APPENDIX G

Geosynthetic Conformance Test Results

- Interface Friction Testing
- Geosynthetic Clay Liner
- Geomembrane (60-mil)
- Geotextile

Interface Friction Testing

TABLE 1

ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA Camillus, NY

				SUMMARY OF STRESSES										SUMMARY OF RESULTS				
					PEAK					LA	RGE D	DISPLA	CEME	NT	PE	AK	RESII	DUAL
TESTED COMPONENTS	SHEAR	TEST			Norma	l Stress (psi)			Normal Stress (psi)								
	RATE	No.	5	5	15	15	24	24	5	5	15	15	24	24	n	Friction	n	Friction
				Normal Stress (psf)			Normal Stress (psf)					Angle		Angle				
			700	700	2,100	2,100	3,500	3,500	700	700	2,100	2,100	3,500	3,500				
			Shear Stress			Shear Stress												
Phase I			(psi)	(°)	(psi)	(°)	(psi)	(°)	(psi)	(°)	(psi)	(°)	(psi)	$(^{0})$	(psf)	(°)	(psf)	(°)
Gravel/24 oz Geotextile/60 mil HDPE/Mar. Clay	@ 0.04 in/min	C1	3.1	32.6	8.8	31.1	12.9	28.0	2.3	25.4	7.7	27.8	10.9	24.1	131	27	77	24
Gravel/24 oz Geotextile/60 mil HDPE/Blk Crk Clay	@ 0.04 in/min	C2	2.5	27.4	6.9	25.2	8.7	19.6	2.4	26.5	6.4	23.7	8.2	0.1	203	18	196	16

Notes:

(1) Apparent friction angles are calculated by taking the arctan of shear stress /normal stress.

(2) Large displacement shear strength using the shear force at the end of the test.

GEOSYNTEC CONSULTANTS - ONONDAGA SCA PHASE 1 INTERFACE DIRECT SHEAR TESTING (ASTM D 5321)

Upper Shear Box: Drainage gravel nominally compacted/

GSE 240E (24 oz) nonwoven geotextile #130401943 with heart-treated side up/

GSE 60-mil textured HDPE geomembrane # 102158865/

Lower Shear Box: Marcellus clay #LP-087compacted to approximately 95% of max standard Proctor density at 3% wet of OMC (OMC = 19.5%)

Test	Shear	Normal	Shear	Soa	king	Conso	lidation	Dra	inage Gr	avel		Clay		G	CL	Shear S	Strength	Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω _i	$\omega_{\rm f}$	$\gamma_{\rm d}$	ω	$\omega_{\rm f}$	ω _i	$\omega_{\rm f}$	$\tau_{\rm P}$	$\tau_{\rm LD}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
1A	12 x 12	700	0.004	-	-	700	24	-	-	-	102.8	21.7	20.5	-	-	447	332	(1)
1B	12 x 12	2100	0.004	-	-	2100	24	-	-	-	102.5	22.1	20.1	-	-	1268	1107	(2)
1C	12 x 12	3500	0.004	-	-	3500	24	-	-	-	102.6	21.9	19.0	-	-	1862	1565	(2)

NOTES:

(1) Sliding occurred at the interface between the geotextile and geomembrane

(2) Sliding occurred at the interface between the geomembrane and clay.

(3) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

GEOSYNTEC CONSULTANTS - ONONDAGA SCA PHASE 1 INTERFACE DIRECT SHEAR TESTING (ASTM D 5321)

Upper Shear Box: Drainage gravel nominally compacted/

GSE 240E (24 oz) nonwoven geotextile #130401943 with heart-treated side up/

GSE 60-mil textured HDPE geomembrane # 102158865/

Lower Shear Box: Black Creek clay #LP-088 compacted to approximately 95% of max standard Proctor density at 3% wet of OMC (OMC = 22%)

Test	Shear	Normal	Shear	Soa	king	Conso	lidation	Dra	inage Gr	avel		Clay		G	CL	Shear S	Strength	Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω _i	$\omega_{\rm f}$	$\gamma_{\rm d}$	ω	$\omega_{\rm f}$	ω _i	$\omega_{\rm f}$	$\tau_{\rm P}$	$ au_{ m LD}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
2A	12 x 12	700	0.004	-	-	700	24	-	-	-	97.1	24.7	23.4	-	-	363	349	(1)
2B	12 x 12	2100	0.004	-	-	2100	24	-	-	-	97.4	24.4	23.7	-	-	989	923	(1)
2C	12 x 12	3500	0.004	-	-	3500	24	-	-	-	97.6	24.1	23.2	-	-	1249	1175	(1)

NOTES:

(1) Sliding occurred at the interface between the geomembrane and clay.

(2) The reported total-stress parameters of friction angle and adhesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

Figure 1. Sliding at the interface between the geomembrane and clay #LP-088 (Test #2B at 2100 psf).

Figure 2. Deformed top surface of the geomembrane at the completion of Test #2C at 3500 psf.

Figure 3. . Top surface of the clay at the completion of Test #2C at 3500 psf.

Figure 4. Deformed top surface of the geomembrane at the completion of Test #1C at 3500 psf.

Figure 5. Top surface of the clay at the completion of Test #1C at 3500 psf.

Figure 6. Sliding (shear failure) at the interface between the geotextile and geomembrane (Test #1A at 700 psf).

Geosynthetic Clay Liner

Client:	Parsons Engineering	Science			
Project Name:	Geosynthetics Testing				
Project Location:	Syracuse, NY				
GTX #:	10596	Tested By: bfs			
fest Date:	06/10/11	Checked By: jdt			
Sample ID: Description:	GCL Roll #502182230 (GC-01) Cap/Top GSE Bentoliner NSL (white non-woven/gray woven) Whit non-woven textile portion tested.				

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd ²	Mass Per Unit Area, g/m ²
1	7.9	268
2	6.9	234
3	8.4	286
4	7.5	253
5	7.0	237
Average	7.5	256
Standard Deviation	0.6	21.5

Comments: Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Engineering S	Science
Project Name:	Geosynthetics Testing	1
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: bfs
Test Date:	06/10/11	Checked By: jdt
Sample ID: Description:	GCL Roll #502182230 GSE Bentoliner NSL (woven textile portion) (GC-01) Carrier/Bottom white non-woven/gray woven) Gray tested.

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd ²	Mass Per Unit Area, g/m ²
1	3.9	131
2	3.9	131
3	3.8	128
4	3.8	128
5	4.0	137
Average	3.9	131
Standard Deviation	0.1	3.7

Comments:

Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Enginee	Parsons Engineering Science					
Project Name:	Geosynthetic Testing						
Project Location:	Syracuse, NY						
GTX #:	10596	Tested By:	bfs				
Test Date:	06/20/11	Checked By:	jdt				

Fluid Loss of Clay Component of Geosynthetic Clay Liners by ASTM D 5891

Sample ID	Start Temperature, °C	End Temperature, °C	Collected Volume, mL	Fluid Loss, mL
GCL Roll #502182230 (GC-01) GSE Bentoliner NSL (white non-woven/gray woven)	23.7	23.1	8.45	16.90

Comments:

Sampling Method: Obtained from center of GCL sample provided.

Clay Source: White non-woven/gray woven GCL

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

5 18 m

PR

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	6/20/2011	Checked By: bfs

Determination of Water Content of Soil by Microwave Oven Heating (ASTM D 4643)

Testing Oven: Rival Microwave Testing Setting: High		
Sample ID:	Drying Cycle, minutes	Moisture Content, %
GCL Roll #502182230 (GC-01)	3 minute	12.4
GSE Bentoliner NSL	1 minute	12.6
(white non-woven/gray woven)	1 minute	12.8
Bentonite portion tested	1 minute	12.9

Comments:

Minimum 100 g sample was tested.

Testing considered complete when the change of the initial wet mass of the soil is < 0.1%.

≤ 40~ SN3

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Form D4643, version 2

Swell Index of Clay Mineral Component of Geosynthetic Clay Liners by ASTM D 5890

Sample ID	Swell Index, mL/2 g	Temp., ⁰C
GCL Roll #502182230 (GC-01) GSE Bentoliner NSL (white non-woven/gray woven)	31.0 224	22.5

Comments:

Sampling Method: Obtained from center of GCL sample provided. Clay Source: White woven/gray non-woven GCL DR

Client:	Parsons Engineering Science		
Project Name:	Geosynthetics Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	jdw
Test Date:	06/10/11	Checked By:	jdt
Sample ID:	GCL Roll #502182230 (GC-0	1)	
Description:	GSE Bentoliner NSL (white n	on-woven/gray woven)

Measuring Mass Per Unit Area of Geosynthetic Clay Liners by ASTM D 5993

Sample Size:	3 ft x 12 ft section	Drying Method:	oven	
Specimen Size, cm:	10.16 x 10.16	Drying Time, hrs:	16 hrs	
Specimen Shape:	square	Drying Temperature, °C:	110 +/- 5	
Cutting Method:	rectangular die			
Assumed Mass of Synthetic				
Component, g/m ² :	387.0			

		Moisture Content of			
Specimen	Dried GCL (m _{GCL})		Dried Clay Compo	Clay Component of	
Number	g/m²	lb/ft ²	g/m²	lb/ft ²	GCL, %
А	4319	0.88	3932	0.81	9.7
В	4504	0.92	4117	0.84	9.7
С	4378	0.90	3991	0.82	9.2
D	4029	0.83	3642	0.75	9.2
E	3865	0.79	3478	0.71	8.8
Average	4219	0.86	3832	0.78	9.3

Comments:

Assumed mass of synthetic component taken from mass per unit area results of the top and bottom textile portions of the GCL sample provided.

0.75 16/3/t HARV

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the

DUK

Index Flux of GCL Using Flex Wall Permeameter by ASTM D 5887

Permeant Fluid:

De-aired tap water

Cell #: Sample Preparation: 5/3/15 Cut with circular die, trimmed with scissors and placed into permeameter; adjacent portion moisture content = 9.2%

Parameter	Initial	Final
Height, in	0.08	0.18
Diameter, in	4.12	4.16
Area, in ²	13.3	13.6
Volume, in ³	RFR	2.45
Mass, g	48.0	71.1
Bulk Density, pcf		110
Moisture Content, %	9.2	119.3
Dry Density, pcf		50.3

CONSOLIDATION AND BACK PRESSURE SATURATION

 Initial/Final Cell Pressure, psi:
 15/3

 Initial/Final Sample Pressure, psi:
 10/3

15/80 10/75 Pressure Increment, psi: 5

*Final pressures maintained at least 48 hours prior to flow

FLOW DATA:

	Elapsed Time,	Pi	ressure, j	osi		Flow Vol	ume, cc		Average Flow,	Average Flow Rate,	Index Flux,
Date	sec	Cell	Inlet	Outlet	In	Out	ΔIn	Δ Out	CC	cc/sec	(cm²/cm²)/sec
6/16		80.0	77.0	75.0	11.00	14.20			***		
6/16	5160	80.0	77.0	75.0	11.30	13.80	0.30	0.40	0.35	6.8E-05	7.7E-07
6/16		80.0	77.0	75.0	11.30	13.80					***
6/16	9120	80.0	77.0	75.0	11.80	13.20	0.50	0.60	0.55	6.0E-05	6.9E-07
6/16		80.0	77.0	75.0	11.80	13.20					2021
6/16	8220	80.0	77.0	75.0	12.30	12.60	0.50	0.60	0.55	6.7E-05	7.6E-07
I	INDEX FLUX @ 2 PSI PRESSURE DIFFERENCE:						7.4 X	(10 ⁻⁷	cm ³ /cm ² /sec		

INDEX FLUX @ 2 PSI PRESSURE DIFFERENCE:

PERMEABILITY @ 4 PSI EFFECTIVE STRESS and 20 °C:

2.4 x 10⁻⁹ cm/sec

7.4 x 10⁻⁹

Comments:

Actual area of specimen after test used to calculate Index Flux After test height of bentonite measured only (geotextile portions not included) Permeability calculation based on height of bentonite portion only

SIE-6 cm/c

m³/m²/sec

Client:	Parson Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	4
GTX #:	10596	Tested By: meo
Test Date:	06/16/11	Checked By: bfs
Sample ID:	GCL Roll #502182230 (GC-0	1)
Description:	GSE Bentoliner NSL (white n	on-woven/gray woven)

Average Bonding Peel Strength Between the Top and Bottom Layers of Needle-Punched Geosynthetic Clay Liners (GCL) by ASTM D 6496

Sample Size:	2 ft. by 2 ft. sample	Testing Machine:	Instron 1000
Specimen Size:	4" x 8"	Testing Speed:	12 in/min
Condition:	Samples tested in the as-received condition	Gripping Surface:	Minimum 1" x 4"
Cutting Method:	rectangular die	Grips:	Curtis "Geo" Grip
Full Scale Force Range:	0 - 500 lbs.	Grip Separation:	2 inches

	Peel	Strength
Specimen Number	lbs	lbs / inch
1	17.7	4.4
2	20.2	5.1
3	21.0	5.3
4	22.2	5.5
5	17.1	4.3
Average	19.6	4.9

Comments:

> 2.5 16/in BR

Client:	Parsons Engineering	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	06/16/11	Checked By: bfs
Sample ID:	GCL Roll #502182230 (GC	-01)
Description:	GSE Bentoliner NSL (white	non-woven/gray woven)

Tensile Strength of Geosynthetic Clay Liners (GCL) by ASTM D 6768

Sample Size:	3 ft. by roll width	Testing Machine:	Instron 1000
Specimen Size:	4" x 8"	Testing Speed:	12 in/min
Condition:	Samples tested in the as-received condition	Gripping Surface:	Minimum 1" x 4"
Cutting Method:	rectangular die	Grips:	Curtis "Geo" Grip
Full Scale Force Range:	0 - 500 lbs.	Grip Separation:	4 inches

Specimen Number	Peak Tensile Strength, Ibf	Tensile Strength, Ibf/in
1	305.8	76.5
2	310.2	77.6
3	285.4	71.4
4	322.9	80.7
5	321.9	80.5
Average	309.2	77.3

Comments: Separation of GCL occurred in all specimens.

30 lb/in MARV DOB

Geomembrane

• 60-mil

60 MIL

4

Client:	Parsons Engineering Science				
Project Name:	Geosynthetic Testing				
Project Location:	Syracuse, NY				
GTX #:	10596	Tested By:	ea		
Test Date:	06/07/11	Checked By:	jdt		
Sample ID:	Roll #10215883	2 (GM-1)			
Sample Description:	60 mil textured HDPE Geomembrane				

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils	
1	60.8	
2	61.2	
3	61.1	
4	61.5	
5	60.8	
6	61.6	
7	62.1	
8	61.3	
9	62.0	
10	60.6	
Average	61.3 🗸	
Standard Deviation	0.49	
Coefficient of Variation, %	0.80	

Comments:

REVIEWED BY M. Fountain FASS Off JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineeri	ng Science	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	ea
Test Date:	06/07/11	Checked By:	jdt
Sample ID:	Roll #102158807 (GM-2)		
Sample Description:	60 mil textured HDPE Geomembrane		

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils
1	61.1
2	61.4
3	60.4
4	60.9
5	59.9
6	61.2
7	61.1
8	60.3
9	59.2
10	61.3
Average	60.7
Standard Devlation	0.69
Coefficient of Variation, %	1.14

Comments:

Client:	Parsons Engineering	Science	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	ea
Test Date:	06/07/11	Checked By:	jdt
Sample ID:	Roll #102158784 (GM-3)		
Sample Description:	60 mil textured HDPE Geomembrane		

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils	
1	60.3	
2	61.3	
3	60.7	
4	61.2	
5	59.9	
6	60.3	
7	60.6	
8	61.2	
9	59.1	
10	62.0	
Average	60.6	
Standard Deviation	0.78	
Coefficient of Variation, %	1.29	

Comments:

REVIEWED BY M. Fountain PASS W JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parcons Engineeri	na Science		
cherti		Farsons Engineering Science		
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	ea	
Test Date:	06/07/11	Checked By:	jdt	
Sample ID:	Roll #102158872 (GM-4)			
Sample Description:	60 mil textured HDPE Geomembrane			

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils	
1	60.2	
2	60.3	
3	62.1	
4	61.6	
5	60.3	
6	62.3	
7	60,3	
8	61.3	
9	60.3	
10	60.3	
Average	60.9	
Standard Deviation	0.80	
Coefficient of Variation, %	1.31	

Comments:

REVIEWED BY M. Fountain PASS GF JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering So	cience	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/08/11	Checked By:	jdt
Sample ID:	Roll #102158909 (GM-	-5)	
Sample Description:	60 mil textured HDPE Geomembrane		

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils	
1	60.1	
2	58.3	
3	61.1	
4	60.3	
5	59.9	
6	58.4	
7	61.2	
8	61.3	
9	59.5	
10	60.6	
Average	60.0	
Standard Deviation	1.03	
Coefficient of Variation, %	1.72	

Comments:

REVIEWED BY M. Fountain PASS Gr JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineer	ing Science		
Project Name:	Geosynthetic Tes	ting		
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/08/11	Checked By:	jdt	-
Sample ID:	Roll #102158854	(GM-6)		
Sample Description:	60 mil textured H	IDPE Geomembrane		

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils
1	61.3
2	60.9
3	61.4
4	57.9
5	62.6
6	59.2
7	59.4
8	62.2
9	61.2
10	61.5
Average	60.7
Standard Deviation	1.39
Coefficient of Variation, %	2.30

Comments:

REVIEWED BY M. Fountain PASS JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineeri	ng Science	
Project Name:	Geosynthetic Test	ing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/08/11	Checked By:	jdt
Sample ID:	Roll #102158890	(GM-7)	
Sample Description:	60 mil textured H	DPE Geomembrane	

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point .	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter	*	

Measurement Number	Thickness, mils	
1	58.8	
2	60.4	
3	59.8	
4	58.7	
5	60.4	
6	59.7	
7	61.6	
8	63.1	
9	61.1	
10	62.1	
Average	60.5	
Standard Deviation	1.35	
Coefficient of Variation, %	2.23	

Comments:

REVIEWED BY M. Fountain PASS JUN 142011

Client:	Parsons Engineering S	icience	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/08/11	Checked By:	jdt
Sample ID:	Roll #102158634 (GM	-8)	
Sample Description:	60 mil textured HDPE	Geomembrane	and the second second

Testing Machine:	Mitutoyo Digimatic Indicator, Model #: IDC-112E	Pressure:	2.0 oz
Presser Foot:	cone point	Loading Time:	5 seconds
Specimen Size:	2-inch-diameter		

Measurement Number	Thickness, mils
1	60.3
2	62.1
3	57.1
4	60.1
5	59.4
6	59.0
7	59.4
8	62.2
9	59.6
10	62.1
Average	60.1
Standard Deviation	1.53
Coefficient of Variation, %	2.55

Comments:

REVIEWED BY M. Fountain PASS Gy JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/08/11	Checked By:	jdt	
Sample ID:	Roll #102158832 (GM-1)			
Description:	60 mil textured HDPE Geome	mbrane		

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature, °F:	66.2 - 73.4	Die Type:	IV

				YIELD			BREAK	
Direction	Specimen	Thickness, mil	Tensile S	Tensile Strength,		Tensile Strength,		Elongation,
	rearriser		ppi	psi	%	ppi	psi	%
	1	62.0	166	2680	21	179	2889	448
	2	59.2	161	2730	19	176	2972	486
	3	60.8	166	2726	19	190	3118	494
	4	57.6	170	2947	17/	200	3482	504
Machine	5	62.6	157	2514	18	184	2937	476
	Average	60.4	164	2719	19 /	186	3080	482
	Standard Deviation	2.07	4.71	154.7	1.5	9.72	240.8	21.4
	1	59.7	166	2789	17/	156	2616	473 /
ľ I	2	62.0	171	2761	18	110	1776	374
	3	61.8	175	2828	18	187	3025	506
	4	61.4	176	2865	21	164	2664	426
Cross Machine	5	60.2	165	2750	19	163	2705	475
	Average	61.0	171	2799	19	156-	2557	451
	Standard Deviation	1.04	4.76	47.90	1.5	28.1	465.2	51.6

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 ln. ppl = pounds per lnch psi = pounds per square lnch

REVIEWED BY M. Fountain PASS GF JUN 14 2011

GeoTesting	Client: Project Name: Project Location:	Parsons Engineering Science Geosynthetic Testing Syracuse, NY		
EXPRESS	GTX #:	10596	Tested By:	meo
	Test Date:	06/08/11	Checked By:	jdt
	Sample ID:	Roll #102158807 (GM-2)		
	Description:	60 mil textured HDPE Geomer	nbrane	

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature, °F:	66.2 - 73.4	Die Type:	IV

				YIELD			BREAK	
Direction	Specimen	Thickness, mil	Tensile S	trength,	Elongation,	Tensile S	itrength,	Elongation,
	Латыст		ppi	psi	%	ppi	psi	%
	1	57.7	171	2965	17/	205	3558	519
	2	59.9	168	2807	15	178	2967	505
	3	61.4	169	2760	17	196	3202	541
	4	60.2	162	2692	17	200	3315	536
Machine	5	62.1	171	2747	15	173/	2787	432
	Average	60.2	168	2794	16	190 /	3166	507
	Standard Deviation	1.68	3.64	104.0	1.1	14.2	299.9	44.1
	1	62.3	175	2810	14/	181 🗸	2909	508
	2	60.6	177	2927	15	119 🖊	1964	399
	3	59.5	172	2893	14	192	3226	518
	4	61.2	170	2786	14	190	3108	556
Cross Machine	- 5	63.1	168	2663	17	182	2883	486
	Average	61.3	173/	2816	15	173	2818	493
	Standar d Deviation	1.40	3.70	103.4	1.3	30.5	498.1	58.5

Comments:

yield gauge length = 1.3 in, break gauge length = 2.0 in, ppi = pounds per inch psi = pounds per square inch

REVIEWED BY M. Fountain PASS JUN 14 2011

Client:	Parsons Engineering Science			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/08/11	Checked By:	jdt	
Sample ID:	Roll #102158784 (GM-3)			
Description:	60 mil textured HDPE Geome	mbrane		

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.	
Grip Separation:	2.5 in.	Grips:	ATS pneumatic	
Temperature,°F:	66.2 - 73.4	Die Type:	IV	

				YIELD			BREAK		
Direction	Specimen Number	Thickness, mil	Tensile S	trength,	Elongation,	Tensile Strength,		Elongation,	
	Hamber		ppi	psi	%	ppi	psi	%	
	1	61.4	156	2540	17 /	187	3046	492	
	2	59.7	163	2736	17	202	3383	535 🗸	
	3	58.9	171	2908	15	172	2916	487 🗸	
	4	61.6	167 /	2711	17 🗸	189	3065	477 🗸	
Machine	5	60.3	158	2619	19 🗸	188	3118	487 🗸	
	Average	60.4	163	2703	17	187 /	3106	496 🗸	
	Standard Deviation	1,11	6.36	138.8	1.4	10.7	171.8	22.7	
	1	60.2	163 🗸	2706	14 🗸	193 🗸	3200	552	
	2	61.9	162 🗸	2618	14	166 🖌	2680	465	
	3	59.2	163 🗸	2753	17 🖌	185	3125	488	
	4	59.4	178 🗸	2992	17 🗸	144	2425	418	
Cross Machine	5	61.2	162	2644	18 🗸	192	3143	577	
	Average	60.4	165	2743	16 🗸	176	2915	500	
	Standard Deviation	1.15	6.81	149.2	1.9	21.0	343.7	64.7	

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch

psi = pounds per square inch

REVIEWED BY M. Fountain MISS JUN 14 2011

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/08/11	Checked By:	jdt
Sample ID:	Roll #102158872 (GM-4)		
Description:	60 mil textured HDPE Geomer	nbrane	

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature, °F:	66.2 - 73.4	Die Type:	IV

				YIELD			BREAK	
Direction	Specimen Number	Thickness, mil	Tensile S	trength,	Elongation,	Tensile S	Strength,	Elongation,
			ppi	psi	%	ррі	psi	%
	1	61.8	193	3120	17/	206/	3336	580 /
	2	59.9	159	2654	15	194	3246	511
	3	61.6	172/	2798	18	169	2739	469
Mashina	4	61.9	171	2761	17	165	2660	408
Machine	5	62.6	166	2651	18	169	2704	446
	Average	61.5	172	2797	17/	181	2937	483
	Standard Deviation	1.01	12.6	191.8	1.2	18.4	325.8	65.9
	1	60.9	175/	2880	18/	169/	2784	483
	2	61.1	167	2729	18	175/	2865	483
	3	58.9	170	2885	15	178/	3018	520
One Marking	4	59.3	171	2878	14	150	2529	469/
cross machine	5	62.2	169	2713	17/	100	1601	388
	Average	60,5	170	2817	16/	154	2559	469
	Standard Deviation	1.36	3.16	87.77	1.8	32.5	564.1	48.9

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch REVIEWED BY M. Fountain PASS Gy JUN 14 2011

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/08/11	Checked By:	jdt
Sample ID:	Roll #102158909 (GM-5)		
Description;	60 mll textured HDPE Geomen	nbrane	

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature, F:	66.2 - 73.4	Die Type:	IV

			YIELD			BREAK		
Direction	Specimen Number	Thickness, mil	Tensile S	Tensile Strength,		Tensile Strength,		Elongation
			iqq	psi	%	ppi	psī	%
	1	60.1	168	2790	17	177/	2948	486
	2	61.1	166	2718	15	177/	2894	473
	3	59.0	160	2719	17/	172	2908	508 /
Machino	4	58.4	166	2840	15	152	2603	495
Mechine	5	61.3	166	2700	15	176	2870	468
	Average	60.0	165 🗸	2753	16	171 /	2845	486
	Standard Deviation	1.29	2.70	59.50	1.1	- 10.7	137.9	16.3
	1	58.3	157/	2695	14/	183	3131	547 -
	2	60.5	159	2636	13/	177	2922	517
1	3	59.9	172	2871	15	206	3443	521 /
Croce Machine	4	61.2	166	2713	13	180	2935	511
Cross Machine	5	59.5	168/	2831	17/	140	2356	447/
	Average	59.9	165 🖊	2749	14/	177	2957	509
Ī	Standard Deviation	1.09	6.19	98.25	1.7	23.8	396.7	37.1

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 ln. ppl = pounds per inch psi = pounds per square inch REVIEWED BY M. Fountain PASS GF JUN 14 2011

Client:	Parsons Engineering Science				
Project Name:	Geosynthetic Testing				
Project Location:	Syracuse, NY				
GTX #:	10596	Tested By:	meo		
Test Date:	06/08/11	Checked By:	jdt	_	
Sample ID:	Roll #102158854 (GM-6)				
Description:	60 mil textured HDPE Geomembrane				

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature, °F:	66.2 - 73.4	Die Type:	IV

				YIELD		BREAK		
Direction	Specimen Number Thickness, mil		Tensile S	Tensile Strength, Elor		Tensile Strength,		Elongation,
	Hamber		ppi	psi	%	ppi 🧳	psi	%
	1	61.3	167 🗸	2727	18 🗸	190	3096	538
	2	61.4	164 🗸	2677	17 🖍	102	1662	349
	3	62.6	182 🖍	2907	15 🗸	176 🗸	2812	460
	4	59.4	166 🖌	2800	17 🗸	184	3095	467
Machine	5	61.2	155	2540	18 -	160	2620	455
	Average	61.2	167	2730	17	162	2657	454
	Standard Deviation	1.14	9.61	137.21	1.22	35.5	591.3	67.6
	1	60.9	175	2880	15 1	158 🗸	2590	465
	2	57.9	156	2690	15 🗸	179	3091	530
	3	59.2	173	2923	15	168 🗸	2831	464
	4	62.2	171	2744	15	180 🗸	2891	492
Cross Machine	5	61.5	163	2649	18 🗸	116	1890	502
	Average	60.3	167	2777	16 🗸	160	2659	491
	Standard Deviation	1.77	8.17	119.3	1.3	26.1	465.2	27.6

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch REVIEWED BY M. Fountain PASS OF JUN 14 2011

and the second se	Client:	Parsons Engineering Science			
Goolocting	Project Name:	Geosynthetic Testing			
acores in y	Project Location:	Syracuse, NY			
EXPRESS	GTX #:	10596	Tested By:	méo	
	Test Date:	06/08/11	Checked By:	jdt	
	Sample ID:	Roll #102158832 (GM-7)			
	Description:	60 mil textured HDPE Geomembrane			

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature,°F:	66.2 - 73.4	Die Type:	IV

				YIELD		BREAK		
Direction	Specimen Number	Specimen Number Thickness, mil		Tensile Strength,		Tensile Strength,		Elongation,
			ppi	psi	%	ррі	psi	%
	1	58.8	170 🗸	2902	14	191	3252	448 🗸
	2	59.8	166 🗸	2777	14	179	3000	486 🗸
	3	60.4	166 🗸	2747	14	187	3092	494 🗸
	4	61.6	170 🗸	2755	15	199 🗸	3226	504 🗸
Machine	5	61.1	171 🗸	2793	14	187 🖌	3055	476 🗸
	Average	60.3	169 🗸	2795	14 🗸	188 🗸	3125	482
	Standard Deviation	1.10	2.41	62.5	0.4	7.04	109.6	21.4
	1	60.4	161 🗸	2672	13	161 🗸	2673	473√
	2	58.7	170 🗸	2889	13	183 🗸	3114	374 🗸
	3	59.7	166 🗸	2781	13	182	3045	506 🗸
	4	63.1	160 🗸	2532	13	166 🗸	2626	426
Cross Machine	5	62.1	160 🗸	2583	15 🗸	141 🗸	2265	475
	Average	60.8	163 🗸	2691	13	166	2745	451
	Standard Deviation	1.78	4.21	145.17	0.9	17.3	345.1	51.6

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch REVIEWED BY M. Fountain PASS ON JUN 14 2011

Client:	Parsons Engineering Science					
Project Name:	Geosynthetic Testing					
Project Location:	Syracuse, NY					
GTX #:	10596	Tested By:	meo			
Test Date:	06/09/11	Checked By:	jdt			
Sample ID:	Roll #102158634 (GM-8)			1		
Description:	60 mil textured HDPE Geomembrane					

			The second se
Testing Machine: Instron 1123	Testing Speed:	2.0 in./min.	
Grip Separation: 2.5 in.	Grips:	ATS pneumatic	
Temperature,°F: 66.2 - 73.4	Die Type:	IV	

-			YIELD			BREAK		
Direction	Specimen Thickness, m	Thickness, mil	Tensile Strength,		Elongation,	Tensile Strength,		Elongation,
	Hamber		ppi	psi	%	ppi	psi	%
	1	58.8	170	2902	15	191/	3246	502 /
	2	59.8	166/	2778	17/	94	1570	252
	3	60.4	165	2736	17/	179/	2973	457
	4	61.6	170	2755	17/	187	3032	477
Machine	5	61.1	170	2780	15	190	3102	491
4	Average	60.3	168	2790	16	168/	2785	436 🏑
	Standard Deviation	1.10	2.43	64.84	1.1	41.7	686.4	104
	1	60.4	161/	2672	17/	158 /	2616	474-
	2	58.7	170/	2889	17	183	3114	547
	3	59.7	166	2781	18/	141	2371	520
	4	63.1	160	2532	15	(83)	1320	314
Cross Machine	5	62.1	160	2586	18	95	1530	411
	Average	60.8	163	2692	17.	132 /	2190	453
	Standard Deviation	1.78	4.18	144.6	1.2	42.1	751.9	93.3

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch REVIEWED BY M. Fountain FRIL GF JUN 14 2011

SEE RETESTS ON FOLLOWING PAGES

Client:	Parsons Engineering Scien	се		
Project Name:	Geosynthetic Testing			
Project Location	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/17/11	Checked By:	jdt	
Sample ID:	Roll #102158634 (GM-8) - retest 1			
Description:	60 mil textured HDPE Geomembrane			

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature,°F:	66.2 - 73.4	Die Type:	IV

				YIELD			BREAK	
Direction	Specimen Number	Thickness, mil	Tensile S	trength,	Elongation,	Tensile SI	rength,	Elongation,
			ppi	/ psi	%	ррі	psi	%
	1	60.2	159	2641	14	189	3140	495
	2	61.1	171	2799	17/	195	3191	425
	3	60.1	162	2696	16	175	2912	499
	4	61.2	161	2631	15-/	129	2108	368
Machine	5	60.5	175	2893	14	154	2545	405
	Average	60.6	166	2732	15	168	2779	438
	Standard Deviation	0.51	6.99	111.9	1.3	27.1	453.5	57.3
	1	60.3	155	2570	15.	151	2504	424
	2	59.8	154	2575	14	153	2559	499
	3	61.0	168	2754	15	147	2410	467
	4	60.4	149	2467	17	124	2053	356
Cross Machine	5	60.7	165	2718	13	161	2652	423
	Average	60.4 V	158	2617	15	147	2436	434
	Standard Deviation	0.45	7.98	117.8	1.5	13.9	231.2	53.9

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

Client:	Parsons Engineering Scier	nce		
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By;	meo	
Test Date:	06/09/11	Checked By:	jdt	
Sample ID:	Roll #102158634 (GM-8)	- retest 2		
Description	60 mil textured HDPE Geomembrane			

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine:	Instron 1123	Testing Speed:	2.0 in./min.
Grip Separation:	2.5 in.	Grips:	ATS pneumatic
Temperature, °F:	66.2 - 73.4	Die Type:	IV

				YIELD			BREAK	
Direction	Specimen Number	Thickness, mil	Tensile S	trength,	Elongation,	Tensile S	trength,	Elongation,
			ppi	psi	%	ppi	psi	%
	1	59.9	160	2671	14	194	3239	452
	2	60.1	162	2696	17 🗸	192 /	3195	467
	3	60.2	154	2558	16 🦯	182	3023	498
Mashina	4	60.8	157	2582	17	151	2484	354
Machine	5	60.0	172	, 2867	15 🗸	170	2833	501
	Average	60.2 🗸	161.	2675	16	178	2955	454
	Standard Deviation	0.35	6.86	121.9	1.3	17.8	308.1	59.8
	1	60.3	163	2703	14	152	2521	425
	2	60.8	155	2549	16	167	2747	524
	3	59.4	172	2896	13	154	2593	467
Course Marshield	4	60.4	157	2599	17 /	127	2103	354
Cross Machine	5	61.4	180	2932	15	126	2052	399
	Average	60.5	165	2736	15	145	2403	434
	Standard Deviation	0.73	10.5	172.0	1.6	18.0	308.7	65.0

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

DENSITY MISCALCULATED BY GTX. SEE REVISED SHEETS FOLLOWING. GY

REVIEWED BY

M. Fountain FAIL GH

JUN 14 2011

Client:	Parsons Engineering Science
Project:	Geosynthetic Testing
Project Location:	Syracuse, NY
GTX Project No.:	10596
Test Date:	06/02/11
Tested By:	bfs
Checked By:	jdt

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Spec. #	Density, g/cm ³
1	0.9231
2	0.9231
3	0.9231
AVG,	(0.9231) MIN 0.940
	Spec. # 1 2 3 AVG.

Sample ID	Spec. #	Density, g/cm ³
Roll #102158807 (GM-2)	1	0.9232
60 mil textured HDPE Geomembrane	2	0.9232
	3	0.9232
	AVG.	0.9232 MIN 0,940

Sample ID	Spec. #	Density, g/cm ³
Roll #102158784 (GM-3)	1	0.9232
60 mil textured HDPE Geomembrane	2	0.9232
oo min textored more decontemplate	3	0.9231
	AVG.	(0.9232 MIN 0,940

Sample ID	Spec. #	Density, g/cm ³
Roll #102158872 (GM-4)	1	0.9231
60 mil textured HDPE Geomembrane	2	0.9231
	3	0.9231
	AVG.	0.9231 MTN 0 940

Sample ID	Spec. #	Density, g/cm ³
Roll #102158909 (GM-5)	1	0.9231
60 mil textured HDPE Geomembrane	2	0.9231
	3	0.9231
	AVG.	(0.9231 MIN 0.9

Comments:

Temperature: 23°C

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Form D1505, version 2

REVIEWED BY M. Fountain FAIL Gr JUN 14 2011

Client:	Parsons Engineering Science	
Project:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX Project No.:	10596	
Test Date:	06/02/11	
Tested By:	bfs	
Checked By:	jdt	

Spec. #	Density, g/cm ³
1	0.9232
2	0.9232
3	0.9232
AVG.	(0.9232) MIN 0.940
	Spec. #

Sample ID	Spec. #	Density, g/cm ³
Roll #102158890 (GM-7)	1	0.9231
60 mil toytured HDDE Coomombrano	2	0.9231
60 mil textured HDFE Geomembrane	3	0.9231
	AVG.	(0.9231) MIN 0,940

Sample ID	Spec. #	Density, g/cm ³
Roll #102158634 (GM-8)	1	0.9231
60 mil textured HDPE Geomembrane	2	0.9232
	3	0.9231
	AVG.	(0.9231) MIN 0.94

Comments:

Temperature: 23°C

Client:	Parsons Engineering Science
Project:	Geosynthetic Testing
Project Location:	Syracuse, NY
GTX Project No.:	10596
Test Date:	06/02/11
Tested By:	bfs
Checked By:	jdt

Density of Plastics by the Density-Gradient Technique by ASTM D 1505

Sample ID	Spec. #	Density, g/cm ³
Roll #102158832 (GM-1)	1	0.9451
	2	0.9449
60 mil textured HDPE Geomembrane	3	0.9450
	AVG.	0.9450
Sample ID	Spec. #	Density, g/cm ³
Roll #102158807 (GM-2)	1	0.9461
60 mil toyturad HDPE Geomembrane	2	0.9458
60 mil textured HDPE Geomemoralie	3	0.9458
	AVG.	0.9459
Sample ID	Spec. #	Density, g/cm ³
Roll #102158784 (GM-3)	1	0.9456
60 mil toyturad HDPE Geomembrane	2	0.9457
60 mil textured HDFL Geomembrane	3	0.9450
	AVG.	0.9454
Sample ID	Spec. #	Density, g/cm ³
Roll #102158872 (GM-4)	1	0.9449
co will be dured UDDE Coomombrano	2	0.9445
60 mil textured HDPE Geomembrane	3	0.9448
	AVG,	0.9447 🗸
Sample ID	Spec. #	Density, g/cm ³
Roll #102158909 (GM-5)	1	0.9448
60 mil toytured HDPE Geomembrane	2	0.9448
	3	0.9447
	AVG,	0.9447

Comments:

Temperature:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

23°C

Client:	Parsons Engineering Science
Project:	Geosynthetic Testing
Project Location:	Syracuse, NY
GTX Project No.:	10596
Test Date:	06/02/11
Tested By:	bfs
Checked By:	jdt

Sample ID	Spec. #	Density, g/cm ³
Roll #102158854 (GM-6)	1	0.9457
60 mil textured HDPE Geomembrane	2	0.9457
	3	0.9457
	AVG.	0.9457

Sample ID	Spec. #	Density, g/cm ³
Roll #102158890 (GM-7)	1	0.9445
60 mil textured HDPE Geomembrane	2	0.9446
	3	0.9447
	AVG.	0.9446

Sample ID	Spec. #	Density, g/cm ³
Roll #102158634 (GM-8)	1	0.9448
co	2	0.9453
60 mil textured HDPE Geomembrane	3	0.9451
	AVG.	0.9451

Comments:

Temperature: 23°C

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

REVIEWED BY M. Fountain PASS OF JUN 18 2011

 Client:
 Parsons Engineering Science

 Project Name:
 Geosynthetics Testing

 Project Location:
 Syracuse, NY

 GTX #:
 10596
 Tested By: jdw

 Test Date:
 06/07/11
 Checked By: jdt

Carbon Black in Olefin Plastics by ASTM D 1603

Sample ID	Specimen Number	Carbon Black, %
Roll #102158832 (GM-1)	1	2.65
60 mil textured HDPE Geomembrane	2	2.44
	Average	2.54

Sample ID	Specimen Number	Carbon Black, %
Roll #102158807 (GM-2)	1	2.65
60 mil textured HDPE Geomembrane	2	2.63
do min textored more deomembrane	Average	2.64

Sample ID	Specimen Number	Carbon Black, %
Roll #102158784 (GM-3)	1	2.52
60 mil textured HDPE Geomembrane	2	2.54
	Average	2.53

Sample ID	Specimen Number	Carbon Black, %	
Roll #102158872 (GM-4)	1	2.59	
60 mil textured HOPE Geomembrane	2	1.97	
	Average	2.28	

Sample ID	Specimen Number	Carbon Black, %	
Roll #102158909 (GM-5)	1	2.22	
60 mil textured HDPE Geomembrane	2	2.27	
se him textered hibre desinembrane	Average	2,24	

Comments:

REVIEWED BY M. Fountain PASS GF JUN 1 4 2011

Client:	Parsons Engineering Science	
Project Name:	Geosynthetics Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: jdw
Test Date:	06/07/11	Checked By: jdt

Sample ID	Specimen Number	Carbon Black, %
Roll #102158854 (GM-6)	1	2,74
60 mil textured HDBE Geomembrane	2	2.09
of him textured more decomenionalic	Average	2.42

Sample ID 🕢	Specimen Number	Carbon Black, %	
Roll #102158890 (GM-7)	1	2.27	
60 mil textured HDPE Goomembrane	2	2.38	
do mil textored HDPE Geomemorane	Average	2.32	

Sample ID Specimen Number Carbon Black, %		Carbon Black, %
Roll #102158634 (GM-8)	1	2.21
60 mil tayturad HDDE Coomombrano	2	2,37
oo min textured HDPE Geomembrane	Average	2.29

Comments:

REVIEWED BY M. Fountain PASS Gy JUN 142011

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	06/07/11	Checked By: jdt	

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _r 1	R ₁ 2
Roll #102158832 (GM-1)	1	1	1
	2	1	1
60 mil textured HDPE Geomembrane	3	1	1
	4	1	1
	5	1 /	1 /
	Average Lowest Quality Observed		1

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _/ 1	R ₁ 2
Roll #102158807 (GM-2)	1	1	1
	2	1	1
60 mil textured HDPE Geomembrane	3	1	1
	4	1	1
	5	1 /	1 /
	Average Lowest Quality Observed		$1 \\ 1$

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _I 1	R _f 2
Ball #103159394 (CM 2)	1	1	1
Roll #102158784 (GM-3)	2	1	1
	3	1	1
Geomembrane	4	1	1
	5	1 /	1 /
	Average Lowest Quality Observed		1 1

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _f 1	R ₁ 2
B-1 (1100150070 (CM 4)	1	1	1
Roll #102158872 (GM-4)	2	1	1
	3	1	1
Geomembrane	4	1	1
	5	1	1
	Average Lowest Quality Observed		1 /

Comments:

Method of preparation: Microtome

REVIEWED BY M. Fountain PASS Gy JUN 14 2011

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	06/07/11 Checked By: jdt		

Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics by ASTM D 5596

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _I 1	R ₁ 2
	1	1	1
Roll #102158909 (GM-5)	2	1	11
	3	1	1
60 mil textured HDPE Geomembrane	4	1	1
	5	1 /	1
	Average Lowest Quality Observed		1 /

Sample ID	Specimen Number	Category Rating Random Field of View	
Benipie 10		R ₁ 1	R ₁ 2
	1	1	1
Roll #102158854 (GM-6)	2	1	1
	3	1	1
60 mil textured HDPE Geomembrane	4	1	1
	5	1	1
	Average Lowest Quality Observed	1 1	

Sample ID	Specimen Number	Category Rating Random Field of View	
		R _f 1	R,2
Roll #102158890 (GM-7) 60 mil textured HDPE Geomembrane	1	1	1
	2	1	1
	3	1	1
	4	1	1
	5	1	1
	Average Lowest Quality Observed		

Sample ID	Specimen Number	Category Ra Random Field o	ting f View
	·	R _f 1	R _I 2
Roll #102158634 (GM-8)	1	1	1
	2	1	2
60 mil textured HDPE Geomembrane	3	1	1
	4	1	1
	5	1 /	1
	Average Lowest Quality Observed		

Comments: Method of preparation: Microtome

Client:	Parsons Engineer	ring Science		
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #;	10596	Tested By:	meo	
Test Date:	06/07/11 Checked By: jdt			
Sample ID:	Roll #102158832	2 (GM-1)		
Description:	60 mil textured HDPE Geomembrane			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004 constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine I	Direction -	Cross Machine Direction	
	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, lb
.1 .	60.8	60	61.3	56
2	61.2	64	62.0	63
3	61.1	62	60.6	63
4	59.5	- 60	59.6	57
5	57.9 V	60	60.2	59
6	61.5	59	58.9	58
7	58.9	58	58.7	61
8	60.8	62	60.4	59
9	61.6	61	61.7	62
10	62.1	61	62.1	58
Average	60.5	61	60.5 V	60
Standard Deviation	1.34	1.9	1.23	2.5

Comments:

REVIEWED BY M. Foundain PASS GY JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science				
Project Name:	Geosynthetic Testing				
Project Location:	Syracuse, NY				
GTX #:	10596	Tested By:	meo		
Test Date:	06/07/11 Checked By: jdt				
Sample ID:	Roll #102158807 (GM-2)				
Description:	60 mil textured HDPE Geomembrane				

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Machine Direction	
	Thickness, mll	Tear Resistance, Ib	Thickness, mil	Tear Resistance, lb
1	61.1	60	62.3	56
2	62.1	61	61.1	60
3	61,4	59	62.2	60
4	59.8	60	60.3	61
5	60.4	61	59.7	62
6	60.9	63	59.2	59
7	58.4	59	61.3	63
8	57.9	60	58.9	61
9	59.9	61	58.9	63
10	61.2	59	61.8	62
Average	60.3	60	60.5	61
Standard Deviation	1.32	1.3	1.34	2.1

Comments:

REVIEWED BY M. Fountain PASS GY JUN 14 2011

Notes: (nese results apply only to the sample tested for the specific test conditions. I ne test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineer	ing Science		
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/07/11	Checked By:	jdt	
Sample ID:	Roll #102158784	(GM-3)		
Description:	60 mil textured HDPE Geomembrane			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Chasiman Number	Machine	Direction	Cross Machine Direction	
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, It
1	62.3	61	60.3	57
2	60.3 e	60	60.6	59
3	61.3	62	63.1	62
4	58.7	62	61.2	62
5	59.1	60	59.0	57
6	60.7	56	59.1	55
7	63.3	56	58.8	56
8	61.2	62	57.2	59
9	59 .9	64	62.4	60
10	58.8	63	62.0	61
Average	60.5	58	60.3	59
Standard Deviation	1.51	2.7	1.85	2.4

Comments:

REVIEWED BY M. Fountain PASS OF JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed tollow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science			
Project Name:	Geosynthetic Testing			
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/07/11 Checked By: jdt			
Sample ID:	Roll #102158872 (0	iM-4)		
Description:	60 mil textured HDPE Geomembrane			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004 constant rate of extension (CRE) tensile testing machine

	Machine	Machine Direction		ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib
- 1	58.6	57	60.3	59
2	59.2	60	61.3	64
3	60.2	63	58.8	62
4	58.7	64	60.7	58
5	57.8	62	62.9	57
6	60.3	58	60.3	57
7	62.1	64	58.0	62
8	61.6	59	59.1	57
9	60.3	60	59.2	59
10	62.3	58	61.0	61
Average	60.1	58	60.1	60
Standard Deviation	1.54	2.7	1.43	2.6

Comments:

REVIEWED BY M. Fountain PASS OF JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/07/11	Checked By:	jdt
Sample ID:	Roll #102158909 (GM-5)		
Description:	60 mil textured HDPE Geomembrane		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Mach	ine Direction
	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, lb
1	63.4	57	60.1	59
2	61.6	65	59.1	58
3	59.6	63	59.6	58
4	60.0	64	62.3	59
5	60.9	60	58.7	57
6	57.8	56	61.4	54
7	60.0	57	63.2	56
8	61.4	59	61.4	60
9	60.8	63	59.2	62
10	62.3	57	58.5	63
Average	60.8	60	60.3 V	59 /
Standard Deviation	1.55	3.4	1.61	2.6

Comments:

REVIEWED BY M. Fountain PASS GY JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/07/11	Checked By:	jdt
Sample ID:	Roll #102158854 (GM-6)		
Description:	60 mll textured HDPE Geomembrane		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004 constant rate of extension (CRE) tensile testing machine

Cracimen Number	Machine	Machine Direction		ine Direction
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, Ib
1	62.9	60	58.9	59
2	61.8	58	57.9	61
3	58.5	60	60.5	65
4	59.1	62	61.2	62
5	59.4	63	59.6	60
6	57.5	58	59.8	60
7	60.6	67	62.3	59
8	60.7	68	62.6	60
9	62.1	61	62.1	61
10	61.8	58	60.5	58
Average	60.4	61	60.5 -	60
Standard Deviation	1.76	3.5	1.54	1.9

Comments:

REVIEWED BY M. Fountain PASS GY JUN 14 2011

Client:	Parsons Engineer	Parsons Engineering Science		
Project Name:	Geosynthetic Tes	Geosynthetic Testing		
Project Location:	Syracuse, NY			
GTX #:	10596	Tested By:	meo	
Test Date:	06/08/11	Checked By:	jdt	
Sample ID:	Roll #102158890 (GM-7)			
Description:	60 mil textured HDPE Geomembrane			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004 constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Machine Direction		ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib
1	62.5	58	60.6	54
2	60.4	60	56.9	59
3	60.2	59	59.3	60
4	62.1	62	58.9	60
5	59.1	62	62.3	61
6	57.3	62	60.2	59
7	62.4	64	60.9	59
8	62.0	62	59.1	53
9	63.8	64	63.1	61
10	61.2	59	62.5	63
Average	61.1	61	60.4 🦯	59
Standard Deviation	1.91	1.9	1.92	3.1

Comments:

REVIEWED BY M. Fountgin PASS OF JUN 142011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed to low accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By:	meo
Test Date:	06/08/11	Checked By:	jdt
Sample ID:	Roll #102158634 (GM-8)		
Description:	60 mil textured HDPE Geomembrane		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Spacimon Number	Machine	Direction	Cross Mach	ine Direction
specifien Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib
1	63.4	60	60.8	62
2	61.7	65	60.6	62
3	62.0	66	57.3	61
4	58.8	67	59.1	65
5	59.2	63	62.0	63
6	60.4	59	63.2	63
7	58.5	59	60.1	61
8	62.1	60	58.9	62
9	61.3	65	58.7	63
10	60.9	65	61.7	58
Average	60.8	63	60.2	62
Standard Deviation	1.61	3.1	1.77	1.8

Comments:

REVIEWED BY M. Fountain PASS OF JUN 14 2011

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	
Test Date:	06/08/11 Checked By: jdt		
Sample ID:	Roll #102158832 (GM-1)		
Description:	60 mil textured HDPE Geomembrane		

Testing Machine: Instron 1000 Testing Speed: 12 in/min Clamping Method: Circular Clamp Attachment Specimen Number Puncture Resistance, Ibs 1 139 2 144 3 159 4 148 5 154 Average 149 • Standard Deviation 8.10 Coefficient of Variation, % 5.44

Comments:

REVIEWED BY M. Fountain PASS GIF JUN 1 4 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	
Test Date:	06/08/11	Checked By: jdt	
Sample ID:	Roll #102158807 (GM-2)		
Description:	60 mil textured HDPE Geomembrane		

Testing Machine: Clamping Method: Instron 1000

Circular Clamp Attachment

Testing Speed: 12 in/min

Specimen Number	Puncture Resistance, Ibs
1	156
2	152
3	154
4	154
5	154
Average	154
Standard Deviation	1.2
Coefficient of Variation, %	0.8

Comments:

REVIEWED BY M. Fountain PASS JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	
Test Date:	06/08/11	Checked By: jdt	
Sample ID:	Roll #102158784 (GM-3)		
Description:	60 mil textured HDPE Geomembrane		

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment		
Specimer	Number	Puncture Resistance, It)S
		154	
	2	151	
	3	156	
4		149	
5		153	
Average		153	
Standard Deviation		2.76	
Coefficient of	Coefficient of Variation, %		

Comments:

REVIEWED BY M. Fountain PASS Gy JUN 14 2011

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	06/08/11 Checked By: jdt	
Sample ID:	Roll #102158872 (GM-4)	
Description:	60 mil textured HDPE Geomembrane	

Testing Speed:

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Clamping Method: Instron 1000 Circular Clamp Attachment

Specimen Number	Puncture Resistance, Ibs	
1	156	
2	151	
3	156	
4	161	
5	155 🦯	
Average	156 🗸	
Standard Deviation	3.60	
Coefficient of Variation, %	2.31	

Comments:

REVIEWED BY M. Fountain PASS OF JUN 14 2011

12 in/min

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	-
Test Date:	06/08/11	Checked By: jdt	
Sample ID:	Roll #102158909 (GM-5)		
Description:	60 mil textured HDPE Geomembrane		

Testing Machine: Clamping Method: Instron 1000 Circular Clamp Attachment

Testing Speed: 12 in/miл

Specimen Number	Puncture Resistance, Ibs
1	149
2	151
3	157
4	152
5	152
Average	152
Standard Deviation	3.04
Coefficient of Variation, %	2.00

Comments:

REVIEWED BY M. Fountain PASS GF JUN 14 2011

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	06/08/11	Checked By: jdt
Sample ID:	Roll #102158854 (GM-6)	
Description:	60 mil textured HDPE Geomembrane	

Testing Machine: Clamping Method: Instron 1000 Circular Clamp Attachment

Testing Speed: 12 In/min

Specimen Number	Puncture Resistance, lbs
1	153
2	156
3	158
4	152
5	154
Average	154
Standard Deviation	2.32
Coefficient of Variation, %	1.50

Comments:

REVIEWED BY M. Fountain PASS Gy JUN 1 4 2011

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	06/08/11 Checked By: jdt	
Sample ID:	Roll #102158890 (GM-7)	
Description:	60 mil textured HDPE Geomembrane	

Testing Machine: Instron 1000 Testing Speed: 12 in/min Clamping Method: Circular Clamp Attachment Puncture Resistance, Ibs Specimen Number 149 1 151 2 3 151 4 152 5 143 Average 149 3.42 Standard Deviation 2.29 Coefficient of Variation, %

Comments:

REVIEWED BY M. Fountain PASS GF JUN 1 4 2011

Notes; These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	06/08/11 Checked By: jdt	
Sample ID:	Roll #102158634 (GM-8)	
Description:	60 mil textured HDPE Geomembrane	

Testing Machine: Clamping Method: Instron 1000 Circular Clamp Attachment Testing Speed: 12 in/min

Specimen Number	Puncture Resistance, Ibs
1	148
2	152
3	157
4	156
5	154
Average	153 -
Standard Deviation	3.48
Coefficient of Variation, %	2.27

Comments:

REVIEWED BY M. Fountain PASS GMF JUN 14 2011

Sample Number GM-9A Was Collected for Interface Friction Testing

N 197

Geotextile

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	07/29/11	Checked By: bfs
Sample ID:	GT-001	# 130 401 943
Description:	Black, nonwoven geotextile	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd ²	Mass Per Unit Area, g/m²
1	25.3	858
2	25.5	864
3	25.1	853
4	24.9	844
5	24.8	839
Average	25.1	851
Standard Deviation	0.29	9.9

Comments:

Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	07/21/11	Checked By: bfs
Sample ID:	GT-001	
Description:	Black, nonwoven geotextile	

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Clamping Method:	Circular Clamp Attachment	chment	
Specime	n Number	Puncture Resistance, It)S
	1	368	
	2	348	
	3	353	
	4	276	
	5	336	
	6	413	
	7	307	
	8	320	
	9	346	
	10	426	
	11	385	
	12	350	
	13	387	
	14	350	
	15	367	
Ave	erage	350	
Standard	Deviation	367	
Coefficient o	f Variation, %	105	

Comments:

and the second	Client:	Parsons Engineeri	ng Science	
Goolocting	Project Name:	Geosynthetic Testing		
Georesting	Project Location:	Syracuse, NY		
EXPRESS	GTX #:	10596	Tested By: meo	
	Test Date:	08/02/11	Checked By: bfs	
	Sample ID:	GT-001		
	Description:	Black, nonwoven geotextile		

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	3 in	Grips:	Curtis "Geo" Grip
Maximum Obtainable Load:	2500 lb	Padding:	
		Condition:	dry

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	554	138	761	104
2	593	131	776	111
3	649	131	843	109
4	608	134	864	107
5	563	121	864	104
6	654	141	918	109
7	626	134	909	102
8	564	124	964	115
9	557	124	818	108
10	588	124	928	99.0
Average	596	130	864	107
Standard Deviation	37.5	6.73	66.8	4.66
Coefficient of Variation, %	6.30	5.17	7.73	4.37

Comments:

Client:	Parsons Engineering Scier	ice	
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: me	90
Test Date:	08/02/11	Checked By: bfs	3
Sample ID:	GT-001		
Sample Description:	Black, nonwoven geotexti	le	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, Ib	
Specimen Number	Machine Direction	Cross Machine Direction
1	250	442
2	241	515
3	212	427
4	232	392
5	264	407
6	236	458
7	264	424
8	216	403
9	252	386
10	217	437
Average	238	429
Standard Deviation	19.2	37.9
Coefficient of Variation, %	8.07	8.83

Comments:

Sample Number GT-02 Was Collected for Interface Friction Testing

Client:	Parsons Engineering Scien	се
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: meo
Test Date:	07/29/11	Checked By: bfs
Sample ID:	GT-003	4 13040 1857
Description:	Black, nonwoven geotextil	e

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	23.9	810
2	24.5	832
3	24.2	820
4	23.8	806
5	23.9	811
Average	24.1	815
Standard Deviation	0.31	10.4

Comments:

Specimen Size, in: 4 inch x 8 inch

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Note GT. 002 used for friction taken from GT.001

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	08/01/11	Checked By: bfs
Sample ID:	GT-003	
Description:	Black, nonwoven geotextile	

Testing Machine:	Instron 1000	Testing Speed:	12 in/min		
Clamping Method:	Circular Clamp Attachment				
Specime	n Number	Puncture Resistance, lbs			
	1	342			
	2	340			
	3	359			
	4	381			
	5	315			
	6	331			
	7	347			
	8	311			
	9	350			
	10	351			
	11	366			
	12	332			
	13	278			
	L4	293			
1	15	355			
Ave	rage	337			
Standard	Deviation	27.7			
Coefficient o	f Variation, %	8.21			

Comments:

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:	Instron 1000		Testing Speed:	12 in/min
Grip Separation:	3 in	. (g. 1)	Grips:	Curtis "Geo" Grip
Maximum Obtainable Load:	500 lb		Padding:	()
			Condition:	dry

	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	504	122	811	110
2	540	131	775	112
3	616	128	778	108
4	503	131	784	97.2
5	598	131	896	111
6	618	141	847	97.5
7	559	133	960	104
8	580	141	889	99.2
9	530	128	970	97.1
10	571	134	836	103
Average	562	132	855	104
Standard Deviation	42.3	5.79	72.0	6.01
Coefficient of Variation, %	7.53	4.39	8.42	5.78

Comments:

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	
Test Date:	08/02/11	Checked By: bfs	
Sample ID:	GT-003		
Sample Description:	Black, nonwoven geotextile		

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, lb		
Specimen Number	Machine Direction	Cross Machine Direction	
1	248	406	
2	266	380	
3	194	385	
4	203	407	
5	234	386	
6	185	427	
7	213	461	
8	207	489	
9	211	373	
10	197	464	
Average	216	418	
Standard Deviation	25.9	40.9	
Coefficient of Variation, %	12.0	9.80	

Comments:

Client:	Parsons Engineering	Science	
Project Name:	Geosynthetic Testing	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	
Test Date:	07/29/11	Checked By: bfs	
Sample ID:	GT-004 👫	130 401 774	
Description:	Black, nonwoven geo	textile	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd ²	Mass Per Unit Area, g/m ²
1	25.7	872
2	25.2	853
3	25.3	859
4	26.7	907
5	26.3	893
Average	25.9	877
Standard Deviation	0.67	22.7

Comments:

Specimen Size, in: 4 inch x 8 inch

the second se			
Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	08/02/11	Checked By: bfs	
Sample ID:	GT-004		
Description:	Black, nonwoven geotextile		
Test Date: Sample ID: Description:	08/02/11 GT-004 Black, nonwoven geotextile	Checked By: bfs	_

Testing Speed:

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Clamping Method: Instron 1000 Circular Clamp Attachment

12 in/min

Specimen Number	Puncture Resistance, Ibs
1	351
2	324
3	296
4	339
5	346
6	355
7	360
8	295
9	343
10	406
11	303
12	347
13	336
14	371
15	377
Average	343
Standard Deviation	30.4
Coefficient of Variation. %	8.86

Comments:

Contraction of the second	Client:	Parsons Engineering Science	
Colocting	Project Name:	Geosynthetic Testing	
seolesting	Project Location:	Syracuse, NY	
XPRESS	GTX #:	10596	Tested By: meo
	Test Date:	08/02/11	Checked By: bfs
	Sample ID:	GT-004	
	Description:	Black, nonwoven geotextile	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	3 in	Grips:	Curtis "Geo" Grip
Maximum Obtainable Load:	2500 lb	Padding:	
		Condition:	dry

	Machine	Machine Direction		Cross Machine Direction	
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	
1	589	134	913	104	
2	587	138	855	101	
3	646	134	783	104	
4	592	138	905	104	
5	598	131	906	103	
6	581	128	918	103	
7	635	134	778	112	
8	595	135	982	103	
9	609	131	891	101	
10	572	124	802	107	
Average	600	133	873	104	
Standard Deviation	23.4	4.35	67.1	3.22	
Coefficient of Variation, %	3.90	3.28	7.69	3.09	

Comments:

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: meo	
Test Date:	08/02/11	Checked By: bfs	
Sample ID:	GT-004		
Sample Description:	Black, nonwoven geo	otextile	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, lb		
Specimen Number	Machine Direction	Cross Machine Direction	
1	221	466	
2	248	515	
3	273	454	
4	276	439	
5	229	465	
6	224	536	
7	240	498	
8	231	488	
9	231	564	
10	287	498	
Average	246	492	
Standard Deviation	24.0	38.4	
Coefficient of Variation, %	9.75	7.80	

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	03/22/12	Checked By: bfs
Sample ID:	GT-005 Retest	
Description:	Black, nonwoven geotextil	e

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd ²	Mass Per Unit Area, g/m ²
1	27.0	916
2	25.6	869
3	24.3	824
4	24.6	836
5	27.6	935
Average	25.8	876
Standard Deviation	1.44	48.8

Comments:

Specimen Size, in: 4 inch x 8 inch

GC .

а.

Client: Parsons Engineering Science Project Name: Geosynthetic Testing Project Location: Syracuse, NY GTX #: Tested By: bfs 10596 Test Date: 03/23/12 Checked By: jdt Sample ID: GT-005 Retest Sample Description: Black, nonwoven geotextile

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	196	379	
2	188	369	
3	238	382	
4	170	367	
5	198	357	
6	202	411	
7	188	409	
8	175	391	
9	194	344	
10	206	413	
Average	195	382	
Standard Deviation	18.7	23.8	
Coefficient of Variation, %	9.56	6.24	

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Form D 4533, version 2

Client:	Parsons Engineer	ing Science	
Project Name:	Geosynthetic Tes	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: bfs	
Test Date:	03/23/12	Checked By: jdt	
Sample ID:	GT-005 Retest		
Description:	Black, nonwoven	geotextile	

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

T 11 14 11			
lesting Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	3 in	Grips:	Curtis "Geo" Grip
Maximum Obtainable Load:	2500 lb	Padding:	
		Condition:	dry

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	616	130	676	102
2	634	134	763	94
3	587	124	819	89
4	577	139	677	106
5	624	137	801	103
6	582	133	810	90
7	619	133	826	94
8	600	131	668	94
9	549	124	782	90
10	542	126	786	87
Average	593	131	761	95
Standard Deviation	31,4	5.17	62.8	6.6
Coefficient of Variation, %	5.29	3,95	8.26	6.9

Comments:

Notes: These results apply only to the sample tested for the specific test conditions. The test procedures employed follow accepted industry practice and the indicated test method. GeoTesting Express has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

Form D4632, revision 2

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing	Geosynthetic Testing	
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	03/26/12	Checked By: bfs	
Sample ID:	GT-005 Retest		
Description:	Black, nonwoven geotextile		

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Clamping Method:	Instron 1000	Testing Speed:	12 in/min
stamping rection.	Circular Clamp Attachment		
Specime	n Number	Puncture Resistance. It	15
	1	388	
	2	410	
	3	369	
	4	341	
	5	398	
	6	363	
	7	432	
	8	380	
	9	363	
	0	420	
1	1	337	
1	2	358	
1	3	388	
1	4	396	
1	5	436	
Aver	age	385	
Standard	Deviation	30.9	
Coefficient of	Variation, %	8.01	

Comments:

Client:	Parsons Engineering Scier	nce
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	08/04/11	Checked By: jdt
Sample ID:	Geotextile: Roll #130401690	
Description:	Black, nonwoven geotextile	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd ²	Mass Per Unit Area, g/m ²
1	22.2	751
2	21.5	729
3	23.8	807
4	24.9	846
5	24.7	838
Average	23.4 🛞	794
Standard Deviation	1.53	52.0

Comments:

Specimen Size, in: 4 inch x 8 inch

Ð Se RETAST 67-5

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	08/04/11	Checked By: jdt
Sample ID:	Geotextile: Roll #130401690	
Sample Description:	Black, nonwoven geotextile	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed	12 in/min
Grip Separation:	1 in 🐁	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, Ib		
Specimen Number	Machine Direction	Cross Machine Direction	
1	165	364	
2	172	337	
3	194	411	
4	182	353	
5	144	439	
6	188	319	
7	169	338	
8	154	291	
9	173	310	
10	138	298	
Average	168 🛩	346	
Standard Deviation	18.2	48.0	
Coefficient of Variation, %	10.83	13.89	

Comments:

Client:	Parsons Engineering Scien	ce
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	08/04/11	Checked By: jdt
Sample ID:	Geotextile: Roll #130401690	
Description:	Black, nonwoven geotextile	
Project Location: GTX #: Test Date: Sample ID: Description:	Syracuse, NY 10596 08/04/11 Geotextile: Roll #1304016 Black, nonwoven geotextil	Tested By: ad Checked By: jdt 90 e

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	3 in	Grips:	Curtis "Geo" Grip
Maximum Obtainable Load:	2500 lb	Padding:	77.7
		Condition:	dry

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %
1	523	138	755	87
2	553	101	730	90
3	564	129	924	84
4	568	124	884	90
5	518	118	986	84
6	512	121	935	77
7	563	118	926	84
8	502	113	881	79
9	512	119	729	82
10	491	115	747	82
Average	531	120	850 🦯	84
Standard Deviation	28.5	9.80	98.8	4.25
Coefficient of Variation, %	5,37	8,19	11.63	5.07

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	08/04/11	Checked By: jdt
Sample ID:	Geotextile: Roll #130401690	
Description:	Black, nonwoven geotextile	

Testing Speed:

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Clamping Method: Instron 1000 Circular Clamp Attachment

12 in/min

Specimen Number	Puncture Resistance, lbs	
1	352	
2	287	
3	289	
4	300	
5	336	
6	236	
7	316	
8	331	
9	353	
10	341	
11	285	
12	299	_
13	359	
14	281	
15	265	
Average	309	
Standard Deviation	36.2	_
Coefficient of Variation, %	11.71	

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	10/10/11	Checked By: jdt
Sample ID:	GT-006; Roll #130405474	
Description	Black, nonwoven geotextile	
Test Date: Sample ID: Description:	10/10/11Checked By: jdtGT-006; Roll #130405474Black, nonwoven geotextile	

Mass Per Unit Area of Geotextiles by ASTM D 5261

Specimen Number	Mass Per Unit Area, oz/yd²	Mass Per Unit Area, g/m²
1	23.8	806
2	24.3	822
3	27.1	919
4	27.7	940
5	27.2	921
Average	26.0 -	882
Standard Deviation	1.85	62.7

Comments:

Specimen Size, in: 4 inch x 8 inch

Client:	Parsons Engineering Science		
Project Name:	Geosynthetic Testing		
Project Location:	Syracuse, NY		
GTX #:	10596	Tested By: ad	
Test Date:	10/10/11	Checked By: jdt	
Sample ID:	GT-006; Roll #130405474		
Sample Description:	Black, nonwoven geotextile	e	

Index Trapezoidal Tearing Strength of Geotextiles by ASTM D 4533

Testing Machine:	Instron 1000	Testing Speed:	12 in/mln
Grip Separation:	1 in	Grips:	Curtis "Geo" Grip
Condition:	dry		

	Maximum Tear Strength, lb				
Specimen Number	Machine Direction	Cross Machine Direction			
1	198	407			
2	175	410			
3	229	406			
4	176	432			
5	204	432			
6	209	399			
7	243	415			
8	186	393			
9	194	438			
10	209	370			
Average	202 -	410 -			
Standard Deviation	21.7	20.6			
Coefficient of Variation, %	10.7	5.02			

Comments:

Client:	Parsons Engineering Science				
Project Name:	Geosynthetic Testing				
Project Location:	Syracuse, NY				
GTX #:	10596	Tested By: ad			
Test Date:	10/10/11	Checked By: jdt			
Sample ID:	GT-006; Roll #130405474				
Description:	Black, nonwoven geotextile				

Breaking Load and Elongation of Geotextiles (Grab Method) by ASTM D 4632

constant rate of extension (CRE) tensile testing machine

Testing Machine:	Instron 1000	Testing Speed:	12 in/min
Grip Separation:	3 in	Grips:	Curtis "Geo" Grip
Maximum Obtainable Load:	2500 lb	Padding:	
		Condition:	dry

	Machine	Direction	Cross Machine Direction		
Specimen Number	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	Maximum Breaking Strength, Ib	Apparent Breaking Elongation, %	
1	548	134	861	127	
2	586	142	859	101	
3	626	144	1032	107	
4	658	150	1059	116	
5	592	144	775	130	
6	667	147	889	120	
7	633	154	1025	122	
8	633	134	1010	113	
9	614	147	892	117	
10	572	144	752	124	
Average	- 613	144	• 915	118	
Standard Deviation	37.9	6.31	110	8.94	
Coefficient of Variation, %	6.18	4.38	12.0	7.60	

Comments:

Client:	Parsons Engineering Science	
Project Name:	Geosynthetic Testing	
Project Location:	Syracuse, NY	
GTX #:	10596	Tested By: ad
Test Date:	10/10/11	Checked By: jdt
Sample ID:	GT-006; Roll #130405474	
Description:	Black, nonwoven geotextile	

Index Puncture Resistance of Geomembranes and Related Products by ASTM D 4833

Testing Machine: Clamping Method:

Instron 1000 Circular Clamp Attachment

12 in/min

Testing Speed:

Specimen Number	Puncture Resistance, lbs		
1	383		
2	355		
3	392		
4	357		
5	338		
6	343		
7	314		
8	303		
9	398		
10	347		
11	340		
12	397		
13	372		
14	399		
15	395		
Average			
Standard Deviation	31.5		
Coefficient of Variation, %	8.70		

Comments:

PARSONS - ONONDAGA LAKE PHYSICAL, MECHANICAL, AND HYDRAULIC PROPERTIES

24 oz/square yard Nonwoven Geotextile GT-007 (80 day UV exposure) SGI Lab Sample ID: S16391

Test	t Physical Properties				Me	chanical	Properties						Hydrau	ilic Propertie	s
No.	Thickness	Mass	Mullen Burst	Puncture	CBR Puncture		Grab	Tensile		Trapezo	idal Tear	ŀ	AOS	Perm	ittivity
	ASTM	ASTM	ASTM D 3786	ASTM D 4833	ASTM D 6241		ASTM	D 4632		ASTM	D 4533	ASTN	4 D 4751	ASTM	D 4491
	D 5199	D 5261]	MD	2	KD	Stre	ngth	O95	Sieve No.	Flow Rate	Permittivity
				2271.22	/	Strength	Elongation	Strength	Elongation	MD	XD	1	No.	Rate	
	(mils)	(oz/yď²)	(psi)	(lbs)	(lbs)	(lbs)	(%)	(lbs)	(%)	(lbs)	(lbs)	(mm)	(-)	(gal/min/ft ²)	(1/s)
1		25.5		365		637	76.3	621	76.6	198	345				
2		25.9		405		580	68.3	995	66.4	176	310				
3		26.8		346		687	76.3	908	65.3	191	337				
4		23.4		368		664	79.3	960	67.3	191	269	_			
5		26.0		375		601	74.0	925	66.2	169	303				
6		25.4				588	82.7	812	70.2	180	309				
7		24.9				597	76.7	834	71.8	191	387				
8		25.7				585	91.3	867	72.8	175	337				
9		25.9				602	85.3	846	68.2	211	405				
10		25.8				593	75.3	861	65.7	187	345				
11															
12															
13															
14															
15															
Mean:		25.5		372		613	78.6	863	69.1	187	335				
STD:		0.9		21		37	6.5	103	3.7	12	40				

NOTES:

MD = machine direction, XD = cross-machine direction, STD = standard deviation, and NA = not applicable.

	DATE OF REPORT:	3/30/2012
	FIGURE NO.	1
SGI TESTING SERVICES LIC	PROJECT NO.	SGI10043
	DOCUMENT NO.	
	FILE NO.	

APPENDIX H

Installer's Certificate of Acceptance of Subgrade Surface

	INSTALLER		PROJECT
NAME:	Chenango Contracting	NAME:	Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road		
10	Johnson City, NY 13790	LOCATI	ON: 522 Gerelock Road
10 			Camillus, NY 13209
INSTALLER			
AUTHORIZED			
REPRESENTAT	VE: Martin Bystrak		R: Honeywell / Parsons
I The undersion	ed duly authorized representative of		Chenango Contractors
do hereby accep	t the surface on which the geosyntheti	cs will be inst	talled and shall be responsible for-
maintaining the	uitability of this surface. in accordance	e with the pro	ect specifications. (i.e., The contractor
shall not install th	ne geosynthetics until the subgrade su	urface is acce	ptable. Installation of the
aeosynthetics wi	Il be considered acceptance of the sub	ograde.)	
g,			
PRIMARY:	X SECONDARY:	OTHER	
· · · · · · · · · · ·			
DATE	DANEL NOS		EIGNATURE
DATE	PANEL NOS.		2000 ATORE
8/19/2011	1 thru 12		MAA
••••••			
	••••••		
			<u> </u>

	INSTALLER		PROJECT
NAME:	Chenango Contracting	NAME:	Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road		
	Johnson City, NY 13790		ON: 522 Gerelock Road
			Camillus, NY 13209
INSTALLER			-
AUTHORIZED			
REPRESENTA	TIVE: Martin Bystrak		Honeywell / Parsons
		┛┗━━━━	<i>»</i> :
I, The undersig	ned, duly authorized representative of		Chenango Contractors
do hereby acce	pt the surface on which the geosynthetic	s will be inst	alled and shall be responsible for
maintaining the	-suitability of this surface, in accordance	with the pro	ject specifications. (i.e., The contractor
shall not install	the geosynthetics until the subgrade sur	face is accept	ptable. Installation of the
geosynthetics v	vill be considered acceptance of the sub	grade.)	
		071150	
PRIMARY:		OTHER:	······································
DATE	PANEL NOS.		SIGNATURE
P/20/2011	13 thru 30		Martin -
0/20/2011	15 1112 50		<i></i>
			/
		SEPCIME ADVICTOR SHOW OF SHOWING	
••••••			
ana ang ang ang ang ang ang ang ang ang			
			•••••••••••••••••••••••••••••••••••••••

	••••••••		

1

	INSTALLER		PROJECT
NAME: 0	Chenango Contracting	NAME:	Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road		
	Johnson City, NY 13790	LOCAT	ION: 522 Gerelock Road
			Camilius, NY 13209
INSTALLER			
AUTHORIZED			
REPRESENTATIVE	Martin Bystrak	OWNER	R: Honeywell / Parsons
	A	h	
L The undersigned	duly authorized representative of		Chenango Contractors
do hereby accept the	e surface on which the geosynthetic	cs will be ins	stalled and shall be responsible for
maintaining the suita	bility of this surface, in accordance	with the pro	piect specifications. (i.e., The contractor
shall not install the o	eosynthetics until the subarade su	rface is acce	eptable. Installation of the
aeosynthetics will be	considered acceptance of the sub	arade.)	
geocymaneee		0 ,	
	SECONDARY:	OTHER	
			SIGNATURE
DATE	PANEL NOS.		SIGNATURE
9/2/2011	31 thru 75		There
	1		1
	38		
			1
••••••••••••••••			
••••••			
••••••			
			1
			L

	INSTALLER	PROJECT
NAME:	Chenango Contracting	NAME: Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road	
	Johnson City, NY 13790	LOCATION: 522 Gerelock Road
		Camillus, NY 13209
INSTALLER		
AUTHORIZED		
REPRESENTA	TIVE: Martin Bystrak	OWNER: Honeywell / Parsons
I The undersig	ned duly authorized representative of	Chenango Contractors
do hereby acce	nt the surface on which the geosyntheti	ics will be installed and shall be responsible for
maintaining the	suitability of this surface in accordance	e with the project specifications. (i.e., The contracto
shall not install	the geosynthetics until the subgrade su	Inface is acceptable. Installation of the
acceverthetics w	vill be considered acceptance of the sub	barade)
geosynthetics w	In de considered acceptance of the suc	bgrade.)
		OTHER
		OTTIER.
DATE	PANEL NOS.	SIGNATURE
0/40/0044	76 thru 00	martin
9/13/2011	76 1110 99	
		••••••
		•••••
		onennen und der Bereichen eine Bereichen und Schlieber 2000 bereicht der Schlieber 2000 (2006) Schlieber 2007 (

NAME	Chenando Contractina	NAME Lake Oppndage SCA Phase I
ADDRESS		
	Iohnson City NV 13790	I OCATION: 522 Gerelock Road
	Johnson Oity, NET 13730	Camillus NV 13209
AUTHORIZED		
REPRESENTA	IVE Martin Bystrak	OWNER Honeywell / Parsons
KEI KEOENIA		Honoywon / alcone
L The undersid	and duly authorized representative of	
do hereby accel	the surface on which the geosynthetic	ics will be installed and shall be responsible for
maintaining the	suitability of this surface in accordance	e with the project specifications (i.e. The contractor
shall not install	the deceynthetics until the subgrade su	inface is accentable. Installation of the
appsynthetics w	ill be considered acceptance of the sub	arade)
geosynthetics w		
	X SECONDARY:	OTHER:
	,	
DATE	PANEL NOS.	SIGNATURE
0/10/00/14	100 11 101	20
9/18/2011	100 thru 124	
		/
	· · · · · · · · · · · · · · · · · · ·	
я		
••••••		
	T	
	1	

	INSTALLER	PROJECT
NAME:	Chenango Contracting	NAME: Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road	
	Johnson City, NY 13790	LOCATION: 522 Gerelock Road
		Camillus, NY 13209
INSTALLER		
AUTHORIZED		
REPRESENTAT	IVE: Martin Bystrak	OWNER: Honeywell / Parsons
		-
I The undersign	and duly outported representative of	Chenango Contractors
i, The undersign	the surface on which the goesupthet	tios will be installed and shall be responsible for
do nereby accep	the surface on which the geosynthet	ics will be installed and shall be responsible for
maintaining the	suitability of this surface, in accordance	e with the project specifications. (i.e., the contractor
shall not install t	ne geosynthetics until the subgrade su	
geosynthetics w	Il be considered acceptance of the su	bgrade.)
PRIMARY:		OTHER:
DATE	PANEL NOS.	SIGNATURE
		not
9/19/2011	125 thru 140	Ild
••••••	••••••	
••••••••		
••••••		
••••••		
•••••		
	I	
••••••		
2012-00722222555555555555555555555555555555		
	L	II

	INSTALLER		PROJECT
NAME:	Chenango Contracting	NAME:	Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road		
2. 1 .1.1.1	Johnson City, NY 13790		ION: 522 Gerelock Road
			Camillus, NY 13209
INSTALLER			
AUTHORIZED		11	
REPRESENTATI	/E: Martin Bystrak	OWNER	R: Honeywell / Parsons
I The undersigne	duly authorized representative of		Chenango Contractors
do hereby accept	the surface on which the geosyntheti	ics will be ins	talled and shall be responsible for
mointaining the er	itebility of this surface in accordance	e with the pro	piect specifications (i.e. The contractor
abell set isstell the	anability of this surface, in accordance		stable Installation of the
shall not install the	geosynthetics until the subgrade su		eptable. Installation of the
geosynthetics will	be considered acceptance of the sur	bgrade.)	
		OTUED	
		OTHER	
	Augusta a substantia da antica		
DATE	PANEL NOS.		SIGNATURE
0/00/00/14			nor
9/26/2011	141 thru 145		· poy
			,
••••••			
••••••			

			L

		and the second s			
	INSTALLER	PROJECT			
NAME:	Chenango Contracting	NAME:	Lake Onondaga SCA Phase I		
ADDRESS:	29 Arbutus Road				
	Johnson City, NY 13790	LOCATI	ON: 522 Gerelock Road		
			Camillus, NY 13209		
INSTALLER					
AUTHORIZED					
REPRESENTATI	VE: Martin Bystrak	OWNER	R: Honeywell / Parsons		
I The undersigne	duly authorized representative of		Chenango Contractors		
do hereby accept	the surface on which the geosynthe	tics will be inst	talled and shall be responsible for		
maintaining the s	uitability of this surface. in accordance	e with the pro	ject specifications. (i.e., The contractor		
shall not install th	e geosynthetics until the subgrade s	urface is acce	ptable. Installation of the		
aeosynthetics will	be considered acceptance of the su	barade.)			
3 ,		0 /			
	SECONDARY:	OTHER:			
·			Me-WAREFULLING.		
DATE			SICNATURE		
DATE	PANEL NOS.	T	SIGNATORE		
9/27/2011	146 thru 163		nato		
			/		
••••••					
	••••••				
uckantini orangi TE 2000,01997,0					

	IN	ISTALLER	PROJECT		
NAME:	Ch	enango Contracting	NAME:	Lake Onondaga SCA Phase I	
ADDRESS:		29 Arbutus Road			
		Johnson City, NY 13790	LOCAT	ION: 522 Gerelock Road	
				Camillus, NY 13209	
AUTHORIZED					
REDRESENTA	TIVE	Martin Bystrak		R. Honeywell / Parsons	
REFREGENTA		Warth Dystrak			
I, The undersig	ned, du	ily authorized representative of		Chenango Contractors	
do hereby acce	pt the s	surface on which the geosynthetic	s will be ins	stalled and shall be responsible for	
maintaining the	suitabi	lity of this surface, in accordance	with the pro	oject specifications. (i.e., The contractor	
shall not install	the geo	psynthetics until the subgrade sur	face is acce	eptable. Installation of the	
geosynthetics w	vill be c	onsidered acceptance of the subg	grade.)		
		20			
PRIMARY:	X	SECONDARY:	OTHER		
DATE		DANEL NOS		SIGNATURE	
DATE		PANEL NUS.		SIGNATURE	
9/28/2011		164 thru 171		1 MAR	
0/20/2011				···· / ··· /	
				/	
			•••••		

	INSTALLER			PROJECT		
NAME:	Ch	enango Contracting	NAME:		Lake Onondaga SCA Phase I	
ADDRESS:		29 Arbutus Road				
		Johnson City, NY 13790	LOCAT	ION:	522 Gerelock Road	
					Camillus, NY 13209	
INSTALLER						
AUTHORIZED						
REPRESENTAT	ΓIVE:	Martin Bystrak	OWNER	२ :	Honeywell / Parsons	
				_		
I The undersign	ned di	ly authorized representative of			Chenango Contractors	
do bereby accer	nt the s	surface on which the geosynthetics	s will be ins	talle	d and shall be responsible for	
maintaining the	suitahi	lity of this surface in accordance '	with the pro	piect	specifications. (i.e., The contractor	
shall not install t	the dec	synthetics until the subgrade surf	ace is acce	entat	ble Installation of the	
accevetbotics w	ill ba c	considered acceptance of the subo	rade)	pia		
geosyninetics w		Unsidered acceptance of the subg	ji ado. j			
	V	SECONDARY I	OTHER			
	^		OTHER			
				1.0		
DATE		PANEL NOS.			SIGNATURE	
10/9/2011		172 thru 186		2	nto	
10/0/2011		172 1110 100	•••••		4	
				1		
				1		
					8	
				••••		
				ļ		
				÷		
				Γ		
				†		
				ļ		
				1		
				<u> </u>		
•••••••				1		
				<u> </u>	•••••	
	******			†		
			••••••	•••••		
the state of the free free free free free free free fr						

	INSTALLER		PROJECT
NAME:	Chenango Contracting	NAME:	Lake Onondaga SCA Phase I
ADDRESS:	29 Arbutus Road		
	Johnson City, NY 13790	LOCATIO	N: 522 Gerelock Road
•			Camillus, NY 13209
			Ma
AUTHORIZED	Martin Duatrak		Honoyavell / Parsons
REPRESENTATIVE		UVVINER.	
		J [
I, The undersigned	, duly authorized representative of		Chenango Contractors
do hereby accept th	e surface on which the geosynthetic	cs will be insta	lled and shall be responsible for
maintaining the suit	ability of this surface, in accordance	e with the proje	ect specifications. (i.e., The contractor
shall not install the	aeosynthetics until the subarade su	irface is accept	table. Installation of the
geosynthetics will b	e considered acceptance of the sub	ograde.)	
geooynarioaco ann o		· 3· · · · · /	
		OTHER	
		OTHER	
		· · · · · · · · · · · · · · · · · · ·	
DATE	PANEL NOS.		SIGNATURE
10/00011	407 11 400		in the
10/9/2011	187 thru 199		////
	••••		
		••••••	

			•••••

INSTALLER PROJECT NAME: Chenango Contracting ADDRESS: 29 Arbutus Road Johnson City, NY 13790 LOCATION: 522 Gerelock Road INSTALLER Camillus, NY 13209 AUTHORIZED Martin Bystrak REPRESENTATIVE: Martin Bystrak	A Phase I
NAME: Chenango Contracting ADDRESS: 29 Arbutus Road Johnson City, NY 13790 LOCATION: 522 Gerelock Road INSTALLER Camillus, NY 13209 AUTHORIZED Martin Bystrak REPRESENTATIVE: Martin Bystrak	A Phase I
ADDRESS: 29 Arbutus Road Johnson City, NY 13790 INSTALLER AUTHORIZED REPRESENTATIVE: Martin Bystrak OWNER: Honeywell / Pa	
Johnson City, NY 13790 LOCATION: 522 Gerelock Road INSTALLER Camillus, NY 13209 AUTHORIZED Martin Bystrak REPRESENTATIVE: Martin Bystrak	
INSTALLER AUTHORIZED REPRESENTATIVE: Martin Bystrak OWNER: Honeywell / Pa	
INSTALLER AUTHORIZED REPRESENTATIVE: Martin Bystrak OWNER: Honeywell / Pa	
AUTHORIZED REPRESENTATIVE: Martin Bystrak OWNER: Honeywell / Pa	
REPRESENTATIVE: Martin Bystrak OWNER: Honeywell / Pa	
	arsons
1 The second state of the second second state of the second	
I, The undersigned, duly authorized representative of Chenango Contractors	, ible for
do nereby accept the surface on which the geosynthetics will be installed and shall be response	
maintaining the suitability of this surface, in accordance with the project specifications. (i.e., if	le contractor
shall not install the geosynthetics until the subgrade surface is acceptable. Installation of the	
geosynthetics will be considered acceptance of the subgrade.)	
PRIMARY: X SECONDARY: OTHER:	
DATE PANEL NOS SIGNATUE	3F
DATE TANLE NOC.	
10/10/2011 200 thru 220	
NOTE: Subarade is soft and	7
i la construction	
UNEVEN , INCONGISTORIT	
and primping under	
	••••••
traffic i	
	•••••
1	
3 	

11	NSTALLER	PROJECT
NAME: CI	henango Contracting	NAME: <u>East Basin DW</u>
ADDRESS:	29 Arbutus Road	lake Ononclaga SCA Phase 1
	Johnson City, NY 13790	LOCATION: 522 Gerelock Road
		Camillus, NY 13209
INSTALLER	Matt Bildeau for	
AUTHORIZED	CHARLIE PARKS	
REPRESENTATIVE:	Martin Bystrak	OWNER: Honeywell / Parsons
	DWH	
I, The undersigned, du do hereby accept the s maintaining the suitab shall not install the ge geosynthetics will be o	uly authorized representative of surface on which the geosynthetics ility of this surface, in accordance v osynthetics until the subgrade surfactoriations considered acceptance of the subg	Chenango Contractors s will be installed and shall be responsible for with the project specifications. (i.e., The contractor ace is acceptable. Installation of the grade.)
PRIMARY: X	SECONDARY:	OTHER:
DATE	PANEL NOS.	SIGNATURE
10/11/2011	Panels #221 thru #265	Math
	Subarade doesn't	
	SUDPORT EQUIPMENT	Natic
	is sold and MARVIN	Ν
		(
•••••••••••••••••••••••••••••••••••••••		·····

APPENDIX I

Geomembrane Panel Placement Monitoring Logs

Geosyntec Consultants

Panel Placement Log

- (9)

Project: <u>Onondaga Lake Sediment Consolidation Area (SCA)</u> Location: <u>Camillus, New York</u>

Description: Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

Prima	ry / Secondary: Primary		Ser	les: J Mater	Material Type: gml			
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID	
1	8201500-102158873	8/19/2011	11:42	Phase IA	21	509.5	DWH	
2	8201499-102158767	8/19/2011	13:00	Phase IA	22	508	DWH	
3	8201500-102158844	8/19/2011	13:20	Phase IA	22	165	DWH	
4	8201500-102158844	8/19/2011	13:37	Phase IA	22	165	DWH	
5	8201500-102158867	8/19/2011	14:30	Phase IA	22	510	DWH	
6	8201507-102158898	8/19/2011	14:55	Phase IA	22	512.5	DWH	
7	8201507-102158876	8/19/2011	15:20	Phase IA	22	511	DWH	
8	8201500-102158844	8/19/2011	15:45	Phase IA	22	165	DWH	
9	8201500-102158850	8/19/2011	15:59	Phase IA	22	165	DWH	
10	8201500-102158850	8/19/2011	16:15	Phase IA	22	165	DWH	
11	8201500-102158851	8/19/2011	17:19	Phase IA	22	512	DWH	
12	8201500-102158850	8/19/2011	18:12	Phase IA	22	165	DWH	
13	8201499-102158788	8/20/2011	8:05	Phase IA	22	514.5	DWH	
14	8201500-102158864	8/20/2011	8:27	Phase 1A	22	515	DWH	
15	8201499-102158801	8/20/2011	8:45	Phase IA	22	516.5	DWH	
16	8201499-102158769	8/20/2011	9:00	Phase IA	22	518	DWH	
17	8201499-102158800	8/20/2011	10:05	Phase IA	22	519	DWH	
18	8201499-102158779	8/20/2011	10:30	Phase IA	22	520.5	DWH	
19	8201499-102158807	8/20/2011	13:00	Phase IA	22	165	DWH	
20	8201499-102158807	8/20/2011	13:10	Phase IA	22	172	DWH	
21	8201499-102158807	8/20/2011	13:20	Phase IA	22	165	DWH	
22	8201500-102158868	8/20/2011	13:35	Phase IA	22	171	DWH	
23	8201500-102158868	8/20/2011	13:50	Phase IA	22	170	DWH	
24	8201500-102158868	8/20/2011	14:00	Phase IA	22	165	DWH	
25	8201499-102158784	8/20/2011	14:10	Phase IA	22	516	DWH	
26	8201507-102158875	8/20/2011	14:30	Phase IA	22	512	DWH	
27	8201499-102158768	8/20/2011	14:45	Phase IA	22	165	DWH	
28	8201499-102158768	8/20/2011	15:00	Phase IA	22	165	DWH	
29	8201499-102158768	8/20/2011	15:10	Phase IA	22	5	DWH	
30	8201499-102158768	8/20/2011	15:15	Phase 1A	22	6	DWH	
31	8201499-102158785	9/2/2011	8:10	Phase IA	22	290	DWH	

Monday, April 30, 2012

£.

Geosyntec[>]

Panel Placement Log

s et

 Project:
 <u>Onondaga Lake Sediment Consolidation Area (SCA)</u>

 Location:
 <u>Camillus, New York</u>

 Description:
 <u>Construction Quality Assurance for Onondaga SCA Phase I Cell</u>

ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

1 11111a	Ty / Secondary. Finnary		Series: 1 N		Aaterial Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (fl.)	QA ID
32	8201499-102158785	9/2/2011	8:21	Phase IA	22	226	DWH
33	8201507-102158908	9/2/2011	8:27	Phase IA	22	290	DWH
34	8201507-102158908	9/2/2011	8:33	Phase IA	22	214	DWH
35	8201500-102158858	9/2/2011	8:41	Phase 1A	22	290	DWH
36	8201500-102158858	9/2/2011	8:48	Phase 1A	22	217	DWH
37	8201499-102158797	9/2/2011	9:00	Phase IA	22	290	DWH
38	8201499-102158797	9/2/2011	9:07	Phase JA	22	217	DWH
39	8201500-102158832	9/2/2011	9:15	Phase IA	22	290	DWH
40	8201500-102158832	9/2/2011	9:23	Phase IA	22	211.5	DWH
41	8201500-102158831	9/2/2011	10:00	Phase IA	22	64	DWH
42	8201500-102158831	9/2/2011	10:12	Phase IA	22	76	DWH
43	8201500-102158831	9/2/2011	10:15	Phase IA	22	73	DWH
44	8201500-102158831	9/2/2011	10:19	Phase IA	22	73	DWH
45	8201500-102158831	9/2/2011	10:26	Phase IA	22	78.5	DWH
46	8201500-102158860	9/2/2011	10:45	Phase IA	22	290	DWH
47	8201500-102158860	9/2/2011	11:05	Phase IA	22	217	DWH
48	8201500-102158831	9/2/2011	11:15	Phase IA	22	73	DWH
49	8201507-102158910	9/2/2011	13:00	Phase IA	22	290	DWH
50	8201507-102158910	9/2/2011	13:05	Phase IA	22	222	DWH
51	8201500-102158842	9/2/2011	13:08	Phase IA	22	68	DWH
52	8201500-102158842	9/2/2011	13:12	Phase IA	22	290	DWH
53	8201500-102158842	9/2/2011	13:36	Phase IA	22	156.5	DWH
54	8201500-102158845	9/2/2011	13:48	Phase JA	22	133.5	DWH
55	8201500-102158845	9/2/2011	13:54	Phase IA	22	290	DWH
56	8201500-102158845	9/2/2011	14:11	Phase IA	22	90	DWH
57	8201499-102158774	9/2/2011	14:20	Phase IA	22	200	DWH
58	8201499-102158774	9/2/2011	14:45	Phase IA	22	286	DWH
59	8201499-102158765	9/2/2011	15:00	Phase IA	22	286.5	DWH
60	8201499-102158765	9/2/2011	15:10	Phase IA	22	218	DWH
61	8201500-102158843	9/2/2011	15:25	Phase IA	22	59	DWH
62	8201500-102158843	9/2/2011	15:47	Phase IA	22	50	DWH

Monday, April 30, 2012

Geosyntec consultants

Panel Placement Log

 Project:
 Onondaga Lake Sediment Consolidation Area (SCA)

 Location:
 Camillus, New York

 Description:
 Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

111118	ny / Secondary. Primary		Seri	es: 1 Mater	laterial Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
63	8201500-102158843	9/2/2011	15:51	Phase IA	22	50	DWH
64	8201500-102158843	9/2/2011	15:54	Phase 1A	22	50	DWH
65	8201500-102158843	9/2/2011	16:15	Phase 1A	22	50	DWH
66	8201500-102158843	9/2/2011	16:20	Phase IA	22	50	DWH
67	8201500-102158843	9/2/2011	16:38	Phase IA	22	50	DWH
68	8201500-102158843	9/2/2011	16:40	Phase IA	22	50	DWH
69	8201499-102158791	9/2/2011	17:00	Phase 1A	22	49.5	DWH
70	8201499-102158791	9/2/2011	17:05	Phase IA	22	49	DWH
71	8201499-102158791	9/2/2011	17:10	Phase 1A	22	49	DWH
72	8201499-102158791	9/2/2011	17:25	Phase IA	22	49	DWH
73	8201499-102158791	9/2/2011	17:28	Phase IA	22	49	DWH
74	8201499-102158791	9/2/2011	17:33	Phase IA	22	49	DWH
75	8201499-102158791	9/2/2011	17:43	Phase IA	22	49	DWH
76	8201499-102158764	9/13/2011	13:20	Phase IA	22	394	DWH
77	8201499-102158764	9/13/2011	13:32	Phase 1A	22	108	DWH
78	8201499-102158799	9/13/2011	13:48	Phase IA	22	285	DWH
79	8201499-102158799	9/13/2011	14:14	Phase IA	22	218	DWH
80	8201500-102158835	9/13/2011	14:32	Phase IA	22	174	DWH
81	8201500-102158835	9/13/2011	15:00	Phase 1A	22	49	DWH
82	8201500-102158835	9/13/2011	15:27	Phase IA	22	49.5	DWH
83	8201500-102158835	9/13/2011	15:30	Phase IA	22	50.5	DWH
84	8201500-102158835	9/13/2011	15:37	Phase 1A	22	51	DWH
85	8201500-102158835	9/13/2011	15:45	Phase IA	22	51	DWH
86	8201500-102158835	9/13/2011	15:50	Phase 1A	22	28	DWH
87	8201499-102158804	9/13/2011	16:32	Phase 1A	22	22	DWH
88	8201499-102158804	9/13/2011	16:41	Phase 1A	22	52.5	DWH
89	8201499-102158804	9/13/2011	16:45	Phase IA	22	52.5	DWH
90	8201499-102158804	9/13/2011	16:50	Phase 1A	22	52	DWH
91	8201499-102158804	9/13/2011	16:52	Phase IA	22	52.5	DWH
92	8201499-102158804	9/13/2011	16:55	Phase IA	22	53	DWH
93	8201499-102158804	9/13/2011	17:09	Phase IA	22	53	DWH

Monday, April 30, 2012
Geosyntec Consultants

Panel Placement Log

Project: <u>Onondaga Lake Sediment Consolidation Area (SCA)</u> Location: <u>Camillus, New York</u> Description: <u>Construction Quality Assurance for Onondaga SCA Phase I Cell</u> ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

Timary / Secondary. Primary				es: I Mater	stal Type: gml		
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID
94	8201499-102158804	9/13/2011	17:12	Phase 1A	22	53	DWH
95	8201499-102158804	9/13/2011	17:18	Phase IA	22	53	DWH
96	8201500-102158840	9/13/2011	17:36	Phase IA	22	53	DWH
97	8201500-102158840	9/13/2011	17:40	Phase IA	22	53	DWH
98	8201500-102158840	9/13/2011	17:43	Phase 1A	22	53.5	DWH
99	8201500-102158840	9/13/2011	17:49	Phase IA	22	54	DWH
100	8201500-102158840	9/18/2011	10:10	Phase IA	22	285	DWH
101	8201499-102158778	9/18/2011	10:20	Phase IA	22	109	DWH
102	8201499-102158778	9/18/2011	10:30	Phase IA	22	393.5	DWH
103	8201499-102158777	9/18/2011	10:45	Phase IA	22	396	DWH
104	8201499-102158777	9/18/2011	11:36	Phase IA	22	105.5	DWH
105	8201499-102158796	9/18/2011	11:46	Phase IA	22	291.5	DWH
106	8201499-102158796	9/18/2011	13:21	Phase IA	22	157	DWH
107	8201499-102158796	9/18/2011	13:25	Phase IA	22	55	DWH
108	8201499-102158783	9/18/2011	13:30	Phase IA	22	131	DWH
109	8201499-102158783	9/18/2011	14:26	Phase IA	22	- 385	DWH
110	8201500-102158836	9/18/2011	14:35	Phase IA	22	8	DWH
111	8201500-102158836	9/18/2011	14:41	Phase IA	22	393	DWH
112	8201500-102158836	9/18/2011	14:50	Phase IA	22	94.5	DWH
113	8201500-102158823	9/18/2011	15:06	Phase IA	22	298.5	DWH
114	8201500-102158823	9/18/2011	15:12	Phase JA	22	210	DWH
115	8201499-102158776	9/18/2011	15:25	Phase IA	22	183.5	DWH
116	8201499-102158776	9/18/2011	15:35	Phase IA	22	332.5	DWH
117	8201499-102158805	9/18/2011	15:46	Phase IA	22	61.5	DWH
118	8201499-102158805	9/18/2011	15:50	Phase IA	22	393.5	DWH
119	8201499-102158805	9/18/2011	16:01	Phase IA	22	43.5	DWH
120	8201499-102158803	9/18/2011	17:10	Phase IA	22	351	DWH
121	8201499-102158803	9/18/2011	17:15	Phase IA	22	149	DWH
122	8201500-102158818	9/18/2011	17:42	Phase 1A	22	246	DWH
123	8201500-102158818	9/18/2011	17:55	Phase IA	22	265	DWH
124	8201500-102158817	9/18/2011	16:02	Phase IA	22	130	DWH

Monday, April 30, 2012

10

Geosyntec[>]

Panel Placement Log

Project: <u>Onondaga Lake Sediment Consolidation Area (SCA</u>) Location: <u>Camillus, New York</u> Description: <u>Construction Quality Assurance for Onondaga SCA Phase I Cell</u> ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

PanelBatch-RollDateTimePlacement/Location/Comments1258201500-1021588179/19/201113:15Phase IA1268201500-1021588179/19/201113:16Phase IA1278201499-1021588069/19/201113:26Phase IA1288201499-1021588069/19/201113:38Phase IA1298201499-1021588069/19/201113:50Phase IA1308201499-1021588069/19/201114:00Phase IA1318201499-1021588069/19/201114:15Phase IA1328201499-1021588069/19/201114:15Phase IA1338201500-1021588069/19/201114:28Phase IA1348201500-1021588199/19/201114:45Phase IA1358201500-1021588199/19/201115:07Phase IA1368201500-1021588199/19/201115:07Phase IA1378201500-1021588199/19/201115:07Phase IA1388201500-1021588199/19/201114:45Phase IA1398201500-1021588199/19/201114:45Phase IA1368201500-1021588199/19/201115:07Phase IA1368201500-1021588199/19/201115:07Phase IA1378201500-1021588199/19/201116:00Phase IA1388201500-1021588199/19/201116:00Phase IA1398201500-1021588199/19/201116:00Phase IA <th>Width</th> <th></th> <th></th>	Width		
125 8201500-102158817 9/19/2011 13:15 Phase IA 126 8201500-102158817 9/19/2011 13:16 Phase IA 127 8201499-102158806 9/19/2011 13:26 Phase IA 128 8201499-102158806 9/19/2011 13:38 Phase IA 129 8201499-102158806 9/19/2011 13:50 Phase IA 130 8201499-102158806 9/19/2011 14:00 Phase IA 131 8201499-102158806 9/19/2011 14:15 Phase IA 132 8201499-102158806 9/19/2011 14:15 Phase IA 133 8201499-102158806 9/19/2011 14:15 Phase IA 134 8201500-102158819 9/19/2011 14:29 Phase IA 135 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA	(ft.)	Length (ft.)	QA ID
1268201500-1021588179/19/201113:16Phase IA1278201499-1021588069/19/201113:26Phase IA1288201499-1021588069/19/201113:38Phase IA1298201499-1021588069/19/201113:50Phase IA1308201499-1021588069/19/201114:00Phase IA1318201499-1021588069/19/201114:15Phase IA1328201499-1021588069/19/201114:15Phase IA1338201499-1021588069/19/201114:28Phase IA1348201500-1021588199/19/201114:45Phase IA1358201500-1021588199/19/201114:50Phase IA1368201500-1021588199/19/201114:45Phase IA1378201500-1021588199/19/201114:45Phase IA1388201500-1021588199/19/201114:45Phase IA1398201500-1021588199/19/201114:45Phase IA1308201500-1021588199/19/201115:07Phase IA1368201500-1021588199/19/201116:00Phase IA1378201500-1021588199/19/201116:00Phase IA	22	167.5	DWH
127 8201499-102158806 9/19/2011 13:26 Phase IA 128 8201499-102158806 9/19/2011 13:38 Phase IA 129 8201499-102158806 9/19/2011 13:50 Phase IA 130 8201499-102158806 9/19/2011 14:00 Phase IA 131 8201499-102158806 9/19/2011 14:15 Phase IA 132 8201499-102158806 9/19/2011 14:15 Phase IA 133 8201500-102158806 9/19/2011 14:28 Phase IA 133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA	22	177.5	DWH
128 8201499-102158806 9/19/2011 13:38 Phase IA 129 8201499-102158806 9/19/2011 13:50 Phase IA 130 8201499-102158806 9/19/2011 14:00 Phase IA 131 8201499-102158806 9/19/2011 14:15 Phase IA 132 8201499-102158806 9/19/2011 14:15 Phase IA 133 8201500-102158806 9/19/2011 14:28 Phase IA 133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 15:07 Phase IA 137 8201500-102158819 9/19/2011 16:00 Phase IA	22	187	DWH
129 8201499-102158806 9/19/2011 13:50 Phase IA 130 8201499-102158806 9/19/2011 14:00 Phase IA 131 8201499-102158806 9/19/2011 14:15 Phase IA 132 8201499-102158806 9/19/2011 14:15 Phase IA 133 8201500-102158806 9/19/2011 14:28 Phase IA 133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 14:45 Phase IA 136 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA	22	164	DWH
130 8201499-102158806 9/19/2011 14:00 Phase IA 131 8201499-102158806 9/19/2011 14:15 Phase IA 132 8201499-102158806 9/19/2011 14:15 Phase IA 133 8201500-102158806 9/19/2011 14:28 Phase IA 133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA 137 8201500-102158819 9/19/2011 16:00 Phase IA	22	48.5	DWH
131 8201499-102158806 9/19/2011 14:15 Phase IA 132 8201499-102158806 9/19/2011 14:28 Phase IA 133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 14:45 Phase IA 136 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA	22	42.5	DWH
132 8201499-102158806 9/19/2011 14:28 Phase IA 133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 14:45 Phase IA 136 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA 137 8201500-102158819 9/19/2011 16:00 Phase IA	15	30	DWH
133 8201500-102158819 9/19/2011 14:29 Phase IA 134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA	1	75	DWH
134 8201500-102158819 9/19/2011 14:45 Phase IA 135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA 137 8201500-102158819 9/19/2011 16:00 Phase IA	22	196.5	DWH
135 8201500-102158819 9/19/2011 15:07 Phase IA 136 8201500-102158819 9/19/2011 16:00 Phase IA 137 8201500-102158822 0/19/2011 16:00 Phase IA	22	209.5	DWH
136 8201500-102158819 9/19/2011 16:00 Phase IA 137 8201500-102158819 0/10/2011 16:55 Phase IA	22	78.5	DWH
127 9201600 102169922 0/10/2011 16:55 DI 14	22	6	DWH
157 8201500-102158822 9/19/2011 16:55 Phase JA	22	109.5	DWH
138 8201500-102158822 9/19/2011 16:59 Phase IA	22	200	DWH
139 8201500-102158822 9/19/2011 17:15 Phase IA	22	30	DWH
140 8201500-102158822 9/19/2011 17:25 Phase IA	22	24	DWH
141 8201499-102158786 9/26/2011 18:31 Phase IB	22	510	DWH
142 8201499-102158802 9/26/2011 18:50 Phase IB	22	508	DWH
143 8201499-102158793 9/26/2011 19:30 Phase IB	22	508	DWH
144 8201500-102158822 9/26/2011 20:30 Phase IA	22	80	DWH
145 8201499-102158773 9/26/2011 20:55 Phase IA	22	75	DWH
146 8201499-102158773 9/27/2011 8:12 Phase IB	22	425	DWH
147 8201500-102158829 9/27/2011 8:23 Phase IB	22	508	DWH
148 8201500-102158828 9/27/2011 8:42 Phase IB	22	509	DWH
149 8201500-102158827 9/27/2011 9:15 Phase IB	22	508	DWH
150 8201499-102158792 9/27/2011 10:40 Phase IB	22	178	DWH
151 8201499-102158792 9/27/2011 10:54 Phase IB	22	179	DWH
152 8201499-102158792 9/27/2011 10:58 Phase IB	22	146	DWH
153 8201500-102158834 9/27/2011 11:18 Phase IB	22	263	DWH
154 8201500-102158834 9/27/2011 11:30 Phase IB	22	180	DWH
155 8201500-102158834 9/27/2011 11:35 Phase IB			

Geosyntec[>]

Panel Placement Log

Project: <u>Onondaga Lake Sediment Consolidation Area (SCA.)</u> Location: <u>Camillus, New York</u> Description: <u>Construction Quality Assurance for Onondaga SCA Phase I Cell</u>

ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

Primary / Secondary: Primary			Series: 1 Material Type: gml						
Panel	anel Batch-Roll		el Batch-Roll Date		Time Placement/Location/Comments		Width (ft.)	Length (ft.)	QA ID
156	8201499-102158781	9/27/2011	14:09	Phase IB	22	509	DWH		
157	8201499-102158794	9/27/2011	14:35	Phase IB	22	509	DWH		
158	8201499-102158771	9/27/2011	14:50	Phase IB	22	179	DWH		
159	8201499-102158771	9/27/2011	15:02	Phase IB	22	179.5	DWH		
160	8201499-102158771	9/27/2011	15:08	Phase IB	22	153	DWH		
161	8201500-102158826	9/27/2011	15:16	Phase IB	22	179	DWH		
162	8201500-102158826	9/27/2011	15:20	Phase 1B	22	26.5	DWH		
163	8201499-102158772	9/27/2011	15:44	Phase IB	22	508	DWH		
164	8201500-102158841	9/28/2011	11:00	Phase IB	22	179.5	DWH		
165	8201500-102158841	9/28/2011	11:05	Phase 1B	22	322.5	DWH		
166	8201500-102158826	9/28/2011	12:57	Phase IB	22	301	DWH		
167	8201500-102158830	9/28/2011	13:15	Phase IB	22	66	DWH		
168	8201500-102158830	9/28/2011	13:28	Phase IB	22	437	DWH		
169	8201500-102158866	9/28/2011	13:46	Phase IB	22	251	DWH		
170	8201500-102158866	9/28/2011	14:32	Phase IB	22	252.5	DWH		
171	8201499-102158795	9/28/2011	14:48	Phase IB	22	440	DWH		
172	8201500-102158837	10/8/2011	8:55	Phase IB	22	519	DWH		
173	8201507-102158877	10/8/2011	9:15	Phase IB	22	519	DWH		
174	8201507-102158894	10/8/2011	9:28	Phase IB	22	520.5	DWH		
175	8201507-102158911	10/8/2011	10:00	Phase IB	22	522.5	DWH		
176	8201507-102158880	10/8/2011	10:18	Phase IB	22	522	DWH		
177	8201500-102158870	10/8/2011	10:48	Phase IB	22	512	DWH		
178	8201507-102158897	10/8/2011	11:05	Phase 1B	22	509.5	DWH		
179	8201500-102158862	10/8/2011	12:55	Phase IB	22	169.5	DWH		
180	8201500-102158862	10/8/2011	13:00	Phase IB	22	170	DWH		
181	8201500-102158862	10/8/2011	13:03	Phase IB	22	150.5	DWH		
182	8201507-102158909	10/8/2011	13:10	Phase IB	22	168	DWH		
183	8201507-102158909	10/8/2011	13:15	Phase IB	22	167.5	DWH		
184	8201507-102158909	10/8/2011	13:20	Phase IB	22	145	DWH		
185	8201507-102158881	10/8/2011	13:23	Phase IB	22	22	DWH		
186	8201507-102158881	10/8/2011	13:26	Phase IB	22	18.5	DWH		

Geosyntec consultants

Panel Placement Log

 Project:
 Onondaga Lake Sediment Consolidation Area (SCA)

 Location:
 Camillus, New York

 Description:
 Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: <u>GJ4706</u> TaskNo: <u>07</u>

rimary / Secondary: Primary			Ser	Series: 1 Material Type: gml				
Panel	Batch-Roll	Date	Time Placement/Location/Commen	Date Time Placement/Location/Comments Wite	Width (ft.)	Length (ft.)	QA ID	
187	8201507-102158881	10/9/2011	7:45	Phase IB	22	363	DWH	
188	8201507-102158900	10/9/2011	8:00	Phase IB	22	364	DWH	
189	8201500-102158863	10/9/2011	8:45	Phase IB	22	364.5	DWH	
190	8201507-102158887	10/9/2011	9:00	Phase IB	22	366.5	DWH	
191	8201500-102158852	10/9/2011	9:12	Phase IB	22	370.5	DWH	
192	8201507-102158901	10/9/2011	10:00	Phase IB	22	373	DWH	
193	8201500-102158853	10/9/2011	10:15	Phase IB	22	375.5	DWH	
194	8201507-102158879	10/9/2011	10:30	Phase 1B	22	376.5	DWH	
195	8201500-102158859	10/9/2011	10:50	Phase IB	22	377.5	DWH	
196	8201507-102158883	10/9/2011	13:00	Phase 1B	22	379	DWH	
197	8201507-102158885	10/9/2011	13:45	Phase IB	22	380	DWH	
198	8201507-102158902	10/9/2011	14:00	Phase IB	22	380	DWH	
199	8201507-102158895	10/9/2011	14:30	Phase IB	22	380	DWH	
200	8201507-102158878	10/10/2011	12:54	Phase IB	22	185.5	DWH	
201	8201507-102158878	10/10/2011	13:00	Phase IB	22	325	DWH	
202	8201507-102158913	10/10/2011	13:10	Phase IB	22	330	DWH	
203	8201507-102158913	10/10/2011	13:54	Phase IB	22	175.5	DWH	
204	8201507-102158882	10/10/2011	14:00	Phase IB	22	152.5	DWH	
205	8201507-102158882	10/10/2011	14:20	Phase IB	22	323	DWH	
206	8201507-102158889	10/10/2011	15:37	Phase IB	22	323	DWH	
207	8201507-102158889	10/10/2011	15:48	Phase IB	22	183	DWH	
208	8201507-102158874	10/10/2011	16:01	Phase IB	22	110.5	DWH	
209	8201507-102158874	10/10/2011	16:50	Phase IB	22	320	DWH	
210	8201507-102158874	10/10/2011	17:00	Phase IB	22	31.5	DWH	
211	8201507-102158882	10/10/2011	17:05	Phase IB	22	14	DWH	
212	8201507-102158874	10/10/2011	17:10	Phase IB	22	17	DWH	
213	8201494-102158632	10/10/2011	17:54	Phase IB	22	183	DWH	
214	8201494-102158632	10/10/2011	18:00	Phase IB	22	180	DWH	
215	8201494-102158632	10/10/2011	18:06	Phase IB	22	78	DWH	
216	8201499-102158808	10/10/2011	18:39	Phase IB	22	45	DWH	
217	8201499-102158808	10/10/2011	18:45	Phase IB	22	315	DWH	

Geosyntec[▷]

consultants

Panel Placement Log

 Project:
 Onondaga Lake Sediment Consolidation Area (SCA)

 Location:
 Camillus, New York

 Description:
 Construction Quality Assurance for Onondaga SCA Phase I Cell

ProjNo: GJ4706

TaskNo: 07

Primary / Secondary: Primary			Se	eries: 1 Materia	ial Type: gml		
Panel	Batch-Roll	Date	Time Placement/Location/Comments		Width (ft.)	Length (ft.)	QA ID
218	8201499-102158808	10/10/2011	18:58	Phase IB	22	41	DWH
219	8201499-102158808	10/10/2011	19:08	Phase IB	11	30	DWH
220	8201499-102158808	10/10/2011	19:12	Phase IB	11	33	DWH
221	8201494-102158632	10/11/2011	8:45	Phase IB	22	7.5	DWH
222	8201507-102158886	10/11/2011	9:28	Phase IB	22	316.5	DWH
223	8201507-102158886	10/11/2011	9:37	Phase IB	22	194	DWH
224	8201500-102158821	10/11/2011	9:47	Phase IB	22	120	DWH
225	8201500-102158821	10/11/2011	9:57	Phase IB	22	316.5	DWH
226	8201500-102158821	10/11/2011	10:58	Phase IB	17	63	DWH
227	8201507-102158912	10/11/2011	11:07	Phase IB	17	67	DWH
228	8201507-102158912	10/11/2011	11:16	Phase IB	22	130.5	DWH
229	8201507-102158912	10/11/2011	11:20	Phase IB	22	131	DWH
230	8201507-102158912	10/11/2011	11:25	Phase IB	22	131.5	DWH
231	8201507-102158912	10/11/2011	11:30	Phase IB	22	30	DWH
232	8201500-102158816	10/11/2011	11:45	Phase IB	22	102	DWH
233	8201500-102158816	10/11/2011	11:50	Phase IB	22	133	DWH
234	8201500-102158816	10/11/2011	11:53	Phase IB	22	133	DWH
235	8201500-102158816	10/11/2011	11:56	Phase IB	22	133.5	DWH
236	8201507-102158899	10/11/2011	12:45	Phase 1B	22	134	DWH
237	8201507-102158899	10/11/2011	12:50	Phase IB	22	134.5	DWH
238	8201507-102158899	10/11/2011	12:55	Phase IB	22	135	DWH
239	8201507-102158899	10/11/2011	13:00	Phase IB	22	97.5	DWH
240	8201499-102158809	10/11/2011	13:12	Phase IB	22	38.5	DWH
241	8201499-102158809	10/11/2011	13:19	Phase IB	22	137	DWH
242	8201499-102158809	10/11/2011	13:27	Phase IB	22	137.5	DWH
243	8201499-102158809	10/11/2011	14:26	Phase IB	22	138	DWH
244	8201499-102158809	10/12/2011	14:28	Phase IB	22	52	DWH
245	8201500-102158833	10/11/2011	14:40	Phase IB	22	86	DWH
246	8201500-102158833	10/11/2011	14:43	Phase IB	22	139	DWH
247	8201500-102158833	10/11/2011	14:46	Phase 1B	22	140.5	DWH
248	8201500-102158833	10/11/2011	14:52	Phase IB	22	135	DWH

Monday, April 30, 2012

Page 8 of 9

Geosyntec^D consultants

Panel Placement Log

 Project:
 Onondaga Lake Sediment Consolidation Area (SCA)

 Location:
 Camillus, New York

 Description:
 Construction Quality Assurance for Onondaga SCA Phase I Cell

 ProjNo:
 GJ4706

 TaskNo:
 07

4

Primary / Secondary: Primary		condary: Primary Series: 1		es: 1 Materia	Material Type: gml			
Panel	Batch-Roll	Date	Time	Placement/Location/Comments	Width (ft.)	Length (ft.)	QA ID	
249	8201499-102158808	10/11/2011	14:59	Phase IB	22	5.5	DWH	
250	8201500-102158824	10/11/2011	15:05	Phase IB	22	140	DWH	
251	8201500-102158824	10/11/2011	15:31	Phase IB	22	140.5	DWH	
252	8201500-102158824	10/11/2011	15:33	Phase IB	22	141	DWH	
253	8201500-102158824	10/11/2011	15:43	Phase IB	22	80	DWH	
254	8201500-102158861	10/11/2011	15:48	Phase IB	22	61	DWH	
255	8201500-102158861	10/11/2011	15:50	Phase IB	22	141.5	DWH	
256	8201500-102158861	10/11/2011	15:58	Phase IB	22	142	DWH	
257	8201500-102158861	10/11/2011	16:02	Phase IB	22	142	DWH	
258	8201500-102158861	10/11/2011	16:06	Phase IB	22	19.5	DWH	
259	8201500-102158825	10/11/2011	16:15	Phase IB	22	122	DWH	
260	8201500-102158825	10/11/2011	16:23	Phase IB	22	140	DWH	
261	8201500-102158825	10/11/2011	16:26	Phase IB	22	139	DWH	
262	8201500-102158825	10/11/2011	16:30	Phase IB	22	101	DWH	
263	8201494-102158634	10/11/2011	16:45	Phase IB	22	35.5	DWH	
264	8201494-102158634	10/11/2011	16:48	Phase IB	22	135	DWH	
265	8201494-102158634	10/11/2011	16:58	Phase IB	13	134.5	DWH	
N	lumber of Panels: 265			Approx. Area (sq. f	t). 115	9909		

APPENDIX J

Geomembrane Trial Seam Logs

- Calibration of Field Tensiometer
- Fusion
- Extrusion

Calibration of Field Tensiometer

<u>th</u> Anniversary CAL IRCE Metrology Solutions Celebrating 10 years of excellence

Tensiometer

NAL-0802	
262958	
Ryan Rigby	
February 23, 2011	
	NAL-0802 262958 Ryan Rigby February 23, 2011

Force(lbs.):

Range: 0-500 lbs.

Accuracy +/- 1% ind.

Nominal	Minimum	As Found	As Left	Maximum		
100	99	100		101		
200	200 198 200		200 198 200			202
300	297	300		303		
400	396	399		404		
500	495	497		505		

Notes:

Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

0	RECEIVED	
	AUG - 8 2011]
	PARSONS	ŀ

CalSource, Inc. 1005 West Fayette St Suite 4D Syracuse, NY 13204 866-895-8648 calsource.com

Celebrating 10 years of excellence

CERTIFICATE OF CALIBRATION

ISSUED	то	EQUIPMENT INFORMATION					
CHENANGO CO 29 ARBUTU JOHNSON CIT CUSTOMER PO NUMBER:	DNTRACTING JS ROAD Y NY 13790 03102011	ASSET NUMBER MANUFACTURER MODEL NUMBER DESCRIPTION SERIAL NUMBER	NAL-1203 TEMPLETON KENLY & CO AL-0102 TENSIOMETER NAL-1203				
TEST RESULTS							
CERTIFICATE NUMBER AS RECEIVED AS RETURNED LAB TEMPERATURE LAB HUMIDITY	266834 IN TOLERANCE PASS 70.0 F 30.0 %		PROCEDURE INTERVAL CALIBRATION DATE CALIBRATION DUE DA TECHNICIAN	33K6-4-1756-1 12 MONTHS 3/23/2011 TE 3/23/2012 RYAN RIGBY			
COMMENTS							

CALIBRATION STANDARDS

ASSET NUMBER	MANFACTURER	MODEL NUMBER	SERIAL NUMBER	DESCRIPTION	CAL DATE	C'AL DUE
CAL-00278	BEOWULF	N-1	124	FORCE CAL KIT	12/16/2010	12/16/2011

CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9002, ISO/IEC Guide 25 / 17025, ISO 10012-1, ANSI/NCSL Z540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above.

3/23/2011 **CERTIFIED BY RYAN RIGBY**

<u>th</u> Anniversary CAL IURCE Metrology Solutions Celebrating 10 years of excellence

Tensiometer

NAL-1203	
266834	
Ryan Rigby	
March 23, 2011	
	NAL-1203 266834 Ryan Rigby March 23, 2011

Force(lbs.):

Range: 0-500 lbs. Accuracy +/- 1% of ind.

Nominal	Minimum	As Found	As Left	Maximum
100	99	101		101
200	198	200		202
300	297	302		303
400	396	400		404
450	445	447		455

Notes:

Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

Fusion

Geosyntec consultants

Trial Seam Log - Fusion

P Lo Descr	roject: <u>Ono</u> cation: <u>Cam</u> iption: <u>Cons</u>	ndaga Lake illus, New Y struction Qu	<u>Sediment</u> York ality Assu Ter	Consolidat rance for C	ion Area (S Dnondaga Se Description:	<u>SCA)</u> <u>CA Phase I</u> NAL-080	P <u>Cell</u> 2	rojNo: <u>G.</u>	14706		TaskN	No: <u>07</u>	
Ma	terial Type	gml :	2	Peel In: Peel Out:	side: side:	91 ppi 91 ppi	She	ear: 12	20 ррі	a Lann Norja	÷.		
Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	sion	Test Resu			's	QA	
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
1.001	8/10/2011	12:20	1 11/ 20	NC	0/0	450	10			1100 140	ppr		
1-002	8/19/2011	12.30	W-39	VS	5/5	450	10	10-113	121-115	155-162	PPI	P	DWH
1-002	8/19/2011	12.33	W-39	V S	1/1 9/9	450	8	128-123	138-119	156-150	PPI	P	DWH
1-004	8/19/2011	12:40	W-32	15 75	5/5 T/T	450	10	120-117	135-125	1/0-104	PPI	P	DWH
1-005	8/19/2011	16.30	W-32	TS	S/S	450		124-137	100 111	163 170	PPI	P	DWH
1-006	8/19/2011	16:30	W-32	TS	T/T	450	8	1113_113	145-136	143-146	DDI	P	DWH
1-007	8/19/2011	17:00	W-39	VS	S/S	450	10	104-113	115-120	144-168	PDI	D	DWH
1-008	8/20/2011	8:00	W-39	VS	S/S	450	10.5	127-131	129-133	195-199	PPI	p	DWH
1-009	8/20/2011	8:05	W-39	VS	T/T	450	8	144-146	138-136	180-176	111	p	DWH
1-010	8/20/2011	8:05	W-20	TS	S/S	450	10	112-111	127-118	187-182	PPI	p	DWH
1-011	8/20/2011	8:10	W-20	TS	T/T	450	8	120-134	120-120	185-175	PPI	p	DWH
1-012	8/20/2011	12:15	W-39	VS	S/S	450	10.5	121-129	125-119	170-170	PPI	P	DWH
1-013	8/20/2011	13:00	W-20	TS	S/S	450	10	121-116	114-134	158-160	PPI	p	DWH
1-014	8/20/2011	13:05	W-20	TS	T/T	450	8	120-114	116-104	152-153	PPI	p	DWH
1-015	8/20/2011	13:20	W-32	DS	S/S	450	10	118-116	110-126	161-163	PPI	Р	DWH
1-016	9/2/2011	8:00	W-39	VS	S/S	750	10	125-133	143-135	214-215	PPI	P	DWH
1-017	9/2/2011	8:05	W-39	VS	T/T	750	8	157-148	134-122	186-185	PPI	Р	DWH
1-018	9/2/2011	8:10	W-8	TS	S/S	365	8	130-115	110-113	171-185	PPI	Р	DWH
1-019	9/2/2011	8:15	W-2	DS	S/S	365	9	119-135	135-123	191-191	PP]	Р	DWH
1-020	9/2/2011	12:00	W-8	TS	S/S	365	8	107-106	108-114	166-162	PPI	Р	DWH
1-021	9/2/2011	12:00	W-39	VS	S/S	750	10	127-134	136-124	164-166	PPI	Р	DWH
1-022	9/2/2011	13:00	W-39	VS	T/T	750	8	138-145	153-136	168-164	PPI	Р	DWH
1-023	9/2/2011	13:10	W-2	DS	S/S	365	9	129-120	125-121	166-161	PPI	Р	DWH
1-024	9/2/2011	16:06	W-39	VS	S/T	750	8	134-138	124-126	163-161	PPI	Р	DWH
1-025	9/2/2011	16:15	W-8	TS	S/S	365	8	146-153	140-114	172-172	PPI	Р	DWH
1-026	9/13/2011	10:22	W-39	VS	S/S	750	10.5	104-119	130-139	179-179	PPI	Р	DWH
1-027	9/13/2011	10:23	W-39	VS	T/T	750	8	128-124	137-151	171-179	PPI	Р	DWH
1-028	9/13/2011	10:24	W-8	TS	S/S	750	8	125-124	117-110	165-180	PPJ	Р	DWH
1-029	9/13/2011	14:50	W-8	TS	S/S	750	8	133-131	116-119	178-178	PPI	Р	DWH
1-030	9/13/2011	14:51	W-39	VS	S/S	750	10.5	126-133	117-121	178-177	PPI	Р	DWH
1-031	9/13/2011	14:52	W-39	VS	S/T	750	8	133-123	119-120	167-159	PPI	Р	DWH
1-032	9/18/2011	10:10	W-39	VS	S/S	750	10.5	126-116	127-129	202-198	PPI	Р	DWH
1-033	9/18/2011	10:11	W-39	VS	T/T	750	8	126-124	129-129	196-192	PPI	Р	DWH
1-034	9/18/2011	10:15	W-8	TS	S/S	375	8	125-118	141-138	207-199	PPI	P	DWH

Geosyntec^D consultants

 $\tilde{S} \propto$

Trial Seam Log - Fusion

Tensiometer Description: NAL-0802	
Material Type gml : 2 Peel Inside: 91 ppi S Peel Outside: 91 ppi	hear: 120 ppi
Trial Date Time Mach Oper ID Mat Desc Fusion	Test Results QA
No ID Wedge Speed ° Celsius ft./Mi.	I Peel Peel Shear Unit Result ID In Out ppi/psi
1-035 0/18/2011 10:15 W 2 CD 8/8 2(0 7.0	122 112 144 122 205 004 001 00
1-035 9/18/2011 10.13 W-2 CP 5/S 300 7.0	133-113 140-123 207-208 PPI P DWH
1-037 9/18/2011 14:05 W-39 VS S/S 750 10.5	113-125 110-131 108-101 PPI P DWH
1-038 9/18/2011 14:06 W-39 VS T/T 750 8	138-144 136-135 181-188 PPI P DWH
1-039 9/18/2011 14:15 W-8 TS S/S 375 8	120-121 110-102 184-182 PPI P DWH
1-040 9/18/2011 18:00 W-39 VS S/S 750 10.5	141-127 128-121 188-208 PPI P DWH
1-041 9/18/2011 18:00 W-8 TS S/S 375 8	125-135 148-124 209-211 PPI P DWH
1-042 9/19/2011 8:10 W-39 VS S/S 750 10.5	146-144 125-139 228-219 PPI P DWH
1-043 9/19/2011 8:10 W-39 VS T/T 750 8	164-161 127-146 204-215 PPI P DWH
1-044 9/19/2011 9:00 W-2 CP S/S 370 7	138-129 121-111 212-210 PPI P DWH
1-045 9/19/2011 9:55 W-8 TS S/S 375 8	122-115 101-101 188-208 PPI P DWH
1-046 9/19/2011 12:50 W-2 CP S/S 370 7	123-123 127-140 186-191 PPI P DWH
1-047 9/19/2011 13:00 W-39 VS S/S 750 10.5	124-127 125-112 190-191 PPI P DWH
1-048 9/19/2011 13:04 W-39 VS T/T 750 8	148-143 141-138 185-184 PPI P DWH
1-049 9/19/2011 14:00 W-8 TS S/S 375 8	132-133 143-143 188-193 PPI P DWH
1-050 9/19/2011 17:00 W-39 VS S/T 750 8	128-128 133-148 156-196 PPI P DWH
1-051 9/19/2011 17:00 W-2 CP S/S 370 7	126-119 128-126 205-180 PPI P DWH
1-052 9/19/2011 18:00 W-8 TS S/T 375 6.5	135-146 155-153 187-187 PPI P DWH
1-053 9/26/2011 18:00 W-8 TS S/S 375 7	128-125 130-108 200-195 PPI P DWH
1-054 9/26/2011 18:00 W-39 VS S/S 750 10	125-110 147-141 201-205 PPI P DWH
1-055 9/26/2011 18:03 W-39 VS T/T 750 8	149-141 133-143 189-192 PPI P DWH
1-056 9/26/2011 18:05 W-39 VS S/T 750 7	118-118 136-138 200-198 PPI P DWH
1-057 9/27/2011 8:00 W-39 VS S/S 750 10.5	134-129 159-120 200-207 PPI F DWH
1-058 9/2//2011 8:05 W-39 VS 1/1 750 8	147-128 140-130 191-192 PPI P DWH
1-057 7/2//2011 8:45 W-8 18 S/S 375 8	130-130 135-151 210-200 PPI P DWH
1.061 0/27/2011 0:00 W 20 V0 2/0 750	105-123 123-128 199-204 PPI P DWH
1-062 9/27/2011 12:40 W-9 TO 9/T 275 7	132-124 133-124 183-193 PPI P DWH
1-063 9/27/2011 14:00 W_30 VS S/S 750 0	122 109 126 120 182 180 DDL D DWH
1-064 9/27/2011 14:05 W-39 VS T/T 750 0	129-120 120-120 185-180 PPI P DWH
1-065 9/27/2011 14:40 W-8 TS S/S 275 0	126.116 06.100 177.182 DDI D DWH
1-066 9/27/2011 14:30 W-2 CP S/S 375 7	123-128 114-110 181 177 DDI D DWH
1-067 9/28/2011 8:30 W-39 VS S/S 750 0	140-152 110-123 104-202 DDI D DUUL
1-068 9/28/2011 8:35 W-39 VS T/T 750 9	137-144 133-134 104 102 DDI D DWH

Monday, April 30, 2012

Page 2 of 5

Geosyntec[▷]

consultants

Trial Seam Log - Fusion

I Lo Desci	Project: <u>Onor</u> ocation: <u>Cam</u> ription: <u>Cons</u>	ndaga Lake illus, New ` struction Qu	<u>Sediment</u> York Iality Assu Ter	Consolidat rance for C	ion Area (S Doondaga Se Description:	<u>SCA)</u> <u>CA Phase I</u> NAL-080	р <u>Cell</u> 2	rojNo: <u>G</u>	<u>J4706</u>		Task№	lo: <u>07</u>	
Ma	aterial Type	gml :	2	Peel In: Peel Out:	side: side:	91 ppi 91 ppi	Sh	ear:]:	20 ppi			- 10 GAL	
Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	sion	Test Results					OA
Seam No			ID			Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ĨD
1-069	9/28/2011	8.45	11/ 8	TC	9/0	275		117 121	120 122	200.201	DDI		Louis
1-070	9/28/2011	13.00	W-0	Ve	5/5	_ 375	8	120 110	130-133	200-201	PPI	P	DWH
1-071	9/28/2011	13.10	W-39	VS	5/5 T/T	750	9	120-119	131-129	182-178	PPI	P	DWH
1-072	9/28/2011	13.10	W-8	TS	S/S	375	0	108-106	124-138	1/9-184	PPI	P	DWH
1-073	10/8/2011	8:00	W-8	TS	S/S	380	7.5	117-117	113-116	206 206	DDI	P D	DWU
1-074	10/8/2011	8:05	W-39	VS	S/S	750	0	127-124	07-128	212-200	PDI	r D	DWH
1-075	10/8/2011	8:10	W-39	VS	T/T	750	8	131-131	143-159	207-207	PD1	Г D	DWH
1-076	10/8/2011	13:10	W-8	TS	S/S	380	7.5	91-94	108-102	168-166	PPI	р	DWH
1-077	10/8/2011	13:15	W-39	VS	S/S	750	10	121-117	128-122	184-178	III	I Q	DWH
1-078	10/8/2011	13:16	W-39	VS	T/T	750	8	143-150	136-138	169-175	PPI	P	DWH
1-079	10/9/2011	7:45	W-39	VS	S/S	750	95	146-134	131-130	225-198	PPI	р	
1-080	10/9/2011	8:10	W-8	TS	S/S	380	7.5	122-127	125-133	202-228	PPI	P	DWH
1-081	10/9/2011	13:00	W-8	TS	S/S	380	7.5	106-108	116-110	155-159	PPI	P	DWH
1-082	10/9/2011	13:10	W-39	VS	S/S	750	10	120-126	116-107	167-175	PPI	p	DWH
1-083	10/10/2011	12:30	W-39	VS	S/S	750	10	120-129	131-126	168-173	PPI	P	DWH
1-084	10/10/2011	12:31	W-39	VS	T/T	750	8	129-120	125-138	158-163	PPI	P	DWH
1-085	10/10/2011	12:31	W-2	KP	S/S	365	8	117-108	99-119	168-166	PPI	P	DWH
1-086	10/10/2011	12:31	W-8	TS	S/S	380	7.5	122-114	119-106	169-173	PPI	P	DWH
1-087	10/10/2011	16:30	W-39	VS	S/S	750	10	157-155	166-139	206-204	PPI	Р	DWH
1-088	10/10/2011	16:30	W-8	TS	S/S	380	7.5	128-120	141-144	192-195	PPI	Р	DWH
1-089	10/10/2011	16:30	W-2	KP	S/S	380	8.5	136-136	123-136	196-201	PPI	Р	DWH
1-090	10/11/2011	8:11	W-8	TS	S/S	380	7.5	124-115	138-112	202-205	PPI	Р	DWH
1-091	10/11/2011	8:20	W-39	VS	S/S	750	9	130-138	117-136	210-221	PPJ	Р	DWH
1-092	10/11/2011	8:21	W-39	VS	T/T	750	8	155-150	140-152	201-208	PPI	Р	DWH
1-093	10/11/2011	8:25	W-2	DS	S/S	380	8.5	114-120	117-128	238-198	PPI	Р	DWH
1-094	10/11/2011	13:25	W-8	TS	S/S	380	7.5	122-144	120-119	177-176	PPI	Р	DWH
1-095	10/11/2011	13:26	W-2	DS	S/S	380	8.5	115-114	102-111	183-188	PPI	Р	DWH
1-096	10/11/2011	13:28	W-39	VS	S/S	750	10	115-123	116-127	185-188	PPI	Р	DWH
1-097	10/11/2011	13:30	W-39	VS	T/T	750	8	130-126	118-115	174-179	PPI	Р	DWH
1-098	10/11/2011	17:30	W-8	TS	S/S	380	7.5	141-154	129-131	208-209	PP]	Р	DWH
1-099	10/11/2011	17:36	W-39	VS	S/T	750	8	137-143	132-133	188-183	PPI	Р	DWH
1-100	10/31/2011	9:00	W-39	VS	S/S	750	8.5	146-140	138-133	247-226	PPI	Р	DWH
1-101	10/1/2011	9:05	W-39	VS	T /T	750	7.5	136-140	131-131	213-218	PPI	Р	DWH
1-102	10/1/2011	9:20	W-2	KP	S/S	365	8.5	156-153	126-139	232-235	PPI	Р	DWH

Geosyntec[▷]

consultants

Trial Seam Log - Fusion

P Loc Descr	roject: <u>Onon</u> cation: <u>Cami</u> iption: <u>Cons</u>	idaga Lake : Ilus, New Y truction Qu	<u>Sediment ('ork</u> ality Assur Ten	Consolidat rance for C isiometer E	<u>ion Area (S</u> Dnondaga So Description:	SCA) CA Phase I NAL-080	Pi <u>Cell</u> 2	rojNo: <u>GJ</u>	4706		TaskN	lo: <u>07</u>	
Ma	terial Type	gml :	2	Peel In: Peel Out:	side: side:	91 ppi 91 ppi	She	ear: 12	20 ppi				
Trial	Date	Time	Mach	Oper ID	Mat Desc	Fus	ion	1	Те	est Result	!s		QA
Seam No					Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID	
1 102	10/21/2011	0.50	11/ 9	Te	0/0	200	7	117 112	124 110	224 210	וחח	0	DWIL
1-103	10/1/2011	9.50	W-8	13 1 TS	\$/\$	380	7	132 136	124-119	224-219	DDI	P D	
1-104	10/31/2011	13:06	W-39	VS	\$/\$	750	85	141-142	135-139	209-224	PPI	P	DWH
1-106	10/31/2011	13:10	W-39	VS	T/T	750	7.5	146-150	139-137	210-212	PPI	, p	DWH
1-107	10/31/2011	13:10	W-2	KP	S/S	365	8.5	144-132	165-140	241-227	PPI	p	DWH
1-108	10/31/2011	15:00	W-8	TS	T/T	380	6.5	136-156	154-139	197-195	ppi	P	DWH
1-109	11/1/2011	8:20	W-8	TS	S/S	380	7	138-135	138-143	234-226	PPI	Р	DWH
1-110	11/1/2011	8:25	W-2	KP	S/S	365	7	136-154	133-143	239-239	PPI	P	DWH
1-111	11/1/2011	8:30	W-39	VS	S/S	750	8	151-154	138-155	232-236	PPI	P	DWH
1-112	11/1/2011	8:35	W-39	VS	T/T	750	7	144-142	127-119	228-236	РРІ	Р	DWH
1-113	11/1/2011	13:00	W-8	TS	S/S	380	7	117-126	124-111	195-197	PPJ	Р	DWH
1-114	11/1/2011	13:05	W-8	TS	T/T	380	6.5	133-142	132-126	189-194	PPI	Р	DWH
1-115	11/1/2011	13:10	W-2	KP	S/S	365	7	134-132	135-138	205-208	PPI	Р	DWH
1-116	11/1/2011	13:15	W-39	VS	S/S	750	8	117-119	150-134	203-199	PPI	Р	DWH
1-117	11/1/2011	13:20	W-39	VS	S/T	750	7	116-113	134-141	173-203	PPI	Р	DWH
1-118	11/1/2011	13:25	W-39	VS	T/T	750	7.0	114-111	128-132	188-202	PPI	Р	DWH
1-119	11/2/2011	8:05	W-2	KP	S/S	365	7	157-141	136-146	247-231	PPI	Р	DWH
1-120	11/2/2011	8:10	W-8	TS	S/S	380	7.5	135-145	115-126	214-211	PPI	Р	DWH
1-121	11/2/2011	8:12	W-8	TS	T/T	380	6.5	132-137	149-130	212-204	PPI	Р	DWH
1-122	11/2/2011	8:20	W-39	VS	S/S	750	8	133-141	130-130	233-231	PPI	P	DWH
1-123	11/2/2011	8:25	W-39	VS	S/T	750	7	146-135	148-156	222-216	PPI	Р	DWH
1-124	11/2/2011	13:00	W-8	TS	S/S	380	7,5	118-119	123-123	196-200	PPI	Р	DWH
1-125	11/2/2011	13:02	W-8	TS	T/T	380	6.5	141-133	124-130	180-182	PPI	Р	DWH
1-126	11/2/2011	13:20	W-39	VS	S/S	750	8	125-123	127-127	201-200	PPI	Р	DWH
1-127	11/2/2011	13:25	W-39	VS	S/T	750	7	166-153	145-150	193-200	PPJ	P	DWH
1-128	11/2/2011	14:00	W-2	TS	S/S	380	7.5	137-149	137-135	211-214	PPI	P	DWH
1-129	11/2/2011	14:02	W-2	15	1/1	380	6.5	139-140	133-136	181-185	PPI	P	DWH
1-130	11/8/2011	8:20	W-39	VS	5/5	/50	8.5	129-136	125-103	205-191	PPI	- P	DWH
1-131	11/8/2011	8:21	W-39	VS	1/1	/50	1	153-145	154-143	201-209	PPI	P	DWH
1-132	11/8/2011	8:25	W-2	KP TO	5/5	3/5	8	149-139	144-121	219-219	PPI	P	DWH
1-133	11/0/2011	10:10	W-8	15	3/3	380	1.5	118-116	119-126	182-182	PP]	P	DWH
1-134	11/8/2011	10.12	W-8	15	1/1	380	0.0	133-14]	150-144	1/8-1/8	PPI	P P	DWH
1-133	11/0/2011	12.30	W-2	NP VC	5/5	3/3	ð -	113-118	118-125	209-203	PPI	P	DWH
1-130	11/8/2011	13:40	W-39	VS	5/5	750	8.5	121-120	121-104	184-180	PPI	Р	DWH

Geosyntec consultants

Trial Seam Log - Fusion

F	roject: Ono	ndaga Lake	Sediment	Consolidat	tion Area (S	SCA)	_						
Lo	cation: Carr	<u>illus, New '</u>	<u>York</u>				Р	rojNo: <u>G</u>	<u>J4706</u>		Task	No: 07	
Descr	iption: Con	struction Qu	ality Assu	rance for C)nondaga S	CA Phase 1	Cell						
			Ter	isiometer I	Description:	NAL-080	2						
Ma	terial Type	aml •	2	Deal In	nida.	01	01			Construction and an entropy		222.2010	
	ional Type	gini .	2	reerm	siuc.	91 ppi	Sn	ear: J.	20 ppi				
				Peel Out:	side:	91 ppi							
Trial Seam	Date	Time	Mach	Oper ID	Mat Desc	Fus	sion	1	T	est Result	ls		QA
No						Wedge ° Celsius	Speed ft./Min	Peel In	Peel Out	Shear	Unit ppi/psi	Result	ID
1-137	11/8/2011	13:45	W-39	VS	Т/Т	750	7	125 120	124 142	172 172	זמת	D	
1-138	11/8/2011	14:10	W-8	TS	S/S	380	7.5	119 123	134-142	172-175	PPI	P	DWH
1-139	11/8/2011	14:15	W-8	TS	Т/Т	380	6.5	117-117	130 119	160 160	DDI	P D	DWH
1-140	11/9/2011	7:30	W-8	TS	S/S	380	8	130-130	121-138	205.207	DDI	P D	DWH
1-141	11/9/2011	7:32	W-8	TS	T/T	380	7	135-138	136-133	186-195	DDI	Г D	DWD
1-142	11/9/2011	7:35	W-39	VS	S/S	750	8.5	114-127	130-145	193-215	PPI	P P	DWI
1-143	11/9/2011	7:38	W-39	VS	T/T	750	7	170-170	139-150	206-194	PPI	P	DWH
1-144	11/9/2011	7:38	W-2	KP	S/S	375	8	138-141	126-143	207-211	PPI	P	DWH
1-145	11/9/2011	13:00	W-39	VS	S/S	750	8.5	129-125	139-135	191-186	PPI	P	DWH
1-146	11/9/2011	13:01	W-39	VS	T/T	750	7	126-134	143-152	186-188	PPI	P	DWH
1-147	11/9/2011	13:02	W-2	KP	S/S	375	7	114-128	125-131	196-196	PPI	p	DWH
1-148	11/9/2011	13:10	W-8	TS	S/S	380	8	107-113	125-115	177-180	PPI	P	DWH
1-149	11/9/2011	13:15	W-8	TS	T/T	380	7	99-106	109-117	159-166	PPI	P	DWH
1-150	12/20/2011	9:20	W-2	TS	S/S	380	7	138-163	138-165	223-234	ppi	D	AR
1-151	12/20/2011	13:00	W-2	TS	S/S	380	6.8	149-143	142-136	190-197	ppi	p	AR
1-152	12/22/2011	9:00	W-2	TS	S/S	385	7	158-157	164-150	240-243	ppi	n	AR

Extrusion

Geosyntec[>]

consultants

Trial Seam Log - Extrusion

Pro Loca Descrip	oject: <u>Onon</u> ttion: <u>Camil</u> otion: <u>Const</u>	daga Lake S Ilus, New Y ruction Qua	Sediment <u>'ork</u> ality Assu Ter	Consoli rance fo	dation A or Onond er Descri	rea (SCA) aga SCA Ph ption: NAI	<u>ase I Cell</u> 0802	ProjNo: <u>(</u>	<u>3J4706</u>		Task	No: <u>07</u>	
Mater	ial Type	gml : 2		_	Pe	eel: 78	ppi		Shear:	120	ррі		
Trial	Date	Time	Mach	Oper	Mat	Extra	usion		Test Res	ults		Retest	QA ID
Seam No	Ditte	A BIRAC	ID	ID	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No	
001	8/22/2011	13.30	MX-8	VS	T/T	475	500	116-137	174-172	PPI	Р	1	DWH
002	8/23/2011	8.10	MX-8	VS	T/T	475	500	143-130	176-186	PPI	Р		DWH
002	8/23/2011	13.10	MX-8	VS	T/T	475	500	132-128	178-170	PPI	Р		DWH
003	8/24/2011	8.51	MX-14	DS	T/T	500	475	109-114	167-172	PPI	Р		DWH
005	8/24/2011	13:05	MX-14	DS	T/T	500	475	129-103	169-178	PPI	Р		DWH
005	8/26/2011	9.56	MX-14	KP	T/T	475	500	115-147	187-186	PPI	Р		DWH
000	8/26/2011	12.50	MX-14	KP	T/T	475	500	125-117	166-159	PPI	Р		DWH
007	8/20/2011	0.35	MY-8	VS	T/T	500	475	153-135	175-168	PP1	Р		DWH
008	0/12/2011	7.58	MX-0	VS	T/T	500	500	124-111	218-210	PPI	Р		DWH
010	0/12/2011	13.02	MX-14	VS	Т/Т	500	500	130-122	173-177	PPI	Р		DWH
010	0/12/2011	7.44	MY 8	VS	Т/Т	500	500	126-141	188-186	PPI	Р		DWH
012	9/13/2011	0.20	MX 9	VS	T/T	500	500	140-144	195-203	PPI	P		DWH
012	9/14/2011	0.20	IVIA-0	VS	1/1 T/T	500	500	124-134	195-193	PPI	P		DWH
013	9/14/2011	0.20	MV 0	VO	1/1 T/T	500	500	147-155	194-196	PPI	P		DWH
014	9/16/2011	9:30	IVIA-0	VO	1/1 T/T	500	500	126-153	178-179	PPI	P	1	DWH
015	9/16/2011	7.50	MV 0	VO	1/1 T/T	500	500	1/8-164	215-215	PPI	P		DWH
016	9/1//2011	1:39	MX 0	CD	1/1 T/T	500	525	140-131	165-170	PPI	p		DWH
017	9/19/2011	10:15	IVIA-0	UP	1/1	500	500	140-131	208-213	PPI	P		DWH
018	9/21/2011	8:00	MA-8	VS	1/1	500	500	124 126	176 180	DDI	P		DWH
019	9/21/2011	13:00	MX-8	VS	1/1	500	500	147 152	201 101	DDI	D		DWH
020	9/26/2011	8:00	MX-8	VS	1/1	500	500	147-132	106 101	DDI	D I		DWH
021	9/26/2011	13:00	MX-8	VS	1/1	500	500	132-141	100-101	DDI	I D		DWH
022	9/29/2011	8:30	MX-8	VS	1/1	500	500	1/3-1/1	103-203	DDI	P P	1	
023	9/29/2011	13:10	MX-8	VS	1/1	500	500	133-133	212 202	DDI	P P	1	
024	10/5/2011	8:20	MX-8	VS	1/1	500	500	126 110	177 175	DDI	r D	1	
025	10/5/2011	10:45	MX-14	LV	1/1	500	500	140 120	104 100	DDI	r D	1	DWI
026	10/5/2011	13:00	MX-8	VS	1/1	500	500	140-132	194-190	DDI	r p		DWU
027	10/6/2011	8:15	MX-14	LV	1/1	500	500	125-118	168 170	PPI	r n	1	
028	10/6/2011	13:15	MX-14	LV	1/1	500	500	95-120	108-179	ppr	r n	1	DWD
029	10/7/2011	8:05	MX-14	LV	17T	500	500	138-141	200-209	PPI	P P	1	
030	10/7/2011	8:45	MX-8	VS	T/T	500	500	140-130	210-208	PPI	P	1	DWH
031	10/7/2011	13:00	MX-8	VS	T/T	500	500	142-140	188-184	PPI			DWH
032	10/7/2011	13:15	MX-14	LV	T/T	500	500	122-122	173-187	PPI	P		
033	10/10/2011	8:00	MX-8	VS	T/T	500	500	139-140	209-205	PPI	P		DWH
034	10/11/2011	8:45	MX-8	KP	T/T	500	500	117-144	183-193	PPI	P		DWH
035	10/11/2011	12:00	MX-8	KP	T/T	500	500	143-154	179-180	PPI	<u>P</u>	1	DWH
036	10/12/2011	8:00	MX-8	VS	T/T	500	500	139-131	191-193	PPI	P		DWH

Tuesday, May 22, 2012

Page 1 of 3

Geosyntec[▶]

consultants

Trial Seam Log - Extrusion

Pro Loca Descrip	oject: <u>Onon</u> ttion: <u>Camil</u> ption: <u>Const</u>	daga Lake : Ilus, New Y ruction Qu	Sediment <u>'ork</u> ality Assu Ter	Consoli trance fo	dation A or Onond er Descri	rea (SCA) laga SCA Ph ption: NAI	<u>ase I Cell</u> 0802	ProjNo: 🤇	<u>GJ4706</u>		Task	No: <u>07</u>	
Mater	ial Type	gml : 2			Pe	eel: 78	ppi		Shear:	120	ррі		
Trial	Date	Time	Mach	Oper	Mat	Extr	usion		Test Res	ults		Retest	QA ID
Seam No	2.00		ID	ID	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Shear	Unit ppi/psi	Result P/F	No	
037	10/12/2011	13:00	MX-8	VS	T/T	500	500	142-143	190-181	PPI	Р		DWH
038	10/17/2011	8:30	MX-8	VS	T/T	535	500	154-143	208-215	PPI	Р		DWH
039	10/17/2011	9:00	MX-5	DS	T/T	535	525	121-109	219-200	PPI	Р		DWH
040	10/17/2011	13:00	MX-8	VS	T/T	535	520	128-137	205-201	PPI	Р		DWH
041	10/17/2011	13:10	MX-5	DS	T/T	535	525	80-108	177-185	PPI	Р		DWH
042	10/18/2011	8:00	MX-8	VS	T/T	535	500	151-147	199-194	PPI	Р		DWH
043	10/18/2011	8:05	MX-5	DS	Т/Т	535	525	82-90	191-170	PPI	Р		DWH
044	10/18/2011	13:00	MX-8	VS	T/T	535	500	132-139	183-180	PPI	Р		DWH
045	10/18/2011	13.00	MX-5	DS	T/T	535	500	122-123	175-153	PPI	Р		DWH
046	10/21/2011	10.45	MX-8	VS	T/T	535	500	160-142	209-211	PPI	Р		DWH
047	10/24/2011	13.00	MX-8	VS	Т/Т	535	500	133-158	220-212	PPI	Р		DWH
049	10/25/2011	8.00	MX-8	VS	Т/Т	535	520	146-142	219-208	PPI	Р		DWH
040	10/25/2011	11.45	MY-8	VS	T/T	535	500	130-146	196-198	PPI	P		DWH
049	10/28/2011	10.11	MY-8	VS	Т/Т	535	525	144-140	212-209	PPI	P		DWH
051	10/28/2011	13.45	MX-8	VS	T/T	535	525	158-162	210-215	PPI	P		DWH
052	11/2/2011	14.15	MV 5	TV	T/T	500	500	152-150	186-186	PPI	p		DWH
052	11/2/2011	0.20	MV 9	VS	T/T	500	500	137-138	204-213	PPI	P		DWH
053	11/3/2011	0.30	MV 5	IV	1/1 T/T	500	500	110 121	204-213	PPI	p		DWH
054	11/3/2011	0.45	IVIA-J	LV	1/1 T/T	500	500	141 140	190 205	DDI	D		DWH
055	11/3/2011	12:45	MX-5	LV	1/1	500	500	141-140	177 172	DDI	D		DWH
056	11/3/2011	12:45	MA-8	VS	1/1	500	500	132-129	215 225	DDI	D		DWH
057	11/4/2011	8:30	MA-8	VS	1/1	535	500	147-144	213-223	DDI	D		DWH
058	11/7/2011	8:00	MA-8	VS		535	500	149-102	230-208		r D		DWH
059	11/7/2011	12:45	MX-8	VS		535	500	130-143	200-190	DDI	P D		DWH
060	11/9/2011	15:40	MX-14	CP	1/1	465	500	137-130	223-210	PPI	r		DWI
061	11/10/2011	8:00	MX-5	LV	1/1	500	500	145-130	203-201	PPI	r D		DWII
062	11/10/2011	8:00	MX-8	VS	1/1	535	500	140-142	210-189	PPI	P		DWI
063	11/10/2011	12:45	MX-8	VS	1/1	535	500	130-151	200-204	PPI			DWH
064	11/10/2011	12:50	MX-5	LV	171	500	500	111-124	204-184	PPI	P		DWH
065	11/11/2011	8:00	MX-8	VS	T/T	535	500	131-135	216-224	PPI			DWH
066	11/11/2011	8:00	MX-5	KP	T/T	550	500	129-151	210-218	PPI	4		DWH
067	11/14/2011	8:00	MX-8	VS	T/T	535	500	125-131	206-201	PPI PPI	P	-	DWH
068	11/14/2011	8:00	MX-5	KP	T/T	535	500	139-143	202-203	PPI	P		DWH
069	11/15/2011	8:00	MX-8	VS	T/T	535	500	131-141	205-207	PPI	P		DWH
070	11/15/2011	8:30	MX-5	KP	T/T	535	500	138-135	215-210	PPI	Р		DWH
071	11/15/2011	12:40	MX-5	KP	T/T	535	500	187-167	176-205	PPI	Р		DWH
072	11/15/2011	13:45	MX-8	VS	T/T	535	500	110-138	187-210	PPI	P		DWH

Tuesday, May 22, 2012

Geosyntec[▷]

consultants

Trial Seam Log - Extrusion

Pro Loca Descrip Mater	Project: <u>Onondaga Lake Sediment Consolidation Area (SCA)</u> Location: <u>Camillus, New York</u> ProjNo: <u>GJ4706</u> TaskNo: Description: <u>Construction Quality Assurance for Onondaga SCA Phase I Cell</u> Tensiometer Description: NAL-0802 Material Type gml : 2 Peel: 78 ppi Shear: 120 ppi													
Trial	ial Date Time Mach Oper Mat Extrusion Test Results								Retest	QA ID				
Seam No			ID	ID	Desc	Pre heat ° Celsius	Barrel ° Celsius	Peel	Peel Shear		Result P/F	No		
073	11/22/2011	9:00	MX-5	KP	T/T	500	500	152-152	230-232	PPI	P		DWH	
074	12/13/2011	14:00	MX-8	LV	T/T	500	500	90-83	217-219	PPI	Р		DWH	
075	12/14/2011	9:30	MX-8	LV	T/T	500	500	109-101	215-214	PPI	Р		DWH	
076	12/20/2011	9:15	MX-14	VC	T/T	550	525	109-140	216-218	PPI	Р		AR	
077	12/20/2011	12:45	MX-14	VC	T/T	550	525	142-140	220-219	PPI	Р		AR	
078	12/20/2011	13:00	MX-8	VS	T/T	550	550	150-142	221-218	PPI	Р		AR	
079	12/22/2011	9:05	MX-19	MB	T/T	425	525	114-140	221-204	PPI	Р		AR	
080	12/22/2011	9:00	MX-8	VS	T/T	550	535	113-131	212-194	PPI	Р		AR	
081	12/22/2011	13:00	MX-19	MB	T/T	550	525	120-106	190-205	PPI	Р		AR	
082	12/22/2011	13:00	MX-8	VS	T/T	550	535	108-118	200-210	PPI	Р		AR	
083	5/21/2012	9:30	X16	VC	T/T	475	500	118-108	168-174	ppi	р		BC	