnson	Soll Boring No: S320 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) (II4	Geotechnical Test	Geologic Column		Stratigraphic Description
							G (0-0.02) - Upper 2cm discarded by cr (0.02-0.52m) - Wet, black (10YR 2/1), present (few).	ROUND SURFACE rew on boat because it was too loose to contain in tube. organic SILT (muck-like), loose, Organic Pieces like rootlets
_ 5	4							
-							(0.52-0.76m) - Wet, plack (NYR 2/1), (10YR 7/1) layers, each 0.75cm thick, i section (0-1m). (0.76-1.0m) - Wet, same as above but	organic SILT (muck-like) as above, with two light gray Petroleum-like odor, faint to strong, progressing through this stronger petrolem odor and no light gray layers.
1 BLASLAN engine Project: 131.53.	D, BOUCK & Ders & sc. 300	LEE, IN tent1s Script:	IC. ts	Ren	 gs = [Ground Surface.	Saturated Zones Date / Time Elevation Depth

Client: Honeywell I Location: Syracuse R Syracuse, N	nternation emediation New York	al 1 Program			Soll Boring No: S320 Total Depth = 7.03 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type Recovery (meters)	PID (ppm)	Geotechnical Test	Stratigraphic Description
-					(1.0-1.395m) - Wet, black (10YR 2/1), organic SILT, as above but trace of rootlets and petroleum odor is stronger still.
					(1.395-1.4m) - Wet, light gray (10YR 7/1), organic SILT, distinct narrow layer in black interval. (1.4-1.68m) - Wet, black (10YR 2/1), organic SILT, moderately cohesive, low plasticity, trace of rootlets.
- 2	3				(1.685-1.685m) - Wet light gray (10YR 7/1), organic SILT. no organics. (1.685-2.77m) - Wet, black (10YR 2/1), organic SILT, moderately cohesive, low plasticity, trace rootlets and small pleces of twigs.
2.5 BLASLAND BLASLAND	BOUCK S LE		Re	marks:	Iow Ground Surface.
Project: 131.53.30	0 Sc	cript: hnyw	ell /01		Page: 2 of 6

Project: 131.53.300

Client: Honeywe Location: Syracus Syracus	ell Internat e Remediat e, New Yor	ional Lion Pri	ogram			Soli Boring No: S320 Total Depth = 7.03 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geologic Column	Stratigraphic Description
-	3					(1.685-2.77m) - Wet, black (10YR 2/1), organic SILT, moderately cohesive, low plasticity, trace rootlets and small pieces of twigs.
— — — 3					*	(2.77-2.775m) - Wet light gray (10YR 7/1), organic SILT. no organics. (2.775-3.0m) - Wet, black (10YR 2/1), organic SILT, trace of rootlets and small pieces of twigs.
						(3.0-3.48m) - Moist, black (10YR 2/1), organic SILT with trace of visible Organic Pieces. -
—3.5 —	2					(3.48-3.68m) - Wet, shiny, black (10YR 2/1), organic SILT with little shale (rounded and subangular) (F-C) Gravel, ~3in in diameter, piece broken fresh by core barrel. Strong petroleum odor.
_					8181818181	(3.68-3.79m) - Wet to moist, light gray (10YR 7/1), SILT and CLAY (~50/50%). Sediment is moderately cohesive, low to medium plasticity. (3.79-3.97m) - Wet to moist, dark gray (10YR 4/1) to black (10YR 2/1), organic SILT with some rounded (M) Gravel [shale, dark gray (10YR 4/1)], trace of rootlets and grass. Petroleum contamination not visible as in gravel layer above, but odor is strong in this part of the core.
BLASLAN engine Project: 131.53.	BB D, BOUCK & Ders & Sci 300	LEE, IN entis		Rema	arks: s = Belo	Ground Surface.

Client: Honeywe Location: Syracuse Syracuse	ell Internat e Remedia e, New Yor	tional tion Pr k	ogran	1			Soll Boring No: S320 Total Depth = 7.03 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
	2						(3.97-4.60m) - Moist, brown (10YR 4/3), CLAY with some Silt. Sediment is moderately cohesive, low to medium plasticity. Black (10YR 2/1) streaky coloration in a random pattern throughout this interval.
- 5							(4.60-5.0m) - Moist, dark gray-brown (10YR 5/2), organic SILT and CLAY, sediment is moderately cohesive, low plasticity. No oil or other contamination visible in this interval.
	1						(UC-GOUN) - Must, rery dark gray (UTR 37), organic SLLT and CLAY (SU/SUX). Sediment is moderately cohesive, medium plasticity, soft.
BLASLAN engine Project: 131.53.	BBB D. BOUCK & Ders & sca 300	LEE I Script:			bgs =	s: Below	Ground Surface. Saturated Zones Date / Time Elevation Depth Page: 4 of 6

Client: Honeywell Intern Location: Syracuse Remedi Syracuse, New Y	ational ation Proc ork	jr am			Soll Boring No: S320 Total Depth = 7.03 meters
DEPTH (meters) ELEVATION Section Number	Sample/Int/Type	PID (ppm) Geotechnical Test	Geologic Column	S	tratigraphic Description
-			(5.) moc	0–6.50m) – Moist, very dark gray (10 lerately cohesive, medium plasticity, s	YR 3/1), organic SILT and CLAY (50/50%). Sediment is oft. -
- 6					
					-
			(6.ť	0-7.03m) - Moist, dark gray (10YR 4	/1), with very dark gray (10YR 3/1) streaks, organic SILT
			and plas	CLAY. Streaks are irregular to rando ticity, soft.	m, sediment is moderately cohesive, low to medium -
7		Remar			Saturated Zones
BLASLAND, BOUCK engineers & s Project: 131.53.300	<u>& LEE, INC</u> clentist Script: h	bgs :	ns: = Below Groun	d Surface.	Date / Time Elevation Depth Page: 5 of 6

F

Client: Honeywe Location: Syracuse Syracuse	III Internat Remedia S. New Yor	tional tion Pr K	ogram				Soll Boring No: S320 Total Depth = 7.03 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-							(0.50-7.03m) - Moist, dark gray (10TK 4/1) with very dark gray (10TK 3/1) streaks, organic SILT and CLAY. Streaks are irregular to random, sediment is moderately cohesive, low to medium plasticity, soft. (7.03m) - Boring terminated at 7.03m bgs.
7.5							
-							
8							
85							-
BLASLAN engine Project: 131.53.	BBB D, BOUCK & Bers & sc: 300	LEE, I lent1s	NC. 5ts		mark Dgs =	S: Belov	Ground Surface.

Date Start/F Drilling Comp Drilling Metho Rig Type: Po	Finish: 07/1 any: Ocean ad: Vibracc ntoon Boa	3/00 h Surv pre t	/ 07/1 eys, Iı	3/00 nc.	Bo	orehol Geolo	e Depth: 8.04 meters gist: Donald Johnson	Soll Boring No: S321 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column		Stratigraphic Description
							(0-0.22m) - Molst (water drained fro (5YR 6/I). Sand is angular, compromis	GROUND SURFACE Im core tube when cut), (F-M) SAND with some Silt, gray sed of shell fragments.
— — — .5	4						(0.22-0.32m) - Moist, gray (5YR 6/1) gastropods. Sand is angular shell fra respectively. (0.32-0.58m) - Moist gray (5YR 5/1)	grading to gray (5YR 5/1), (F-M) SAND with few gments and subangular grains of sedimentary rock, (F-M) SAND with trace Clay.
_							(0.58–0.64m) – Moist, white (7.5YR 8, (0.64–0.89m) – Moist, gray (7.5YR 5/ very dark brown (7.5YR 2.5/2) and gr	/1), (F-M) SAND (20%), gastropods (80%). /1), (F) SAND with some Silt, varves (≤ 3cm thick), alternating ay (7.5YR 5/1), low cohesion, non-plastic, soft.
	BBB D, BOUCK & pers & sc. 300		NC. sts	Re	emari bgs =	KS: * Belov	(0.89-1.4m) - Moist, gray (5YR 5/1), (Ground:Surface.	(VF-F) SAND with some Silt and trace gastropods. Saturated Zones Date / Time Elevation Depth

Client: Honeywe Location: Syracuse Syracuse	ell Internat e Remedia e, New Yor	tional tion Pr 'k	ogram				Soil Boring No: S321 Total Depth - 8.04 meters
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description (0.89-14m) - Moist, gray (5YR5/1), (YF-F) SAND with some Silt and trace destropeds
-							
	4						(1.4-1.42m) - Moist, dark brown (10YR 3/3), layer of organics (wood fragments). (1.42-1.9m) - Moist, gray (10YR 5/1), (F) SAND with trace of Silt, race of white gastropods less than or equal to 3mm long. Single larger (1cm long) gastropod at 1.43m.
-						· · · · · · · · · · · · · · · · · · ·	(1.9-2.04m) - Organic Material such as roots and twigs. Single dark blue pelecypod, ~1mm in diameter.
— 2 —	3						(2.04-3.48m) - Super saturated (excess water), Color alternates between gray (10YR 4/I) and very dark gray (10YR 3/I) at irregular intervals, (F-W) SAND with some organic SILT and visible Organic Pieces such as rootlets, low cohesion, non-plastic.
				Re	emari		Saturated Zones
BLASLAN engin Project: 131.53	N BOUCK & eers & sc .300	LEE, 1 tent1s Script Date:	INC. sts :: hnywo		bgs =	Below	Ground Surface.

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soll Boring No: S321

Total Depth = 8.04 meters

(meters) Geotechnical Test Sample/Int/Type **DEPTH** (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Section Description PIO (2.04-3.48m) - Super saturated (excess water), Color alternates between gray (KYR 4/I) and very dark gray (IOYR 3/I) at irregular intervals, (F-M) SAND with some organic SILT and visible Organic Pieces such as rootlets, low cohesion, non-plastic. - 3 3 -3.5 (3.48-4.04m) - Moist, gray (10YR 4/1), organic SILT, few to little Clay with few rootlets and grass. Gastopods present, but infrequent (trace). (3.65m) ~ Piece of wood. Δ Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC. engineers & scientists Project: 131.53.300 Script: hnywell Date: 02/27/01

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S321

Total Depth = 8.04 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqa) OI4	Geotechnical Test	Geologic Column	Stratigraphic Description
	3					• •- •	(3.48~4.04m) - Moist, gray (10YR 4/1), organic S1LT, few to little Clay with few rootlets and grass. Gastopods present, but infrequent (trace).
-							(4.04~5.10m) - Moist, dark gray (10/R 4/1), organic SILT with trace (F) Sand that appears subangular, trace Organic Pieces such as fine rootlets and grass, trace small (2mm diameter pelecypods), low cohesion, non-plastic, soft.
_							
						· ·	
						·	
4.5						·	-
-							
_							
	2						
_						······································	
_					ļ		-
- 5					-		1
-		Í			-		(5.10-5.17m) - Moist, light gray (10YR 7/1), organic SILT with trace (F) Sand, trace of rootlets, low cohesion, non-plastic, soft.
_							(5.17-6.04m) - Moist, very dark gray (N3/), organic SILT with trace Clay, grass is frequent at end of section (6.04m). White (2.5Y 8/I) pelecypods present but not as frequent as in 2.04-4.04m section of this core.
-							-
-							
5.5							
BLASLAN	BOUCK &		J NC	Re	mark bgs =	: s: Below	Ground Surface.
engine Project: 131.53	<u>ers & sci</u> 300	ent1s Script	sts : hnvw	rell			

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S321

Total Depth = 8.04 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqa) OI9	Geotechnical Test	Geologic Column	Stratigraphic Description
- 6	2						 (5.17-8.04m) - Moist, very dark gray (N3/), organic SILT with trace Clay, grass is frequent at end of section (6.04m). White (2.5Y 8/I) pelecypods present but not as frequent as in 2.04-4.04m section of this core. (6.025m) - dark brown (10YR 2/2) wood pieces ~1.5cm diameter. (6.033m) - dark brown (10YR 2/2) wood pieces ~1.5cm diameter. (6.04-8.04m) - Moist, dark gray (10YR 4/I), organic SILT with trace tiny rootlets, grass and small white pelecypods. Sediment is very consistant throughout, moderate cohesion, low plasticity.
	1						
BLASLAN engine Project: 131.53.	BBB D, BOUCK & Ders & sc.	LEE, I tentis		Re	bgs =	Below	Ground Surface.

Client: Honeywell Interna Location: Syracuse Remedia Syracuse, New Yo	tional tion Program rk		Soll Boring No: S321 Total Depth = 8.04 meters
DEPTH (meters) ELEVATION Section Number	Sample/Int/Type Recovery (meters) PID (ppm)	Geotechnical Test Geologic Column	Stratigraphic Description
		(8.04-8.04m) - Moist, dar (8.04-8.04m) - Moist, dar white pelecypods. Sedime	k gray (10YR 4/1), organic SILT with trace tiny rootlets, grass and small nt is very consistant throughout, moderate cohesion, low plasticity.
-			
- I			-
-			
-		(8.04m) - Boring terminate	d at 8.04m bgs.
- 85			
BLASLAND, BOUCK & engineers & sc Project: 131.53.300	LEE, INC. lentists	emarks: bgs = Below Ground Surface.	Saturated Zones Date / Time Elevation Depth Page: 6 of 6

Date Start/I Drilling Comp Drilling Metho Rig Type: Po	Finish: 07/ any: Ocea od: Vibracc ntoon Boa	13/00 n Surv pre t	/ 07/ eys, I	13/00 nc.	Bo	rehol Geold	e Depth: 7.84 meters I gist: Donald Johnson	Soll Boring No: S322 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column		Stratigraphic Description
							G	ROUND SURFACE
							(0-0.46m) - Super saturated (excess trace to few Organic Pieces such as ti with faint odor of petroleum.	water), black (10YR 2/1), organic SILT, trace of Clay, and iny rootlets and small sections of twigs, sediment is muck-like -
— .5 —	4						(0.48-0.59m) - Super saturated, repe 6/1) layers (≤ 1 cm thick), organic SILT (0.59-0.74m) - Wet, gray (10YR 6/1) o roots, sediment is loose, non-cohesive.	tatively varved with very dark gray (N3/) and gray (10YR i with trace Clay, low cohesion, low plasticity, soft. rganic SILT with little Organic Pieces such as twigs and
_					-		(0.74–0.95m) – Wet, repetatively varve SILT with trace of clay, each varve is	ed very dark gray (2.5Y 3/1) and gray (10YR 5/1), organic ~0.5cm thick.
BLASLAN engine Project: 131.53.	D. BOUCK & BEERS & SCI 300	LEE, I Script:	NC. its		gs =	s: Below	(0.95-1.01m) - Super saturated, very d such as rootlets and small pieces of tw Ground Surface.	ark gray (2.5Y 3/1), organic SILT with some Organic Pieces ins. sample is losse, non-cohesive Saturated Zones Date / Time Elevation Depth Page: 1 of 6

Client: Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S322

Total Depth = 7.84 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)		Geotechnical Test	Geologic Column	Stratigraphic Description
							(1.01-1.14m) ~ Moist, (F) SAND, appears to be angular to subangular shell fragments with trace of organic Silt, non-cohesive.
-							(1.14-1.10) - Super Saturated (excess water), light gray (101K 77), organic SLL) with tew organic Pieces such as fine rootlets and grass. (1.16-1.20m) - Wet, very dark gray (2.5Y 3/1), organic SILT with trace of fine rootlets, low cohesion, non-plastic.
-	4						(1.20–1.45m) – Moist (F) SAND, appears to be angular to subangular broken shells, dark gray (IOYR 4/1) trace of Silt, non-cohesive.
—15							(1.45-1.55m) - Moist, very dark gray organic SILT and (F-M) SAND. Sand consists of angular shell fragments.
-							(1.55-1.80m) - Moist, varved light gray (10YR 7/1) and gray (10YR 5/1), organic SILT with trace of fine rootlets, trace of white gastropods, trace of Clay, low to moderately cohesive, low plasticity, varves are not very distinct and appear to be cross-bedded to a slight degree. Gastropods are most prevalent between 1.55 and 1.82m, firm.
_						• - • - - • - • - • - • - • -	
-					i i i		(1.80-2.50m) - Moist to wet, light brown gray (10YR 6/2), with very dark gray-brown (10YR 3/2), repetative varves at 2cm wide at 2 cm intervals throughout, organic SILT with trace of (F) Sand, trace of white gastropods (≤ 3mm in diameter), low cohesion, low plasticity, firm.
_ 2					•	<u></u> 	
	3						
<u> </u>							
2.5							
E ASLAN				Ren b	nark gs =	s: Below	Ground Surface.
engina	ers≻:	lentis	<u>110.</u> 5 <i>ts</i>				
Project: 131.53.	300	Script Date:	: hnywell 02/27/01		<u></u>		Page: 2 of

Honeywell International

Location:

.

Syracuse Remediation Program Syracuse, New York Soil Boring No: S322

Total Depth = 7.84 meters

(meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic (mqq) Recovery Section Number DEPTH Description 0Id (2.50-3.80m) - Moist, dark gray-brown (10YR 4/2), organic SILT with some CLAY, trace (M) Sand, trace of Organic Pieces (rootlets), trace of gastropods. (M) Sand is subangular shell fragments, cohesive, low to medium plasticity. - 3 3 -3.5 (3.80-4.24m) - Moist, dark gray (IOYR 4/I), organic SILT with trace of Organic Pieces (rootlets), trace of gastropods, \leq 5cm long. 2 Δ Saturated Zones **Remarks:** Date / Time Elevation Depth bgs = Below Ground Surface. BLASLAND, BOUCK & LEE, INC engineers & scientists Script: hnywell Date: 02/27/01 Project: 131.53.300 Page: 3 of 6

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soll Boring No: S322

Total Depth = 7.84 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
						•	$(3.80-4.24m)$ - Moist, dark gray (10YR 4/1), organic S1LT with trace of Organic Pieces (rootlets), trace of gastropods, \leq 5cm long.
							-
-							
_						: <u>-</u> : -	(4.24-4.64m) - Moist, dark gray (10YR 4/1), organic SILT, light gray layers (≤ 2mm thick every 1cm). Throughout this Interval. (same composition as dark gray organic SILT) odor of rotting
							organics.
_						· · _	
4.5							
_						· _ · · · · · · · · · · · · · · · · · ·	(4.60m) - Stick, ~1cm diameter and 3.5cm long. (4.64-5.80m) - Molst very consistent gray (NYR 6/1) organic STLT moderate extension loss
-							plasticity, trace of gastropods, ~3mm long.
-	2					 	
						· ·	
— 5						 	
-					•		
_							
					- - -		-
-							-
-					-		
5.5					-		
		Τ		Re	mark	s:	Saturated Zones
BLASLAN	D. BOUCK C		/ vc	1	ogs =	Below	Ground Surface. Uate / Time Elevation Depth
engine Project: 13153 3	ers & sci	entis	ts				
10/2011 101.00.0		Date: (02/27	701			Page: 4 of 6

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S322

Total Depth = 7.84 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-	2						(4.64-5.80m) - Moist, very consistant, gray (10YR 6/1), organic SILT, moderate cohesion, low plasticity, trace of gastropods, ~3mm long. (5.80-7.84) - Moist, gray (5YR 5/1), organic SILT, color slowly grades from gray (5YR 5/1) to very dark gray (5YR 3/1) at end of core. Gastropods are less frequent in very dark gray SILT (with trace Charles of colling are provided in the second secon
- 6 -							(when bloce only). I raint upon of forting organics noted in this section.
	1						
-					 		
7 BLASLAND engine Project: 131.53.	BBB <u>), BOUCK &</u> ers & sc1 300	LEE, II ent1s Script: Date:	VC. ts	Rem	gs =		Ground Surface. Saturated Zones Date / Time Elevation Depth Page: 5 of 6

Client: Honeywell Interna Location: Syracuse Remedia Syracuse, New Yo	tional stion Progra rk	IM		Soll Boring No: S322 Total Depth = 7.84 meters
DEPTH (meters) ELEVATION Section Number	Sample/Int/Type Recovery (meters)	PID (ppm) Geotechnical Test	Geologic Column	Stratigraphic Description
- - - - - - 7.5				(5.80-7.84) - Moist, gray (5YR 5/I), organic SILT, color slowly grades from gray (5YR 5/I) to very dark gray (5YR 3/I) at end of core. Gastropods are less frequent in very dark gray SILT (with trace Clay). Faint odor of rotting organics noted in this section.
		Remar		(7.84m) - Irace Clay. (7.84m) - Boring terminated at 7.84m bgs.
BLASLAND, BOUCK & engineers & sc Project: 131.53.300	LEE, INC lentists	bgs :	n3. = Belon	Ground Surface.

Drilling Comp Drilling Meth Rig Type: Pi	o any: Ocea od: Vibrac ontoon Boa	n Surv ore it	eys, I	nc.	Bo	reholi Geolo	Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
_							GROUND SURFACE (0-0.15m) - Super-saturated (excess water), black (10YR 2/1), loose, organic SILT, with little Organics such as small twigs and rootlets, low cohesion, non-plastic, very soft, muck-like sediment.
 5	4						(0.15-0.22m) - Wet, gray (10YR 6/1), organic SILT with little Organics, medium density, soft. (0.22-0.85m) - Wet, black (10YR 2/1), organic SILT, low cohesion, low plasticity, soft, medium density.
							(0.85-0.86m) - Wet, gray (10YR 6/1), (VF) SAND, non-cohesive. (0.86-1.03m) - Wet, black (10YR 2/1), organic SILT with trace of Clay, low to moderate cohesis soft, low plasticity.
BLASLA engli	BB ND, BOUCK & Deers & so	LEE 1ent1	INC. sts	Re	emar bgs =	ks: = Beloi	Ground Surface.

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soll Boring No: S323

Total Depth = 7.83 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	(mqq) UIA	Geotechnical Test	Geologic Column	Stratigraphic Description
-							(0.86-1.03m) - Wet, black (10YR 2/1), organic SILT with trace of Clay, low to moderate cohesion, soft, low plasticity. (1.03-1.28m) - Wet, gray (10YR 6/1) and black (10YR 2/1) varves, each 0.5-1cm thick, organic SILT, gray layers have little to some (VF) SAND with tiny cross-beds within these layers.
-	4						(1.28-1.44m) - Wet, gray (IOYR 6/1), CLAY with some Silt, cohesive, soft, low to medium plasticity.
— 15 —							(1.44-1.53m) - Wet, Diack (1UTH 2/1) and very dark gray (2.5Y 3/1), varves of organic S1LT with few Clay and (F) Sand with trace of Silt, respectively. Varves vary in thickness from 0.5-3cm. Faint petroleum odor present at end (~1.8m) of this core segment.
							(1.83-2.46m) - Wet, black (10YR 2/1), organic SILT with trace of Clay. Wet, light gray (10YR 7/1) varves Icm, thick at 2.5cm intervals with same composition. organic material (trace-few) such as rootlets present. Faint petroleum odor continues on from the end of the core above.
-	3						
25 BLASLAN engine	BBB D, BOUCK & Bers & sc		NC.	Re	mari bgs =	(S: Below	Ground Surface.

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S323

Total Depth = 7.83 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-							(2.46-3.02m) - Wet, very dark gray (N3/), organic Silt with trace of Clay and little Organics such as twigs and roots, low cohesion, low plasticity, soft. -
_ _ 3							
-	3						(3.02-3.05m) - Wet, gray (10YR 6/1), organic SILT and trace of Clay, low cohesion, low plasticity, soft. (3.05-3.50m) - Wet, gray (10YR 6/1), organic SILT with little to some Organics (rootlets and grasses), low cohesion, low plasticity, soft.
_						;	- (3.35–3.36m) – Light gray (10YR 7/1) varve of organic SILT and (VF) SAND. -
—3.5 —							(3.50-3.65m) - Super saturated (excess water) very dark gray (N3/) organic SILT with some Organics (root and grasses).
_							(3.65-3.7m) - Wet, very dark gray (N3/), organic SILT with some Organics (foot and grasses) low cohesion, non-plastic, soft. (3.7-3.81m) - Wet, gray (10YR 6/1), organic SILT, low cohesion, low plasticity, trace of Clay.
_	2						(3.81-3.815m) - Wet, light gray (10YR 7/1), thin varve of organic SILT. (3.815-3.83m) - Wet, gray (10YR 6/1), organic SILT with few fine rootlets. (3.83-4.15m) - Wet, dark gray (N4/), organic SILT with trace of Clay and Organics (small rootlets - & twigs), low cohesion, low plasticity, soft. Very dark gray brown (10YR 3/2), ~2.5cm long x 1.5cm wide piece of wood at 3.81m. Icm long x 0.75cm wide angular piece of shell, very dark gray on outside (2.5Y 3/1) and Iridescent (like ablone) on bicfied at 3.87m.
BLASLAN engine	BB D, BOUCK & Pers & sci	LEE 1 entis	NC.	Re	bgs =	s: Belov	Ground Surface. Saturated Zones Date / Time Elevation Depth

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S323

Total Depth = 7.83 meters

DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters) PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Description
-						(3.83-4.15m) - Wet, dark gray (N4/), organic SILT with trace of Clay and Organics (small rootlets & twigs), low cohesion, low plasticity, soft. -
_						(4.15-4.24m) - Moist, gray (10YR 6/1), organic SILT with trace of Clay and trace fine rootlets, low cohesion, low plasticity, soft.
_						(4.24-4.26m) - Noist, black (10YR 2/1), organic SILT with trace of CLAY and trace of fine rootlets. (4.26-4.74m) - Wet, very dark gray (2.5Y3/1), organic SILT with trace of Clay, low cohesion, low plasticty, soft.
— —45						
-						-
_						
_	2					(4.74-4.75m) - Wet, light gray (10YR 7/1), organic SILT layer with trace of Clay that appears less broken down (larger Silt particles) than above. Trace of Organics (roots) also present, very soft. (4.75-5.83m) - Wet, light gray (10YR 7/1), organic SILT with trace to few small (~2mm across
_						diameter) white gastropods and pelecypods and trace of Clay. Sediment has low cohesion, low plasticity, slight odor of organic decay.
- 5						
_					· · · •	-
_						
_						-
5.5				<u> </u>	· ·	
			ł	lemar	ks:	Saturated Zones
			/	bgs =	• Below	Ground Surface.
<u>ULASLAN</u> engine	u, buulk & Pers & sci	<u>Ltt, </u> entis	NU. ts			
Project: 131.53.	300	Script: Date: (hnywell 02/27/01			Page: 4 of 6

Honeywell International

Location:

Syracuse Remediation Program Syracuse, New York

Soil Boring No: S323

Total Depth = 7.83 meters

000000000000000000000000000000000000000			loogeneer e		1					
DEPTH (meters) ELEVATION	Section Number	Sample/Int/Type	Recovery (meters)	PID (ppm)	Geotechnical Test	Geologic Column	Stratiç Desci	graphic ription		
							(4.75-5.83m) - Wet, light gray (10YR 7/1), organ diameter) white gastropods and pelecypods and	ic SILT with trace to few trace of Clay. Sediment	small (~2mm acr has low cohesion	oss n. low
_						 	plasticity, slight odor of organic decay.	-		-
	2									
-						· • · •				-
								- <u></u>		-
							(5.83-7.81m) - Very consistent, moist, gray (N5/ above and sample very little cohesion, no appare), organic SILT, moisture nt clay. Gastropods pres	content is lower sent at 3-5 per :	than 2cm of
							core cross section (trace), pelecypods are less	frequent.		-
6										
						· · -				
-										_
					ľ					
_										-
					ļ					-
_										
	1				.					-
6.5				1						
-										-
	Í				ŀ					
-					-					-
_					-	- ·				
										1
-					-					ļ
7					-					
						<u></u>				
				Re	mark	S: Belev	Ground Surface	Date / Time	Elevation	Depth
RI ASI AN) BOLICK &		NC		- vys	DEIOM	DI DUNU DUFTACE.			
engine	ers & sci	entis	its							
Project: 131.53.	300	Script: Date: (hnywe 02/27/	ell 01					Pa	ge: 5 of 6

Client: Soli Boring No: S323 Honeywell International Total Depth = 7.83 meters Location: Syracuse Remediation Program Syracuse, New York (meters) Geotechnical Test Sample/Int/Type (meters) Geologic Column ELEVATION Stratigraphic Recovery (mqq) Description DEPTH Section Number DIU ____ (5.83-7.81m) - Very consistent, moist, gray (N5/), organic SILT, moisture content is lower than above and sample very little cohesion, no apparent clay. Gastropods present at 3-5 per 2cm of core cross section (trace), pelecypods are less frequent. 1 -7.5 (7.81-7.83m) - Wet, black (10YR 2/1), organic S1LT, no visible organic pieces, trace of Clay. Sediment is loose, low cohesion, low plasticity. (7.83m) - Boring termineated at 7.83m bgs. 8

BLASLAN	D. BOUCK & LEE	INC.	Þç	is = Belo	Ground Surface.	Date / Time	Elevation	Depth
	Tar		Rem	arks:		Satur	ated Zone	38
- 8.5								
_								
_								
-								

Date Start/ Orilling Comp Driller's Nam Drilling Meth Rig Type: Ir Sampling Me Hammer Weig	Finish: 0- bany: Par le: Brad I od: Direc ligersol R lthod: 3- ght: 140 I	8/16/(ratt ¥ Palmer ct Pusi and A inch S bs.	00 / Iolff, Jim - 200 iplits	08/1 Inc Ham) Tru poor	6/0 imon ick f	O B	ore eoli	hoie ogis	Depth: 12 feet Location Onondag Syracuse	ng No: S438 III International : a Lake Dredge Spoils :, New York
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	Z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Column	Stratigraphic Description	Soil Boring Construction
	DM0001		4						GROUND SURFACE (0-1.3 ft) Dry, light olive brown, (2.5Y 5/2), SILT, few (F-C) Sand, trace (F-C) Gravel, trace	
_	DM0002 1.3'-3.4' 1968	3"SS 3"SS	5 5 4 5 5 4	14	1.6 2.0	0.0	- SM		Organics. (1.3-2.0 ft) - Dry, pale yellow (2.5Y 8/3), FILL, trace (F-C) Sand, trace (F) Gravel. (2.0-3.0 ft) - Moist/Wet, light brownish gray (2.5Y 6/2), FILL, clay-like consistency, soft, medium plasticity. (3.0-3.5 ft) - Moist/Wet, light olive brown (2.5Y	
	DM0003 3.4'-6.0' 1967	3"SS	3 3 2 2	5	2.0	0.0			 5/2), SILTY SAND, possibly in landfill. (3.5-4.0 ft) - Moist/Wet, light brownish gray (2.5Y 6/2), FILL, clay-like consistency, soft, medium plasticity. (4.0-6.0 ft) - Net, light brownish gray (2.5Y 5/2), FILL, clay-like consistency, medium plasticity, Silty (E) Sand soft 	
_	DM0004 8'-9.2'	3"SS	3 2 2 1	4	1.2	0.0	Fill /SM		(6.0-8.0 ft) - Wet, light brownish gray (2.5Y 6/2), FILL, Silty (F) Sand, little shells, loose. (6.65-6.8 ft) - dark bluish gray CLAY/SILT layer (possible break in landfill layers). (8.0-9.2 ft) - Wet, very dark gray 3/N, FILL,	
10	1966-1967 DM0005 9.2'-10.3'	3"SS	1 2 2	3	2.0	0.0	РТ		ciay-like consistency, medium plasticity, light brown (2.5Y 6/2) Silty Sand layers. (9.2-10.0 ft) -Molst, dark brown PEAT.	
_		3"SS	3 3 2 2	5	2.0	0.0	PT		(10.0-10.3 ft) - Salle as 9.2-10.0 ft. (10.3-12.0 ft) - Wet, gray MARL (5Y 6/1), silty sand consistency, little Sand, sulfur odor.	
BLASLAN engin Project: 131.53	BL <u>D</u> , BOUCK eers & s .300		, INC.		st	Remar bgs =	ks: = Be	low	Ground Surface.	Water Levels

Hammer Wei	ght: 140	bs.	5011ts		n 	G	eol	ogis	t: Ron Kuhn Syracuse, New York
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	Z	Recovery (ft.)	PID (ppm) Headspace	[Inified Symbol	Geologic Column	Stratigraphic Soil Boring Description Construction
	DM0031 0'-3 5'	3"SS	NA	NA	1.8	0.0	ML		(0-2.0 ft) Moist, dark grayish brown, (10YR 3/2), SILT, dry, trace (F-C) Sand, trace to few (F-C) Gravel, trace Roots
-	COVER	3"SS	NA	NA	2.0	0.0	ML Fill		(2.0-3.5 ft) - Same as above.
5	DM0032 3.5'-4.8' 3RD LIFT DM0033 4.8'-6.3'	3"SS	NA	NA	2.0	0.0	FIII		(3.5-4.0 ft) - Moist, light brownish gray (10YR 6/2), FILL, silt-like consistency, wet, orange motting, soft, trace roots. (4.0-4.8 ft) - Same as above. (4.8-6.0 ft) - Same as above.
-	2ND LIFT 0M0034 6.9'-7.65'	3"SS	NA	NA	2.0	0.0	Fill		second hrt. (4.8-5.4 ft) - Dark gray laminations. (6.0-7.6 ft) - Same as above. (6.3-6.5 ft) - Dark gray laminations.
-	DM0035	3"55	NA	NA	2.0	0.0	PT		(6.85-6.90 ft) - Dark gray laminations. (7.6-8.0 ft) - Moist, dark redish brown (5YR 3/3), SILT, damp,trace (F-M) Gravel, trace roots. (8.0-9.25 ft) - Same as above.
									(9.75-10 ft) - Moist, gray, MARL (5Y 6/1), silty (F-C) sand consistency, wet, sulfur odor, potential Oncolites. (10.0 ft) - End of boring.
- -									
-									

Date Start/ Drilling Comp Driller's Nan Drilling Meth Rig Type: Ir Sampling Me Hammer Wei	Finish: 0 pany: Par le: Brad I lod: Direc ngersol R http://www. ght: 140 I	8/16/(ratt ¥ Palmer ot Pus and A inch S bs.	00 / Volff, r, Jim h −20(Splits	08/1 Inc Harr D Tru poor	6/0 imor ick I	0 Ind Rig Ge	orel	hole ogis	Depth: 10 feet Location: Onondaga Syracuse,	No: S438 International Lake Dredge Spoils New York
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Cotumn	Stratigraphic Description	Soil Boring Construction
	DM0011 0'-1.6' COVER	3"55	NA	NA	1.6	0.0	ML		GROUND SURFACE (0-2.0 ft) Dry, dark grayish brown (10YR 4/2), SILT, trace (F-C) Sand, trace (F-C) Gravel, trace roots, shells.	∧ < < ∧ <
	DM0012 2.0'-4.9' 3RD LIFT	3"SS	NA	NA	1.7	0.0	sw		(2.0-4.0 ft) - Moist, brown (F) SAND (10YR 5/3), little (M-C) Sand, moist, trace (F) Gravel, trace shells, loose (4.0-8.0 ft) - Same as above. With little	A
5	DM0013		NA	NA	0.9	0.0	SW	•••		
-	6.0'-6.8' DM0014 6.0'-8.7' IST LIFT	3"SS 3"SS	NA	NA	1.9	0.0	FM		(8.0-8.0 ft) - Wet, very light brownish gray, silt-like consistency, occasional dark gray intervals (not continuous) (F) Sand seam @ 6.8', possible bottom of second lift. (8.0-8.7 ft) - Same as above	· · · · · · · · · · · · · · · · · · ·
	8.7'-9.85' NATIVE	3:SS	NA	NA	2.0	0.0	Fill PT		(8.7-9.85 ft) - Moist, dark brown PEAT.	· < < < < < < < < < < < < < < < < < < <
-									(F-C) sand consistency, sulfur odor, possible Oncolites. (10.0 ft) - End of boring.	
BLASLA BLASLA engin Project: 131.53	ND, BOUCK BEERS & S		, INC tist	: : : : : : : : : : : : : : : : : : :	st	Remari bgs =	κs: = Βε	elow	Ground Surface.	Water Levels e / Time Elevation Depth

Date Start/ Drilling Comp Driller's Nam Drilling Meth Rig Type: In Sampling Me Hammer Weig	Finish: 08 bany: Parr e: Brad P od: Direc gersol Ra thod: 3-i jht: 140 II	1/17/(att W almer t Push and A nch S os.	00 / (olff, , Jim 1 -200 plitst	08/1 Inc. Ham Tru	7/00 mon ck F) d Rig Ge	oret 2010	nole	Depth: 10 feet : Ron Kuhn	Soll Boring Client: Honeywell Location: Onondaga Syracuse,	No: S439 International Lake Dredge Spoils New York
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Column	Stratigraphic Description		Soil Boring Construction
	DM0022 0.6'-1.8' 3RD LIFT	3"55	NA	NA	1.8	0.0	 ML Fill		GROUND SURFA((0-0.6 ft) Moist, dark grayish brown SILT, trace (F-C) SAND, trace (F) roots, shells. (0.6-2.0 ft) - Moist, light brownish	CE n (10YR 4/2), Gravel, trace gray (10YR	
 5	DM0023 2.0'-6.0' 2ND LIFT	3"SS 3"SS	NA	NA	1.5	0.0	FW		6/2), Fill, sit-like consistency, dry (2.0-4.0 ft) - Moist, light brownish silt-like consistency, trace roots, tr mottling. (4.0-6.0 ft) - Same as above.	r, trace shells. gray, F1LL, ace orange	 ∧ ∧ ∧ Borehole backfilled with- Bentonite Pellets from < 0-10 ft bgs. < ∧
-	DM0024 6.0'-7.2' 1ST LIFT DM0025 7.2'-8.0'	3"SS	NA	NA	2.0	0.0	PT FW		 (6.0-7.2 ft) - Light brownish gray FILL, interbedded (F) sand and slit consistency, trace (M-C) Sand, tratrace roots. (7.2-8.0 ft) - Moist, dark brown PE. (8.0-8.1 ft) - Same as above. 	(10YR 6/2), 	
10		3"SS	NA	NA	2.0	0.0	PT Fill		(8.1-10.0 ft) - Wet, gray (5Y 6/1) M (F-C) sand consistency, sulfuer odd little potential Oncolites. (10.0) - End of boring.	ARL, silty or, trace to	
- 5											
BLASLA eng tr Project: 131.53 File: S43910	SI ND, BOUCK Deers & s	S LE Scien	<u>, INC</u> tist	s s	est	Remar bgs	ks: = Bi	elow	Ground Surface.	Da	te / Time Elevation Depth
Drilling Meth Rig Type: I Sampling Me Hammer Wel	ne: Brad F nod: Direc ngersol R/ hthod: 3-i ght: 140 II	almer t Pusi and A nch S bs.	-, Jim h 200 Splitsj	Ham) Tru Door	umon Jck F	a Rig Ge	ore) eolo	nole ogisi	Depth: 10 feet Lon Oni Syl	ent: neywell International cation: ondaga Lake Dredge Spoils racuse, New York	
---	---	--	-------------------------------	----------------------	----------------	------------------------	------------------------	-----------------	--	---	
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Column	Stratigraphic Description	Soil Boring Constructio	
	DM0008	3"55	NA	NA	1.5	0.0	ML Fill	·] 0	GROUND SURFACE (0-0.55 ft) Moist, dark grayish brown (10Y SILT, trace (F-C) Sand, trace (F) Gravel, roots. (0.55-0.85 ft) - COBBLE.	R 4/2), trace	
- -	DM00007 2.85'-4.5' 3RD LIFT	3"55	NA	NA	1.8	0.0	Fill		(0.85-2.0 ft) - Light brownish gray (10YR SILT and FILL, Silt as above, Fill with silt-1 consistency, trace shells, trace roots. (2.0-2.85 ft) - Same as above. (2.85-4.0 ft) - Light brownish gray (10YR FILL, silt-like consistency, orange mottling.	6/2),	
— 5 —	DM0008 4.5'-6.3' 2ND LIFT	3"SS	NA	NA	11	0.0	Fill		(4.0-6.0 ft) - Same as above. (4.5-4.6 ft) - Gray seam (top og second l grades to (F) sand consistency at 4.8' BG	uft), S. ^ / (1)	
_	DM0009 6.3'-7.7' 1ST LIFT	3"SS	NA	NA	1.7	0.0	Fill		(8.0-8.3 ft) - Light Drownish gray (10YR 6 FILL, (F) sand consistency. (6.3-8.0 ft) - Bluish Black Gray (2 2.5/5B) silt-like consistency.	/2), , FILL, ^ ^	
— —10	DM0010 8.6'-9.6' Native	3"SS	NA	NA	1.6	0.0	PT Fill		(8.0-8.6 ft) - Moist, dark brown PEAT, grav organic Silt. (8.6-10.0 ft) - Wet, gray MARL (5Y 6/1), M/ silty (F-C) sand consistency, sulfur odor, li potential Oncolites. (10.0 ft) - End of boring.	ding to ARL, title	
-											
- 5											
BLASLA		3		 ,		Remarl	 (s: • B€	elow	Ground Surface.	Water Levels Date / Time Elevation	

Date Start/ Drilling Com Driller's Nan Drilling Meth Rig Type: I/ Sampling Me Hammer Wel	/Finish: 0/ pany: Par le: Brad I nod: Direc ngersol R sthod: 3- ght: 140 I	B/17/I ratt Palme t Pus and A inch S bs.)0 / Volff, ; Jim h -20(Splits	08/1 Inc Han D Tru poor	7/Qi imor Jck I	0 Bi Rig Gi	orel	hole	Soll Boring No: S441 Client: Honeywell International Location: Onondaga Lake Dredge Spoils Syracuse, New York
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Column	Stratigraphic Soil Boring Description Construction
	DH0026								GROUND SURFACE (0~2.0 ft) Moist, dark grayish brown (10YR 4/2), SILT, trace (F-C) sand, trace (F-C) Gravel, trace
-	0.2'-1.6'	3"55	NA	NA	1.6	0.0	ML		
-	DM0027 2.4'~4.3' 3RD L1FT	3"55	NA	NA	1.5	0.0	ML Fill		(2.0-2.4 ft) - Same as above. (2.4-2.7 ft) - Moist, light brownish gray (IOYR 6/2), FILL, slit-like consistency, trace roots, trace shells. (2.7-4.0 ft) - SILT and FILL as above.
— 5	DM0028 4.3'-6.4' 2ND LIFT	3"SS	NA	NA	1.8	0.0	Fill		(4.0-4.3 ft) - Same as above. (4.3-6.0 ft) - Wet, light brownish gray (10YR 6/2), FILL, silt-like consistency, slight orange mottling, trace roots.
	DM0029 6.4'~8.5' IST L1FT	3"SS	NA	NA	1.9	0.0	Fill		(6.0-6.4 ft) - Same as above. (6.4-6.5 ft) - Same as above. (6.5-8.0 ft) - Same as above. (6.5-8.0 ft) - Same as above.
-	DM0041 8.8'-9.5'	3"55	NA	NA	2.0	0.0	Fill Ol Marl		(8.0-8.5 ft) - Same as above.
10 	DM0030 9.75'-11.1' NATIVE	3"55	NA	NA	1.1	0.0	MARL		Calcareous fragments, Shells, Brick, Silt, Sand) (9.5-9.75 ft) - Dark borwn, organic SILT, trace ^ (F) Sand, little organics. (9.75-10.0 ft) - Wet, gray (5Y 6/1) MARL, silty ^ (F-C) sand consistency, sulfur odor, little potential Oncolites. ^
									(10.0-12.0 ft) - Same as above. (12.0 ft) - End of Boring.
15									
BLASLA	BL ND, BOUCK	B <u>& LEI</u> clen	, INC	- 		Remar bgs =	ks: ≃ Be	elow	Ground Surface. Water Levels Date / Time Elevation Depth
Project: 131.53 File: \$441.L00	3.300	Sci	ript: a	ccte	st		an de la desta br>En la desta de l		Page: 1 of 1

Date Start/ Drilling Comp Driller's Nam Drilling Meth Rig Type: Ir Sampling Me Hammer Welg	Finish: 00 Dany: Par le: Brad I od: Direc ligersol R lthod: 3- ght: 140 1	8/17/ ratt Palme It Pus and A inch (bs.	00 / Volff, r, Jim h v-20(Splits	08/1 Inc Han) Tru poor	17/0 nmor uck n	IO Ind E Rig G	lore	hole	Depth: 10 feet I Client: Honeywell International Location: Onondaga Lake Dredge Spoils Syracuse, New York	
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Column	Stratigraphic Soil Boring Description Constructio])n
									GROUND SURFACE	
_	DM0016 0'-2.0'	3"SS	NA	NA	0.8	0.0	ML		(0-2.0 ft) Moist, dark grayish brown (10YR 4/2), SILT, trace (F-C) Sand, trace (F-M) Gravel, trace roots.	
-	DM0017 2.0'-4.0'	3"SS	NA	NA	1.7	0.0	Fill		(2.0-4.0 ft) - Same as above. trace to little light brownish gray silt-like Fill material, orange mottling, trace Shells.	backfille Pellets
— — 5	DM0018 4.0'-6.0'	3"SS	NA	NA	2.0	0.0	Fill		(4.0-6.0 ft) - Same as above.	DQS.
-	DM0019 6.0'-7.6'	3"SS	NA	NA	2.0	0.0	PT MARL Fill		(6.0-7.6 ft) - Same as above.	
- -	DM0020 7.9'-10.0'	3"SS	NA	NA	2.0	0.0	MARL		(7.6-7.9 ft) - Moist, Drown PEAT. (7.9-8.0 ft) - Wet, gray (5Y 6/1) MARL, silty (F-C) sand consistency, sulfur odor, little potential Oncollites. (8.0-10.0 ft) - Same as above.	
-									(10.0 ft) - End of Boring.	
-										
BLASLAN	BE BOUCK	B 8 155	<u>INC</u>	[/		Remar bgs	ks: = Be	elow I	Sround Surface. Date / Time Elevation	Det
Project: 131.53 File: \$442.1 06	.300	Sci	ript: a	ccte	st 01				Pag	le: 1 01

Date Start/ Drilling Com Driller's Nam Drilling Meth Rig Type: Ir Sampling Me Hammer Wel	Finish: 08 Dany: Par le: Brad F lod: Direc ngersol R sthod: 3- ght: 140 I	B/17/(ratt V almer t Pus and A inch S bs.	00 / Volff, r, Jim h v-20(Splits	08/1 Inc. Ham) Tru poor	7/0i imon ick l	O Id Rig G	ore	hok	: Depth: 10 feet t: Ron Kuhn	Soll B Client Honey Locat Ononc Syrac	oring : /well I ion: laga L use, N	No: S44 Internat ake Dro New Yor	13 ional edge Spoils k	
DEPTH ELEVATION	Sample Number	Sample/Int/Type	Blows/6 In.	z	Recovery (ft.)	PID (ppm) Headspace	Unified Symbol	Geologic Column	Stratigraphic Description	;			Soil Boring Construction	
									GROUND SURFA					
-	DM0036 0'2.0'	3"55	NA	NA	1.7	0.0	Nath Fill		SILT, trace (F-C) Sand, trace (F- trace roots.	n (lotk 4/2) -C) Gravel,),	^ 		-
-	DM0037 2.0'-4.0'	3"SS	NA	NA	1.3	0.0	Nativ Fill		(2.0-4.0 ft) - Same as above.			<u>~~~~~~~</u>	Borehole backf Bentonite Pele	- illed with is from
— — 5	DM0038 4.0'-5.7	3"SS	NA	NA	1.9	0.0	Nativ Fill		(4.0-5.7 ft) - Same as above.			< < < < <	U-IN IL UUS.	
-	DM0040 6.0'-6.7'	3"SS	NA	NA	2.0	0.0	PT MAR		(3.7-0.0 ft) - Light Drownish gray FILL, silt-like consistency, trace (i (6.0-6.7 ft) - Moist, dark brown PE (6.7-8.0 ft) - Wet, gray (5Y 6/I) M (F-C) sand consistency, sufur odo Oncollies	(IUTH 6/2), F-C) Sand. AT. IARL, silty r, little poter	/	< v < v < v		-
— — σ		3"55	NA	NA	1.5	0.0	MARI		(8.0-10.0 ft) - Same as above.			~ ~ ~ ~ ~		-
-									(10.0 ft) - End of Boring.			_		-
														-
_														-
BLASLA	BIL ND, BOUCK			 ; ;]	Remar bgs	∟ 'ks: = B	elow	Ground Surface.		Dati	W8 e / Time	ter Levels Elevation D	epth
Project: 131.53 File: S443.L0	3.300 G	Sc Da	ript: a te: 02	iccte /27/	st 01					_			Page: 1	of 1

Date Start/Finish: 07/21/00 / Drilling Company: Ocean Survey Drilling Method: Vibracore Rig Type: Pontoon Boat Spoon Size: N/A in.	07/21/00 ys, Inc. Bo	Soll Boring No: S304 Client: Honeywell International Location: Syracuse Remediation Program Syracuse, New York	
DEPTH (meters) ELEVATION Section Number Sample/Int/Type	Recovery (meters) PID (ppm) Geotechnical Test	Stratigraphic Description 00 00 00 00 00 00	
		GROUND SURFACE	
5 4		(0-0.02m) - Super saturated (water draining from core), Organic Pieces (wood and plants). (0.02-0.64m) - Super saturated, (F-M) SAND, some organic Silt (lake deposit), few (C) Sand, non-cohesive, soft to firm.	
		(0.64-0.86m) - Super saturated, very dark gray (10YR 3/1), SILT, some Calcareous Material, lit (F) Sand, trace Organic Material, non-cohesive, soft. (0.86-1.03m) - Same as above, but light gray (10YR 7/1), some (VF) SAND.	- .tte -
BLASLAND, BOUCK & LEE, IN engineers & scientis Project: 131,53.300 Script: Date: 0	Remar	rks: = Below Ground Surface. Page	epth : 1 of 6

Appendix F2

1976 Cores

APPENDIX F2.1976 CORE LOGS

This is a new appendix that presents coring logs as provided in an Allied Chemical Memorandum dated January 26, 1977. The memorandum summarizes the analytical results from an August 1976 sediment study performed by Empire Soils Investigations Inc. for Allied Chemical. These coring logs have been scanned from the original document and are discussed in Chapter 4 of the RI.

sia	913 1151 11 <u>-</u>	NETTO INTERO	3 	-3- -5- _01	-76	4		EMPIRE SOILS INVESTIGATIONS, INC	B-76-1 SURI IIIV 55.1 G W DEPTH
PRO	111		Alli Co	ed oli	Che ng \	inic /.at	al Co er Dis	charge Facility	<u>ew York</u> offshore
SI-HIJNOO	1 STIAWAY	ON HINNY		BLOW SAN		1 .	BLOW ON	SOIL OR ROCK CLASSIFICATION	NOTES
				· · · · · · · · · · · · · · · · · · ·				0.0 - 15.0' V ater	Note #1 - Samples #7 and #8 recovered on second attempt. Note #2 - At 35.0' depth, lost rods & spoon when dropping in hole. Spoon penetrated to 45'
		1L 2 3 4U 5	Pus Rec V. O Pus Rec V O	hecov NR NR hecov	l Tu ery	be 100	24" 1% 24" 3	Gray SILT, chemical odor, calcareous Some White Waste (Wet-Very Soft) White & Gray CHEMICAL WASTE, chemical odor, calcareous	
		6 7 8	N.O	NR				Green @ 25.0' depth	-
		9		NR NR					_
								PRELIMINARY	logs _

- No. blows to drive 4 "casing 12 "with 300 lb. weight falling 18 "per blow.

Soils Ingineer

1	,	1	1	i	

8-11-76 8-12-76 MARIEU_ HNISHID__

1

4

EMPIRE SOILS INVESTIGATIONS, INC.

B-76-2 -----

SUBSURFACE LOG

SURI ELIV. G W DIPIH

1	<11dix	PLE 10		BI ()*	AN UN		50	SOIL OR ROCK	NOTES
Ď.,	1.4.	1.45	0/.	1%	11/18-	N	BLO	CLASSIFICATION	
-								0.0' to 3.3' Vater	Note #1 - Lake bottom @ 3.3' depth
-	1/	1	10	10			14	Gray fine to coarse SAND, chemical	Note #2 - Casing
	Y		3	1	4	13	17	odor, organic odor, calcareous	Information:
-			-		-	-	3		5-10': NOH-300#
_						-	5	(Wet-Firm to Loose)	10-15': WOH , 1/1'
-		-	-		-	-	4	White to Gray WASTE, little sand,	15-20': 1 : WOH
4	1/	2	MO	H	Y:01	H	N OH	strong chemical odor, calcareous	20-24': V. OC
)-	4		WC	<u>11</u>	1.01	h U	I. OII		24-25': 100# pressur
-			1.2.2		-	-	MOH		on hydraulic jack
-							MOH		gauge
-		2	2	14:0	1		WOH		Drove Casing 82.0
	1/1		INC	V.I	1.OD	0	1.011		to 83.0'
	11			1:1		10	1		Noto #2 0 12 70
-							1		Note #3 - 8-12-76
			2.1				1		move cacing from 82
	17	4	MC	RV	OR		1	Green @ 18.0' with trace fine gravel	After washing aboad
	VI		WC	RI	OR	0	WOII	trace coarse sand	1 0' 260 blows /0 5
							WOH		100/0 5'
							V OH		100/0.0
				-	·		W.OH		
	1	5	N.C	RV	OR		V OC	White @ 23.0', homogeneous	
_	4		WC	RV	OR	0	NOC		
							WOC		
							V. OC		
_	-						100#		
4	1	G	V. O	RV	OR		NOC		
-	4		N.O	RV	OR	0	NOC		
-	ł	-					V. OC		
-	ł						50#		
+	+	-					50#		
-	1	1	MO	RV	OR	-	25#	(Craw) transmission of the seams	
+	4	-	MO	RW	OR	0	25#	(Gray), trace coal @ 32.0'	
-	ł	-		-		-7	25#	-	00
-	ł	-	-				25#		FRELIMINADY
+	1	0	wd	0.14	0.7		25#	0 38 O' Black	LOGS
-	/}	0	WVQ	N V	UK	-	25#	e JU.U DIACK	

DAH	
STARIED	8-11-76
IPSISHID.	8-12-76
SHIT	2

1

EMPIRE SOILS INVESTIGATIONS, INC.

HOIL NO B-76-2 cont'd

SUBSURFACE LOG

G W DIPTH_____

Allied Chemical Corporation LOCATION_Solvay, New York PROHCT Cooling Water Discharge Facility BIOMSON и-ны Ф 2 BLOW ON A LIPLE SOIL OR ROCK SAMPLIR I LINY NOTES CLASSIFICATION 12 11:-25# Black, Gray, Green, White & Pink 25# WISTE 25# 9 WOR V. OR 00/25 WORVOR 25# 45 25# 100/50 200/50 10 VOR WOR 50# WOR VOR 50# -50-100井 (Met-Very Soft) 100# Dark Gray SILT, little clay, odor, 300/150 calcareous 11 2 2 2 3 4 150# 55 300# 200共 400# 12 V. OR VOR 250 Some Clay (58.0' - 59.0') seams WOR WOR 60 250# 400# 400# 300# 13 WOR WOH 300# Black @ 63.0' with little organics VOR MOR 300井 65 300# 300# 300# 14 WOR MOH 300# Some Organics (68.0' - 73.0') WOR MOH 300# -70-300≑ 300# 300= 15 VOR VOR 350# layering @ 73.0' WORMOR EKELIN WILL LOGS 350# 75 400# 400# 350# 16 WOR VOR 400 if VOR VOR 400带 .80

1 = No. blows to drive 2______with 140.lb. pin wt. falling 30_____per blow. = No. blows to drive 4______casing 12_____with 300__lb. weight falling 18_____per blow.

CLASSIFICATION Visual by Soils Engineer

DATE	7 06 76
STAR'SO	.1-26-76
EINISHED.	7-27-76
SHEET	1 _{Of} 3

EMPIRE SOILS INVESTIGATION., INC.

HOLE NO. B-76-3 SURF. ELEV 59.8

SUBSURFACE LOG

G. W. DEPTH See Note #1

PROJECT_Allied Chemical Corp. LOCATION_ Solvay, New York Cooling Water Discharge Facility BLOWS ON BLOW UN CASING C NC TI-HI90 SAMPLES SOIL OR ROCK SAMPITE SAMPLE NOTES CLASSIFICATION 1:/ ·/12 N 114-0 1 22 41 Gray sandy WASTE, ASH & CINDERS 1.0" Note #1 -Water Level 17 58 Black ASH & CINDERS 8 Observations: 2 4 4 -becomes wet @ 3.5' (Moist to Wet-Compact to Loose)3.5 Water encountered 2 1 6 at 3.5' during 3 2 2 Gray-White sandy WASTE, trace 5 drilling. Upon 3 11 1 cinders & oil, partially cemented completion water @ seams. Chemical odor. Calcareous 4 3 4 3.3'. 10 24 14 5 8 10 2 12 1 10 1V Tube Sample 22' Recovery Note #2: Boring (Moist to Wet-Loose to Firm) 12.0' Relocated 4.5' South 6 1 1 White fine grained WASTE material. of Staked Location. 1 1 2 trace sand, occasional Pink and 7 light Green seams. Occasional 1 1 15 partially cemented seams. Chemical 1 1 2 odor. Calcareous 2V | Tube Sample Note #3: 24' Recovery NR means no sample 1 WOH 8 recovery. WOH means weight 1 WOH 1 -20of hammer. NR 1 WOHI WOR means weight 2 21 1 of Drill Rods. 9 1 4 1 WOH 5 10 1 2 25 WOH 1 2 111 1 WOH WOH WOH 0 12 1 WOH 1 1 1 (Wet-Very Soft to soft) 30.0' .30-13 1 WOH White, Black & Green WASTE in alternating seams. Chemical odor. WOH | WOH .0 Calcareous 14 1 WOH WOH WOH 0 15WOR WOR 35 TIWOH 1 37.0' PRELIMINARY LOGS 16WOH WOH (Wet-Very Soft) Brownish Gray ORGANIC SILT, little 111 1 clay, with Black highly organic 11 17 1 seams. Embedded snail shells. . 11 T 2 Calcareous I = No. blows to drive 2 "spoon 12 "with 140b. pin wt. falling 30 "per blow. CLASSIFICATION VISUAL by

⁻ No. blows to drive_____"casing_____"with_____b. weight falling_____"per blow.

-		-	-	-	-				
4	10	Q		BLOW	VS ON		zu	5011 /02 2007	
HIAT	Idh	PLE		SAM	PLER	-	Nº4		NOTES
	ļ≾	SAM	06	112	12/18-	N	BLO	CLASSIFICATION	
	17	1	1	WCH			2	Brown SILT, little fine sand little	Noto #1 Uptor
	V		MOH	1		0	WOH	waste (Moist, Very Soft) 2.0'	level Observations.
	1.1	2	4	4			4	White & Black fine to medium SAND	Water encountered
	V		4	5		8	11	and WASTE (Chemical)	at 1.0' during
6-	V	3/	3	27	100/	0.1	20	(Moist, Loose) 5.0'	drilling. At comple-
5	Þ	38	3	75*				White & Gray varved WASTE, Some	tion, water @ 6.5'
1	1/	4	20	30			41	fine Sand	with casing to 60'.
-	V		42	24		72	9		7-28-76 00.20
	1/	5	22	21			11		Water @ 1.2'
10-	K,		12	12		33	11	(Moist, Hard) 10.0'	
	1	6	1	1			3	Gray & White fine to coarse SAND,	Note #2: *Asterisk
-	V.	_	1	1		2	3	little to Some Waste	indicates that sample
_	Λ	7	11	WOH			1		spoon was driven
-	4	_	1	1		1	4	(Wet, Loose) 14.0'	with 300 lb. weight
15-	/	8		WOH		~	2	Gray fine to coarse SAND, little	talling 24".
-	4	_	WUH	WUH		0	1	waste	
-	1	9	1	WOH		~	WOH	(Much water in samples)	Note #3:
-	4		WUH	WUH		0	WUH		Casing pushed 20.0'
4	1	10	1	WOH			WOH	/// · · · · · · · · · · · · · · · · · ·	to 30.0' and from
20-	4	-	WOH	NOH		0	1	(Wet, Loose) 20.0'	40.0 to 44.0'.
_	1	11	WOR	-		_		Gray-Green MARL, little shells.	
-	4	17	100		-	0			Note #4.
_	A	14	WUR	-	-	-			WOH Means weight of
-	1		-	-		0			Hammer
25	1	IV	Tut	e Si	ampl	e ·			WOR Means weight of
-	1	-	24	Ret	ove	ry			Drill Rods.
-	1	13	WOR		-	_			
-	4	-	-			0			
-	/	4	WOR	-				(Not Nony Soft) 20 01	
30-	1	-	-	-+		- 01			
-	//	5	MOR	-			WOH	organics to 34 0'	
-	1	-	-	-		U	WUH	o. gantos to 04.0	
-	//	0	MUR	++	-			(Brown @ 34.0')	
+		v	Tub	0 9	mp	4			
5	H	-	241	Rec	ove	ryi			_
+	1	8	JOD	7					PRELIMINARY LOCA
-i	/۴	-	-	1		0			
1	7	0	JOD	it	-				
1	/۴	1	1	it	-	2			
	-		- L	<u>.</u>		-1		1	
- No	. ь	lows	to dr	ive_	2	"spoo	12 .	with 140 b. pin wt. falling 30 "per blow CLASS	IFICATION Visual by
- No	. b	lows	to dr	ive		"casir	1g .	withIb weight falling "our blow	Soils Engineer
						200602	-	per trow.	

DAT	STA	RTED.	7-2	28-7	6		12	EMPIRE SOILS INVESTIGATION, INC.	HOLE NO B-76-6
SHE	FINI	SHED.]	7-2	OF	1	=	J	SUBSURFACE LOG	SURF. ELEV 62.4 G. W. DEPTH See Note #1
PRO	DIEC	T	A111 Coo1	ed (ing	Chem Wat	er l	l Corp Discha	rge Facility LOCATION Solvay, New	York
DEPTH-FT	SAMPLES	WPLE NO	0	BLOW SAM	IS ON	1	OW ON ASING C	SOIL OR ROCK CLASSIFICATION	NOTES
		3 1 2 3 4 5 6 7 8 9 10 9 10	3 11 30 40 25 100/ 20 28 40 5 4 2 1	12 10 22 55 45 52 0.4 21 44 50 10 3 2 1 <t< td=""><td></td><td>× 21 95 0.2 49 55 5 3 2 2 2</td><td>שׂש לא שיש לא איש לא שיש לא</td><td>Gray fine to medium SAND, little to Some White Waste (Chemical), little gravel (Moist, Firm to Very Compact) 11.0' White WASTE, little fine sand seams (Wet, Soft) 18.0' Gray-Green MARL and fine to coarse SAND (Wet, Very Soft) Bottom of Hole @ 20.0'</td><td>Note #1: Water Level Observations: Water 0 11.0'</td></t<>		× 21 95 0.2 49 55 5 3 2 2 2	שׂש לא שיש לא איש לא שיש לא	Gray fine to medium SAND, little to Some White Waste (Chemical), little gravel (Moist, Firm to Very Compact) 11.0' White WASTE, little fine sand seams (Wet, Soft) 18.0' Gray-Green MARL and fine to coarse SAND (Wet, Very Soft) Bottom of Hole @ 20.0'	Note #1: Water Level Observations: Water 0 11.0'
5								PF	RELIMINARY LOUG

- No blows to drive "casine ____"

"casine _____"with______Ib weight falline _____"ner blow.

Soils Engineer