#### **APPENDIX K**

# OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN

#### **APPENDIX K.1**

# DESIGN OF SURFACE WATER MANAGEMENT SYSTEM FOR OPERATIONAL CONDITIONS

## Geosyntec D

consultants

#### **COMPUTATION COVER SHEET**

| Client: Honeywell Project: Onc                        |                                               |                            | Project #:                   | GJ4299      | Task#:17_                      |
|-------------------------------------------------------|-----------------------------------------------|----------------------------|------------------------------|-------------|--------------------------------|
| TITLE OF COMPUTATIONS                                 | DESIC                                         |                            | CE WATER MAI<br>ERATIONAL CO |             | 「 SYSTEM                       |
| COMPUTATIONS BY:                                      | Signature  Printed Name and Title             | Jesus Sanch<br>Staff Engir |                              |             | / <mark>12 /2010</mark><br>ATE |
| ASSUMPTIONS AND PROCEDURE CHECKED BY: (Peer Reviewer) | Signature                                     | Sauch                      | Mishnau                      | ///2<br>/DA | 1/2010<br>TE                   |
| COMPUTATIONS CHECKED BY:                              | and Title Signature                           | Associate  Associate       | shnan<br>ba                  |             | 12/2010<br>TE                  |
| COMPUTATIONS BACKCHECKED BY: (Originator)             | Printed Name and Title Signature Printed Name | Staff Engin                | eer                          |             | 12 /2010<br>TE                 |
| APPROVED BY:<br>(PM or Designate)                     | and Title  Signature  Printed Name and Title  | 344 4000011                | DECC.                        | 12-i<br>DA  | 77W 2010<br>TE                 |
| APPROVAL NOTES:                                       |                                               | PROF                       | ESSION A conference          |             |                                |
| REVISIONS (Number and initial all re                  | visions)                                      |                            |                              |             |                                |
| NO. SHEET DAT                                         | Έ                                             | BY                         | CHECKED BY                   | Z A         | APPROVAL                       |
|                                                       |                                               |                            |                              |             |                                |

|       | 1      |
|-------|--------|
| consu | Itante |
| COHSU | пань   |

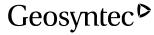
10

|             |           |          |             |                 |              | 1 age        |        | 1     | 01       | 17  | _ |
|-------------|-----------|----------|-------------|-----------------|--------------|--------------|--------|-------|----------|-----|---|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10         | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | /10 | _ |
| Client:     | Honeywell | Project: | Ono<br>Desi | ndaga Lak<br>gn | e SCA Final  | Project No.: | GJ4299 | 9 T   | ask No.: | 17  |   |

Page

## DESIGN OF SURFACE WATER MANAGEMENT SYSTEM FOR OPERATIONAL CONDITIONS

#### **BACKGROUND & PURPOSE**


This package was prepared in support of the design of the Sediment Consolidation Area (SCA) for the Onondaga Lake Bottom Site, which will be constructed on Wastebed 13 (WB-13). Specifically, the package is intended to present the design and analysis of the surface water management system for operational conditions of the SCA.

The package addresses the surface water management system in place during the dewatering of the dredged lake sediment using geotextile tubes (geo-tubes) within the SCA, which is surrounded by a perimeter dike (SCA perimeter dike). For the purposes of the calculations conducted in this package, the SCA has a footprint corresponding to a capacity of up to 2.65 million cubic yards of dredged material. The calculations presented herein are conservative for reduced SCA volumes and interim operational phases. A separate package title Final Cover System Surface Water Management System Design (Appendix K of the SCA Final Design) presents the design analyses for the proposed surface water management system for the final cover system.

#### KEY CONSIDERATIONS AND LIMITATIONS

This package addresses surface water management within the limits of the SCA perimeter dike and the exterior detention basins (also referred to as stormwater basins) during the period when the geo-tubes are being filled, and does not address how surface water management will be implemented for the final cover. Surface water management outside the limits of the SCA perimeter dike, the detention basins, and the SCA support areas will be addressed as part of the Wastebed 9 through 15 Closure. While this package addresses the general surface water flow and the capacity of the system to convey surface water during operations, additional planning and control measures may be needed depending on geo-tube phasing and settlement patterns. For example, there may be a need to pump water using portable pumps from the top area of the SCA. These operational issues are not addressed in this package.

It is anticipated that the SCA will be used to actively dewater dredged sediment using geotubes for approximately four years. Settlement is expected to occur during the four-year period, and continue to occur after the final cover system is constructed. The calculations



consultants

|             |           |          |             |         |              | 1 age        |       |       | 01       | 19  |
|-------------|-----------|----------|-------------|---------|--------------|--------------|-------|-------|----------|-----|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Kris  | hnan  | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.: | GJ429 | 9 T   | ask No.: | 17  |

Daga

performed herein are based on the proposed design elevation of the "Top of the Geo-tubes" of the SCA without considering any calculated settlements that are expected to occur during installation and placement of geo-tubes.

#### **DESIGN CRITERIA**

The surface water management system for operational conditions will serve two purposes. During construction and operation of the SCA, the system will convey filtrate and consolidation water from the geo-tubes (i.e., the water generated from dewatering the dredged material in the geo-tubes) to operational pumps located at the temporary perimeter basins/perimeter culverts (i.e., the low spots of the north-south dikes). Specifically, each of the reaches of the temporary perimeter channels will be designed to convey a filtrate and consolidation water flow rate of 6000 gpm (provided to Geosyntec Consultants by Parsons), while maintaining a minimum of six inches of freeboard. The operational pumps will convey the water to the water treatment plant. The exact locations and operation of these pumps will be discussed in more detail in the Sediment Management Intermediate and Final Design.

During rainfall events, the interim surface water management system will convey runoff from the SCA to the operational pumps and the detention basins. For the purposes of the calculations performed in this package, the system is designed to collect and convey runoff from the 25-year, 24-hour design rainfall event, assuming that the SCA will not be operating during this event. Basins and temporary perimeter channels are designed to convey and, combined with the detention basins, contain the calculated peak water elevations from the 25-year, 24-hour design rainfall event while maintaining a minimum of six inches of freeboard.

#### SURFACE WATER MANAGEMENT SYSTEM COMPONENTS

The surface water management system for operational conditions will include the components listed below. This calculation package will address the design of each of the components, which are shown in Figure 1.

• Temporary Perimeter Channel and Basins – The temporary perimeter channel is comprised of four drainage channels located between the SCA perimeter dike and the geo-tubes. These channels capture and convey runoff from the geo-tube side slopes to the perimeter culverts during construction/operation conditions. In addition to providing conveyance, the temporary perimeter channels will provide some

#### consultants

|             |           |          |             |                 |              | 1 450        | •      |       | 0.1      | 1)   |   |
|-------------|-----------|----------|-------------|-----------------|--------------|--------------|--------|-------|----------|------|---|
| Written by: | Jesus Sa  | nchez    | Date:       | 1/12/10         | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | 2/10 | _ |
| Client:     | Honeywell | Project: | Ono<br>Desi | ndaga Lak<br>gn | e SCA Final  | Project No.: | GJ4299 | T     | ask No.: | 17   | - |

additional storage during high rainfall events when the water surface elevation in the exterior detention basins exceeds the bottom elevations in the temporary perimeter channels. Therefore, they are modeled as both channels and basins.

Page

- **Perimeter Culverts** Perimeter culverts will be located at two locations beneath the SCA perimeter dike and will convey runoff from the temporary perimeter channels to the detention basins.
- **Detention Basins** Detention basins will be located west and east of the SCA to provide storage of surface water runoff received from the perimeter culverts.

#### ANALYSIS METHODOLOGY

Hydraulic and hydrologic analyses are conducted using methods presented in TR-20 (SCS, 1983) and TR-55 (SCS, 1986). Analyses are conducted using the computer program  $HydroCAD^{TM}$  (HydroCAD, 2005). Computer program analyses are supplemented with other design calculation methods wherever applicable.

#### **MAJOR ASSUMPTIONS**

• Subcatchment Properties – For the purposes of the analyses conducted herein, the extent of the SCA is divided into 11 subcatchments – four top-deck subcatchments and seven side-slope subcatchments. Tables 1 and 2 summarize the important topographic features of the 11 subcatchments: area, longest travel path, and elevation maxima and minima.

**Table 1 – Summary of Top-Deck Subcatchments** 

|                   | S1A   | S2A   | S3A   | S4A   |
|-------------------|-------|-------|-------|-------|
| Area (acres)      | 7.9   | 14.4  | 18.3  | 9.8   |
| Longest Path (ft) | 1051  | 1536  | 1658  | 1159  |
| Max. Elev. (ft)   | 463.3 | 468.1 | 468.1 | 463.3 |
| Min. Elev. (ft)   | 429.2 | 429.2 | 425.6 | 425.6 |

#### consultants

19

|             |           |          |             |                  |              | Page         |       | 4     | of       | 19  |
|-------------|-----------|----------|-------------|------------------|--------------|--------------|-------|-------|----------|-----|
| Written by: | Jesus Sa  | nchez    | Date:       | 1/12/10          | Reviewed by: | Ganesh Kris  | hnan  | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi | ndaga Lake<br>gn | SCA Final    | Project No.: | GJ429 | 9 T   | ask No.: | 17  |

**Table 2 – Summary of Side Slope Subcatchments** 

|                   | S1B   | S1C   | S2B   | S2C   | S3B   | S3C   | S4B   |
|-------------------|-------|-------|-------|-------|-------|-------|-------|
| Area (acres)      | 2.4   | 1.1   | 1.1   | 2.7   | 2.0   | 3.0   | 1.2   |
| Longest Path (ft) | 85    | 85    | 85    | 1055  | 85    | 1040  | 85    |
| Max Elev. (ft)    | 463.3 | 462.9 | 468.1 | 468.1 | 467.4 | 468.1 | 463.3 |
| Min. Elev. (ft)   | 433.3 | 432   | 437.1 | 429.2 | 437.1 | 426.2 | 433.3 |

- Hydrologic Soil Group (HSG) for Cover System For the purposes of this calculation, no Hydrologic Soil Group will be applied to the subcatchment surfaces. It is assumed that the synthetic material of the geo-tubes will result in a subcatchment surface that has the highest runoff potential possible, and it will be modeled as a generalized impervious area.
- Runoff Curve Number (CN) It is assumed that the geo-tubes are completely saturated, not allowing infiltration, and the synthetic material behaves like a highly impervious area. Based on these assumptions, a CN = 98 is selected for the subcatchment areas for operational conditions.
- Rainfall Distribution for Design Storm As shown on Attachment 1 (SCS, 1986), the site is located in a region designated under a SCS Type II Rainfall Distribution.
- Rainfall Depth for Design Storm The rainfall depth for 25-year 24-hour design storm event is 4.4 inches and was obtained from Attachment 2 (SCS, 1986).

#### HYDRAULIC AND HYDROLOGIC MODELING

- Nodal Network Diagram Attachment 3 presents a nodal network diagram showing the connectivity of the subcatchments and the surface water management system components listed below.
  - S1A through S4A Top Deck Subcatchments
  - S1B through S4B Side Slope Subcatchments
  - R1B through R4B Temporary Perimeter Channel Reaches
  - o AxB" and CxD" Perimeter Culverts (do not appear on HydroCAD nodal diagram because they are outfall structures)
  - TB1 and TB2 Temporary Perimeter Basins

| cons | ul | taı | nts |
|------|----|-----|-----|
|      |    |     |     |

10

|             |           |          |             |                 |              | 1 age        | •      | 5     | 01       | 17  |
|-------------|-----------|----------|-------------|-----------------|--------------|--------------|--------|-------|----------|-----|
| Written by: | Jesus Sa  | nchez    | Date:       | 1/12/10         | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi | ndaga Lak<br>gn | e SCA Final  | Project No.: | GJ4299 | ) T   | ask No.: | 17  |

Page

○ EDB and WDB – Detention Basins

• Computer Modeling – A hydraulic and hydrologic analysis was conducted using the aforementioned assumptions and system components using the computer program  $HydroCAD^{TM}$ . The results of the modeling are presented in Attachment 4.

### DESIGN OF SURFACE WATER MANAGEMENT SYSTEM FOR OPERATIONAL CONDITIONS

• Temporary Perimeter Channel – The temporary perimeter channels are shown as R1B, R1C, R2B, R2C, R3B, R3C, and R4B in the HydroCAD nodal diagram and Figure 1. The cross-sectional area of the temporary perimeter channels varies on both the eastern and western half of the SCA. The temporary perimeter channels are designed to collect runoff (i.e., filtrate or surface water) from the side slopes (S1B/C, S2B/C, S3B/C, and S4B) during operations. This runoff is then conveyed to the temporary perimeter basin. During operational conditions the channel reaches were assumed to be earth, clean and straight with a corresponding Manning's n value of 0.025, as shown in Attachment 5 (HydroCAD, 2005). Due to the variability in crosssections throughout the SCA perimeter channel, only the sections with the lowest discharge capacities were evaluated to demonstrate that the target discharge rate (6000 gpm) could be met. The lowest capacity sections are combinations of small cross-sectional areas, relatively large wetted perimeters, and low longitudinal slopes. As a conservative approach, each of these lowest capacity sections was used to represent their entire respective reaches. The four main drainage channels were divided into seven reaches during the subcatchment delineation process, as shown in Figure 1. Using the lowest capacity sections provides a conservative estimate of channel depth during peak flow, which is used to evaluate the freeboard design criteria. The discharge rate for each reach of the temporary perimeter channels with six-inches of freeboard is shown below in Table 3. The minimum freeboard for the 25-year, 24-hour storm is shown below in Table 4. As can be seen in these tables, the discharge capacity with six inches of freeboard meets the target value, and the minimum freeboard during the design storm is greater than six inches.

#### consultants

|             |           |          |             |            |              | Page         | (      | 5     | of       | 19  |
|-------------|-----------|----------|-------------|------------|--------------|--------------|--------|-------|----------|-----|
| Written by: | Jesus Sa  | nchez    | Date:       | 1/12/10    | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi | ndaga Lake | SCA Final    | Project No.: | GJ4299 | Ta    | ask No.: | 17  |

Table 3 – Discharge Rates with Six Inches of Freeboard for Reaches

| Section                    | R1B     | R1C     | R2B    | R2C    | R3B     | R3C     | R4B     |
|----------------------------|---------|---------|--------|--------|---------|---------|---------|
| Area (sq. ft)              | 63.9    | 62.6    | 24.5   | 23.8   | 58.8    | 63.3    | 48.7    |
| Wetted Perimeter (ft)      | 25.7    | 24.7    | 16.8   | 16.7   | 24.1    | 24.7    | 21.9    |
| Longitudinal Slope (ft/ft) | 0.0010  | 0.0045  | 0.0002 | 0.0067 | 0.0028  | 0.0079  | 0.0103  |
| Discharge Capacity (gpm)   | 100,000 | 210,000 | 12,000 | 66,000 | 150,000 | 280,000 | 230,000 |

Table 4 – Minimum Freeboard for Reaches of Temporary Perimeter Channels

| Reach          | R1B | R1C | R2B | R2C | R3B | R3C | R4B |
|----------------|-----|-----|-----|-----|-----|-----|-----|
| Freeboard (ft) | 3.7 | 4.1 | 1.9 | 2.0 | 3.9 | 4.1 | 3.9 |

• Temporary Perimeter Basin – The temporary perimeter basins are shown as TB1 and TB2 in the HydroCAD nodal diagram and Figure 1. There are two temporary perimeter basins available in the temporary perimeter channels. The water flowing to these two basins is divided by the two high points in the temporary perimeter channels (i.e., where R4B and R1B start and where R3B and R2B start). An elevation-storage relationship was developed for each of these temporary perimeter basins by calculating the surface area inside each temporary perimeter channel from the bottom to the top of the channel. This calculation assumes that above 433.3 ft Mean Surface Elevation (MSE) (where R4B and R1B start, which is the highest point in the temporary perimeter channels) the temporary perimeter basins are not connected. These two elevation-storage relationships are summarized below in Table 5. The minimum freeboard in these basins for the 25-year, 24-hour storm is shown below in Table 6.

Table 5 – Elevation-Storage Relationship for Temporary Perimeter Basins

| Elevation (ft)        | 426 | 427  | 428  | 429  | 430  | 431  | 432  | 433  | 434 |
|-----------------------|-----|------|------|------|------|------|------|------|-----|
| TB1 Storage (acre-ft) | 0   | 0    | 0    | 0    | 0    | 0.14 | 0.42 | 0.90 | 1.6 |
| TB2 Storage (acre-ft) | 0   | 0.01 | 0.06 | 0.16 | 0.34 | 0.60 | 1.0  | 1.5  | 2.2 |

#### consultants

|             |           |          |             |                 |              | rage            | /      | /     | 01       | 19  |
|-------------|-----------|----------|-------------|-----------------|--------------|-----------------|--------|-------|----------|-----|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10         | Reviewed by: | Ganesh Krishnan |        | Date: | 1/12/    | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi | ndaga Lak<br>gn | e SCA Final  | Project No.:    | GJ4299 | Ta    | ask No.: | 17  |

**Table 6 – Minimum Freeboard for Temporary Perimeter Basins** 

Daga

| Temporary Basin | TB1  | TB2  |
|-----------------|------|------|
| Freeboard (ft)  | 0.61 | 0.86 |

- **Perimeter Culverts** The perimeter culverts are shown as AxB" and CxD" in Figure 1. As indicated previously, these culverts were modeled as outfall structures for the temporary perimeter basins and therefore do not appear in the HydroCAD nodal diagram. These are culverts in place to convey the water stored in the temporary perimeter basins to the detention basins. These culverts were modeled as outlet structures at the lowest elevations in the detention basins and inlets approximately at the lowest elevations in the temporary perimeter channels. Both culverts, AxB" and CxD", have the same specifications listed below and only vary in length.
  - Pipe Dimensions
    - No. of Pipes = 4
    - Pipe Diameter = 24"
  - Manning's n = 0.013 (Round Concrete Pipe)
    - HDPE pipe is also an option as it typically has a smaller Manning's n value, which results in greater discharge capacity.
  - Longitudinal Slope = 1%
- **Detention Basins** The detention basins are shown as EDB and WDB in the HydroCAD nodal diagram and Figure 1; the catchment area corresponding to these detention basins is shown as EA and WA. The detention basins on the western and eastern sides on the exterior of the SCA perimeter dike are designed, in combination with the temporary perimeter basins, to store all of the runoff from the side slopes and the top of the geo-tubes during the 25-year, 24-hour design storm. These two elevation-storage relationships are summarized below in Table 7. The minimum freeboard for the 25-year, 24-hour storm is shown below in Table 8.

**Table 7 – Elevation-Storage Relationship for Detention Basins** 

| Elevation (ft)        | 424 | 425  | 426  | 427  | 428 | 429  | 430  | 431 | 432 | 433 | 434 |
|-----------------------|-----|------|------|------|-----|------|------|-----|-----|-----|-----|
| EDB Storage (acre-ft) | 0   | 0    | 0    | 0    | 0   | 0.18 | 0.58 | 2.1 | 5.3 | 9.0 | 13  |
| WDB Storage (acre-ft) | 0   | 0.10 | 0.31 | 0.77 | 1.5 | 2.6  | 4.3  | 6.4 | 8.6 | 11  | 13  |

#### consultants

|             |           |          |             |         |              | 1 age        |        | o     | 01       | 19  |   |
|-------------|-----------|----------|-------------|---------|--------------|--------------|--------|-------|----------|-----|---|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Krisl | hnan   | Date: | 1/12     | /10 | _ |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.: | GJ4299 | ) T   | ask No.: | 17  | - |

Table 8 - Minimum Freeboard for Detention Basins

| Detention Basin | EDB  | WDB  |
|-----------------|------|------|
| Freeboard (ft)  | 0.61 | 0.86 |

Daga

#### **CONCLUSION**

The components of the surface water management system for operational conditions for the SCA are designed to convey and contain the calculated discharge from a 25-year, 24-hour design storm within the SCA perimeter dike and its detention (i.e., stormwater) basins with a minimum freeboard of six inches. In addition, each reach of the temporary perimeter channels is designed to convey a filtrate and consolidation water flow rate of 6000 gpm while maintaining a minimum of six inches of freeboard. This package addresses surface water management within the limits of the SCA perimeter dike during operational conditions, and does not address how surface water management will be implemented outside the limits of the SCA perimeter dike, which will be addressed separately. Additional planning and control measures may be needed depending on the geo-tube phasing as localized ponding may occur within the SCA during operational conditions, which could require the use of portable pumping units.

#### REFERENCES

HydroCAD, "HydroCAD<sup>TM</sup> Storm Water Modeling System, Version 7.1", HydroCAD Software Solutions LLC., Chocorua, New Hampshire, 2005.

SCS, "Computer Program for Project Formulation—Hydrology, Technical Release 20 (TR-20)", United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1983.

SCS, "Hydrology for Small Watersheds, Technical Release 55 (TR-55)", United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1986.

Geosyntec D

consultants

|             |          |        |             |                  |              | Page               |        | 9   | of       | 19  |
|-------------|----------|--------|-------------|------------------|--------------|--------------------|--------|-----|----------|-----|
| Written by: | Jesus Sa | anchez | Date:       | 1/12/10          | Reviewed by: | Ganesh Krishnan Da |        |     | 1/12     | /10 |
| Client:     |          |        | Ono<br>Desi | ndaga Lake<br>gn | e SCA Final  | Project No.:       | GJ4299 | 9 T | ask No.: | 17  |

# Figures

# Geosyntec<sup>o</sup> consultants

|             |               |            |               |                 |                                   | Page            | 1      | 0     | of ]      | 19  |
|-------------|---------------|------------|---------------|-----------------|-----------------------------------|-----------------|--------|-------|-----------|-----|
| Written by: | Jesus Sanchez |            | Date:         | Date: 1/12/10   | Reviewed by                       | Ganesh Krishnan | hnan   | Date: | 1/12/10   | /10 |
| Client:     | Honeywel      | l Project: | Onon<br>Desig | idaga Lake<br>m | Onondaga Lake SCA Final<br>Design | Project No.:    | GJ4299 | T     | Task No.: | 17  |

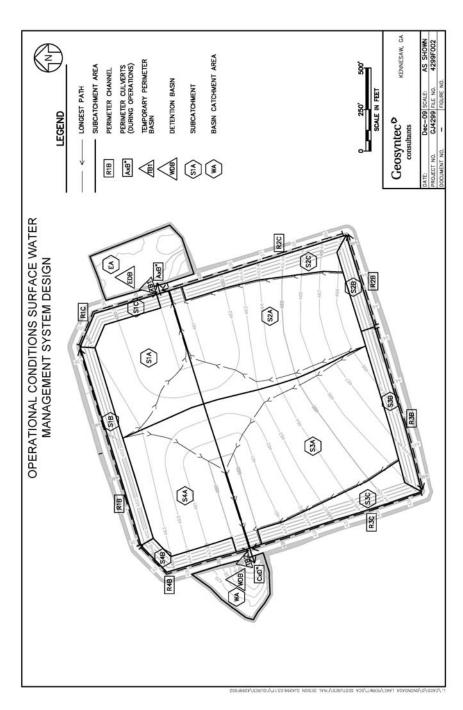
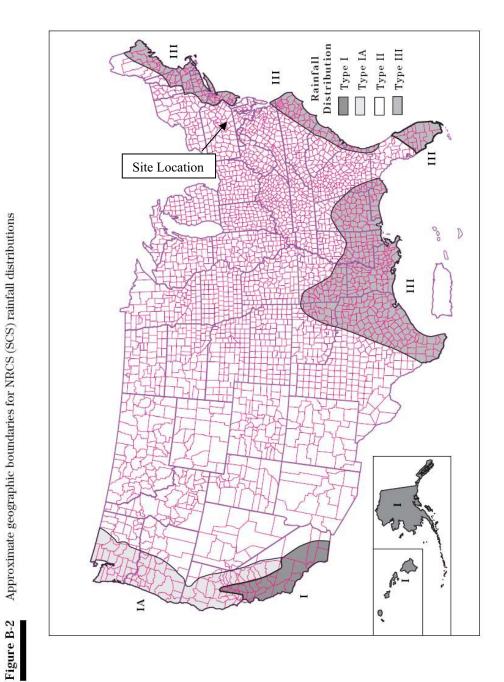



Figure 1: Operational Conditions Surface Water Management System Design

Geosyntec D


consultants

|             |         |        |             |         |              | Page            | 1      | 1     | of       | 19  |
|-------------|---------|--------|-------------|---------|--------------|-----------------|--------|-------|----------|-----|
| Written by: | Jesus S | anchez | Date:       | 1/12/10 | Reviewed by: | Ganesh Krishnan |        | Date: | 1/12     | /10 |
| Client:     | -       |        | Ono<br>Desi |         | e SCA Final  | Project No.:    | GJ4299 | Т     | ask No.: | 17  |

# Attachment 1 – Rainfall Distributions (TR-55, SCS, 1986)

consultants

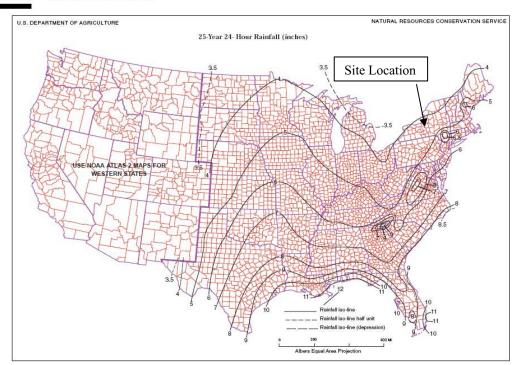
|             |          |        |             |                 |              | Page         |      | 12        | of     | 1      | 19 |
|-------------|----------|--------|-------------|-----------------|--------------|--------------|------|-----------|--------|--------|----|
| Written by: | Jesus Sa | anchez | Date:       | 1/12/10         | Reviewed by: | Ganesh Kris  | hnan | Date      | :      | 1/12/1 | 10 |
| Client:     | -        |        | Ono<br>Desi | ndaga Lak<br>gn | e SCA Final  | Project No.: | GJ42 | -<br>99 [ | Task N | lo.:   | 17 |

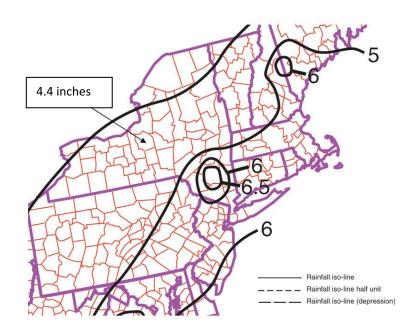


Approximate geographic boundaries for NRCS (SCS) rainfall distributions

Geosyntec D

consultants


|             |           |          |             |         |              | Page            |       | 13    | 01        | 19  |   |
|-------------|-----------|----------|-------------|---------|--------------|-----------------|-------|-------|-----------|-----|---|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Krishnan |       | Date: | 1/12      | /10 | _ |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.:    | GJ429 | 9 7   | Гask No.: | 17  |   |

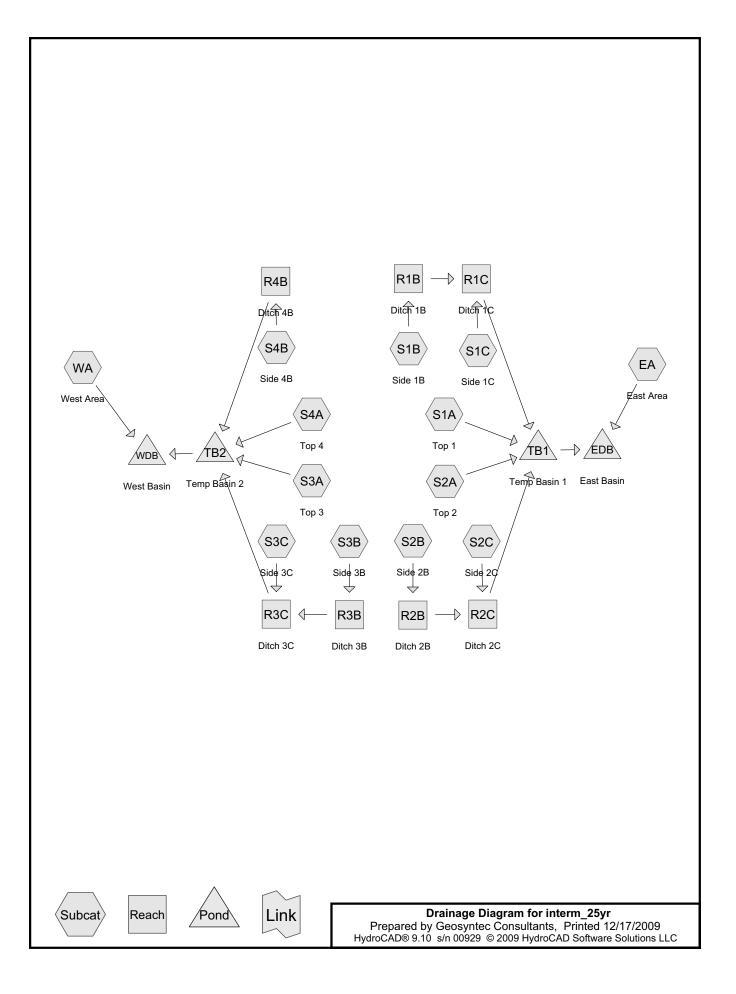

# Attachment 2 – Rainfall Depths (TR-55, SCS, 1986)

consultants

|             |           |          |             |         |              | Page         | 1      | 4     | of       | 19  |
|-------------|-----------|----------|-------------|---------|--------------|--------------|--------|-------|----------|-----|
| Written by: | Jesus S   | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.: | GJ4299 | т Т   | ask No.: | 17  |

Figure B-6 25-year, 24-hour rainfall






Geosyntec D

| cons | ul | taı | nts |
|------|----|-----|-----|
|      |    |     |     |

|             |           |          |             |         |              | Page         |       | 13    | 01        | 19  | _ |
|-------------|-----------|----------|-------------|---------|--------------|--------------|-------|-------|-----------|-----|---|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Kris  | hnan  | Date: | 1/12      | /10 | _ |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.: | GJ429 | 9 7   | Гask No.: | 17  |   |

# Attachment 3 – Nodal Diagram



Geosyntec<sup>o</sup>

| con | cul  | tai | nte  |
|-----|------|-----|------|
| COH | .sui | lai | .ilo |

|             |           |          |             |         |              | Page         | 1      | .6    | of       | 19  |
|-------------|-----------|----------|-------------|---------|--------------|--------------|--------|-------|----------|-----|
| Written by: | Jesus S   | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.: | GJ4299 | Т (   | ask No.: | 17  |

# Attachment 4 – HydroCAD Analysis

Printed 12/17/2009 Page 2

#### Area Listing (all nodes)

|    | Area   | CN | Description                                                            |
|----|--------|----|------------------------------------------------------------------------|
| (a | icres) |    | (subcatchment-numbers)                                                 |
|    | 6.250  | 98 | (EA, WA)                                                               |
| 6  | 3.660  | 98 | Geotubes Cover (S1A, S1B, S1C, S2A, S2B, S2C, S3A, S3B, S3C, S4A, S4B) |
| 6  | 9.910  |    | TOTAL AREA                                                             |

Printed 12/17/2009

Page 3

#### Soil Listing (all nodes)

| Area<br>(acres) | Soil<br>Group | Subcatchment<br>Numbers                                       |
|-----------------|---------------|---------------------------------------------------------------|
| 0.000           | HSG A         |                                                               |
| 0.000           | HSG B         |                                                               |
| 0.000           | HSG C         |                                                               |
| 0.000           | HSG D         |                                                               |
| 69.910          | Other         | EA, S1A, S1B, S1C, S2A, S2B, S2C, S3A, S3B, S3C, S4A, S4B, WA |
| 69.910          |               | TOTAL AREA                                                    |

interm\_25yr
Prepared by Geosyntec Consultants
HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

Printed 12/17/2009 Page 4

#### Pipe Listing (all nodes)

| Line# | Node   | In-Invert | Out-Invert | Length | ength Slope |       | :h Slope |          | Diam/Width | Height | Fill |
|-------|--------|-----------|------------|--------|-------------|-------|----------|----------|------------|--------|------|
|       | Number | (feet)    | (feet)     | (feet) | (ft/ft)     |       | (inches) | (inches) | (inches)   |        |      |
| 1     | TB1    | 429.61    | 429.00     | 61.0   | 0.0100      | 0.013 | 24.0     | 0.0      | 0.0        |        |      |
| 2     | TB2    | 424.89    | 424.00     | 89.0   | 0.0100      | 0.013 | 24.0     | 0.0      | 0.0        |        |      |

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

| 3 ·, , · · ·                   | 3 · , , · · · · · · · · · · · · · · · ·                                                                                               |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment EA: East Area     | Runoff Area=3.860 ac 100.00% Impervious Runoff Depth=4.16"<br>Tc=5.0 min CN=98 Runoff=24.92 cfs 1.339 af                              |
| Subcatchment S1A: Top 1        | Runoff Area=7.910 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,051' Tc=20.9 min CN=98 Runoff=31.79 cfs 2.745 af             |
| Subcatchment S1B: Side 1B      | Runoff Area=2.370 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=15.30 cfs 0.822 af                 |
| SubcatchmentS1C: Side 1C       | Runoff Area=1.070 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=6.91 cfs 0.371 af                  |
| Subcatchment S2A: Top 2        | Runoff Area=14.380 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,536' Tc=24.4 min CN=98 Runoff=53.13 cfs 4.990 af            |
| Subcatchment S2B: Side 2B      | Runoff Area=1.050 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=6.78 cfs 0.364 af                  |
| Subcatchment S2C: Side 2C      | Runoff Area=2.680 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,055' Tc=16.2 min CN=98 Runoff=12.25 cfs 0.930 af             |
| SubcatchmentS3A: Top 3         | Runoff Area=18.290 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,658' Tc=24.4 min CN=98 Runoff=67.58 cfs 6.347 af            |
| SubcatchmentS3B: Side 3B       | Runoff Area=1.960 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=12.65 cfs 0.680 af                 |
| Subcatchment S3C: Side 3C      | Runoff Area=3.000 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,040' Tc=15.8 min CN=98 Runoff=13.85 cfs 1.041 af             |
| Subcatchment S4A: Top 4        | Runoff Area=9.790 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=1,159' Tc=21.2 min CN=98 Runoff=39.12 cfs 3.397 af             |
| Subcatchment S4B: Side 4B      | Runoff Area=1.160 ac 100.00% Impervious Runoff Depth=4.16" Flow Length=85' Tc=5.0 min CN=98 Runoff=7.49 cfs 0.403 af                  |
| SubcatchmentWA: West Area      | Runoff Area=2.390 ac 100.00% Impervious Runoff Depth=4.16"<br>Tc=5.0 min CN=98 Runoff=15.43 cfs 0.829 af                              |
| Reach R1B: Ditch 1B n=0.025 L= | Avg. Flow Depth=0.66' Max Vel=1.29 fps Inflow=15.30 cfs 0.822 af :1,251.0' S=0.0010 '/' Capacity=280.47 cfs Outflow=8.59 cfs 0.822 af |
| Reach R1C: Ditch 1C            | Avg. Flow Depth=0.57' Max Vel=2.47 fps Inflow=14.11 cfs 1.194 af =638.0' S=0.0045 '/' Capacity=642.07 cfs Outflow=12.67 cfs 1.194 af  |
| Reach R2B: Ditch 2B n=0.025    | Avg. Flow Depth=0.73' Max Vel=0.66 fps Inflow=6.78 cfs 0.364 af L=528.0' S=0.0002 '/' Capacity=40.65 cfs Outflow=4.20 cfs 0.364 af    |

| interm_25yr Prepared by Geosyntec HydroCAD® 9.10 s/n 00929 | Consultants<br>© 2009 HydroCAD Software Solutions LLC              | Type II 24-hr 25-yr Rainfall=4.40"<br>Printed 12/17/2009<br>Page 6               |
|------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Reach R2C: Ditch 2C                                        | Avg. Flow Depth=0.54' Max n=0.025 L=1,175.0' S=0.0067'/' Capacity  | vel=2.90 fps Inflow=16.18 cfs 1.294 af v=219.74 cfs Outflow=13.83 cfs 1.294 af   |
| Reach R3B: Ditch 3B                                        | Avg. Flow Depth=0.66' Max n=0.025 L=1,033.0' S=0.0028 '/' Capacit  | v Vel=2.06 fps Inflow=12.65 cfs 0.680 af ty=406.82 cfs Outflow=9.40 cfs 0.680 af |
| Reach R3C: Ditch 3C                                        | Avg. Flow Depth=0.67' Max n=0.025 L=1,093.0' S=0.0079 '/' Capacity | v Vel=3.55 fps Inflow=22.46 cfs 1.721 af v=834.84 cfs Outflow=20.36 cfs 1.721 af |
| Reach R4B: Ditch 4B                                        | Avg. Flow Depth=0.23' Man=0.025 L=750.0' S=0.0103 '/' Capacit      | ax Vel=3.43 fps Inflow=7.49 cfs 0.403 af ty=611.76 cfs Outflow=6.53 cfs 0.403 af |
| Pond EDB: East Basin                                       | Peak Elev=433.39' Storag                                           | ge=10.431 af Inflow=82.79 cfs 10.431 af Outflow=0.00 cfs 0.000 af                |

Pond TB2: Temp Basin 2 Peak Elev=433.14' Storage=1.551 af Inflow=127.80 cfs 11.868 af 24.0" Round Culvert x 4.00 n=0.013 L=89.0' S=0.0100 '/' Outflow=91.95 cfs 10.320 af

Pond TB1: Temp Basin 1

Total Runoff Area = 69.910 ac Runoff Volume = 24.260 af Average Runoff Depth = 4.16" 0.00% Pervious = 0.000 ac 100.00% Impervious = 69.910 ac

24.0" Round Culvert x 4.00 n=0.013 L=61.0' S=0.0100 '/' Outflow=79.94 cfs 9.092 af

Peak Elev=433.39' Storage=1.133 af Inflow=107.51 cfs 10.223 af

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

#### **Summary for Subcatchment EA: East Area**

Runoff = 24.92 cfs @ 11.96 hrs, Volume= 1.339 af, Depth= 4.16"

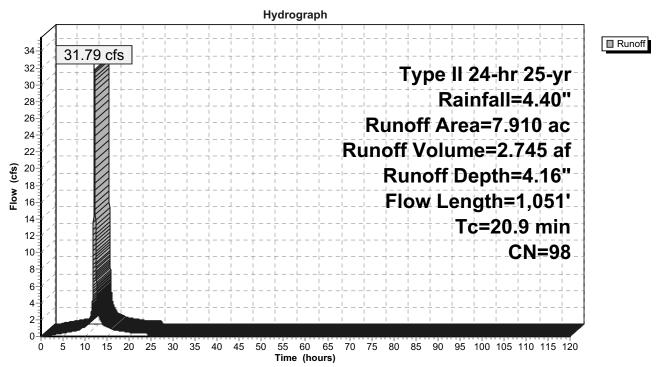
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|                              | Area  | (ac)  | CN  | Desc    | cription |             |                            |
|------------------------------|-------|-------|-----|---------|----------|-------------|----------------------------|
| *                            | 3.    | .860  | 98  |         |          |             |                            |
| 3.860 100.00% Impervious Are |       |       |     | 100.    | 00% Impe | rvious Area |                            |
|                              | Tc    | Lengt | h S | Slope   | Velocity | Capacity    | Description                |
|                              | (min) | (fee  | t)  | (ft/ft) | (ft/sec) | (cfs)       | <u> </u>                   |
|                              | 5.0   |       |     |         |          |             | Direct Entry, Pond Surface |

#### **Subcatchment EA: East Area**



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


#### **Summary for Subcatchment S1A: Top 1**

Runoff = 31.79 cfs @ 12.12 hrs, Volume= 2.745 af, Depth= 4.16"

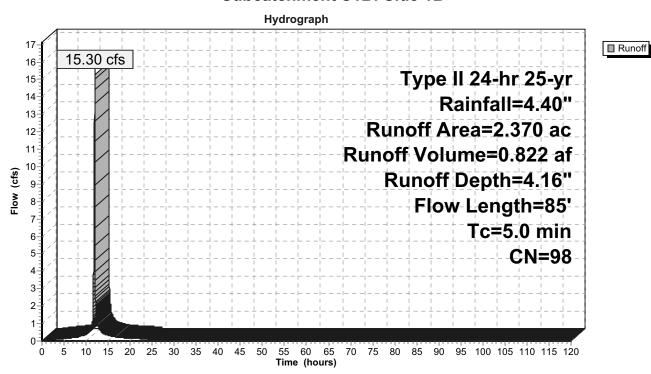
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|   | Area (ac) CN Description |                  |                  |                      |                   |                                                                         |
|---|--------------------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------|
| * | 7.                       | .910             | 98 Geo           | tubes Cov            | er                |                                                                         |
|   | 7.                       | 910              | 100.             | 00% Impe             | rvious Area       |                                                                         |
|   | Tc<br>(min)              | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                             |
|   | 6.4                      | 300              | 0.0038           | 0.79                 | , ,               | Sheet Flow, Sheet Flow<br>Smooth surfaces n= 0.011 P2= 2.55"            |
|   | 9.5                      | 666              | 0.0033           | 1.17                 |                   | Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps |
|   | 5.0                      | 85               |                  | 0.28                 |                   | Direct Entry, Steps                                                     |
|   | 20.9                     | 1,051            | Total            |                      |                   |                                                                         |

#### Subcatchment S1A: Top 1



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


#### **Summary for Subcatchment S1B: Side 1B**

Runoff = 15.30 cfs @ 11.96 hrs, Volume= 0.822 af, Depth= 4.16"

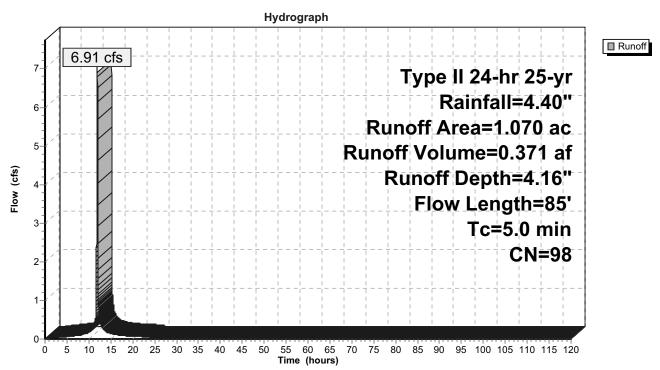
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

| _ | Area                          | (ac)  | CN   | Desc    | cription  |          |                     |
|---|-------------------------------|-------|------|---------|-----------|----------|---------------------|
| * | 2.                            | .370  | 98   | Geot    | ubes Cove | er       |                     |
|   | 2.370 100.00% Impervious Area |       |      |         |           |          |                     |
|   | Тс                            | Lengt | th : | Slope   | Velocity  | Capacity | Description         |
|   | (min)                         | (fee  | t)   | (ft/ft) | (ft/sec)  | (cfs)    | ·                   |
|   | 5.0                           | 8     | 5    |         | 0.28      |          | Direct Entry, Steps |

#### Subcatchment S1B: Side 1B



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


#### **Summary for Subcatchment S1C: Side 1C**

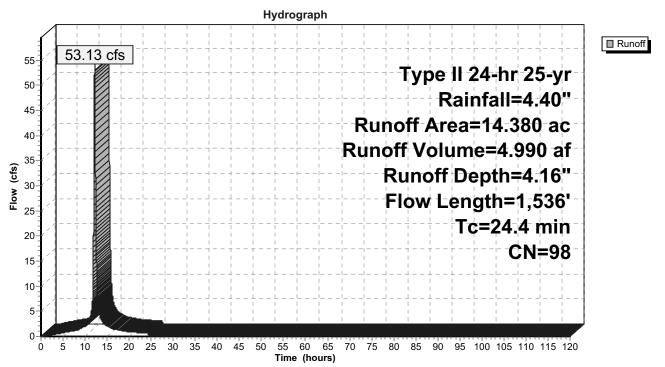
Runoff = 6.91 cfs @ 11.96 hrs, Volume= 0.371 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|   | Area        | (ac)         | CN | Desc             | cription             |                   |                     |
|---|-------------|--------------|----|------------------|----------------------|-------------------|---------------------|
| * | 1.          | .070         | 98 | Geof             | tubes Cove           | er                |                     |
|   | 1.          | .070         |    | 100.             | 00% Impe             | rvious Area       | a                   |
|   | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description         |
|   | 5.0         | 3            | 35 |                  | 0.28                 |                   | Direct Entry, Steps |

#### **Subcatchment S1C: Side 1C**




#### **Summary for Subcatchment S2A: Top 2**

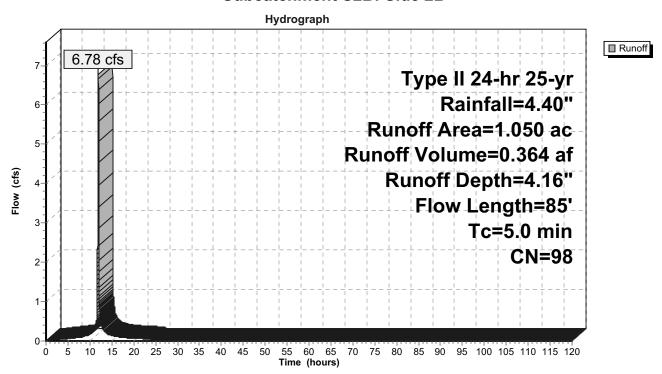
Runoff = 53.13 cfs @ 12.17 hrs, Volume= 4.990 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                         |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------|
| * | 14.         |                  |                  |                      |                   |                                                                         |
|   | 14.         | 380              | 100.             | 00% Impe             | rvious Area       |                                                                         |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                             |
|   | 5.2         | 300              | 0.0062           | 0.96                 | , ,               | Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"               |
|   | 14.2        | 1,151            | 0.0044           | 1.35                 |                   | Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps |
| _ | 5.0         | 85               |                  | 0.28                 |                   | Direct Entry, Steps                                                     |
|   | 24 4        | 1 536            | Total            | •                    |                   |                                                                         |

#### Subcatchment S2A: Top 2




#### **Summary for Subcatchment S2B: Side 2B**

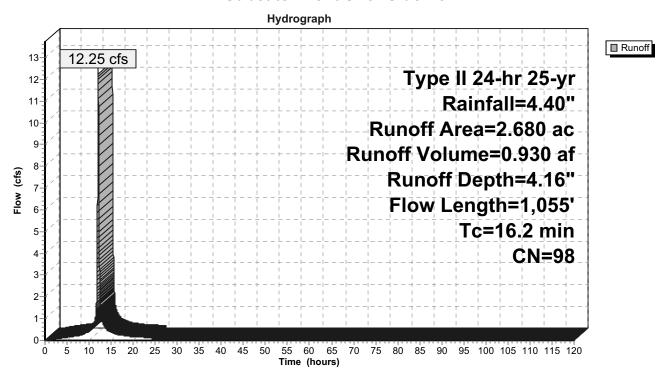
Runoff = 6.78 cfs @ 11.96 hrs, Volume= 0.364 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

| _                             | Area        | (ac)          | CN | Desc             | ription              |                   |                                         |
|-------------------------------|-------------|---------------|----|------------------|----------------------|-------------------|-----------------------------------------|
| *                             | 1.          | 050           | 98 | Geot             | ubes Cove            | er                |                                         |
| 1.050 100.00% Impervious Area |             |               |    |                  |                      | rvious Area       | a e e e e e e e e e e e e e e e e e e e |
|                               | Tc<br>(min) | Lengt<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                             |
|                               | 5.0         | 8             | 5  |                  | 0.28                 |                   | Direct Entry, Steps                     |

#### Subcatchment S2B: Side 2B




#### **Summary for Subcatchment S2C: Side 2C**

Runoff = 12.25 cfs @ 12.08 hrs, Volume= 0.930 af, Depth= 4.16"

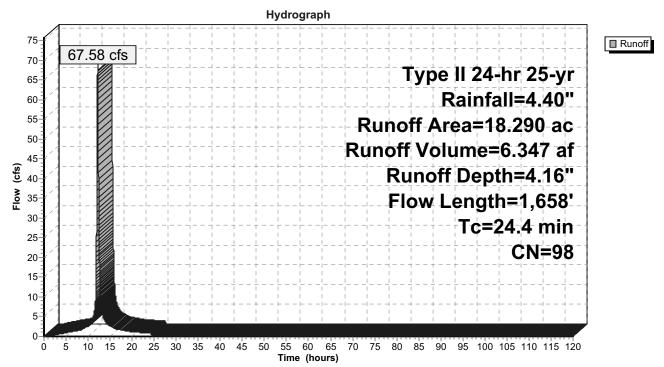
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

| _ | Area        | (ac) C           | N Desc           | cription             |                   |                                                                                     |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------------------|
| * | 2.          | 680 9            | 8 Geof           | tubes Cov            | er                |                                                                                     |
|   | 2.          | 680              | 100.             | 00% Impe             | rvious Area       |                                                                                     |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                         |
|   | 4.6         | 300              | 0.0083           | 1.08                 |                   | Sheet Flow, Sheet Flow                                                              |
|   | 6.6         | 670              | 0.0069           | 1.69                 |                   | Smooth surfaces n= 0.011 P2= 2.55"  Shallow Concentrated Flow, Shallow Concentrated |
|   |             | 0.5              |                  |                      |                   | Paved Kv= 20.3 fps                                                                  |
| _ | 5.0         | 85               |                  | 0.28                 |                   | Direct Entry, Steps                                                                 |
|   | 16.2        | 1 055            | Total            |                      |                   |                                                                                     |

#### Subcatchment S2C: Side 2C



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


#### **Summary for Subcatchment S3A: Top 3**

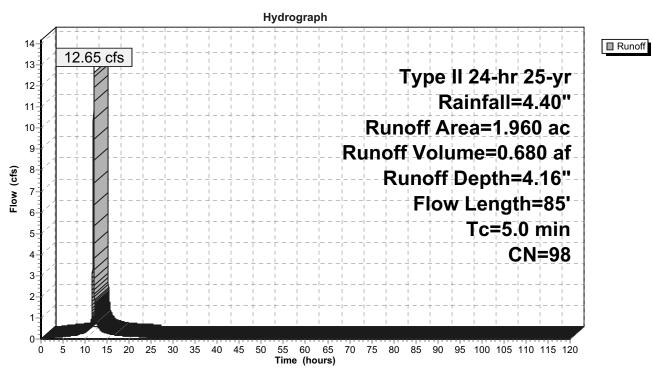
Runoff = 67.58 cfs @ 12.17 hrs, Volume= 6.347 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                                         |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------|
| * | 18.         | 290 9            | 98 Geo           | tubes Cov            | er                |                                                                         |
|   | 18.         | 290              | 100.             | .00% Impe            | rvious Area       |                                                                         |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                             |
|   | 5.3         | 300              | 0.0061           | 0.95                 | , ,               | Sheet Flow, Sheet Flow<br>Smooth surfaces n= 0.011 P2= 2.55"            |
|   | 14.1        | 1,273            | 0.0055           | 1.51                 |                   | Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps |
| _ | 5.0         | 85               |                  | 0.28                 |                   | Direct Entry, Steps                                                     |
|   | 24.4        | 1.658            | Total            |                      |                   |                                                                         |

#### Subcatchment S3A: Top 3




#### **Summary for Subcatchment S3B: Side 3B**

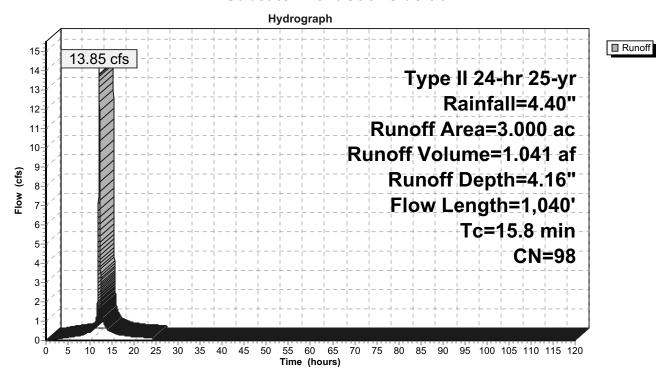
Runoff = 12.65 cfs @ 11.96 hrs, Volume= 0.680 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|   | Area                          | (ac) | CN         | Desc    | cription  |       |                                         |
|---|-------------------------------|------|------------|---------|-----------|-------|-----------------------------------------|
| * | 1.                            | 960  | 98         | Geot    | tubes Cov | er    |                                         |
|   | 1.960 100.00% Impervious Area |      |            |         |           |       | i e e e e e e e e e e e e e e e e e e e |
|   | Tc                            | Leng |            | Slope   | ,         |       | Description                             |
| _ | (min)                         | (fee | <u>(T)</u> | (ft/ft) | (ft/sec)  | (cfs) |                                         |
|   | 5.0                           | 8    | 35         |         | 0.28      |       | Direct Entry, Steps                     |

#### Subcatchment S3B: Side 3B




#### **Summary for Subcatchment S3C: Side 3C**

Runoff = 13.85 cfs @ 12.07 hrs, Volume= 1.041 af, Depth= 4.16"

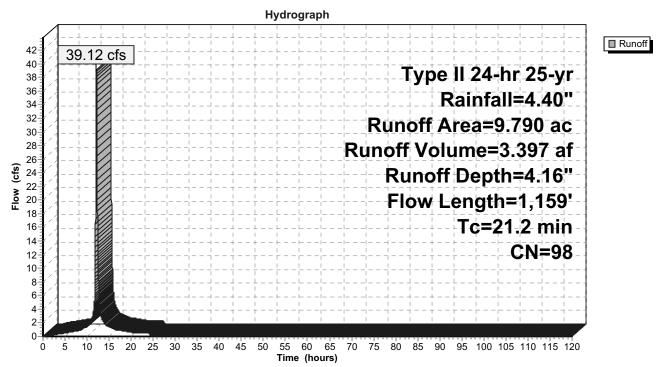
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

| _ | Area                      | (ac) C           | N Desc           | cription             |                   |                                                                    |  |  |
|---|---------------------------|------------------|------------------|----------------------|-------------------|--------------------------------------------------------------------|--|--|
| * | * 3.000 98 Geotubes Cover |                  |                  |                      |                   |                                                                    |  |  |
|   | 3.                        | 000              | 100.             | 00% Impe             | rvious Area       |                                                                    |  |  |
|   | Tc<br>(min)               | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                        |  |  |
| _ | 4.3                       | 300              | 0.0098           | 1.15                 | , ,               | Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"          |  |  |
|   | 6.5                       | 655              | 0.0069           | 1.69                 |                   | Shallow Concentrated Flow, Shallow Concentrated Paved Kv= 20.3 fps |  |  |
|   | 5.0                       | 85               |                  | 0.28                 |                   | Direct Entry, Steps                                                |  |  |
| Ī | 15.8                      | 1 040            | Total            |                      |                   |                                                                    |  |  |

#### Subcatchment S3C: Side 3C



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


#### Summary for Subcatchment S4A: Top 4

Runoff = 39.12 cfs @ 12.13 hrs, Volume= 3.397 af, Depth= 4.16"

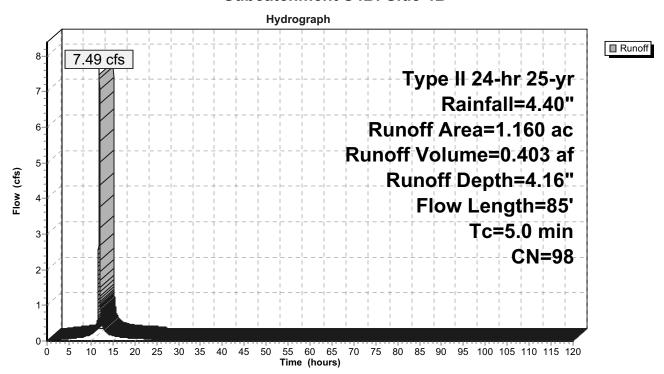
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                         |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------|
| * | 9.          | 790 9            | 8 Geo            | tubes Cov            | er                |                                                                         |
|   | 9.          | 790              | 100.             | 00% Impe             | rvious Area       |                                                                         |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                             |
|   | 6.0         | 300              | 0.0043           | 0.83                 | , ,               | Sheet Flow, Sheet Flow Smooth surfaces n= 0.011 P2= 2.55"               |
|   | 10.2        | 774              | 0.0039           | 1.27                 |                   | Shallow Concentrated Flow, Shallow Concentrated Flow Paved Kv= 20.3 fps |
|   | 5.0         | 85               |                  | 0.28                 |                   | Direct Entry, Steps                                                     |
|   | 21.2        | 1,159            | Total            |                      |                   |                                                                         |

#### Subcatchment S4A: Top 4



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


# **Summary for Subcatchment S4B: Side 4B**

Runoff = 7.49 cfs @ 11.96 hrs, Volume= 0.403 af, Depth= 4.16"

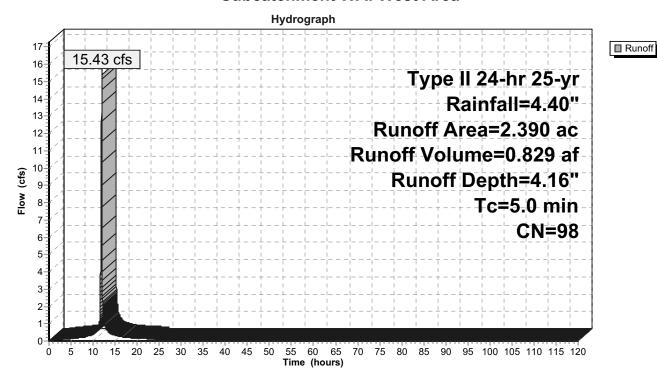
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

|   | Area        | (ac)         | CN | Desc             | cription             |                   |                     |
|---|-------------|--------------|----|------------------|----------------------|-------------------|---------------------|
| * | 1.          | 160          | 98 | Geot             | ubes Cove            | er                |                     |
|   | 1.          | 160          |    | 100.             | 00% Impe             | rvious Area       |                     |
|   | Tc<br>(min) | Leng<br>(fee |    | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description         |
|   | 5.0         | 8            | 35 |                  | 0.28                 |                   | Direct Entry, Steps |

#### Subcatchment S4B: Side 4B



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC


# **Summary for Subcatchment WA: West Area**

Runoff = 15.43 cfs @ 11.96 hrs, Volume= 0.829 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=4.40"

| _ | Area  | (ac) | CN   | Desc    | cription |             |                         |
|---|-------|------|------|---------|----------|-------------|-------------------------|
| * | 2.    | 390  | 98   |         |          |             |                         |
|   | 2.    | .390 |      | 100.    | 00% Impe | rvious Area |                         |
|   | Tc    | Leng | th : | Slope   | Velocity | Capacity    | Description             |
|   | (min) | (fee | et)  | (ft/ft) | (ft/sec) | (cfs)       |                         |
|   | 5.0   |      |      |         |          |             | Direct Entry, Pond Area |

#### **Subcatchment WA: West Area**



# interm\_25yr

Prepared by Geosyntec Consultants

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R1B: Ditch 1B

Inflow Area = 2.370 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

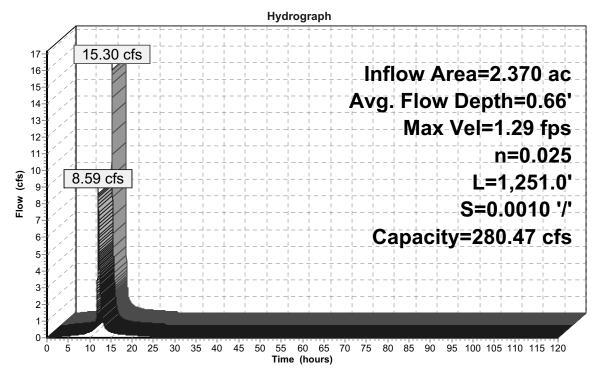
Inflow = 15.30 cfs @ 11.96 hrs, Volume= 0.822 af

Outflow = 8.59 cfs @ 12.03 hrs, Volume= 0.822 af, Atten= 44%, Lag= 4.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Max. Velocity= 1.29 fps, Min. Travel Time= 16.1 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 19.3 min

Peak Storage= 8,318 cf @ 12.03 hrs Average Depth at Peak Storage= 0.66' Bank-Full Depth= 4.50', Capacity at Bank-Full= 280.47 cfs


Custom stage-perimeter table, n= 0.025 106 Intermediate values determined by Multi-point interpolation Length= 1,251.0' Slope= 0.0010 '/' Inlet Invert= 433.30', Outlet Invert= 432.00'



| Depth  | End Area | Perim. | Storage      | Discharge |
|--------|----------|--------|--------------|-----------|
| (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
| 0.00   | 0.0      | 0.0    | 0            | 0.00      |
| 0.50   | 4.7      | 11.1   | 5,896        | 5.13      |
| 1.00   | 10.9     | 14.0   | 13,636       | 17.68     |
| 1.50   | 18.0     | 15.9   | 22,518       | 37.46     |
| 2.00   | 25.8     | 17.9   | 32,276       | 63.08     |
| 2.50   | 34.3     | 19.8   | 42,909       | 94.80     |
| 3.00   | 43.5     | 21.8   | 54,419       | 132.11    |
| 3.50   | 53.3     | 23.7   | 66,678       | 175.31    |
| 4.00   | 63.9     | 25.7   | 79,946       | 224.75    |
| 4.50   | 75.1     | 27.6   | 93,950       | 280.47    |

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

#### Reach R1B: Ditch 1B





Page 21

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R1C: Ditch 1C

[61] Hint: Exceeded Reach R1B outlet invert by 0.57' @ 12.03 hrs

Inflow Area = 3.440 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

Inflow = 14.11 cfs @ 11.98 hrs, Volume= 1.194 af

Outflow = 12.67 cfs @ 12.03 hrs, Volume= 1.194 af, Atten= 10%, Lag= 2.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Max. Velocity= 2.47 fps, Min. Travel Time= 4.3 min Avg. Velocity = 2.25 fps, Avg. Travel Time= 4.7 min

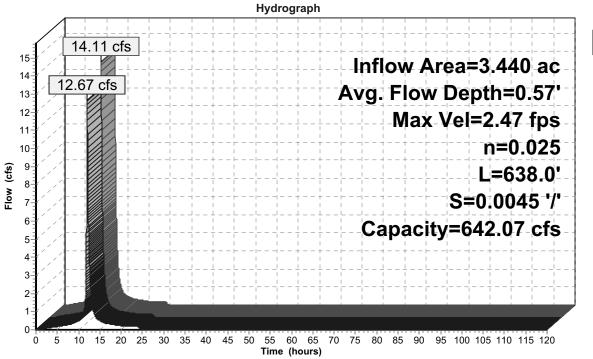
Peak Storage= 3,277 cf @ 12.03 hrs Average Depth at Peak Storage= 0.57'

Bank-Full Depth= 5.00', Capacity at Bank-Full= 642.07 cfs

Custom stage-perimeter table, n= 0.025

100 Intermediate values determined by Multi-point interpolation

Length= 638.0' Slope= 0.0045 '/'


Inlet Invert= 432.00', Outlet Invert= 429.15'



| Depth  | End Area | Perim. | Storage      | Discharge |
|--------|----------|--------|--------------|-----------|
| (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
| 0.00   | 0.0      | 0.0    | 0            | 0.00      |
| 0.50   | 4.3      | 10.1   | 2,743        | 9.67      |
| 1.00   | 9.9      | 12.9   | 6,316        | 32.97     |
| 1.50   | 16.4     | 14.7   | 10,463       | 70.08     |
| 2.00   | 23.6     | 16.6   | 15,057       | 118.54    |
| 2.50   | 31.4     | 18.4   | 20,033       | 178.14    |
| 3.00   | 39.8     | 20.3   | 25,392       | 247.68    |
| 3.50   | 48.8     | 22.1   | 31,134       | 328.75    |
| 4.00   | 58.5     | 23.9   | 37,323       | 422.10    |
| 4.50   | 68.8     | 25.8   | 43,894       | 525.60    |
| 5.00   | 79.7     | 27.6   | 50,849       | 642.07    |

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

#### Reach R1C: Ditch 1C





Page 23

# interm\_25yr

Prepared by Geosyntec Consultants

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R2B: Ditch 2B

Inflow Area = 1.050 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

Inflow = 6.78 cfs @ 11.96 hrs, Volume= 0.364 af

Outflow = 4.20 cfs @ 12.03 hrs, Volume= 0.364 af, Atten= 38%, Lag= 4.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

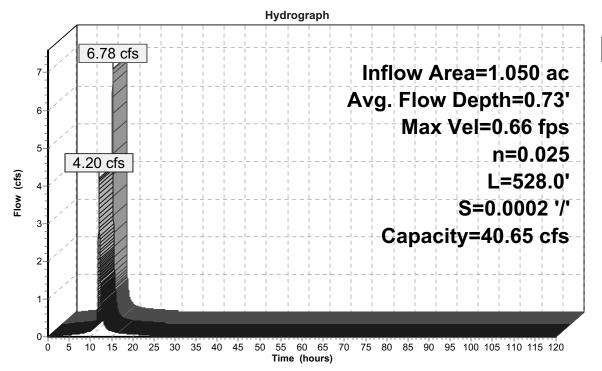
Max. Velocity= 0.66 fps, Min. Travel Time= 13.4 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 16.9 min

Peak Storage= 3,373 cf @ 12.03 hrs Average Depth at Peak Storage= 0.73'

Bank-Full Depth= 2.50', Capacity at Bank-Full= 40.65 cfs

Custom stage-perimeter table, n= 0.025

100 Intermediate values determined by Multi-point interpolation


Length= 528.0' Slope= 0.0002 '/'

Inlet Invert= 437.13', Outlet Invert= 437.00'



| Depth  | End Area | Perim. | Storage      | Discharge |
|--------|----------|--------|--------------|-----------|
| (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
| 0.00   | 0.0      | 0.0    | 0            | 0.00      |
| 0.50   | 3.9      | 9.4    | 2,059        | 2.02      |
| 1.00   | 9.3      | 12.4   | 4,910        | 7.16      |
| 1.50   | 15.8     | 14.6   | 8,342        | 15.53     |
| 2.00   | 22.9     | 16.4   | 12,091       | 26.68     |
| 2.50   | 30.8     | 18.3   | 16,262       | 40.65     |

Reach R2B: Ditch 2B





Dantle Field Asses

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R2C: Ditch 2C

[61] Hint: Exceeded Reach R2B outlet invert by 0.54' @ 12.14 hrs

Inflow Area = 3.730 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

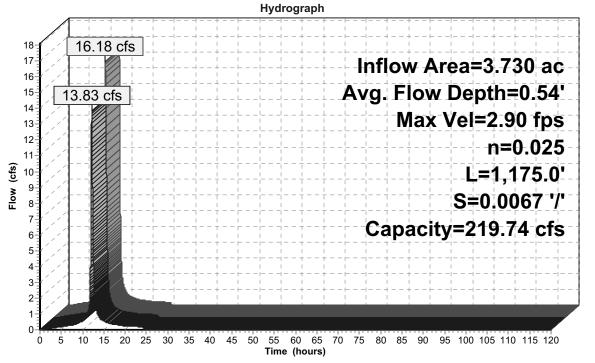
Inflow = 16.18 cfs @ 12.06 hrs, Volume= 1.294 af

Outflow = 13.83 cfs @ 12.14 hrs, Volume= 1.294 af, Atten= 14%, Lag= 4.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Max. Velocity= 2.90 fps, Min. Travel Time= 6.8 min Avg. Velocity = 2.75 fps, Avg. Travel Time= 7.1 min

Peak Storage= 5,604 cf @ 12.14 hrs Average Depth at Peak Storage= 0.54'


Bank-Full Depth= 2.50', Capacity at Bank-Full= 219.74 cfs

Custom stage-perimeter table, n= 0.025 100 Intermediate values determined by Multi-point interpolation Length= 1,175.0' Slope= 0.0067 '/' Inlet Invert= 437.00', Outlet Invert= 429.15'



|   | Depth  | End Area | Perim. | Storage      | Discharge |
|---|--------|----------|--------|--------------|-----------|
| _ | (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
|   | 0.00   | 0.0      | 0.0    | 0            | 0.00      |
|   | 0.50   | 4.3      | 10.1   | 5,053        | 11.82     |
|   | 1.00   | 9.9      | 13.0   | 11,633       | 40.11     |
|   | 1.50   | 16.6     | 14.9   | 19,505       | 86.67     |
|   | 2.00   | 23.8     | 16.7   | 27,965       | 146.44    |
|   | 2.50   | 31.7     | 18.6   | 37,248       | 219.74    |

# Reach R2C: Ditch 2C





# interm\_25yr

Prepared by Geosyntec Consultants

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R3B: Ditch 3B

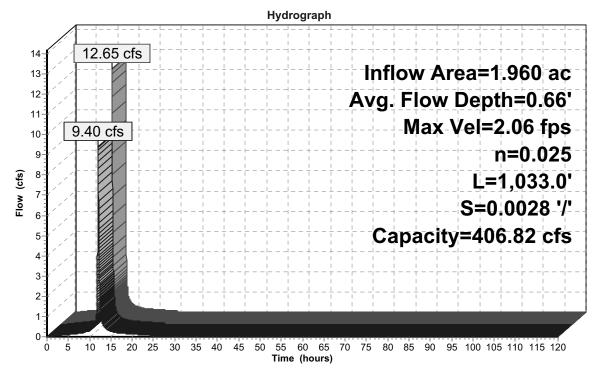
Inflow Area = 1.960 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

Inflow = 12.65 cfs @ 11.96 hrs, Volume= 0.680 af

Outflow = 9.40 cfs @ 12.01 hrs, Volume= 0.680 af, Atten= 26%, Lag= 3.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Max. Velocity= 2.06 fps, Min. Travel Time= 8.3 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 10.0 min


Peak Storage= 4,709 cf @ 12.01 hrs Average Depth at Peak Storage= 0.66' Bank-Full Depth= 4.50', Capacity at Bank-Full= 406.82 cfs

Custom stage-perimeter table, n= 0.025 106 Intermediate values determined by Multi-point interpolation Length= 1,033.0' Slope= 0.0028 '/' Inlet Invert= 437.13', Outlet Invert= 434.20'



| Depth  | End Area | Perim. | Storage      | Discharge |
|--------|----------|--------|--------------|-----------|
| (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
| 0.00   | 0.0      | 0.0    | 0            | 0.00      |
| 0.50   | 3.1      | 7.7    | 3,215        | 5.41      |
| 1.00   | 7.6      | 10.7   | 7,851        | 19.15     |
| 1.50   | 13.4     | 13.6   | 13,842       | 42.00     |
| 2.00   | 20.7     | 16.3   | 21,383       | 76.85     |
| 2.50   | 28.7     | 18.2   | 29,647       | 123.09    |
| 3.00   | 37.4     | 20.0   | 38,634       | 179.71    |
| 3.50   | 46.8     | 21.9   | 48,344       | 245.80    |
| 4.00   | 56.8     | 23.8   | 58,680       | 321.17    |
| 4.50   | 67.4     | 25.6   | 69.624       | 406.82    |

# Reach R3B: Ditch 3B





HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R3C: Ditch 3C

[62] Hint: Exceeded Reach R3B OUTLET depth by 0.22' @ 12.26 hrs

Inflow Area = 4.960 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

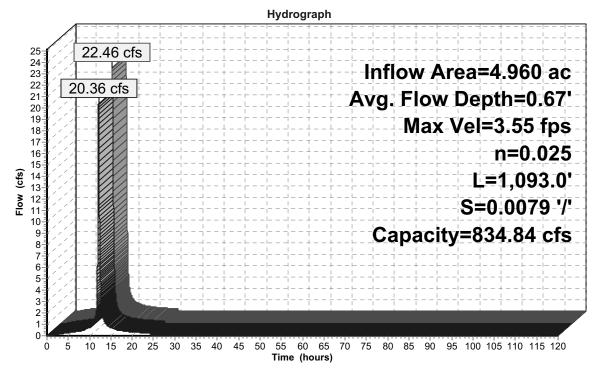
Inflow = 22.46 cfs @ 12.04 hrs, Volume= 1.721 af

Outflow = 20.36 cfs @ 12.10 hrs, Volume= 1.721 af, Atten= 9%, Lag= 3.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.55 fps, Min. Travel Time= 5.1 min Avg. Velocity = 2.94 fps, Avg. Travel Time= 6.2 min

Peak Storage= 6,275 cf @ 12.10 hrs Average Depth at Peak Storage= 0.67'


Bank-Full Depth= 5.00', Capacity at Bank-Full= 834.84 cfs

Custom stage-perimeter table, n= 0.025 100 Intermediate values determined by Multi-point interpolation Length= 1,093.0' Slope= 0.0079 '/' Inlet Invert= 434.20', Outlet Invert= 425.57'



| Depth  | End Area | Perim. | Storage      | Discharge |
|--------|----------|--------|--------------|-----------|
| (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
| 0.00   | 0.0      | 0.0    | 0            | 0.00      |
| 0.50   | 3.9      | 9.4    | 4,263        | 11.46     |
| 1.00   | 9.2      | 12.4   | 10,056       | 39.82     |
| 1.50   | 15.7     | 14.4   | 17,160       | 87.84     |
| 2.00   | 22.7     | 16.3   | 24,811       | 149.52    |
| 2.50   | 30.4     | 18.1   | 33,227       | 226.87    |
| 3.00   | 38.8     | 19.9   | 42,408       | 319.83    |
| 3.50   | 47.7     | 21.8   | 52,136       | 424.62    |
| 4.00   | 57.3     | 23.6   | 62,629       | 546.71    |
| 4.50   | 67.5     | 25.5   | 73,778       | 682.21    |
| 5.00   | 78.3     | 27.3   | 85,582       | 834.84    |

Reach R3C: Ditch 3C





# interm\_25yr

Prepared by Geosyntec Consultants

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Reach R4B: Ditch 4B

Inflow Area = 1.160 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

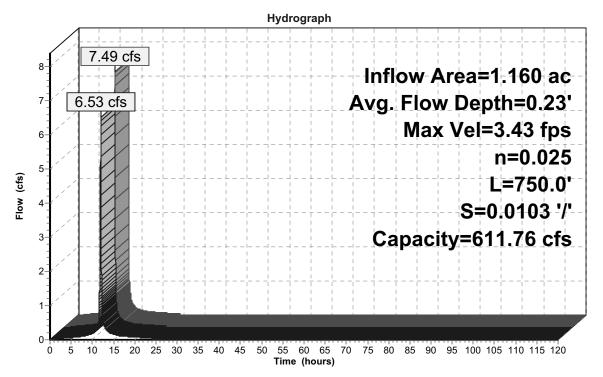
Inflow = 7.49 cfs @ 11.96 hrs, Volume= 0.403 af

Outflow = 6.53 cfs @ 11.99 hrs, Volume= 0.403 af, Atten= 13%, Lag= 2.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Max. Velocity= 3.43 fps, Min. Travel Time= 3.6 min Avg. Velocity = 3.43 fps, Avg. Travel Time= 3.6 min

Peak Storage= 1,427 cf @ 11.99 hrs Average Depth at Peak Storage= 0.23'


Bank-Full Depth= 4.00', Capacity at Bank-Full= 611.76 cfs

Custom stage-perimeter table, n= 0.025 104 Intermediate values determined by Multi-point interpolation Length= 750.0' Slope= 0.0103 '/' Inlet Invert= 433.30', Outlet Invert= 425.57'



| Depth  | End Area | Perim. | Storage      | Discharge |
|--------|----------|--------|--------------|-----------|
| (feet) | (sq-ft)  | (feet) | (cubic-feet) | (cfs)     |
| 0.00   | 0.0      | 0.0    | 0            | 0.00      |
| 0.50   | 4.2      | 9.8    | 3,150        | 14.41     |
| 1.00   | 9.6      | 12.3   | 7,200        | 49.11     |
| 1.50   | 15.8     | 14.1   | 11,850       | 102.86    |
| 2.00   | 22.6     | 16.0   | 16,950       | 171.69    |
| 2.50   | 30.1     | 17.8   | 22,575       | 257.81    |
| 3.00   | 38.2     | 19.7   | 28,650       | 358.45    |
| 3.50   | 46.9     | 21.5   | 35,175       | 476.03    |
| 4.00   | 56.3     | 23.3   | 42,225       | 611.76    |
|        |          |        |              |           |

Reach R4B: Ditch 4B





Page 33

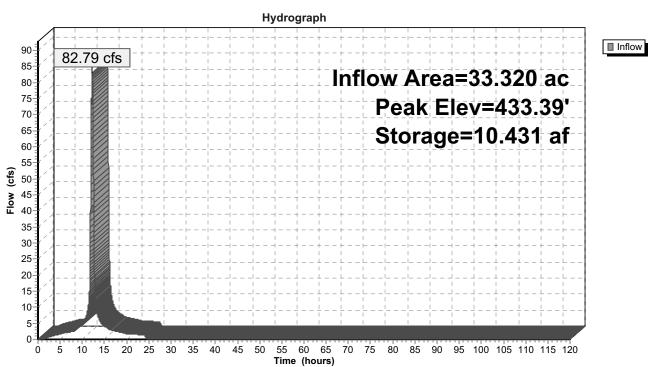
HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# **Summary for Pond EDB: East Basin**

Inflow Area = 33.320 ac,100.00% Impervious, Inflow Depth = 3.76" for 25-yr event

Inflow = 82.79 cfs @ 12.23 hrs, Volume= 10.431 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.39' @ 120.00 hrs Surf.Area= 3.785 ac Storage= 10.431 af

Plug-Flow detention time= (not calculated: initial storage excedes outflow)

Center-of-Mass det. time= (not calculated: no outflow)

| Volume    | Invert   | Avail.Storage | Stora | ge Description |                |                  |
|-----------|----------|---------------|-------|----------------|----------------|------------------|
| #1        | 428.00'  | 12.773 af     | Custo | om Stage Data  | a (Conic)Liste | d below (Recalc) |
|           |          |               |       |                |                |                  |
| Elevation | Surf.Are | ea Inc.St     | ore   | Cum.Store      | Wet.Area       |                  |
| (feet)    | (acre    | s) (acre-fe   | eet)  | (acre-feet)    | (acres)        |                  |
| 428.00    | 0.09     | 0.0           | 000   | 0.000          | 0.092          |                  |
| 429.00    | 0.27     | '5 0.'        | 175   | 0.175          | 0.275          |                  |
| 430.00    | 0.55     | 9 0.4         | 109   | 0.584          | 0.559          |                  |
| 431.00    | 2.76     | 34 1.5        | 522   | 2.106          | 2.764          |                  |
| 432.00    | 3.62     | 27 3.1        | 186   | 5.292          | 3.628          |                  |
| 433.00    | 3.74     | 0 3.6         | 383   | 8.975          | 3.746          |                  |
| 433.30    | 3.77     | '5 1.'        | 127   | 10.102         | 3.782          |                  |
| 433.50    | 3.79     | 0.7           | 757   | 10.860         | 3.806          |                  |
| 434.00    | 3.85     | 66 1.9        | 913   | 12.773         | 3.866          |                  |

#### **Pond EDB: East Basin**



HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# **Summary for Pond TB1: Temp Basin 1**

[63] Warning: Exceeded Reach R1C INLET depth by 1.39' @ 26.25 hrs [62] Hint: Exceeded Reach R2C OUTLET depth by 4.24' @ 26.09 hrs

Inflow Area = 29.460 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event

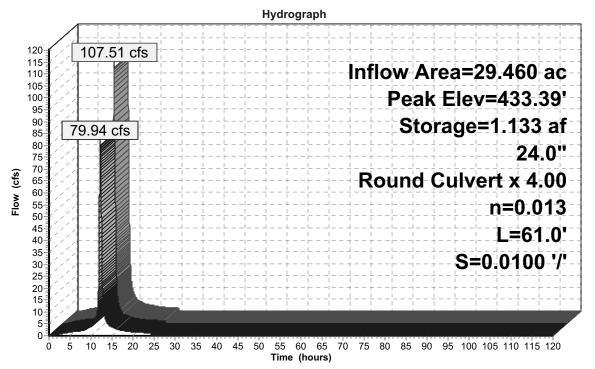
Inflow = 107.51 cfs @ 12.14 hrs, Volume= 10.223 af

Outflow = 79.94 cfs @ 12.23 hrs, Volume= 9.092 af, Atten= 26%, Lag= 5.5 min

Primary = 79.94 cfs @ 12.23 hrs, Volume= 9.092 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.39' @ 26.02 hrs Surf.Area= 0.696 ac Storage= 1.133 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)


| Volume              | Invert              | <u> Avail.Stora</u> | ge Stora           | age Description       |                     |                  |  |
|---------------------|---------------------|---------------------|--------------------|-----------------------|---------------------|------------------|--|
| #1                  | 430.00'             | 1.633               | af Cust            | om Stage Data         | (Conic)Listed       | l below (Recalc) |  |
| Elevation<br>(feet) | Surf.Area<br>(acres |                     | c.Store<br>e-feet) | Cum.Store (acre-feet) | Wet.Area<br>(acres) |                  |  |
| 430.00              | 0.09                | 3                   | 0.000              | 0.000                 | 0.093               |                  |  |
| 431.00              | 0.20                | 4                   | 0.145              | 0.145                 | 0.204               |                  |  |
| 432.00              | 0.36                | 0                   | 0.278              | 0.423                 | 0.360               |                  |  |
| 433.00              | 0.58                | 7                   | 0.469              | 0.892                 | 0.588               |                  |  |
| 433.30              | 0.63                | 8                   | 0.184              | 1.076                 | 0.639               |                  |  |
| 433.50              | 0.77                | 6                   | 0.141              | 1.217                 | 0.777               |                  |  |
| 434.00              | 0.88                | 9                   | 0.416              | 1.633                 | 0.890               |                  |  |
| Device R            | outing              | Invert              | Outlet De          | evices                |                     |                  |  |

#1 Primary 429.61' **24.0" Round Culvert X 4.00** 

L= 61.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 429.61' / 429.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Concrete pipe, straight & clean

Primary OutFlow Max=79.31 cfs @ 12.23 hrs HW=433.17' TW=431.96' (Dynamic Tailwater) 1=Culvert (Outlet Controls 79.31 cfs @ 6.31 fps)

# Pond TB1: Temp Basin 1





# interm 25yr

Prepared by Geosyntec Consultants

HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# Summary for Pond TB2: Temp Basin 2

[62] Hint: Exceeded Reach R3C OUTLET depth by 7.57' @ 25.35 hrs [62] Hint: Exceeded Reach R4B OUTLET depth by 7.57' @ 25.30 hrs

34.200 ac,100.00% Impervious, Inflow Depth = 4.16" for 25-yr event Inflow Area =

Inflow 127.80 cfs @ 12.13 hrs, Volume= 11.868 af

91.95 cfs @ 12.22 hrs, Volume= Outflow 10.320 af, Atten= 28%, Lag= 5.3 min

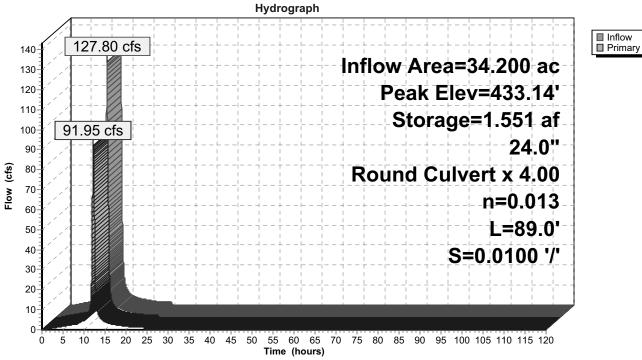
91.95 cfs @ 12.22 hrs, Volume= Primary 10.320 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.14' @ 25.30 hrs Surf.Area= 0.641 ac Storage= 1.551 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

| Volume    | Invert A  | vail.Storage | Storage De    | escription |                  |              |  |
|-----------|-----------|--------------|---------------|------------|------------------|--------------|--|
| #1        | 426.00'   | 2.184 af     | Custom St     | tage Data  | (Conic)Listed be | low (Recalc) |  |
| E         | 0 (4      |              |               | 01         | <b>107</b> 4 6   |              |  |
| Elevation | Surf.Area | Inc.St       | tore Cu       | m.Store    | Wet.Area         |              |  |
| (feet)    | (acres)   | (acre-f      | eet) (ad      | cre-feet)  | (acres)          |              |  |
| 426.00    | 0.003     | 0.           | 000           | 0.000      | 0.003            |              |  |
| 427.00    | 0.027     | 0.           | 013           | 0.013      | 0.027            |              |  |
| 428.00    | 0.072     | 0.           | 048           | 0.061      | 0.072            |              |  |
| 429.00    | 0.135     | 0.           | 102           | 0.163      | 0.135            |              |  |
| 430.00    | 0.216     | 0.           | 174           | 0.336      | 0.217            |              |  |
| 431.00    | 0.315     | 0.           | 264           | 0.600      | 0.316            |              |  |
| 432.00    | 0.417     | 0.           | 365           | 0.965      | 0.419            |              |  |
| 433.00    | 0.583     | 0.           | 498           | 1.463      | 0.585            |              |  |
| 433.30    | 0.708     | 0.           | 193           | 1.656      | 0.710            |              |  |
| 433.50    | 0.725     | 0.           | 143           | 1.800      | 0.727            |              |  |
| 434.00    | 0.812     | 0.           | 384           | 2.184      | 0.815            |              |  |
|           |           |              |               |            |                  |              |  |
| Device R  | outing    | Invert Ou    | ıtlet Devices |            |                  |              |  |

#1 Primary 424.89' 24.0" Round Culvert X 4.00


L= 89.0' RCP, groove end projecting, Ke= 0.200

Inlet / Outlet Invert= 424.89' / 424.00' S= 0.0100 '/' Cc= 0.900

n= 0.013 Concrete pipe, straight & clean

Primary OutFlow Max=91.05 cfs @ 12.22 hrs HW=432.44' TW=430.55' (Dynamic Tailwater) 1=Culvert (Outlet Controls 91.05 cfs @ 7.25 fps)

# Pond TB2: Temp Basin 2





HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions LLC

# **Summary for Pond WDB: West Basin**

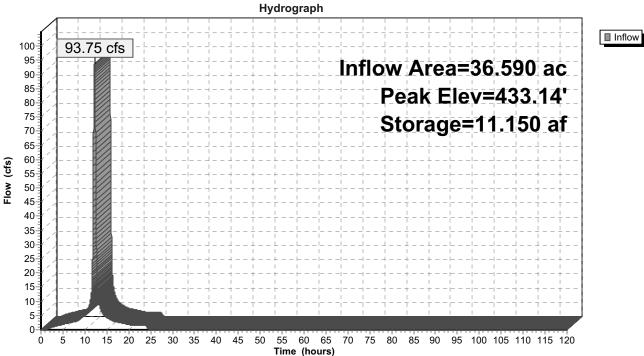
[80] Warning: Exceeded Pond TB2 by 0.01' @ 119.99 hrs (5.13 cfs 29.199 af)

Inflow Area = 36.590 ac,100.00% Impervious, Inflow Depth = 3.66" for 25-yr event

Inflow = 93.75 cfs @ 12.22 hrs, Volume= 11.150 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 433.14' @ 120.00 hrs Surf.Area= 2.315 ac Storage= 11.150 af


Plug-Flow detention time= (not calculated: initial storage excedes outflow)

Center-of-Mass det. time= (not calculated: no outflow)

| Volume | Invert  | Avail.Storage | Storage Description                             |
|--------|---------|---------------|-------------------------------------------------|
| #1     | 424.00' | 13.163 af     | Western Basin Data (Conic)Listed below (Recalc) |

| Elevation | Surf.Area | Inc.Store   | Cum.Store   | Wet.Area |
|-----------|-----------|-------------|-------------|----------|
| (feet)    | (acres)   | (acre-feet) | (acre-feet) | (acres)  |
| 424.00    | 0.020     | 0.000       | 0.000       | 0.020    |
| 425.00    | 0.158     | 0.078       | 0.078       | 0.158    |
| 426.00    | 0.321     | 0.235       | 0.313       | 0.321    |
| 427.00    | 0.601     | 0.454       | 0.767       | 0.602    |
| 428.00    | 0.905     | 0.748       | 1.514       | 0.906    |
| 429.00    | 1.347     | 1.119       | 2.633       | 1.348    |
| 430.00    | 2.036     | 1.680       | 4.313       | 2.038    |
| 431.00    | 2.123     | 2.079       | 6.392       | 2.128    |
| 432.00    | 2.211     | 2.167       | 8.559       | 2.219    |
| 433.00    | 2.302     | 2.256       | 10.815      | 2.314    |
| 433.30    | 2.329     | 0.695       | 11.510      | 2.342    |
| 433.50    | 2.348     | 0.468       | 11.978      | 2.362    |
| 434.00    | 2.394     | 1.185       | 13.163      | 2.410    |

# **Pond WDB: West Basin**





Geosyntec<sup>o</sup>

consultants

|             |           |          |             |         |              | Page         | 1      | 7     | of       | 19  |
|-------------|-----------|----------|-------------|---------|--------------|--------------|--------|-------|----------|-----|
| Written by: | Jesus Sa  | anchez   | Date:       | 1/12/10 | Reviewed by: | Ganesh Kris  | hnan   | Date: | 1/12     | /10 |
| Client:     | Honeywell | Project: | Ono<br>Desi |         | e SCA Final  | Project No.: | GJ4299 | Т Т   | ask No.: | 17  |

# Attachment 5 – Manning Coefficients (HydroCAD, 2005)

0.014 0.015 0.015 0.018 0.017 0.016 0.020 0.023 0.023 0.014 0.017 0.030 0.013

VALUES OF THE ROUGHNESS COEFFICIENT 11 (continued)

Appendix C: Manning's Number Tables

| by:               | esus Sanchez  | Date: | Date: 1/12/10                  | Reviewed by: | Ganesh Krishna | hnan   | Date: | 1/12/10   |   |
|-------------------|---------------|-------|--------------------------------|--------------|----------------|--------|-------|-----------|---|
| Client: Honeywell | well Project: | C     | mondaga Lake SCA Fina<br>esign | SCA Final    | Project No.:   | GJ4299 |       | Fask No.: | 7 |

Written by:

19

Jo

18

| or framework community or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | - Groon are |                        |                                                    |         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------------|----------------------------------------------------|---------|--------|
| description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum | Normal      | Minimum Normal Maximum | Type of channel and description                    | Minimum | Normal |
| NO PARTLY FULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |                        | B. Lined or Built-up Channels                      |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009   | 0.010       | 0.013                  | B-1. Metal                                         |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,00    |             |                        | 1. Threshod                                        | 0.011   | 0.012  |
| inal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.010   | 0.016       | 0.012                  | 2. Painted                                         | 0.012   | 0.013  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.040   |             |                        | b. Corrugated                                      | 0.021   | 0.025  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010   | 0.013       | 0.014                  | B-2. Nonmetal                                      |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.011   | 0.014       | 0.016                  | a. Cement                                          |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | 1. Neat, surface                                   | 0.010   | 0.011  |
| í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.012   | 0.014       | 0.015                  | 2. Mortar                                          | 0.011   | 0.013  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.013   | 0.016       | 0.017                  | b. Wood                                            |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | 1. Planed, untroated                               | 0.010   | 0.012  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.017   | 0.019       | 0.021                  | 2. Planed, creosoted                               | 0.011   | 0.012  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 021   | 0.034       | 0.030                  | 3. Unplaned                                        | 0.011   | 0.013  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | 4. Plank with battens                              | 0.012   | 0.015  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008   | 0000        | 0.010                  | 5. Lined with roofing paper                        | 0.010   | 0.014  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009   | 0.010       | 5.013                  | e. Conereta                                        |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             | ,                      | 1. Trowel finish                                   | 0.011   | 0.013  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010   | 0.011       | 0.013                  | 2. Float finish                                    | 0.013   | 0.015  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100    | 0 013       |                        | 3. Finished, with gravel on bottom                 | 0.015   | 0.017  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | 4. Unfinished                                      | 0.014   | 0.017  |
| the and free of debrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 010     | 0 011       | 0 013                  | 5. Gunite, good section                            | 0.016   | 0.019  |
| The state of the s | 110.0   |             | 710 0                  |                                                    | 0.018   | 0.022  |
| nemms, connectations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01    | 2000        |                        |                                                    | 0.017   | 0.020  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             | 7100                   | 8. On irremiar excavated rock                      | 0.022   | 0.027  |
| and the falls of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.011   | 0.016       | 10.0                   | d Concrete bottom float finished with              |         |        |
| anholes, inlet, etc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013   | 0.010       | 0.016                  |                                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | There is need to                                   | 210     | 0 017  |
| l form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.012   | 0.013       | 9.014                  | 1. Dressed stone in mortar                         | 0.00    | 9      |
| soth wood form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.012   | 0.014       | 0.016                  | Z. Random stone in mortar                          | 0.017   | 0.00   |
| gh wood form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015   | 0.017       | 0.020                  | <ol><li>Cement rubble masonry, plastered</li></ol> | 0.016   | 0.020  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | <ol> <li>Cement rubble masenry</li> </ol>          | 0.020   | 0.025  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010   | 0.012       | 0.014                  | <ol><li>Dry rubble or riprap</li></ol>             | 0.020   | 0.030  |
| ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.015   | 0.017       | 0.020                  | <ol><li>Gravel bottom with sides of</li></ol>      |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | 1. Formed concrete                                 | 0.017   | 0.020  |
| age tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.011   | 0.013       | 0.017                  | 2. Random stone in mortar                          | 0.020   | 0.023  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.011   | 0.014       | 0.017                  | 3. Dry rubble or riprap                            | 0.023   | 0.033  |
| with manholes, inlet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013   | 0.015       | 0.017                  | f. Briek                                           |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | 1. Glased                                          | 0.011   | 0.018  |
| in with open joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.014   | 0.016       | 0.018                  | 2. In cement morter                                | 0.012   | 0.016  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | g. Masoury                                         |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.011   | 0.013       | 0.015                  | 1. Cemented rubble                                 | 0.017   | 0.025  |
| ent mortar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.012   | 0.015       | 0.017                  |                                                    | 0.023   | 0.032  |
| coated with sewage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.012   | 0.013       | 910.0                  |                                                    | 0.013   | 0.015  |
| and connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | i. Asphalt                                         |         |        |
| er, smooth bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.016   | 0.019       | 0.020                  | 1. Smooth                                          | 0.013   | 0.013  |
| petnemed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.018   | 0.025       | 0.030                  | 2. Rough                                           | 0:016   | 0.016  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                        | j. Vegetal lining                                  | 0.030   | :      |

0.024 0.024 0.024 0.035 0.035 0.026 0.036 0.036 0.039 0.039

This table reprinted from OPEN CHANNEL HYDRAULICS by Ven Te Chow, Copyright 1959 by McGraw-Hill, with the permission of the publisher.

HydroCAD Technical Reference

# Geosyntec<sup>▶</sup>

19

 $_{\rm of}$ 

19

| 1/12/10         |
|-----------------|
| Date:           |
| Ganesh Krishnan |

Reviewed by:

1/12/10

Date:

Jesus Sanchez

Written

Onondaga Lake SCA Final

Project:

Honeywell

Client:

GJ4299 Project No.:

17

Task No.:

VALUES OF THE ROUGHNESS COEFFICIENT IN (continued)

Normal Type of channel and description

Normal Maximum

Minimum

Type of channel and description

C. Excavated on Driedero a. Earth, straight and unife

VALUES OF THE ROUGHNESS COEFFICIENT IS (continued)

Maximum

0.040 0.030 b. Mountain streams, no vegetation in channel, banks usually steep, trees and brush along banks submerged at high stages

1. Bettom: gravels, cobbles, and few boulders

0.020

0.018 0.025 0.027

0.016 0.022 0.022 0.022

0.050 0.070

0.040 0.050

 Bottom: cobbles with large boulders
 D-2. Flood plains a. Pasture, no brush
1. Short grass
2. High grass
b. Cultivated areas

Appendix C: Manning's Number Tables (continued)

0.035

0.030

0.025

0.040

0.030

0.020 0.025 0.030

Mature row crops
 Mature field crops

0.035

0.030

0.028 0.025 0.030

deep channels
4. Earth bottom and rubble sides
5. Stony bottom and weedy banks
6. Cobble bottom and clean sides
c. Dragine-excavated or dredged

0.083

0.025

0.023 0.025 0.030

Grass, some weeds
 Dense weeds or squatic plants in

0.033 0.040

0.028 0.035

0.025 0.025

e. Brush

0.070 0.060 0.080 0.110 0.160

0.050 0.050 0.060 0.070 0.100

0.035 0.035 0.040 0.045 0.045

2. Light brush and trees, in winter
3. Light brush and trees, in summer
4. Medium to dense brush, in winter
5. Medium to dense brush, in summe 1. Scattered brush, heavy weeds

Dense willows, summer, straight
 Cleared land with tree stumps,

0.200

0.150

0.110

0.080 0.130 0.160

0.060 0.100 0.120

0.020 0.080 0.100

0.120 0.080 0.110 0.140

0.080 0.080 0.070 0.070

0.050 0.040 0.045 0.080

sprouts
3. Same as above, but with heavy
growth of sprouts

Heavy stand of timber, a few down trees, little undergrowth, flood stage below branches

5. Same as above, but with flood stage

0.040 0.045

0.035

Clean, straight, full stage, no rite or deep pools
 Same as above, but more stones and weeds

0.040

0.033

Same as above, but some weeds and

0.033

0.030

0.025 0.030

Major streams (top width at flood stage >100 ft). The a value is less than that for minor streams of similar description,

Irregular and rough section D-3. Major

0.060

0.025 0.035

0.100

0.050 0.055 0.060 c 080 0.150 0.045 0.050 0.070 0.100 0.048 0.045 0.050 0.075 0.035 0.040

This table reprinted from OPEN CHANNEL HYDRAULICS by Ven Te Chow, Copyright 1959 by McGraw-Hill, with the permission of the publisher.

D. NATURAL STREAMS
D-1. Minor streams (top width at flood

<100 ft)

 Smooth and uniform
 Jagged and irregular Channels not maintained, No vegetation
 Light brush on banks
 Rock cuts

GA090716/SCA Operational Surface Water

# **APPENDIX K.2**

# FINAL COVER SYSTEM SURFACE MANAGEMENT SYSTEM DESIGN

(This appendix will be included in the Closure Design)