APPENDIX A DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT

ONONDAGA LAKE PRE-DESIGN INVESTIGATION

PHASE IV

Prepared For:

Honeywell

301 Plainfield Road, Ste. 330 Syracuse, New York 13212

Prepared By:

PARSONS

301 Plainfield Road, Ste. 350 Syracuse, New York 13212 Phone: (315) 451-9560 Fax: (315) 451-9570

JANUARY 2011

TABLE OF CONTENTS

	<u>Page</u>
LIST OF ATTACHMENTS	II
SECTION A1 DATA USABILITY SUMMARY	A1-1
A1.1 LABORATORY DATA PACKAGES	A1-1
A1.2 SAMPLING AND CHAIN-OF-CUSTODY	A1-1
A1.3 LABORATORY ANALYTICAL METHODS	A1-1
A1.3.1 Volatile Organic Analysis	A1-2
A1.3.2 Semi-volatile Organic Analysis	A1-2
A1.3.3 PCB Organic Analysis	
A1.3.4 Mercury and Monomethyl Mercury Analysis	A1-3
A1.3.5 Wet Chemistry Analyses	A1-3
SECTION A2 DATA VALIDATION REPORTS	A2-1
A2.1 VIBRACORE SEDIMENT SAMPLES	A2-1
A2.1.1 Volatiles	A2-1
A2.1.2 Semi-volatiles (Phenol and PAHs)	A2-3
A2.1.3 PCBs	A2-6
A2.1.4 Mercury	A2-7
A2.1.5 TOC, pH, and Specific Gravity	
A2.2 POREWATER CENTRIFUGE VIBRACORE SAMPLES	A2-9
A2.2.1 Volatiles	A2-9
A2.2.2 Mercury	A2-12
A2.2.3 DOC and pH	A2-13
A2.3 POREWATER CENTRIFUGE SEDIMENT SAMPLES	A2-13
A2.3.1 Volatiles	A2-14
A2.3.2 Mercury	A2-15
A2.3.3 TOC, pH, and Specific Gravity	A2-17
A2.4 ADDENDUM 6 SURFACE WATER SAMPLES	A2-17
A2.4.1 Total and Dissolved Volatiles	A2-17
A2.4.2 Total and Dissolved Semi-volatiles	A2-19
A2.4.3 Total and Dissolved PCBs	
A2.4.4 Total and Dissolved Low Level Mercury	A2-21
A2.4.5 Total and Dissolved Monomethyl Mercury	A2-22
A2.4.6 Total and Dissolved Ammonia and TSS	A2-22

TAI	BLE OF CONTENTS - CONTINUED
	<u>Page</u>
A25 ADDENDUM 8 SE	DIMENT SAMPLES A2-23
A2.3.1 Mercury	
A2.6 ADDENDUM 8 SU	PPLEMENTAL SEDIMENT SAMPLES A2-24
A2.6.1 Mercury	
•	
	LIST OF ATTACHMENTS
	TED I ADODATION DATA
ATTACHMENT A VALIDA	ATED LABORATORY DATA
ATTACHMENT A-1	VALIDATED LABORATORY DATA FOR
	VIBRACORE SEDIMENT SAMPLES
ATTACHMENT A-2	VALIDATED LABORATORY DATA FOR
	POREWATER CENTRIFUGE VIBRACORE
	SAMPLES
ATTACHMENT A-3	VALIDATED LABORATORY DATA FOR
	POREWATER CENTRIFUGE SEDIMENT
	SAMPLES
ATTACHMENT A-4	VALIDATED LABORATORY DATA FOR
	ADDENDUM 6 SURFACE WATER SAMPLES
ATTACHMENT A.5	VALIDATED LABORATORY DATA FOR
ATTACHMENT A-3	ADDENDUM 8 SEDIMENT SAMPLES
	ADDENDON 6 SEDIMENT SAMI LES
ATTACHMENT A-6	VALIDATED LABORATORY DATA FOR
	ADDENDUM 8 SUPPLEMENTAL SEDIMENT
	SAMPLE

SECTION A1

DATA USABILITY SUMMARY

Vibracore sediment samples, porewater centrifuge samples, porewater sediment samples, surface water, and sediment samples were collected from the Onondaga Lake Pre-Design Investigation (PDI) sites in Solvay, New York from June 18, 2008 through November 25, 2008. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Onondaga Lake PDI Phase IV Work Plan
- July 2005 NYSDEC Analytical Services Protocol (ASP)
- USEPA Region II Standard Operating Procedures (SOPs) for organic and inorganic data review

The analytical laboratories for this project were Test America Laboratories (TAL) in Pittsburgh, Pennsylvania; TAL in Burlington, Vermont; TAL in North Canton, Ohio; and Brooks Rand Laboratories (Brooks Rand). These laboratories are certified to conduct project analyses through the New York State Department of Health (NYSDOH) and the National Environmental Laboratory Accreditation Program (NELAP).

A1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 36 days on average for the samples.

The laboratory data packages received from TAL and Brooks Rand were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation reports which are summarized by sample media in Section A2.

A1.2 SAMPLING AND CHAIN-OF-CUSTODY

The samples were collected, properly preserved, shipped under a COC record, and received at TAL and Brooks Rand within one to five days of sampling. All samples were received intact and in good condition at TAL and Brooks Rand.

A1.3 LABORATORY ANALYTICAL METHODS

The vibracore sediment samples were collected from the site and analyzed for volatile organic compounds (VOCs), phenol, polynuclear aromatic hydrocarbons (PAHs) semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), mercury, pH, total organic carbon (TOC), and specific gravity. The porewater centrifuge samples were collected and analyzed for VOCs, mercury, dissolved organic carbon (DOC), and pH. The porewater sediment

samples were collected and analyzed for VOCs, mercury, TOC, pH, and specific gravity. The Addendum 6 surface water samples were collected and analyzed for total and dissolved VOCs, total and dissolved SVOCs, total and dissolved PCBs, total and dissolved low level mercury, total and dissolved monomethyl mercury, total suspended solids (TSS), and total and dissolved ammonia. The Addendum 8 sediment samples and the Addendum 8 supplemental sediment samples were collected and analyzed for mercury. Summaries of issues concerning these laboratory analyses are presented in Subsections A1.3.1 through A1.3.5. The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section A2. The laboratory data were reviewed and may be qualified with the following validation flags:

"U" - not detected at the value given

"UJ" - estimated and not detected at the value given

"J" - estimated at the value given

"N" - presumptive evidence at the value given

"R" - unusable value

The validated laboratory data were tabulated and are presented by media in Attachment A.

A1.3.1 Volatile Organic Analysis

Vibracore sediment, porewater, and porewater sediment samples collected from the site were analyzed for certain VOCs using the USEPA SW-846 8260B analytical method, and Addendum 6 surface water samples collected from the site were analyzed for total and dissolved target compound list (TCL) VOCs using the USEPA SW-846 8260B analytical method. Certain reported results for the VOC samples were qualified as estimated based upon sample surrogate recoveries, matrix spike/matrix spike duplicate (MS/MSD) recoveries, instrument calibrations, field duplicate precision, and sediment sample moisture content. The reported VOC analytical results were 100% complete (i.e., usable) for the data presented by TAL. PARCC requirements were met.

A1.3.2 Semi-volatile Organic Analysis

Vibracore sediment samples collected from the site were analyzed for phenol and PAHs using the USEPA SW-846 8270C analytical method, and Addendum 6 surface water samples collected from the site were analyzed for total and dissolved TCL SVOCs using the USEPA SW-846 8270C analytical method. Certain reported results for these samples were qualified as estimated based upon noncompliant sample internal standard responses, instrument performance, instrument calibrations, field duplicate precision, and sediment sample moisture content. Certain reported SVOC sample results were considered unusable and qualified "R" based upon instrument performance. The reported SVOC analytical results were 99.8 to 100% complete (i.e., usable) for the data presented by TAL. PARCC requirements were met overall.

A1.3.3 PCB Organic Analysis

Vibracore sediment samples collected from the site were analyzed for PCBs using the USEPA SW-846 8082 analytical method, and Addendum 6 surface water samples collected from the site were analyzed for total and dissolved PCBs using the USEPA SW-846 8082 analytical method. Certain reported results for the PCB samples were qualified as estimated based upon field duplicate precision and sediment sample moisture content. The reported PCB analytical results were considered 100% complete (i.e., usable) for the data presented by TAL. PARCC requirements were met.

A1.3.4 Mercury and Monomethyl Mercury Analysis

Vibracore sediment samples, porewater samples, porewater sediment samples, Addendum 8 sediment samples, and the Addendum 8 supplemental sediment samples collected from the site were analyzed for mercury using the USEPA SW-846 7470A/7471A analytical methods. Addendum 6 surface water samples collected from the site were analyzed for total and dissolved low level mercury and monomethyl mercury using the USEPA 1631E and 1630 analytical methods, respectively. Certain reported results for these samples were qualified as estimated based upon holding times of receipt, MS/MSD recoveries, and sediment sample moisture content. The reported mercury and monomethyl mercury data were considered 100% complete (i.e., usable) for the data presented by TAL and Brooks Rand. PARCC requirements were met.

A1.3.5 Wet Chemistry Analyses

Vibracore sediment samples and porewater sediment samples collected from the site were analyzed for TOC, pH, and specific gravity using the USEPA approved Lloyd Kahn, USEPA SW-846 9040, and ASTM D854 analytical methods, respectively. Porewater samples collected from the site were analyzed for DOC and pH using the SM20 5310B and USEPA SW-846 9045C analytical methods, respectively. Addendum 6 surface water samples collected from the site were analyzed for total and dissolved ammonia and TSS using the USEPA 350.1 and SM20 2540D analytical methods, respectively. Certain reported results for these samples were qualified as estimated based upon sample holding times, MS/MSD recoveries, laboratory duplicate precision, field duplicate precision, and sediment sample moisture content. The reported analytical results for these samples were 100% complete with all data considered usable and valid for the data presented by TAL. PARCC requirements were met.

SECTION A2

DATA VALIDATION REPORTS

A2.1 VIBRACORE SEDIMENT SAMPLES

Data review has been completed for data packages generated by TAL-Pittsburgh and TAL-Burlington containing vibracore sediment samples collected from the site. These samples were contained within sample delivery groups (SDGs) C8G170294/C8G170296, C8G170303/C8G170308. C8G180336/C8G180338, C8G180340/C8G180343, C8G180345/C8G180349, C8G180351/C8G180355, C8G190132/C8G190139, C8H260234/C8H260238, C8H270294/C8H270298, C8H280268/C8H280274, C8H290307/C8H290302, C8H290310/C8H290305, C8H300129/C8H300125, C8H300136/C8H300131, C8I030271/C8I030266, C8I040254/C8I040259, C8I040264/C8I040265, and C8I040270/C8I040272. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data were tabulated and are presented in Attachment A-1.

Data validation was performed for all samples in accordance with the project work plan, QAPP, NYSDEC ASP, and the USEPA Region II SOPs for organic and inorganic data review. This data validation and usability report is presented by analysis type.

A2.1.1 Volatiles

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of surrogate recoveries, MS/MSD precision and accuracy, blank contamination, continuing calibrations, and field duplicate precision as discussed below.

Surrogate Recoveries

All sample surrogate recoveries were considered acceptable and within QC limits with the exception of the low dibromofluoromethane recovery (QC limit 68-121%R) in samples OL-0594-07 (63%R), -07RE (64%R), -08 (59%R), -08RE (62%R), -09 (63%R), -09RE (64%R), -10 (64%R), -10RE (66%R), and OL-0651-20 (61%R). The results for these samples were considered estimated, possibly biased low, with positive results qualified "J" and non-detected results qualified "UJ".

MS/MSD Precision and Accuracy

All MS/MSD precision (relative percent difference; RPD) and accuracy (percent recovery, %R) measurements were compliant and within QC acceptance limits for designated spiked project samples with the exception of the low MS/MSD accuracy results for benzene (0%R/0%R; QC limit 49-141%R) and chlorobenzene (18%R/24%R; QC limit 47-146%R) during the spiked analyses of sample OL-0597-09; the high MS/MSD accuracy result for trichloroethene (189%R/197%R; QC limit 46-141%R) during the spiked analyses of sample OL-0651-20; and the low MSD accuracy result for chlorobenzene (46%R; QC limit 47-146%R) during the spiked analyses of sample OL-0659-10. Validation qualification was not warranted for the parent samples OL-0651-20 and OL-0659-10 since trichloroethene was not detected in OL-0651-20 and the MS accuracy result for chlorobenzene associated with OL-0659-10 was within the QC limit. However, the detected benzene and chlorobenzene results for the parent sample OL-0597-09 were considered estimated, possibly biased low, and qualified "J".

Blank Contamination

The laboratory method blank KRT3X1AA associated with samples OL-0594-01, -02, -03, -16, and -20 contained naphthalene at a concentration of 1.2 µg/kg; the laboratory method blank KRVP21AA associated with samples OL-0594-04 through -15, -17, -18, -19, OL-0595-01, -02, -15, -16, and -17 contained naphthalene at a concentration of 1.3 µg/kg; the laboratory method blank KR5PQ1AA associated with samples OL-0596-01, -02, -03, OL-0597-15, -16, -17, OL-0600-09, and -11 through -21 contained naphthalene at a concentration of 1.4 µg/kg; the laboratory method blank KR8KP1AA associated with sample OL-0600-18 contained naphthalene at a concentration of 1.3 μg/kg; the laboratory method blank KV65T1AA associated with samples OL-0642-05, -07, -09, -10, OL-0653-01, -02, and -03 contained naphthalene at a concentration of 1.4 µg/kg; the laboratory method blank KWA581AA associated with samples OL-0650-08, and OL-0653-04 through -12 contained naphthalene at a concentration of 2.5 µg/kg; the laboratory method blank KWFCR1AA associated with sample OL-0651-05, -06, -09 through -13, -17, and -20 contained naphthalene and 1,2,3-trichlorobenzene at concentrations of 3.1 and 0.89 µg/kg, respectively; the laboratory method blank KWGP01AA associated with samples OL-0655-08, OL-0654-01, -02, and -03 contained naphthalene at a concentration of 1.3 ug/kg; the laboratory method blank KWGMF1AA associated with samples OL-0655-03 through -07 contained naphthalene and 1,2,3-trichlorobenzene at concentrations of 2.1 and 0.91 µg/kg, respectively; the laboratory method blank KWAOM1AA associated with samples OL-0656-01 through -05, -07, -09 through -12, -14, and -16 contained naphthalene and 1,2,3-trichlorobenzene at concentrations of 2.0 and 0.9 µg/kg, respectively; the laboratory method blank KWFGR1AA associated with samples OL-0656-06, -08, -13, -15, -17, and -18 contained naphthalene at a

concentration of 1.4 μ g/kg; the laboratory method blank KWP7D1AA associated with samples OL-0659-07, -11 through -16, and OL-0657-01 through -06 contained naphthalene at a concentration of 1.6 μ g/kg; the laboratory method blank KWJTL1AA associated with sample OL-0658-11 contained naphthalene at a concentration of 1.7 μ g/kg; and the laboratory method blank KWMPE1AA associated with samples OL-0658-01 through -05, -07 through -10, -12, -13, -14, and -16 contained naphthalene at a concentration of 1.6 μ g/kg. Therefore, all associated sample results for these compounds that were less than validation action concentrations were considered not detected and qualified "U".

Continuing Calibrations

All continuing calibrations compounds were within QC limits with a minimum RRF of 0.05 and a maximum %D within \pm 25% with the exception of naphthalene (32.74%D) and 1,2,3-trichlorobenzene (28.68%D) in the continuing calibration associated with samples OL-0597-01 through -10, -12, and -19; naphthalene (30.36%D) and 1,2,3-trichlorobenzene (28.24%D) in the continuing calibration associated with sample OL-0642-06; naphthalene (27.92%D) in the continuing calibration associated with samples in SDG C8H290307, OL-0655-01, and -02; 1,2,3-trichlorobenzene (-25.32%D) in the continuing calibration associated with samples OL-0659-07, -11 through -16, and OL-0657-01 through -06. The sample results for these compounds were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

Field Duplicate Precision

Field duplicate precision (RPD) results were considered acceptable and less than 100% RPD with the exception of the precision for benzene (142% RPD) for the field duplicate pair OL-0658-15 and -16. The benzene results for these samples were considered estimated and qualified "J".

Usability

All volatile results for the vibracore sediment samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile vibracore sediment data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated volatile laboratory data are tabulated and presented in Attachment A-1.

It was noted that many vibracore sediment samples contained less than 50% solids. The volatile sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.1.2 Semi-volatiles (Phenol and PAHs)

The following items were reviewed for compliancy in the semi-volatile analysis:

- Custody documentation
- Holding times

- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of surrogate recoveries, MS/MSD precision and accuracy, GC/MS instrument performance, initial and continuing calibrations, internal standard responses, and field duplicate precision as discussed below.

Surrogate Recoveries

All sample surrogate recoveries were considered acceptable and within QC limits with the exception of the low phenol-d5 recovery (QC limit 30-112%R) in samples OL-0597-09 (28%R) and -10 (29%R); the low fluorobiphenyl recovery (QC limit 28-108%R) in sample OL-0598-12 (11%R); and the high nitrobenzene-d5 recovery (QC limit 27-110%R) in samples OL-0642-05 (124%R), -06 (196%R), -07 (118%R), -10 (121%R), OL-0650-02 (130%R), -04 (115%R), and -08 (117%R). Validation qualification was not required for these samples since only one baseneutral or acid surrogate was outside QC limits. It was noted that many samples experienced diluted out surrogate recoveries.

MS/MSD Precision and Accuracy

All MS/MSD precision and accuracy measurements were within QC acceptance limits for designated spiked project samples with the exception of the high MS accuracy result for pyrene (122%R; QC limit 28-116%R) during the spiked analyses of sample OL-0599-02. Validation qualification of the parent sample was not required since the MSD accuracy result for pyrene was within the QC limit. It was noted that there were many MS/MSD precision and accuracy measurements outside QC limits during the spiked analyses of samples OL-0594-16, OL-0595-15, OL-0597-09, OL-0642-10, OL-0654-12, and OL-0659-10. Validation qualification of the parent samples was not required since these samples were diluted and matrix effects were not confirmed.

GC/MS Instrument Performance

All GC/MS instruments were tuned and calibrated at the appropriate frequency and within QC acceptance limits. All samples were injected and analyzed within 12 hours from the instrument tuning standard with the exception of sample OL-0650-10. Positive results for this

sample were considered estimated and qualified "J" while non-detected results for this sample were considered unusable and qualified "R".

Initial and Continuing Calibrations

All initial calibration compounds were compliant with a minimum mean RRF of 0.05 and a maximum percent relative standard deviation (%RSD) of 30% with the exception of benzo(b)fluoranthene (33.93%RSD), indeno(1,2,3-cd)pyrene (30.62%RSD), and dibenz(a,h)anthracene (36.76%RSD) in the initial calibration associated with samples OL-0650-02RE, -03RE, -04RE, -08RE, -11, -12, -13, OL-0655-01 through -06, OL-0659-01 through -13, and OL-0657-01 through -07. Therefore, the results for these compounds were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

All continuing calibration compounds were compliant with a minimum RRF of 0.05 and a maximum percent difference (%D) within \pm 25% with the exception of benzo(b)fluoranthene (26.88%D) in the continuing calibration associated with samples OL-0659-01 through -13. Therefore, the sample results for this compound were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

Internal Standard Responses

All internal standard (IS) responses and retention times were within specified QC ranges based on associated calibration standards (i.e., sample's area counts within -50% to +100% and retention times within ± 0.5 minutes of the standard) with the exception of high sample area count for the IS acenaphthene-d10 in samples OL-0597-11, -12, -13, and OL-0598-12; low sample area count for the IS acenaphthene-d10 in sample OL-0642-06; high sample area count for the IS chrysene-d12 in samples in SDG C8H270294 (except OL-0650-05 and -13), OL-0594-01, -02, -04, -11 through -16, OL-0596-02, OL-0597-11 through -17, OL-0598-12, -13, OL-0642-07, -09, -10, -11, -12, OL-0659-08, -09, and -10; low sample area count for the IS chrysene-d12 in samples OL-0642-08RE and -13; high sample area count for the IS perylene-d12 in samples in SDGs C8G170294 and C8H270294, OL-0595-02, -08 through -11, -13, -16, -17, OL-0596-01 through -04, OL-0597-11 through -18, OL-0598-12, -13, -13RE, -14, OL-0642-05 through -12, OL-0659-08, -09, -10, and -11. Therefore, positive results associated with those ISs which exceeded the QC limit were considered estimated, possibly biased high, and qualified "J" for the affected samples. Sample results associated with those ISs which fell below the QC limit were considered estimated, possibly biased low, with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

Field Duplicate Precision

All field duplicate precision results were considered acceptable with precision results less than 100%RPD with the exception of the precision for benzo(a)anthracene (194%RPD) and dibenzo(a,h)anthracene (200%RPD) between the field duplicate pair OL-0650-11 and -12. These results were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for these samples.

Usability

All semi-volatile results for the vibracore sediment samples were considered usable following data validation with the exception of certain non-detected results based upon instrument performance.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The semi-volatile vibracore sediment data presented by TAL-Pittsburgh were 99.8% complete (i.e., usable). The validated semi-volatile laboratory data are tabulated and presented in Attachment A-1.

It was noted that many vibracore sediment samples contained less than 50% solids. The semi-volatile sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.1.3 PCBs

The following items were reviewed for compliancy in the PCB analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank contamination
- Initial calibrations
- Verification calibrations
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of surrogate recoveries, MS/MSD precision and accuracy, and field duplicate precision as discussed below.

Surrogate Recoveries

All sample surrogate recoveries were considered acceptable and within QC acceptance limits with the exception of the high decachlorobiphenyl recovery (QC limit 23-141%R) in samples OL-0642-05 (143%R), -11 (196%R), OL-0650-11 (143%R), -12 (149%R), OL-0652-02 (142%R), -14 (148%R), -16 (156%R), OL-0655-03 (144%R), OL-0654-02 (215%R), -03 (179%R), -10 (200%R), and OL-0657-04 (147%R); and the tetrachloro-meta-xylene recovery (QC limit 31-127%R) in samples OL-0642-08 (131%R), -09 (132%R), OL-0651-07 (129%R), -08 (26%R), -14 (130%R), OL-0652-11 (135%R), OL-053-02 (135%R), -03 (128%R), OL-0655-

06 (138%R), -07 (147%R), -08 (140%R), OL-0654-01 (132%R), -07 (132%R), -08 (135%R), -14 (139%R), -17 (142%R), OL-0656-04 (131%R), OL-0659-07 (143%R), -08 (144%R), -16 (128%R), and OL-0657-05 (30%R). Validation qualification of these samples was not required since only one sample surrogate was outside QC limits on one column.

MS/MSD Precision and Accuracy

All MS/MSD precision and accuracy measurements were considered acceptable and within QC limits for designated spiked project samples with the exception of the high MS/MSD accuracy results for PCB-1016 (221%R/227%R; QC limit 10-183) during the spiked analyses of sample OL-0642-10. Validation qualification of the parent sample was not warranted since PCB-1016 was not detected.

Field Duplicate Precision

All field duplicate results were considered acceptable with the exception of the PCB-1248 results for the field duplicate pair OL-0650-11 (110 μ g/kg) and OL-0650-12 (non-detect). These results were considered estimated with the positive result qualified "J" and the non-detected result qualified "UJ" for these samples.

Usability

All PCB results for the vibracore sediment samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The PCB vibracore sediment data presented by TAL–Pittsburgh were 100% complete with all data considered usable and valid. The validated data are tabulated and presented in Attachment A-1.

It was noted that many vibracore sediment samples contained less than 50% solids. The PCB sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.1.4 Mercury

The following items were reviewed for compliancy in the mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, and laboratory preparation blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Field duplicate precision
- Sample result verification and identification

- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of blank contamination as discussed below.

Blank Contamination

The laboratory continuing calibration blank associated with samples OL-0650-11, -12, and -13 contained mercury at a concentration of 0.2 μ g/L (0.02 mg/kg). Validation qualification of these samples was not warranted since sample mercury concentrations were not affected by the contamination in this blank.

Usability

All mercury results for the vibracore sediment samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The mercury data for the vibracore sediment samples presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated mercury laboratory data are tabulated and presented in Attachment A-1.

It was noted that many vibracore sediment samples contained less than 50% solids. The mercury sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.1.5 TOC, pH, and Specific Gravity

All custody documentation, holding times, laboratory blanks, matrix spikes, duplicates, calibrations, quantitation limits, control samples, and instrumentation were reviewed for compliance. The reported results for these samples did not require qualification resulting from data validation with the exception of the pH samples for SDGs C8G170294, C8G170303, C8G180336, C8G180340, C8G180345, C8G180351, C8G190132, C8H290307, C8H290310, C8H300129, C8H300136, C8I040264, and C8I040270 which exceeded the 24-hour analytical holding time requirement by one to three days. The pH results for these samples were considered estimated and qualified "J". In addition, the TOC results for samples OL-0598-06, OL-0599-02, OL-0642-10, and OL-0651-20 were considered estimated and qualified "J" based upon matrix spike recoveries.

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The vibracore sediment data for these analyses presented by TAL-Pittsburgh and TAL-Burlington were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A-1.

It was noted that many vibracore sediment samples contained less than 50% solids. The TOC and pH sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

Specific gravity was not analyzed as requested on the COC for the field duplicate samples OL-0642-12, OL-0650-12, OL-0651-19, OL-0652-15, OL-0654-11, OL-0656-17, OL-0659-15, OL-0658-16, and OL-0657-13 since these samples were not collected.

A2.2 POREWATER CENTRIFUGE VIBRACORE SAMPLES

Data review has been completed for data packages generated by TAL-Pittsburgh containing porewater from vibracore samples collected from the site. These samples were contained within SDGs C8F200314, C8F200321, C8F200326, C8F240142, C8F240150, C8F250282, C8F250294, C8F260230, C8F260235, C8F270352, C8F270355, C8F270358, C8F280116, C8F280118, C8G030281, C8G030294, C8G030305, C8G090250, C8G080239, C8G100328, C8G110326, C8G110336, and C8G160260. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A-2.

Data validation was performed for all samples in accordance with the project work plan, QAPP, NYSDEC ASP, and the USEPA Region II SOPs for organic and inorganic data review. This data validation and usability report is presented by analysis type.

A2.2.1 Volatiles

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and porewater centrifuge blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of MS/MSD precision and accuracy, blank contamination, and continuing calibrations as discussed below.

MS/MSD Precision and Accuracy

All MS/MSD precision (relative percent difference; RPD) and accuracy (percent recovery, %R) measurements were compliant and within QC acceptance limits for designated spiked project samples with the exception of the low MS/MSD accuracy results for chlorobenzene (71%R/64%R; QC limit 78-122%R) during the spiked analyses of sample OL-0573-17DP; the

low MS/MSD accuracy results for chlorobenzene (76%R/72%R; QC limit 78-122%R) during the spiked analyses of sample OL-0576-07DP; the low MS accuracy result for chlorobenzene (77%R; QC limit 78-122%R) during the spiked analyses of sample OL-0576-05DP; the low MSD accuracy result for benzene (70%R; QC limit 77-122%R) during the spiked analyses of sample OL-0576-01DP; the high MS/MSD accuracy results for chlorobenzene (193%R/165%R; QC limit 78-122%R) during the spiked analyses of sample OL-0589-04DP; the high MS accuracy result for chlorobenzene (126%R; QC limit 78-122%R) during the spiked analyses of sample OL-0589-11DP; and the low MSD accuracy result for chlorobenzene (77%R; QC limit 78-122%R) during the spiked analyses of sample OL-0590-11DP. Validation qualification was not warranted of the unspiked samples where only MS recoveries or MSD recoveries were outside QC limits. However, results for those compounds where MS/MSD recoveries fell below the QC limit were considered estimated, possibly biased low, with positive results qualified "J" and non-detected results qualified "UJ" for the affected parent sample. Positive results for those compounds where MS/MSD recoveries exceeded the QC limit were considered estimated, possibly biased high, and qualified "J" for the affected parent sample.

Blank Contamination

The laboratory method blank KQ0A61AA associated with samples OL-0573-01DP, -03DP, -13DP, -15DP, -17DP, and -19DP contained 1,2,3-trichlorobenzene at a concentration of 1.6 µg/L; the laboratory method blank KQ6JQ1AA associated with samples OL-0573-15DPRE, OL-0578-01DP, -03DP, -05DP, -07DP, OL-0580- 01DP, -03DP, and all samples in SDG C8F240142 except OL-0575-01DP contained naphthalene, 1.2.3-trichlorobenzene, and 1.2.4trichlorobenzene at concentrations of 1.1, 2.1, and 0.6 µg/L, respectively; the laboratory method blank KQ5HQ1AA associated with sample OL-0575-01DP contained 1,2,3-trichlorobenzene at a concentration of 1.6 µg/L; the laboratory method blank KQ9R61AA associated with samples OL-0576-07DP, -09DP, -11DP, OL-0577-01DP, and -19DP contained naphthalene at a concentration of 0.54 µg/L; the laboratory method blank KRAVW1AA associated with samples OL-0576-05DP, -13DP, OL-0578-15DPRE, -17DP, -17DPRE, OL-0579-01DP, -03DP, -07DP, -09DP, and -11DP contained naphthalene at a concentration of 0.48 µg/L; the laboratory method blank KTCWH1AA associated with sample OL-0588-01DP contained naphthalene at a concentration of 0.53 µg/L; the laboratory method blank KTGCK1AA associated with samples OL-0588-05DP through -12DP, -14DP, -15DP, -17DP, and OL-0592-01DP contained naphthalene at a concentration of 0.56 µg/L; and the laboratory method blank KTKV71AA associated with samples OL-0590-01DP, -02DP, -03DPRE, -06DPRE, -07DP, -08DPRE, -09DPRE, -10DPRE, OL-0591-11DPRE, -12DP through -15DP, -17DP, OL-0593-01DP, -05DP, and -06DP contained naphthalene at a concentration of 0.54 µg/L. Therefore, all associated sample results for these compounds that were less than validation action concentrations were considered not detected and qualified "U".

Continuing Calibrations

All continuing calibrations compounds were within QC limits with a minimum RRF of 0.05 and a maximum %D within \pm 25% with the exception of 1,2,4-trichlorobenzene (-27.66%D) in the continuing calibration associated with samples OL-0572-02DP, -04DP, -07DP, -09DP, and -11DP; naphthalene (-27.59%D) in the continuing calibration associated with sample OL-0573-

15DPRE; 1,3,5-trichlorobenzene (47.17%D) in the continuing calibration associated with samples OL-0573-05DP, -07DP, -09DP, -11DP, and OL-0574-01DP; 1,2,3-trichlorobenzene (-29.13%D) in the continuing calibration associated with sample OL-0575-01DP; naphthalene (-27.59%D) in the continuing calibration associated with samples in SDG C8F240142 except OL-0575-01DP, OL-0578-01DP, -03DP, -05DP, -07DP, OL-0580-01DP, and -03DP; naphthalene (36.31%D) and 1,2,3-trichlorobenzene (40.96%D) in the continuing calibration associated with samples OL-0576-01DP, -01DPRE, -03DP, -03DPRE, OL-0577-03DP -05DP, -07DP, -09DP, -11DP, -13DP, and -15DP; naphthalene (37.61%D) and 1,2,3-trichlorobenzene (38.82%D) in the continuing calibration associated with samples OL-0576-05DP, -13DP, OL-0578-17DP, -17DPRE, -15DPRE, OL-0579-01DP, -03DP, -07DP, -09DP, and -11DP; naphthalene (26.85%D) in the continuing calibration associated with samples OL-0577-17DP, OL-0578-09DP, -11DP, -13DP, -15DP, and -19DP; naphthalene (49.79%D) and 1,2,3-trichlorobenzene (45.72%D) in the continuing calibration associated with samples OL-0579-05DP, -13DP, -15DP, -17DP, -19DP, -01DPRE, -03DPRE, -07DPRE, -09DPRE, and -11DPRE; naphthalene (36.42%D) and 1,2,3trichlorobenzene (33.32%D) in the continuing calibration associated with samples OL-0583-01DP and -03DP; naphthalene (46.54%D) and 1,2,3-trichlorobenzene (43.37%D) in the continuing calibration associated with samples OL-0583-05DP, -07DP, OL-0581-07DP, -09DP, -11DP, -15DP, -17DP, -19DP, OL-0584-07DP, -09DP, -11DP, -13DP, -15DP, -17DP, and -19DP; naphthalene (35.24%D) in the continuing calibration associated with samples OL-0581-13DP, OL-0584-01DP, -03DP, -05DP, OL-0585-01DP, -03DP, -05DP, -07DP, -09DP, OL-0586-08DP through -12DP; naphthalene (45.10%D) and 1,2,3-trichlorobenzene (34.66%D) in the continuing calibration associated with samples OL-0587-01DP, -02DP, -03DP, OL-0586-04DP through -07DP, -18DP, -19DP, OL-0589-01DP, -02DP, and -03DP; naphthalene (34.35%D) in the continuing calibration associated with sample OL-0586-12DPRE, -13DP through -16DP, and -20DP; naphthalene (47.44%D) and 1,2,3-trichlorobenzene (41.03%D) in the continuing calibration associated with samples OL-0589-04DPRE, -06DP, -08DP through -11DP, -12DPRE, -13DP through -15DP; naphthalene (46.86%D) and 1.2.3-trichlorobenzene (40.23%D) in the continuing calibration associated with samples OL-0589-07DP and -11DPRE; naphthalene (25.59%D) and 1,2,3-trichlorobenzene (25.71%D) in the continuing calibration associated with samples OL-0588-01DP; naphthalene (-41.20%D) in the continuing calibration associated with samples OL-0590-03DP, -06DP, -08DP through -11DP, OL-0591-01DP, -02DP, and -09DP through -11DP; naphthalene (-38.62%D) in the continuing calibration associated with samples OL-0590-01DP, -02DP, -03DPRE, -06DPRE, -07DP, -08DPRE, -09DPRE, -10DPRE, OL-0591-11DPRE, -12DP through -15DP, -17DP, OL-0593-01DP, -05DP, and -06DP; and naphthalene (48.71%D) and 1,2,3-trichlorobenzene (39.36%D) in the continuing calibration associated with samples OL-0591-03DP through -08DP, -16DP, and -18DP through -20DP. The sample results for these noncompliant compounds were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

It was noted that many samples were initially analyzed at larger dilutions based upon large volatile concentrations within instrument calibration ranges. These samples were reanalyzed at lower dilutions in order for non-detected results to meet project quantitation limits for volatile analysis. Since the sample vial for the re-analysis of OL-0589-11DP at a dilution factor of 1 contained headspace, results from the original analysis of this sample which was at a dilution

factor of 3, were reported for this sample in the validated laboratory data table in Attachment A-2.

Usability

All volatile results for the porewater samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile porewater vibracore data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated volatile laboratory data are tabulated and presented in Attachment A-2.

It was noted that samples OL-0586-17DP, OL-0588-16DP, -20DP, OL-0590-05DP, and -20DP were not analyzed for volatiles due to insufficient sample volume generated for porewater analysis.

A2.2.2 Mercury

The following items were reviewed for compliancy in the mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, laboratory preparation blank, and porewater blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All mercury results for the porewater samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The mercury porewater vibracore data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A-2.

It was noted that samples OL-0581-11DP, OL-0584-05DP, -17DP, OL-0585-03DP, -07DP, -09DP, OL-0586-16DP, -07DP, -17DP, OL-0589-09DP, OL-0588-16DP, -20DP, OL-0590-05DP, -15DP, -20DP, OL-0591-13DP, and OL-0592-01DP were not analyzed for mercury due to insufficient sample volume generated for porewater analysis.

A2.2.3 DOC and pH

All custody documentation, holding times, laboratory blanks, matrix spikes, duplicates, calibrations, quantitation limits, control samples, and instrumentation were reviewed for compliance. The reported results for these samples did not require qualification resulting from data validation with the exception of the pH results for porewater samples in SDGs C8F260230 and C8G110326 based upon the analytical holding time exceeded the 24-hour requirement by one day. These pH results were considered estimated and qualified "J".

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The porewater vibracore data for these analyses presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A-2.

It was noted that samples OL-0572-11DP, -15DP, OL-0573-03DP, -09DP, -15DP, OL-0574-01DP, OL-0575-05DP, -19DP, OL-0576-09DP, OL-0579-05DP, -11DP, -17DP, OL-0583-01DP, OL-0581-11DP, OL-0584-05DP, -17DP, OL-0585-03DP, -07DP, -09DP, OL-0586-16DP, OL-0586-07DP, -17DP, OL-0589-03DP, -09DP, OL-0588-03DP, -11DP, -16DP, -17DP, -20DP, OL-0590-02DP, -05DP, -11DP, -14DP, -15DP, -18DP, -20DP, OL-0591-05DP, -08DP, -13DP, -14DP, -15DP, -16DP, -17DP, OL-0592-01DP, OL-0593-01DP, -02DP, -04DP, -05DP, -06DP, -09DP, -11DP through -17DP, -19DP, and -20DP were not analyzed for pH and/or DOC due to insufficient volume generated for the porewater analysis.

A2.3 POREWATER CENTRIFUGE SEDIMENT SAMPLES

Data review has been completed for data packages generated by TAL-Pittsburgh and TAL-Burlington containing porewater sediment samples collected from the site. These samples were contained within **SDGs** C8F200314/C8F200318, C8F200321/C8F200325, C8F200326/C8F200328, C8F240150/C8F240156, C8F240142/C8F240148, C8F250282/C8F250288, C8F250294/C8F250300, C8F260230/C8F260233, C8F260235/C8F260236, C8F270352/C8F270354, C8F270355/C8F270357, C8F270358/C8F270359. C8F280116/C8F280117. C8F280118/C8F280119. C8G030281/C8G030290, C8G030294/C8G030299, C8G030305/C8G030315, C8G080239/C8G080246, C8G090250/C8G090261, C8G100328/C8G100331, C8G110326/C8G110332, C8G110336/C8G110338, and C8G160260/C8G160268. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A-3.

Data validation was performed for all samples in accordance with the project work plan, QAPP, NYSDEC ASP, and the USEPA Region II SOPs for organic and inorganic data review. This data validation and usability report is presented by analysis type.

A2.3.1 Volatiles

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of blank contamination and continuing calibrations as discussed below.

Blank Contamination

The laboratory method blank KQVAQ1AA associated with samples OL-0572-01, -05, and -20 contained toluene at a concentration of 1.2 µg/kg; the laboratory method blank KO0A61AA associated with samples OL-0573-18, OL-0576-06, OL-0577-02, -04, -18, -20, OL-0578- 02, -08, -10, -12, -14, and -20 contained naphthalene at a concentration of 1.2 μg/kg; the laboratory method blank KQ5W41AA associated with samples OL-0579-06, -16, -18, -20, and all samples in SDGs C8F260235 and C8F270355 (except OL-0582-10 and -12) contained naphthalene at a concentration of 1.4 µg/kg; the laboratory method blank KQ7T61AA associated with samples in SDG C8F270358, OL-0579-14, OL-0584-02, -04, -06, -08, -10, -12, and -14 contained naphthalene at a concentration of 1.2 µg/kg; the laboratory method blank KRC7W1AA associated with samples OL-0584-16 -18, and -20 contained naphthalene at a concentration of 1.2 µg/kg; the laboratory method blank KRT3X1AA associated with samples OL-0589-13 through -17 contained naphthalene at a concentration of 1.2 µg/kg; the laboratory method blank KR92K1AA associated with samples OL-0588-01 through -08 and -10 through -15 contained naphthalene at a concentration of 1.6 µg/kg; the laboratory method blank KTD3W1AA associated with samples OL-0590-03, OL-0591-04 through -08, -16, -18, -19, and -20 contained naphthalene at a concentration of 1.8 µg/kg; the laboratory method blank KTGM21AA associated with samples OL-0591-02, -03, -10, -17, and OL-0593-17 through -20 contained naphthalene at a concentration of 1.2 µg/kg; and the laboratory method blank KTEOP1AA associated with samples OL-0593-08 through -16 contained naphthalene at a concentration of 1.4 ug/kg. Therefore, results for these compounds less than validation action concentrations were considered not detected and qualified "U" for the associated samples.

Continuing Calibrations

All continuing calibration compounds were compliant with a minimum RRF of 0.05 and a maximum percent difference (%D) within ± 25% with the exception of 1,2,4-trichlorobenezene (-24.36%D) and 1,2,3-trichlorobenezene (-46.71) in the continuing calibration associated with samples OL-0572-14, OL-0573-02, -04, and OL-0574-02; naphthalene (34.18%D) and 1,2,3-trichlorobenezene (33.14%D) in the continuing calibration associated with samples OL-0572-08, OL-0573-04RE, and -16; naphthalene (25.52%D) in the continuing calibration associated with samples OL-0576-02, -04, -12, OL-0577-06, -08, -10, -12, OL-0578-04, and -06; naphthalene (-44.71%D) in the continuing calibration associated with samples OL-0590-03, OL-0591-04 through -08, -16, -18, -19, and -20; and 1,2,3-trichlorobenezene (27.33%D) in the continuing calibration associated with samples OL-0591-14 and -15. Therefore, the sample results for these compounds were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

Usability

All volatile results for the porewater sediment samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile porewater sediment data presented by TAL-Pittsburgh were 100% complete with all volatile data considered usable and valid. The validated volatile laboratory data are tabulated and presented in Attachment A-3.

It was noted that many porewater sediment samples contained less than 50% solids. The volatile sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.3.2 Mercury

The following items were reviewed for compliancy in the mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, and laboratory preparation blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of MS/MSD recoveries and laboratory duplicate precision.

MS/MSD Recoveries

All MS/MSD recoveries were considered acceptable and within the 75-125%R QC limit for designated spiked project samples with the exception of the low MS/MSD mercury recoveries (48%R, 42%R) associated with samples in SDGs C8F200314, C8F200321, and C8F200326; and the high MS/MSD mercury recoveries (191%R, 131%R, 137%R) associated with samples in SDGs C8G080239 and C8G160260. The mercury results for those samples where MS/MSD recoveries fell below the QC limit were considered estimated, possibly biased low, with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples. The positive mercury results for those samples where MS/MSD recoveries exceeded the QC limit were considered estimated, possibly biased high, and qualified "J" for the affected samples.

<u>Laboratory Duplicate Precision</u>

All laboratory duplicate precision results were considered acceptable and within the laboratory QC limit 0-20% RPD with the exception of the mercury laboratory duplicate precision (31% RPD) associated with samples in SDG C8G080239. Validation qualification of these samples was not required since the precision did not exceed 50% RPD.

<u>Usability</u>

All mercury results for the porewater sediments were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The mercury porewater sediment data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated mercury laboratory data are tabulated and presented in Attachment A-3.

It was noted that many porewater sediment samples contained less than 50% solids. The mercury sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.3.3 TOC, pH, and Specific Gravity

All custody documentation, holding times, laboratory blanks, matrix spikes, duplicates, calibrations, quantitation limits, control samples, and instrumentation were reviewed for compliance. The reported results for these samples did not require qualification resulting from data validation with the exception of the pH samples in SDGs C8G080239, C8G110326, and C8G110336 which exceeded the 24-hour holding time criteria by two days. These pH sample results were considered estimated and qualified "J".

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The porewater sediment data for these analyses presented by TAL-Pittsburgh TAL-Burlington were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A-3.

It was noted that many porewater sediment samples contained less than 50% solids. The TOC and pH sample results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.4 ADDENDUM 6 SURFACE WATER SAMPLES

Data review has been completed for data packages generated by TAL-Pittsburgh, TAL-North Canton, and Brooks Rand containing Addendum 6 surface water samples collected from the site. These surface water samples were contained within SDGs C8K180343, C8K180345, C8K190319, and C8K190374. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A-4.

Data validation was performed for all samples in accordance with the project work plan, QAPP, NYSDEC ASP, and the USEPA Region II SOPs for organic and inorganic data review. This data validation and usability report is presented by analysis type.

A2.4.1 Total and Dissolved Volatiles

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip/equipment blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of MS/MSD precision and accuracy, blank contamination, and continuing calibrations as discussed below.

MS/MSD Precision and Accuracy

All MS/MSD precision and accuracy measurements were compliant and within QC acceptance limits for designated project spiked samples with the exception of the precision result for 1,1-dichloroethene (23%RPD; QC limit 0-20%RPD) during the spiked analysis of sample OL-0685-02F. Validation qualification of the parent sample was not required since MS/MSD accuracy measurements were within criteria for 1,1-dichloroethene.

Blank Contamination

The field QC equipment blank sample OL-0685-21F associated with the surface water samples contained dissolved methylene chloride at a concentration of 1.1 μ g/L. Therefore, all dissolved methylene chloride results less than the validation action concentration were considered not detected and qualified "U" for the associated samples.

Continuing Calibrations

All continuing calibration compounds were compliant with a minimum RRF of 0.05 and a maximum percent difference (%D) within ± 25%, with the exception of dichlorodifluoromethane (34.33%D), chloroethane (-40.31%D), trichlorofluoromethane (30.82%D), and 1,1,2-trichlorotrifluoroethane (28.73%D) in the continuing calibration associated with surface water samples collected on 11/17/08 and sample OL-0686-01; dichlorodifluoromethane (29.85%D), chloromethane (25.36%D), chloroethane (-62.76%D), 1,1,2-trichlorotrifluoroethane (36.58%D), methyl acetate (28.60%D), 1,2-dibromo-3-chloropropane (26.65%D), and 1,2,3-trichlorobenzene (25.34%D) in the continuing calibration associated with surface water samples OL-0685-02, -03, -04, -05, -06, and -07; chloroethane (-76.67%D), trichlorofluoromethane (-87.03%D), 1,1,2-trichlorotrifluoroethane (32.14%D), acetone (39.26%D), methyl acetate (30.42%D), 2-butanone

(29.62%D), 1,2-dibromo-3-chloropropane (30.34%D), and 1,2,3-trichlorobenzene (30.79%D) in the continuing calibration associated with surface water sample OL-0685-13; chloroethane (-41.59%D), trichlorofluoromethane (-29.73%D), 1,1,2-trichlorotrifluoroethane (33.70%D), acetone (34.25%D), methyl acetate (29.25%D), and 1,2,3-trichlorobenzene (31.60%D) in the continuing calibration associated with surface water samples OL-0685-08, -09, -10, -11, -12, -14, -17, -03F through -14F; dichlorodifluoromethane (28.34%D), chloroethane (-73.69%D), trichlorotrifluoromethane (-56.82%D), 1,1,2-trichlorotrifluoroethane (34.76%D), and 1,2,3-trichlorobenzene (29.80%D) in the continuing calibration associated with samples OL-0685-02F, -17F, -18F, -19F, -18, and -19; and dichlorodifluoromethane (31.77%D), bromomethane (-26.47%D), chloroethane (-65.10%D), and trichlorotrifluoromethane (-51.86%D) in the continuing calibration associated with samples OL-0686-01F, -02F, -03F, -02, -03, OL-0685-21, and -21F. Therefore, the sample results for these compounds were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

Usability

All volatile results for the Addendum 6 surface water samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The volatile surface water data presented by TAL-Pittsburgh were 100% complete with all volatile data considered usable and valid. The validated volatile laboratory data are tabulated and presented in Attachment A-4.

A2.4.2 Total and Dissolved Semi-volatiles

The following items were reviewed for compliancy in the semi-volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and equipment blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of blank contamination and continuing calibrations as discussed below.

Blank Contamination

The laboratory method blank K3LL11AA associated with samples collected on 11/17/08 contained di-n-butylphthalate at a concentration of 0.51 μ g/L. Validation qualification of the project sample data was not required since di-n-butylphthalate was not detected in these samples.

Continuing Calibrations

All continuing calibration compounds were compliant with a minimum RRF of 0.05 and a maximum percent difference (%D) within \pm 25%, with the exception of total 4-nitrophenol (-34.75%D) in the continuing calibration associated with samples collected on 11/18/08. Therefore, the sample results for this compound were considered estimated with positive results qualified "J" and non-detected results qualified "UJ" for the affected samples.

Usability

All semi-volatile results for the Addendum 6 surface water samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The semi-volatile surface water data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated semi-volatile laboratory data are tabulated and presented in Attachment A-4.

A2.4.3 Total and Dissolved PCBs

The following items were reviewed for compliancy in the PCB analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and equipment blank contamination
- Initial calibrations
- Verification calibrations
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All PCB results for the Addendum 6 surface water samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The PCB data presented by TAL–Pittsburgh were 100% complete with all data considered usable and valid. The validated data are tabulated and presented in Attachment A-4.

A2.4.4 Total and Dissolved Low Level Mercury

The following items were reviewed for compliancy in the low level mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, laboratory preparation blank, and equipment blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of blank contamination as discussed below.

Blank Contamination

The field QC equipment blank OL-0685-21 associated with the surface water samples collected on 11/18/08 contained total and dissolved mercury below the reporting limit at concentrations of 0.17 and 0.21 mg/L, respectively. Validation qualification of the surface water samples was not required since the total and dissolved mercury concentrations were not affected by the contamination found in this blank.

Usability

All low level mercury results for the Addendum 6 surface water samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The low level mercury data presented by TAL-North Canton were 100% complete (i.e., usable). The validated surface water low level mercury laboratory data are tabulated and presented in Attachment A-4.

A2.4.5 Total and Dissolved Monomethyl Mercury

The following items were reviewed for compliancy in the monomethyl mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, laboratory preparation blank, and equipment blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All monomethyl mercury results for the Addendum 6 surface water samples were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The monomethyl mercury data presented by Brooks Rand were 100% complete (i.e., usable). The validated surface water monomethyl mercury laboratory data are tabulated and presented in Attachment A-4.

A2.4.6 Total and Dissolved Ammonia and TSS

All custody documentation, holding times, laboratory blanks, matrix spikes, duplicates, calibrations, quantitation limits, control samples, and instrumentation were reviewed for compliance. The reported results for these samples did not require qualification resulting from data validation with the exception of the following:

- The non-detected TSS result for sample OL-0684-01 was considered estimated and qualified "UJ" based upon laboratory duplicate precision (29%RPD; QC limit 0-20%RPD);
- The positive dissolved ammonia result for sample OL-0684-01F was considered estimated, possibly biased high, and qualified "J" based upon high MS/MSD recoveries (118%R/116%R; QC limit 90-110%R);
- The positive total and dissolved ammonia results for samples OL-0685-13 and -13F, respectively, were considered estimated, possibly biased low, and qualified "J" based upon low MS/MSD recoveries (78%R, 82%R, 89%R; QC limit 90-110%R); and
- The total ammonia results for the field duplicate samples OL-0686-02 and -03 were considered estimated and qualified "J" based upon poor field duplicate precision of these results (65%RPD; QC limit 0-30%RPD).

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The Addendum 6 surface water data for these analyses presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A-4.

A2.5 ADDENDUM 8 SEDIMENT SAMPLES

Data review has been completed for data packages generated by TAL-Pittsburgh containing sediment samples collected from the site. These samples were contained within SDGs C8K280130 and C8K290133. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A-5.

Data validation was performed for all samples in accordance with the project work plan, QAPP, NYSDEC ASP, and the USEPA Region II SOPs for inorganic data review. This data validation and usability report is presented by analysis type.

A2.5.1 Mercury

The following items were reviewed for compliancy in the mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, and laboratory preparation blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All mercury sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The Addendum 8 sediment mercury data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated mercury laboratory data are tabulated and presented in Attachment A-5.

It was noted that all the Addendum 8 sediment samples with the exception of sample OL-0700-13 contained less than 50% solids. Therefore, all results for these samples were considered estimated with positive results qualified "J" and non-detected results qualified "UJ".

A2.6 ADDENDUM 8 SUPPLEMENTAL SEDIMENT SAMPLES

Data review has been completed for data packages generated by TAL-Pittsburgh containing Addendum 8 supplemental sediment samples collected from the site. These samples were contained within SDG C0A08487. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A-6.

Data validation was performed for all samples in accordance with the project work plan, QAPP, NYSDEC ASP, and the USEPA Region II SOPs for inorganic data review. This data validation and usability report is presented by analysis type.

A2.6.1 Mercury

The following items were reviewed for compliancy in the mercury analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration, and laboratory preparation blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- LCS recoveries
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of holding times upon receipt.

Holding Times

It was noted that all of the Addendum 8 supplemental sediment samples were collected on 11/25/08 and 11/26/08. The vibracores were processed and certain depth intervals were collected and archived. These samples were stored in collection jars for over a year. At the NYSDEC's request, these samples were sent to the laboratory for mercury analysis. These samples were received by the laboratory 408 to 409 days from sample collection. Since mercury was detected in all of these samples, all of the mercury results contained within this SDG were considered estimated, possibly biased low, and qualified "J".

Usability

All mercury sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The Addendum 8 supplemental sediment mercury data presented by TAL-Pittsburgh were 100% complete (i.e., usable). The validated mercury laboratory data are tabulated and presented in Attachment A-6.

It was noted that all the Addendum 8 supplemental sediment samples contained less than 50% solids. Therefore, all results for these samples which detected mercury were considered estimated with positive results qualified "J".

ATTACHMENT A VALIDATED LABORATORY DATA

ATTACHMENT A-1

VALIDATED LABORATORY DATA FOR VIBRACORE SEDIMENT SAMPLES

		Location	OL-VC-20135		OL-VC-20135	OL-VC-20135	OL-VC-20135	OL-VC-20135	OL-VC-20135	OL-VC-20135
		Sample Depth	0.0-1.0 Ft		1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft
		Field Sample ID	OL-0594-01		OL-0594-02	OL-0594-03	OL-0594-04	OL-0594-05	OL-0594-06	OL-0594-07
		Sample Date	7/16/2008		7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008
		SDG	C8G170294		C8G170294	C8G170294	C8G170294	C8G170294	C8G170294	C8G170294
		Matrix	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Countries		Codminion	Common	000	Common	Codiminant	- Countries
	SOLIDS, PERCENT	%	39.6		46.6	38.4	35.7	23.8	31.5	20.9
ASTM D854	SPECIFIC GRAVITY	g/cc	2.544		2.568	2.524	2.576	2.659	2.669	2.675
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	72400	J	39700 J	16600 J	53400 J	11700 J	11700 J	44700 J
SM2540G	SOLIDS, PERCENT	%	43.6	•	49.4	40.7	38.4	24.6	30.8	20.5
SW7471	MERCURY	mg/kg	6.5	J	3.9 J	0.43 J	0.57 J	0.48 J	0.37 J	0.12 J
SW8082	AROCLOR-1016	ug/kg	190		170 UJ	100 U.				200 UJ
SW8082	AROCLOR-1221	ug/kg	190		170 UJ	100 U.			130 UJ	200 UJ
SW8082	AROCLOR-1232	ug/kg	190		170 UJ	100 U.				200 UJ
SW8082	AROCLOR-1242	ug/kg	190		170 UJ	100 U.				200 UJ
SW8082	AROCLOR-1248	ug/kg	3800		83 J	100 U.			130 UJ	200 UJ
SW8082	AROCLOR-1254	ug/kg	13000		260 J	100 U.				200 UJ
SW8082	AROCLOR-1260	ug/kg	5600		120 J	100 U.			130 UJ	200 UJ
SW8082	AROCLOR-1268	ug/kg	190		170 UJ	100 U.				200 UJ
SW8082	PCBS, N.O.S.	ug/kg	23000		460 J	100 U.				200 UJ
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	11		10 UJ	12 U.				24 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	11		10 UJ	12 U.				24 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	3		2.1 J	12 U.	J 13 L		16 UJ	24 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	11		10 UJ	12 U.			16 UJ	24 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	3.5		10 UJ	12 U.				24 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	7.4		10 UJ	12 U			16 UJ	24 UJ
SW8260	BENZENE	ug/kg	7.4		10 03 11 J	9.6 J	19 J		240 J	430 J
SW8260	CHLOROBENZENE	ug/kg	12	_	2.8 J	12 U.				24 UJ
SW8260	ETHYLBENZENE	ug/kg	11		10 UJ	12 U			2.5 J	24 UJ
SW8260	NAPHTHALENE	ug/kg	11		10 UJ	31 J	40 J		220 J	160 J
SW8260	TOLUENE	ug/kg	11		10 UJ	12 U.			29 J	40 J
SW8260	XYLENES, TOTAL	ug/kg	7		7.7 J	37 U.		7.8 J	50 J	36 J
SW8270	ACENAPHTHENE	ug/kg	520	-	7.7 J 310 J	740 J	390 J	260 J	50 J	160 UJ
SW8270	ACENAPHTHYLENE	ug/kg	650	-	290 J	810 J	580 J		74 J	160 UJ
SW8270	ANTHRACENE	ug/kg	1200		780 J	2400 J	1400 J	630 J	180 J	67 J
SW8270	BENZO(A)ANTHRACENE		2400		960 J	2100 J	1600 J	720 J	180 J	60 J
SW8270	BENZO(A)PYRENE	ug/kg ug/kg	1500		600 J	1400 J	950 J	460 J	82 J	160 UJ
SW8270	BENZO(B)FLUORANTHENE	ug/kg	2900		1100 J	1600 J	1300 J	530 J	170 J	160 UJ
SW8270	BENZO(G,H,I)PERYLENE		930	-	420 J	730 J	500 J		91 J	160 UJ
SW8270 SW8270	BENZO(G,H,I)PERTLENE BENZO(K)FLUORANTHENE	ug/kg ug/kg	77		68 UJ	82 U			110 UJ	160 UJ
SW8270	CHRYSENE		3200		1100 J	2100 J	1600 J		180 J	160 UJ
SW8270		ug/kg	200	_	1100 J	2100 J	1600 J		110 UJ	
SW8270 SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	11000		120 J 2700 J	210 J 4100 J	140 J 4200 J	90 J 1300 J	370 J	160 UJ 150 J
SW8270 SW8270	FLUORANTHENE FLUORENE	ug/kg	3500	-	2700 J 3300 J	4100 J 4100 J	4200 J 4100 J	760 J	730 J	150 J 64 J
		ug/kg								
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	950		400 J	620 J	470 J	230 J	76 J	160 UJ
SW8270	PHENANTHRENE	ug/kg	5400	_	2600 J	8400 J	4900 J		470 J	190 J
SW8270	PHENOL	ug/kg	120		420 J	630 J	780 J	1600 J	1400 J	1600 J
SW8270	PYRENE	ug/kg	4000		1700 J	3900 J	3000 J	1500 J	410 J	120 J
SW9045	pH	S.U.	7.3	J	7.8 J	10 J	10.9 J	11.2 J	11.4 J	11.6 J

		Location	OL-VC-20135	OL-VC-20135	OL-VC-20135	OL-VC-20136	OL-VC-20136	OL-VC-20136	OL-VC-20136
		Sample Depth	7.0-8.0 Ft	8.0-9.0 Ft	9.0-9.6 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft
		Field Sample ID	OL-0594-08	OL-0594-09	OL-0594-10	OL-0594-11	OL-0594-12	OL-0594-13	OL-0594-14
		Sample Date	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008
		SDG	C8G170294						
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
	SOLIDS, PERCENT	%	32	31	31.5	35.8	70.5	53.6	57.7
ASTM D854	SPECIFIC GRAVITY	g/cc	2.708	2.706	2.704	2.641	3.18	2.96	3.244
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	7720 J	4410 J	6900 J	86900 J	45100	70600	60300
SM2540G	SOLIDS, PERCENT	%	33	30.3	31.8	36.8	73.6	51.9	56.5
SW7471	MERCURY	mg/kg	0.18 J	0.13 J	0.15 J	7.1 J	0.69	1.6	0.94
SW8082	AROCLOR-1016	ug/kg	130 UJ	140 UJ	130 UJ	230 U.		400 U	370 U
SW8082	AROCLOR-1221	ug/kg	130 UJ	140 UJ	130 UJ	230 U.		400 U	370 U
SW8082	AROCLOR-1232	ug/kg	130 UJ	140 UJ	130 UJ			400 U	370 U
SW8082	AROCLOR-1242	ug/kg	130 UJ	140 UJ	130 UJ	230 U.		400 U	370 U
SW8082	AROCLOR-1248	ug/kg	130 UJ	140 UJ	130 UJ	5900 J	1600	4900	7200
SW8082	AROCLOR-1254	ug/kg	130 UJ	140 UJ	130 UJ		730	1800	1500
SW8082	AROCLOR-1260	ug/kg	130 UJ	140 UJ	130 UJ		180	450	310 J
SW8082	AROCLOR-1268	ug/kg	130 UJ	140 UJ	130 UJ			400 U	370 U
SW8082	PCBS, N.O.S.	ug/kg	130 UJ	140 UJ	130 UJ	11000 J	2500 J	7200	9000
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	15 UJ	17 UJ	16 UJ			9.6 U	8.8 U
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	15 UJ	17 UJ	16 UJ			9.6 U	3 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	15 UJ	17 UJ	16 UJ	17 J	1.9 J	9.6 U	8.8 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	15 UJ	17 UJ	16 UJ	3.2 J	6.8 U	9.6 U	8.8 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	15 UJ	17 UJ	16 UJ	12 J	6.8 U	9.6 U	8.8 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	15 UJ	17 UJ	2.3 J	66 J	2.1 J	9.6 U	8.8 U
SW8260	BENZENE	ug/kg	350 J	530 J	510 J	11 J	1.4 J	9.6 U	8.8 U
SW8260	CHLOROBENZENE	ug/kg	15 UJ	17 UJ	16 UJ	40 J	1.1 J	9.6 U	8.8 U
SW8260	ETHYLBENZENE	ug/kg	15 UJ	2.3 J	2.7 J	14 U.	6.8 U	9.6 U	8.8 U
SW8260	NAPHTHALENE	ug/kg	120 J	200 J	240 J	19 J	8.1 U	9.6 U	8.8 U
SW8260	TOLUENE	ug/kg	32 J	52 J	53 J	12 J	1.5 J	9.6 U	8.8 U
SW8260	XYLENES, TOTAL	ug/kg	27 J	49 J	55 J	12 J	3 J	29 U	27 U
SW8270	ACENAPHTHENE	ug/kg	100 UJ	87 J	41 J	160 J	240	500	310
SW8270	ACENAPHTHYLENE	ug/kg	38 J	47 J	36 J	190 J	92	170	94
SW8270	ANTHRACENE	ug/kg	160 J	190 J	85 J	330 J	330	560	200
SW8270	BENZO(A)ANTHRACENE	ug/kg	220 J	470 J	120 J	750 J	800	1300	470
SW8270	BENZO(A)PYRENE	ug/kg	120 J	330 J	71 J	460 J	530 J	840 J	310 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	180 J	490 J	140 J	1000 J	920 J	1600 J	540 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	69 J	260 J	110 UJ	280 J	240 J	380 J	130 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	100 UJ	110 UJ	110 UJ	91 UJ	46 U	65 U	59 U
SW8270	CHRYSENE	ug/kg	200 J	410 J	110 J	970 J	760 J	1300 J	520 J
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	100 UJ	55 J	110 UJ	85 J	57 J	96 J	59 U
SW8270	FLUORANTHÉNE	ug/kg	440 J	930 J	250 J	2800 J	2500	4800	2000
SW8270	FLUORENE	ug/kg	210 J	300 J	350 J	500 J	340	2500	530
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	58 J	220 J	51 J	280 J	240 J	360 J	110 J
SW8270	PHENANTHRENE	ug/kg	300 J	630 J	250 J	1700 J	2100	3500	1700
SW8270	PHENOL	ug/kg	790 J	1000 J	730 J	79 J	230	1700	1200
SW8270	PYRENE	ug/kg	290 J	640 J	210 J	920 J	880	1500	610
SW9045	рН	S.U.	11.7 J	11.7 J	11.6 J	7.2 J	9.7 J	10.5 J	10.6 J

		Location	OL-VC-20136	OL-VC-20136	OL-VC-20136	OL-VC-20136	OL-VC-20136	OL-VC-20136	OL-VC-20137
		Sample Depth	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft	8.0-8.7 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0594-15	OL-0594-16	OL-0594-17	OL-0594-18	OL-0594-19	OL-0594-20	OL-0595-01
		Sample Date	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008
		SDG	C8G170294	C8G170294	C8G170294	C8G170294	C8G170294	C8G170294	C8G170303
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Field Duplicate	Regular Sample					
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Commont	Countries	Codiminant	Countries	Codmitoria	- Countries	- Countries
	S SOLIDS, PERCENT	%	48	58.6	58.3	52.7	57.6	56.8	76.5
ASTM D854	SPECIFIC GRAVITY	g/cc	3.164	3.061	2.964	2.734	2.806	2.91	2.88
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	117000	168000	47000	64300	45900	130000	9250
SM2540G	SOLIDS, PERCENT	%	55.6	63.7	62.7	50.1	58.6	58.2	76.1
SW7471	MERCURY	mg/kg	0.73	1.7	1.2	3.4	2.4	0.86	0.3
SW8082	AROCLOR-1016	ug/kg	370 U	330 U	330 U	420 U		360 U	22 U
SW8082	AROCLOR-1221	ug/kg	370 U	330 U	330 U	420 U		360 U	22 U
SW8082	AROCLOR-1232	ug/kg	370 U	330 U	330 U	420 U		360 U	22 U
SW8082	AROCLOR-1242	ug/kg	370 U	330 U	330 U	420 U		360 U	22 U
SW8082	AROCLOR-1248	ug/kg	8400	16000	20000	11000	20000	21000	1400
SW8082	AROCLOR-1254	ug/kg	2000	5100	3600	3700	5700	5900	630
SW8082	AROCLOR-1260	ug/kg	380	330 U	620	840	880	820	210
SW8082	AROCLOR-1268	ug/kg	370 U	330 U	330 U	420 U		360 U	22 U
SW8082	PCBS, N.O.S.	ug/kg	11000	21000	24000	16000	27000	28000	2300
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9 U	7.8 U	6.1 J	5.4 J	8.5 U	8.6 U	6.6 U
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	3.1 J	7.8 U	5.4 J	5.4 J	8.5 U	8.6 U	6.6 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	9 U	7.8 U	1.3 J	4.1 J		8.6 U	6.6 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	9 U	7.8 U	8 U	10 U		8.6 U	6.6 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	9 U	7.8 U	8 U	10 U		8.6 U	6.6 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	9 U	7.8 U	1.3 J	5 J		8.6 U	6.6 U
SW8260	BENZENE	ug/kg	9 U	7.8 U	3.7 J	11	21	4.2 J	6.6 U
SW8260	CHLOROBENZENE	ug/kg	9 U	7.8 U	8 U	1.6 J	8.5 U	8.6 U	6.6 U
SW8260	ETHYLBENZENE	ug/kg	9 U	7.8 U	8 U	10 U		8.6 U	6.6 U
SW8260	NAPHTHALENE	ug/kg	9 U	7.8 U	24	22	8.7 U	8.6 U	6.6 U
SW8260	TOLUENE	ug/kg	9 U	7.8 U	8 U	1.8 J		8.6 U	6.6 U
SW8260	XYLENES, TOTAL	ug/kg	27 U	24 U	7.3 J	16 J	4.9 J	26 U	20 U
SW8270	ACENAPHTHENE	ug/kg	430	440	310	67 U		190	88
SW8270	ACENAPHTHYLENE	ug/kg	120	79	81	99	150	67	88 U
SW8270	ANTHRACENE	ug/kg	390	330	180	300	460	290	88
SW8270	BENZO(A)ANTHRACENE	ug/kg	680	710	400	710	1000	800	220
SW8270	BENZO(A)PYRENE	ug/kg	450 J	470 J	220	580	890	630	180
SW8270	BENZO(B)FLUORANTHENE	ug/kg	860 J	820 J	440	850	1300	930	300
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	210 J	220 J	170 J	400 J	620 J	440 J	110
SW8270	BENZO(K)FLUORANTHENE	ug/kg	60 U	53 U	53 U	67 U		58 U	88 U
SW8270	CHRYSENE	ug/kg	790 J	730 J	420	690	1100	760	190
SW8270		ug/kg	52 J	58 J	46 J	100 J	200 J	110 J	88 U
SW8270	FLUORANTHENE	ug/kg	3200	2700	1400	1700	2400	1900	530
SW8270	FLUORENE	ug/kg	890	1000	2300	6300	2500	270	96
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	180 J	200 J	180 J	370 J	520 J	400 J	100
SW8270	PHENANTHRENE	ug/kg	2600	2300	1500	1400	1700	1400	520
SW8270	PHENOL	ug/kg	1700	1200	1100	1400	120	92	250
SW8270	PYRENE	ug/kg	860	1000	630	1000	1300	1000	360
	1	S.U.	10.6 J	10.7 J	10.5 J	9.5 J	9.1 J	9.6 J	9.6 J

		Location	OL-VC-20137	-	OL-VC-20137	OL-VC-20137	OL-VC-20137	OL-VC-20137	OL-VC-20137	OL-VC-20138
		Sample Depth	1.0-2.0 Ft		2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.2 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0595-02		OL-0595-03	OL-0595-04	OL-0595-05	OL-0595-06	OL-0595-07	OL-0595-08
		Sample Date	7/16/2008		7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008
		SDG	C8G170303		C8G170303	C8G170303	C8G170303	C8G170303	C8G170303	C8G170303
		Matrix	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Re	gular Sample	Regular Sample				
		Sample Type	Sediment		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units								
ASTM D2216	SOLIDS, PERCENT	%	57.1		50.8	49.9	49.6	54.8	57.3	71.4
ASTM D854	SPECIFIC GRAVITY	g/cc	2.829		2.659	2.597	2.689	2.705	2.742	2.932
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	48700		62900	46300	37800	48100	42100	13400
SM2540G	SOLIDS, PERCENT	%	59.9		55.8	50.7	51.1	56.2	56.6	76.8
SW7471	MERCURY	mg/kg	1		0.033	0.007 U	0.0069	J 0.0063 U	0.0063 U	0.63
SW8082	AROCLOR-1016	ug/kg	28 l	U	30 U	33 L	33	J 30 U	29 U	22 U
SW8082	AROCLOR-1221	ug/kg	28 l	U	30 U	33 L	33	J 30 U	29 U	22 U
SW8082	AROCLOR-1232	ug/kg	28 l	U	30 U	33 L	33	J 30 U	29 U	22 U
SW8082	AROCLOR-1242	ug/kg	28 l	U	30 U	33 L	33	J 30 U	29 U	22 U
SW8082	AROCLOR-1248	ug/kg	2700		180	33 L	33	J 30 U	29 U	620
SW8082	AROCLOR-1254	ug/kg	1100		53	33 L	33	J 30 U	29 U	580
SW8082	AROCLOR-1260	ug/kg	450		20 J	33 L		J 30 U	29 U	320
SW8082	AROCLOR-1268	ug/kg	28 l	U	30 U	33 L			29 U	22 U
SW8082	PCBS, N.O.S.	ug/kg	4200		250	33 L	33	J 30 U	29 U	1500
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.3 (U	9 U	9.9 L	9.8	J 8.9 U	8.8 U	6.5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.3 ل	U	9 U	9.9 L	9.8	J 8.9 U	8.8 U	2.8 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.3	U	9 U	9.9 L	9.8	J 8.9 U	8.8 U	5.2 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.3	U	9 U	9.9 L	9.8	J 8.9 U	8.8 U	6.5 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.3	U	9 U	9.9 L	9.8		8.8 U	2.8 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.3	U	9 U	9.9 L	9.8	J 8.9 U	8.8 U	5.7 J
SW8260	BENZENE	ug/kg	8.3	U	3.1 J	2.9 J	9.8	J 8.9 U	8.8 U	6.5 U
SW8260	CHLOROBENZENE	ug/kg	8.3	U	9 U	9.9 L	9.8	J 8.9 U	8.8 U	3.7 J
SW8260	ETHYLBENZENE	ug/kg	8.3		9 U	9.9 L			8.8 U	6.5 U
SW8260	NAPHTHALENE	ug/kg	8.3		27	8 J			8.8 U	5.2 J
SW8260	TOLUENE	ug/kg	8.3		9 U	9.9 L			8.8 U	6.5 U
SW8260	XYLENES, TOTAL	ug/kg	25 l	U	5.8 J	30 L			27 U	20 U
SW8270	ACENAPHTHENE	ug/kg	240		120 U	130 L			120 U	140
SW8270	ACENAPHTHYLENE	ug/kg	93	J	120 U	130 L			120 U	130
SW8270	ANTHRACENE	ug/kg	260		120 U	130 L			120 U	260
SW8270	BENZO(A)ANTHRACENE	ug/kg	590		120 U	77 J			120 U	880
SW8270	BENZO(A)PYRENE	ug/kg	360		120 U	130 L			120 U	690
SW8270	BENZO(B)FLUORANTHENE	ug/kg	190		120 U	94 J			120 U	1200
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	250	J	120 U	130 L			120 U	540 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	500		120 U	130 L			120 U	87 U
SW8270	CHRYSENE	ug/kg	480		120 U	71 J			120 U	820
SW8270		ug/kg	69	J	120 U	130 L			120 U	87 U
SW8270	FLUORANTHENE	ug/kg	1500		100 J	190	130		62 J	1900
SW8270	FLUORENE	ug/kg	5300		79 J	130 U			120 U	210
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	180	J	120 U	130 L			120 U	440 J
SW8270	PHENANTHRENE	ug/kg	1200		71 J	150	130		120 U	1300
SW8270	PHENOL	ug/kg	450		93 J	48 J	130		36 J	59 J
SW8270	PYRENE	ug/kg	1100		67 J	110 J			120 U	1200
SW9045	pH	S.U.	9.6	J	9 J	8.3 J	7.9	J 7.5 J	7.5 J	8.8 J

		Location	OL-VC-20138	OL-VC-20138	OL-VC-20138	OL-VC-20138	OL-VC-20138	OL-VC-20138	OL-VC-20138
		Sample Depth	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft
		Field Sample ID	OL-0595-09	OL-0595-10	OL-0595-11	OL-0595-12	OL-0595-13	OL-0595-14	OL-0595-15
		Sample Date	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008
		SDG	C8G170303	C8G170303	C8G170303	C8G170303	C8G170303	C8G170303	C8G170303
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	82.8	83.9	74.2	67.5	59.7	56.7	56.1
ASTM D854	SPECIFIC GRAVITY	g/cc	2.929	3.22	3.397	3.4	2.708	2.723	2.729
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	20600	21300	27800	44200	60000	57400	47200
SM2540G	SOLIDS, PERCENT	%	84.1	85.4	71.7	76	56.1	59.1	57.6
SW7471	MERCURY	mg/kg	0.092	0.074	0.35	0.31	0.04	0.006 U	0.0062 U
SW8082	AROCLOR-1016	ug/kg	20 U	20 U	23 U	22 U	30 U	28 U	29 U
SW8082	AROCLOR-1221	ug/kg	20 U	20 U	23 U	22 U	30 U	28 U	29 U
SW8082	AROCLOR-1232	ug/kg	20 U	20 U	23 U	22 U	30 U	28 U	29 U
SW8082	AROCLOR-1242	ug/kg	20 U	20 U	23 U	22 U	30 U	28 U	29 U
SW8082	AROCLOR-1248	ug/kg	690	580	1300	770	93	28 U	29 U
SW8082	AROCLOR-1254	ug/kg	240	250	270	230	30 U	28 U	29 U
SW8082	AROCLOR-1260	ug/kg	76	82	71	65	30 U	28 U	29 U
SW8082	AROCLOR-1268	ug/kg	20 U		23 U	22 U		28 U	29 U
SW8082	PCBS, N.O.S.	ug/kg	1000	920	1700	1100	93	28 U	29 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	5.9 U	5.9 U	35 U	33 U	8.9 U	8.5 U	8.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	5.9 U	5.9 U	7.4 J	11 J	8.9 U	8.5 U	8.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	5.9 U	5.9 U	17 J	17 J	8.9 U	8.5 U	8.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	5.9 U	5.9 U	35 U	33 U		8.5 U	8.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	5.9 U		35 U	33 U		8.5 U	8.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	5.9 U		13 J	12 J	8.9 U	8.5 U	8.7 U
SW8260	BENZENE	ug/kg	5.9 U		37	51	8.9 U	8.5 U	8.7 U
SW8260	CHLOROBENZENE	ug/kg	5.9 U		12 J	11 J	8.9 U	8.5 U	8.7 U
SW8260	ETHYLBENZENE	ug/kg	5.9 U		14 J	14 J	8.9 U	8.5 U	8.7 U
SW8260	NAPHTHALENE	ug/kg	1.5 J	1.6 J	1300	1000	3.3 J	8.5 U	8.7 U
SW8260	TOLUENE	ug/kg	5.9 U		20 J	23 J	8.9 U	8.5 U	8.7 U
SW8260	XYLENES, TOTAL	ug/kg	18 U		140	140	27 U	25 U	26 U
SW8270	ACENAPHTHENE	ug/kg	95	150	700	800	120 U	110 U	120 U
SW8270	ACENAPHTHYLENE	ug/kg	80 U		270	320	120 U	110 U	120 U
SW8270	ANTHRACENE	ug/kg	61 J	150	1300	1800	120 U	110 U	120 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	130	230	1500	1700	120 U	110 U	32 J
SW8270	BENZO(A)PYRENE	ug/kg	120	78 U	93 U	88 U		110 U	25 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	96	340	780	1200	120 U	110 U	120 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	76 J	78 U	93 U	88 U		110 U	21 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	64 J	78 U	93 U	88 U		110 U	25 J
SW8270	CHRYSENE	ug/kg	150	250	890	1900	120 U	110 U	29 J
SW8270		ug/kg	80 U		93 U	88 U		110 U	120 U
SW8270	FLUORANTHENE	ug/kg	350	730	3800	4500	150	90 J	78 J
SW8270	FLUORENE	ug/kg	96	160	1300	1700	66 J	110 U	120 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	58 J	78 U	93 U	88 U		110 U	21 J
SW8270	PHENANTHRENE	ug/kg	410	840	4700	5300	150	57 J	65 J
SW8270	PHENOL	ug/kg	52 J	58 J	370	330	120 U	110 U	120 U
SW8270	PYRENE	ug/kg	240	490	2000	180	86 J	110 U	45 J
SW9045	pH	S.U.	10.1 J	10.3 J	10.3 J	10.3 J	8.3 J	7.8 J	7.6 J

		Location	OL-VC-20138	OL-VC-20138	OL-VC-20139	OL-VC-20139	OL-VC-20139	OL-VC-20139	OL-VC-20139
		Sample Depth	7.0-8.0 Ft	8.0-8.8 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft
		Field Sample ID	OL-0595-16	OL-0595-17	OL-0596-01	OL-0596-02	OL-0596-03	OL-0596-04	OL-0596-05
		Sample Date	7/16/2008	7/16/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G170303	C8G170303	C8G180336	C8G180336	C8G180336	C8G180336	C8G180336
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	58.2	57.5	51.8	45.8	48.7	51.3	59.9
ASTM D854	SPECIFIC GRAVITY	g/cc	2.726	2.743	2.856	2.642	2.571	2.62	2.706
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	74100	66400	35000 J	59600 J	31800 J	30000	81000
SM2540G	SOLIDS, PERCENT	%	58.5	60	46.9	40.6	45.3	52.1	59
SW7471	MERCURY	mg/kg	0.0061 U	0.0059 U	4 J	1.5 J	1.3 J	1	0.12
SW8082	AROCLOR-1016	ug/kg	28 U	28 U	18 UJ	21 U.	J 18 UJ	16 U	14 U
SW8082	AROCLOR-1221	ug/kg	28 U	28 U	240 J	21 U.	J 18 UJ	16 U	14 U
SW8082	AROCLOR-1232	ug/kg	28 U	28 U	18 UJ	21 U.	J 18 UJ	16 U	14 U
SW8082	AROCLOR-1242	ug/kg	28 U	28 U	18 UJ	21 U.	J 18 UJ	16 U	14 U
SW8082	AROCLOR-1248	ug/kg	28 U	28 U	1900 J	110 J	14 J	16 U	14 U
SW8082	AROCLOR-1254	ug/kg	28 U	28 U	1200 J	70 J	8.3 J	16 U	14 U
SW8082	AROCLOR-1260	ug/kg	28 U	28 U	470 J	21 U.	J 18 UJ	16 U	14 U
SW8082	AROCLOR-1268	ug/kg	28 U	28 U	18 UJ	21 U.		16 U	14 U
SW8082	PCBS, N.O.S.	ug/kg	28 U	28 U	3800 J	180 J	23 J	16 U	14 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.5 U	8.3 U	11 UJ	12 U.	J 11 UJ	9.6 UJ	8.5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.5 U	8.3 U	11 UJ	12 U.	J 11 UJ	9.6 UJ	8.5 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.5 U	8.3 U	2.1 J	3.5 J	11 UJ	9.6 U	8.5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.5 U	8.3 U	11 UJ	12 U.	J 11 UJ	9.6 UJ	8.5 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.5 U	8.3 U	12 J	12 U.		9.6 U	8.5 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.5 U	8.3 U	19 J	2.7 J	11 UJ	9.6 U	8.5 U
SW8260	BENZENE	ug/kg	8.5 U	8.3 U	11 UJ	12 U.		9.6 U	8.5 U
SW8260	CHLOROBENZENE	ug/kg	8.5 U	8.3 U	30 J	12 U.	J 11 UJ	9.6 U	8.5 U
SW8260	ETHYLBENZENE	ug/kg	8.5 U	8.3 U	11 UJ	12 U.		9.6 U	8.5 U
SW8260	NAPHTHALENE	ug/kg	8.5 U	8.3 U	11 UJ	12 U.		9.6 UJ	8.5 UJ
SW8260	TOLUENE	ug/kg	8.5 U	8.3 U	11 UJ			9.6 U	8.5 U
SW8260	XYLENES, TOTAL	ug/kg	26 U	25 U	32 UJ	37 U.		29 U	25 U
SW8270	ACENAPHTHENE	ug/kg	110 U	110 U	90 J	2300 J	75 J	71	57 U
SW8270	ACENAPHTHYLENE	ug/kg	110 U	110 U	190 J	7100 J	480 J	190	18 J
SW8270	ANTHRACENE	ug/kg	110 U	110 U	450 J	38000 J	1000 J	450	22 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	110 U	110 U	900 J	34000 J	2600 J	1000	88
SW8270	BENZO(A)PYRENE	ug/kg	110 U	110 U	640 J	19000 J	2100 J	930	79
SW8270	BENZO(B)FLUORANTHENE	ug/kg	110 U	110 U	1100 J	31000 J	2800 J	1200	100
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	110 U	110 U	370 J	7700 J	1000 J	800 J	82
SW8270	BENZO(K)FLUORANTHENE	ug/kg	110 U	110 U	71 UJ	83 U.		64 U	57 U
SW8270	CHRYSENE	ug/kg	110 U	110 U	990 J	26000 J	2800 J	1200	68
SW8270		ug/kg	110 U	110 U	99 J	2400 J	300 J	180 J	57 U
SW8270	FLUORANTHENE	ug/kg	59 J	72 J	2700 J	86000 J	6500 J	1900	110
SW8270	FLUORENE	ug/kg	110 U	110 U	2900 J	19000 J	2900 J	270	50 J
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	110 U	110 U	380 J	8200 J	960 J	600 J	45 J
SW8270	PHENANTHRENE	ug/kg	110 U	56 J	720 J	5300 J	910 J	360	31 J
SW8270	PHENOL	ug/kg	110 U	110 U	46 J	300 J	63 J	31 J	53 J
SW8270	PYRENE	ug/kg	110 U	110 U	1300 J	44000 J	3200 J	1600	150
SW9045	pH	S.U.	7.7 J	7.7 J	7.3 J	7.7 J	7.6 J	7.4 J	7.3 J

		Location	OL-VC-20139	OL-VC-20139	OL-VC-20139	OL-VC-20139	OL-VC-20140	OL-VC-20140	OL-VC-20140
		Sample Depth	5.0-6.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft	8.0-8.9 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft
		Field Sample ID	OL-0596-06	OL-0596-07	OL-0596-08	OL-0596-09	OL-0596-10	OL-0596-11	OL-0596-12
		Sample Date	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180336						
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	58	57.3	58.1	52.6	63.5	60.1	58.9
ASTM D854	SPECIFIC GRAVITY	g/cc	2.731	2.719	2.697	2.727	2.74	2.719	2.716
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	83500	133000	133000	131000	117000	124000	106000
SM2540G	SOLIDS, PERCENT	%	56.2	58	55	52.4	56.4	53.5	58.2
SW7471	MERCURY	mg/kg	0.0063 U	0.0061 U	0.0065 U	0.0068 U	0.17	0.0066 U	0.0061 U
SW8082	AROCLOR-1016	ug/kg	15 U	14 U	15 U	16 U	15 U	16 U	14 U
SW8082	AROCLOR-1221	ug/kg	15 U	14 U	15 U	16 U	15 U	16 U	14 U
SW8082	AROCLOR-1232	ug/kg	15 U	14 U	15 U	16 U	15 U	16 U	14 U
SW8082	AROCLOR-1242	ug/kg	15 U	14 U	15 U	16 U	15 U	16 U	14 U
SW8082	AROCLOR-1248	ug/kg	15 U	14 U	15 U	16 U	7 J	16 U	14 U
SW8082	AROCLOR-1254	ug/kg	15 U	14 U	15 U	16 U	7.9 J	16 U	14 U
SW8082	AROCLOR-1260	ug/kg	15 U	14 U	15 U	16 U	15 U	16 U	14 U
SW8082	AROCLOR-1268	ug/kg	15 U	14 U	15 U	16 U	15 U	16 U	14 U
SW8082	PCBS, N.O.S.	ug/kg	15 U	14 U	15 U	16 U	15	16 U	14 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	1.5 J	8.6 UJ	9.1 UJ	9.5 U	J 8.9 UJ	9.3 UJ	8.6 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.9 U.	8.6 UJ	9.1 UJ	9.5 U	J 8.9 UJ	9.3 UJ	8.6 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U	8.9 U	9.3 U	8.6 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.9 U.	8.6 UJ	9.1 UJ	9.5 U	J 8.9 UJ	9.3 UJ	8.6 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U		9.3 U	8.6 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U	8.9 U	9.3 U	8.6 U
SW8260	BENZENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U	8.9 U	9.3 U	8.6 U
SW8260	CHLOROBENZENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U	8.9 U	9.3 U	8.6 U
SW8260	ETHYLBENZENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U		9.3 U	8.6 U
SW8260	NAPHTHALENE	ug/kg	6.9 J	8.6 UJ	9.1 UJ			9.3 UJ	8.6 UJ
SW8260	TOLUENE	ug/kg	8.9 U	8.6 U	9.1 U	9.5 U		9.3 U	8.6 U
SW8260	XYLENES, TOTAL	ug/kg	27 U	26 U	27 U	29 U		28 U	26 U
SW8270	ACENAPHTHENE	ug/kg	60 U	58 U	61 U	63 U		63 U	58 U
SW8270	ACENAPHTHYLENE	ug/kg	60 U	58 U	61 U	63 U		63 U	58 U
SW8270	ANTHRACENE	ug/kg	60 U	58 U	61 U	45 J	59 U	63 U	58 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	60 U	58 U	14 J	59 J	120	63 U	58 U
SW8270	BENZO(A)PYRENE	ug/kg	60 U	58 U	61 U	36 J	99	63 U	58 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	60 U	58 U	61 U	52 J	150	63 U	58 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	60 U	58 U	61 U	63 U		63 U	58 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	60 U	58 U	61 U	63 U		63 U	58 U
SW8270	CHRYSENE	ug/kg	60 U	58 U	61 U	51 J	110	63 U	58 U
SW8270		ug/kg	60 U	58 U	61 U	63 U		63 U	58 U
SW8270	FLUORANTHENE	ug/kg	60 U	58 U	20 J	100	210	63 U	58 U
SW8270	FLUORENE	ug/kg	60 U	58 U	61 U	40 J	1200	63 U	58 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	60 U	58 U	61 U	24 J	56 J	63 U	58 U
SW8270	PHENANTHRENE	ug/kg	60 U	58 U	61 U	20 J	85	63 U	58 U
SW8270	PHENOL	ug/kg	19 J	58 U	61 U	21 J	39 J	63 U	58 U
SW8270	PYRENE	ug/kg	60 U	58 U	19 J	63	170	63 U	58 U
SW9045	pH	S.U.	7.4 J	7.4 J	7.4 J	7.4 J	7.6 J	7.4 J	7.5 J

		Location	OL-VC-20140	OL-VC-20140	OL-VC-20140	OL-VC-20140	OL-VC-20140	OL-VC-20141	OL-VC-20141
		Sample Depth	3.0-4.0 Ft	4.0-5.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.5 Ft	0.0-1.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0596-13	OL-0596-14	OL-0596-15	OL-0596-16	OL-0596-17	OL-0598-01	OL-0598-02
		Sample Date	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180336	C8G180336	C8G180336	C8G180336	C8G180336	C8G180345	C8G180345
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Field Duplicate	Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Commont	Common	Common	Common	Commont	000	- Countries
	SOLIDS, PERCENT	%	54.6	60.4	59.5	63.1	59.2	66.1	62.5
ASTM D854	SPECIFIC GRAVITY	g/cc	2.726	2.741	2.719	2.735	2.755	2.67	2.691
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	142000	130000	83700	74300	79500	70200	77000
SM2540G	SOLIDS, PERCENT	%	55.6	57.2	56.4	58.8	54.1	60.1	62.8
SW7471	MERCURY	mg/kg	0.0064 U	0.0062 U	0.0063 U	0.006 U		0.34	0.0057 U
SW8082	AROCLOR-1016	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1221	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1232	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1242	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1248	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1254	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1260	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	AROCLOR-1268	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8082	PCBS, N.O.S.	ug/kg	15 U	14 U	15 U	14 U		69 U	66 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9 UJ	8.7 UJ	8.9 UJ	8.5 U			8 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	9 UJ	8.7 UJ	8.9 UJ				8 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	9 UJ	8.7 UJ	8.9 UJ				8 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	BENZENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	CHLOROBENZENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	ETHYLBENZENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	NAPHTHALENE	ug/kg	9 UJ	8.7 UJ	8.9 UJ	8.5 U			8 U
SW8260	TOLUENE	ug/kg	9 U	8.7 U	8.9 U	8.5 U		8.3 U	8 U
SW8260	XYLENES, TOTAL	ug/kg	27 U	26 U	27 U	26 U		25 U	24 U
SW8270	ACENAPHTHENE	ug/kg	60 U	59 U	59 U	57 U		57	53 U
SW8270	ACENAPHTHYLENE	ug/kg	60 U	59 U	59 U	57 U		63	53 U
SW8270	ANTHRACENE	ug/kg	60 U	59 U	59 U	57 U		170	53 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	60 U	59 U	59 U	57 U		820	53 U
SW8270	BENZO(A)PYRENE	ug/kg	60 U	59 U	59 U	57 U		820	53 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	60 U	59 U	59 U	57 U		1100	53 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	60 U	59 U	59 U	57 U		580	53 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	60 U	59 U	59 U	57 U		55 U	53 U
SW8270	CHRYSENE	ug/kg	60 U	59 U	59 U	57 U		990	53 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	60 U	59 U	59 U	57 U		160	53 U
SW8270	FLUORANTHENE	ug/kg	60 U	59 U	59 U	57 U		1400	53 U
SW8270	FLUORENE	ug/kg	60 U	59 U	59 U	57 U		160	53 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	60 U	59 U	59 U	57 U		460	53 U
SW8270	PHENANTHRENE	ug/kg	60 U	59 U	59 U	57 U		690	53 U
SW8270	PHENOL	ug/kg	60 U	59 U	59 U	57 U		18 J	19 J
SW8270	PYRENE	ug/kg	60 U	59 U	59 U	57 U		1600	53 U
SW9045	pH	S.U.	7.4 J	7.4 J	7.4 J	7.4 J		7.5 J	7.4 J
2.10010	IL	····	7.40	7.40	7.40	7.70	7.40	7.50	7.10

		Location	OL-VC-20141						
		Sample Depth	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft	7.0-8.0 Ft
		Field Sample ID	OL-0598-03	OL-0598-04	OL-0598-05	OL-0598-06	OL-0598-07	OL-0598-08	OL-0598-09
		Sample Date	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180345						
		Matrix	SOIL						
		Sample Purpose	Regular Sample	Field Duplicate					
		Sample Type	Sediment						
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	60	57.7	59.6	63.1	59.2	60.6	62.1
ASTM D854	SPECIFIC GRAVITY	g/cc	2.716	2.695	2.701	2.727	2.727	2.725	2.727
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	74500	62400	80400	51800 J	44800	63600	61000
SM2540G	SOLIDS, PERCENT	%	59.4	57.1	55.3	62.9	55	56.2	57.8
SW7471	MERCURY	mg/kg	0.006 U	0.0062 U	0.0064 U	0.0056 U	0.0065 U	0.0063 U	0.0061 U
SW8082	AROCLOR-1016	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1221	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1232	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1242	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1248	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1254	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1260	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8082	AROCLOR-1268	ug/kg	70 U	73 U	75 U	66 U		73 U	71 U
SW8082	PCBS, N.O.S.	ug/kg	70 U	73 U	75 U	66 U	76 U	73 U	71 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	BENZENE	ug/kg	8.4 U	24	37	14	25	7.6 J	10
SW8260	CHLOROBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U	9.1 U	8.9 U	8.7 U
SW8260	ETHYLBENZENE	ug/kg	8.4 U	8.8 U	9 U	8 U		8.9 U	8.7 U
SW8260	NAPHTHALENE	ug/kg	8.4 U	8.8 U	9 U	8 U		8.9 U	2.4 J
SW8260	TOLUENE	ug/kg	8.4 U	8.8 U	9 U	8 U		8.9 U	8.7 U
SW8260	XYLENES, TOTAL	ug/kg	25 U	26 U	27 U	24 U		27 U	26 U
SW8270	ACENAPHTHENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	ACENAPHTHYLENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	ANTHRACENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	BENZO(A)PYRENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	CHRYSENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270		ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	FLUORANTHENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	FLUORENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	PHENANTHRENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW8270	PHENOL	ug/kg	24 J	27 J	21 J	36 J	30 J	27 J	42 J
SW8270	PYRENE	ug/kg	56 U	59 U	61 U	53 U		60 U	58 U
SW9045	pH	S.U.	7.4 J	7.4 J	7.5 J	7.6 J	7.5 J	7.5 J	7.5 J

		Location	OL-VC-20141	OL-VC-20141	OL-VC-20142	OL-VC-20142	OL-VC-20142	OL-VC-20142	OL-VC-20143
		Sample Depth	8.0-9.0 Ft	9.0-10.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-3.5 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0598-10	OL-0598-11	OL-0651-05	OL-0651-06	OL-0651-07	OL-0651-08	OL-0650-09
		Sample Date	7/17/2008	7/17/2008	8/27/2008	8/27/2008	8/27/2008	8/27/2008	8/26/2008
		SDG	C8G180345	C8G180345	C8H280268	C8H280268	C8H280268	C8H280268	C8H270294
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
	SOLIDS, PERCENT	%	58.1	56.9	57.4	55.5	55.1	53.9	28.7
ASTM D854	SPECIFIC GRAVITY	g/cc	2.734	2.727	2.692	2.687	2.699	2.709	2.552
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	8790	61200	12200	20800	8700	10600	47900 J
SM2540G	SOLIDS, PERCENT	%	56.2	54.3	55.4	54.4	56.1	51	28.2
SW7471	MERCURY	mg/kg	0.0063 U	0.0065 U	0.086	0.017 J	0.0063 U	0.007 U	19 J
SW8082	AROCLOR-1016	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	150 UJ
SW8082	AROCLOR-1221	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	150 UJ
SW8082	AROCLOR-1232	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	150 UJ
SW8082	AROCLOR-1242	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	150 UJ
SW8082	AROCLOR-1248	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	2400 J
SW8082	AROCLOR-1254	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	1000 J
SW8082	AROCLOR-1260	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	320 J
SW8082	AROCLOR-1268	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	150 UJ
SW8082	PCBS, N.O.S.	ug/kg	74 U	77 U	15 U	15 U	15 U	16 U	3700 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.9 U	9.2 U	9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.9 U	9.2 U	9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg ug/kg	8.9 U	9.2 U	9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.9 U	9.2 U	9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.9 U	9.2 U	2.6 J	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.9 U	9.2 U	16	1.5 J	8.9 U	9.8 U	400 J
SW8260	BENZENE	ug/kg	4.7 J	3.5 J	9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	CHLOROBENZENE	ug/kg	8.9 U	9.2 U	1.9 J	9.2 U	8.9 U	9.8 U	620 J
SW8260	ETHYLBENZENE	ug/kg	8.9 U	9.2 U	1.9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	NAPHTHALENE	ug/kg	8.9 U	9.2 U	9 U	9.2 U	8.9 U	9.8 U	2800 J
SW8260	TOLUENE	ug/kg	8.9 U	9.2 U	9 U	9.2 U	8.9 U	9.8 U	890 UJ
SW8260	XYLENES, TOTAL	ug/kg	27 U	28 U	27 U	28 U	27 U	29 U	1100 J
SW8270	ACENAPHTHENE	ug/kg	59 U	62 U	25 J	61 U	60 U	66 U	120 UJ
SW8270	ACENAPHTHENE	ug/kg	59 U	62 U	18 J	61 U	60 U	66 U	400 J
SW8270	ANTHRACENE	ug/kg ug/kg	59 U	62 U	61 U	61 U	60 U	66 U	120 UJ
SW8270	BENZO(A)ANTHRACENE		59 U	62 U	63	61 U	60 U	66 U	1000 J
SW8270	BENZO(A)PYRENE	ug/kg	59 U	62 U	44 J	61 U	60 U	66 U	650 J
SW8270		ug/kg	59 U	62 U	63	61 U	60 U	66 U	1200 J
	BENZO(B)FLUORANTHENE	ug/kg			61 U				1200 J 370 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	59 U	62 U		61 U 61 U	60 U	66 U	
SW8270 SW8270	BENZO(K)FLUORANTHENE CHRYSENE	ug/kg	59 U 59 U	62 U	25 J 54 J	61 U	60 U	66 U 66 U	120 UJ 1400 J
		ug/kg		62 U					
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	59 U	62 U	61 U	61 U	60 U	66 U	77 J
SW8270 SW8270	FLUORANTHENE	ug/kg	59 U	62 U	120	61 U	60 U	66 U	2800 J
	FLUORENE	ug/kg	59 U	62 U	61 U	83	60 U	66 U	120 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	59 U	62 U	21 J	61 U	60 U	66 U	320 J
SW8270	PHENANTHRENE	ug/kg	59 U	62 U	61 U	61 U	60 U	66 U	1300 J
SW8270	PHENOL	ug/kg	59 U	18 J	61 U	61 U	60 U	66 U	120 UJ
SW8270	PYRENE	ug/kg	59 U	62 U	130	61 U	60 U	66 U	1400 J
SW9045	рН	S.U.	7.5 J	7.5 J	8.1	8	7.6	7.2	7.7 J

		Location	OL-VC-20143	OL-VC-20143	OL-VC-20143	OL-VC-20	43	OL-VC-20144	OL-VC-20144	OL-VC-20144
		Sample Depth	1.0-2.0 Ft	2.0-3.0 Ft	2.0-3.0 Ft	3.0-3.8	Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft
		Field Sample ID	OL-0650-10	OL-0650-11	OL-0650-12	OL-0650	13	OL-0651-09	OL-0651-10	OL-0651-11
		Sample Date	8/26/2008	8/26/2008	8/26/2008	8/26/20		8/27/2008	8/27/2008	8/27/2008
		SDG	C8H270294	C8H270294	C8H270294	C8H2702	94	C8H280268	C8H280268	C8H280268
		Matrix	SOIL	SOIL	SOIL	S	IL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Field Duplicate	Regular Sam		Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sedim		Sediment	Sediment	Sediment
Method	Parameter Name	Units								
ASTM D2216	SOLIDS, PERCENT	%	31.2	40.2		4	3.6	53.9	52.1	56
ASTM D854	SPECIFIC GRAVITY	g/cc	2.582	2.661		2.7		2.68	2.688	2.698
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	31800 J	24500 J	28000 J	226		13200	10900 J	12100
SM2540G	SOLIDS, PERCENT	%	31.9	38.8	39.4		3.4	52.9	48.9	54.6
SW7471	MERCURY	mg/kg	19.2 J	1.5 J	1.5 J		21 J	0.022 J	0.0073 UJ	0.0065 U
SW8082	AROCLOR-1016	ug/kg	130 UJ	110 UJ	110 U		17 UJ		17 UJ	15 U
SW8082	AROCLOR-1221	ug/kg	130 UJ	110 UJ	110 U		17 UJ		17 UJ	15 U
SW8082	AROCLOR-1232	ug/kg	130 UJ	110 UJ	110 U		17 UJ		17 UJ	15 U
SW8082	AROCLOR-1242	ug/kg	130 UJ	110 UJ	110 U		17 UJ		17 UJ	15 U
SW8082	AROCLOR-1248	ug/kg	980 J	110 J	110 U		17 UJ		17 UJ	15 U
SW8082	AROCLOR-1254	ug/kg	1300 J	110 UJ	49 J	-	17 UJ		17 UJ	15 U
SW8082	AROCLOR-1260	ug/kg	570 J	110 UJ	45 J		17 UJ		17 UJ	15 U
SW8082	AROCLOR-1268	ug/kg	130 UJ	110 UJ	110 U		17 UJ		17 UJ	15 U
SW8082	PCBS, N.O.S.	ug/kg	2800 J	110 J	94 J		17 UJ		17 UJ	15 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	3900 UJ	3200 UJ	640 U		20 UJ		10 UJ	9.2 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	3900 UJ	3200 UJ	640 U		20 UJ		10 UJ	9.2 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	3900 UJ	3200 UJ	180 J		20 UJ		10 UJ	9.2 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	3900 UJ	3200 UJ	640 U		20 UJ		10 UJ	9.2 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	3900 UJ	3200 UJ	150 J		20 UJ		10 UJ	9.2 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	3500 J	1300 J	850 J		20 UJ		10 UJ	9.2 U
SW8260	BENZENE	ug/kg	3900 UJ	3200 UJ	640 U		20 UJ		10 UJ	9.2 U
SW8260	CHLOROBENZENE	ug/kg	1600 J	770 J	780 J		20 UJ		3.3 J	9.2 U
SW8260	ETHYLBENZENE	ug/kg	1100 J	3200 UJ	640 J		20 UJ		10 UJ	9.2 U
SW8260	NAPHTHALENE	ug/kg	64000 J	37000 J	26000 J		20 UJ	9.5 U	10 UJ	9.2 U
SW8260	TOLUENE	ug/kg	3900 UJ	3200 UJ	140 J		20 UJ		10 UJ	9.2 U
SW8260	XYLENES, TOTAL	ug/kg	5500 J	7000 J	7300 J		20 UJ	28 U	31 UJ	9.2 U
SW8270	ACENAPHTHENE	ug/kg ug/kg	5500 J	7000 J	670 J		54 J	63 U	69 UJ	61 U
SW8270	ACENAPHTHENE	0 0	640 J	1000 J	1100 J		81 J	63 U	69 UJ	61 U
SW8270 SW8270	ANTHRACENE	ug/kg ug/kg	890 J	2500 J	2100 J		50 J	63 U	69 UJ	61 U
SW8270	BENZO(A)ANTHRACENE		1600 J	2500 J 43 J	3000 J		80 J	63 U	69 UJ	61 U
SW8270 SW8270	BENZO(A)ANTHRACENE BENZO(A)PYRENE	ug/kg	1600 J	2900 J	1400 J		80 J	63 U	69 UJ	61 U
SW8270 SW8270	BENZO(A)PYRENE BENZO(B)FLUORANTHENE	ug/kg	1100 J 1900 J	2900 J 2600 J	2300 J		60 J 40 J	63 U	69 UJ	61 U
SW8270		ug/kg	490 J	720 J	870 J		40 J	63 U	69 UJ	61 U
	BENZO(G,H,I)PERYLENE	ug/kg								
SW8270 SW8270	BENZO(K)FLUORANTHENE CHRYSENE	ug/kg	R 2000 L	86 UJ	84 U 3000 J		30 J 90 J	63 U 63 U	69 UJ	61 U 61 U
SW8270 SW8270		ug/kg	2000 J	3100 J 86 UJ	3000 J		90 J 50 J	63 U		61 U
	DIBENZO(A,H)ANTHRACENE	ug/kg	130 J						69 UJ	
SW8270	FLUORANTHENE	ug/kg	4600 J	8000 J	6300 J		30 J	63 U	69 UJ	61 U
SW8270	FLUORENE	ug/kg	R	86 UJ	84 U		69 UJ		69 UJ	61 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	460 J	990 J	900 J		70 J	63 U	69 UJ	61 U
SW8270	PHENANTHRENE	ug/kg	2800 J	6500 J	5400 J		60 J	63 U	69 UJ	61 U
SW8270	PHENOL	ug/kg	42 J	86 UJ	84 U		69 UJ		69 UJ	61 U
SW8270	PYRENE	ug/kg	2300 J	4700 J	3600 J		30 J	63 U	69 UJ	61 U
SW9045	pH	S.U.	7.9 J	7.9 J	8 J		7.5 J	7.5	6.9 J	7

		Location	OL-VC-20144	OL-VC-20145	OL-VC-20145		OL-VC-20145	OL-VC-20145	OL-VC-20145	OL-VC-20145
		Sample Depth	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft		2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft
		Field Sample ID	OL-0651-12	OL-0659-08	OL-0659-09		OL-0659-10	OL-0659-11	OL-0659-12	OL-0659-13
		Sample Date	8/27/2008	9/3/2008	9/3/2008		9/3/2008	9/3/2008	9/3/2008	9/3/2008
		SDG	C8H280268	C8I040254	C8I040254		C8I040254	C8I040254	C8I040254	C8I040254
		Matrix	SOIL	SOIL	SOIL		SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment		Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units								
ASTM D2216	SOLIDS, PERCENT	%	54.4	30.7	37.3		40.8	46.1	53.2	57
ASTM D854	SPECIFIC GRAVITY	g/cc	2.695	2.553	2.638		2.664	2.704	2.744	2.761
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	10300	57300 J	50500	J	21000 J	18700 J	32400	17000
SM2540G	SOLIDS, PERCENT	%	50	32.6	31.5		42.6	49.8	53.4	56.3
SW7471	MERCURY	mg/kg	0.0071 U	13.1 J	6.5	J	1.7 J	1.3 J	0.049	0.022 J
SW8082	AROCLOR-1016	ug/kg	17 U	26 UJ	26 l	JJ	20 U.	J 16 UJ	16 U	15 U
SW8082	AROCLOR-1221	ug/kg	17 U	26 UJ	26 l		20 U.		16 U	15 U
SW8082	AROCLOR-1232	ug/kg	17 U	26 UJ	26 l		20 U.		16 U	15 U
SW8082	AROCLOR-1242	ug/kg	17 U	26 UJ	26 l		20 U		16 U	15 U
SW8082	AROCLOR-1248	ug/kg	17 U	3600 J	430		40 J	16 UJ	16 U	15 U
SW8082	AROCLOR-1254	ug/kg	17 U	2000 J	330		20 U.		16 U	15 U
SW8082	AROCLOR-1260	ug/kg	17 U	1000 J	260		20 U.		16 U	15 U
SW8082	AROCLOR-1268	ug/kg	17 U	26 UJ	26 (20 U.		16 U	15 U
SW8082	PCBS, N.O.S.	ug/kg	17 U	6600 J	1000		40 J	16 UJ	16 U	15 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	10 U	15 UJ	790 l		12 U.		9.4 U	8.9 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	10 U	15 UJ	790 l		12 U.		9.4 UJ	8.9 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	10 U	270 J	860		26 J	50 UJ	9.4 U	8.9 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	10 U	11 J	790 l		12 U.		9.4 U	8.9 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	10 U	180 J	680		3.9 J	50 UJ	9.4 U	8.9 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	10 U	85 J	4000		38 J	7.9 J	9.4 U	8.9 U
SW8260	BENZENE	ug/kg	210	63 J	790 l		15 J	8.8 J	9.4 U	8.9 U
SW8260	CHLOROBENZENE	ug/kg	10 U	170 J	2200		63 J	50 UJ	9.4 U	8.9 U
SW8260	ETHYLBENZENE	ug/kg	10 U	500 J	1400		62 J	12 J	9.4 U	8.9 U
SW8260	NAPHTHALENE	ug/kg	10 U	99 J	69000		450 J	540 J	9.4 U	8.9 U
SW8260	TOLUENE	ug/kg	10 U	150 J	300		15 J	50 UJ	9.4 U	8.9 U
SW8260	XYLENES, TOTAL	ug/kg	30 U	1800 J	5900		310 J	78 J	28 U	27 U
SW8270	ACENAPHTHENE	ug/kg	67 U	100 UJ	720		1600 J	310 J	34 J	60 U
SW8270	ACENAPHTHYLENE	ug/kg	67 U	240 J	1000		900 J	520 J	35 J	60 U
SW8270	ANTHRACENE	ug/kg	67 U	710 J	2200		3500 J	1500 J	65	60 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	67 U	970 J	2000		3300 J	2600 J	120	60 U
SW8270	BENZO(A)PYRENE	ug/kg	67 U	250 J	1200		1100 J	1300 J	56 J	60 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	67 U	1400 J	2100		1900 J	2200 J	87 J	60 UJ
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	67 U	720 J	910		880 J	1400 J	63	60 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	67 U	100 UJ	110 (79 U.		63 U	60 U
SW8270	CHRYSENE	ug/kg	67 U	1200 J	2200		3300 J	2700 J	100	60 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	67 U	160 J	65		360 J	430 J	63 UJ	60 UJ
SW8270	FLUORANTHENE	ug/kg	67 U	2800 J	6100		11000 J	5700 J	210	60 U
SW8270	FLUORENE	ug/kg	67 U	100 UJ	110 (79 U		63 U	60 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	67 U	600 J	790		890 J	1200 J	46 J	60 UJ
SW8270	PHENANTHRENE	ug/kg	67 U	1300 J	6400		14000 J	2900 J	150	60 U
SW8270	PHENOL	ug/kg	67 U	48 J	71		35 J	2900 J 27 J	63 U	60 U
SW8270	PYRENE	ug/kg	67 U	1600 J	3300		5200 J	3500 J	150	60 U
SW9045	pH	S.U.	6.8	7.9 J	7.9		8.2 J	7.9 J	7.4	7.4
0449049	lbi i	0.0.	0.0	1.50	1.5	,	0.2 0	1.30	1.4	1.4

		Location	OL-VC-20145	OL-VC-20145	OL-VC-20145	T T	OL-VC-20146	OL-VC-20146	OL-VC-20146	OL-VC-20146
		Sample Depth	6.0-7.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft		0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft
		Field Sample ID	OL-0659-14	OL-0659-15	OL-0659-16		OL-0651-01	OL-0651-02	OL-0651-03	OL-0651-04
		Sample Date	9/3/2008	9/3/2008	9/3/2008		8/27/2008	8/27/2008	8/27/2008	8/27/2008
		SDG	C8I040254	C8I040254	C8I040254		C8H280268	C8H280268	C8H280268	C8H280268
		Matrix	SOIL	SOIL	SOIL		SOIL	SOIL	SOIL	SOIL
		Sample Purpose		Field Duplicate	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
	D	Sample Type	Sediment	Sediment	Sediment		Sediment	Sediment	Sediment	Sediment
	Parameter Name	Units					20.0			40.0
	SOLIDS, PERCENT	%	58.8		57.3		30.9	41.6	41.1	48.2
	SPECIFIC GRAVITY	g/cc	2.755		2.763		2.542	2.597	2.628	2.667
	TOTAL ORGANIC CARBON	mg/kg	21100	20000	11600		64000 J	56900		30900 J
	SOLIDS, PERCENT	%	58	57.8	60.4		32.6	37.2	39.8	47.5
	MERCURY	mg/kg	0.018 J	0.019 J	0.015		10 J	14.6		0.23 J
	AROCLOR-1016	ug/kg	14 L		14		26 UJ	22		18 UJ
	AROCLOR-1221	ug/kg	14 L		14		26 UJ	22		18 UJ
	AROCLOR-1232	ug/kg	14 L		14		26 UJ	22		18 UJ
SW8082	AROCLOR-1242	ug/kg	14 L	J 14 U	14		2900 J	490	J 380 J	18 UJ
SW8082	AROCLOR-1248	ug/kg	14 L	J 14 U	14	U	26 UJ	22	UJ 21 UJ	18 UJ
SW8082	AROCLOR-1254	ug/kg	14 L	J 14 U	14	U	1300 J	570	J 21 UJ	18 UJ
SW8082	AROCLOR-1260	ug/kg	14 L	J 14 U	14	U	440 J	210	J 21 UJ	18 UJ
SW8082	AROCLOR-1268	ug/kg	14 L	J 14 U	14	U	26 UJ	22	UJ 21 UJ	18 UJ
SW8082	PCBS, N.O.S.	ug/kg	14 L	J 14 U	14	U	4600 J	1300	J 380 J	18 UJ
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.6 L	J 8.7 U	8.3		770 UJ	6700	UJ 3100 UJ	530 UJ
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	8.6 L	JJ 8.7 U.	8.3	UJ	770 UJ	6700		530 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.6 L		8.3	U	770 UJ	6700		530 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.6 L		8.3		770 UJ	6700		530 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.6 L		8.3		770 UJ	6700		530 UJ
	1,4-DICHLOROBENZENE	ug/kg	8.6 L		8.3		350 J	4400		530 UJ
	BENZENE	ug/kg	8.6 L		8.3		770 UJ	6700		530 UJ
	CHLOROBENZENE	ug/kg	8.6 L		8.3		500 J	3200		170 J
	ETHYLBENZENE	ug/kg	8.6 L		8.3		770 UJ	6700		530 UJ
	NAPHTHALENE	ug/kg	8.6 L		8.3	U	940 J	89000		3700 J
	TOLUENE	ug/kg	8.6 L		8.3		770 UJ	6700		530 UJ
	XYLENES, TOTAL	ug/kg	26 L		25		2300 UJ	8300		1700 J
	ACENAPHTHENE	ug/kg	58 L		55	u	510 UJ	570		75 J
	ACENAPHTHYLENE	ug/kg	58 L		55		450 J	740		110 J
	ANTHRACENE	ug/kg	58 L		55		690 J	1400		380 J
	BENZO(A)ANTHRACENE	ug/kg	58 L		55		1500 J	2300		480 J
	BENZO(A)PYRENE	ug/kg	58 L		55		1300 J	1700		310 J
	BENZO(B)FLUORANTHENE	ug/kg	58 L		55		2400 J	3100		440 J
	BENZO(G,H,I)PERYLENE	ug/kg	58 L		55	11	1100 J	1100		160 J
	BENZO(K)FLUORANTHENE	ug/kg	58 L		55	U	510 UJ	450		70 UJ
	CHRYSENE	ug/kg	58 L		55	U	1800 J	2600		470 J
	DIBENZO(A,H)ANTHRACENE		58 L		55		260 J	300		61 J
	FLUORANTHENE	ug/kg	58 L		55		3200 J	4300		900 J
	FLUORANTHENE	ug/kg	58 L		55		8000 J	4300		70 UJ
		ug/kg								
	INDENO(1,2,3-CD)PYRENE	ug/kg	58 L		55		750 J	710		140 J
	PHENANTHRENE	ug/kg	58 L		55		2000 J	4500		780 J
	PHENOL	ug/kg	58 L		55		510 UJ	450		70 UJ
	PYRENE	ug/kg	58 L		55		3000 J	4700		830 J
SW9045	pH	S.U.	7.2	7	7.1		7.6 J	7.8	J 8 J	7.6 J

		Location Sample Depth	OL-VC-20147		OL-VC-20147	OL-VC-20147	OL-VC-20147	OL-VC-20147	OL-VC-20147	
			0.0-1.0 Ft		1.0-2.0 Ft	2.0-3.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	OL-VC-20147 5.0-6.0 Ft
		Field Sample ID	OL-0597-01		OL-0597-02	OL-0597-03	OL-0597-04	OL-0597-05	OL-0597-06	OL-0597-07
		Sample Date	7/17/2008		7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180340		C8G180340	C8G180340	C8G180340	C8G180340	C8G180340	C8G180340
		Matrix	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Regular Sample	-	Regular Sample	Regular Sample	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method P		Units	000		Codimioni	Codimioni	- Countries	Commons	- Countries	- Countries
		%	65.5		61.4	58.5	59.2	57	62.6	60.1
		g/cc	2.678		2.688	2.68	2.684	2.706	2.705	2.714
		mg/kg	78800		94800	70400	87400	71300	76400	77400
		%	59.7		62.8	57.3	59.5	59.3	59.2	58
		mg/kg	0.032		0.0057 U	0.0062 U	0.006 L		0.006 U	0.0061 U
		ug/kg	70 L	IJ	66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L		66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L	_	66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L	-	66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L		66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L		66 U	73 U	70 (69 U	72 U
		ug/kg	70 L		66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L	_	66 U	73 U	70 L		69 U	72 U
		ug/kg	70 L		66 U	73 U	70 (69 U	72 U
	,	ug/kg	8.4 L		8 UJ	8.7 UJ				8.6 UJ
		ug/kg	8.4 L		8 U	8.7 U	8.4 (8.4 U	8.6 U
		ug/kg	8.4 L	_	8 U	8.7 U	8.4 (8.4 U	8.6 U
	•	ug/kg	8.4 L		8 U	8.7 U	8.4 (8.4 U	8.6 U
		ug/kg	8.4 L	_	8 U	8.7 U	8.4 (8.4 U	8.6 U
		ug/kg	17		5 J	1.6 J	8.4 (8.4 U	2.4 J
	•	ug/kg	3.4 J	J	110	200	35	42	100	170
		ug/kg	84		320	300	62	67	82	61
		ug/kg	8.4 L	U	8 U	8.7 U	8.4 L		8.4 U	8.6 U
		ug/kg	8.4 L		8 UJ	8.7 UJ			8.4 UJ	8.6 UJ
		ug/kg	8.4 L		8 U	8.7 U	8.4 L		8.4 U	8.6 U
		ug/kg	25 L		24 U	26 U	25 L		25 U	26 U
	•	ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
SW8270 A		ug/kg	56 L	U	53 U	58 U	16 J	J 56 U	57 U	58 U
		ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
		ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
	` ,	ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
	` '	ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
	. ,	ug/kg	56 L	U	53 U	58 U	56 L		57 U	58 U
		ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
		ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
		ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
		ug/kg	21 J	J	53 U	58 U	56 L		57 U	58 U
		ug/kg	260		53 U	58 U	56 L		57 U	58 U
		ug/kg	56 L	U	53 U	58 U	56 L		57 U	58 U
	,	ug/kg	56 L		53 U	58 U	56 L		57 U	58 U
		ug/kg	56 L		17 J	73	32 J		51 J	22 J
		ug/kg	61		53 U	58 U	56 L		57 U	58 U
		S.U.	7.1 J	J	7.2 J	7.2 J	7.2 J		7.2 J	7.2 J

		Location	OL-VC-20147	OL-VC-20147	OL-VC-20147	OL-VC-30085	OL-VC-30085	OL-VC-30085	OL-VC-30085
		Sample Depth	6.0-7.0 Ft	7.0-8.0 Ft	8.0-9.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-3.4 Ft
		Field Sample ID	OL-0597-08	OL-0597-09	OL-0597-10	OL-0655-01	OL-0655-02	OL-0655-03	OL-0655-04
		Sample Date	7/17/2008	7/17/2008	7/17/2008	8/29/2008	8/29/2008	8/29/2008	8/29/2008
		SDG	C8G180340	C8G180340	C8G180340	C8H300129	C8H300129	C8H300129	C8H300129
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	63.3	63.5	64.1	44	47	47	45.6
ASTM D854	SPECIFIC GRAVITY	g/cc	2.724	2.74	2.746	2.664	2.646	2.636	2.616
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	86800	76900	83200	26500 J	22100 J	29700 J	64700 J
SM2540G	SOLIDS, PERCENT	%	65.1	61.5	56.6	41.2	43.2	47.1	44.9
SW7471	MERCURY	mg/kg	0.0054 U	0.0058 U	0.0063 U	2.3 J	38.8 J	14.5 J	3.3 J
SW8082	AROCLOR-1016	ug/kg	64 U	68 U	74 U	20 U.	J 19 UJ	18 UJ	19 UJ
SW8082	AROCLOR-1221	ug/kg	64 U	68 U	74 U	20 U.	J 19 UJ	18 UJ	19 UJ
SW8082	AROCLOR-1232	ug/kg	64 U	68 U	74 U	20 U.	J 19 UJ	18 UJ	19 UJ
SW8082	AROCLOR-1242	ug/kg	64 U	68 U	74 U	20 U.	J 19 UJ	18 UJ	19 UJ
SW8082	AROCLOR-1248	ug/kg	64 U	68 U	74 U	50 J	820 J	390 J	19 UJ
SW8082	AROCLOR-1254	ug/kg	64 U	68 U	74 U	35 J	420 J	150 J	88 J
SW8082	AROCLOR-1260	ug/kg	64 U	68 U	74 U	15 J	170 J	66 J	46 J
SW8082	AROCLOR-1268	ug/kg	64 U	68 U	74 U	20 U.		18 UJ	19 UJ
SW8082	PCBS, N.O.S.	ug/kg	64 U	68 U	74 U	99 J	1400 J	600 J	130 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	7.7 U.	8.1 UJ	8.8 UJ	12 U.	J 12 UJ	11 UJ	11 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	7.7 U	8.1 U	8.8 U	12 U.	J 12 UJ	11 UJ	11 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	7.7 U	8.1 U	8.8 U	12 U.	J 12 UJ	11 UJ	11 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	7.7 U	8.1 U	8.8 U	12 U.	J 12 UJ	11 UJ	11 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	7.7 U	8.1 U	8.8 U	1.9 J	8.7 J	2.9 J	11 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	7.7 U	8.1 U	8.8 U	12 U.	J 4.2 J	11 UJ	11 UJ
SW8260	BENZENE	ug/kg	85	110 J	36	12 U.	J 12 UJ	11 UJ	11 UJ
SW8260	CHLOROBENZENE	ug/kg	58	53 J	15	12 U.	J 3.8 J	11 UJ	11 UJ
SW8260	ETHYLBENZENE	ug/kg	7.7 U	8.1 U	8.8 U	12 U.		11 UJ	11 UJ
SW8260	NAPHTHALENE	ug/kg	7.7 U.		8.8 UJ			11 UJ	11 UJ
SW8260	TOLUENE	ug/kg	7.7 U	8.1 U	2 J	12 U.		11 UJ	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	23 U	24 U	27 U	36 U.		32 UJ	33 UJ
SW8270	ACENAPHTHENE	ug/kg	51 U	54 U	59 U	80 U.		71 UJ	75 UJ
SW8270	ACENAPHTHYLENE	ug/kg	51 U	54 U	59 U	46 J	48 J	71 UJ	92 J
SW8270	ANTHRACENE	ug/kg	51 U	54 U	59 U	61 J	110 J	44 J	95 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	51 U	54 U	59 U	180 J	250 J	110 J	250 J
SW8270	BENZO(A)PYRENE	ug/kg	51 U	54 U	59 U	190 J	190 J	87 J	180 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	51 U	54 U	59 U	320 J	330 J	170 J	330 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	51 U	54 U	59 U	220 J	220 J	98 J	180 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	51 U	54 U	59 U	80 U.		71 UJ	75 UJ
SW8270	CHRYSENE	ug/kg	51 U	54 U	59 U	240 J	260 J	150 J	310 J
SW8270		ug/kg	51 U	54 U	59 U	50 J	78 UJ	71 UJ	40 J
SW8270	FLUORANTHENE	ug/kg	51 U	54 U	59 U	460 J	590 J	270 J	720 J
SW8270	FLUORENE	ug/kg	51 U	54 U	59 U	80 U.		71 UJ	50 J
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	51 U	54 U	59 U	180 J	160 J	92 J	150 J
SW8270	PHENANTHRENE	ug/kg	51 U	54 U	59 U	150 J	260 J	120 J	280 J
SW8270	PHENOL	ug/kg	17 J	54 U	59 U	80 U.		71 UJ	75 UJ
SW8270	PYRENE	ug/kg	51 U	54 U	59 U	370 J	500 J	250 J	610 J
SW9045	pH	S.U.	7.2 J	7.3 J	7.3 J	7.5 J	7.6 J	7.6 J	7.6 J

		Location	OL-VC-30086	OL-VC-30086	OL-VC-30086	OL-VC-30086	OL-VC-30087	OL-VC-30087	OL-VC-30087
		Sample Depth	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0654-05	OL-0654-06	OL-0654-07	OL-0654-08	OL-0654-09	OL-0654-10	OL-0654-11
		Sample Date	8/29/2008	8/29/2008	8/29/2008	8/29/2008	8/29/2008	8/29/2008	8/29/2008
		SDG	C8H300136						
		Matrix	SOIL	SOIL		SOIL	SOIL		SOIL
					SOIL			SOIL	
		Sample Purpose	Regular Sample	Field Duplicate					
	5	Sample Type	Sediment						
Method	Parameter Name	Units	440	47.0	45.0	40.0	40.0	44.4	
	SOLIDS, PERCENT	%	44.2	47.8	45.2	42.2	43.8	44.4	
ASTM D854	SPECIFIC GRAVITY	g/cc	2.667	2.657	2.626	2.64	2.654	2.64	
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	36000 J	20800 J	40500 J	24400	37200 J	23200 J	14100 J
SM2540G	SOLIDS, PERCENT	%	41.6	45.9	48.2	51.7	40.2	41.5	44.6
SW7471	MERCURY	mg/kg	4.5 J	82.6 J	3.9 J	0.31	3.5 J	33.6 J	49.5 J
SW8082	AROCLOR-1016	ug/kg	20 UJ	18 UJ	35 U.		20 UJ	20 UJ	19 UJ
SW8082	AROCLOR-1221	ug/kg	20 UJ	18 UJ	35 U.		20 UJ	20 UJ	19 UJ
SW8082	AROCLOR-1232	ug/kg	20 UJ	18 UJ	35 U.		20 UJ	20 UJ	19 UJ
SW8082	AROCLOR-1242	ug/kg	20 UJ	18 UJ	35 U.		20 UJ	20 UJ	19 UJ
SW8082	AROCLOR-1248	ug/kg	330 J	480 J	35 U.		140 J	1000 J	740 J
SW8082	AROCLOR-1254	ug/kg	170 J	430 J	140 J	16	120 J	650 J	540 J
SW8082	AROCLOR-1260	ug/kg	86 J	180 J	83 J	16 U	61 J	270 J	240 J
SW8082	AROCLOR-1268	ug/kg	20 UJ	330 J	35 U.		20 UJ	190 J	220 J
SW8082	PCBS, N.O.S.	ug/kg	580 J	1400 J	230 J	16	320 J	2100 J	1700 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	12 UJ	11 UJ	10 U	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	12 UJ	11 UJ	10 U	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	12 UJ	11 UJ	10 U	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	12 UJ	11 UJ	10 U	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	2.8 J	5.6 J	10 U	J 9.7 U	12 UJ	11 J	9.7 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	2.4 J	3 J	10 U	J 9.7 U	12 UJ	6.5 J	5.6 J
SW8260	BENZENE	ug/kg	12 UJ	11 UJ	10 U	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	CHLOROBENZENE	ug/kg	2.5 J	2.6 J	10 U.	J 9.7 U	12 UJ	5.1 J	3.8 J
SW8260	ETHYLBENZENE	ug/kg	12 UJ	11 UJ	10 U.	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	NAPHTHALENE	ug/kg	12 UJ	11 UJ	10 U.	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	TOLUENE	ug/kg	12 UJ	11 UJ	10 U.	J 9.7 U	12 UJ	12 UJ	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	36 UJ	6.1 J	31 U.	J 29 U	37 UJ	14 J	10 J
SW8270	ACENAPHTHENE	ug/kg	81 UJ	47 J	48 J	31 J	25 J	29 J	52 J
SW8270	ACENAPHTHYLENE	ug/kg	50 J	100 J	110 J	73	45 J	72 J	120 J
SW8270	ANTHRACENE	ug/kg	82 J	220 J	130 J	89	58 J	140 J	320 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	210 J	270 J	290 J	190	190 J	250 J	310 J
SW8270	BENZO(A)PYRENE	ug/kg	220 J	270 J	280 J	170	190 J	210 J	270 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	410 J	470 J	500 J	310	260 J	420 J	450 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	220 J	200 J	190 J	120	170 J	170 J	230 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	81 UJ	73 UJ	70 U.		83 UJ	81 UJ	75 UJ
SW8270	CHRYSENE	ug/kg	290 J	380 J	410 J	220	210 J	310 J	370 J
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	37 J	53 J	70 U.		60 J	27 J	52 J
SW8270	FLUORANTHENE	ug/kg	460 J	670 J	710 J	460	370 J	550 J	710 J
SW8270	FLUORENE	ug/kg	81 UJ	73 UJ	62 J	51 J	83 UJ	81 UJ	75 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	160 J	160 J	130 J	120	170 J	140 J	160 J
SW8270	PHENANTHRENE	ug/kg	190 J	390 J	360 J	250	130 J	300 J	450 J
SW8270	PHENOL	ug/kg	81 UJ	73 UJ	70 U.		83 UJ	81 UJ	75 UJ
SW8270	PYRENE	ug/kg	380 J	610 J	730 J	440	290 J	450 J	630 J
SW9045	pH	S.U.	7.9 J	8 J	8 J	8.1 J	7.6 J	7.7 J	7.6 J
0.100-0	Ikii	0.0.	7.90	0 0	0 0	0.10	7.00	7.7 3	1.00

		Location	OL-VC-30087	OL-VC-30087	OL-VC-30088	1	OL-VC-30088	OL-VC-30088	OL-VC-30088	OL-VC-30089
		Sample Depth	2.0-3.0 Ft	3.0-3.6 Ft	0.0-1.0 Ft		1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0654-12	OL-0654-13	OL-0654-14		OL-0654-15	OL-0654-16	OL-0654-17	OL-0652-01
		Sample Date	8/29/2008	8/29/2008	8/29/2008		8/29/2008	8/29/2008	8/29/2008	8/28/2008
		SDG	C8H300136	C8H300136	C8H300136		C8H300136	C8H300136	C8H300136	C8H290307
		Matrix	SOIL	SOIL	SOIL		SOIL	SOIL	SOIL	SOIL
		Sample Purpose		Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment		Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Codimoni	Codimoni	Codimoni	1	Codimoni	Coamioni	Codimont	Codimoni
	SOLIDS, PERCENT	%	46.5	48.2	51.6		50.1	47.9	39.7	35.4
ASTM D854	SPECIFIC GRAVITY	g/cc	2.63	2.639	2.644		2.608	2.6	2.536	2.605
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	26200 J	41800 J	9580		58200 J	48600 J	63600 J	36100 J
SM2540G	SOLIDS, PERCENT	%	45.7	45.9	59.1		48.5	50.1	38.7	38
SW7471	MERCURY	mg/kg	9.1 J	0.44 J	0.059		0.029 J	0.029 J	0.036 J	4.9 J
SW8082	AROCLOR-1016	ug/kg	18 U.				17 UJ	17 U		22 UJ
SW8082	AROCLOR-1221	ug/kg	18 U.				17 UJ	17 U		22 UJ
SW8082	AROCLOR-1232	ug/kg	18 U.				17 UJ	17 U		22 UJ
SW8082	AROCLOR-1242	ug/kg	18 U.			U	17 UJ	17 U		22 UJ
SW8082	AROCLOR-1248	ug/kg	370 J	18 U			17 UJ	17 U		1300 J
SW8082	AROCLOR-1254	ug/kg	310 J	18 U		U	17 UJ	17 U		960 J
SW8082	AROCLOR-1260	ug/kg	100 J	18 U			23 J	17 U		450 J
SW8082	AROCLOR-1268	ug/kg	27 J	18 U		U	17 UJ	17 U		22 UJ
SW8082	PCBS, N.O.S.	ug/kg	810 J	18 U			23 J	17 U		2700 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	11 U.				10 UJ	17 U		13 UJ
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	11 U.				10 UJ	10 U		13 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	11 U.			11	10 UJ	10 U		13 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg ug/kg	11 U.				10 UJ	10 U		13 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	11 U.				10 UJ	10 U		2.5 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	11 U.				10 UJ	10 U		5.5 J
SW8260	BENZENE	ug/kg	11 U.				10 UJ	10 U		13 UJ
SW8260	CHLOROBENZENE	ug/kg	11 U.				10 UJ	10 U		4.3 J
SW8260	ETHYLBENZENE	ug/kg	11 U.				10 UJ	10 U		13 UJ
SW8260	NAPHTHALENE	ug/kg	11 U.				10 UJ	10 U		6.5 J
SW8260	TOLUENE	ug/kg	11 U.				10 UJ	10 U		13 UJ
SW8260	XYLENES, TOTAL	ug/kg	33 U.				31 UJ	30 U		39 UJ
SW8270	ACENAPHTHENE	ug/kg	57 J	47 J		U	69 UJ	67 U		440 UJ
SW8270	ACENAPHTHYLENE	ug/kg	130 J	150 J		U	69 UJ	67 U		250 J
SW8270	ANTHRACENE	ug/kg	190 J	180 J	56		69 UJ	67 U		320 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	320 J	380 J	56		69 UJ	67 U		760 J
SW8270	BENZO(A)PYRENE	ug/kg	270 J	320 J		U	69 UJ	67 U		740 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	490 J	530 J		U	69 UJ	67 U		1400 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	190 J	210 J	56		69 UJ	67 U		640 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	73 U.			11	69 UJ	67 U		440 UJ
SW8270	CHRYSENE	ug/kg	410 J	410 J	56		69 UJ	67 U		900 J
SW8270		ug/kg	51 J	41 J		U	69 UJ	67 U		140 J
SW8270	FLUORANTHENE	ug/kg ug/kg	710 J	820 J		U	69 UJ	67 U		1700 J
SW8270	FLUORENE	ug/kg	710 J		56		69 UJ	67 U		440 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg ug/kg	160 J	190 J	56		69 UJ	67 U		530 J
SW8270	PHENANTHRENE	ug/kg ug/kg	390 J	410 J	56		69 UJ	67 U		690 J
SW8270 SW8270	PHENOL		73 U.		56		69 UJ	67 U		440 UJ
SW8270 SW8270	PYRENE	ug/kg	73 U. 720 J	750 J		U	69 UJ	67 U		1300 J
SW9045	pH	ug/kg S.U.	720 J	750 J	7.4		7.4 J	7.4 J		7.7 J
3449049	lhi i	J.U.	7.0 J	1.5 J	7.4	· J	7.4 J	7.4 J	/ J	1.1 J

		Location	OL-VC-30089	OL-VC-30089	OL-VC-30089	OL-VC-30090	OL-VC-30090	OL-VC-30090	OL-VC-30090
		Sample Depth	1.0-2.0 Ft	2.0-3.0 Ft	3.0-3.8 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft
		Field Sample ID	OL-0652-02	OL-0652-03	OL-0652-04	OL-0651-13	OL-0651-14	OL-0651-15	OL-0651-16
		Sample Date	8/28/2008	8/28/2008	8/28/2008	8/27/2008	8/27/2008	8/27/2008	8/27/2008
		SDG	C8H290307	C8H290307	C8H290307	C8H280268	C8H280268	C8H280268	C8H280268
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Codimioni	Coamion	- Counton	- Countries	Common	Common	- Countries
	SOLIDS, PERCENT	%	32.9	37.1	33.9	26.1	22.9	24.8	18.8
ASTM D854	SPECIFIC GRAVITY	g/cc	2.602	2.662	2.701	2.692	2.626	2.751	2.607
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	44300 J	16500 J	10600 J	8670 J	20700 J	11800 J	12300 J
SM2540G	SOLIDS, PERCENT	%	34.1	38.3	32.4	28.1	23.6	25.2	19
SW7471	MERCURY	mg/kg	20 J	0.77 J	0.59 J	0.083 J	0.13 J	0.24 J	0.23 J
SW8082	AROCLOR-1016	ug/kg	24 U		26 UJ			33 UJ	43 UJ
SW8082	AROCLOR-1221	ug/kg	24 U		26 UJ			33 UJ	43 UJ
SW8082	AROCLOR-1232	ug/kg	24 U		26 UJ			33 UJ	43 UJ
SW8082	AROCLOR-1242	ug/kg	24 U					33 UJ	43 UJ
SW8082	AROCLOR-1248	ug/kg	1700 J	21 UJ	26 UJ			33 UJ	43 UJ
SW8082	AROCLOR-1254	ug/kg	1600 J	48 J	26 UJ			33 UJ	43 UJ
SW8082	AROCLOR-1260	ug/kg	490 J	36 J	26 UJ			33 UJ	43 UJ
SW8082	AROCLOR-1268	ug/kg	24 U		26 UJ			33 UJ	43 UJ
SW8082	PCBS, N.O.S.	ug/kg	3800 J	84 J	26 UJ			33 UJ	43 UJ
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	15 U					20 UJ	1300 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	15 U					20 UJ	1300 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	15 U	J 13 UJ	15 UJ	18 U.		20 UJ	1300 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	15 U					20 UJ	1300 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	15 U		15 UJ			20 UJ	1300 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	3.6 J	13 UJ	15 UJ			20 UJ	1300 UJ
SW8260	BENZENE	ug/kg	3.6 J	4.4 J	9.4 J	2.5 J	21 UJ	20 UJ	1300 UJ
SW8260	CHLOROBENZENE	ug/kg	15 U					20 UJ	1300 UJ
SW8260	ETHYLBENZENE	ug/kg	15 U					20 UJ	1300 UJ
SW8260	NAPHTHALENE	ug/kg	13 U	21 J	47 J	18 U.		99 J	1500 J
SW8260	TOLUENE	ug/kg	11 J		4 J	18 U.		20 UJ	1300 J
SW8260	XYLENES, TOTAL	ug/kg	44 U			53 U.		60 UJ	3900 UJ
SW8270	ACENAPHTHENE	ug/kg	490 U		140 J	120 U.		130 UJ	180 UJ
SW8270	ACENAPHTHYLENE	ug/kg	490 U		360 J	120 U.		89 J	63 J
SW8270	ANTHRACENE	ug/kg	490 U		420 J	120 U.		160 J	120 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	490 U		830 J	120 U.		190 J	85 J
SW8270	BENZO(A)PYRENE	ug/kg	79 J	390 J	650 J	120 U.		130 J	180 UJ
SW8270	BENZO(B)FLUORANTHENE	ug/kg	150 J	720 J	1100 J	120 U.		120 J	180 UJ
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	490 U		390 J	120 U.		130 UJ	180 UJ
SW8270	BENZO(K)FLUORANTHENE	ug/kg	490 U		210 UJ			51 J	180 UJ
SW8270	CHRYSENE	ug/kg	130 J	500 J	910 J	120 U.		190 J	110 J
SW8270	DIBENZO(A,H)ANTHRACENE		490 U		130 J	120 U.		130 UJ	180 UJ
SW8270	FLUORANTHENE	ug/kg	220 J	980 J	1600 J	53 J	56 J	420 J	300 J
SW8270	FLUORENE	ug/kg	490 U					130 UJ	180 UJ
		ug/kg	490 U		360 J	120 U.		130 UJ	180 UJ
SW8270 SW8270	INDENO(1,2,3-CD)PYRENE PHENANTHRENE	ug/kg	490 U	610 J	1100 J	120 U.	75 J	520 J	450 J
	PHENOL	ug/kg	490 U						
SW8270	PHENOL	ug/kg			1500 J	2500 J	2700 J	2900 J	2400 J 330 J
SW8270		ug/kg	190 J	770 J	1400 J	54 J	73 J	480 J	
SW9045	pH	S.U.	8.3 J	9.4 J	10.9 J	11.5 J	11.8 J	11.9 J	12 J

		Location	OL-VC-30091	OL-VC-30091	OL-VC-30091	OL-VC-30091	OL-VC-30092	OL-VC-30092	OL-VC-30092
		Sample Depth	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0652-05	OL-0652-06	OL-0652-07	OL-0652-08	OL-0651-17	OL-0651-18	OL-0651-19
		Sample Date	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/27/2008	8/27/2008	8/27/2008
		SDG	C8H290307	C8H290307	C8H290307	C8H290307	C8H280268	C8H280268	C8H280268
		Matrix	SOIL						
		Sample Purpose	Regular Sample	Field Duplicate					
		Sample Type	Sediment						
Method	Parameter Name	Units	Sediment						
	SOLIDS, PERCENT	%	37.2	34.4	29.3	37.9	28.9	35.5	
ASTM D2216	SPECIFIC GRAVITY	g/cc	2.638	2.568	2,573	2.669	2.649	2.67	
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	23900 J	41800 J	50800 J	34600 J	33200 J	43400 J	19800 J
SM2540G	SOLIDS, PERCENT	%	37.9	32.3	29.9	35.9	18.2	29.9	35.4
SW7471	MERCURY	mg/kg	2.5 J	15.2 J	18.9 J	0.83 J	10.2	0.14 J	0.12 J
SW7471 SW8082	AROCLOR-1016		2.5 J 22 U		28 UJ			28 UJ	0.12 J 24 UJ
SW8082 SW8082	AROCLOR-1016 AROCLOR-1221	ug/kg	22 U.		28 UJ			28 UJ	24 UJ
		ug/kg							
SW8082	AROCLOR-1232	ug/kg	22 U.		28 UJ			28 UJ	24 UJ
SW8082	AROCLOR-1242	ug/kg	22 U.					28 UJ	24 UJ
SW8082	AROCLOR-1248	ug/kg	190 J	2300 J	1600 J	23 U.		28 UJ	13 J
SW8082	AROCLOR-1254	ug/kg	220 J	1500 J	1400 J	39 J	95 J	28 UJ	9.1 J
SW8082	AROCLOR-1260	ug/kg	100 J	710 J	560 J	36 J	46 UJ	28 UJ	24 UJ
SW8082	AROCLOR-1268	ug/kg	22 U.					28 UJ	24 UJ
SW8082	PCBS, N.O.S.	ug/kg	520 J	4500 J	3600 J	75 J		28 UJ	23 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	13 U.					17 UJ	14 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	13 U.	J 15 UJ				17 UJ	14 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	13 U		17 UJ			17 UJ	14 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	13 U.					17 UJ	14 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	13 U	J 4.1 J	2.3 J	14 U.		17 UJ	14 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	2 J	8.3 J	4.6 J	14 U.	J 27 UJ	17 UJ	14 UJ
SW8260	BENZENE	ug/kg	13 U.	J 15 UJ	17 UJ	3.7 J	12 J	17 UJ	14 UJ
SW8260	CHLOROBENZENE	ug/kg	2.2 J	7 J	2.6 J	14 U.		17 UJ	14 UJ
SW8260	ETHYLBENZENE	ug/kg	13 U.	J 15 UJ	17 UJ	14 U.	J 27 UJ	17 UJ	14 UJ
SW8260	NAPHTHALENE	ug/kg	7.6 J	15 UJ	4.8 J	25 J	78 UJ	21 J	24 J
SW8260	TOLUENE	ug/kg	13 U.	J 15 UJ	17 UJ	2.4 J	6.3 J	17 UJ	14 UJ
SW8260	XYLENES, TOTAL	ug/kg	40 U.	J 46 UJ	50 UJ	6.4 J	13 J	50 UJ	42 UJ
SW8270	ACENAPHTHENE	ug/kg	440 U.	J 210 J	450 UJ	130 J	370 UJ	110 UJ	95 UJ
SW8270	ACENAPHTHYLENE	ug/kg	180 J	350 J	610 J	330 J	370 UJ	110 UJ	95 UJ
SW8270	ANTHRACENE	ug/kg	200 J	500 J	1200 J	370 J	110 J	110 UJ	95 UJ
SW8270	BENZO(A)ANTHRACENE	ug/kg	500 J	900 J	1400 J	760 J	150 J	25 J	95 UJ
SW8270	BENZO(A)PYRENE	ug/kg	500 J	780 J	1200 J	640 J	160 J	110 UJ	95 UJ
SW8270	BENZO(B)FLUORANTHENE	ug/kg	970 J	1600 J	2200 J	1200 J	260 J	110 UJ	95 UJ
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	430 J	780 J	960 J	440 J	370 UJ	110 UJ	95 UJ
SW8270	BENZO(K)FLUORANTHENE	ug/kg	440 U		450 UJ			110 UJ	95 UJ
SW8270	CHRYSENE	ug/kg	520 J	1300 J	2100 J	870 J	270 J	110 UJ	95 UJ
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	440 U.		230 J	170 J	370 UJ	110 UJ	95 UJ
SW8270	FLUORANTHENE	ug/kg	870 J	2200 J	3700 J	1500 J	360 J	58 J	35 J
SW8270	FLUORENE	ug/kg	440 U.			190 U		110 UJ	95 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	390 J	570 J	820 J	410 J	370 UJ	110 UJ	95 UJ
SW8270	PHENANTHRENE	ug/kg	350 J	1300 J	2800 J	950 J	230 J	56 J	47 J
SW8270	PHENOL	ug/kg	440 U.		150 J	1200 J	3500 J	1300 J	1300 J
SW8270 SW8270	PYRENE	ug/kg ug/kg	690 J	1800 J	3000 J	1300 J	380 J	62 J	43 J
SW9045	pH	S.U.	8.2 J	8.1 J	8.4 J	10.2 J	11.5 J	11.8 J	11.8 J
3449049	pri	J.U.	6.2 J	0.1 J	0.4 J	10.2 J	11.5 J	11.8 J	11.0 J

		Location	OL-VC-30092	OL-VC-30092	OL-VC-40202	OL-VC-40202	OL-VC-40202	OL-VC-40202	OL-VC-40203
		Sample Depth	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0651-20	OL-0651-21	OL-0654-01	OL-0654-02	OL-0654-03	OL-0654-04	OL-0659-01
		Sample Date	8/27/2008	8/27/2008	8/29/2008	8/29/2008	8/29/2008	8/29/2008	9/3/2008
		SDG	C8H280268	C8H280268	C8H300136	C8H300136	C8H300136	C8H300136	C8I040254
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Coamon	Codimoni	Codimont	Counton	Coamon	Counton	Codimoni
	SOLIDS, PERCENT	%	25.7	23.6	48	51.6	50	51	51.5
ASTM D854	SPECIFIC GRAVITY	g/cc	2.652	2.645	2.681	2.657	2.666	2.653	2.708
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	13300 J	4670 J	16100 J	13100 J	36600 J	13000 J	12800
SM2540G	SOLIDS, PERCENT	%	24.8	25.5	46.6	45	46.1	43.2	53.4
SW7471	MERCURY	mg/kg	0.13 J	0.093 J	2.8 J	79.1 J	164 J	95.5 J	9.9
SW8082	AROCLOR-1016	ug/kg	34 UJ		18 UJ			19 UJ	16 U
SW8082	AROCLOR-1221	ug/kg	34 UJ		18 UJ			19 UJ	16 U
SW8082	AROCLOR-1232	ug/kg	34 UJ		18 UJ			19 UJ	16 U
SW8082	AROCLOR-1232	ug/kg	34 UJ		18 UJ			19 UJ	16 U
SW8082	AROCLOR-1248	ug/kg	34 UJ		51 J	360 J	300 J	560 J	110
SW8082	AROCLOR-1254	ug/kg	34 UJ		53 J	180 J	240 J	370 J	67
SW8082	AROCLOR-1260	ug/kg	34 UJ		27 J	110 J	98 J	170 J	49
SW8082	AROCLOR-1268	ug/kg	34 UJ		18 UJ		130 J	17 UJ	16 U
SW8082	PCBS, N.O.S.	ug/kg	34 UJ		130 J	810 J	770 J	1100 J	220
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	20 UJ		11 UJ			12 UJ	9.4 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	20 UJ		11 UJ			12 UJ	9.4 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	20 UJ		11 UJ			12 UJ	9.4 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg ug/kg	20 UJ		11 UJ			12 UJ	9.4 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	20 UJ		11 UJ		6.9 J	12 J	9.4 U
SW8260	1,4-DICHLOROBENZENE		20 UJ		11 UJ		2.2 J	2.7 J	9.4 U
SW8260	BENZENE	ug/kg ug/kg	8.8 J	980 UJ	11 UJ			2.7 J	9.4 U
SW8260	CHLOROBENZENE		20 UJ		11 UJ		4.4 J	2.5 J 4.1 J	9.4 U
SW8260	ETHYLBENZENE	ug/kg	20 UJ		11 UJ			4.1 J 12 UJ	9.4 U
SW8260	NAPHTHALENE	ug/kg	78 J	1500 J	11 UJ			12 UJ	9.4 U
SW8260	TOLUENE	ug/kg	78 J 4.6 J	980 UJ	11 UJ			12 UJ	9.4 U
SW8260	XYLENES, TOTAL	ug/kg	4.6 J	2900 UJ	32 UJ			6.2 J	9.4 U 28 U
SW8270	ACENAPHTHENE	ug/kg ug/kg	12 J	110 J	72 UJ			25 J	63 U
SW8270	ACENAPHTHENE		82 J	68 J	72 UJ	34 J	43 J	61 J	63 U
SW8270	ANTHRACENE	ug/kg	220 J	180 J	33 J	34 J	120 J	160 J	63 U
SW8270		ug/kg	150 J	180 J	95 J	130 J	210 J	160 J	87
SW8270 SW8270	BENZO(A)ANTHRACENE BENZO(A)PYRENE	ug/kg	98 J	54 J	95 J 110 J	130 J	190 J	160 J	71
SW8270	` '	ug/kg	98 J 140 UJ		180 J	270 J	360 J	220 J	140 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	37 J	34 J	130 J	120 J			78
	BENZO(G,H,I)PERYLENE	ug/kg			63 J		150 J 72 UJ	110 J	
SW8270 SW8270	BENZO(K)FLUORANTHENE	ug/kg	140 UJ 130 J	130 UJ		74 UJ		78 UJ	63 U 100
	CHRYSENE	ug/kg		110 J	120 J	170 J	280 J	200 J	
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	140 UJ		72 UJ			25 J	63 UJ
SW8270	FLUORANTHENE	ug/kg	450 J	390 J	180 J	270 J	450 J	320 J	190
SW8270	FLUORENE	ug/kg	140 UJ		72 UJ		48 J	78 UJ	63 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	140 UJ		98 J	100 J	120 J	58 J	65 J
SW8270	PHENANTHRENE	ug/kg	780 J	680 J	65 J	130 J	230 J	230 J	56 J
SW8270	PHENOL	ug/kg	2100 J	1800 J	72 UJ			78 UJ	63 U
SW8270	PYRENE	ug/kg	560 J	340 J	190 J	250 J	380 J	330 J	170
SW9045	pH	S.U.	11.8 J	11.9 J	7.7 J	7.9 J	7.9 J	7.8 J	7.9

		Location	OL-VC-40203	OL-VC-40203	OL-VC-40203	OL-VC-40203	OL-VC-40203	OL-VC-40203	OL-VC-40204
		Sample Depth	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0659-02	OL-0659-03	OL-0659-04	OL-0659-05	OL-0659-06	OL-0659-07	OL-0653-09
		Sample Date	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	8/28/2008
		SDG	C8I040254	C8I040254	C8I040254	C8I040254	C8I040254	C8I040254	C8H290310
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Codimoni	Codimoni	Codimoni	Codimoni	Counton	Counton	Counton
	SOLIDS, PERCENT	%	56.9	54	56.6	56.2	58.4	59.9	42.8
ASTM D854	SPECIFIC GRAVITY	g/cc	2.714	2.714	2.73	2.724	2.731	2.717	2.67
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	16200	44100	13800	13300	9780	16000	11200 J
SM2540G	SOLIDS, PERCENT	%	54.1	55.6	51.1	52.9	59.6	59.7	42.9
SW7471	MERCURY	mg/kg	35.7	0.86	0.6	0.31	0.052	0.014 J	0.028 J
SW8082	AROCLOR-1016	ug/kg	15 U	15 U	16 U	16 U		14 U	19 UJ
SW8082	AROCLOR-1221	ug/kg	15 U	15 U	16 U	16 U		14 U	19 UJ
SW8082	AROCLOR-1232	ug/kg	15 U	15 U	16 U	16 U		14 U	19 UJ
SW8082	AROCLOR-1242	ug/kg	15 U	15 U	16 U	16 U	_	14 U	19 UJ
SW8082	AROCLOR-1248	ug/kg	210	41	16 U	16 U		14 U	19 UJ
SW8082	AROCLOR-1254	ug/kg	120	21	16 U	16 U		14 U	19 UJ
SW8082	AROCLOR-1260	ug/kg	65	16	16 U	16 U		14 U	19 UJ
SW8082	AROCLOR-1268	ug/kg	15 U	15 U	16 U	16 U		14 U	19 UJ
SW8082	PCBS, N.O.S.	ug/kg	400	78	16 U	16 U		14 U	19 UJ
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	19 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 UJ	12 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	1,3,5-TRICHLOROBENZENE	0 0	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	BENZENE	ug/kg ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	CHLOROBENZENE		9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	ETHYLBENZENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	NAPHTHALENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	TOLUENE	ug/kg	9.2 U	9 U	9.8 U	9.5 U		8.4 U	12 UJ
SW8260	XYLENES, TOTAL	ug/kg	9.2 U	27 U	9.8 U	9.5 U		25 U	35 UJ
SW8270	ACENAPHTHENE	ug/kg ug/kg	62 U	60 U	66 U	62 U		25 U	78 UJ
SW8270	ACENAPHTHENE		62 U	60 U	39 J	62 U		56 U	78 UJ
SW8270 SW8270	ANTHRACENE	ug/kg	69	60 U	56 J	38 J	56 U	56 U	78 UJ
SW8270 SW8270		ug/kg	110			97			78 UJ
SW8270 SW8270	BENZO(A)ANTHRACENE BENZO(A)PYRENE	ug/kg	89	46 J 60 U	130 92	75	56 U 56 U	56 U 56 U	78 UJ
	()	ug/kg							
SW8270 SW8270	BENZO(B)FLUORANTHENE	ug/kg	160 J 67	46 J 37 J	180 J 88	130 J 91	56 UJ 56 U	56 UJ 56 U	78 UJ 78 UJ
	BENZO(G,H,I)PERYLENE	ug/kg			66 U			56 U	78 UJ
SW8270 SW8270	BENZO(K)FLUORANTHENE	ug/kg	62 U 140	60 U 44 J		62 U 83			
	CHRYSENE	ug/kg		L	130		56 U	56 U	78 UJ
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	62 UJ	60 UJ					78 UJ
SW8270	FLUORANTHENE	ug/kg	280	110	310	260	30 J	56 U	78 UJ
SW8270	FLUORENE	ug/kg	59 J	60 U	66 U	62 U		56 U	78 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	83 J	60 UJ	81 J	64 J	56 UJ		78 UJ
SW8270	PHENANTHRENE	ug/kg	65	40 J	61 J	32 J	56 U	56 U	78 UJ
SW8270	PHENOL	ug/kg	62 U	60 U	66 U	62 U	56 U	56 U	78 UJ
SW8270	PYRENE	ug/kg	270	100	280	200	56 U	56 U	78 UJ
SW9045	pH	S.U.	7.8	7.6	7.4	7.4	7.4	7.3	7.8 J

		Location	OL-VC-40204	OL-VC-4	0204	OL-VC-40204	OL-VC-40205	OL-VC-40205	OL-VC-40205	OL-VC-40205
		Sample Depth	1.0-2.0 Ft	2.0-3	.0 Ft	3.0-4.0 Ft	0.0-1.0 F		2.0-3.0 Ft	3.0-4.0 Ft
		Field Sample ID	OL-0653-10	OL-06	3-11	OL-0653-12	OL-0656-09	OL-0656-10	OL-0656-11	OL-0656-12
		Sample Date	8/28/2008	8/28/		8/28/2008	9/2/2008		9/2/2008	9/2/2008
		SDG	C8H290310	C8H29	0310	C8H290310	C8I03027	C8I030271	C8I030271	C8I030271
		Matrix	SOIL		SOIL	SOIL	SOIL		SOIL	SOIL
		Sample Purpose		Regular Sa		Regular Sample	Regular Sample		Regular Sample	Regular Sample
		Sample Type	Sediment	Sedi		Sediment	Sedimen		Sediment	Sediment
Method	Parameter Name	Units								
ASTM D2216	SOLIDS, PERCENT	%	48		49.8	55.9	6′	45.2	59.1	60.3
ASTM D854	SPECIFIC GRAVITY	g/cc	2.678		.692	2.712	2.674	2.69	2.7	2.691
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	43600 J		0200 J	21100	10100	10400	7550	13700
SM2540G	SOLIDS, PERCENT	%	49.7		21.4	54.9	54	52.3	61.3	56.4
SW7471	MERCURY	mg/kg	0.0071 L	J (.017 U.		J 0.16	0.084	0.0058 U	0.0063 U
SW8082	AROCLOR-1016	ug/kg	17 L	J	39 U.			5 U 16 U		15 U
SW8082	AROCLOR-1221	ug/kg	17 L	J	39 U.	J 15 l	J 15	5 U 16 U	14 U	15 U
SW8082	AROCLOR-1232	ug/kg	17 L	J	39 U.	J 15 l	J 15	5 U 16 U	14 U	15 U
SW8082	AROCLOR-1242	ug/kg	17 L	J	39 U.			5 U 16 U		15 U
SW8082	AROCLOR-1248	ug/kg	17 L	J	640 J	15 l	J 15	5 U 16 U	14 U	15 U
SW8082	AROCLOR-1254	ug/kg	17 L	J	860 J	15 (5 U 16 U		15 U
SW8082	AROCLOR-1260	ug/kg	17 L		360 J	15 (5 U 16 U		15 U
SW8082	AROCLOR-1268	ug/kg	17 L		39 U.			5 U 16 U		15 U
SW8082	PCBS, N.O.S.	ug/kg	17 L		1900 J	15 (5 U 16 U		15 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	10 L		23 U.			3 U 9.6 U		8.9 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	10 L	J	23 U.		J 9.3	3 U 9.6 U		8.9 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	10 L		23 U.			3 J 9.6 U		8.9 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	10 L	J	23 U.			3 U 9.6 U		8.9 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	10 L		23 U.			3 U 9.6 U		8.9 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	10 L		23 U.			3 U 9.6 U		8.9 U
SW8260	BENZENE	ug/kg	10 L		23 U.			3 U 9.6 U		8.9 U
SW8260	CHLOROBENZENE	ug/kg	10 L		23 U.			9.6 U		8.9 U
SW8260	ETHYLBENZENE	ug/kg	10 L		23 U.			9.6 U		8.9 U
SW8260	NAPHTHALENE	ug/kg	10 L		23 U.			3 U 9.6 U		8.9 U
SW8260	TOLUENE	ug/kg	10 L	J	23 U.			9.6 U		8.9 U
SW8260	XYLENES, TOTAL	ug/kg	30 L	J	70 U.	J 27 l	J 28	3 U 29 U	24 U	27 U
SW8270	ACENAPHTHENE	ug/kg	34 L	J	480 J	61 (J 25	5 U 26 U	22 U	24 U
SW8270	ACENAPHTHYLENE	ug/kg	34 L	J	400 J	61 (J 25	5 U 26 U	22 U	24 U
SW8270	ANTHRACENE	ug/kg	34 L		940 J	61 (5 U 26 U		24 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	34 L		3200 J	61 (5 U 26 U		24 U
SW8270	BENZO(A)PYRENE	ug/kg	34 L		2900 J	61 (5 U 26 U		24 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	34 L		5700 J	61 (5 U 26 U		24 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	34 L		3000 J	61 (5 U 26 U		24 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	34 L		780 U.			5 U 26 U		24 U
SW8270	CHRYSENE	ug/kg	34 L		4100 J	61 (5 U 26 U		24 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	34 L		470 J	61 (5 U 26 U		24 U
SW8270	FLUORANTHENE	ug/kg	34 L		3600 J	61 (5 U 26 U		24 U
SW8270	FLUORENE	ug/kg	34 L		400 J	61 (5 U 26 U		24 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	34 L		2400 J	61 (5 U 26 U		24 U
SW8270	PHENANTHRENE	ug/kg	34 L		3500 J	61 (7 J 26 U		24 U
SW8270	PHENOL	ug/kg	34 L		780 U.			7 J 26 U		24 U
SW8270	PYRENE	ug/kg	34 L		6200 J	61 (5 U 26 U		24 U
SW9045	pH	S.U.	7.7 J		7.5 J	8			7.6	7.5
	IL.:	1	7.7		5	<u> </u>	- 1 7.0		7.0	,

		Location	OL-VC-40205	OL-VC-40205	OL-VC-40205	OL-VC-40205	OL-VC-40205	OL-VC-40205	OL-VC-40206
		Sample Depth	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft	7.0-8.0 Ft	8.0-9.2 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0656-13	OL-0656-14	OL-0656-15	OL-0656-16	OL-0656-17	OL-0656-18	OL-0656-01
		Sample Date	9/2/2008	9/2/2008	9/2/2008	9/2/2008	9/2/2008	9/2/2008	9/2/2008
		SDG	C8I030271	C8I030271	C8I030271	C8I030271	C8I030271	C8I030271	C8I030271
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose		Regular Sample	Regular Sample	Regular Sample	Field Duplicate	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	59.5	55.5	53.9	58.1		61	56.6
ASTM D854	SPECIFIC GRAVITY	g/cc	2.698	2.692	2.707	2.71		2.702	2.648
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	64200	61800	69400	63900	87900	23600	13200
SM2540G	SOLIDS, PERCENT	%	55.5	51.7	57.1	58.3	55.6	61	56.4
SW7471	MERCURY	mg/kg	0.0064 U	0.0069 U	0.0062 U	0.0061 U	0.0064 U	0.0058 U	43.9
SW8082	AROCLOR-1016	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	15 U
SW8082	AROCLOR-1221	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	15 U
SW8082	AROCLOR-1232	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	15 U
SW8082	AROCLOR-1242	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	15 U
SW8082	AROCLOR-1248	ug/kg	15 U	16 U	15 U	14 U		14 U	15 U
SW8082	AROCLOR-1254	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	24
SW8082	AROCLOR-1260	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	15 U
SW8082	AROCLOR-1268	ug/kg	15 U	16 U	15 U	14 U		14 U	15 U
SW8082	PCBS, N.O.S.	ug/kg	15 U	16 U	15 U	14 U	15 U	14 U	24
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U		8.2 U	8.9 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	4.7 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	31
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	14
SW8260	1,3-DICHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	16
SW8260	1,4-DICHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	13
SW8260	BENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	12
SW8260	CHLOROBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U		8.2 U	22
SW8260	ETHYLBENZENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	52
SW8260	NAPHTHALENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	8.9 U
SW8260	TOLUENE	ug/kg	9 U	9.7 U	8.8 U	8.6 U	9 U	8.2 U	5.4 J
SW8260	XYLENES, TOTAL	ug/kg	27 U	29 U	26 U	26 U	27 U	25 U	770
SW8270	ACENAPHTHENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	10 J
SW8270	ACENAPHTHYLENE	ug/kg	24 U	26 U	23 U	23 U		22 U	11 J
SW8270	ANTHRACENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	22 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	84
SW8270	BENZO(A)PYRENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	88
SW8270	BENZO(B)FLUORANTHENE	ug/kg	24 U	26 U	23 U	23 U		22 U	170
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	24 U	26 U	23 U	23 U		22 U	74
SW8270	BENZO(K)FLUORANTHENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	30 U
SW8270	CHRYSENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	110
SW8270		ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	20 J
SW8270	FLUORANTHENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	160
SW8270	FLUORENE	ug/kg	24 U	26 U	23 U	23 U		22 U	14 J
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	63
SW8270	PHENANTHRENE	ug/kg	24 U	26 U	23 U	23 U	24 U	22 U	110
SW8270	PHENOL	ug/kg	12 J	26 U	23 U	23 U	24 U	9 J	30 U
SW8270	PYRENE	ug/kg	24 U	26 U	23 U	23 U		22 U	180
SW9045	pH	S.U.	7.5	7.4	7.6	7.4	7.5	7.6	8.4

		Location	OL-VC-40206						
		Sample Depth	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	7.0-7.4 Ft
		Field Sample ID	OL-0656-02	OL-0656-03	OL-0656-04	OL-0656-05	OL-0656-06	OL-0656-07	OL-0656-08
		Sample Date	9/2/2008	9/2/2008	9/2/2008	9/2/2008	9/2/2008	9/2/2008	9/2/2008
		SDG	C8I030271						
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Countries	Common	Common	- Counton	Common	Common	ocao.ix
	SOLIDS, PERCENT	%	55.6	56.9	45.2	49.4	52.4	46.1	49.1
	SPECIFIC GRAVITY	g/cc	2.653	2.681	2.607	2.663	2.647	2.669	2.658
	TOTAL ORGANIC CARBON	mg/kg	14200	3070 J	18800 J	18600	15500	13100 J	61000 J
	SOLIDS, PERCENT	%	51.3	52.8	45.9	51.1	50.8	47	42.8
	MERCURY	mg/kg	26.6	66.6	64.4 J	72.6	80.8	63.4 J	39.1 J
	AROCLOR-1016	ug/kg	16 U	15 U	18 UJ			18 UJ	19 UJ
	AROCLOR-1221	ug/kg	16 U	15 U	18 UJ			18 UJ	19 UJ
	AROCLOR-1232	ug/kg	16 U	15 U	18 UJ			18 UJ	19 UJ
	AROCLOR-1242	ug/kg	16 U	15 U	18 UJ			18 UJ	19 UJ
	AROCLOR-1248	ug/kg	16 U	15 U	56 J	16 U		330 J	460 J
	AROCLOR-1254	ug/kg	35	29	18 UJ		27	18 UJ	19 UJ
	AROCLOR-1260	ug/kg	16 U	15 U	31 J	16 U		48 J	33 J
	AROCLOR-1268	ug/kg	16 U	15 U	18 UJ			18 UJ	19 UJ
	PCBS, N.O.S.	ug/kg	35	29	88 J	32	27	380 J	490 J
	1,2,3-TRICHLOROBENZENE	ug/kg	9.7 U	9.5 U	11 UJ			11 UJ	2.3 J
	1.2.4-TRICHLOROBENZENE	ug/kg	4 J	3.2 J	3.7 J	2 J	9.9 U	11 UJ	12 UJ
	1,2-DICHLOROBENZENE	ug/kg	45	26	17 J	4.7 J	9.9 U	11 UJ	2.1 J
	1,3,5-TRICHLOROBENZENE	ug/kg	8.8 J	3.5 J	11 UJ			11 UJ	12 UJ
	1,3-DICHLOROBENZENE	ug/kg	11	2.6 J	2.1 J	9.8 U		11 UJ	12 UJ
	1,4-DICHLOROBENZENE	ug/kg	14	7.6 J	5.1 J	1.7 J	9.9 U	11 UJ	12 UJ
	BENZENE	ug/kg	24	28	40 J	31	14	43 J	22 J
	CHLOROBENZENE	ug/kg	19	5.3 J	3.8 J	9.8 U		11 UJ	12 UJ
	ETHYLBENZENE	ug/kg	72	67	58 J	24	9.9 U	7.2 J	12 UJ
	NAPHTHALENE	ug/kg	9.7 U	9.5 U	11 UJ			11 UJ	12 UJ
	TOLUENE	ug/kg	9.7	13	16 J	9.4 J	4.2 J	8 J	4.9 J
	XYLENES, TOTAL	ug/kg	1100	1000	980 J	450	130	160 J	99 J
	ACENAPHTHENE	ug/kg	33 U	32 U	36 UJ	33 U	8.7 J	20 J	14 J
	ACENAPHTHYLENE	ug/kg	33 U	32 U	36 UJ			20 J	13 J
	ANTHRACENE	ug/kg	16 J	11 J	14 J	11 J	21 J	52 J	33 J
	BENZO(A)ANTHRACENE	ug/kg	63	47	41 J	38	64	160 J	95 J
	BENZO(A)PYRENE	ug/kg	50	37	31 J	18 J	46	130 J	67 J
	BENZO(B)FLUORANTHENE	ug/kg	110	73	67 J	49	100	270 J	130 J
	BENZO(G,H,I)PERYLENE	ug/kg	44	30 J	25 J	18 J	38	120 J	52 J
	BENZO(K)FLUORANTHENE	ug/kg	33 U	32 U	36 UJ	33 U		35 UJ	39 UJ
	CHRYSENE	ug/kg	74	50	49 J	39	69	200 J	110 J
		ug/kg	12 J	32 U	36 UJ			33 J	39 UJ
	FLUORANTHENE	ug/kg	100	79	88 J	58	100	300 J	200 J
	FLUORENE	ug/kg	8.7 J	32 U	36 UJ			25 J	39 UJ
	INDENO(1,2,3-CD)PYRENE	ug/kg	35	24 J	21 J	16 J	34	98 J	49 J
	PHENANTHRENE	ug/kg	80	52	63 J	52	95	280 J	180 J
	PHENOL	ug/kg	510	830	1600 J	1300	2400	2100 J	2400 J
	PYRENE	ug/kg	630	170	170 J	610	400	750 J	590 J
	pH	S.U.	9	9.3	9.7 J	9.8	9.9	10.1 J	10.3 J

		Location	OL-VC-40207						
		Sample Depth	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft
		Field Sample ID	OL-0657-01	OL-0657-02	OL-0657-03	OL-0657-04	OL-0657-05	OL-0657-06	OL-0657-07
		Sample Date	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008
		SDG	C8I040270						
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Ocamient	Ocument	Ocamient	Occiment	Ocamicit	Ocument	Occimient
	SOLIDS, PERCENT	%	59.3	51.4	62.6	44.7	44.7	51.5	54.3
ASTM D854	SPECIFIC GRAVITY	g/cc	2.65	2.647	2.659	2.655	2.631	2.642	2.604
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	64700	65400	65000	61200	69000 J	81000 J	84400 J
SM2540G	SOLIDS, PERCENT	%	57.9	57.9	60.7	51.4	45.9	46.8	44
SW7471	MERCURY	mg/kg	36	64.6	47.6	36.2	23.4 J	28 J	7.5 J
SW7471 SW8082	AROCLOR-1016		14 U	14 U	14 U	36.2 16 U			7.5 J 19 UJ
SW8082 SW8082	AROCLOR-1016 AROCLOR-1221	ug/kg	14 U	14 U	14 U	16 U			19 UJ
		ug/kg							
SW8082	AROCLOR-1232	ug/kg	14 U	14 U	14 U	16 U			19 UJ
SW8082	AROCLOR-1242	ug/kg	14 U	14 U	14 U	16 U			19 UJ
SW8082	AROCLOR-1248	ug/kg	330	140	340	97	45 J	39 J	19 UJ
SW8082	AROCLOR-1254	ug/kg	100	97	220	75	49 J	43 J	59 J
SW8082	AROCLOR-1260	ug/kg	41	83	92	16 U			19 UJ
SW8082	AROCLOR-1268	ug/kg	180	1600	480	25	18 UJ		19 UJ
SW8082	PCBS, N.O.S.	ug/kg	660	1900	1100	200	94 J	81 J	59 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.6 U	8.6 U	8.2 U	9.7 U			11 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.6 U	J 8.6 UJ					11 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.6 U	8.6 U	8.2 U	2 J			11 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.6 U	8.6 U	8.2 U	10	79 J	3.2 J	11 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	1.2 J	13	16	32	6.9 J	11 UJ	11 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.6 U	2.1 J	1.2 J	1.7 J	11 UJ	11 UJ	11 UJ
SW8260	BENZENE	ug/kg	1.4 J	2.2 J	1.8 J	1.5 J	11 UJ	11 UJ	11 UJ
SW8260	CHLOROBENZENE	ug/kg	8.5 J	32	18	13	3 J	11 UJ	11 UJ
SW8260	ETHYLBENZENE	ug/kg	8.6 U	3 J	2.9 J	4.9 J	2.1 J	11 UJ	11 UJ
SW8260	NAPHTHALENE	ug/kg	8.6 U	8.6 U	8.2 U	9.7 U	11 UJ	11 UJ	11 UJ
SW8260	TOLUENE	ug/kg	8.6 U	2.1 J	2 J	2.5 J	11 UJ	11 UJ	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	9.4 J	54	65	110	52 J	12 J	34 UJ
SW8270	ACENAPHTHENE	ug/kg	58 U	29 J	60	39 J	72 UJ	71 UJ	76 UJ
SW8270	ACENAPHTHYLENE	ug/kg	37 J	35 J	60	52 J	72 UJ	71 UJ	46 J
SW8270	ANTHRACENE	ug/kg	82	72	180	92	37 J	69 J	59 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	290	130	370	170	89 J	170 J	170 J
SW8270	BENZO(A)PYRENE	ug/kg	200	100	250	130	58 J	110 J	120 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	270 J	180 J	460 J	91 J	95 J	93 J	180 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	180	70	210	91	37 J	74 J	63 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	170	57 U	55 U	160	72 UJ		69 J
SW8270	CHRYSENE	ug/kg	280	190	370	240	100 J	170 J	240 J
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	58 U			65 U			76 UJ
SW8270	FLUORANTHENE	ug/kg	740	440	1100	470	270 J	430 J	440 J
SW8270	FLUORENE	ug/kg	48 J	44 J	97	73	72 UJ		76 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg ug/kg	150 J	66 J	170 J	77 J	72 UJ		84 J
SW8270	PHENANTHRENE		310	280	690	310	140 J	250 J	210 J
	PHENOL	ug/kg	58 U		18 J				
SW8270		ug/kg		57 U		65 U 360			24 J
SW8270	PYRENE	ug/kg	600	450	750		170 J	330 J	370 J
SW9045	pH	S.U.	7.6 J	8.3 J	8.6 J	8.8 J	9 J	8.9 J	8.7 J

		Location	OL-VC-40209	OL-VC-40209	OL-VC-40209	OL-VC-40209	OL-VC-40209	OL-VC-40209	OL-VC-40209
		Sample Depth	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft
		Field Sample ID	OL-0657-08	OL-0657-09	OL-0657-10	OL-0657-11	OL-0657-12	OL-0657-13	OL-0657-14
		Sample Date	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008
		SDG	C8I040270	C8I040270	C8I040270	C8I040270	C8I040270	C8I040270	C8I040270
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Field Duplicate	Regular Sample				
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Commont	Codiminant	Codimicin	Codiminant	Counton	Commone	- Countries
	SOLIDS, PERCENT	%	60.1	60.5	63.1	60.5	63.4		63.4
ASTM D854	SPECIFIC GRAVITY	g/cc	2.698	2.779	2.729	2.739	2.742		2.743
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	71500	66000	49800	47300	42200	40300	59700
SM2540G	SOLIDS, PERCENT	%	56.2	60	64	56.1	62.3	63.9	62.9
SW7471	MERCURY	mg/kg	6.7	0.036	0.024 J	0.0063 U		0.0056 U	0.0056 U
SW8082	AROCLOR-1016	ug/kg	15 U	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1221	ug/kg	15 U	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1232	ug/kg	15 U	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1242	ug/kg	15 U	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1248	ug/kg	20	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1254	ug/kg	29	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1260	ug/kg	15 U	14 U	13 U	15 U		13 U	13 U
SW8082	AROCLOR-1268	ug/kg	20	14 U	13 U	15 U		13 U	13 U
SW8082	PCBS, N.O.S.	ug/kg	69	14 U	13 U	15 U		13 U	13 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	BENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	CHLOROBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	ETHYLBENZENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	NAPHTHALENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	TOLUENE	ug/kg	8.9 U	8.3 U	7.8 U	8.9 U		7.8 U	7.9 U
SW8260	XYLENES, TOTAL	ug/kg	27 U	25 U	23 U	27 U		23 U	24 U
SW8270	ACENAPHTHENE	ug/kg	60 U	56 U	52 U	60 U		52 U	53 U
SW8270	ACENAPHTHYLENE	ug/kg	60 U	56 U	52 U	60 U		52 U	53 U
SW8270	ANTHRACENE	ug/kg	60 U	56 U	52 U	60 U		52 U	53 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	76	56 U	52 U	60 U		52 U	53 U
SW8270	BENZO(A)PYRENE	ug/kg	51 J	56 U	52 U	60 U		52 U	53 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	85	56 U	52 U	60 U		52 U	53 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	33 J	56 U	52 U	60 U		52 U	53 U
SW8270 SW8270	BENZO(K)FLUORANTHENE	ug/kg ug/kg	60 U	56 U	52 U	60 U		52 U	53 U
SW8270	CHRYSENE		93	56 U		60 U			53 U
		ug/kg			52 U			52 U	
SW8270 SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	60 U 230	56 U 56 U	52 U 52 U	60 U		52 U 52 U	53 U 53 U
	FLUORANTHENE	ug/kg	230 60 U						53 U
SW8270	FLUORENE	ug/kg		56 U	52 U	60 U		52 U	
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	60 U	56 U	52 U	60 U		52 U 52 U	53 U 53 U
SW8270	PHENANTHRENE	ug/kg	95	56 U	52 U	60 U			
SW8270	PHENOL	ug/kg	21 J	110	340	260	180	230	42 J
SW8270	PYRENE	ug/kg	180	56 U	52 U	60 U		52 U	53 U
SW9045	pH	S.U.	7.1 J	6.8 J	6.7 J	6.7 J	6.7 J	6.8 J	6.9 J

		Location	OL-VC-40209	OL-VC-40209	OL-VC-40210	OL-VC-40210	OL-VC-40210	OL-VC-40210	OL-VC-40210
		Sample Depth	6.0-7.0 Ft	7.0-7.8 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft
		Field Sample ID	OL-0657-15	OL-0657-16	OL-0658-01	OL-0658-02	OL-0658-03	OL-0658-04	OL-0658-05
		Sample Date	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008
		SDG	C8I040270	C8I040270	C8I040264	C8I040264	C8I040264	C8I040264	C8I040264
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Ocument	Ocument	Ocument	Occiment	Occurrent	Ocument	Occimient
	SOLIDS, PERCENT	%	63.7	63.9	61.4	62	61.8	62.6	62.3
ASTM D854	SPECIFIC GRAVITY	g/cc	2.744	2.734	2.708	2.705	2.712	2.73	2.718
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	53600	52200	60900	55700	48500	55300	70700
SM2540G	SOLIDS, PERCENT	%	65.3	59.4	63.9	60.9	57.6	64.7	64.6
SW7471	MERCURY	mg/kg	0.0054 U	0.006 U	0.24	0.0058 U	0.0062 U	0.0055 U	0.0055 U
SW7471 SW8082	AROCLOR-1016		13 U	14 U	13 U	0.0058 U			13 U
SW8082	AROCLOR-1016 AROCLOR-1221	ug/kg	13 U	14 U	13 U	14 U	14 U	13 U 13 U	13 U
		ug/kg							
SW8082	AROCLOR-1232	ug/kg	13 U	14 U	13 U	14 U	14 U	13 U	13 U
SW8082	AROCLOR-1242	ug/kg	13 U	14 U	13 U	14 U		13 U	13 U
SW8082	AROCLOR-1248	ug/kg	13 U	14 U	6 J	14 U	14 U	13 U	13 U
SW8082	AROCLOR-1254	ug/kg	13 U	14 U	5 J	14 U		13 U	13 U
SW8082	AROCLOR-1260	ug/kg	13 U	14 U	13 U	14 U		13 U	13 U
SW8082	AROCLOR-1268	ug/kg	13 U	14 U	13 U	14 U		13 U	13 U
SW8082	PCBS, N.O.S.	ug/kg	13 U	14 U	11 J	14 U		13 U	13 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U	8.7 U	7.7 U	7.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U		7.7 U	7.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U		7.7 U	7.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U		7.7 U	7.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U	8.7 U	7.7 U	7.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U	8.7 U	7.7 U	7.7 U
SW8260	BENZENE	ug/kg	7.7 U	8.4 U	20	25	26	15	20
SW8260	CHLOROBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U		7.7 U	7.7 U
SW8260	ETHYLBENZENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U	8.7 U	7.7 U	7.7 U
SW8260	NAPHTHALENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U	8.7 U	7.7 U	7.7 U
SW8260	TOLUENE	ug/kg	7.7 U	8.4 U	7.8 U	8.2 U	8.7 U	7.7 U	7.7 U
SW8260	XYLENES, TOTAL	ug/kg	23 U	25 U	23 U	25 U	26 U	23 U	23 U
SW8270	ACENAPHTHENE	ug/kg	51 U	56 U	26 U	22 U	23 U	21 U	21 U
SW8270	ACENAPHTHYLENE	ug/kg	51 U	56 U	26 U	22 U	23 U	21 U	21 U
SW8270	ANTHRACENE	ug/kg	51 U	56 U	26 U	22 U		21 U	21 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	51 U	56 U	8.9 J	22 U		21 U	21 U
SW8270	BENZO(A)PYRENE	ug/kg	51 U	56 U	8.4 J	22 U	23 U	21 U	21 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	51 U	56 U	17 J	22 U	23 U	21 U	21 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	51 U	56 U	8.3 J	22 U		21 U	21 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	51 U	56 U	26 U	22 U		21 U	21 U
SW8270	CHRYSENE	ug/kg	51 U	56 U	13 J	22 U		21 U	21 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	51 U	56 U	26 U	22 U		21 U	21 U
SW8270	FLUORANTHENE	ug/kg	51 U	56 U	20 J	22 U		21 U	21 U
SW8270	FLUORENE	ug/kg	51 U	56 U	26 U	22 U		21 U	21 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	51 U	56 U	6.6 J	22 U	23 U	21 U	21 U
SW8270	PHENANTHRENE		51 U	56 U	0.6 J	22 U		21 U	21 U
	PHENOL	ug/kg			740	460			640
SW8270		ug/kg	16 J 51 U	56 U			520	620	
SW8270	PYRENE	ug/kg		56 U	17 J	22 U		21 U	21 U
SW9045	pH	S.U.	6.9 J	6.7 J	6.5 J	6.5 J	6.5 J	6.7 J	6.6 J

		Location	OL-VC-40210	OL-VC-40210	OL-VC-40210	OL-VC-40210	OL-VC-40211	OL-VC-40211	OL-VC-40211
		Sample Depth	5.0-6.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft	8.0-8.8 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft
		Field Sample ID	OL-0658-06	OL-0658-07	OL-0658-08	OL-0658-09	OL-0658-10	OL-0658-11	OL-0658-12
		Sample Date	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008
		SDG Date	C8I040264						
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Sediment						
	SOLIDS, PERCENT	%	64.5	63.1	55.7	58.9	65.2	65.2	62.4
ASTM D2216	SPECIFIC GRAVITY	g/cc	2.713	2.73	2.747	2.706	2.705	2.731	2.746
Lloyd Kahn	TOTAL ORGANIC CARBON	U	53100	59400	56900	57300	57300	51300	58800
SM2540G	SOLIDS, PERCENT	mg/kg %	62.7	61.8	60.7	57300	64.2	64.1	62
	,								
SW7471	MERCURY	mg/kg	0.0057 U	0.0057 U	0.0058 U	0.0064 U	3.4	0.02 J	0.0057 U
SW8082	AROCLOR-1016	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1221	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1232	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1242	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1248	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1254	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1260	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	AROCLOR-1268	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8082	PCBS, N.O.S.	ug/kg	13 U	13 U	14 U	15 U	13 U	13 U	13 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	BENZENE	ug/kg	26	18	23	26	13	3.2 J	13
SW8260	CHLOROBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	ETHYLBENZENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	NAPHTHALENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	TOLUENE	ug/kg	8 U	8.1 U	8.2 U	9 U	7.8 U	7.8 U	8.1 U
SW8260	XYLENES, TOTAL	ug/kg	24 U	24 U	25 U	27 U	23 U	23 U	24 U
SW8270	ACENAPHTHENE	ug/kg	21 U	22 U	22 U	24 U	67	21 U	22 U
SW8270	ACENAPHTHYLENE	ug/kg	21 U	22 U	22 U	24 U	9.6 J	21 U	22 U
SW8270	ANTHRACENE	ug/kg	21 U	22 U	22 U	24 U	150	21 U	22 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	21 U	22 U	22 U	24 U	230	21 U	22 U
SW8270	BENZO(A)PYRENE	ug/kg	21 U	22 U	22 U	24 U	200	21 U	22 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	21 U	22 U	22 U	24 U	310	21 U	22 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	21 U	22 U	22 U	24 U	120	21 U	22 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	21 U	22 U	22 U	24 U	26 U	21 U	22 U
SW8270	CHRYSÈŃE	ug/kg	21 U	22 U	22 U	24 U	220	21 U	22 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	21 U	22 U	22 U	24 U	40	21 U	22 U
SW8270	FLUORANTHENE	ug/kg	21 U	22 U	22 U	24 U	540	21 U	22 U
SW8270	FLUORENE	ug/kg	21 U	22 U	22 U	24 U	79	21 U	22 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	21 U	22 U	22 U	24 U	110	21 U	22 U
SW8270	PHENANTHRENE	ug/kg	21 U	22 U	22 U	24 U	490	21 U	22 U
SW8270	PHENOL	ug/kg	620	490	480	660	410	590	610
SW8270	PYRENE	ug/kg	21 U	22 U	22 U	24 U	320	21 U	22 U
SW9045	pH	S.U.	6.6 J	6.7 J	6.8 J	6.9 J	7.1 J	7.1 J	6.9 J
	le::	1	5.0 0	5.7	2.0 0	5.00	0	0	5.0 0

		Location	OL-VC-40211	OL-VC-40211	OL-VC-40211	OL-VC-40211	OL-VC-40211	OL-VC-50028	OL-VC-50028
		Sample Depth	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	5.0-6.0 Ft	6.0-7.2 Ft	0.0-1.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0658-13	OL-0658-14	OL-0658-15	OL-0658-16	OL-0658-17	OL-0652-13	OL-0652-14
		Sample Date	9/3/2008	9/3/2008	9/3/2008	9/3/2008	9/3/2008	8/28/2008	8/28/2008
		SDG	C8I040264	C8I040264	C8I040264	C8I040264	C8I040264	C8H290307	C8H290307
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	61.7	64.3	56.9		74.9	42.2	43
ASTM D854	SPECIFIC GRAVITY	g/cc	2.719	2.744	2.762		2.747	2.636	2.642
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	53600	54700	83000	58800	25200	14600 J	14900 J
SM2540G	SOLIDS, PERCENT	%	62.3	61.6	63	60	76.1	43.8	44.6
SW7471	MERCURY	mg/kg	0.0057 U	0.0058 U	0.0056 U	0.0059 U	0.016 J	2.4 J	32.5 J
SW8082	AROCLOR-1016	ug/kg	13 U	14 U	13 U	14 U	11 U	19 UJ	18 UJ
SW8082	AROCLOR-1221	ug/kg	13 U	14 U	13 U	14 U	11 U	19 UJ	18 UJ
SW8082	AROCLOR-1232	ug/kg	13 U	14 U	13 U	14 U	11 U	19 UJ	18 UJ
SW8082	AROCLOR-1242	ug/kg	13 U	14 U	13 U	14 U	11 U	19 UJ	18 UJ
SW8082	AROCLOR-1248	ug/kg	13 U	14 U	13 U	14 U	11 U	260 J	730 J
SW8082	AROCLOR-1254	ug/kg	13 U	14 U	13 U	14 U	11 U	160 J	450 J
SW8082	AROCLOR-1260	ug/kg	13 U	14 U	13 U	14 U	11 U	100 J	230 J
SW8082	AROCLOR-1268	ug/kg	13 U	14 U	13 U	14 U	11 U	19 UJ	18 UJ
SW8082	PCBS, N.O.S.	ug/kg	13 U	14 U	13 U	14 U	11 U	520 J	1400 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	1.9 J	3 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	2.1 J	2.7 J
SW8260	BENZENE	ug/kg	10	8.1	1.7 J	10 J	1.4 J	11 UJ	11 UJ
SW8260	CHLOROBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	2.2 J
SW8260	ETHYLBENZENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	NAPHTHALENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	TOLUENE	ug/kg	8 U	8.1 U	7.9 U	8.3 U	6.6 U	11 UJ	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	24 U	24 U	24 U	25 U	20 U	34 UJ	34 UJ
SW8270	ACENAPHTHENE	ug/kg	22 U	22 U	21 U	22 U	18 U	380 UJ	380 UJ
SW8270	ACENAPHTHYLENE	ug/kg	22 U	22 U	21 U	22 U		380 UJ	380 UJ
SW8270	ANTHRACENE	ug/kg	22 U	22 U	21 U	22 U	18 U	380 UJ	120 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	22 U	22 U	21 U	22 U		150 J	230 J
SW8270	BENZO(A)PYRENE	ug/kg	22 U	22 U	21 U	22 U	18 U	130 J	230 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	22 U	22 U	21 U	22 U	18 U	320 J	490 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	22 U	22 U	21 U	22 U		140 J	210 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	22 U	22 U	21 U	22 U	18 U	380 UJ	380 UJ
SW8270	CHRYSENE	ug/kg	22 U	22 U	21 U	22 U		180 J	350 J
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	22 U	22 U	21 U	22 U	18 U	380 UJ	380 UJ
SW8270	FLUORANTHENE	ug/kg	22 U	22 U	21 U	22 U	18 U	340 J	630 J
SW8270	FLUORENE	ug/kg	22 U	22 U	21 U	22 U	18 U	380 UJ	380 UJ
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	22 U	22 U	21 U	22 U	18 U	120 J	180 J
SW8270	PHENANTHRENE	ug/kg	22 U	22 U	21 U	22 U	18 U	150 J	260 J
SW8270	PHENOL	ug/kg	720	600	570	650	460	380 UJ	380 UJ
SW8270	PYRENE	ug/kg	22 U	22 U	21 U	22 U	18 U	250 J	460 J
SW9045	рН	S.U.	6.9 J	6.9 J	7 J	6.9 J	7.2 J	7.6 J	7.6 J

ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name 3, PERCENT FIC GRAVITY	Location Sample Depth Field Sample ID Sample Date SDG Matrix Sample Purpose Sample Type Units %	OL-VC-50028 1.0-2.0 Ft OL-0652-15 8/28/2008 C8H290307 SOIL Field Duplicate Sediment		OL-VC-50028 2.0-3.0 Ft OL-0652-16 8/28/2008 C8H290307 SOIL	OL-VC-50028 3.0-3.8 Ft OL-0652-17 8/28/2008 C8H290307	OL-VC-50029 0.0-1.0 Ft OL-0655-05 8/29/2008 C8H300129	OL-VC-50029 1.0-2.0 Ft OL-0655-06 8/29/2008	OL-VC-50029 2.0-3.0 Ft OL-0655-07 8/29/2008	OL-VC-50029 3.0-3.4 Ft OL-0655-08 8/29/2008
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name 3, PERCENT FIC GRAVITY	Field Sample ID Sample Date SDG Matrix Sample Purpose Sample Type Units	OL-0652-15 8/28/2008 C8H290307 SOIL Field Duplicate		OL-0652-16 8/28/2008 C8H290307	OL-0652-17 8/28/2008 C8H290307	OL-0655-05 8/29/2008	OL-0655-06 8/29/2008	OL-0655-07 8/29/2008	OL-0655-08
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name S, PERCENT FIC GRAVITY	Sample Date SDG Matrix Sample Purpose Sample Type Units	8/28/2008 C8H290307 SOIL Field Duplicate		8/28/2008 C8H290307	8/28/2008 C8H290307	8/29/2008	8/29/2008	8/29/2008	
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name S, PERCENT FIC GRAVITY	SDG Matrix Sample Purpose Sample Type Units	C8H290307 SOIL Field Duplicate		C8H290307	C8H290307				
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name S, PERCENT FIC GRAVITY	Matrix Sample Purpose Sample Type Units	SOIL Field Duplicate					C8H300129	C8H300129	C8H300129
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name S, PERCENT FIC GRAVITY	Sample Purpose Sample Type Units	Field Duplicate		OOIL	SOIL	SOIL	SOIL	SOIL	SOIL
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name S, PERCENT FIC GRAVITY	Sample Type Units			Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	eter Name S, PERCENT FIC GRAVITY	Units	Sediment		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
ASTM D2216 SOLIDS ASTM D854 SPECIF Lloyd Kahn TOTAL	S, PERCENT FIC GRAVITY				Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
ASTM D854 SPECIF Lloyd Kahn TOTAL	FIC GRAVITY				41.6	46.8	55.8	54.8	53.7	60.5
Lloyd Kahn TOTAL		g/cc			2.63	2.63	2.68	2.697	2.698	2.702
		mg/kg	17700	-	27500 J	38900 J	53300 J	12500	9560	4460 J
		%	45		45.3	48.4	49.7	52.6	50.9	58.9
SW7471 MERCU		mg/kg	19.5		25.7 J	1.3 J	0.03 J	0.0067 U	0.007 U	0.006 U
				UJ	25.7 J 18 UJ	1.3 J 17 UJ			16 U	
		ug/kg		UJ	18 UJ	17 UJ			16 U	14 U
		ug/kg								
		ug/kg		UJ	18 UJ	17 UJ			16 U	14 U
		ug/kg		UJ	18 UJ	17 UJ			16 U	14 U
		ug/kg	680		500 J	17 UJ			16 U	14 U
		ug/kg	420		440 J	51 J	17 U.		16 U	14 U
		ug/kg	170		140 J	32 J	17 U.		16 U	14 U
		ug/kg		UJ	18 UJ	17 UJ			16 U	14 U
SW8082 PCBS, N		ug/kg	1300		1100 J	83 J	17 U.		16 U	14 U
		ug/kg		UJ	11 UJ	10 UJ			9.8 U	8.5 U
		ug/kg		UJ	11 UJ	10 UJ	10 UJ		9.8 U	8.5 U
		ug/kg		UJ	11 UJ	10 UJ			9.8 U	8.5 U
		ug/kg		IJ	11 UJ	10 UJ			9.8 U	8.5 U
		ug/kg	4.1		2.5 J	10 UJ			9.8 U	8.5 U
		ug/kg	3.2		1.6 J	10 UJ			9.8 U	8.5 U
SW8260 BENZEN		ug/kg		UJ	11 UJ	10 UJ			9.8 U	8.5 U
		ug/kg	2.6		11 UJ	10 UJ			9.8 U	8.5 U
		ug/kg		UJ	11 UJ	10 UJ			9.8 U	8.5 U
SW8260 NAPHTI	HALENE	ug/kg	11	UJ	11 UJ	10 UJ		9.5 U	9.8 U	8.5 U
SW8260 TOLUEN	NE I	ug/kg		UJ	11 UJ	10 UJ		9.5 U	9.8 U	8.5 U
SW8260 XYLENE	ES, TOTAL	ug/kg	33	UJ	33 UJ	31 UJ	30 U.	29 U	29 U	25 U
SW8270 ACENAI	APHTHENE	ug/kg	370	UJ	370 UJ	280 UJ	67 U.	64 U	33 U	28 U
		ug/kg	370		140 J	230 J	67 U.		33 U	28 U
SW8270 ANTHR	RACENE	ug/kg	370	U	190 J	200 J	67 U.	64 U	33 U	28 U
SW8270 BENZO	(A)ANTHRACENE	ug/kg	180	۲	230 J	460 J	67 U.	64 U	33 U	28 U
SW8270 BENZO	(A)PYRENE	ug/kg	170	۲	250 J	420 J	67 U.	64 U	33 U	28 U
SW8270 BENZO	(B)FLUORANTHENE	ug/kg	380	J	500 J	800 J	67 U.	64 UJ		28 U
SW8270 BENZO	(G,H,I)PERYLENE	ug/kg	170	J	210 J	330 J	67 UJ	64 U	33 U	28 U
SW8270 BENZO	(K)FLUORANTHENE	ug/kg	370	UJ	370 UJ	280 UJ	67 UJ	64 U	33 U	28 U
SW8270 CHRYS	SENE	ug/kg	280	J	400 J	490 J	67 UJ	64 U	33 U	28 U
SW8270 DIBENZ	ZO(A,H)ANTHRACENE	ug/kg	370	UJ	370 UJ	96 J	67 UJ	64 UJ		28 U
	,	ug/kg	480	J	680 J	990 J	67 UJ	64 U	33 U	28 U
SW8270 FLUORE		ug/kg	370	UJ	370 UJ	69 J	67 UJ	64 U	33 U	28 U
SW8270 INDENC		ug/kg	150	J	170 J	300 J	67 U.	64 UJ		28 U
	,	ug/kg	190		380 J	320 J	67 U.		33 U	28 U
SW8270 PHENO		ug/kg	370		370 UJ	280 UJ			33 U	10 J
SW8270 PYRENI		ug/kg	350		600 J	880 J	67 U.		33 U	28 U
SW9045 pH		S.U.	7.6		7.6 J	7.4 J	7.6 J	7.4 J	7.4 J	7.5 J

		Location Sample Depth	OL-VC-50030 0.0-1.0 Ft	OL-VC-50030	OL-VC-50030	OL-VC-50030	OL-VC-50031	OL-VC-50031	OL-VC-50031
				1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft
		Field Sample ID	OL-0653-01	OL-0653-02	OL-0653-03	OL-0653-04	OL-0653-05	OL-0653-06	OL-0653-07
		Sample Date	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/28/2008
		SDG	C8H290310	C8H290310	C8H290310	C8H290310	C8H290310	C8H290310	C8H290310
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method Pa		Units	Commone	Common	- Counton	- Countries	Commont	Common	o o a milo m
		%	42.1	42.5	45.1	44.5	38.5	41	44.4
		g/cc	2.631	2.596	2.656	2.675	2.62	2.615	2.66
		mg/kg	19500 J	27200 J	29200 J	35200 J	24200 J	80800 J	36800 J
		%	42.3	44	45	44.5	39.8	40	44.3
	,	mg/kg	2.3 J	22.4 J	1.2 J	0.061 J	23.7 J	18 J	0.38 J
		ug/kg	20 U		19 UJ			21 UJ	19 UJ
		ug/kg	20 U		19 UJ			21 UJ	19 UJ
		ug/kg	20 U		19 UJ			21 UJ	19 UJ
		ug/kg	20 U					21 UJ	19 UJ
		ug/kg	160 J	470 J	19 UJ			230 J	19 UJ
		ug/kg	110 J	420 J	19 UJ			340 J	19 UJ
		ug/kg	54 J	150 J	19 UJ			110 J	19 UJ
		ug/kg	20 U					21 UJ	19 UJ
		ug/kg	320 J	1000 J	19 UJ			680 J	19 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
,		ug/kg	12 U	J 11 UJ				13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	12 U	J 11 UJ				13 UJ	11 UJ
		ug/kg	12 U					13 UJ	11 UJ
		ug/kg	35 U					38 UJ	34 UJ
		ug/kg	310 U			75 U.		88 J	76 UJ
		ug/kg	310 U	J 140 J	170 J	75 U.	J 53 J	190 J	76 UJ
		ug/kg	310 U		160 J	75 U.		200 J	76 UJ
		ug/kg	150 J	310 J	470 J	75 U.		390 J	35 J
		ug/kg	170 J	290 J	420 J	75 U.		390 J	37 J
	()	ug/kg	370 J	550 J	720 J	75 U.		740 J	67 J
	. ,	ug/kg	170 J	230 J	350 J	75 U.		300 J	36 J
		ug/kg	310 U		150 UJ	75 U.		340 UJ	76 UJ
		ug/kg	200 J	390 J	420 J	75 U.		480 J	39 J
		ug/kg	310 U			75 U.		340 UJ	76 UJ
		ug/kg	330 J	710 J	860 J	75 U.		880 J	74 J
		ug/kg	310 U					340 UJ	76 UJ
		ug/kg	160 J	200 J	300 J	75 U.		270 J	31 J
		ug/kg	120 J	410 J	170 J	75 U.		440 J	24 J
		ug/kg	310 U		150 UJ			340 UJ	76 UJ
		ug/kg	280 J	660 J	770 J	75 U.		860 J	67 J
		S.U.	7.6 J	7.6 J	7.5 J	7.4 J	7.6 J	7.5 J	8.6 J

		Location	OL-VC-50031	OL-VC-50032	OL-VC-50032	OL-VC-50032	OL-VC-50032	OL-VC-50033	OL-VC-50033
		Sample Depth	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0653-08	OL-0652-09	OL-0652-10	OL-0652-11	OL-0652-12	OL-0642-09	OL-0642-10
		Sample Date	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/28/2008	8/25/2008	8/25/2008
		SDG	C8H290310	C8H290307	C8H290307	C8H290307	C8H290307	C8H260234	C8H260234
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	- Counton	Countries	- Countrient	Countries	- Counton	Countries	- Countries
	SOLIDS, PERCENT	%	46.4	36.3	40.2	39.6	44.7	31.6	37.2
ASTM D854	SPECIFIC GRAVITY	g/cc	2.689	2.688	2.62	2.662	2.693	2.479	2.626
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	26700 J	26900 J	32200 J	44900 J	56800 J	82200 J	97000 J
SM2540G	SOLIDS, PERCENT	%	48.8	36.7	38.4	41.8	46	34.1	41.3
SW7471	MERCURY	mg/kg	0.063 J	31.8 J	7.7 J	0.02 J	0.027 J	5.5 J	9.7 J
SW8082	AROCLOR-1016	ug/kg	17 U					24 UJ	20 UJ
SW8082	AROCLOR-1221	ug/kg	17 U					24 UJ	20 UJ
SW8082	AROCLOR-1232	ug/kg	17 U					24 UJ	20 UJ
SW8082	AROCLOR-1242	ug/kg	17 U					24 UJ	20 UJ
SW8082	AROCLOR-1248	ug/kg	770 J	1200 J	130 J	20 U.		11000 J	20 UJ
SW8082	AROCLOR-1254	ug/kg	890 J	700 J	250 J	20 U.		4700 J	3200 J
SW8082	AROCLOR-1260	ug/kg	330 J	360 J	93 J	20 U.		1700 J	920 J
SW8082	AROCLOR-1268	ug/kg	17 U					24 UJ	20 UJ
SW8082	PCBS, N.O.S.	ug/kg	2000 J	2300 J	470 J	20 U.		18000 J	4100 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	10 U					15 UJ	12 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	10 U					15 UJ	12 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	10 U			12 U		13 03 17 J	3.7 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	10 U					5.2 J	12 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	10 U		13 UJ			16 J	2.7 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	10 U		13 UJ			34 J	8.2 J
SW8260	BENZENE	ug/kg	10 U					15 UJ	12 UJ
SW8260	CHLOROBENZENE	ug/kg	10 U		13 UJ			33 J	5.5 J
SW8260	ETHYLBENZENE	ug/kg	10 U					15 UJ	12 UJ
SW8260	NAPHTHALENE	ug/kg	10 U		13 UJ			15 UJ	12 UJ
SW8260	TOLUENE	ug/kg	10 U					15 UJ	12 UJ
SW8260	XYLENES, TOTAL	ug/kg	31 U					13 UJ	36 UJ
SW8270	ACENAPHTHENE	ug/kg	430 J	450 UJ				290 J	81 UJ
SW8270	ACENAPHTHYLENE	ug/kg	200 J	140 J	250 J	160 U.			880 J
SW8270	ANTHRACENE	ug/kg	610 J	170 J	270 J	160 U		1200 J	2800 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	1700 J	370 J	510 J	160 U		1900 J	2200 J
SW8270	BENZO(A)PYRENE		1700 J	310 J	450 J	160 U.		1400 J	1400 J
SW8270 SW8270	BENZO(B)FLUORANTHENE	ug/kg ug/kg	3000 J	680 J	880 J	160 U.		2400 J	2500 J
SW8270	BENZO(G,H,I)PERYLENE		1500 J	300 J	350 J	160 U.		900 J	850 J
SW8270 SW8270	BENZO(G,H,I)PERTLENE BENZO(K)FLUORANTHENE	ug/kg ug/kg	340 U					98 UJ	81 UJ
SW8270	CHRYSENE		2200 J	460 J	580 J	160 U.		2400 J	3100 J
SW8270		ug/kg	380 J	450 UJ				430 J	400 J
SW8270 SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	4900 J	450 UJ 850 J	1100 J	160 U.		8200 J	10000 J
SW8270 SW8270	FLUORANTHENE FLUORENE	ug/kg	4900 J 250 J	450 UJ		160 U.		8200 J 98 UJ	10000 J 81 UJ
		ug/kg							
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	1200 J	240 J	300 J 500 J	160 U.		1100 J	1100 J
SW8270	PHENANTHRENE	ug/kg	1900 J	330 J		160 U.		3000 J	5200 J
SW8270	PHENOL	ug/kg	340 U					98 UJ	81 UJ
SW8270	PYRENE	ug/kg	3500 J	690 J	1000 J	160 U.		2700 J	3900 J
SW9045	pH	S.U.	7.9 J	7.8 J	7.6 J	7.4 J	7.4 J	7.2 J	7.2 J

		Location	OL-VC-50033	OL-VC-50033	OL-VC-50033	OL-VC-50034	OL-VC-50034	OL-VC-50034	OL-VC-50034
		Sample Depth	2.0-3.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-3.9 Ft
		Field Sample ID	OL-0642-11	OL-0642-12	OL-0642-13	OL-0650-01	OL-0650-02	OL-0650-03	OL-0650-04
		Sample Date	8/25/2008	8/25/2008	8/25/2008	8/26/2008	8/26/2008	8/26/2008	8/26/2008
		SDG	C8H260234	C8H260234	C8H260234	C8H270294	C8H270294	C8H270294	C8H270294
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Field Duplicate	Regular Sample				
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Codimoni	Counton	Codimoni	Codimoni	Codimoni	Counton	Codimoni
	SOLIDS, PERCENT	%	44.2		40.9	30.5	37.1	44.6	42.5
ASTM D854	SPECIFIC GRAVITY	g/cc	2.604		2.615	2.438	2.491	2.57	2.628
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	71700 J	59500 J	67200 J	70600 J	110000 J	59700 J	45200 J
SM2540G	SOLIDS, PERCENT	%	48.5	48.1	45.7	27.8	38.9	43.2	41.8
SW7471	MERCURY	mg/kg	1.9 J	1.9 J	1.9 J	7.8 J	25 J	1.8 J	2.5 J
SW8082	AROCLOR-1016	ug/kg	17 U.		18 UJ	150 U.		96 UJ	20 UJ
SW8082	AROCLOR-1221	ug/kg	17 U.		18 UJ			96 UJ	20 UJ
SW8082	AROCLOR-1232	ug/kg	17 U		18 UJ			96 UJ	20 UJ
SW8082	AROCLOR-1242	ug/kg	17 U.		18 UJ			96 UJ	20 UJ
SW8082	AROCLOR-1248	ug/kg	290 J	160 J	18 UJ	15000 J	2300 J	96 UJ	48 J
SW8082	AROCLOR-1254	ug/kg	400 J	220 J	18 UJ		2400 J	96 UJ	20 UJ
SW8082	AROCLOR-1260	ug/kg	250 J	150 J	18 UJ		830 J	96 UJ	20 UJ
SW8082	AROCLOR-1268	ug/kg	17 U		18 UJ			96 UJ	20 UJ
SW8082	PCBS, N.O.S.	ug/kg	940 J	530 J	18 UJ	22000 J	5500 J	96 UJ	48 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	520 U		550 UJ	18 U.		580 UJ	600 UJ
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	520 U		550 UJ			580 UJ	600 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	520 U		550 UJ	7.7 J	5.1 J	580 UJ	600 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	520 U		550 UJ		3.5 J	580 UJ	600 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	520 U		550 UJ		3 J	580 UJ	600 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	520 U		550 UJ	19 J	12 J	580 UJ	600 UJ
SW8260	BENZENE	ug/kg	520 U		550 UJ			580 UJ	600 UJ
SW8260	CHLOROBENZENE	ug/kg	520 U		550 UJ	24 J	7.7 J	580 UJ	600 UJ
SW8260	ETHYLBENZENE	ug/kg	520 U		550 UJ			580 UJ	600 UJ
SW8260	NAPHTHALENE	ug/kg	630 J	670 J	5800 J	3.8 J	3.1 J	1100 J	3300 J
SW8260	TOLUENE	ug/kg	520 U		550 UJ	18 U.		580 UJ	600 UJ
SW8260	XYLENES, TOTAL	ug/kg	1500 U		1600 UJ	54 U.		1700 UJ	1800 UJ
SW8270	ACENAPHTHENE	ug/kg	790 J	850 J	5600 J	120 U.		2400 J	9300 J
SW8270	ACENAPHTHYLENE	ug/kg	1900 J	1900 J	4200 J	730 J	2100 J	2600 J	5500 J
SW8270	ANTHRACENE	ug/kg	2100 J	2300 J	8500 J	2700 J	3800 J	5400 J	13000 J
SW8270	BENZO(A)ANTHRACENE	ug/kg	4100 J	4000 J	10000 J	2900 J	5800 J	6000 J	11000 J
SW8270	BENZO(A)PYRENE	ug/kg	2500 J	2100 J	4400 J	2300 J	3300 J	2900 J	5700 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	4700 J	4300 J	5300 J	4000 J	7100 J	5800 J	9300 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	1300 J	1200 J	3600 J	1600 J	1500 J	1400 J	2400 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	69 U		730 UJ	120 U.		78 UJ	80 UJ
SW8270	CHRYSENE	ug/kg	4400 J	4200 J	8800 J	4600 J	6500 J	6700 J	12000 J
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	570 J	440 J	920 J	120 U.		360 J	520 J
SW8270	FLUORANTHENE	ug/kg	11000 J	9900 J	14000 J	16000 J	14000 J	11000 J	21000 J
SW8270	FLUORENE	ug/kg	69 U		5100 J	120 U.		2100 J	7300 J
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	1400 J	1300 J	3200 J	960 J	1500 J	1300 J	2000 J
SW8270	PHENANTHRENE	ug/kg	5200 J	5000 J	26000 J	5800 J	11000 J	11000 J	35000 J
SW8270	PHENOL	ug/kg	65 J	57 J	730 UJ	50 J	110 J	43 J	130 J
SW8270	PYRENE	ug/kg	5400 J	5400 J	21000 J	5600 J	6700 J	7300 J	16000 J
SW9045	pH	S.U.	7 J	7 J	7 J	7.4 J	7.2 J	7.2 J	7.1 J
5110070	lk	J.J.	7 3	, 0	, 0	7.70	1.20	1.20	7.1 5

		Location	OL-VC-50035	OL-VC-50035	OL-VC-50035	OL-VC-50035	OL-VC-60195	OL-VC-60195	OL-VC-60195
		Sample Depth	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-3.7 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft
		Field Sample ID	OL-0650-05	OL-0650-06	OL-0650-07	OL-0650-08	OL-0642-01	OL-0642-02	OL-0642-03
		Sample Date	8/26/2008	8/26/2008	8/26/2008	8/26/2008	8/25/2008	8/25/2008	8/25/2008
		SDG	C8H270294	C8H270294	C8H270294	C8H270294	C8H260234	C8H260234	C8H260234
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	Codimoni	Codimoni	Counton	Codimoni	Coumon	Coamont	Codimont
	SOLIDS, PERCENT	%	34.6	33.4	30.8	38.7	53.4	53.1	51.5
ASTM D854	SPECIFIC GRAVITY	g/cc	2.621	2.407	2.447	2.549	2.633	2.574	2.706
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	37500 J	75200 J	63900 J	63100 J	20700	15500	13300
SM2540G	SOLIDS, PERCENT	%	37.3	31.7	32.6	36.3	50.5	50	53.5
SW7471	MERCURY	mg/kg	2.2 J	4.4 J	15.9 J	29.1 J	0.14	0.0071 U	0.0066 U
SW8082	AROCLOR-1016	ug/kg	110 U.		130 UJ			16 U	15 U
SW8082	AROCLOR-1221	ug/kg	110 U.					16 U	15 U
SW8082	AROCLOR-1232	ug/kg	110 U.					16 U	15 U
SW8082	AROCLOR-1232	ug/kg	110 U.					16 U	15 U
SW8082	AROCLOR-1248	ug/kg	970 J	9900 J	8100 J	770 J	17 U	16 U	15 U
SW8082	AROCLOR-1254	ug/kg	460 J	3100 J	4100 J	2300 J	17 U	16 U	15 U
SW8082	AROCLOR-1260	ug/kg	210 J	1200 J	1100 J	920 J	17 U	16 U	15 U
SW8082	AROCLOR-1268	ug/kg	110 U.					16 U	15 U
SW8082	PCBS, N.O.S.	ug/kg	1600 J	14000 J	13000 J	4000 J	17 U	16 U	15 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	13 U.					10 U	9.4 U
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	13 U.					10 U	9.4 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	13 U.	8.9 J	7.8 J	14 UJ		10 U	9.4 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	13 U		7.5 J	14 UJ		10 U	9.4 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	13 U.		7.5 J	14 UJ		10 U	9.4 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	13 U		17 J	2 J	9.9 U	10 U	9.4 U
SW8260	BENZENE	ug/kg	13 U.				9.9 U	10 U	9.4 U
SW8260	CHLOROBENZENE	ug/kg	4.9 J	34 J	13 J	2.6 J	9.9 U	10 U	9.4 U
SW8260	ETHYLBENZENE	ug/kg	13 U.		15 UJ			10 U	9.4 U
SW8260	NAPHTHALENE	ug/kg	13 U.					10 U	9.4 U
SW8260	TOLUENE	ug/kg	13 U.					10 U	9.4 U
SW8260	XYLENES, TOTAL	ug/kg	40 U.		13 03 11 J	41 UJ		30 U	28 U
SW8270	ACENAPHTHENE	ug/kg	170 J	280 J	450 J	710 J	27 J	67 U	63 U
SW8270	ACENAPHTHYLENE	ug/kg	590 J	550 J	1200 J	1900 J	66 U	67 U	63 U
SW8270	ANTHRACENE	ug/kg	700 J	990 J	2400 J	3400 J	180	67 U	63 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	990 J	1800 J	3700 J	4400 J	280	67 U	63 U
SW8270	BENZO(A)PYRENE	ug/kg	780 J	1100 J	2400 J	3000 J	230	67 U	80
SW8270	BENZO(B)FLUORANTHENE	ug/kg	1300 J	2300 J	4000 J	6100 J	300	67 U	63 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	580 J	620 J	930 J	1100 J	180	67 U	63 U
SW8270 SW8270	BENZO(G,H,I)PERTLENE BENZO(K)FLUORANTHENE	ug/kg ug/kg	90 U		100 UJ			67 U	63 U
SW8270	CHRYSENE		1300 J	2200 J	4700 J	6300 J	220	67 U	63 U
SW8270		ug/kg	1300 J		100 UJ		46 J	67 U	
SW8270 SW8270	DIBENZO(A,H)ANTHRACENE FLUORANTHENE	ug/kg	2300 J	55 J 7500 J	15000 J	14000 J	590	67 U	63 U 63 U
SW8270 SW8270	FLUORANTHENE	ug/kg	2300 J 90 U		15000 J		590 66 U	67 U	63 U
SW8270 SW8270		ug/kg	500 J	580 J	880 J	1200 J	160	67 U	63 U
SW8270 SW8270	INDENO(1,2,3-CD)PYRENE PHENANTHRENE	ug/kg	1200 J	2900 J	7700 J	9400 J	410	67 U	25 J
	PHENOL	ug/kg	90 U		100 UJ				
SW8270	PHENOL	ug/kg					66 U 620	67 U 37 J	63 U
SW8270		ug/kg	1300 J	2300 J	5000 J	6300 J		37 J	63 U
SW9045	рН	S.U.	7.3 J	7.3 J	7.2 J	7.2 J	7	/	7.1

		Location	OL-VC-60195	OL-VC-60196	OL-VC-60196	OL-VC-60196	OL-VC-60196	OL-VC-60200	OL-VC-60200
		Sample Depth	3.0-3.8 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-3.9 Ft	0.0-1.0 Ft	1.0-2.0 Ft
			OL-0642-04	OL-0642-05			OL-0642-08	OL-0600-01	
		Field Sample ID			OL-0642-06	OL-0642-07			OL-0600-02
		Sample Date	8/25/2008	8/25/2008	8/25/2008	8/25/2008	8/25/2008	7/18/2008	7/18/2008
		SDG	C8H260234	C8H260234	C8H260234	C8H260234	C8H260234	C8G190132	C8G190132
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
	SOLIDS, PERCENT	%	52.6	46.7	50.2	48.6	56.8	80.9	74
ASTM D854	SPECIFIC GRAVITY	g/cc	2.619	2.597	2.607	2.595	2.55	2.703	2.682
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	11400	59100	82100	46800	43100	2570	6640
SM2540G	SOLIDS, PERCENT	%	55.8	50.8	50.5	53.7	58.1	80.4	74.6
SW7471	MERCURY	mg/kg	0.0064 U	1.6	1.3	1.8	2	0.053	0.0048 U
SW8082	AROCLOR-1016	ug/kg	15 U	16 U	17 U	160 U	14 U	52 U	56 U
SW8082	AROCLOR-1221	ug/kg	15 U	16 U	17 U	160 U	14 U	52 U	56 U
SW8082	AROCLOR-1232	ug/kg	15 U	16 U	17 U	160 U	14 U	52 U	56 U
SW8082	AROCLOR-1242	ug/kg	15 U	16 U	17 U	160 U	14 U	52 U	56 U
SW8082	AROCLOR-1248	ug/kg	15 U	1700	1400	9600	3000	52 U	56 U
SW8082	AROCLOR-1254	ug/kg	15 U	1700	1900	3300	1200	52 U	56 U
SW8082	AROCLOR-1260	ug/kg	15 U	910	1000	1200	400	52 U	56 U
SW8082	AROCLOR-1268	ug/kg	15 U	16 U	17 U	160 U	14 U	52 U	56 U
SW8082	PCBS, N.O.S.	ug/kg	15 U	4300	4300	14000	4600	52 U	56 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9 U	9.8 U	500 UJ		430 U	6.2 U	6.7 U
SW8260	1.2.4-TRICHLOROBENZENE	ug/kg	9 U	2.5 J	500 U	9.3 U	430 U	6.2 U	6.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	9 U	5.2 J	500 U	2.1 J	97 J	6.2 U	6.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	9 U	2.6 J	500 U	9.3 U	430 U	6.2 U	6.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	9 U	3.9 J	500 U	2.5 J	430 U	6.2 U	6.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	9 U	11	210 J	6.9 J	340 J	6.2 U	6.7 U
SW8260	BENZENE	ug/kg	9 U	2.7 J	500 U	1.7 J	430 U	6.2 U	6.7 U
SW8260	CHLOROBENZENE	ug/kg	9 U	16	190 J	1.7 3	600	6.2 U	6.7 U
SW8260	ETHYLBENZENE	ug/kg	9 U	9.8 U	500 U	9.3 U	110 J	6.2 U	6.7 U
SW8260	NAPHTHALENE	ug/kg	9 U	23	660 J	9.3 U	4100	6.2 U	6.7 U
SW8260	TOLUENE	ug/kg	9 U	9.8 U	500 U	9.3 U	100 J	6.2 U	6.7 U
SW8260	XYLENES, TOTAL	ug/kg ug/kg	27 U	38	860 J	9.3 U	310 J	19 U	20 U
SW8270	ACENAPHTHENE	ug/kg	60 U	2700	2700 J	620	4200	42 U	45 U
SW8270	ACENAPHTHYLENE		60 U	980 J	1000 J	770	1800	28 J	45 U
SW8270	ANTHRACENE	ug/kg ug/kg	60 U	3000	2500	1300	4700	19 J	45 U
SW8270			60 U	3100	3100	1800	4500	70	
SW8270	BENZO(A)ANTHRACENE	ug/kg	160	1700	1800	1100	2200	66	45 U 45 U
	BENZO(A)PYRENE	ug/kg							
SW8270	BENZO(B)FLUORANTHENE	ug/kg	60 U	2900	2900	2000	4000	100	45 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	60 U	1300 J	1200 J	840 J	1500 J	47	45 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	60 U	66 U	66 U	62 U	57 U	42 U	45 U
SW8270	CHRYSENE	ug/kg	60 U	3300	3200	2100 J	4800	66	45 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	60 U	310 J	340 J	230 J	540 J	22 J	45 U
SW8270	FLUORANTHENE	ug/kg	60 U	9500	11000	5500	6000	85	45 U
SW8270	FLUORENE	ug/kg	60 U	66 U	2300 J	62 U	57 U	42 U	45 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	60 U	1000 J	1100 J	750 J	1500 J	42	45 U
SW8270	PHENANTHRENE	ug/kg	60 U	11000	11000	3100	13000	37 J	45 U
SW8270	PHENOL	ug/kg	60 U	66 U	99	46 J	51 J	42 U	45 U
SW8270	PYRENE	ug/kg	60 U	6800	5100	2700	8100	93	45 U
SW9045	рН	S.U.	6.9	7.1	7	7	6.9	8 J	7.5 J

		Location	OL-VC-60200	OL-VC-60200	OL-VC-60200	OL-VC-60200	OL-VC-60201	OL-VC-60201	OL-VC-60201
		Sample Depth	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft
		Field Sample ID	OL-0600-03	OL-0600-04	OL-0600-05	OL-0600-06	OL-0600-07	OL-0600-08	OL-0600-09
		Sample Date	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008
		SDG	C8G190132						
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	69.8	70.6	69.4	68.5	76	68.4	65.3
ASTM D854	SPECIFIC GRAVITY	g/cc	2.688	2.702	2.691	2.7	2.696	2.698	2.683
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	10700	14300	13800	14300	9700	12200	14800
SM2540G	SOLIDS, PERCENT	%	64.4	65.8	68.7	68	74.7	67.1	61.4
SW7471	MERCURY	mg/kg	0.0055 U	0.0054 U	0.0052 U	0.014 J	0.075	0.0053 U	0.0058 U
SW8082	AROCLOR-1016	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1221	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1232	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1242	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1248	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1254	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1260	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	AROCLOR-1268	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8082	PCBS, N.O.S.	ug/kg	63 U	63 U	61 U	61 U	54 U	61 U	68 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	BENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	CHLOROBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	ETHYLBENZENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	NAPHTHALENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	TOLUENE	ug/kg	7.8 U	7.6 U	7.3 U	7.4 U	6.7 U	7.4 U	8.1 U
SW8260	XYLENES. TOTAL	ug/kg	23 U	23 U	22 U	22 U	20 U	22 U	24 U
SW8270	ACENAPHTHENE	ug/kg	51 U	51 U	49 U	49 U	45 U	50 U	54 U
SW8270	ACENAPHTHYLENE	ug/kg	51 U	51 U	49 U	49 U	45 U	50 U	54 U
SW8270	ANTHRACENE	ug/kg	51 U	51 U	49 U	49 U	45 U	50 U	54 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	51 U	51 U	49 U	49 U	60	50 U	54 U
SW8270	BENZO(A)PYRENE	ug/kg	51 U	51 U	49 U	49 U	70	50 U	54 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	51 U	51 U	49 U	49 U	89	50 U	54 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	51 U	51 U	49 U	49 U	50	50 U	54 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	51 U	51 U	49 U	49 U	45 U	50 U	54 U
SW8270	CHRYSENE	ug/kg ug/kg	51 U	51 U	49 U	49 U	45 0	50 U	54 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg ug/kg	51 U	51 U	49 U	49 U	45 U	50 U	54 U
SW8270	FLUORANTHENE	ug/kg ug/kg	51 U	51 U	49 U	49 U	82	50 U	54 U
SW8270	FLUORANTHENE	ug/kg ug/kg	51 U	51 U	49 U	49 U	45 U	50 U	54 U
SW8270	INDENO(1,2,3-CD)PYRENE		51 U	51 U	49 U	49 U	45 0	50 U	54 U
SW8270 SW8270	PHENANTHRENE	ug/kg	51 U	51 U	49 U	49 U	35 J	50 U	54 U
SW8270 SW8270	PHENANTHRENE	ug/kg	51 U	51 U	49 U	49 U		50 U	54 U
	_	ug/kg					45 U 80		
SW8270	PYRENE	ug/kg S.U.	51 U	51 U	49 U	49 U		50 U	54 U
SW9045	pH	ა.∪.	7.3 J	7.2 J	7.3 J	7.2 J	8 J	7.7 J	7.5 J

		Location	OL-VC-60201	OL-VC-60201	OL-VC-60201	OL-VC-60201	OL-VC-60201	OL-VC-60202	OL-VC-60202
		Sample Depth	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	0.0-1.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0600-10	OL-0600-11	OL-0600-12	OL-0600-13	OL-0600-14	OL-0600-15	OL-0600-16
		Sample Date	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008
		SDG	C8G190132	C8G190132	C8G190132	C8G190132	C8G190132	C8G190132	C8G190132
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units	Counton	Counton	- Counton	- Counton	Counton	Countern	- Countries
	SOLIDS, PERCENT	%	62.3	64.2	63.8	65.6	63.9	77.6	66.7
ASTM D854	SPECIFIC GRAVITY	g/cc	2.697	2.699	2.695	2.694	2.708	2.671	2.684
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	20800	22700	20500	22500	30700	10000	17300
SM2540G	SOLIDS, PERCENT	%	65.1	63.2	63.6	61.6	61.2	77.7	65.8
SW7471	MERCURY	mg/kg	0.012 J	0.0056 U	0.013 J	0.014 J	0.017 J	0.096	0.0054 U
SW8082	AROCLOR-1016	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1221	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1232	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1242	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1248	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1254	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1260	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	AROCLOR-1268	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8082	PCBS, N.O.S.	ug/kg	64 U	66 U	66 U	67 U		54 U	63 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	1,4-DICHLOROBENZENE		7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	BENZENE	ug/kg ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	CHLOROBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	ETHYLBENZENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	NAPHTHALENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	TOLUENE	ug/kg	7.7 U	7.9 U	7.9 U	8.1 U		6.4 U	7.6 U
SW8260	XYLENES, TOTAL	ug/kg	23 U	7.9 U	7.9 U	24 U		19 U	23 U
SW8270	ACENAPHTHENE	ug/kg	51 U	53 U	53 U	54 U		310	51 U
SW8270	ACENAPHTHYLENE	ug/kg	51 U	53 U	53 U	54 U		260	51 U
SW8270	ANTHRACENE	ug/kg	51 U	53 U	53 U	54 U		500	51 U
SW8270	BENZO(A)ANTHRACENE		51 U	53 U	53 U	54 U		800	51 U
SW8270 SW8270	BENZO(A)ANTHRACENE BENZO(A)PYRENE	ug/kg ug/kg	51 U	53 U	53 U	54 U		680	51 U
SW8270	BENZO(B)FLUORANTHENE	ug/kg	51 U	53 U	53 U	54 U		790	51 U
SW8270	BENZO(G,H,I)PERYLENE		51 U	53 U	53 U	54 U		370	51 U
SW8270 SW8270	BENZO(K)FLUORANTHENE	ug/kg ug/kg	51 U	53 U	53 U	54 U		43 U	51 U
SW8270	CHRYSENE		51 U	53 U	53 U	54 U		690	51 U
SW8270		ug/kg	51 U					61	
SW8270 SW8270	DIBENZO(A,H)ANTHRACENE FLUORANTHENE	ug/kg	51 U	53 U 53 U	53 U 53 U	54 U 54 U		1300	51 U 51 U
SW8270 SW8270	FLUORANTHENE	ug/kg	51 U	53 U	53 U	54 U		230	51 U
		ug/kg			53 U			320	
SW8270 SW8270	INDENO(1,2,3-CD)PYRENE PHENANTHRENE	ug/kg	51 U 51 U	53 U 53 U	53 U	54 U 54 U		170	51 U 51 U
		ug/kg							
SW8270	PHENOL	ug/kg	20 J	30 J	53 U	29 J	54 U	43 U	51 U
SW8270	PYRENE	ug/kg	51 U	53 U	53 U	54 U		1300	51 U
SW9045	pH	S.U.	7.5 J	7.4 J	7.3 J	7.4 J	7.3 J	7.9 J	7.7 J

		Location	OL-VC-60202	OL-VC-60202	OL-VC-60202	OL-VC-60202	OL-VC-60202	OL-VC-70112	OL-VC-70112
		Sample Depth	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.1 Ft	0.0-1.0 Ft	1.0-2.0 Ft
		Field Sample ID	OL-0600-17	OL-0600-18	OL-0600-19	OL-0600-20	OL-0600-21	OL-0597-11	OL-0597-12
		Sample Date	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/18/2008	7/17/2008	7/17/2008
		SDG	C8G190132	C8G190132	C8G190132	C8G190132	C8G190132	C8G180340	C8G180340
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units	- Countries	Counton	Counton	- Countries	Countries	Countries	- Countries
	SOLIDS, PERCENT	%	67.4	71	68	65.6	66.6	47.9	49.3
ASTM D854	SPECIFIC GRAVITY	g/cc	2.686	2.695	2.69	2.688	2.68	2.435	2.538
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	13100	20200	17100	26000	19600	69300 J	64800 J
SM2540G	SOLIDS, PERCENT	%	68.1	68.5	68.9	60.9	63.6	44.2	42.5
SW7471	MERCURY	mg/kg	0.0052 U	0.0052 U	0.0052 U	0.0058 U		23.8 J	32.1 J
SW8082	AROCLOR-1016	ug/kg	61 U	61 U	61 U	68 U		380 UJ	390 UJ
SW8082	AROCLOR-1221	ug/kg	61 U	61 U	61 U	68 U		380 UJ	390 UJ
SW8082	AROCLOR-1232	ug/kg	61 U	61 U	61 U	68 U		380 UJ	390 UJ
SW8082	AROCLOR-1242	ug/kg	61 U	61 U	61 U	68 U		380 UJ	390 UJ
SW8082	AROCLOR-1248	ug/kg	61 U	61 U	61 U	68 U		7000 J	7300 J
SW8082	AROCLOR-1254	ug/kg	61 U	61 U	61 U	68 U		5500 J	3800 J
SW8082	AROCLOR-1260	ug/kg	61 U	61 U	61 U	68 U		2300 J	1400 J
SW8082	AROCLOR-1268	ug/kg	61 U	61 U	61 U	68 U		380 UJ	390 UJ
SW8082	PCBS, N.O.S.	ug/kg	61 U	61 U	61 U	68 U		15000 J	12000 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		5700 UJ	5900 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		1800 J	7500 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		5100 J	11000 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		1000 J	1300 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		4300 J	3800 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		33000 J	27000 J
SW8260	BENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		2300 J	1900 J
SW8260	CHLOROBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		80000 J	25000 J
SW8260	ETHYLBENZENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		2500 J	3400 J
SW8260	NAPHTHALENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		68000 J	79000 J
SW8260	TOLUENE	ug/kg	7.3 U	7.3 U	7.3 U	8.2 U		2100 J	1800 J
SW8260	XYLENES, TOTAL	ug/kg	22 U	22 U	22 U	25 U		29000 J	34000 J
SW8270	ACENAPHTHENE	ug/kg	49 U	49 U	49 U	55 U		5500 J	440 J
SW8270	ACENAPHTHYLENE	ug/kg	49 U	49 U	49 U	55 U		4500 J	440 J
SW8270	ANTHRACENE	ug/kg	49 U	49 U	49 U	55 U		23000 J	160 UJ
SW8270	BENZO(A)ANTHRACENE	ug/kg	49 U	49 U	49 U	55 U		12000 J	5300 J
SW8270	BENZO(A)PYRENE	ug/kg	49 U	49 U	49 U	55 U		9500 J	5000 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	49 U	49 U	49 U	55 U		12000 J	7300 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	49 U	49 U	49 U	55 U		5300 J	3300 J
SW8270	BENZO(K)FLUORANTHENE	ug/kg	49 U	49 U	49 U	55 U		150 UJ	3500 J
SW8270	CHRYSENE	ug/kg	49 U	49 U	49 U	55 U		11000 J	8700 J
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	49 U	49 U	49 U	55 U		1100 J	1300 J
SW8270	FLUORANTHENE	ug/kg	49 U	49 U	49 U	55 U		42000 J	28000 J
SW8270	FLUORENE	ug/kg	49 U	49 U	49 U	55 U		220000 J	460000 J
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	49 U	49 U	49 U	55 U		4600 J	3800 J
SW8270	PHENANTHRENE	ug/kg	49 U	49 U	49 U	55 U		55000 J	26000 J
SW8270	PHENOL	ug/kg	49 U	49 U	49 U	27 J		97 J	210 J
SW8270	PYRENE	ug/kg	49 U	49 U	49 U	55 U		30000 J	12000 J
SW9045	pH	S.U.	7.4 J	7.5 J	7.4 J	7.4 J		7.8 J	7.8 J
3113040	lk	0.0.	1.73	1.00	7.70	7.43	1.55	7.00	1.00

1		Location	OL-VC-70112		OL-VC-70112	OL-VC-70112	OL-VC-70112	OL-VC-70112	OL-VC-70112	OL-VC-70112
		Sample Depth	2.0-3.0 Ft		3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft	7.0-8.0 Ft	8.0-9.4 Ft
		Field Sample ID	OL-0597-13		OL-0597-14	OL-0597-15	OL-0597-16	OL-0597-17	OL-0597-18	OL-0597-19
		Sample Date	7/17/2008		7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180340		C8G180340	C8G180340	C8G180340	C8G180340	C8G180340	C8G180340
		Matrix	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample		Regular Sample					
		Sample Type	Sediment		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units								
	SOLIDS, PERCENT	%	49.7		52.3	56.4	55.8	58.9	67.6	54.9
	SPECIFIC GRAVITY	g/cc	2.612		2.599	2.59	2.622	2.651	2.687	2.69
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	46000 J	J	27100 J	49200 J	50300 J	41000 J	24200	35100 J
	SOLIDS, PERCENT	%	45		47	48.5	48.3	48.5	55.4	46.8
	MERCURY	mg/kg	55.6	J	52.2 J	5.6 J	3.9 J	5 J	0.89	0.025 J
	AROCLOR-1016	ug/kg	370 L		350 UJ	86 UJ				89 UJ
	AROCLOR-1221	ug/kg	370 L		350 UJ	86 UJ			75 U	89 UJ
		ug/kg	370 L	UJ	350 UJ	86 UJ		J 86 UJ	75 U	89 UJ
	AROCLOR-1242	ug/kg	370 L		350 UJ	86 UJ				89 UJ
	AROCLOR-1248	ug/kg	2000 J		350 UJ	470 J	86 U.		75 U	89 UJ
	AROCLOR-1254	ug/kg	1700 J		1700 J	660 J	110 J	86 UJ		89 UJ
	AROCLOR-1260	ug/kg	690 J		920 J	1500 J	56 J	86 UJ		89 UJ
	AROCLOR-1268	ug/kg	370 L		350 UJ	86 UJ				89 UJ
	PCBS, N.O.S.	ug/kg	4400 J		2600 J	2700 J	160 J	86 UJ		89 UJ
	1,2,3-TRICHLOROBENZENE	ug/kg	5600 L		530 UJ	10 UJ			9 U	11 UJ
	1,2,4-TRICHLOROBENZENE	ug/kg	4400 J	J	530 UJ	10 UJ			9 U	11 UJ
	1,2-DICHLOROBENZENE	ug/kg	12000 J	-	840 J	2.3 J	10 U.		9 U	11 UJ
		ug/kg	5600 L	UJ	480 J	10 UJ	10 U.	J 10 UJ	9 U	11 UJ
	1,3-DICHLOROBENZENE	ug/kg	3700 J	J	3200 J	4.7 J	10 U.			11 UJ
	1,4-DICHLOROBENZENE	ug/kg	38000 J	J	17000 J	17 J	10 U.		9 U	11 UJ
	BENZENE	ug/kg	5600 L		380 J	22 J	2.3 J	10 UJ	9 U	11 UJ
SW8260	CHLOROBENZENE	ug/kg	8800 J	J	4100 J	37 J	10 U	J 10 UJ	1.5 J	11 UJ
SW8260	ETHYLBENZENE	ug/kg	2000 J	J	300 J	10 UJ	10 U.	J 10 UJ	9 U	11 UJ
SW8260	NAPHTHALENE	ug/kg	75000 J	J	3500 J	10 UJ	10 U.		4.4 J	2.7 J
SW8260	TOLUENE	ug/kg	1300 J	J	210 J	10 UJ	10 U.	J 10 UJ	9 U	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	17000 J	J	3800 J	15 J	7.2 J	11 J	27 U	32 UJ
SW8270	ACENAPHTHENE	ug/kg	3000 J	J	7900 J	1400 J	2100 J	3700 J	1100	55 J
SW8270	ACENAPHTHYLENE	ug/kg	2200 J	J	2500 J	2200 J	2000 J	3100 J	710	72 UJ
SW8270	ANTHRACENE	ug/kg	14000 J	J	10000 J	4400 J	5600 J	11000 J	2800	65 J
	BENZO(A)ANTHRACENE	ug/kg	5300 J	J	8500 J	5700 J	7100 J	13000 J	3800	66 J
	BENZO(A)PYRENE	ug/kg	3600 J		6500 J	5600 J	5600 J	11000 J	3500	52 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	5800 J	J	7100 J	7500 J	7500 J	10000 J	3100	48 J
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	2600 J	J	3800 J	2900 J	2500 J	4900 J	2200 J	72 UJ
	BENZO(K)FLUORANTHENE	ug/kg	150 L	UJ	3300 J	140 UJ	140 U.	J 140 UJ	120 U	72 UJ
SW8270	CHRYSÈŃE	ug/kg	5700 J	J	9300 J	6800 J	7800 J	12000 J	3600	59 J
		ug/kg	820 J	J	1200 J	1100 J	880 J	1700 J	420 J	72 UJ
	FLUORANTHÉNE	ug/kg	17000 J	J	30000 J	20000 J	25000 J	32000 J	7100	150 J
	FLUORENE	ug/kg	200000 J	J	53000 J	13000 J	9800 J	5800 J	1400	230 J
	INDENO(1,2,3-CD)PYRENE	ug/kg	2100 J		3500 J	3200 J	2600 J	4000 J	1500 J	72 UJ
	PHENANTHRENE	ug/kg	21000 J		34000 J	12000 J	16000 J	32000 J	8500	180 J
	PHENOL	ug/kg	130 J		140 UJ	140 UJ		83 J	120 U	72 UJ
	PYRENE	ug/kg	12000 J		20000 J	8000 J	8600 J	17000 J	6800	140 J
SW9045	Н	S.U.	7.7 J	J	7.7 J	7.6 J	7.5 J	7.4 J	7.4 J	7.2 J

		Location	OL-VC-70113						
		Sample Depth	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft
		Field Sample ID	OL-0598-12	OL-0598-13	OL-0598-14	OL-0598-15	OL-0598-16	OL-0598-17	OL-0598-18
			7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		Sample Date SDG	C8G180345						
		Matrix	SOIL	SOIL		C6G160345	SOIL		SOIL
					SOIL			SOIL	
		Sample Purpose	Regular Sample						
	5 . N	Sample Type	Sediment						
Method	Parameter Name	Units			0.1.1		= 1.0		
	SOLIDS, PERCENT	%	51.8	64.4	61.1	52.7	51.8	51	50.1
ASTM D854	SPECIFIC GRAVITY	g/cc	2.532	2.63	2.67	2.691	2.687	2.686	2.686
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	65700 J	48900	49800	56000 J	32700 J	47700 J	54800 J
SM2540G	SOLIDS, PERCENT	%	43.1	61.2	59	49.5	47.1	48.3	48.6
SW7471	MERCURY	mg/kg	42.3 J	2.1	0.023 J	0.0072 U.		0.0073 UJ	0.0073 UJ
SW8082	AROCLOR-1016	ug/kg	380 UJ	68 U	71 U	84 U.		86 UJ	86 UJ
SW8082	AROCLOR-1221	ug/kg	380 UJ	68 U	71 U	84 U.		86 UJ	86 UJ
SW8082	AROCLOR-1232	ug/kg	380 UJ	68 U	71 U	84 U.		86 UJ	86 UJ
SW8082	AROCLOR-1242	ug/kg	380 UJ	68 U	71 U	84 U.		86 UJ	86 UJ
SW8082	AROCLOR-1248	ug/kg	2300 J	300	71 U	84 U.		86 UJ	86 UJ
SW8082	AROCLOR-1254	ug/kg	1800 J	370	71 U	84 U.		86 UJ	86 UJ
SW8082	AROCLOR-1260	ug/kg	1100 J	530	71 U	84 U.	89 UJ	86 UJ	86 UJ
SW8082	AROCLOR-1268	ug/kg	380 UJ	68 U	71 U	84 U.	89 UJ	86 UJ	86 UJ
SW8082	PCBS, N.O.S.	ug/kg	5200 J	1200	71 U	84 U.	89 UJ	86 UJ	86 UJ
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	1200 UJ	8.2 U	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	1200 UJ	8.2 U	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	1200 UJ	8.2 U	8.5 U	10 U.		10 UJ	10 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	240 J	8.2 U	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	1200 J	8.2 U	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	2700 J	2.3 J	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	BENZENE	ug/kg	620 J	8.2 U	8.5 U	10 U.		10 UJ	10 UJ
SW8260	CHLOROBENZENE	ug/kg	19000 J	6.9 J	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	ETHYLBENZENE	ug/kg	1200 UJ	8.2 U	8.5 U	10 U.	11 UJ	10 UJ	10 UJ
SW8260	NAPHTHALENE	ug/kg	1800 J	8.2 U	8.5 U	10 U.		10 UJ	10 UJ
SW8260	TOLUENE	ug/kg	1200 UJ	8.2 U	8.5 U	10 U.		10 UJ	10 UJ
SW8260	XYLENES, TOTAL	ug/kg	4200 J	25 U	25 U	30 U.		31 UJ	31 UJ
SW8270	ACENAPHTHENE	ug/kg	2700 J	690	55 J	68 U.		69 UJ	69 UJ
SW8270	ACENAPHTHYLENE	ug/kg	2300 J	1300	77	68 U.		69 UJ	69 UJ
SW8270	ANTHRACENE	ug/kg	14000 J	2200	200	68 U.		69 UJ	69 UJ
SW8270	BENZO(A)ANTHRACENE	ug/kg	8800 J	4900	330	68 U.		69 UJ	69 UJ
SW8270	BENZO(A)PYRENE	ug/kg	6500 J	4900	220	68 U.		97 J	96 J
SW8270	BENZO(B)FLUORANTHENE	ug/kg	9900 J	5700	260	68 U.		69 UJ	69 UJ
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	4100 J	2000 J	87 J	68 U.		69 UJ	69 UJ
SW8270	BENZO(K)FLUORANTHENE	ug/kg	78 UJ	55 UJ	56 U	68 U.		69 UJ	69 UJ
SW8270	CHRYSENE	ug/kg	10000 J	5100	260	68 U.		69 UJ	69 UJ
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	1100 J	570 J	30 J	68 U.		69 UJ	69 UJ
SW8270	FLUORANTHENE	ug/kg	22000 J	8400	400	68 U.		69 UJ	69 UJ
SW8270	FLUORENE	ug/kg	100000 J	2600	110	47 J	58 J	48 J	46 J
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	3600 J	2100 J	85 J	68 U.		69 UJ	69 UJ
SW8270	PHENANTHRENE	ug/kg ug/kg	24000 J	5700	410	20 J	71 UJ	69 UJ	69 UJ
SW8270	PHENOL		78 UJ	73	25 J	68 U.		69 UJ	69 UJ
SW8270 SW8270	PYRENE	ug/kg	21000 J	5000	330	68 U.		69 UJ	69 UJ
	pH	ug/kg S.U.	7.8 J	7.8 J	7.6 J		71 UJ 7.3 J		
SW9045	þ⊔	S.U.	7.8 J	7.8 J	1.6 J	7.3 J	1.3 J	7.3 J	7.2 J

		Location	OL-VC-70113	OL-VC-70114	OL-VC-70114	OL-VC-70114	OL-VC-70114	OL-VC-70114	OL-VC-70115
		Sample Depth	7.0-7.9 Ft	0.0-1.0 Ft	1.0-2.0 Ft	2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	0.0-1.0 Ft
		Field Sample ID	OL-0598-19	OL-0599-10	OL-0599-11	OL-0599-12	OL-0599-13	OL-0599-14	OL-0599-01
		Sample Date	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180345	C8G180351	C8G180351	C8G180351	C8G180351	C8G180351	C8G180351
		Matrix	SOIL						
		Sample Purpose	Regular Sample						
		Sample Type	Sediment						
Method	Parameter Name	Units							
ASTM D2216	SOLIDS, PERCENT	%	55.2	74.3	65.4	54.1	52.3	52.8	73.8
ASTM D854	SPECIFIC GRAVITY	g/cc	2.69	2.624	2.674	2.684	2.685	2.705	2.664
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	50900	25400	49700	44400	57600	49500	20800
SM2540G	SOLIDS, PERCENT	%	53.5	76.1	63.7	55.1	52.9	53.4	74.4
SW7471	MERCURY	mg/kg	0.075	3	0.06	0.0064 U	0.0067 U	0.0066 U	2.6
SW8082	AROCLOR-1016	ug/kg	78 U	54 U	65 U	76 U	79 U	78 U	56 U
SW8082	AROCLOR-1221	ug/kg	78 U	54 U	65 U	76 U	79 U	78 U	56 U
SW8082	AROCLOR-1232	ug/kg	78 U	54 U	65 U	76 U	79 U	78 U	56 U
SW8082	AROCLOR-1242	ug/kg	78 U	54 U	65 U	76 U	79 U	78 U	56 U
SW8082	AROCLOR-1248	ug/kg	78 U	54 U	65 U	76 U	79 U	78 U	56 U
SW8082	AROCLOR-1254	ug/kg	78 U	150	65 U	76 U	79 U	78 U	200
SW8082	AROCLOR-1260	ug/kg	78 U	58	65 U	76 U	79 U	78 U	100
SW8082	AROCLOR-1268	ug/kg	78 U	54 U	65 U	76 U		78 U	56 U
SW8082	PCBS, N.O.S.	ug/kg	78 U	210	65 U	76 U	79 U	78 U	300
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U	9.5 U	9.4 U	6.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U	9.5 U	9.4 U	6.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U	9.5 U	9.4 U	2.2 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U	9.5 U	9.4 U	6.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	9.3 U	1.2 J	7.8 U	9.1 U		9.4 U	3.1 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	9.3 U	9.4	7.8 U	9.1 U	9.5 U	9.4 U	20
SW8260	BENZENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U	9.5 U	9.4 U	6.7 U
SW8260	CHLOROBENZENE	ug/kg	9.3 U	8.1	5.3 J	9.1 U	9.5 U	9.4 U	22
SW8260	ETHYLBENZENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U		9.4 U	6.7 U
SW8260	NAPHTHALENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U		9.4 U	8.3
SW8260	TOLUENE	ug/kg	9.3 U	6.6 U	7.8 U	9.1 U		9.4 U	6.7 U
SW8260	XYLENES, TOTAL	ug/kg	28 U	20 U	24 U	27 U		28 U	5.1 J
SW8270	ACENAPHTHENE	ug/kg	63 U	230	45 J	61 U		63 U	3700
SW8270	ACENAPHTHYLENE	ug/kg	63 U	440	34 J	61 U		63 U	750
SW8270	ANTHRACENE	ug/kg	28 J	840	170	61 U		63 U	7400
SW8270	BENZO(A)ANTHRACENE	ug/kg	23 J	1800	250	61 U		63 U	7400
SW8270	BENZO(A)PYRENE	ug/kg	120	1900	180	97	87	120	4200
SW8270	BENZO(B)FLUORANTHENE	ug/kg	63 U	2300	250	61 U		63 U	8700
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	63 U	1300	120	61 U		63 U	4200
SW8270	BENZO(K)FLUORANTHENE	ug/kg	63 U	44 U	52 U	61 U		63 U	45 U
SW8270	CHRYSENE	ug/kg	15 J	1800	180	61 U		63 U	6700
SW8270		ug/kg	63 U	350	29 J	61 U		63 U	1100
SW8270	FLUORANTHENE	ug/kg	51 J	3100	380	61 U		63 U	22000
SW8270	FLUORENE	ug/kg	150	180	62	61 U		63 U	2800
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	63 U	1100	90	61 U		63 U	3700
SW8270	PHENANTHRENE	ug/kg	50 J	1400	330	61 U		63 U	24000
SW8270	PHENOL	ug/kg	63 U	17 J	52 U	61 U		63 U	54
SW8270	PYRENE	ug/kg	49 J	2900	430	61 U		63 U	23000
SW9045	pH	S.U.	7.3 J	7.9 J	7.6 J	7.4 J	7.3 J	7.3 J	7.9 J

		Location	OL-VC-70115		OL-VC-70115	OL-VC-70115	OL-VC-70115	OL-VC-70115	OL-VC-70115	OL-VC-70115
		Sample Depth	1.0-2.0 Ft		2.0-3.0 Ft	3.0-4.0 Ft	4.0-5.0 Ft	5.0-6.0 Ft	5.0-6.0 Ft	6.0-7.0 Ft
		Field Sample ID	OL-0599-02		OL-0599-03	OL-0599-04	OL-0599-05	OL-0599-06	OL-0599-07	OL-0599-08
		Sample Date	7/17/2008		7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		SDG	C8G180351		C8G180351	C8G180351	C8G180351	C8G180351	C8G180351	C8G180351
		Matrix	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample Purpose	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample	Field Duplicate	Regular Sample
		Sample Type	Sediment		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Method	Parameter Name	Units								
ASTM D2216	SOLIDS, PERCENT	%	62.5		59.2	54	51	53.4	52.6	56.7
ASTM D854	SPECIFIC GRAVITY	g/cc	2.677		2.697	2.691	2.691	2.685	2.701	2.696
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	56000 J	J	56800	41400	36900	32700	22200	41000
SM2540G	SOLIDS, PERCENT	%	54		53	53.4	55.8	55.9	53.9	62.8
SW7471	MERCURY	mg/kg	0.11		0.0067 U	0.0066 U	0.0064 U	0.0063 U	0.0066 U	0.0057 U
SW8082	AROCLOR-1016	ug/kg	77 l	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1221	ug/kg	77 l	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1232	ug/kg	77 L	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1242	ug/kg	77 L	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1248	ug/kg	77 l	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1254	ug/kg	77 L	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1260	ug/kg	77 l	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8082	AROCLOR-1268	ug/kg	77 l		79 U	77 U	75 U	74 U	76 U	66 U
SW8082	PCBS, N.O.S.	ug/kg	77 L	U	79 U	77 U	75 U	74 U	76 U	66 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U		9.3 U	8 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	BENZENE	ug/kg	9.3 l	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	CHLOROBENZENE	ug/kg	9.3 l	U	2.3 J	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	ETHYLBENZENE	ug/kg	9.3 L	U	9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	NAPHTHALENE	ug/kg	9.3 l	U	7.3 J	2.4 J	9 U	8.9 U	9.3 U	8 U
SW8260	TOLUENE	ug/kg	9.3 L		9.4 U	9.4 U	9 U	8.9 U	9.3 U	8 U
SW8260	XYLENES, TOTAL	ug/kg	28 l	U	28 U	28 U	27 U	27 U	28 U	24 U
SW8270	ACENAPHTHENE	ug/kg	320		63 U	62 U	60 U	59 U	62 U	53 U
SW8270	ACENAPHTHYLENE	ug/kg	33 J	J	63 U	62 U	60 U	59 U	62 U	53 U
SW8270	ANTHRACENE	ug/kg	270		63 U	62 U	60 U	59 U	62 U	53 U
SW8270	BENZO(A)ANTHRACENE	ug/kg	190		63 U	62 U	60 U		62 U	53 U
SW8270	BENZO(A)PYRENE	ug/kg	170		92	140	55 J	77	95	81
SW8270	BENZO(B)FLUORANTHENE	ug/kg	200		63 U	62 U	60 U		62 U	53 U
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	120		63 U	62 U	60 U		62 U	53 U
SW8270	BENZO(K)FLUORANTHENE	ug/kg	62 l	U	63 U	62 U	60 U	59 U	62 U	53 U
SW8270	CHRYSENE	ug/kg	170		63 U	62 U	60 U		62 U	53 U
SW8270		ug/kg	62 l	U	63 U	62 U	60 U	59 U	62 U	53 U
SW8270	FLUORANTHENE	ug/kg	410		63 U	62 U	60 U	59 U	62 U	53 U
SW8270	FLUORENE	ug/kg	200		63 U	62 U	60 U	59 U	62 U	53 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	110		63 U	62 U	60 U	59 U	62 U	53 U
SW8270	PHENANTHRENE	ug/kg	790		22 J	62 U	60 U	59 U	62 U	53 U
SW8270	PHENOL	ug/kg	62 l	U	63 U	62 U	60 U	59 U	62 U	53 U
SW8270	PYRENE	ug/kg	480		63 U	62 U	60 U		62 U	53 U
SW9045	pH	S.U.	7.6 J	J	7.5 J	7.4 J	7.3 J	7.3 J	7.3 J	7.8 J

		Location	OL-VC-70115	
		Sample Depth	7.0-8.1 Ft	
		Field Sample ID	OL-0599-09 7/17/2008	
		Sample Date SDG	C8G180351	
		Matrix	SOIL	
		Sample Purpose	Regular Sample	
	D N	Sample Type	Sediment	
Method	Parameter Name	Units	04.5	
ASTM D2216	SOLIDS, PERCENT	%	61.5	
ASTM D854	SPECIFIC GRAVITY	g/cc	2.695	
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	25200	
SM2540G	SOLIDS, PERCENT	%	59.8	
SW7471	MERCURY	mg/kg	0.0059	
SW8082	AROCLOR-1016	ug/kg	70	-
SW8082	AROCLOR-1221	ug/kg	70	-
SW8082	AROCLOR-1232	ug/kg	70	_
SW8082	AROCLOR-1242	ug/kg	70	-
SW8082	AROCLOR-1248	ug/kg	70	_
SW8082	AROCLOR-1254	ug/kg	70	
SW8082	AROCLOR-1260	ug/kg	70	-
SW8082	AROCLOR-1268	ug/kg	70	
SW8082	PCBS, N.O.S.	ug/kg	70	-
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	8.4	
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	8.4	
SW8260	1,2-DICHLOROBENZENE	ug/kg	8.4	
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	8.4	_
SW8260	1,3-DICHLOROBENZENE	ug/kg	8.4	_
SW8260	1,4-DICHLOROBENZENE	ug/kg	8.4	
SW8260	BENZENE	ug/kg	8.4	_
SW8260	CHLOROBENZENE	ug/kg	8.4	
SW8260	ETHYLBENZENE	ug/kg	8.4	
SW8260	NAPHTHALENE	ug/kg	8.4	
SW8260	TOLUENE	ug/kg	8.4	
SW8260	XYLENES, TOTAL	ug/kg	25	
SW8270	ACENAPHTHENE	ug/kg	56	
SW8270	ACENAPHTHYLENE	ug/kg	56	
SW8270	ANTHRACENE	ug/kg	56	
SW8270	BENZO(A)ANTHRACENE	ug/kg	56	U
SW8270	BENZO(A)PYRENE	ug/kg	180	
SW8270	BENZO(B)FLUORANTHENE	ug/kg	56	
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	56	
SW8270	BENZO(K)FLUORANTHENE	ug/kg	56	
SW8270	CHRYSENE	ug/kg	56	
SW8270	DIBENZO(A,H)ANTHRACENE	ug/kg	56	
SW8270	FLUORANTHENE	ug/kg	56	_
SW8270	FLUORENE	ug/kg	56	-
SW8270	INDENO(1,2,3-CD)PYRENE	ug/kg	56	-
SW8270	PHENANTHRENE	ug/kg	56	
SW8270	PHENOL	ug/kg	56	_
SW8270	PYRENE	ug/kg	56	
SW9045	pH	S.U.	7.4	J

ATTACHMENT A-2

VALIDATED LABORATORY DATA FOR POREWATER CENTRIFUGE VIBRACORE SAMPLES

			Location	OL-VC-20149	OL-VC-20149	OL-VC-20149	OL-VC-20150	OL-VC-20150	OL-VC-20150	OL-VC-20151
			Field Sample ID	OL-0588-17DP	OL-0588-18DP	OL-0588-19DP	OL-0577-19DP	OL-0578-01DP	OL-0578-03DP	OL-0577-13DP
			Sample Depth	0-2 Ft	2-4 Ft	4-6 Ft	0-2 Ft	2-4 Ft	4-4.9 Ft	0-2 Ft
			Sample Date	7/3/2008	7/3/2008	7/3/2008	6/23/2008	6/23/2008	6/23/2008	6/23/2008
			SDG	C8G080239	C8G080239	C8G080239	C8F250282	C8F250294	C8F250294	C8F250282
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	6.1	7.1	7.1	24	15.5	11.7	50.7
SW7470	MERCURY	ug/L	Υ	0.11 U	0.055 U	0.11 U	0.055 U	0.055 U	0.22 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	5 U	5 U	5 U	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	0.84 J	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	1.8 J	0.65 J	0.65 J	5 U
SW8260	BENZENE	ug/L	Υ	120	460	110	1.6 J	56	150	6.4
SW8260	CHLOROBENZENE	ug/L	Υ	3.4 J	25 U	5 U	5	1.6 J	1.3 J	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	1.3 J	25 U	5 U	5 U	5 U	0.8 J	0.93 J
SW8260	NAPHTHALENE	ug/L	Υ	5 U	25 U	5 U	5 U	50 J	53 J	64 J
SW8260	TOLUENE	ug/L	Υ	5 U	25 U	5 U	5 U	3.7 J	14	2.5 J
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	75 U	15 U	2.3 J	7.3 J	14 J	14 J
SW9040	pH	S.U.	Υ		7.7	7.7	7.1	9.6 J	11 J	10.4

			Location	OL-VC-20151	OL-VC-20151	OL-VC-20152	OL-VC-20152	OL-VC-20153	OL-VC-20153	OL-VC-20153
			Field Sample ID	OL-0577-15DP	OL-0577-17DP	OL-0578-05DP	OL-0578-07DP	OL-0578-09DP	OL-0578-11DP	OL-0578-13DP
			Sample Depth	2-4 Ft	4-5.3 Ft	0-2 Ft	2-4.1 Ft	0-2 Ft	2-4 Ft	4-5.9 Ft
			Sample Date	6/23/2008	6/23/2008	6/23/2008	6/23/2008	6/23/2008	6/23/2008	6/23/2008
			SDG	C8F250282	C8F250282	C8F250294	C8F250294	C8F250294	C8F250294	C8F250294
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	96.5	52.6	17.1	37	15.2	12	9.4
SW7470	MERCURY	ug/L	Υ	0.055 U	0.17 J	0.11 U	0.11 U	0.055 U	0.055 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	1.4 J	5 U	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	0.47 J	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	0.79 J	1.1 J	5 U	5 U	5 U	5.5	2 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	0.79 J	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	0.57 J	0.92 J	5 U	5 U	5 U	5.7	2 J
SW8260	BENZENE	ug/L	Υ	8.8	16	3.8 J	6.4	2.1 J	6.2	4.9 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	2.2 J	7	1 J
SW8260	ETHYLBENZENE	ug/L	Υ	1.2 J	2.1 J	5 U	5 U	5 U	7.9	29
SW8260	NAPHTHALENE	ug/L	Υ	130 J	97 J	32 J	9.8 J	5 UJ	4 J	28 J
SW8260	TOLUENE	ug/L	Υ	3 J	6.6	1.6 J	1.2 J	5 U	5 U	0.99 J
SW8260	XYLENES, TOTAL	ug/L	Υ	17	31	15 U	15 U	15 U	15 U	5.6 J
SW9040	pH	S.U.	Υ	10.6	11.4	10.5 J	9.5 J	7.2 J	7.1 J	7.3 J

			Location	OL-VC-20154	OL-VC-20154	OL-VC-20154	OL-VC-20155	OL-VC-20155	OL-VC-20155	OL-VC-20156
			Field Sample ID	OL-0578-15DP	OL-0578-17DP	OL-0578-19DP	OL-0575-19DP	OL-0576-01DP	OL-0576-03DP	OL-0579-01DP
			Sample Depth	0-2 Ft	2-4 Ft	4-5.4 Ft	0-2 Ft	2-4 Ft	4-5.9 Ft	0-2 Ft
			Sample Date	6/23/2008	6/23/2008	6/23/2008	6/19/2008	6/19/2008	6/19/2008	6/24/2008
			SDG	C8F250294	C8F250294	C8F250294	C8F240142	C8F240150	C8F240150	C8F260230
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	13.8	8.7	12.3	19.4	7.9	8	15.3
SW7470	MERCURY	ug/L	Υ	0.055 U	0.055 U	0.11 U	0.22 U	0.055 U	0.055 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	8.7 J	5 U	5 U	5 UJ	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	2.9 J	4.4 J	5 U	5 U	5 U	5 U	1.6 J
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	85	30	1.6 J	5 U	5 U	5 U	95
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	1.5 J	5 U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	0.76 J	5 U	5 U	5 U	5 U	1.8 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	82	28	1.1 J	5 U	5 U	5 U	86
SW8260	BENZENE	ug/L	Υ	47	38	9.2	56	680	450	54
SW8260	CHLOROBENZENE	ug/L	Υ	50	19	1.2 J	4.3 J	7	1.1 J	77
SW8260	ETHYLBENZENE	ug/L	Υ	44	33	3.7 J	5 U	0.92 J	5 U	53
SW8260	NAPHTHALENE	ug/L	Υ	1200 J	1400 J	180 J	160 J	5 UJ	5 UJ	1200 J
SW8260	TOLUENE	ug/L	Υ	170	100	11	5 U	5 U	5 U	330
SW8260	XYLENES, TOTAL	ug/L	Υ	880	510	46	15 U	15 U	15 U	790
SW9040	pH	S.U.	Υ	7.8 J	8.3 J	7.3 J		6.6	6.4	7.8 J

			Location	OL-VC-20156	OL-VC-20156	OL-VC-20157		OL-VC-20157	OL-VC-20157	OL-VC-30078	OL-VC-30078
			Field Sample ID	OL-0579-03DP	OL-0579-05DP	OL-0579-07DP		OL-0579-09DP	OL-0579-11DP	OL-0577-01DP	OL-0577-03DP
			Sample Depth	2-4 Ft	4-4.6 Ft	0-2 Ft		2-4 Ft	4-4.6 Ft	0-2 Ft	2-4 Ft
			Sample Date	6/24/2008	6/24/2008	6/24/2008		6/24/2008	6/24/2008	6/23/2008	6/23/2008
			SDG	C8F260230	C8F260230	C8F260230		C8F260230	C8F260230	C8F250282	C8F250282
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	14.6		15.5		17.9		76.2	86.9
SW7470	MERCURY	ug/L	Υ	0.055 U	0.28 U	0.055	С	0.055 U	0.28 U	0.055 U	3.4
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5	C	5 UJ	5 U	J 5 U	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	1.8 J	5 U	2.1	۲	1.2 J	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	77	2.6 J	110		34	6.8	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	1.6 J	5 U	1.2	۲	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	67	2.1 J	89		31	5.5	5 U	5 U
SW8260	BENZENE	ug/L	Υ	58	4.1 J	110		49	15	1 J	1.6 J
SW8260	CHLOROBENZENE	ug/L	Υ	58	1.8 J	78		23	3.9 J	0.63 J	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	46	1.8 J	51		27	8.4	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	1400 J	35 J	1800	J	1800 J	1400 J	5 U	9.4 J
SW8260	TOLUENE	ug/L	Υ	280	8.4	410		140	11	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	840	31	840		440	96	15 U	15 U
SW9040	рН	S.U.	Υ	8.3 J		9.1	J	8.1 J		10.1	11.8

			Location	OL-VC-30078	OL-VC-30079	OL-VC-30079		OL-VC-30079	OL-VC-30080	OL-VC-30080	OL-VC-30080
			Field Sample ID	OL-0577-05DP	OL-0577-07DP	OL-0577-09DP		OL-0577-11DP	OL-0583-03DP	OL-0583-05DP	OL-0583-07DP
			Sample Depth	4-5 Ft	0-2 Ft	2-4 Ft		4-6 Ft	0-2 Ft	2-4 Ft	4-5.4 Ft
			Sample Date	6/23/2008	6/23/2008	6/23/2008		6/23/2008	6/25/2008	6/25/2008	6/25/2008
			SDG	C8F250282	C8F250282	C8F250282		C8F250282	C8F270352	C8F270352	C8F270352
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	67.8	143	173		181	17.5	35.4	32.7
SW7470	MERCURY	ug/L	Υ	4.9	0.11 U	0.22 L	J	0.11 U	0.055 U	0.28 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5 L	JJ	5 U.	5 U	J 5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L		5 U	5 U		5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	1.9 J	3.9 J	3.6 J	J	4.5 J	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	16 J	28 J	24 J	J	50 J	0.47 J	5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	2 J	1.5 J	J	2.2 J	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	4.4 J	2.5 J	J	4.1 J	2.5 J	15 U	15 U
SW9040	pH	S.U.	Υ	11.8	12.1	12.2		11.1	7.2	7.6	6.8

			Location	OL-VC-30081	OL-VC-30081	OL-VC-30081		OL-VC-30082	OL-VC-30082	OL-VC-30082	OL-VC-30083
			Field Sample ID	OL-0581-19DP	OL-0582-01DP	OL-0582-03DP		OL-0582-17DP	OL-0582-19DP	OL-0583-01DP	OL-0582-05DP
			Sample Depth	0-2 Ft	2-4 Ft	4-5.5 Ft		0-2 Ft	2-4 Ft	4-5 Ft	0-2 Ft
			Sample Date	6/25/2008	6/25/2008	6/25/2008		6/25/2008	6/25/2008	6/25/2008	6/25/2008
			SDG	C8F270358	C8F270355	C8F270355		C8F270355	C8F270355	C8F270352	C8F270355
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	13.9	11.3	16.1		23.4	38		23.8
SW7470	MERCURY	ug/L	Υ	0.055 U	0.055 U	0.055 L	J	0.055 U	0.055 U	0.28 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 U	5 L	J	5 U	5 U	5 UJ	0.71 J
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	0.47 J
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	0.88 J	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	0.54 J	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	0.69 J	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	5 U	5 L	J	5 U	5 U	5 UJ	0.58 J
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	1 J	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 L	J	15 U	15 U	3 J	15 U
SW9040	pH	S.U.	Υ	7.4	8.4	7.2		7	7		7.1

			Location	OL-VC-30083	OL-VC-30083	OL-VC-30084	OL-VC-30084	OL-VC-30084	OL-VC-40188	OL-VC-40188
			Field Sample ID	OL-0582-07DP	OL-0582-09DP	OL-0582-11DP	OL-0582-13DP	OL-0582-15DP	OL-0586-04DP	OL-0586-05DP
			Sample Depth	2-4 Ft	4-6 Ft	0-2 Ft	2-4 Ft	4-5.3 Ft	0-2 Ft	2-4 Ft
			Sample Date	6/25/2008	6/25/2008	6/25/2008	6/25/2008	6/25/2008	7/2/2008	7/2/2008
			SDG	C8F270355	C8F270355	C8F270355	C8F270355	C8F270355	C8G030305	C8G030305
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	36.9	37.9	19.6	30.1	36.3	18.8	34.5
SW7470	MERCURY	ug/L	Υ	0.055 U	0.11 U	0.055 U	0.055 U	0.055 U	0.055 U	0.13 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	0.78 J	1.6 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	0.58 J	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	2.6 J					
SW9040	pH	S.U.	Υ	7.1	7.2	7.2	7.1	7.1	7.4	7.7

			Location	OL-VC-40188	OL-VC-40188	OL-VC-40189		OL-VC-40189	OL-VC-40189	OL-VC-40190	OL-VC-40190
			Field Sample ID	OL-0586-06DP	OL-0586-07DP	OL-0584-01DP		OL-0584-03DP	OL-0584-05DP	OL-0581-07DP	OL-0581-09DP
			Sample Depth	4-6 Ft	6-6.5 Ft	0-2 Ft		2-4 Ft	4-4.3 Ft	0-2 Ft	2-4 Ft
			Sample Date	7/2/2008	7/2/2008	6/26/2008		6/26/2008	6/26/2008	6/25/2008	6/25/2008
			SDG	C8G030305	C8G030305	C8F280116		C8F280116	C8F280116	C8F270358	C8F270358
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	21.6		45.2		72.1		19.1	43.8
SW7470	MERCURY	ug/L	Υ	0.055 U		0.055 l	U	0.055 U			
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5 l	U	5 U	5 U	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	1.6 J	1.2 J	5 U	1.8 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	0.57 J
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	1.2 J	0.74 J	5 U	1.9 J
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	5 UJ	5 l	UJ	5 UJ	5 UJ	5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 l	U	2.1 J	2.9 J	15 U	2.1 J
SW9040	pH	S.U.	Υ	7.3		8.9		8.1		7.3	7.2

			Location	OL-VC-40190	OL-VC-40191	OL-VC-40191		OL-VC-40191	OL-VC-40192	OL-VC-40192	OL-VC-40192
			Field Sample ID	OL-0581-11DP	OL-0581-13DP	OL-0581-15DP		OL-0581-17DP	OL-0586-20DP	OL-0587-01DP	OL-0587-02DP
			Sample Depth	4-4.4 Ft	0-2 Ft	2-4 Ft		4-6 Ft	0-2 Ft	2-4 Ft	4-6 Ft
			Sample Date	6/25/2008	6/25/2008	6/25/2008		6/25/2008	7/2/2008	7/2/2008	7/2/2008
			SDG	C8F270358	C8F270358	C8F270358		C8F270358	C8G030294	C8G030281	C8G030281
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ		18.5	24.6		15.8	26.3	53.1	67.1
SW7470	MERCURY	ug/L	Υ		0.055 U	0.055 l	U		0.11 L	0.055 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 U	5 l	IJ	5 U	J 5 L	J 5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 L	J 5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 L	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U			5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	2.3 J	1.5 J	0.62	J	5 U	5 L	J 5 U	2.8 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	0.67 J	5 l	U	5 U	5 L	5 U	0.64 J
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 L	J 5 U	1.7 J
SW8260	CHLOROBENZENE	ug/L	Υ	2 J	0.56 J	5 l	U	5 U	5 L	J 0.57 J	3.1 J
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 L	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	5 UJ	5 l	IJ	5 U	J 5 L	JJ 5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 L	J 5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	2.6 J	15 U	15 l	U	15 U	15 L	J 15 U	15 U
SW9040	pH	S.U.	Υ		7.1	7.4		7.4	7.8	7.6	7.5

			Location	OL-VC-40192	OL-VC-40193	OL-VC-40193		OL-VC-40193	OL-VC-40194		OL-VC-40194	OL-VC-40194
			Field Sample ID	OL-0587-03DP	OL-0579-13DP	OL-0579-15DP		OL-0579-17DP	OL-0579-19DP		OL-0580-01DP	OL-0580-03DP
			Sample Depth	6-7.9 Ft	0-2 Ft	2-4 Ft		4-4.8 Ft	0-2 Ft		2-4 Ft	4-6 Ft
			Sample Date	7/2/2008	6/24/2008	6/24/2008		6/24/2008	6/24/2008		6/24/2008	6/24/2008
			SDG	C8G030281	C8F260230	C8F260230		C8F260230	C8F260230		C8F260235	C8F260235
			Matrix	WATER	WATER	WATER		WATER	WATER		WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample		Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER		POREWATER	POREWATER
Method	Parameter Name	Units	Filtered									
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	67.4	11.1	7.4			122		363	684
SW7470	MERCURY	ug/L	Υ	0.055 U	0.055 U	0.055 L	J	0.28 U	0.055 U	٦	0.16 J	0.3
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5 L	JJ	5 UJ	5 U	JJ	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	٦	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	0.97 J	6.8		13	3.1 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L		5 U	0.71 J	J	5 U	0.57 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	2 J	5 U	5 L	J	5 U	1.1 J	J	0.67 J	3.6 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	0.86 J	5 U	5 L	J	0.76 J	1.7 J	J	2.6 J	1.9 J
SW8260	BENZENE	ug/L	Υ	3.2 J	5 U	5 L	J	5 U	2.4 J	J	9.7	13
SW8260	CHLOROBENZENE	ug/L	Υ	4.6 J	5 U	5 L	J	0.55 J	4.9 J	J	3.7 J	3.9 J
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	2.1 J	J	9.5	11
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	10 J	3.7 J	J	12 J	4.3 J	J	5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 L	J	3 J	1.3 J	J	5.3	11
SW8260	XYLENES, TOTAL	ug/L	Υ	4.1 J	15 U	15 L	J	5.5 J	36		170	210
SW9040	pH	S.U.	Υ	7.6	7.3 J	6.8 J	J		9.2 J	J	9.6	9.9

			Location	OL-VC-40195	OL-VC-40195	OL-VC-40195		OL-VC-40196	OL-VC-40196	OL-VC-40196	OL-VC-40196
			Field Sample ID	OL-0581-02DP	OL-0581-04DP	OL-0581-06DP		OL-0586-08DP	OL-0586-09DP	OL-0586-10DP	OL-0586-11DP
			Sample Depth	2-4 Ft	4-5.5 Ft	0-2 Ft		0-2 Ft	2-4 Ft	4-6 Ft	6-7 Ft
			Sample Date	6/25/2008	6/25/2008	6/25/2008		7/2/2008	7/2/2008	7/2/2008	7/2/2008
			SDG	C8F270358	C8F270358	C8F270358		C8G030294	C8G030294	C8G030294	C8G030294
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	38.9	47.9	25.9		41.5	204	181	56.7
SW7470	MERCURY	ug/L	Υ	0.055 U				0.28 U	0.071 J	0.11 U	0.28 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	0.93 J	1.2 J	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L		5 U	2.5 J	1.1 J	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	0.57 J	0.72 J	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 L	J	2.2 J	9	3.9 J	1.9 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	0.54 J	0.59 J	0.76 J	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	9.5	25	21	3.4 J
SW8260	NAPHTHALENE	ug/L	Υ	5 U	5 U	5 L	J	5 UJ	1 J	0.98 J	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 L	J	2.1 J	8.1	5.8	1.5 J
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 L	J	210	450	440	100
SW9040	pH	S.U.	Υ	7.1	7.7	7.3		6.9	9.2	9.5	9.2

			Location	OL-VC-40197	OL-VC-40197	OL-VC-40197	OL-VC-40197	OL-VC-40197	OL-VC-40198	OL-VC-40198
			Field Sample ID	OL-0586-12DP	OL-0586-13DP	OL-0586-14DP	OL-0586-15DP	OL-0586-16DP	OL-0588-12DP	OL-0588-13DP
			Sample Depth	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft	8-8.3 Ft	0-2 Ft	2-4 Ft
			Sample Date	7/2/2008	7/2/2008	7/2/2008	7/2/2008	7/2/2008	7/3/2008	7/3/2008
			SDG	C8G030294	C8G030294	C8G030294	C8G030294	C8G030294	C8G080239	C8G080239
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	45.3	72.5	40.4	30.4		7.5	8.9
SW7470	MERCURY	ug/L	Υ	0.055 U	0.12 J	0.12 J	0.11 U		0.055 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	25 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	25 U	0.49 J	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	4.3 J	9.4 J	1.6 J	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	3.7 J	4.7 J	4 J	4.5 J	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	1.9 J	18 J	17	4.9 J	3.3 J	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	3.2 J	9.1 J	2.7 J	0.74 J	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	3.9 J	15 J	12	7.3	2.2 J	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	8.2	39	19	6.3	1.4 J	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	340	1400	140	24	3.2 J	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	25 UJ	0.84 J	5 UJ	5 UJ	5 U	5 U
SW8260	TOLUENE	ug/L	Υ	5.8	26	9.1	4.8 J	1.5 J	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	4600	17000	1700	280	56	15 U	15 U
SW9040	pH	S.U.	Υ	8.8	9.4	8.3	3.9		7.4	7.1

			Location	OL-VC-40198	OL-VC-40198	OL-VC-40199		OL-VC-40199	OL-VC-40199	OL-VC-40200	OL-VC-40200
			Field Sample ID	OL-0588-14DP	OL-0588-15DP	OL-0588-01DP		OL-0588-02DP	OL-0588-03DP	OL-0588-04DP	OL-0588-05DP
			Sample Depth	4-6 Ft	6-8 Ft	0-2 Ft		2-4 Ft	4-5.8 Ft	0-2 Ft	2-4 Ft
			Sample Date	7/3/2008	7/3/2008	7/3/2008		7/3/2008	7/3/2008	7/3/2008	7/3/2008
			SDG	C8G080239	C8G080239	C8G080239		C8G080239	C8G080239	C8G080239	C8G080239
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	7.8	22.2	10.6		26.2		4.1	7.3
SW7470	MERCURY	ug/L	Υ	0.055 U	0.055 U	0.055 U	J	0.22 J	0.11 U	0.055 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	1.1 J	1	0.76 J	5 U	5 U	1.5 J
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	0.91 J	1	0.54 J	5 U	5 U	0.56 J
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	0.51 J	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	1.3 J	1	7.6	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	0.94 J	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	2 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	1.4 J	1	7.7	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 U	J	1.7 J	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 U	5 U	5 U	JJ	1.2 J	5 U	5 U	5 U
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	3.2 J		29	2.3 J	15 U	15 U
SW9040	pH	S.U.	Υ	7.3	9.9	7.4		7.4		7	6.8

		,									
			Location	OL-VC-40200	OL-VC-40200	OL-VC-40201		OL-VC-40201	OL-VC-40201	OL-VC-40201	OL-VC-50052
			Field Sample ID	OL-0588-06DP	OL-0588-07DP	OL-0588-08DP		OL-0588-09DP	OL-0588-10DP	OL-0588-11DP	OL-0585-05DP
			Sample Depth	4-6 Ft	6-7 Ft	0-2 Ft		2-4 Ft	4-6 Ft	6-7.5 Ft	0-2 Ft
			Sample Date	7/3/2008	7/3/2008	7/3/2008		7/3/2008	7/3/2008	7/3/2008	6/26/2008
			SDG	C8G080239	C8G080239	C8G080239		C8G080239	C8G080239	C8G080239	C8F280118
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample	ı	Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	7.8	8.3	8.3		13.2	14.4	13.8	19.6
SW7470	MERCURY	ug/L	Υ	0.055 U	0.11 U	0.055 U	J	0.055 U	0.11 U	0.11 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5.3	1.5 J	4.5 J	J	12	8.5	10	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 U	J	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 U	J	15 U	15 U	15 U	15 U
SW9040	рН	S.U.	Υ	6.6	6.5	6.4		6.4	6.7		7

			Location	OL-VC-50052	OL-VC-50052	OL-VC-50053		OL-VC-50053	OL-VC-50053	OL-VC-50054	OL-VC-50054
			Field Sample ID	OL-0585-07DP	OL-0585-09DP	OL-0584-19DP		OL-0585-01DP	OL-0585-03DP	OL-0584-13DP	OL-0584-15DP
			Sample Depth	2-4 Ft	4-6 Ft	0-2 Ft		2-4 Ft	4-5.7 Ft	0-2 Ft	2-4 Ft
			Sample Date	6/26/2008	6/26/2008	6/26/2008		6/26/2008	6/26/2008	6/26/2008	6/26/2008
			SDG	C8F280118	C8F280118	C8F280116		C8F280118	C8F280118	C8F280116	C8F280116
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ			15.4		18.6		16.5	27.1
SW7470	MERCURY	ug/L	Υ			0.11 l	U	0.11 U		0.055 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	IJ	5 U	5 U	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	0.87 J	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	5 UJ	5 l	IJ	5 UJ	5 UJ	5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 l	U	15 U	15 U	15 U	15 U
SW9040	рН	S.U.	Υ			7.1		6.9		7.3	7

			Location	OL-VC-50054	OL-VC-50055	OL-VC-50055		OL-VC-50056	OL-VC-50056	OL-VC-50056	OL-VC-60203
			Field Sample ID	OL-0584-17DP	OL-0586-18DP	OL-0586-19DP		OL-0584-07DP	OL-0584-09DP	OL-0584-11DP	OL-0575-07DP
			Sample Depth	4-5.7 Ft	2-4 Ft	4-5.5 Ft		0-2 Ft	2-4 Ft	4-5.7 Ft	0-2 Ft
			Sample Date	6/26/2008	7/2/2008	7/2/2008		6/26/2008	6/26/2008	6/26/2008	6/20/2008
			SDG	C8F280116	C8G030305	C8G030305		C8F280116	C8F280116	C8F280116	C8F240142
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ		11.7	13		23.5		31.1	46.2
SW7470	MERCURY	ug/L	Υ		0.11 U	0.11 l	U	0.065 J		0.11 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5 l	UJ	5 UJ	5 U.	J 5 UJ	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	0.99 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	0.58 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	1.1 J	1.1 J	5 U	0.73 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	2 J
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	1.4 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 l	U	0.62 J	5 U	5 U	4.9 J
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 UJ	5 UJ	5 l	UJ	5 UJ	5 U.	J 5 UJ	76 J
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 l	U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 l	U	15 U	15 U	15 U	15 U
SW9040	рН	S.U.	Υ		6.8			7.2		7.5	7.2

			Location	OL-VC-60203	OL-VC-60203	OL-VC-60204	OL-VC-60204	OL-VC-60204	OL-VC-60205	OL-VC-60205
			Field Sample ID	OL-0575-09DP	OL-0575-11DP	OL-0575-13DP	OL-0575-15DP	OL-0575-17DP	OL-0572-19DP	OL-0573-01DP
			Sample Depth	2-4 Ft	4-5.2 Ft	0-2 Ft	2-4 Ft	4-5.7 Ft	0-2 Ft	2-4 Ft
			Sample Date	6/20/2008	6/20/2008	6/20/2008	6/20/2008	6/20/2008	6/19/2008	6/19/2008
			SDG	C8F240142	C8F240142	C8F240142	C8F240142	C8F240142	C8F200314	C8F200321
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	46.9	44.8	35.9	81.2	80.3	47	88.1
SW7470	MERCURY	ug/L	Υ	0.11 U	0.22 U	0.11 U	0.11 U	0.22 U	0.055 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	9.6
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	0.54 J	2.4 J
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	0.81 J	5 U	1.4 J	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U		5 U	0.47 J	0.68 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	0.65 J	5 U	0.97 J	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	1.1 J	1.6 J	5 U	2.5 J	0.96 J
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 U	2.5 J	2.9 J	3.3 J	3.3 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	4.1 J	4.9 J	5 U	8.9	1.3 J
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	9.5	5 U	1.4 J
SW8260	NAPHTHALENE	ug/L	Υ	28 J	29 J	15 J	5 UJ	150 J	1.2 J	22
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 U	5 U	1.7 J	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 U	2.7 J	15	2.9 J	6.5 J
SW9040	pH	S.U.	Υ	7	7.2	7.2	7.3	7.3	7.2	7.3

			Location	OL-VC-60205	OL-VC-60206	OL-VC-60206		OL-VC-60206	OL-VC-60207	OL-VC-60207	OL-VC-60207
			Field Sample ID	OL-0573-03DP	OL-0572-13DP	OL-0572-15DP		OL-0572-17DP	OL-0575-01DP	OL-0575-03DP	OL-0575-05DP
			Sample Depth	4-4.8 Ft	0-2 Ft	2-4 Ft		4-5.5 Ft	0-2 Ft	2-4 Ft	4-5.6 Ft
			Sample Date	6/19/2008	6/19/2008	6/19/2008		6/19/2008	6/20/2008	6/20/2008	6/20/2008
			SDG	C8F200321	C8F200314	C8F200314		C8F200314	C8F240142	C8F240142	C8F240142
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ		33.2			24.7	37.1	86.5	99.1
SW7470	MERCURY	ug/L	Υ	0.11 U	0.055 U	0.28	U	0.11 U	0.11 U	0.22 U	0.22 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5.1 U	5 U	5	U	5 U	5 UJ	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	1.2 J	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	0.81 J	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	0.55 J	0.55 J	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	1.8 J	1.5 J	1.2 J
SW8260	BENZENE	ug/L	Υ	3.5 J	5 U	5	U	5 U	1.1 J	2.6 J	2.7 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	8.4	6.5	1.5 J
SW8260	ETHYLBENZENE	ug/L	Υ	14	5 U	5	U	5 U	5 U	5 U	0.99 J
SW8260	NAPHTHALENE	ug/L	Υ	160	29	6.9		3.8 J	250 J	89 J	17 J
SW8260	TOLUENE	ug/L	Υ	2.9 J	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	24	5.2 J	15	U	15 U	15 U	3 J	5.1 J
SW9040	pH	S.U.	Υ		7.1			6.6	7	7.3	

			Location	OL-VC-60208	OL-VC-60208	OL-VC-60208		OL-VC-60209	OL-VC-60209	OL-VC-60209	OL-VC-60210
			Field Sample ID	OL-0573-05DP	OL-0573-07DP	OL-0573-09DP		OL-0572-07DP	OL-0572-09DP	OL-0572-11DP	OL-0591-14DP
			Sample Depth	0-2 Ft	2-4 Ft	4-5.3 Ft		0-2 Ft	2-4 Ft	4-4.8 Ft	0-2 Ft
			Sample Date	6/19/2008	6/19/2008	6/19/2008		6/19/2008	6/19/2008	6/19/2008	7/9/2008
			SDG	C8F200321	C8F200321	C8F200321		C8F200314	C8F200314	C8F200314	C8G110326
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	60.4	74.9	91		45.9	33		34.9
SW7470	MERCURY	ug/L	Υ	0.055 U	0.11 U	0.28 U	J	0.055 U	0.11 U	0.28 U	0.28 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	3.5 J	5 U	5 U	J	10	5 U	5 U	25 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	J	2.9 J	0.6 J	5 UJ	25 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	1.2 J	5 U	5 U	J	5 U	5 U	5 U	25 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	1.5 J	5 UJ	5 U	IJ	5 U	5 U	5 U	25 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	0.79 J	5 U	5 U	J	5 U	5 U	5 U	25 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	2.8 J	1.1 J	5 U	J	5 U	5 U	5 U	25 U
SW8260	BENZENE	ug/L	Υ	3.1 J	6.6	3.9 J	J	1.5 J	5 U	5 U	25 U
SW8260	CHLOROBENZENE	ug/L	Υ	5.2	1.3 J	5 U	J	5 U	5 U	5 U	25 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	1.2 J	0.8 J	J	4 J	5 U	5 U	39
SW8260	NAPHTHALENE	ug/L	Υ	37	21	35		320	32	5.6	260 J
SW8260	TOLUENE	ug/L	Υ	5 U	1.1 J	5 U	J	1.7 J	5 U	5 U	25 U
SW8260	XYLENES, TOTAL	ug/L	Υ	4.8 J	22	15		18	15 U	15 U	46 J
SW9040	рН	S.U.	Υ	7.2	7.2			7.1	6.9		

			Location	OL-VC-60210	OL-VC-60210	OL-VC-60211		OL-VC-60211	OL-VC-60211	OL-VC-60212	OL-VC-60212
			Field Sample ID	OL-0591-15DP	OL-0591-16DP	OL-0576-05DP		OL-0576-07DP	OL-0576-09DP	OL-0573-11DP	OL-0573-13DP
			Sample Depth	2-4 Ft	4-6 Ft	0-2 Ft		2-4 Ft	4-5.7 Ft	0-2 Ft	2-4 Ft
			Sample Date	7/9/2008	7/9/2008	6/20/2008		6/20/2008	6/20/2008	6/19/2008	6/19/2008
			SDG	C8G110326	C8G110326	C8F240150		C8F240150	C8F240150	C8F200321	C8F200321
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ		56	33.5		108	121	52.9	80.4
SW7470	MERCURY	ug/L	Υ	0.28 U	0.11 U	0.055 L	J	0.22 U	0.22 U	0.055 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 UJ	5 L	JJ	5 U	5 U	5 U	21
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	1.2 J	5 U	6.5
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	1.7 J	3.8 J	2.5 J	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	0.69 J	1.3 J	1.3 J	1.7 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	1.1 J	1.8 J	1.5 J	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	0.87 J	J	4.1 J	8.4	9.8	0.93 J
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 L	J	8.4	10	7.8	4.1 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	3.7 J	J	30 J	26	11	1.1 J
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	1.1 J	5 U	0.71 J
SW8260	NAPHTHALENE	ug/L	Υ	51 J	0.61 J	5 L	JJ	5 U	5 U	9.7	17
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 L	J	0.91 J	1.4 J	0.89 J	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 L	J	2.7 J	12 J	10 J	5.8 J
SW9040	рН	S.U.	Υ			7.4		7.4		7.2	7.3

			Location	OL-VC-60212	OL-VC-60213	OL-VC-60213	OL-VC-60214	OL-VC-60214	OL-VC-60214	OL-VC-60214
			Field Sample ID	OL-0573-15DP	OL-0572-04DP	OL-0572-02DP	OL-0593-17DP	OL-0593-18DP	OL-0593-19DP	OL-0593-20DP
			Sample Depth	4-4.8 Ft	0-2 Ft	2-4.1 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-7.3 Ft
			Sample Date	6/19/2008	6/18/2008	6/19/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008
			SDG	C8F200321	C8F200314	C8F200314	C8G160260	C8G160260	C8G160260	C8G160260
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	84.1	33.2	80.7	26.6	30.1		39.3
SW7470	MERCURY	ug/L	Υ	0.28 U	0.055 U	0.11 U	0.11 U	0.11 U	0.28 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	0.56 J	5 UJ	5 U	J 5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	1.3 J	2.8 J	0.72 J	0.7 J	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	0.62 J	5 U		5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	0.95 J	1.2 J	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	0.66 J	3.3 J	5	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5.6	3.4 J	17	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	0.56 J	14	41	5 U	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	31	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	350 J	5 U	1.6 J	17	41	5.4	0.71 J
SW8260	TOLUENE	ug/L	Υ	6.1	5 U	1 J	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	59	15 U	4.5 J	15 U	15 U	15 U	15 U
SW9040	рН	S.U.	Υ		7.4	7.6		7.8		

_					1					T. T.	
			Location	OL-VC-60215	OL-VC-60215	OL-VC-60216		OL-VC-60216	OL-VC-60216	OL-VC-60217	OL-VC-60217
			Field Sample ID	OL-0576-11DP	OL-0576-13DP	OL-0573-17DP		OL-0573-19DP	OL-0574-01DP	OL-0591-17DP	OL-0591-18DP
			Sample Depth	0-2 Ft	2-4.2 Ft	0-2 Ft		2-4 Ft	4-5.1 Ft	0-2 Ft	2-4 Ft
			Sample Date	6/20/2008	6/20/2008	6/19/2008		6/19/2008	6/19/2008	7/10/2008	7/10/2008
			SDG	C8F240150	C8F240150	C8F200321		C8F200321	C8F200326	C8G110326	C8G110326
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	45	150	59.1		127	116		28
SW7470	MERCURY	ug/L	Υ	0.055 U	0.22 U	0.055 L	U	0.28 U	0.28 U	0.55 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 UJ	5 L	U	5 U	1.9 J	5 U	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	U	1.7 J	1.6 J	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	1.1 J	5 U	3.6 J	J	18	15	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	1.9 J	J	3.8 J	2.6 J	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	1.1 J	5 U	2.7 J	J	4.6 J	5.6	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	4.4 J	5 U	11		42	47	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5.2	5 U	16		30	6.3	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	25	5 U	57 J	J	82	54	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	U	0.96 J	2.6 J	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 U	3.7 J	5 L	U	2.6 J	140	24 J	6.7 J
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	0.96 J	J	5	2.8 J	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	4.9 J	J	65	30	15 U	15 U
SW9040	pH	S.U.	Υ	7.4	7.6	7.3		7.4			7.6 J

			Location	OL-VC-60217	OL-VC-60217	OL-VC-60217		OL-VC-60221	OL-VC-60221	OL-VC-60221	OL-VC-60221
			Field Sample ID	OL-0591-19DP	OL-0591-20DP	OL-0592-01DP		OL-0593-05DP	OL-0593-06DP	OL-0593-07DP	OL-0593-08DP
			Sample Depth	4-6 Ft	6-8 Ft	8-8.7 Ft		0-2 Ft	2-4 Ft	4-6 Ft	6-7.9 Ft
			Sample Date	7/10/2008	7/10/2008	7/10/2008		7/14/2008	7/14/2008	7/14/2008	7/14/2008
			SDG	C8G110326	C8G110326	C8G110336		C8G160260	C8G160260	C8G160260	C8G160260
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	30.1	34.8			10	9.6	11.8	15.3
SW7470	MERCURY	ug/L	Υ	0.11 U	0.11 U			0.11 U	0.055 U	0.11 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5	С	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	С	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	С	5 U	5 U	1.2 J	1.2 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	С	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5	С	5 U	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	1.2 J	5 UJ	5	С	5 UJ	5 U.	1.2 J	5 U
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15	U	15 U	15 U	15 U	15 U
SW9040	pH	S.U.	Υ	7.5 J	7.5 J				7		6.7

			Location	OL-VC-60222	OL-VC-60222	OL-VC-60222	OL-VC-60222	OL-VC-60223	OL-VC-60223	OL-VC-60223
			Field Sample ID	OL-0593-01DP	OL-0593-02DP	OL-0593-03DP	OL-0593-04DP	OL-0593-09DP	OL-0593-10DP	OL-0593-11DP
			Sample Depth	0-2 Ft	2-4 Ft	4-6 Ft	6-7.6 Ft	0-2 Ft	2-4 Ft	4-6 Ft
			Sample Date	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008
			SDG	C8G160260						
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	21.4		24.2	27.9	24.6	26.9	26.7
SW7470	MERCURY	ug/L	Υ	0.28 U	0.28 U	0.055 U	0.11	J 0.28 U	0.11 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5	J 1.2 J	1 J	0.97 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U			5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	1.5 J	5 U	5 U	5		5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	28	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	510	10	1.6 J	7.4	0.83 J	5 U	5 U
SW8260	TOLUENE	ug/L	Υ	2.4 J	5 U	5 U	5	J 5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	33	15 U	15 U	15	J 15 U	15 U	15 U
SW9040	pH	S.U.	Υ			7			7.4	

			Location	OL-VC-60223	OL-VC-60224	OL-VC-60224		OL-VC-60224	OL-VC-60224	OL-STA-70048	OL-STA-70048
			Field Sample ID	OL-0593-12DP	OL-0593-13DP	OL-0593-14DP		OL-0593-15DP	OL-0593-16DP	OL-0590-15DP	OL-0590-16DP
			Sample Depth	6-7.2 Ft	0-2 Ft	2-4 Ft		4-6 Ft	6-7.2 Ft	0-2 Ft	2-4 Ft
			Sample Date	7/14/2008	7/14/2008	7/14/2008		7/14/2008	7/14/2008	7/8/2008	7/8/2008
			SDG	C8G160260	C8G160260	C8G160260		C8G160260	C8G160260	C8G100328	C8G100328
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ		5.7			19.5			18.4
SW7470	MERCURY	ug/L	Υ	0.11 U	0.11 U	0.28	U	0.28 U	0.28 U		0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	0.94 J	0.92 J	5	U	5 U	0.72 J	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	1.7 J	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	4.8 J	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	2.2 J	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	42	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	0.69 J	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	26	2.7 J
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15	U	15 U	15 U	4.1 J	15 U
SW9040	pH	S.U.	Υ								6.9

			Location	OL-STA-70048	OL-STA-70048	OL-STA-70049		OL-STA-70049	OL-STA-70049	OL-STA-70049	OL-STA-70050
			Field Sample ID	OL-0590-17DP	OL-0590-18DP	OL-0590-01DP		OL-0590-02DP	OL-0590-03DP	OL-0590-04DP	OL-0589-05DP
			Sample Depth	4-6 Ft	6-7.9 Ft	0-2 Ft		2-4 Ft	4-6 Ft	6-8 Ft	0-2 Ft
			Sample Date	7/8/2008	7/8/2008	7/8/2008		7/8/2008	7/8/2008	7/8/2008	7/7/2008
			SDG	C8G100328	C8G100328	C8G100328		C8G100328	C8G100328	C8G100328	C8G090250
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	19.3		49.3		155	134	83.5	65.8
SW7470	MERCURY	ug/L	Υ	0.11 U	0.28 U	0.055 L	J	0.11 U	0.11 J	0.055 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	25 U	5 U	5 U	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	4.1 J	4.1 J	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	28	43	2.9 J	2.9 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	25 U	0.81 J	5 U	0.73 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	1.3 J	J	5.6 J	8.8	1.8 J	2.1 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	8.6		60	120	12	7.8
SW8260	BENZENE	ug/L	Υ	5 U	5 U	6.1		55	38	13	24
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	35		130	130	17	61
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	17 J	15	1.5 J	5 U
SW8260	NAPHTHALENE	ug/L	Υ	5 U	5 U	20 J	J	600 J	1200 J	100	3 J
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 L	J	42	33	2.2 J	2.1 J
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	2.6 J	J	120	100	15	11 J
SW9040	рН	S.U.	Υ	7.1		7.5			7.7	7.5	7.5

			Location	OL-STA-70050	OL-STA-70050	OL-STA-70050		OL-STA-70050	OL-VC-70108	OL-VC-70108	OL-VC-70108
			Field Sample ID	OL-0589-06DP	OL-0589-07DP	OL-0589-08DP		OL-0589-09DP	OL-0590-11DP	OL-0590-12DP	OL-0590-13DP
			Sample Depth	2-4 Ft	4-6 Ft	6-8 Ft		8-8.6 Ft	0-2 Ft	2-4 Ft	4-6 Ft
			Sample Date	7/7/2008	7/7/2008	7/7/2008		7/7/2008	7/8/2008	7/8/2008	7/8/2008
			SDG	C8G090250	C8G090250	C8G090250		C8G090250	C8G100328	C8G100328	C8G100328
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	147	106	94.8			16.8	20.2	28
SW7470	MERCURY	ug/L	Υ	0.22 U	0.11 U	0.11	U		0.11 U	0.055 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5.1 J	5 UJ	5	UJ	5 U.	5 U	5 U	5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	3.7 J	5 U	5	U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	27	5.3	0.93	J	5 U	0.81 J	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	1.9 J	0.7 J	5	U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	6.1	2.2 J	5	U	5 U	1.3 J	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	59	16	2.2	J	1.3 J	4.3 J	5 U	5 U
SW8260	BENZENE	ug/L	Υ	38	6.6	5.8		4.7 J	5	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	85	14	2.6	J	2.1 J	60	0.84 J	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	11	2 J	0.96	J	2.3 J	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	180 J	110 J	27	J	92 J	2.7 J	5 U	0.53 J
SW8260	TOLUENE	ug/L	Υ	15	1.7 J	1.1	J	1.8 J	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	90	12 J	8.9	J	13 J	4.1 J	15 U	15 U
SW9040	pH	S.U.	Υ	7.7	7.5	7.3				7.3	7.7

			Location	OL-VC-70108	OL-VC-70109	OL-VC-70109	OL-VC-70109	OL-VC-70109	OL-VC-70109	OL-VC-70110
			Field Sample ID	OL-0590-14DP	OL-0590-06DP	OL-0590-07DP	OL-0590-08DP	OL-0590-09DP	OL-0590-10DP	OL-0591-01DP
			Sample Depth	6-7.1 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft	8-8.8 Ft	0-2 Ft
			Sample Date	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/9/2008
			SDG	C8G100328	C8G100328	C8G100328	C8G100328	C8G100328	C8G100328	C8G110326
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	POREWATER						
Method	Parameter Name	Units	Filtered							
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	27.5	103	127	113	80.4	52	24.2
SW7470	MERCURY	ug/L	Υ	0.11 U	0.2	0.24	0.37 J	0.055 U	0.11 U	0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	2.6 J	25 U	5 U	1 J	5 U	1.1 J
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	13	17 J	12	11	10	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	140	130	140	230	82	0.68 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	0.76 J	25 U	3.1 J	0.94 J	5 U	0.89 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	32	80	150	35	6	1.7 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	410	530	800	480	140	5
SW8260	BENZENE	ug/L	Υ	5 U	230	90	180	150	41	2.1 J
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	1500	470	740	430	150	47
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	23	9 J	27	36	19	5 U
SW8260	NAPHTHALENE	ug/L	Υ	3.3 J	1300 J	110 J	1200 J	3500 J	3300 J	2.7 J
SW8260	TOLUENE	ug/L	Υ	5 U	140	46	130	140	36	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	260	27 J	110	360	160	5.6 J
SW9040	pH	S.U.	Υ		7.9	8	8	8.2	8.3	7.1 J

-											
			Location	OL-VC-70110	OL-VC-70110	OL-VC-70110		OL-VC-70111	OL-VC-70111	OL-VC-70111	OL-VC-70111
			Field Sample ID	OL-0591-02DP	OL-0591-03DP	OL-0591-04DP		OL-0591-05DP	OL-0591-06DP	OL-0591-07DP	OL-0591-08DP
			Sample Depth	2-4 Ft	4-6 Ft	6-8 Ft		0-2 Ft	2-4 Ft	4-6 Ft	6-7.1 Ft
			Sample Date	7/9/2008	7/9/2008	7/9/2008		7/9/2008	7/9/2008	7/9/2008	7/9/2008
			SDG	C8G110326	C8G110326	C8G110326		C8G110326	C8G110326	C8G110326	C8G110326
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	26.4	29.2	36.5			20.1	23.7	57.8
SW7470	MERCURY	ug/L	Υ	0.11 U	0.28 U	0.11 L	J	0.28 U	0.055 U	0.055 U	0.28 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 U	5 UJ	0.81 J	J	5 UJ	5 U.	J 5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	0.51 J	J	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L		5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	1.6 J	5 U	5 U	5 U
SW8260	BENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	Υ	5 U	5 U	5 L	J	2 J	5 U	5 U	5 U
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	0.82 J	5 UJ	0.54 J	J	5 UJ	5 U.	J 5 UJ	5 UJ
SW8260	TOLUENE	ug/L	Υ	5 U	5 U	5 L	J	5 U	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	Υ	15 U	15 U	15 L	J	15 U	15 U	15 U	15 U
SW9040	pH	S.U.	Υ	7.5 J	7.3 J	7.1 J	J		7.2 J	7.4 J	

			Location	OL-VC-70119	OL-VC-70119	OL-VC-70119		OL-VC-70119	OL-VC-70120	OL-VC-70120	OL-VC-70120
			Field Sample ID	OL-0589-10DP	OL-0589-11DP	OL-0589-12DP		OL-0589-13DP	OL-0589-01DP	OL-0589-02DP	OL-0589-03DP
			Sample Depth	0-2 Ft	2-4 Ft	4-6 Ft		6-7.5 Ft	0-2 Ft	2-4 Ft	4-6 Ft
			Sample Date	7/7/2008	7/7/2008	7/7/2008		7/7/2008	7/7/2008	7/7/2008	7/7/2008
			SDG	C8G090250	C8G090250	C8G090250		C8G090250	C8G090250	C8G090250	C8G090250
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	62.8	168	103		104	38.7	138	163
SW7470	MERCURY	ug/L	Υ	0.055 U	0.22 U	0.11 l	U	0.055 U	0.055 U	0.22 U	0.11 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 UJ	5 l	UJ	0.74 J	5 UJ	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	7.7 J	2.2	J	5 U	5 U	5 U	0.62 J
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	2.5 J	53	34		2.1 J	5 U	2.4 J	16
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	0.63 J	1.6 J	1.9	J	5 U	5 U	5 U	0.99 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	1.7 J	7.6 J	15		1.5 J	5 U	1.8 J	16
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	7.6	110	120		7.4	2.9 J	5.4	39
SW8260	BENZENE	ug/L	Υ	25	41	51		12	1.7 J	23	48
SW8260	CHLOROBENZENE	ug/L	Υ	65	100	120		12	13	41	330
SW8260	ETHYLBENZENE	ug/L	Υ	5 U	15	18		1.2 J	5 U	0.8 J	8.9
SW8260	NAPHTHALENE	ug/L	Υ	11 J	330 J	480	J	29 J	5 UJ	13 J	100 J
SW8260	TOLUENE	ug/L	Υ	3.3 J	48	38		2.3 J	5 U	5.1	23
SW8260	XYLENES, TOTAL	ug/L	Υ	17	120	99		17	15 U	7.2 J	66
SW9040	pH	S.U.	Υ	7.4	7.8	7.6		7.4	7.1	7.7	

			Location	OL-VC-70120	OL-VC-70122	OL-VC-70122		OL-VC-70122	OL-VC-70122	OL-VC-70122	OL-VC-70123
			Field Sample ID	OL-0589-04DP	OL-0591-09DP	OL-0591-10DP		OL-0591-11DP	OL-0591-12DP	OL-0591-13DP	OL-0589-14DP
			Sample Depth	6-8 Ft	0-2 Ft	2-4 Ft		4-6 Ft	6-8 Ft	8-8.5 Ft	0-2 Ft
			Sample Date	7/7/2008	7/9/2008	7/9/2008		7/9/2008	7/9/2008	7/9/2008	7/7/2008
			SDG	C8G090250	C8G110326	C8G110326		C8G110326	C8G110326	C8G110326	C8G090250
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	POREWATER	POREWATER	POREWATER		POREWATER	POREWATER	POREWATER	POREWATER
Method	Parameter Name	Units	Filtered								
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	74.1	49.3	57.3		76.3	65.1		57.7
SW7470	MERCURY	ug/L	Υ	0.11 U	0.055 U	0.055 U	J	0.11 U	0.11 U		0.055 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5 UJ	5 U	5 U	J	5 U	20	5 U	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	5 U	3.2 J	0.4 J	J	5 U	7.1 J	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	16	17	5 U	J	5 U	10 U	5 U	4.8 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	3.1 J	1 J	5 U		5 U	3.5 J	5 U	1 J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	240	6.5	5 U	J	5 U	10 U	5 U	2.8 J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	240	47	1.4 J	J	5 U	10 U	5 U	12
SW8260	BENZENE	ug/L	Υ	35	21	2.4 J	J	3.3 J	10 U	5 U	33
SW8260	CHLOROBENZENE	ug/L	Υ	690	120	3.1 J	J	0.73 J	10 U	5 U	100
SW8260	ETHYLBENZENE	ug/L	Υ	27	5 U	5 U	J	2.5 J	1.5 J	5 U	5 U
SW8260	NAPHTHALENE	ug/L	Υ	670 J	3.9 J	5.4 J	J	340 J	250 J	150 J	3.3 J
SW8260	TOLUENE	ug/L	Υ	12	3.1 J	5 U	J	1.2 J	10 U	5 U	1.3 J
SW8260	XYLENES, TOTAL	ug/L	Υ	210	41	6.9 J	J	8.3 J	4.4 J	15 U	6.6 J
SW9040	pH	S.U.	Υ	7.5	7.6 J	7.3 J	J	7.5 J	7.5 J		7.4

			Location	OL-VC-70123		OL-VC-70123	OL-VC-70123	
			Field Sample ID	OL-0589-15DP		OL-0589-16DP	OL-0589-17DP	
			Sample Depth	2-4 Ft		4-6 Ft	6-8 Ft	
			Sample Date	7/7/2008		7/7/2008	7/7/2008	
			SDG	C8G090250		C8G090250	C8G090250	
			Matrix	WATER		WATER	WATER	
			Sample Purpose	Regular Sample		Regular Sample	Regular Sample	
			Sample Type	POREWATER		POREWATER	POREWATER	
Method	Parameter Name	Units	Filtered					
SM5310B	DISSOLVED ORGANIC CARBON	mg/L	Υ	124		93.9	89.6	
SW7470	MERCURY	ug/L	Υ	0.11	U	0.055 U	0.055 L	J
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	Υ	5	UJ	3 J	2 J	_
SW8260	1,2,4-TRICHLOROBENZENE	ug/L	Υ	3.3	J	2.2 J	0.59 J	J
SW8260	1,2-DICHLOROBENZENE	ug/L	Υ	23		4.7 J	5 L	J
SW8260	1,3,5-TRICHLOROBENZENE	ug/L	Υ	1.4	J	1.8 J	5 L	J
SW8260	1,3-DICHLOROBENZENE	ug/L	Υ	7.9		2.7 J	5 L	J
SW8260	1,4-DICHLOROBENZENE	ug/L	Υ	46		15	1.2 J	J
SW8260	BENZENE	ug/L	Υ	53		13	2.8 J	J
SW8260	CHLOROBENZENE	ug/L	Υ	150		17	1.5 J	J
SW8260	ETHYLBENZENE	ug/L	Υ	1	J	0.67 J	2 J	J
SW8260	NAPHTHALENE	ug/L	Υ	6.2	J	5.9 J	220 J	J
SW8260	TOLUENE	ug/L	Υ	6.7		1.4 J	1.3 J	J
SW8260	XYLENES, TOTAL	ug/L	Υ	51		16	14 J	J
SW9040	рН	S.U.	Υ	7.6		7.4	7.2	

ATTACHMENT A-3

VALIDATED LABORATORY DATA FOR POREWATER CENTRIFUGE SEDIMENT SAMPLES

	T		Lasatian	OL-VC-20149	01.1/0.20140		OL-VC-20149	OL-VC-20149	OL-VC-20150	OL-VC-20150	01.1/0.20150
			Location		OL-VC-20149						OL-VC-20150
			Sample Depth	0-2 Ft	2-4 Ft		4-6 Ft	6-6.5 Ft	0-2 Ft	2-4 Ft	4-4.9 Ft
			Field Sample ID	OL-0588-17	OL-0588-18		OL-0588-19	OL-0588-20	OL-0577-20	OL-0578-02	OL-0578-04
			Sample Date	7/3/2008	7/3/2008		7/3/2008	7/3/2008	6/23/2008	6/23/2008	6/23/2008
			SDG	C8G080239	C8G080239		C8G080239	C8G080239	C8F250282	C8F250294	C8F250294
			Matrix	SOIL	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample				
			Sample Type	Pore water	Pore water		Pore water				
Method	Parameter Name	Units	Filtered								
ASTM D2216	SOLIDS, PERCENT	%	N	57.6	60.1		59.4	63.1	39.6	34.9	25.7
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.702	2.735		2.728	2.745	2.59	2.583	2.701
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	87000	11400		29200	61700	43600 J	29200 J	21800 J
SM2540G	SOLIDS, PERCENT	%	N	58.8	60.1		60.4	62.6	43.9	33.5	25.4
SW7471	MERCURY	mg/kg	N	0.012 J	0.0071 L	J	0.0071 U	0.0068 U	3.7 J	6.8 J	0.8 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	11 UJ	15 UJ	20 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	11 UJ	15 UJ	20 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	11 UJ	15 UJ	20 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	11 UJ	15 UJ	20 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	1.9 J	15 UJ	20 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	4.4 J	15 UJ	20 UJ
SW8260	BENZENE	ug/kg	N	2.4 J	180		55	23	11 UJ	12 J	20 J
SW8260	CHLOROBENZENE	ug/kg	N	8.5 U	1.4 J		8.3 U	8 U	3.8 J	15 UJ	20 UJ
SW8260	ETHYLBENZENE	ug/kg	N	1.7 J	3.2 J		8.3 U	8 U	11 UJ	15 UJ	20 UJ
SW8260	NAPHTHALENE	ug/kg	N	2.2 J	11		8.3 U	8 U	15 J	55 J	44 J
SW8260	TOLUENE	ug/kg	N	8.5 U	8.3 L	J	8.3 U	8 U	11 UJ	2.5 J	5.8 J
SW8260	XYLENES, TOTAL	ug/kg	N	26 U	25 L	J	25 U	24 U	34 UJ	8.8 J	15 J
SW9045	pH	S.U.	N	7.7 J	7.6 J		7.5 J	7.6 J	8.4 J	10.2 J	11.1 J

	T	1		01.1/0.00454	01.110.00154		01.110.00454	01.110.004.50		01.110.00150	01.110.00450	01.140.004.50
			Location	OL-VC-20151	OL-VC-20151		OL-VC-20151	OL-VC-20152		OL-VC-20152	OL-VC-20153	OL-VC-20153
			Sample Depth	0-2 Ft	2-4 Ft		4-5.3 Ft	0-2 Ft		2-4.1 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0577-14	OL-0577-16		OL-0577-18	OL-0578-06		OL-0578-08	OL-0578-10	OL-0578-12
			Sample Date	6/23/2008	6/23/2008		6/23/2008	6/23/2008		6/23/2008	6/23/2008	6/23/2008
			SDG	C8F250282	C8F250282		C8F250282	C8F250294		C8F250294	C8F250294	C8F250294
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	36.4	39		29.6	59.6		57.4	44.4	36.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.618	2.599		2.651	2.905		2.885	2.698	2.639
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	44000 J	33400	J	43100 J	42900		53300	38100 J	57300 J
SM2540G	SOLIDS, PERCENT	%	N	33	42.5		31.5	58.3		59.5	42.2	36.3
SW7471	MERCURY	mg/kg	N	1.5 J	0.98	J	0.48 J	1.2		1.7	2.4 J	10.2 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	16 UJ	8.6 U	J	8.4 U	12 UJ	14 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	16 UJ	2.6 J		1.6 J	12 UJ	2.7 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	4.4 J	8.6 U	J	8.4 U	12 UJ	21 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	16 UJ	8.6 U	J	8.4 U	12 UJ	14 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	16 UJ	8.6 U	j	8.4 U	12 UJ	3.5 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	3.8 J	1.1 J		8.4 U	1.6 J	27 J
SW8260	BENZENE	ug/kg	N	760 UJ	590	UJ	13 J	8.6 U	J	3 J	12 UJ	7.1 J
SW8260	CHLOROBENZENE	ug/kg	N	760 UJ	590	UJ	16 UJ	8.6 U	J	8.4 U	2.2 J	20 J
SW8260	ETHYLBENZENE	ug/kg	N	760 UJ	590	UJ	5.9 J	8.6 U	J	8.4 U	12 UJ	27 J
SW8260	NAPHTHALENE	ug/kg	N	7700 J	15000 .	J	390 J	8.9		8.4 U	12 UJ	18 J
SW8260	TOLUENE	ug/kg	N	760 UJ	120 .	J	9.8 J	1.9 J		2.4 J	2 J	3.5 J
SW8260	XYLENES, TOTAL	ug/kg	N	1000 J	1500 .	J	96 J	26 U	J	25 U	36 UJ	41 UJ
SW9045	рН	S.U.	N	10.7 J	10.9	J	11.4 J	10.9		9.7	8.2 J	7.8 J

			Location	OL-VC-20153	OL-VC-20154		OL-VC-20154	OL-VC-20154		OL-VC-20155	OL-VC-20155	OL-VC-20155
			Sample Depth	4-5.9 Ft	0-2 Ft		2-4 Ft	4-5.4 Ft		0-2 Ft	2-4 Ft	4-5.9 Ft
			Field Sample ID	OL-0578-14	OL-0578-16		OL-0578-18	OL-0578-20		OL-0575-20	OL-0576-02	OL-0576-04
			Sample Date	6/23/2008	6/23/2008		6/23/2008	6/23/2008		6/19/2008	6/19/2008	6/19/2008
			SDG	C8F250294	C8F250294		C8F250294	C8F250294		C8F240142	C8F240150	C8F240150
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	44.9	38.2		34	50.2		59.5	56.7	57.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.684	2.607		2.451	2.712		2.694	2.724	2.726
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	34700 J	49700	J	32100 J	31100		22400	16300	13100
SM2540G	SOLIDS, PERCENT	%	N	42.3	45.5		42.2	51.8		59	57.6	58.9
SW7471	MERCURY	mg/kg	N	1.7 J	2.7	J	1.9 J	0.79		0.015 J	0.0068 U	0.0066 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	12 UJ	5500	UJ	3000 UJ	9.7	J	8.5 U	8.7 U	8.5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	12 UJ	5500	UJ	3000 UJ	9.7	J	8.5 U	8.7 U	8.5 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	9 J	7700	J	5600 J	4.7	1	8.5 U	8.7 U	8.5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	12 UJ	5500	UJ	3000 UJ	9.7	J	8.5 U	8.7 U	8.5 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	12 UJ	5500	UJ	3000 UJ	9.7	J	8.5 U	8.7 U	8.5 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	9.6 J	8700	J	6200 J	4.1	ı	8.5 U	8.7 U	8.5 U
SW8260	BENZENE	ug/kg	N	6.9 J	5500	UJ	3000 UJ	5.4	ı	40	6.7 J	28
SW8260	CHLOROBENZENE	ug/kg	N	3.5 J	1500	J	940 J	2.4	ı	15	8.7 U	8.5 U
SW8260	ETHYLBENZENE	ug/kg	N	120 J	2200	J	2200 J	9.8		8.5 U	8.7 U	8.5 U
SW8260	NAPHTHALENE	ug/kg	N	110 J	160000	J	190000 J	430		8.5 U	8.7 UJ	8.5 UJ
SW8260	TOLUENE	ug/kg	N	4 J	2600		2600 J	15		8.5 U	8.7 U	8.5 U
SW8260	XYLENES, TOTAL	ug/kg	N	13 J	41000		40000 J	120		25 U	26 U	25 U
SW9045	pH	S.U.	N	7.9 J	8.3	J	8.7 J	8		7	6.9	7

	1		Lasatian	01.1/0.20150	01.1/0.20150		01.1/0.20150	01.1/0.20157		OL VC 20157	01.1/0.20157	01.1/0.20070
			Location	OL-VC-20156	OL-VC-20156		OL-VC-20156	OL-VC-20157		OL-VC-20157	OL-VC-20157	OL-VC-30078
			Sample Depth	0-2 Ft	2-4 Ft		4-4.6 Ft	0-2 Ft		2-4 Ft	4-4.6 Ft	0-2 Ft
			Field Sample ID	OL-0579-02	OL-0579-04		OL-0579-06	OL-0579-08		OL-0579-10	OL-0579-12	OL-0577-02
			Sample Date	6/24/2008	6/24/2008		6/24/2008	6/24/2008		6/24/2008	6/24/2008	6/23/2008
			SDG	C8F260230	C8F260230		C8F260230	C8F260230		C8F260230	C8F260230	C8F250282
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	39.4	41.6		39.2	31.7		43.3	44.5	31.4
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.579	2.628		2.662	2.628		2.667	2.656	2.555
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	35800 J	33700	J	28400 J	31500	J	32300 J	29000 J	48500 J
SM2540G	SOLIDS, PERCENT	%	N	40.7	43.8		47.1	44.7		47.3	40.8	35.3
SW7471	MERCURY	mg/kg	N	4.4 J	1.8	J	2.2 J	5.7 .	J	1.6 J	1.8 J	2.9 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	6100 UJ	5700	UJ	2.6 J	5600	UJ	5300 UJ	6100 UJ	14 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	1300 J	1700	J	2.2 J	1300	J	5300 UJ	6100 UJ	14 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	11000 J	13000	J	17 J	13000 .	J	2700 J	6100 UJ	14 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	6100 UJ	5700	UJ	11 UJ	5600	UJ	5300 UJ	6100 UJ	14 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	6100 UJ	5700	UJ	11 UJ	5600	UJ	5300 UJ	6100 UJ	14 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	12000 J	14000	J	14 J	13000 .	J	3100 J	6100 UJ	14 UJ
SW8260	BENZENE	ug/kg	N	6100 UJ	5700	UJ	16 J	5600	UJ	5300 UJ	6100 UJ	14 UJ
SW8260	CHLOROBENZENE	ug/kg	N	2700 J	2800	J	9.9 J	2800 .	J	5300 UJ	6100 UJ	14 UJ
SW8260	ETHYLBENZENE	ug/kg	N	3400 J	4600	J	16 J	3500 .	J	1500 J	6100 UJ	14 UJ
SW8260	NAPHTHALENE	ug/kg	N	160000 J	190000	J	310 J	200000	J	150000 J	110000 J	18 J
SW8260	TOLUENE	ug/kg	N	6900 J	8100	J	41 J	9000 .	J	2200 J	6100 UJ	14 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	65000 J	82000	J	250 J	69000 .	J	25000 J	10000 J	43 UJ
SW9045	рН	S.U.	N	8.6 J	8.8	J	8.5 J	9.4 .	J	8.8 J	8.6 J	11 J

			Location	OL-VC-30078	OL-VC-30078		OL-VC-30079	OL-VC-30079		OL-VC-30079	OL-VC-30080	OL-VC-30080
			Sample Depth	2-4 Ft	4-5 Ft		0-2 Ft	2-4 Ft		4-6 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0577-04	OL-0577-06		OL-0577-08	OL-0577-10		OL-0577-12	OL-0583-04	OL-0583-06
			Sample Date	6/23/2008	6/23/2008		6/23/2008	6/23/2008		6/23/2008	6/25/2008	6/25/2008
			SDG	C8F250282	C8F250282		C8F250282	C8F250282		C8F250282	C8F270352	C8F270352
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	27	21		33.3	17.6		21	42.7	43.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.647	2.582		2.605	2.594		2.568	2.637	2.617
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	12500 J	7090	J	47500 J	9400 J		30300 J	27200 J	33100 J
SM2540G	SOLIDS, PERCENT	%	N	23.5	20.4		37.3	20.3		20.3	45.8	46.2
SW7471	MERCURY	mg/kg	N	0.44 J	0.33	J	0.28 J	0.2		0.27 J	11.8 J	34.6 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	IJ	25 UJ	11 UJ	11 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	1.9 J	2.1 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	BENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	CHLOROBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	ETHYLBENZENE	ug/kg	N	21 UJ	25	UJ	13 UJ	25 l	JJ	25 UJ	11 UJ	11 UJ
SW8260	NAPHTHALENE	ug/kg	N	21 UJ	17	J	14 J	13 J		28 J	11 UJ	11 UJ
SW8260	TOLUENE	ug/kg	N	5 J	25		13 UJ	25 l		25 UJ	11 UJ	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	64 UJ	74	UJ	40 UJ	74 l	IJ	74 UJ	33 UJ	32 UJ
SW9045	pH	S.U.	N	11.8 J	11.9	J	12.1 J	12.2 J		12.2 J	7.6 J	7.6 J

			Location	OL-VC-30080	OL-VC-30081		OL-VC-30081	OL-VC-30081		OL-VC-30082	OL-VC-30082	OL-VC-30082
			Sample Depth	4-5.4 Ft	0-2 Ft		2-4 Ft	4-5.5 Ft		0-2 Ft	2-4 Ft	4-5 Ft
			Field Sample ID	OL-0583-08	OL-0581-20		OL-0582-02	OL-0582-04		OL-0582-18	OL-0582-20	OL-0583-02
			Sample Date	6/25/2008	6/25/2008		6/25/2008	6/25/2008		6/25/2008	6/25/2008	6/25/2008
			SDG	C8F270352	C8F270358		C8F270355	C8F270355		C8F270355	C8F270355	C8F270352
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	49.3	50.6		45.9	48.8		43.6	46	49.8
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.662	2.672		2.62	2.647		2.644	2.637	2.657
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	35300 J	37200		55600 J	35000		28900 J	32400 J	33800
SM2540G	SOLIDS, PERCENT	%	N	48.3	52.3		44.2	51		45.2	48.1	50.3
SW7471	MERCURY	mg/kg	N	1.2 J	18.3		2.5 J	0.27		20.1 J	18.4 J	1.1
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	3.2 J	10 UJ	9.9 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	1.8 J	10 UJ	9.9 U
SW8260	BENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	CHLOROBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	ETHYLBENZENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	NAPHTHALENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	TOLUENE	ug/kg	N	10 UJ	9.6 U	J	11 UJ	9.8 L	J	11 UJ	10 UJ	9.9 U
SW8260	XYLENES, TOTAL	ug/kg	N	31 UJ	29 U	J	34 UJ	29 L	J	33 UJ	31 UJ	30 U
SW9045	pH	S.U.	N	7.5 J	7.8		8.6 J	7.8		7.6 J	7.6 J	7.4

			Location	OL-VC-30083	OL-VC-30083		OL-VC-30083	OL-VC-30084		OL-VC-30084	OL-VC-30084	OL-VC-40188
			Sample Depth	0-2 Ft	2-4 Ft		4-6 Ft	0-2 Ft		2-4 Ft	4-5.3 Ft	0-2 Ft
			Field Sample ID	OL-0582-06	OL-0582-08		OL-0582-10	OL-0582-12		OL-0582-14	OL-0582-16	OL-0586-04
			Sample Date	6/25/2008	6/25/2008		6/25/2008	6/25/2008		6/25/2008	6/25/2008	7/2/2008
												C8G030294
			SDG	C8F270355	C8F270355		C8F270355	C8F270355		C8F270355	C8F270355	C8G030305
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	58.6	53.5		57	46.7		49.4	51	47.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.673	2.655		2.642	2.653		2.621	2.615	2.67
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	19900	30400		46400	26200 J		36100	27700	27700 J
SM2540G	SOLIDS, PERCENT	%	N	57.7	56.2		57.8	47.8		49.5	51.8	48.3
SW7471	MERCURY	mg/kg	N	0.23	0.018 J		0.014 J	3.7 J		8.5	1	17.2 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	3 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	BENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	CHLOROBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U		10 U	9.7 U	1.6 J
SW8260	ETHYLBENZENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	NAPHTHALENE	ug/kg	N	8.7 U	8.9 U	J	8.7 U	10 U	IJ	10 U	9.7 U	10 UJ
SW8260	TOLUENE	ug/kg	N	8.7 U	8.9 U	_	8.7 U	10 U	-	10 U	9.7 U	10 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	26 U	27 U	J	26 U	31 U	IJ	30 U	29 U	31 UJ
SW9045	pH	S.U.	N	7.4	7.2		7.4	7.6 J		7.7	7.6	7.9 J

			Location	OL-VC-40188	OL-VC-40188		OL-VC-40188	OL-VC-40189		OL-VC-40189	OL-VC-40189	OL-VC-40190
			Sample Depth	2-4 Ft	4-6 Ft		6-6.5 Ft	0-2 Ft		2-4 Ft	4-4.3 Ft	0-2 Ft
			Field Sample ID	OL-0586-05	OL-0586-06		OL-0586-07	OL-0584-02		OL-0584-04	OL-0584-06	OL-0581-08
			Sample Date	7/2/2008	7/2/2008		7/2/2008	6/26/2008		6/26/2008	6/26/2008	6/25/2008
				C8G030294	C8G030294		C8G030294					
			SDG	C8G030305	C8G030305		C8G030305	C8F280116		C8F280116	C8F280116	C8F270358
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	47.2	47.8		49	49.2		53.8	50.4	51.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.665	2.63		2.654	2.663		2.676	2.681	2.677
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	22400 J	37300	J	48800 J	21900		22400	22100	29800 J
SM2540G	SOLIDS, PERCENT	%	N	48.6	49.9		49.3	49.9		52.9	54.6	49.7
SW7471	MERCURY	mg/kg	N	54.9 J	12.5	J	1.2 J	2.5		1.9	11.8	2.8 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L	J	9.5 U	9.2 U	10 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L	J	9.5 U	9.2 U	10 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L	J	9.5 U	9.2 U	10 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L	J	9.5 U	9.2 U	10 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	3.5 J	10	UJ	10 UJ	10 L	J	4 J	4.4 J	10 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L	J	9.5 U	1.7 J	10 UJ
SW8260	BENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L	J	9.5 U	1.8 J	10 UJ
SW8260	CHLOROBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L		2.7 J	5.1 J	10 UJ
SW8260	ETHYLBENZENE	ug/kg	N	10 UJ	10	UJ	10 UJ	10 L		9.5 U	9.2 U	10 UJ
SW8260	NAPHTHALENE	ug/kg	N	10 UJ	10		10 UJ	10 L		9.5 U	9.2 U	10 UJ
SW8260	TOLUENE	ug/kg	N	10 UJ	10		10 UJ	10 L		9.5 U	9.2 U	10 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	31 UJ	30		30 UJ	30 L	J	28 U	9.3 J	30 UJ
SW9045	pH	S.U.	N	8.1 J	7.8	J	7.6 J	9		8.5	8.1	7.5 J

			Location	OL-VC-40190	OL-VC-40190		OL-VC-40191	OL-VC-40191		OL-VC-40191	OL-VC-40192	OL-VC-40192
			Sample Depth	2-4 Ft	4-4.4 Ft		0-2 Ft	2-4 Ft		4-6 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0581-10	OL-0581-12		OL-0581-14	OL-0581-16		OL-0581-18	OL-0586-20	OL-0587-01
			Sample Date	6/25/2008	6/25/2008		6/25/2008	6/25/2008		6/25/2008	7/2/2008	7/2/2008
											C8G030294	
			SDG	C8F270358	C8F270358		C8F270358	C8F270358		C8F270358	C8G030305	C8G030281
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	50.3	49.3		50.2	46		42.1	53.7	58.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.694	2.686		2.681	2.667		2.664	2.633	2.704
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	23300	21000		25000	42300	ı	39600 J	32200 J	126000
SM2540G	SOLIDS, PERCENT	%	N	52.1	50.4		51.9	46.1		43.1	50.9	58.6
SW7471	MERCURY	mg/kg	N	26.4	72.7		18.1	41.6	ı	1.4 J	1.4	1.3
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	JJ	12 UJ	9.8 U	8.5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	JJ	12 UJ	9.8 U	8.5 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	5.2 J	6.8 J		4.7 J	2.5	ı	12 UJ	9.8 U	1.5 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	9.6 U	9.9 U	J	1.3 J	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	BENZENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	CHLOROBENZENE	ug/kg	N	2.7 J	3 J		9.6 U	11	JJ	12 UJ	9.8 U	8.5 U
SW8260	ETHYLBENZENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	NAPHTHALENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	TOLUENE	ug/kg	N	9.6 U	9.9 U	J	9.6 U	11	IJ	12 UJ	9.8 U	8.5 U
SW8260	XYLENES, TOTAL	ug/kg	N	29 U	30 U	J	29 U	33	JJ	35 UJ	29 U	26 U
SW9045	рН	S.U.	N	7.6	7.7		7.8	7.8		8.1 J	7.4	7.7

		1	Lasatian	OL-VC-40192	01.1/0.40103		OL-VC-40193	01.1/0.40103		OL-VC-40193	OL-VC-40194	OL-VC-40194
			Location		OL-VC-40192			OL-VC-40193				
			Sample Depth	4-6 Ft	6-7.9 Ft		0-2 Ft	2-4 Ft		4-4.8 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0587-02	OL-0587-03		OL-0579-14	OL-0579-16		OL-0579-18	OL-0579-20	OL-0580-02
			Sample Date	7/2/2008	7/2/2008		6/24/2008	6/24/2008		6/24/2008	6/24/2008	6/24/2008
			SDG	C8G030281	C8G030281		C8F260230	C8F260230		C8F260230	C8F260230	C8F260235
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	56.6	58.8		46	48.4		53.9	54	52.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.689	2.674		2.702	2.713		2.718	2.668	2.655
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	17000	24900		70800	38700		73500	11100	11600
SM2540G	SOLIDS, PERCENT	%	N	57.1	56.5		56.9	53.6		55.3	53.8	54.2
SW7471	MERCURY	mg/kg	N	2.7	6.9		0.02 J	0.0066	J	0.0071 U	23	27.9
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	9.3 l	J	9 U	9.3 U	9.2 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	9.3 l	J	9 U	9.3 U	9.2 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	9.3 l	J	9 U	19	6.6 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	9.3 l	J	9 U	7.7 J	9.2 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	4.1 J	3.4 J		8.8 U	9.3 l	J	9 U	3.2 J	9.2 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.8 U	1.4 J		8.8 U	9.3 l	J	9 U	4.9 J	1.8 J
SW8260	BENZENE	ug/kg	N	8.8 U	1.5 J		8.8 U	9.3 l	J	9 U	1.7 J	2 J
SW8260	CHLOROBENZENE	ug/kg	N	2.3 J	4.3 J		8.8 U	9.3 l	J	9 U	6.5 J	9.2 U
SW8260	ETHYLBENZENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	9.3 l	J	9 U	4.6 J	9.2 U
SW8260	NAPHTHALENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	12 l	J	9 U	9.3 U	9.2 U
SW8260	TOLUENE	ug/kg	N	8.8 U	8.9 L	J	8.8 U	9.3 l	J	9 U	9.3 U	1.9 J
SW8260	XYLENES, TOTAL	ug/kg	N	26 U	27 L	J	26 U	28 เ	J	27 U	80	100
SW9045	рН	S.U.	N	7.5	7.5		8.1	7.7		7.6	9.1	10.3

	T	1	1 12	01.1/0.40404	01.1/0.40405		01.1/0.40405	01.1/0.40405	- 1	01.1/0.40406	01.1/0.40406	01.1/0.404.00
			Location	OL-VC-40194	OL-VC-40195		OL-VC-40195	OL-VC-40195		OL-VC-40196	OL-VC-40196	OL-VC-40196
			Sample Depth	4-6 Ft	0-2 Ft		2-4 Ft	4-5.5 Ft		0-2 Ft	2-4 Ft	4-6 Ft
			Field Sample ID	OL-0580-04	OL-0581-01		OL-0581-03	OL-0581-05		OL-0586-08	OL-0586-09	OL-0586-10
			Sample Date	6/24/2008	6/25/2008		6/25/2008	6/25/2008		7/2/2008	7/2/2008	7/2/2008
										C8G030294	C8G030294	C8G030294
			SDG	C8F260235	C8F270358		C8F270358	C8F270358		C8G030305	C8G030305	C8G030305
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	41.2	51.8		49.2	47.7		65.1	58	60.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.632	2.631		2.625	2.577		2.626	2.621	2.668
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	62800 J	30300		51800	63200 J		26100 J	18100 J	21900 J
SM2540G	SOLIDS, PERCENT	%	N	41.3	52.5		51.1	47.1		64.1	58.3	62.9
SW7471	MERCURY	mg/kg	N	43.6 J	0.17		0.048	0.026 J		4.3	82.5	72
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	12 UJ	1.9 J		9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	IJ	7.8 U	300 J	100 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	2.1 J	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	BENZENE	ug/kg	N	2.8 J	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	CHLOROBENZENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	ETHYLBENZENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	IJ	7.8 U	340 J	190 J
SW8260	NAPHTHALENE	ug/kg	N	12 UJ	9.5 L	J	9.8 U	11 l	JJ	7.8 U	430 U	400 U
SW8260	TOLUENE	ug/kg	N	2.9 J	9.5 L	J	9.8 U	11 l	IJ	7.8 U	430 U	400 U
SW8260	XYLENES, TOTAL	ug/kg	N	95 J	29 L	j	29 U	32 L	JJ	190	7300	4400
SW9045	рН	S.U.	N	10.6 J	7.2		7	7 J		8	9.4	9.8

			Location	OL-VC-40196	OL-VC-40197		OL-VC-40197	OL-VC-40197		OL-VC-40197	OL-VC-40197	OL-VC-40198
			Sample Depth	6-7 Ft	0-2 Ft		2-4 Ft	4-6 Ft		6-8 Ft	8-8.3 Ft	0-2 Ft
			Field Sample ID	OL-0586-11	OL-0586-12		OL-0586-13	OL-0586-14		OL-0586-15	OL-0586-16	OL-0588-12
			Sample Date	7/2/2008	7/2/2008		7/2/2008	7/2/2008		7/2/2008	7/2/2008	7/3/2008
				C8G030294	C8G030294		C8G030294	C8G030294		C8G030294	C8G030294	
			SDG	C8G030305	C8G030305		C8G030305	C8G030305		C8G030305	C8G030305	C8G080239
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	50.1	51.5		53.3	54.4		49.3	53.3	56.2
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.549	2.662		2.656	2.683		2.709	2.653	2.672
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	19200 J	17300 J		18300 J	15800 J		26000 J	30100 J	18700
SM2540G	SOLIDS, PERCENT	%	N	56.7	52.4		53.8	55.3		50.2	52.9	54.2
SW7471	MERCURY	mg/kg	N	52.9	17.7		45.1	79.9		72.3	89.1	1.8 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	450 l	J	500 U	9.4 U	9.2 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	450 l	J	500 U	9.4 U	9.2 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	450 l	J	500 U	9.4 U	9.2 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	250 J	740		380 J	24	9.2 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	570		160 J	8.3 J	9.2 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	450 l	J	500 U	9.4 U	9.2 U
SW8260	BENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	450 l	J	500 U	1.8 J	9.2 U
SW8260	CHLOROBENZENE	ug/kg	N	8.8 U	480 U	J	1200 U	150 J		500 U	1.8 J	9.2 U
SW8260	ETHYLBENZENE	ug/kg	N	8.8 U	3500		5700	1800		210 J	6.4 J	9.2 U
SW8260	NAPHTHALENE	ug/kg	N	8.8 U	480 U	J	1200 U	450 l	J	500 U	9.4 U	9.2 U
SW8260	TOLUENE	ug/kg	N	1.9 J	480 U	J	1200 U	450 l	J	500 U	2.2 J	9.2 U
SW8260	XYLENES, TOTAL	ug/kg	N	130	51000		81000	23000		2700	110	28 U
SW9045	pН	S.U.	N	9.5	9.6		9.4	8.6		8.7	8.7	7.4 J

			Location	OL-VC-40198	OL-VC-40198		OL-VC-40198	OL-VC-40198		OL-VC-40199	OL-VC-40199	OL-VC-40199
			Sample Depth	2-4 Ft	4-6 Ft		6-8 Ft	8-8.5 Ft		0-2 Ft	2-4 Ft	4-5.8 Ft
			Field Sample ID	OL-0588-13	OL-0588-14		OL-0588-15	OL-0588-16		OL-0588-01	OL-0588-02	OL-0588-03
			Sample Date	7/3/2008	7/3/2008		7/3/2008	7/3/2008		7/3/2008	7/3/2008	7/3/2008
			SDG	C8G080239	C8G080239		C8G080239	C8G080239		C8G080239	C8G080239	C8G080239
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	50.8	48.9		49	26.4		64.9	62.7	65.7
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.676	2.589		2.637	2.658		2.668	2.679	2.551
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	33500	17100		48300 J	38600 J		13600	14100	46700
SM2540G	SOLIDS, PERCENT	%	N	54.1	51.6		46.6	26.7		59.5	57.7	64.5
SW7471	MERCURY	mg/kg	N	10.5 J	3.5 J		0.41 J	0.46 J		56.6 J	112 J	19.9 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	2.3 J	9.7 L	J	11 UJ	19 U.	J	2.7 J	8.4 J	7.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	BENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	CHLOROBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	_	8.4 U	4.7 J	7.7 U
SW8260	ETHYLBENZENE	ug/kg	N	9.2 U	9.7 L	J	11 UJ	19 U.	J	8.4 U	8.7 U	7.7 U
SW8260	NAPHTHALENE	ug/kg	N	9.2 U	9.7 L		11 UJ	19 U.	_	8.4 U	8.7 U	7.7 U
SW8260	TOLUENE	ug/kg	N	9.2 U	9.7 L		11 UJ	19 U.	-	8.4 U	8.7 U	7.7 U
SW8260	XYLENES, TOTAL	ug/kg	N	28 U	29 L	_	32 UJ	56 U.	J	25 U	20 J	23 U
SW9045	pH	S.U.	N	7.5 J	7.9 J		10.6 J	11.5 J		7.5 J	7.6 J	7.6 J

			Location	OL-VC-40200	OL-VC-40200		OL-VC-40200	OL-VC-40200	OL-VC-40201	OL-VC-40201	OL-VC-40201
			Sample Depth	0-2 Ft	2-4 Ft		4-6 Ft	6-7 Ft	0-2 Ft	2-4 Ft	4-6 Ft
			Field Sample ID	OL-0588-04	OL-0588-05		OL-0588-06	OL-0588-07	OL-0588-08	OL-0588-09	OL-0588-10
			Sample Date	7/3/2008	7/3/2008		7/3/2008	7/3/2008	7/3/2008	7/3/2008	7/3/2008
			SDG	C8G080239	C8G080239		C8G080239	C8G080239	C8G080239	C8G080239	C8G080239
			Matrix	SOIL	SOIL		SOIL	SOIL	SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample				
			Sample Type	Pore water	Pore water		Pore water				
Method	Parameter Name	Units	Filtered								
ASTM D2216	SOLIDS, PERCENT	%	N	57.5	58.2		55.9	62.4	58.8	62.1	60.6
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.6	2.73		2.733	2.717	2.682	2.704	2.749
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	37600	59700		24400	16600	10700	17100	13100
SM2540G	SOLIDS, PERCENT	%	N	56.7	54.2		56.8	62.9	58.7	60.2	58.9
SW7471	MERCURY	mg/kg	N	13.7 J	0.14 J		0.0069 U	0.0068 U	0.29 J	0.0071 U	0.0066 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	BENZENE	ug/kg	N	8.8 U	2.2 J		8.8 U	8 U	2.1 J	2.8 J	5.9 J
SW8260	CHLOROBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	ETHYLBENZENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	NAPHTHALENE	ug/kg	N	8.8 U	9.2 U	J	8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	TOLUENE	ug/kg	N	8.8 U	9.2 U		8.8 U	8 U	8.5 U	8.3 U	8.5 U
SW8260	XYLENES, TOTAL	ug/kg	N	26 U	28 U	_	26 U	24 U	26 U	25 U	25 U
SW9045	pH	S.U.	N	7.1 J	6.8 J		6.9 J	7 J	7.1 J	7 J	6.7 J

	T		Lasatian	OL-VC-40201	OL VC 50053		OL-VC-50052	01.1/0.50053		01.1/0.50053	OL-VC-50053	01.1/0.50053
			Location		OL-VC-50052			OL-VC-50052		OL-VC-50053		OL-VC-50053
			Sample Depth	6-7.5 Ft	0-2 Ft		2-4 Ft	4-6 Ft		0-2 Ft	2-4 Ft	4-5.7 Ft
			Field Sample ID	OL-0588-11	OL-0585-06		OL-0585-08	OL-0585-10		OL-0584-20	OL-0585-02	OL-0585-04
			Sample Date	7/3/2008	6/26/2008		6/26/2008	6/26/2008		6/26/2008	6/26/2008	6/26/2008
			SDG	C8G080239	C8F280118		C8F280118	C8F280118		C8F280116	C8F280118	C8F280118
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	68.5	37.5		44.2	50.1		41.1	45	50.1
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.7	2.596		2.656	2.692		2.639	2.589	2.683
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	27700	40300	J	46600 J	31500		38000 J	34400	41300
SM2540G	SOLIDS, PERCENT	%	N	74	41.1		42.9	50		42.1	50.4	50.1
SW7471	MERCURY	mg/kg	N	0.021 J	8.9	J	0.96 J	0.057		17.3 J	3.9	0.094
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	j	12 UJ	9.9 U	10 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	6.8 U	1.7	J	12 UJ	10 U	J	1.7 J	9.9 U	10 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	6.8 U	1.8	J	12 UJ	10 U	J	1.7 J	9.9 U	10 U
SW8260	BENZENE	ug/kg	N	5.4 J	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	CHLOROBENZENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	ETHYLBENZENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	NAPHTHALENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	TOLUENE	ug/kg	N	6.8 U	12	UJ	12 UJ	10 U	J	12 UJ	9.9 U	10 U
SW8260	XYLENES, TOTAL	ug/kg	N	20 U	37	UJ	35 UJ	30 U	J	36 UJ	30 U	30 U
SW9045	рН	S.U.	N	7 J	7.5	J	7.4 J	7.5		7.4 J	7.4	7.4

			Location	OL-VC-50054	OL-VC-50054		OL-VC-50054	OL-VC-50055		OL-VC-50055	OL-VC-50055	OL-VC-50056
			Sample Depth	0-2 Ft	2-4 Ft		4-5.7 Ft	0-2 Ft		2-4 Ft	4-5.5 Ft	0-2 Ft
			Field Sample ID	OL-0584-14	OL-0584-16		OL-0584-18	OL-0586-17		OL-0586-18	OL-0586-19	OL-0584-08
			Sample Date	6/26/2008	6/26/2008		6/26/2008	7/2/2008		7/2/2008	7/2/2008	6/26/2008
								C8G030294		C8G030294	C8G030294	
			SDG	C8F280116	C8F280116		C8F280116	C8G030305		C8G030305	C8G030305	C8F280116
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	41.5	43.6		47.7	53.7		56.3	55.4	43.6
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.661	2.672		2.678	2.701		3.611	2.73	2.656
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	26400 J	40900	J	47900 J	59800		51900	39800	22500 J
SM2540G	SOLIDS, PERCENT	%	N	42.4	44.7		47.3	59.2		56.6	56.6	47
SW7471	MERCURY	mg/kg	N	53.9 J	9.5	J	0.43 J	0.64		0.026 J	0.013 J	30.6 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	11 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	11 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	11 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	11 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	4.5 J	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	4.5 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	1.8 J	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	1.7 J
SW8260	BENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	11 UJ
SW8260	CHLOROBENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4		8.8 U	8.8 U	1.7 J
SW8260	ETHYLBENZENE	ug/kg	N	12 UJ	11	UJ	11 UJ	8.4	J	8.8 U	8.8 U	11 UJ
SW8260	NAPHTHALENE	ug/kg	N	12 UJ	11		11 UJ	8.4	-	8.8 U	8.8 U	11 UJ
SW8260	TOLUENE	ug/kg	N	12 UJ	11		11 UJ	8.4	-	8.8 U	8.8 U	11 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	35 UJ	34		32 UJ	25	J	27 U	27 U	32 UJ
SW9045	pH	S.U.	N	7.7 J	7.7	J	7.5 J	7.6		7.3	7.3	7.8 J

			Location	OL-VC-50056	OL-VC-50056		OL-VC-60203	OL-VC-60203		OL-VC-60203	OL-VC-60204	OL-VC-60204
			Sample Depth	2-4 Ft	4-5.7 Ft		0-2 Ft	2-4 Ft		4-5.2 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0584-10	OL-0584-12		OL-0575-08	OL-0575-10		OL-0575-12	OL-0575-14	OL-0575-16
			Sample Date	6/26/2008	6/26/2008		6/20/2008	6/20/2008		6/20/2008	6/20/2008	6/20/2008
			SDG	C8F280116	C8F280116		C8F240142	C8F240142		C8F240142	C8F240142	C8F240142
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	43.2	45.4		32	41.3		44.5	39.5	36.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.657	2.654		2.46	2.587		2.601	2.606	2.461
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	22600 J	39100	J	88700 J	61700	J	577000 J	65600 J	95500 J
SM2540G	SOLIDS, PERCENT	%	N	45.4	46.6		31.9	42.2		46	38.9	36
SW7471	MERCURY	mg/kg	N	61.7 J	2	J	12.2 J	3.4	J	3 J	2.4 J	16.4 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	11 UJ	11	UJ	16 UJ	590	UJ	540 UJ	13 UJ	14 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	11 UJ	11	UJ	16 UJ	590	UJ	540 UJ	13 UJ	4.5 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	11 UJ	11	UJ	8.9 J	590	UJ	540 UJ	2.1 J	9.5 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	11 UJ	11	UJ	3.4 J	590	UJ	540 UJ	13 UJ	4.6 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	7 J	11	UJ	6.8 J	590	UJ	540 UJ	2.7 J	7.6 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	1.4 J	11	UJ	20 J	590	UJ	540 UJ	8.2 J	20 J
SW8260	BENZENE	ug/kg	N	11 UJ	11	UJ	2.6 J	590	UJ	540 UJ	13 UJ	7.2 J
SW8260	CHLOROBENZENE	ug/kg	N	11 UJ	11	UJ	25 J	590	UJ	540 UJ	18 J	26 J
SW8260	ETHYLBENZENE	ug/kg	N	11 UJ	11	UJ	16 UJ	590	UJ	540 UJ	13 UJ	14 UJ
SW8260	NAPHTHALENE	ug/kg	N	11 UJ	11	UJ	16 UJ	2000	J	1300 J	2.1 J	3.4 J
SW8260	TOLUENE	ug/kg	N	11 UJ	11		16 UJ	590		150 J	13 UJ	14 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	33 UJ	32		12 J	1800	_	1600 UJ	6.3 J	30 J
SW9045	pH	S.U.	N	7.7 J	7.7	J	7.5 J	7.3	j	7.2 J	7.4 J	7.4 J

	T	1	l	01.1/0.50004	01.1/0.50005	1	01.110.50005	01.140.00005		01.140.00000	01.110.50005	0. 10 50005
			Location	OL-VC-60204	OL-VC-60205		OL-VC-60205	OL-VC-60205		OL-VC-60206	OL-VC-60206	OL-VC-60206
			Sample Depth	4-5.7 Ft	0-2 Ft		2-4 Ft	4-4.8 Ft		0-2 Ft	2-4 Ft	4-5.5 Ft
			Field Sample ID	OL-0575-18	OL-0572-20		OL-0573-02	OL-0573-04		OL-0572-14	OL-0572-16	OL-0572-18
			Sample Date	6/20/2008	6/19/2008		6/19/2008	6/19/2008		6/19/2008	6/19/2008	6/19/2008
			SDG	C8F240142	C8F200314		C8F200321	C8F200321		C8F200314	C8F200314	C8F200314
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	42.3	41.1		43.2	43.6		55	60.2	55.2
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.501	2.396		2.476	2.525		2.642	2.693	2.612
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	85100 J	61100	J	88000 J	73800	J	42500	30200	37600
SM2540G	SOLIDS, PERCENT	%	N	43.6	39.8		42.3	47.3		52.8	60.6	57.5
SW7471	MERCURY	mg/kg	N	2.1 J	6	J	14.5 J	2.6	J	1.1 J	1.1 J	0.27 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	570 UJ	13	UJ	590 UJ	530	UJ	470 UJ	8.3 U	8.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	570 UJ	13	UJ	590 UJ	530	UJ	470 UJ	8.3 U	8.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	570 UJ	6.1	J	590 UJ	530	UJ	470 U	8.3 U	8.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	570 UJ	2.5	J	590 UJ	530	UJ	470 U	8.3 U	8.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	570 UJ	5.2	J	590 UJ	530	UJ	470 U	8.3 U	8.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	570 UJ	13	J	130 J	530	UJ	470 U	8.3 U	8.7 U
SW8260	BENZENE	ug/kg	N	570 UJ	2.7	J	590 UJ	530	UJ	470 U	8.3 U	8.7 U
SW8260	CHLOROBENZENE	ug/kg	N	570 UJ	21	J	590 UJ	530	UJ	470 U	8.3 U	8.7 U
SW8260	ETHYLBENZENE	ug/kg	N	1100 J	13	UJ	590 UJ	820	J	470 U	8.3 U	8.7 U
SW8260	NAPHTHALENE	ug/kg	N	19000 J	2.6	J	660 J	40000	J	1000	3 J	5 J
SW8260	TOLUENE	ug/kg	N	160 J	13	UJ	120 J	110	J	470 U	8.3 U	8.7 U
SW8260	XYLENES, TOTAL		N	1400 J	9.3	J	1800 UJ	1400	J	1400 U	25 U	26 U
SW9045	рН	S.U.	N	7.3 J	7.3	J	7.2 J	7.2	J	7.2	7.1	6.8

			1 12	01.1/0.0007	01.1/0.00207		01.146.60207	01.146.60300		01.1/0.00200	01.1/0.00200	01.1/0.00000
			Location	OL-VC-60207	OL-VC-60207		OL-VC-60207	OL-VC-60208		OL-VC-60208	OL-VC-60208	OL-VC-60209
			Sample Depth	0-2 Ft	2-4 Ft		4-5.6 Ft	0-2 Ft		2-4 Ft	4-5.3 Ft	0-2 Ft
			Field Sample ID	OL-0575-02	OL-0575-04		OL-0575-06	OL-0573-06		OL-0573-08	OL-0573-10	OL-0572-08
			Sample Date	6/20/2008	6/20/2008		6/20/2008	6/19/2008		6/19/2008	6/19/2008	6/19/2008
			SDG	C8F240142	C8F240142		C8F240142	C8F200321		C8F200321	C8F200321	C8F200314
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	40.5	38.3		43.3	39.8		43.8	46.8	53.9
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.567	2.458		2.512	2.516		2.482	2.552	2.513
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	55100 J	71700	J	73400 J	59400	J	92400 J	74400 J	59100
SM2540G	SOLIDS, PERCENT	%	N	39.5	41.8		43.8	43.9		45.3	46.5	51.8
SW7471	MERCURY	mg/kg	N	2.5 J	10.5	J	16.5 J	5.5	J	13.4 J	2.1 J	1.1 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	13 UJ	12	UJ	11 UJ	11	UJ	11 UJ	11 UJ	140 J
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	13 UJ	12	UJ	11 UJ	11	UJ	11 UJ	11 UJ	480 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	3 J	4.9	J	2.1 J	7.5	J	1.8 J	11 UJ	480 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	13 UJ	2.4	J	11 UJ	2.5	J	11 UJ	11 UJ	480 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	4.4 J	3.8	J	11 UJ	5.1	J	11 UJ	11 UJ	480 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	13 J	9.7	J	4.8 J	16	J	2.4 J	11 UJ	480 U
SW8260	BENZENE	ug/kg	N	13 UJ	3.8	J	3.7 J	4	J	5.6 J	3.6 J	480 U
SW8260	CHLOROBENZENE	ug/kg	N	28 J	25	J	4.1 J	17	J	2.3 J	11 UJ	480 U
SW8260	ETHYLBENZENE	ug/kg	N	13 UJ	12	UJ	6.6 J	11	UJ	3.6 J	2.2 J	480 U
SW8260	NAPHTHALENE	ug/kg	N	13 UJ	2	J	8.5 J	3	J	200 J	36 J	10000 J
SW8260	TOLUENE	ug/kg	N	13 UJ	12	UJ	11 UJ	11	UJ	2.1 J	11 UJ	480 U
SW8260	XYLENES, TOTAL	ug/kg	N	38 UJ	11	J	25 J	31	J	60 J	37 J	370 J
SW9045	рН	S.U.	N	7.4 J	7.4	J	7.3 J	7.4	J	7.4 J	7.3 J	7.1

			Location	OL-VC-60209	OL-VC-60209		OL-VC-60210	OL-VC-60210		OL-VC-60210	OL-VC-60211	OL-VC-60211
			Sample Depth	2-4 Ft	4-4.8 Ft		0-2 Ft	2-4 Ft		4-6 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0572-10	OL-0572-12		OL-0591-14	OL-0591-15		OL-0591-16	OL-0576-06	OL-0576-08
			Sample Date	6/19/2008	6/19/2008		7/9/2008	7/9/2008		7/9/2008	6/20/2008	6/20/2008
			SDG	C8F200314	C8F200314		C8G110326	C8G110326		C8G110326	C8F240150	C8F240150
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	57.6	56.1		68.1	66.5		61.1	41.4	36.7
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.52	2.67		2.614	2.683		2.692	2.611	2.504
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	30400	29500		54500	17400		25800	44800 J	67500 J
SM2540G	SOLIDS, PERCENT	%	N	59.8	55.1		63.1	69.7		63.7	44.1	41.2
SW7471	MERCURY	mg/kg	N	0.37 J	0.06 J		1.5	0.021 J		0.021 J	4.9 J	4.8 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 UJ	360 l	IJ	7.9 U	11 UJ	610 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	7.9 U	11 UJ	610 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	7.9 U	11 UJ	610 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	7.9 U	11 UJ	110 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	1.2 J	11 UJ	610 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	3.9 J	5.6 J	400 J
SW8260	BENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	7.9 U	11 UJ	610 UJ
SW8260	CHLOROBENZENE	ug/kg	N	8.4 U	9.1 U	J	2000 U	360 l	J	10	14 J	820 J
SW8260	ETHYLBENZENE	ug/kg	N	8.4 U	9.1 U	J	590 J	360 l	J	7.9 U	11 UJ	610 UJ
SW8260	NAPHTHALENE	ug/kg	N	3.1 J	4 J		28000	1300		26 J	11 UJ	610 UJ
SW8260	TOLUENE	ug/kg	N	8.4 U	9.1 U	_	2000 U	360 l	J	7.9 U	11 UJ	610 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	25 U	27 L	J	5900 U	1100 l	J	24 U	34 UJ	1800 UJ
SW9045	pH	S.U.	N	6.9	6.9		7.5 J	7.4 J		7.2 J	7.4 J	7.4 J

	I		Location	OL-VC-60211	OL-VC-60212		OL-VC-60212	OL-VC-60212		OL-VC-60213	OL-VC-60213	OL-VC-60214
			Sample Depth	4-5.7 Ft	0-vc-60212 0-2 Ft		2-4 Ft	4-4.8 Ft		0-7C-60213 0-2 Ft	2-4.1 Ft	0-vC-60214 0-2 Ft
			Field Sample ID	OL-0576-10	OL-0573-12		OL-0573-14	OL-0573-16		OL-0572-01	OL-0572-05	OL-0593-17
				6/20/2008	6/19/2008		6/19/2008	6/19/2008		6/18/2008	6/19/2008	7/14/2008
			Sample Date	6/20/2008	6/19/2008		6/19/2008	6/19/2008		6/18/2008	6/19/2008	7/14/2008
			SDG	C8F240150	C8F200321		C8F200321	C8F200321		C8F200314	C8F200314	C8G160260
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
	SOLIDS, PERCENT	%	N	41.6	44		46.5	48.6		57.8	53.4	72.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.452	2.533		2.533	2.577		2.518	2.565	2.678
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	88200 J	79300	J	70900 J	78100 J	l	54100	49900	21200
SM2540G	SOLIDS, PERCENT	%	N	39.5	44.2		46	46.4		54.7	54.9	66.5
SW7471	MERCURY	mg/kg	N	13.5 J	9.5	J	5.9 J	2.5	l	6.5 J	2.5 J	0.38 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	630 UJ	11	UJ	11 UJ	540	IJ	9.1 U	9.1 U	7.5 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	300 J	11	UJ	11 UJ	540	JJ	9.1 U	9.1 U	7.5 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	330 J	6.4	J	11 UJ	540	JJ	11	5 J	7.5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	270 J	2.5	J	11 UJ	540	IJ	4.1 J	9.1 U	7.5 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	180 J	3.4	J	11 UJ	540	IJ	7.7 J	4 J	7.5 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	900 J	22	J	2.3 J	540	IJ	28	14	7.5 U
SW8260	BENZENE	ug/kg	N	630 UJ	4.9	J	2.9 J	540	IJ	20	2.1 J	7.5 U
SW8260	CHLOROBENZENE	ug/kg	N	770 J	17	J	2.1 J	540	JJ	95	26	7.5 U
SW8260	ETHYLBENZENE	ug/kg	N	630 UJ	11	UJ	2.9 J	1900	ı	9.1 U	9.1 U	7.5 U
SW8260	NAPHTHALENE	ug/kg	N	500 J	2.4	J	20 J	19000	ı	4.1 J	9.1 U	27
SW8260	TOLUENE	ug/kg	N	630 UJ	11	UJ	11 UJ	260	ı	9.1 U	9.1 U	7.5 U
SW8260	XYLENES, TOTAL	ug/kg	N	690 J	19	J	16 J	3600	I	20 J	27 U	23 U
SW9045	рН	S.U.	N	7.4 J	7.4	J	7.4 J	7.4	ı	7.4	7.4	7.5

	T	1	I			ı			-			
			Location	OL-VC-60214	OL-VC-60214		OL-VC-60214	OL-VC-60215		OL-VC-60215	OL-VC-60216	OL-VC-60216
			Sample Depth	2-4 Ft	4-6 Ft		6-7.3 Ft	0-2 Ft		2-4.2 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0593-18	OL-0593-19		OL-0593-20	OL-0576-12		OL-0576-14	OL-0573-18	OL-0573-20
			Sample Date	7/14/2008	7/14/2008		7/14/2008	6/20/2008		6/20/2008	6/19/2008	6/19/2008
			SDG	C8G160260	C8G160260		C8G160260	C8F240150		C8F240150	C8F200321	C8F200321
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	63.8	65.1		59	33.7		40.1	39.7	42.1
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.67	2.666		2.668	2.574		2.441	2.532	2.446
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	16700	26200		33300	52700 J		74100 J	47600 J	84800 J
SM2540G	SOLIDS, PERCENT	%	N	61.5	64		60.4	36.8		41	38.6	42.7
SW7471	MERCURY	mg/kg	N	0.074 J	0.013 J		0.02 J	6.2 J		20 J	7.9 J	29.5 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	2.9 J		610 UJ	13 UJ	12 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	14 L	IJ	610 UJ	13 UJ	7.8 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	3.8 J		610 UJ	3 J	33 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	14 L	IJ	120 J	13 UJ	9.9 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	4.8 J		610 UJ	3.8 J	11 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	19 J		350 J	21 J	69 J
SW8260	BENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	14 L	IJ	610 UJ	13 UJ	33 J
SW8260	CHLOROBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	28 J		1100 J	35 J	220 J
SW8260	ETHYLBENZENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	14 L	IJ	610 UJ	13 UJ	12 UJ
SW8260	NAPHTHALENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	14 J		230 J	13 UJ	10 J
SW8260	TOLUENE	ug/kg	N	8.1 U	7.8 L	J	8.3 U	14 L	IJ	610 UJ	13 UJ	6.5 J
SW8260	XYLENES, TOTAL	ug/kg	N	24 U	23 L	J	25 U	41 L	IJ	1800 UJ	39 UJ	95 J
SW9045	рН	S.U.	N	7.2	7.4		7.2	7.5 J		7.6 J	7.5 J	7.5 J

			Location	OL-VC-60216	OL-VC-60217	OL-VC-60217	OL-VC-60217	OL-VC-60217	OL-VC-60217	OL-VC-60221
			Sample Depth	4-5.1 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft	8-8.7 Ft	0-2 Ft
			Field Sample ID	OL-0574-02	OL-0591-17	OL-0591-18	OL-0591-19	OL-0591-20	OL-0592-01	OL-0593-05
			Sample Date	6/19/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/14/2008
			SDG	C8F200326	C8G110326	C8G110326	C8G110326	C8G110326	C8G110336	C8G160260
			Matrix	SOIL						
			Sample Purpose	Regular sample						
			Sample Type	Pore water						
Method	Parameter Name	Units	Filtered							
ASTM D2216	SOLIDS, PERCENT	%	N	46.5	66.5	60.3	60	56.9	58.1	63.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.542	2.627	2.697	2.703	2.701	2.701	2.678
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	83400 J	12000	24500	11500	25000	47800	33400
SM2540G	SOLIDS, PERCENT	%	N	46.3	67.8	54.7	55.4	59.9	59.9	60.3
SW7471	MERCURY	mg/kg	N	11.8 J	5.4	0.0071 U	0.0071 U	0.043	0.0071 U	0.16 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	540 UJ	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	140 J	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	250 J	7.4 U	9.1 U	9 U	8.3 U	1.3 J	8.3 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	90 J	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	150 J	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	880 J	7.4 U	2.8 J	2.1 J	8.3 U	3.1 J	8.3 U
SW8260	BENZENE	ug/kg	N	200 J	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	CHLOROBENZENE	ug/kg	N	580 J	7.4 U	3.7 J	9 U	8.3 U	2.5 J	8.3 U
SW8260	ETHYLBENZENE	ug/kg	N	540 UJ	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	NAPHTHALENE	ug/kg	N	360 J	64	21 J	47 J	8.3 UJ	21	8.3 U
SW8260	TOLUENE	ug/kg	N	170 J	7.4 U	9.1 U	9 U	8.3 U	8.3 U	8.3 U
SW8260	XYLENES, TOTAL	ug/kg	N	790 J	3.4 J	27 U	27 U	25 U	25 U	25 U
SW9045	pH	S.U.	N	7.6 J	7.8 J	7.4 J	7.4 J	7.5 J	7.4 J	7.1

			Location	OL-VC-60221	OL-VC-60221		OL-VC-60221	OL-VC-60222		OL-VC-60222	OL-VC-60222	OL-VC-60222
			Sample Depth	2-4 Ft	4-6 Ft		6-7.9 Ft	0-2 Ft		2-4 Ft	4-6 Ft	6-7.6 Ft
				OL-0593-06	OL-0593-07		OL-0593-08	OL-0593-01		OL-0593-02	OL-0593-03	OL-0593-04
			Field Sample ID									
			Sample Date	7/14/2008	7/14/2008		7/14/2008	7/14/2008		7/14/2008	7/14/2008	7/14/2008
			SDG	C8G160260	C8G160260		C8G160260	C8G160260		C8G160260	C8G160260	C8G160260
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	59.9	59.5		55.5	73		57.6	59.6	58.3
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.687	2.701		2.696	2.666		2.62	2.672	2.662
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	48800	25900		36800	12400		42800	31600	33900
SM2540G	SOLIDS, PERCENT	%	N	58.4	56.4		55.6	69.9		59.7	60	59.6
SW7471	MERCURY	mg/kg	N	0.0067 U	0.0069 L	J	0.007 U	0.3 J		0.044 J	0.028 J	0.023 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	160 J		8.4 U	8.3 U	8.4 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	130 J		8.4 U	8.3 U	8.4 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	360 l	J	8.4 U	8.3 U	8.4 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	65 J		8.4 U	8.3 U	8.4 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	360 l	J	8.4 U	8.3 U	8.4 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	130 J		8.4 U	8.3 U	8.4 U
SW8260	BENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	360 l	J	8.4 U	8.3 U	8.4 U
SW8260	CHLOROBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	360 l	J	8.4 U	8.3 U	8.4 U
SW8260	ETHYLBENZENE	ug/kg	N	8.6 U	8.9 L	J	9 U	360 l	J	8.4 U	8.3 U	8.4 U
SW8260	NAPHTHALENE	ug/kg	N	8.6 U	8.9 L	J	9 U	1200		30	2.1 J	8.4 U
SW8260	TOLUENE	ug/kg	N	8.6 U	8.9 L	J	9 U	360 l	J	8.4 U	8.3 U	8.4 U
SW8260	XYLENES, TOTAL	ug/kg	N	26 U	27 L	J	27 U	1100 l	J	25 U	25 U	25 U
SW9045	рН	S.U.	N	6.9	6.8		6.8	7.3		7	7.1	7.2

			Location	OL-VC-60223	OL-VC-60223		OL-VC-60223	OL-VC-60223		OL-VC-60224	OL-VC-60224	OL-VC-60224
			Sample Depth	0-2 Ft	2-4 Ft		4-6 Ft	6-7.2 Ft		0-2 Ft	2-4 Ft	4-6 Ft
			Field Sample ID	OL-0593-09	OL-0593-10		OL-0593-11	OL-0593-12		OL-0593-13	OL-0593-14	OL-0593-15
			Sample Date	7/14/2008	7/14/2008		7/14/2008	7/14/2008		7/14/2008	7/14/2008	7/14/2008
			SDG	C8G160260	C8G160260		C8G160260	C8G160260		C8G160260	C8G160260	C8G160260
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	69.5	67		61.4	63.1		73.8	63.3	65.8
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.669	2.672		2.671	2.682		2.682	2.679	2.677
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	26200	18900		23300	27300		7960	16400	16100
SM2540G	SOLIDS, PERCENT	%	N	70	67.2		62.1	61.9		71.8	71.1	65.1
SW7471	MERCURY	mg/kg	N	0.19 J	0.023 J		0.02 J	0.023 J		0.04 J	0.015 J	0.015 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	BENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	CHLOROBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1		7 U	7 U	7.7 U
SW8260	ETHYLBENZENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1	J	7 U	7 U	7.7 U
SW8260	NAPHTHALENE	ug/kg	N	7.1 U	7.4 U	J	8.1 U	8.1		7 U	7 U	7.7 U
SW8260	TOLUENE	ug/kg	N	7.1 U	7.4 U		8.1 U	8.1	-	7 U	7 U	7.7 U
SW8260	XYLENES, TOTAL	ug/kg	N	21 U	22 U	J	24 U	24 เ	J	21 U	21 U	23 U
SW9045	pH	S.U.	N	7.7	7.4		7.1	7.1		7.9	7.3	7.2

			Location	OL-VC-60224	OL-STA-70048	OL-STA-70048	OL-STA-70048	OL-STA-70048	OL-STA-70049	OL-STA-70049
			Sample Depth	6-7.2 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-7.9 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0593-16	OL-0590-15	OL-0590-16	OL-0590-17	OL-0590-18	OL-0590-01	OL-0590-02
			Sample Date	7/14/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008
			SDG	C8G160260	C8G100328	C8G100328	C8G100328	C8G100328	C8G100328	C8G100328
			Matrix	SOIL						
			Sample Purpose	Regular sample						
			Sample Type	Pore water						
Method	Parameter Name	Units	Filtered							
ASTM D2216	SOLIDS, PERCENT	%	N	65.9	68.9	56.4	57.5	60.5	44	41.3
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.687	2.619	2.694	2.679	2.709	2.572	2.397
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	20400	60600	65100	59500	48200	43200 J	71100 J
SM2540G	SOLIDS, PERCENT	%	N	68.2	69.6	58.7	58.7	59.8	40.2	39.8
SW7471	MERCURY	mg/kg	N	0.014 J	4.8	0.014 J	0.0067 U	0.018 J	11.6 J	16.2 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U	8.4 U	12 UJ	13 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U	8.4 U	12 UJ	2.5 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U	8.4 U	12 UJ	17 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U	8.4 U	12 UJ	4 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	7.3 U	2 J	8.5 U	8.5 U	8.4 U	6.6 J	7.4 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	7.3 U	5.1 J	1.3 J	8.5 U	8.4 U	41 J	42 J
SW8260	BENZENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U	8.4 U	1.7 J	12 J
SW8260	CHLOROBENZENE	ug/kg	N	7.3 U	14	2.2 J	8.5 U		59 J	94 J
SW8260	ETHYLBENZENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U	8.4 U	12 UJ	3.2 J
SW8260	NAPHTHALENE	ug/kg	N	7.3 U	17	6.9 J	1.8 J	1.2 J	4.3 J	78 J
SW8260	TOLUENE	ug/kg	N	7.3 U	7.2 U	8.5 U	8.5 U		12 UJ	5 J
SW8260	XYLENES, TOTAL	ug/kg	N	22 U	22 U	26 U	26 U		37 UJ	59 J
SW9045	pH	S.U.	N	7.2	7.6	7.2	7.3	7.3	7.7 J	7.9 J

			Location	OL-STA-70049	OL-STA-70049		OL-STA-70049	OL-STA-70050	1	OL-STA-70050	OL-STA-70050	OL-STA-70050
								0L-STA-70050 0-2 Ft		2-4 Ft	0L-STA-70050 4-6 Ft	
			Sample Depth	4-6 Ft	6-8 Ft		8-8.3 Ft			=		6-8 Ft
			Field Sample ID	OL-0590-03	OL-0590-04		OL-0590-05	OL-0589-05		OL-0589-06	OL-0589-07	OL-0589-08
			Sample Date	7/8/2008	7/8/2008		7/8/2008	7/7/2008		7/7/2008	7/7/2008	7/7/2008
			SDG	C8G100328	C8G100328		C8G100328	C8G090250		C8G090250	C8G090250	C8G090250
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	50.3	51.4		55.2	34.4		38.7	43.4	47.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.524	2.546		2.585	2.471		2.445	2.536	2.561
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	59000	57500		48900	73300	ı	94500 J	63900 J	62500 J
SM2540G	SOLIDS, PERCENT	%	N	50	50.7		56.2	35.2		39.6	45.8	47.1
SW7471	MERCURY	mg/kg	N	44.1	8.3		1.7	12.3	1	30.2 J	23.8 J	4.4 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	50 U	9.9	U	8.9 U	71	JJ	1300 UJ	550 UJ	530 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	45 J	9.9	U	8.9 U	24 J	ı	520 J	550 UJ	530 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	190	3.1	J	8.9 U	100	ı	3300 J	730 J	530 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	50 U	9.9	U	8.9 U	51 .	ı	290 J	110 J	530 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	40 J	2.6	J	8.9 U	72 .	ı	660 J	340 J	530 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	600	15		1.3 J	280 J	ı	7500 J	2500 J	210 J
SW8260	BENZENE	ug/kg	N	38 J	3.1	J	1.4 J	120 .	ı	340 J	120 J	530 UJ
SW8260	CHLOROBENZENE	ug/kg	N	270	10		8.9 U	1100	ı	3200 J	850 J	530 UJ
SW8260	ETHYLBENZENE	ug/kg	N	66	9.9	U	8.9 U	71	JJ	810 J	300 J	530 UJ
SW8260	NAPHTHALENE	ug/kg	N	1300 J	58		9.4	180	1	33000 J	13000 J	2800 J
SW8260	TOLUENE	ug/kg	N	79	9.9	U	8.9 U	37	1	410 J	98 J	530 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	430	15	J	6 J	410	1	6400 J	1700 J	420 J
SW9045	рН	S.U.	N	8	7.8		7.9	7.6	ı	7.6 J	7.6 J	7.5 J

			Location	OL-STA-70050	OL-VC-70108	OL-VC-70108	OL-VC-70108	OL-VC-70108	OL-VC-70109	OL-VC-70109
			Sample Depth	8-8.6 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-7.1 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0589-09	OL-0590-11	OL-0590-12	OL-0590-13	OL-0590-14	OL-0590-06	OL-0590-07
			Sample Date	7/7/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008	7/8/2008
			SDG	C8G090250	C8G100328	C8G100328	C8G100328	C8G100328	C8G100328	C8G100328
			Matrix	SOIL						
			Sample Purpose	Regular sample						
			Sample Type	Pore water						
Method	Parameter Name	Units	Filtered							
ASTM D2216	SOLIDS, PERCENT	%	N	45.7	72.4	58.2	55.4	57.2	54.1	52.1
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.554	2.633	2.691	2.612	2.67	2.493	2.6
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	66100 J	29100	51500	63100	60000	60300	40100
SM2540G	SOLIDS, PERCENT	%	N	49.4	62.3	57.7	57	57.3	51	51.7
SW7471	MERCURY	mg/kg	N	2.3 J	4.3	0.032	0.0068 U	0.099	53.3	41.1
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	510 UJ	8 U	8.7 U	8.8 U	8.7 U	1400 J	4800 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	510 UJ	8 U	8.7 U	8.8 U	8.7 U	8400	3500 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	510 UJ	5.4 J	8.7 U	8.8 U	8.7 U	24000	12000
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	510 UJ	3.4 J	8.7 U	8.8 U	8.7 U	4900 U	4800 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	510 UJ	8.2	8.7 U	8.8 U	8.7 U	5800	2700 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	110 J	28	8.7 U	8.8 U	8.7 U	63000	30000
SW8260	BENZENE	ug/kg	N	510 UJ	3.9 J	8.7 U	8.8 U	8.7 U	1700 J	4800 U
SW8260	CHLOROBENZENE	ug/kg	N	510 UJ	100	8.7 U	8.8 U	8.7 U	44000	22000
SW8260	ETHYLBENZENE	ug/kg	N	510 UJ	8 U	8.7 U	8.8 U	8.7 U	1600 J	4800 U
SW8260	NAPHTHALENE	ug/kg	N	8200 J	43	8.7 U	8.8 U	4.5 J	130000	60000
SW8260	TOLUENE	ug/kg	N	510 UJ	8 U	8.7 U	8.8 U	8.7 U	3400 J	1600 J
SW8260	XYLENES, TOTAL	ug/kg	N	510 J	17 J	26 U	26 U	26 U	21000	9900 J
SW9045	рН	S.U.	N	7.4 J	7.6	7.6	7.4	7.4	8.2	8.2

			Location	OL-VC-70109	OL-VC-70109		OL-VC-70109	OL-VC-70110		OL-VC-70110	OL-VC-70110	OL-VC-70110
			Sample Depth	4-6 Ft	6-8 Ft		8-8.8 Ft	0-2 Ft		2-4 Ft	4-6 Ft	6-8 Ft
			Field Sample ID	OL-0590-08	OL-0590-09		OL-0590-10	OL-0591-01		OL-0591-02	OL-0591-03	OL-0591-04
			Sample Date	7/8/2008	7/8/2008		7/8/2008	7/9/2008		7/9/2008	7/9/2008	7/9/2008
			SDG	C8G100328	C8G100328		C8G100328	C8G110326		C8G110326	C8G110326	C8G110326
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	58.5	48.3		48.8	54.7		60.5	53.8	49.4
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.609	2.626		2.64	2.585		2.626	2.65	2.613
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	30400	23400	J	18300 J	44700		53900	52300	33800 J
SM2540G	SOLIDS, PERCENT	%	N	54.4	46.4		44.8	54.3		57.1	51.2	49.1
SW7471	MERCURY	mg/kg	N	59.8	24.1	J	14.4 J	10.2		0.27	0.0069 U	0.0072 UJ
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	4600 U	11000	UJ	5600 UJ	460	J	8.8 U	9.8 U	10 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	6300	11000	J	4900 J	460	J	8.8 U	9.8 U	10 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	22000	38000	J	16000 J	460	J	8.8 U	9.8 U	10 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	4600 U	11000	UJ	5600 UJ	140	1	8.8 U	9.8 U	10 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	5000	8800	J	3900 J	110	1	8.8 U	9.8 U	10 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	55000	98000	J	42000 J	360 .	ı	8.8 U	9.8 U	1.3 J
SW8260	BENZENE	ug/kg	N	1600 J	2700	J	5600 UJ	460	J	8.8 U	9.8 U	10 UJ
SW8260	CHLOROBENZENE	ug/kg	N	40000	70000	J	30000 J	680		8.8 U	9.8 U	1.7 J
SW8260	ETHYLBENZENE	ug/kg	N	1500 J	11000	UJ	5600 UJ	460	J	8.8 U	9.8 U	10 UJ
SW8260	NAPHTHALENE	ug/kg	N	100000	190000	J	78000 J	380 .	1	8.8 U	9.8 U	10 UJ
SW8260	TOLUENE	ug/kg	N	3100 J	5300		2300 J	460	-	8.8 U	9.8 U	10 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	19000	32000		14000 J	1400	J	26 U	29 U	31 UJ
SW9045	pH	S.U.	N	8.3	8.5	J	8.5 J	7.2	1	7.2 J	7.1 J	7 J

			Location	OL-VC-70111	OL-VC-70111		OL-VC-70111	OL-VC-70111		OL-VC-70119	OL-VC-70119	OL-VC-70119
				0-2 Ft	2-4 Ft		4-6 Ft	6-7.1 Ft		0L-VC-70119 0-2 Ft	2-4 Ft	4-6 Ft
			Sample Depth								_	
			Field Sample ID	OL-0591-05	OL-0591-06		OL-0591-07	OL-0591-08		OL-0589-10	OL-0589-11	OL-0589-12
			Sample Date	7/9/2008	7/9/2008		7/9/2008	7/9/2008		7/7/2008	7/7/2008	7/7/2008
			SDG	C8G110326	C8G110326		C8G110326	C8G110326		C8G090250	C8G090250	C8G090250
			Matrix	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL
			Sample Purpose	Regular sample	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample
			Sample Type	Pore water	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	72.2	55.8		56.5	56.5		34.4	42.7	47.5
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.681	2.697		2.7	2.706		2.481	2.443	2.554
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	32800	49500		61100	44800		72500 J	94300 J	42900 J
SM2540G	SOLIDS, PERCENT	%	N	65.9	61		58.3	52.5		35	41.5	45.8
SW7471	MERCURY	mg/kg	N	0.96	0.024	J	0.0067 U	0.0068	U	12.7 J	28.2 J	37.6 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	710 UJ	1200 UJ	1100 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	710 UJ	1600 J	420 J
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	180 J	5500 J	2500 J
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	150 J	240 J	220 J
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	150 J	950 J	930 J
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	3.5 J	8.2	U	8.6 U	9.5	U	740 J	13000 J	9200 J
SW8260	BENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	710 UJ	500 J	1100 UJ
SW8260	CHLOROBENZENE	ug/kg	N	2.5 J	8.2	U	8.6 U	9.5	U	1700 J	5300 J	2500 J
SW8260	ETHYLBENZENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	710 UJ	1200 J	760 J
SW8260	NAPHTHALENE	ug/kg	N	7.6 UJ	8.2	UJ	8.6 UJ	9.5	UJ	640 J	48000 J	39000 J
SW8260	TOLUENE	ug/kg	N	7.6 U	8.2	U	8.6 U	9.5	U	710 UJ	1500 J	620 J
SW8260	XYLENES, TOTAL	ug/kg	N	23 U	25	U	26 U	29	U	770 J	9000 J	4400 J
SW9045	рН	S.U.	N	7.4 J	7.7	J	7.7 J	7.2	J	7.6 J	7.7 J	7.7 J

		1	1 1'	01.1/0.70440	1	01.1/0.70430	01.1/0.70430		01.1/0.70420	01.1/0.70430	01.1/0.70433	01.1/0.70433
			Location	OL-VC-70119		OL-VC-70120	OL-VC-70120		OL-VC-70120	OL-VC-70120	OL-VC-70122	OL-VC-70122
			Sample Depth	6-7.5 Ft		0-2 Ft	2-4 Ft		4-6 Ft	6-8 Ft	0-2 Ft	2-4 Ft
			Field Sample ID	OL-0589-13		OL-0589-01	OL-0589-02		OL-0589-03	OL-0589-04	OL-0591-09	OL-0591-10
			Sample Date	7/7/2008		7/7/2008	7/7/2008		7/7/2008	7/7/2008	7/9/2008	7/9/2008
			SDG	C8G090250		C8G090250	C8G090250		C8G090250	C8G090250	C8G110326	C8G110326
			Matrix	SOIL		SOIL	SOIL		SOIL	SOIL	SOIL	SOIL
			Sample Purpose	Regular sample		Regular sample	Regular sample		Regular sample	Regular sample	Regular sample	Regular sample
			Sample Type	Pore water		Pore water	Pore water		Pore water	Pore water	Pore water	Pore water
Method	Parameter Name	Units	Filtered									
ASTM D2216	SOLIDS, PERCENT	%	N	46.6		34.5	35.6		35.5	40	44.9	51.4
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.536		2.551	2.438		2.341	2.528	2.488	2.588
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	51400	J	50900 J	93800 .	J	130000	J 53600 J	67000 J	47100
SM2540G	SOLIDS, PERCENT	%	N	49.5		32.1	35.5		37.1	42.1	46.3	50.3
SW7471	MERCURY	mg/kg	N	6.4	J	6.8 J	8.6	J	24.4	J 17.1 J	39 J	3.5
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	51	UJ	16 UJ	70	UJ	67	UJ 2400 l	JJ 540 UJ	9.9 U
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	51	UJ	16 UJ	16 .	J	19	J 2400 l	JJ 260 J	9.9 U
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	34	J	16 UJ	86 .	J	270	J 670 J	590 J	9.9 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	51	UJ	16 UJ	21 .	J	22	J 2400 l	JJ 200 J	9.9 U
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	34	J	3.1 J	75 .	J	290	J 12000 J	390 J	9.9 U
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	160	J	17 J	210 .	J	680	J 12000 J	3200 J	3.7 J
SW8260	BENZENE	ug/kg	N	51	J	16 UJ	100 .	J	200	J 2400 l	JJ 130 J	9.9 U
SW8260	CHLOROBENZENE	ug/kg	N	160	J	29 J	620 .	J	2400	J 11000 J	1700 J	5 J
SW8260	ETHYLBENZENE	ug/kg	N	26	J	16 UJ	28 .	J	120	J 790 J	540 UJ	9.9 U
SW8260	NAPHTHALENE	ug/kg	N	740	J	16 UJ	850 .	J	2300	J 47000 J	300 J	9.9 U
SW8260	TOLUENE	ug/kg	N	23	J	16 UJ	82 .	J	230	J 2400 l	JJ 540 UJ	9.9 U
SW8260	XYLENES, TOTAL	ug/kg	N	240	J	47 UJ	220 .	J	840	J 6400 J	1100 J	12 J
SW9045	рН	S.U.	N	7.6	J	7.5 J	7.6	J	7.6	J 7.6 J	7.6 J	7.5 J

	T	1		01.110.70100	01.110.70100	01.140.70400	01.110.70100	0	0	01.110.70100
			Location	OL-VC-70122	OL-VC-70122	OL-VC-70122	OL-VC-70123	OL-VC-70123	OL-VC-70123	OL-VC-70123
			Sample Depth	4-6 Ft		8-8.5 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft
			Field Sample ID	OL-0591-11	OL-0591-12	OL-0591-13	OL-0589-14	OL-0589-15	OL-0589-16	OL-0589-17
			Sample Date	7/9/2008	7/9/2008	7/9/2008	7/7/2008	7/7/2008	7/7/2008	7/7/2008
			SDG		C8G110326	C8G110326	C8G090250	C8G090250	C8G090250	C8G090250
			Matrix	SOIL						
			Sample Purpose	Regular sample						
			Sample Type	Pore water						
Method	Parameter Name	Units	Filtered							
ASTM D2216	SOLIDS, PERCENT	%	N	54	52.2	55.5	41.2	43	47.4	49.8
ASTM D854	SPECIFIC GRAVITY	g/cc	N	2.598	2.585	2.667	2.514	2.484	2.545	2.551
Lloyd Kahn	TOTAL ORGANIC CARBON	mg/kg	N	50800	52200	40400	63600 J	85500 J	72400	65400 J
SM2540G	SOLIDS, PERCENT	%	N	53.6	52.5	57	43.8	44.7	50.4	49.6
SW7471	MERCURY	mg/kg	N	3.8	2.9	2.5	13.1 J	38.2 J	8.6	3.9 J
SW8260	1,2,3-TRICHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	57 UJ	56 UJ	9.9 U	10 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	25 J	110 J	9.9 U	10 UJ
SW8260	1,2-DICHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	110 J	380 J	4.4 J	10 UJ
SW8260	1,3,5-TRICHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	51 J	51 J	9.9 U	10 UJ
SW8260	1,3-DICHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	57 J	130 J	2.2 J	10 UJ
SW8260	1,4-DICHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	230 J	800 J	13	10 UJ
SW8260	BENZENE	ug/kg	N	470 U	480 U	440 U	180 J	260 J	7.6 J	10 UJ
SW8260	CHLOROBENZENE	ug/kg	N	470 U	480 U	440 U	1500 J	1700 J	17	10 UJ
SW8260	ETHYLBENZENE	ug/kg	N	470 U	480 U	440 U	57 UJ	56 UJ	9.9 U	10 UJ
SW8260	NAPHTHALENE	ug/kg	N	8600	6400	2400	57 UJ	130 J	9.9 U	10 UJ
SW8260	TOLUENE	ug/kg	N	470 U	480 U	440 U	20 J	64 J	1.6 J	10 UJ
SW8260	XYLENES, TOTAL	ug/kg	N	1400 U	1400 U	1300 U	210 J	740 J	17 J	30 UJ
SW9045	рН	S.U.	N	7.4 J	7.4 J	7.4 J	7.6 J	7.6 J	7.5	7.5 J

ATTACHMENT A-4

VALIDATED LABORATORY DATA FOR ADDENDUM 6 SURFACE WATER SAMPLES

		Location	Field QC	Field QC	OL-SW-10163		OL-SW-10163		DL-SW-10164	OL-SW-10164	OL-SW-10164
		Sample Depth			5-5 FT		5-5 FT		5-5 FT	5-5 FT	5-5 FT
		Field Sample ID	OL-0685-21	OL-0685-21-F	OL-0684-01		OL-0684-01-F		OL-0685-02	OL-0685-02-F	OL-0685-10
		Sample Date	11/18/2008	11/18/2008	11/17/2008		11/17/2008		11/18/2008	11/18/2008	11/18/2008
		SDG	C8K190319	C8K190319	C8K180343		C8K180343		C8K190319	C8K190319	C8K190319
		Matrix	WATER	WATER	WATER		WATER		WATER	WATER	WATER
		Sample Purpose	Equipment Blank	Equipment Blank	Regular Sample		Regular Sample	Re	egular Sample	Regular Sample	Regular Sample
		Sample Type	Surface Water	Surface Water	Surface Water		Surface Water		Surface Water	Surface Water	Surface Water
Parameter Name	Units	Filtered									
METHYL MERCURY	ng/L	N	0.02 U		0.119				0.162		0.301
METHYL MERCURY			0.02 U		0.088				0.065		0.1
MERCURY			0.00017 J		0.0031				0.0061		0.04
MERCURY		Υ		0.00021 J			0.00071			0.00075	
NITROGEN, AMMONIA (AS N)		N	0.12		0.25				0.37		0.3
NITROGEN, AMMONIA (AS N)				0.26			0.34	J		0.34	
TSS			4 U		4	UJ			3.6 J		13.6
AROCLOR-1016			0.39 U	0.41 U	0.38	U	0.39 l	U	0.38 U	0.38 U	0.39 U
AROCLOR-1221			0.39 U	0.41 U	0.38	U	0.39 l	U	0.38 U	0.38 U	0.39 U
AROCLOR-1232			0.39 U	0.41 U	0.38	U	0.39 ไ	U	0.38 U	0.38 U	0.39 U
AROCLOR-1242			0.39 U	0.41 U	0.38	U	0.39 ไ	U	0.38 U	0.38 U	0.39 U
AROCLOR-1248			0.39 U	0.41 U	0.38	U	0.39 ไ	U	0.38 U	0.38 U	0.39 U
AROCLOR-1254			0.39 U	0.41 U	0.38	U	0.39 ไ	J	0.38 U	0.38 U	0.39 U
AROCLOR-1260			0.39 U	0.41 U					0.38 U	0.38 U	0.39 U
	METHYL MERCURY METHYL MERCURY MERCURY MERCURY NITROGEN, AMMONIA (AS N) NITROGEN, AMMONIA (AS N) TSS AROCLOR-1016 AROCLOR-1221 AROCLOR-1232 AROCLOR-1242 AROCLOR-1242 AROCLOR-1248 AROCLOR-1254	Parameter Name METHYL MERCURY METHYL MERCURY MERCURY MERCURY MERCURY MITROGEN, AMMONIA (AS N) MITROGEN, AMMONIA (AS N) TSS MG/L AROCLOR-1016 AROCLOR-1221 AROCLOR-1232 AROCLOR-1242 AROCLOR-1242 AROCLOR-1248 AROCLOR-1254 Units ng/L ug/L ug/L ug/L ug/L	Sample Depth Field Sample ID Sample Date SDG Matrix Sample Purpose Sample Type Parameter Name Units Filtered METHYL MERCURY METHYL MERCURY MERCURY MERCURY MERCURY MERCURY MITROGEN, AMMONIA (AS N) NITROGEN, AMMONIA (AS N) MITROGEN, AMMONIA (AS N) MITROGEN, AMMONIA (AS N) MOJL N AROCLOR-1016 AROCLOR-1221 AROCLOR-1232 AROCLOR-1242 AROCLOR-1248 AROCLOR-1254 AROCLOR-1254 AROCLOR-1254 MERCURY MITROGEN, AMMONIA (AS N) MOJL N MOJL	Sample Depth Field Sample ID OL-0685-21 Sample Date 11/18/2008 SDG C8K190319 Matrix WATER Sample Purpose Equipment Blank Sample Type Surface Water Parameter Name Units Filtered METHYL MERCURY ng/L N 0.02 UMETHYL MERCURY ng/L N 0.00017 JMERCURY ug/L N 0.00017 JMERCURY ug/L N 0.00017 JMERCURY ug/L N 0.12 NITROGEN, AMMONIA (AS N) mg/L N 0.12 NITROGEN, AMMONIA (AS N) mg/L N 0.39 UAROCLOR-1232 ug/L N 0.39 UAROCLOR-1244 ug/L N 0.39 UAROCLOR-1244 ug/L N 0.39 UAROCLOR-1254 ug/L N 0.39 UAROCLOR-1254	Sample Depth Field Sample ID OL-0685-21 OL-0685-21-F Sample Date 11/18/2008 11/18/2008 SDG C8K190319 C8K190319 C8K190319 Matrix WATER WATER Sample Purpose Equipment Blank Equipment Blank Sample Type Surface Water Surface Water Parameter Name Units Filtered METHYL MERCURY ng/L N 0.02 U MERCURY ng/L N 0.00017 J MERCURY ug/L N 0.00017 J MERCURY ug/L N 0.12 NITROGEN, AMMONIA (AS N) mg/L Y 0.02 NITROGEN, AMMONIA (AS N) mg/L Y 0.02 U NITROGEN, AMMONIA (AS N) mg/L N 0.12 NITROGEN, AMMONIA (AS N) mg/L N 0.12 AROCLOR-1016 ug/L N 0.39 U 0.41 U AROCLOR-1232 ug/L N 0.39 U 0.41 U AROCLOR-1248 ug/L N 0.39 U 0.41 U AROCLOR-1254 ug/L N 0.39 U 0.41 U	Sample Depth Field Sample ID OL-0685-21 OL-0685-21-F OL-0684-01	Sample Depth Field Sample ID OL-0685-21 OL-0685-21-F OL-0684-01	Sample Depth Field Sample ID OL-0685-21 OL-0685-21-F OL-0684-01 OL-0684-01-F OL-06	Sample Depth Field Sample ID OL-0685-21 OL-0685-21-F OL-0684-01 OL-0684-01-F OL-06	Sample Depth	Sample Depth Sample Depth Sample Depth Sample Depth Field Sample ID OL-0685-21 OL-0685-21 OL-0685-21 OL-0684-01 OL-0684-01 OL-0685-02 OL-06

			Location	Field QC	Field QC	OL-SW-10163	OL-SW-10163		OL-SW-10164	OL-SW-10164	OL-SW-10164
			Sample Depth			5-5 FT	5-5 FT		5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-21	OL-0685-21-F	OL-0684-01	OL-0684-01-F		OL-0685-02	OL-0685-02-F	OL-0685-10
			Sample Date	11/18/2008	11/18/2008	11/17/2008	11/17/2008		11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K180343	C8K180343		C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER		WATER	WATER	WATER
			Sample Purpose	Equipment Blank	Equipment Blank	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water
Method	Parameter Name		Filtered								
SW8260	1,1,1-TRICHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	1,1,2,2-TETRACHLOROETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L		5 U	5 U	5 U			5 UJ	5 UJ	5 UJ
SW8260	1,1-DICHLOROETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,1-DICHLOROETHENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 UJ	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE	ug/L		5 U	5 U	5 U			5 UJ	5 U	5 U
SW8260	1,2-DIBROMOETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	4.8 J
SW8260	1,2-DICHLOROETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,2-DICHLOROPROPANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	11
SW8260	2-BUTANONE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	2-HEXANONE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	4-METHYL-2-PENTANONE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	ACETONE	ug/L		20 U	20 U	20 U			20 U	20 U	6.4 J
SW8260	BENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	1.6 J
SW8260	BROMODICHLOROMETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	BROMOFORM	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	BROMOMETHANE	ug/L		5 UJ	5 U	5 U			5 U	5 U	5 U
SW8260	CARBON DISULFIDE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	CARBON TETRACHLORIDE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	CHLOROBENZENE	ug/L		5 U	5 U	5 U			0.55 J	5 U	17
	CHLORODIBROMOMETHANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	CHLOROETHANE	ug/L		5 UJ	5 UJ	5 U			5 UJ	5 UJ	5 UJ
	CHLOROFORM	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	CHLOROMETHANE	ug/L		5 U	5 U	5 U			5 UJ	5 U	5 U
	CIS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	CIS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	CYCLOHEXANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	DICHLORODIFLUOROMETHANE	ug/L		5 UJ	5 UJ	5 U			5 UJ	5 UJ	5 U
	ETHYLBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	ISOPROPYLBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	METHYL ACETATE	ug/L		5 U	5 U	5 U			5 UJ	5 U	5 UJ
SW8260	METHYL TERT-BUTYL ETHER	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	METHYLCYCLOHEXANE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	METHYLENE CHLORIDE	ug/L		5 U	1.1 J	5 U			5 U	1.2 J	5 U
	STYRENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	TETRACHLOROETHENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	TOLUENE	ug/L		5 U	5 U	5 U			5 U	5 U	1.1 J
SW8260	TRANS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	TRANS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	TRICHLOROETHENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	TRICHLOROFLUOROMETHANE	ug/L		5 UJ	5 UJ	5 U			5 U	5 U	5 UJ
SW8260	VINYL CHLORIDE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
	XYLENES, TOTAL	ug/L		15 U	15 U	15 U			15 U	15 U	4.8 J
	· · · · · · · · · · · · · · · · · · ·			- 1 -	- 1 - 1	-1-			- 1 - 1	-11	- -

Surgio Decot September S				Location	Field QC	Field QC	OL-SW-10163	OL-SW-10163		OL-SW-10164	OL-SW-10164	OL-SW-10164
Ford Surgic C. Gibbs 27												
Sample Date					OL-0685-21	OL-0685-21-F						
SECOND CONTRIBUTED CONTR			_				11/17/2008			11/18/2008		
Marie Marie WATER WATE												
Service Purpose Equipment Early Equipment				Matrix								
Surface Name				Sample Purpose		Equipment Blank					Regular Sample	
Method Pasameter Name Unite Rillerod 9, U 9, U 9, E 9, E												
SYMETON 22-CONTRIST-TENTIOLOGOPEROPANES og. N	Method	Parameter Name										
SYMETON 22-CONTRIST-TENTIOLOGOPEROPANES og. N	SW8270	1,1'-BIPHENYL	ug/L	N	9.9 U	9.7 U	9.8	U 9.6 l	U	9.7 U	9.6 U	0.29 J
SMEZED 24,6-TRICHLOROPHENOL Upt N 9.9 U 9.7 U 9.9 U 9.7 U 1.9	SW8270	2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L	N	2 U	1.9 U	2	U 1.9 l	U	1.9 U	1.9 U	2.1 U
SW8270 2,4-CICHLOROPHENOL Upt. N 0.0 U 5.0	SW8270	2,4,5-TRICHLOROPHENOL	ug/L	N	9.9 U	9.7 U	9.8	U 9.6 l	U	9.7 U	9.6 U	11 U
SWEETO 2-4-DINTEOPHENDL Ugb N 9-9 U 9-7 U 9-8	SW8270	2,4,6-TRICHLOROPHENOL	ug/L	N	9.9 U	9.7 U	9.8	U 9.6 l	U	9.7 U	9.6 U	11 U
SWESTO A-DINITROPHINOL Ugst N S0 U 48 U 49 U 49 U 49 U 49 U 55 U 59 WESTO A-DINITROPHINOL Ugst N 9.8 U 9.7 U 9.8 U 9.7 U 9.8 U 9.7 U 9.8 U 11 U 11 U 59 WESTO A-DINITROPHINOL Ugst N 9.8 U 9.7 U 9.8 U 9.7 U 9.8 U 11 U 12 U 12 U 12 U 13 U U 14 U U U U U U U U U	SW8270	2,4-DICHLOROPHENOL	ug/L	N	2 U	1.9 U	2	U 1.9 U	U	1.9 U	1.9 U	2.1 U
SWARD 2-FONTROTOLUENE Ugb N 0.9 U 9.7 U 9.8 U	SW8270	2,4-DIMETHYLPHENOL				9.7 U	9.8	U 9.6 U	U	9.7 U	9.6 U	11 U
SMESTO 2-CHICROPAPHTHALENE 1971 N 9-91 U 9-71 U 9-81 U 9-71 U 9-81 U 1-91 U	SW8270	2,4-DINITROPHENOL										53 U
SWESTO C-CHEROPAPHTHALENE Upl. N		•										
SW8270 2-CHURKOPHINOL Ugl. N		*										
SW8270 2-METHYLNEHTHALENE												
SWB270 2-METHYLPHENOL 19/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 11 U 9.8 WEZP 2-METRONILINE 19/L N 9.9 U 9.7 U 9.8 U 9.6 U 4.8 U 4.8 U 4.8 U 4.8 U 4.8 U 4.8 U 9.6 U 9.7 U 9.5 U 11 U 9.8 WEZP 2-METROPHENOL 19/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.5 U 11 U 9.8 WEZP 3-METROPHENOL 19/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.5 U 11 U 9.8 WEZP 3-METROPHENOL 19/L N 9.9 U 9.7 U 9.8 U 4.8 U												
SW8270 2-NITROANLINE												
SW8270 S												
SW8270 A-CHLOROGENZIONE UgL N 9.9 U 9.7 U 9.8 U 48 U 48 U 48 U 48 U 53 U 58												
SWB270 3-NITROANILINE												
SW8270 AFONNTRO_XMETHYLPHENOL QPL N 9.0 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.6 9.7 9.8 9.8 9.6 9.7 9.8		•										
SW8270 A-SROMOPHENYL PHENYL ETHER UgL N 9.9 U 9.7 U 9.8 U 9.7 U 9.6 U 9.7 U 9.6 U 11 U SW8270 A-CHLORO-SMETHYLPHENOL UgL N 9.9 U 9.7 U 9.8 U 9.5 U 9.7 U 9.6 U 11 U SW8270 A-CHLORO-PHENYL PHENYL ETHER UgL N 9.9 U 9.7 U 9.8 U 9.5 U 9.7 U 9.6 U 11 U SW8270 A-CHLORO-PHENYL PHENYL ETHER UgL N 9.9 U 9.7 U 9.8 U 9.5 U 9.7 U 9.6 U 11 U SW8270 A-MITRO-PHENOL UgL N 9.9 U 9.7 U 9.8 U 9.5 U 9.7 U 9.6 U 11 U SW8270 A-MITRO-PHENOL UgL N 5.50 U 48 U 48 U 48 U 48 U 48 U 48 U 5.3 U SW8270 A-MITRO-PHENOL UgL N 5.50 U 48 U 48 U 48 U 48 U 48 U 5.3 U SW8270 A-MITRO-PHENOL UgL N 5.50 U 48 U 48 U 48 U 48 U 48 U 5.3 U SW8270 A-MITRO-PHENOL UgL N 5.50 U 48 U 1.9 U 1.9 U 1.9 U 1.9 U 2.1 U SW8270 A-MITRO-PHENOL UgL N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 2.1 U SW8270 A-MITRO-PHENOL UgL N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 2.1 U SW8270 A-MITRO-PHENOL UgL N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 1.9 U 2.1 U 1.9 U 2.1 U 1.9 U 2.1 U 2.0 U 1.9 U 1.9 U 1.9 U 2.1 U 2.0 U 1.9 U 1.9 U 1.9 U 1.9 U 2.1 U 2.0 U 1.9 U 2.1 U 2.0												
SW8270 A-CHLOROANILINE GUL N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7 U												
SW8270 CHLOROPHENYLEHER Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 11 U 11 U 11 U 12 U 12 U 13 U 14 U 14 U 14 U 15 U												
SW8270 -C-ILLOROPHENYL PHENYL ETHER												
SW8270 AMETHYLPHENOL												
SW8270 ANTROAMLINE												
SW8270 ANTROPHENOL Ug/L N SO U 48 U 49 U 48 U 48 U 48 U 53 U 54												
SW8270 ACENAPHTHENE Ug/L N												
SW8270 ACENAPHTHYLENE												
SW8270 ANTHRACENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 1.1 U 2.1 U 1.9 U 1.9 U 1.9 U 2.1 U 2												
SW8270 ANTHRACENE												
SW8270 ATRAZINE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 11 U SW8270 BENZALDEHYDE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 1.9 U 3.4 SW8270 BENZO(A)ANTHRACENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.4 SW8270 BENZO(B/A)PYRENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 2.3 SW8270 BENZO(B/H)CRANTHENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 3.5 SW8270 BENZO(B/H)CRANTHENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 3.5 SW8270 BENZO(B/H)CRANTHENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 3.5 SW8270 BENZO(B/H)CRANTHENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 3.5 SW8270 BENZO(B/H)CRETHOXY)METHANE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.1 U SW8270 BIS(2-CHLOROETHOXY)METHANE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.1 U 2.1 U SW8270 BUTYLBENZYLPHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 2.1 U SW8270 BUTYLBENZYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 2.1 U SW8270 CAPROLACTAM Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.7 SW8270 CAPROLACTAM Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.7 SW8270 CHYSENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U												
SW8270 BENZOLADEHYDE												
SW8270 BENZO(A)ANTHRACENE			_									
SW8270 BENZO(A)PYRENE												
SW8270 BENZO(B)FLUORANTHENE Ug/L N		` '										
SW8270 BENZO(G,H,I)PERYLENE		()										
SW8270 BENZO(K)FLUORANTHENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 4.1 SW8270 BIS(2-CHLOROETHOXY)METHANE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 2.1 U SW8270 BIS(2-CHLOROETHYL)PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 2.1 U SW8270 BIS(2-CHLOROETHYL)PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 2.1 U SW8270 SW8270 BUTYLBENZYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.6 U 2.1 U SW8270 SW8270 CARROLACTAM Ug/L N 50 U 48 U 49 U 48 U 48 U 48 U 48 U 53 U SW8270 CARROLACTAM Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 2.1 U SW8270 CHRYSENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 3.7 SW8270 CHRYSENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 0.88 J SW8270 DI-N-DCTYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 0.88 J SW8270 DIBENZO(A,H)ANTHRACENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 3.2 SW8270 DIBENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6		, ,										
SW8270 BIS(2-CHLOROETHOXY)METHANE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 11 U SW8270 BIS(2-CHLOROETHYL)ETHER Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 2.1		, · · · · /										
SW8270 BIS(2-CHLOROETHYL)ETHER Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 2.1 U 3.7 U 3.8 U 3.6 U 3.7 U 3.8 U												
SW8270 BIS(2-ETHYLHEXYL)PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 2.1 U SW8270 BUTYLBENZYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.6 U 11 U SW8270 CARROLACTAM Ug/L N 50 U 48 U 49 U 48 U 48 U 48 U 48 U 53 U SW8270 CARBAZOLE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 3.7 U SW8270 CHRYSENE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 3.7 U SW8270 DI-N-BUTYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.8 U SW8270 DI-N-CTYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 3.2 U SW8270 DIBENZO(A,H)ANTHRACENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 U SW8270 DIETHYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 3.2 U SW8270 DIETHYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 5.6 U 1.9 U 5.6 U 5.7 U 5.8 U 5.6 U 5.7 U 5.6 U 5.7 U 5.6 U 5.7 U 5.8 U 5.6 U 5.7 U 5.6 U 5.7 U 5.8 U 5.6 U 5.7 U 5.6 U 5.7 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5		,										
SW8270 BUTYLBENZYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U SW8270 CAPROLACTAM Ug/L N 50 U 48 U 48 U 48 U 48 U 48 U 53 U SW8270 CARBAZOLE Ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 3.7 U SW8270 CHRYSENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 0.88 J SW8270 DI-N-BUTYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 0.88 J SW8270 DI-N-OCTYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.8 J SW8270 DIBENZO(A,H)ANTHRACENE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIBENZOFURAN Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 3.2 SW8270 DIBETHYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 1.9 U 1.9 U 3.2 U 3.2												
SW8270 CAPROLACTAM ug/L N 50 U 48 U 49 U 48 U 53 U SW8270 CARBAZOLE ug/L N 2 U 1.9 U												
SW8270 CARBAZOLE ug/L N 2 U 1.9 U 2.0 1.9 U 1.8 U 1.9 U 1.8 U 1.8 U 9.6 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7 U 9.8 U									_			
SW8270 CHRYSENE ug/L N 2 U 1.9 U 2 U 1.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7 U 9.8 U 9.6 U 9.7	SW8270	CARBAZOLE			2 U	1.9 U	2	U 1.9 l	U	1.9 U	1.9 U	2.1 U
SW8270 DI-N-OCTYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U 9.8 U 9.7 U 9.7 U 9.8 U 9.7 U 9.8 U 9.8 U 9.8 U 9.6 U 9.7 U 9.6 U 9.7 U 9.8 U 9.8 U 9.8 U 9.6 U 9.7 U 9.6 U	SW8270		ug/L	N					_			3.7
SW8270 DIBENZO(A,H)ANTHRACENE ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 3.2 U SW8270 DIBENZOFURAN ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U	SW8270											
SW8270 DIBENZOFURAN ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U									_			
SW8270 DIETHYL PHTHALATE ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U		X /										
SW8270 DIMETHYL PHTHALATE Ug/L N 9.9 U 9.7 U 9.8 U 9.6 U 9.7 U 9.6 U 9.6 U 9.7 U												
SW8270 FLUORANTHENE ug/L N 2 U 1.9 U 2 U 1.9 U 2.1 U SW8270 FLUORENE ug/L N 2 U 1.9 U 2 U 1.9 U 1.9 U 1.9 U 1.9 U 2.1 U												
SW8270 FLUORENE ug/L N 2 U 1.9												
19W8270 HEVACHI ODORENZENE 100/1 N 2011 4 0/11												
	SW8270	HEXACHLOROBENZENE	ug/L	N	2 U	1.9 U	2	U 1.9 l	U	1.9 U	1.9 U	1.2 J

			Location	Field QC	Field QC	OL-SW-10163	OL-SW-10163	OL-SW-10164	OL-SW-10164	OL-SW-10164
				rieiu QC	Field QC					
			Sample Depth	01 0005 04	01,0005,04,5	5-5 FT				
			Field Sample ID	OL-0685-21	OL-0685-21-F	OL-0684-01	OL-0684-01-F	OL-0685-02	OL-0685-02-F	OL-0685-10
			Sample Date	11/18/2008	11/18/2008	11/17/2008	11/17/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K180343	C8K180343	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Equipment Blank	Equipment Blank	Regular Sample				
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered							
SW8270	HEXACHLOROBUTADIENE	ug/L	N	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	2.1 U
SW8270	HEXACHLOROCYCLOPENTADIENE	ug/L	N	9.9 U	9.7 U	9.8 L	J 9.6 L	9.7 U	9.6 U	11 U
SW8270	HEXACHLOROETHANE	ug/L	N	9.9 U	9.7 U	9.8 L	J 9.6 L	9.7 U	9.6 U	11 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/L	N	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	3.4
SW8270	ISOPHORONE	ug/L	N	9.9 U	9.7 U	9.8 L	J 9.6 L	9.7 U	9.6 U	11 U
SW8270	N-NITROSO-DI-N-PROPYLAMINE	ug/L	N	2 U	1.9 U	2 L			1.9 U	2.1 U
SW8270	N-NITROSODIPHENYLAMINE	ug/L	N	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	2.1 U
SW8270	NAPHTHALENE	ug/L	N	2 U	1.9 U	2 L			1.9 U	12
SW8270	NITROBENZENE	ug/L	Ν	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	2.1 U
SW8270	PENTACHLOROPHENOL	ug/L	Ν	9.9 U	9.7 U	9.8 L	J 9.6 L	9.7 U	9.6 U	11 U
SW8270	PHENANTHRENE	ug/L	N	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	0.57 J
SW8270	PHENOL	ug/L	N	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	2.1 U
SW8270	PYRENE	ug/L	N	2 U	1.9 U	2 L	J 1.9 L	1.9 U	1.9 U	2 J
				20 U		119		162		301
				20 U		88		65		100

			Location	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10165	OL-SW-10165
			Sample Depth	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-10-F	OL-0685-17	OL-0685-17-F	OL-0686-01	OL-0686-01-F	OL-0685-04	OL-0685-04-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319						
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	Surface Water						
Method	Parameter Name	Units	Filtered							
E1630	METHYL MERCURY	ng/L	N		0.299		0.355		0.083	
E1630	METHYL MERCURY	ng/L			0.208		0.124		0.056	
E1631	MERCURY	ug/L			0.0621		0.0439		0.0033	
E1631	MERCURY	ug/L		0.0053		0.0073		0.0075		0.0006
E350.1	NITROGEN, AMMONIA (AS N)	mg/L			0.33		0.34		0.36	
E350.1	NITROGEN, AMMONIA (AS N)	mg/L		0.32		0.32		0.3		0.35
SM2540D	TSS	mg/L			15.6		13		3.6 J	
SW8082	AROCLOR-1016	ug/L	•	0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.4 U	0.38 U
SW8082	AROCLOR-1221	ug/L		0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.4 U	0.38 U
SW8082	AROCLOR-1232	ug/L		0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.4 U	0.38 U
SW8082	AROCLOR-1242	ug/L		0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.4 U	0.38 U
SW8082	AROCLOR-1248	ug/L		0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.4 U	0.38 U
SW8082	AROCLOR-1254	ug/L		0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.43	10
SW8082	AROCLOR-1260	ug/L		0.38 U	0.38 U	0.38	U 0.38	U 0.38 U	0.4 U	0.38 U

			Location	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164		OL-SW-10164	OL-SW-10165	OL-SW-10165
			Sample Depth	5-5 FT	1-1 FT	1-1 FT	5-5 FT		5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-10-F	OL-0685-17	OL-0685-17-F	OL-0686-01		OL-0686-01-F	OL-0685-04	OL-0685-04-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008		11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319		C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER		WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water
Method	Parameter Name		Filtered	Canado Water	Curiaco Water	Canado Water	Curiado vvator		Curiaco Water	Curiaco vvator	Suriace Water
SW8260	1,1,1-TRICHLOROETHANE	ug/L		5 U	5 U	5 L	J 5	IJ	5 U	5 U	5 U
SW8260	1,1,2,2-TETRACHLOROETHANE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROETHANE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L		5 UJ	5 UJ	5 (UJ	5 U	5 UJ	5 UJ
SW8260	1,1-DICHLOROETHANE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	1,1-DICHLOROETHENE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L		5 UJ	5 UJ	5 (5 U	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE	ug/L		5 U	5 U	5 (5 U	5 UJ	5 U
SW8260	1,2-DIBROMOETHANE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L		4.8 J	11	8.1	8.9	-	6.7	5 U	5 U
SW8260	1,2-DICHLOROETHANE	ug/L		5 U	5 U	5 l		IJ	5 U	5 U	5 U
SW8260	1,2-DICHLOROPROPANE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L		11	24	18	19		14	5 U	5 U
	2-BUTANONE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
	2-HEXANONE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
	4-METHYL-2-PENTANONE	ug/L		5 U	5 U	5 (5 U	5 U	5 U
SW8260	ACETONE	ug/L		20 UJ	9.7 J	12 J			16 J	6.9 J	14 J
SW8260	BENZENE	ug/L		5 U	3.7 J	2.5 J			1.8 J	5 U	5 U
	BROMODICHLOROMETHANE	ug/L		5 U	5 U	5 l			5 U	5 U	5 U
SW8260	BROMOFORM	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	BROMOMETHANE	ug/L		5 U	5 U	5 L		UJ	5 UJ	5 U	5 U
SW8260	CARBON DISULFIDE	ug/L		5 U	5 U	5 L	J 5	U	5 U	5 U	5 U
SW8260	CARBON TETRACHLORIDE	ug/L	N	5 U	5 U	5 L	J 5	U	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	N	21	41	32	29		23	5 U	5 U
SW8260	CHLORODIBROMOMETHANE	ug/L	N	5 U	5 U	5 L	J 5	U	5 U	5 U	5 U
SW8260	CHLOROETHANE	ug/L	N	5 UJ	5 UJ	5 L	JJ 5	UJ	5 UJ	5 UJ	5 UJ
SW8260	CHLOROFORM	ug/L	N	5 U	5 U	5 L	J 5	U	5 U	5 U	5 U
SW8260	CHLOROMETHANE	ug/L	N	5 U	5 U	5 L	J 5	U	5 U	5 UJ	5 U
SW8260	CIS-1,2-DICHLOROETHENE	ug/L	N	5 U	5 U	5 L			5 U	5 U	5 U
SW8260	CIS-1,3-DICHLOROPROPENE	ug/L	N	5 U	5 U	5 L			5 U	5 U	5 U
	CYCLOHEXANE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	DICHLORODIFLUOROMETHANE	ug/L	N	5 U	5 U	5 L		UJ	5 UJ	5 UJ	5 U
	ETHYLBENZENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	ISOPROPYLBENZENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
	METHYL ACETATE	ug/L		5 UJ	5 UJ	5 L			5 U	5 UJ	5 UJ
	METHYL TERT-BUTYL ETHER	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
	METHYLCYCLOHEXANE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
	METHYLENE CHLORIDE	ug/L		1.9 J	5 U	1.4 J			1.2 J	5 U	2.6 J
	STYRENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TETRACHLOROETHENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
	TOLUENE	ug/L		1.2 J	2.3 J	1.8 J			1.1 J	5 U	5 U
SW8260	TRANS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TRANS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TRICHLOROETHENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TRICHLOROFLUOROMETHANE	ug/L		5 UJ	5 UJ	5 (UJ	5 UJ	5 U	5 UJ
SW8260 SW8260	VINYL CHLORIDE XYLENES, TOTAL	ug/L		5 U	5 U 11 J	5 L			5 U 6.1 J	5 U 15 U	5 U 15 U
3440200	ATLENES, TOTAL	ug/L	IN	5.7 J	IIJ	8.1 J	7.5	J	0.1 J	וסןטן	าอุบ

			Location	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10165	OL-SW-10165
			Sample Depth	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-10-F	OL-0685-17	OL-0685-17-F	OL-0686-01	OL-0686-01-F	OL-0685-04	OL-0685-04-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319						
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	Surface Water						
Method	Parameter Name		Filtered							
SW8270	1,1'-BIPHENYL	ug/L		9.7 U	0.19 J	9.6 ไ	J 0.28 J	0.27 J	9.4 U	10 U
SW8270	2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L	N	1.9 U	1.9 U	1.9 l	J 1.9 U	1.9 U	1.9 U	2 U
SW8270	2,4,5-TRICHLOROPHENOL	ug/L	N	9.7 U	9.4 U	9.6 L	J 9.5 U	9.7 U	9.4 U	10 U
SW8270	2,4,6-TRICHLOROPHENOL	ug/L	N	9.7 U	9.4 U	9.6 l	J 9.5 U	9.7 U	9.4 U	10 U
SW8270	2,4-DICHLOROPHENOL	ug/L	N	1.9 U	1.9 U	1.9 l	J 1.9 U	1.9 U	1.9 U	2 U
SW8270	2,4-DIMETHYLPHENOL	ug/L		9.7 U	9.4 U	9.6 l	J 9.5 U	9.7 U	9.4 U	10 U
SW8270	2,4-DINITROPHENOL	ug/L		48 U	47 U	48 l		48 U	47 U	50 U
SW8270	2,4-DINITROTOLUENE	ug/L		9.7 U	9.4 U	9.6 L		9.7 U	9.4 U	10 U
SW8270	2,6-DINITROTOLUENE	ug/L		9.7 U	9.4 U	9.6 l		9.7 U	9.4 U	10 U
SW8270	2-CHLORONAPHTHALENE	ug/L		1.9 U	1.9 U	1.9 l			1.9 U	2 U
SW8270	2-CHLOROPHENOL	ug/L		9.7 U	9.4 U	9.6 ا		9.7 U	9.4 U	10 U
SW8270	2-METHYLNAPHTHALENE	ug/L		0.4 J	0.47 J	0.71 J		0.58 J	1.9 U	2 U
SW8270	2-METHYLPHENOL	ug/L		9.7 U	9.4 U	9.6 \		9.7 U	9.4 U	10 U
SW8270	2-NITROANILINE	ug/L		48 U	47 U	48 L		48 U	47 U	50 U
SW8270	2-NITROPHENOL	ug/L		9.7 U	9.4 U	9.6 \		9.7 U	9.4 U	10 U
SW8270	3,3'-DICHLOROBENZIDINE	ug/L		9.7 U	9.4 U	9.6 \		9.7 U	9.4 U	10 U
SW8270	3-NITROANILINE	ug/L		48 U	47 U	48 L		48 U	47 U	50 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	ug/L		48 U	47 U	48 L		48 U	47 U	50 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ug/L		9.7 U	9.4 U	9.6 \		9.7 U	9.4 U	10 U
SW8270	4-CHLORO-3-METHYLPHENOL 4-CHLOROANILINE	ug/L		9.7 U 9.7 U	9.4 U	9.6 \		9.7 U	9.4 U	10 U
SW8270 SW8270	4-CHLOROPHENYL PHENYL ETHER	ug/L ug/L		9.7 U	9.4 U 9.4 U	9.6 L 9.6 L		9.7 U 9.7 U	9.4 U 9.4 U	10 U 10 U
SW8270	4-METHYLPHENOL	ug/L ug/L		9.7 U	9.4 U	9.6 (9.7 U	9.4 U	10 U
SW8270	4-NITROANILINE	ug/L		48 U	47 U	48 (48 U	47 U	50 U
SW8270	4-NITROPHENOL	ug/L		48 U	47 UJ	48 (47 UJ	50 U
SW8270	ACENAPHTHENE	ug/L		1.9 U	1.9 U	1.9 ไ		1.9 U	1.9 U	2 U
	ACENAPHTHYLENE	ug/L		1.9 U	1.9 U	1.9 \			1.9 U	2 U
SW8270	ACETOPHENONE	ug/L		9.7 U	9.4 U	9.6 (9.4 U	10 U
	ANTHRACENE	ug/L		1.9 U	1.9 U	1.9 ไ			1.9 U	2 U
	ATRAZINE	ug/L		9.7 U	9.4 U	9.6 ไ			9.4 U	10 U
	BENZALDEHYDE	ug/L		9.7 U	9.4 U	9.6 ไ			9.4 U	10 U
	BENZO(A)ANTHRACENE	ug/L		1.9 U	1.9 U	1.9 l			1.9 U	2 U
SW8270	BENZO(A)PYRENE	ug/L	N	1.9 U	1.9 U	1.9 l	J 1.9 U	1.5 J	1.9 U	2 U
SW8270	BENZO(B)FLUORANTHENE	ug/L	N	1.9 U	1.9 U	1.9 l	J 1.9 U	2.1	1.9 U	2 U
SW8270	BENZO(G,H,I)PERYLENE	ug/L		1.9 U	1.9 U	1.9 l		1.7 J	1.9 U	2 U
SW8270	BENZO(K)FLUORANTHENE	ug/L	N	1.9 U	1.9 U	1.9 l		2.6	1.9 U	2 U
SW8270	BIS(2-CHLOROETHOXY)METHANE	ug/L		9.7 U	9.4 U	9.6 l			9.4 U	10 U
	BIS(2-CHLOROETHYL)ETHER	ug/L		1.9 U	1.9 U	1.9 l			1.9 U	2 U
	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L		9.7 U	9.4 U	9.6 ر			9.4 U	10 U
	BUTYLBENZYL PHTHALATE	ug/L		9.7 U	9.4 U	9.6 \		9.7 U	9.4 U	10 U
	CAPROLACTAM	ug/L		48 U	47 U	48 L		48 U	47 U	50 U
	CARBAZOLE	ug/L		1.9 U	1.9 U	1.9 L			1.9 U	2 U
SW8270	CHRYSENE	ug/L		1.9 U	1.9 U	1.9 l			1.9 U	2 U
SW8270	DI-N-BUTYL PHTHALATE	ug/L		9.7 U	9.4 U	9.6 \			9.4 U	10 U
SW8270	DI-N-OCTYL PHTHALATE	ug/L		9.7 U	9.4 U	9.6 \		1.1 J	9.4 U	10 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/L		1.9 U	1.9 U	1.9 \		1.8 J	1.9 U	2 U
SW8270	DIBENZOFURAN	ug/L		9.7 U	9.4 U	9.6		9.7 U	9.4 U	10 U
	DIETHYL PHTHALATE DIMETHYL PHTHALATE	ug/L		9.7 U 9.7 U	9.4 U 9.4 U	9.6			9.4 U	10 U
	FLUORANTHENE	ug/L ug/L		9.7 U 1.9 U	9.4 U 1.9 U	9.6 L 1.9 L			9.4 U 1.9 U	10 U
	FLUORENE	ug/L ug/L		1.9 U	1.9 U	0.47			1.9 U	2 U 2 U
	HEXACHLOROBENZENE	ug/L ug/L		1.9 U	1.9 U	1.9 U			1.9 U	2 U
3440210	TILAAGIILONODLIIZLIIE	ug/L	1 4	1.8 U	1.8 U	1.9	1.8 0	U.33 J	1.8 0	

			1	01 014 40404	01 014 40404	01 014 40404	01 014 40404	01 014 40404	01 014 40405	01 014/40405
			Location	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10164	OL-SW-10165	OL-SW-10165
			Sample Depth	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-10-F	OL-0685-17	OL-0685-17-F	OL-0686-01	OL-0686-01-F	OL-0685-04	OL-0685-04-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319						
			Matrix	WATER						
			Sample Purpose	Regular Sample						
			Sample Type	Surface Water						
Method	Parameter Name	Units	Filtered							
SW8270	HEXACHLOROBUTADIENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 U	1.9 U	1.9 U	2 U
SW8270	HEXACHLOROCYCLOPENTADIENE	ug/L	N	9.7 U	9.4 U	9.6 L	J 9.5 U	9.7 U	9.4 U	10 U
SW8270	HEXACHLOROETHANE	ug/L	N	9.7 U	9.4 U	9.6 L	J 9.5 U	9.7 U	9.4 U	10 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	1.7 J	1.9 U	2 U
SW8270	ISOPHORONE	ug/L	N	9.7 U	9.4 U	9.6 L	J 9.5 L	9.7 U	9.4 U	10 U
SW8270	N-NITROSO-DI-N-PROPYLAMINE	ug/L	N	1.9 U	1.9 U	1.9 l	J 1.9 U	1.9 U	1.9 U	2 U
SW8270	N-NITROSODIPHENYLAMINE	ug/L	N	1.9 U	1.9 U	1.9 l	J 1.9 L	1.9 U	1.9 U	2 U
SW8270	NAPHTHALENE	ug/L	N	11	11	14	10	12	1.9 U	2 U
SW8270	NITROBENZENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 U	1.9 U	1.9 U	2 U
SW8270	PENTACHLOROPHENOL	ug/L	N	9.7 U	9.4 U	9.6 L	J 9.5 L	9.7 U	9.4 U	10 U
SW8270	PHENANTHRENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 U	0.37 J	1.9 U	2 U
SW8270	PHENOL	ug/L		1.9 U	1.9 U	1.9 L	J 1.9 U	1.9 U	1.9 U	2 U
SW8270	PYRENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 U	1.4 J	1.9 U	2 U
					299		355		83	
					208		124		56	

			Location	OL-SW-10165						
			Sample Depth	5-5 FT	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-12	OL-0685-12-F	OL-0685-18	OL-0685-18-F	OL-0686-02	OL-0686-02-F	OL-0686-03
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319						
			Matrix	WATER						
			Sample Purpose	Regular Sample	Field Duplicate					
			Sample Type	Surface Water						
Method	Parameter Name	Units	Filtered							
E1630	METHYL MERCURY	ng/L	N	0.236		0.43		0.299		0.396
E1630	METHYL MERCURY	ng/L	Υ	0.092		0.153		0.118		0.136
E1631	MERCURY	ug/L	N	0.0334		0.0285		0.0327		0.037
E1631	MERCURY	ug/L	Υ		0.007		0.0111		0.0058	
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	N	0.34		0.28		0.43 J		0.22 J
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	Υ		0.34		0.3		0.32	
SM2540D	TSS	mg/L	N	12		30.8		13.6		17.2
SW8082	AROCLOR-1016	ug/L		0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U
SW8082	AROCLOR-1221	ug/L	N	0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U
SW8082	AROCLOR-1232	ug/L	N	0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U
SW8082	AROCLOR-1242	ug/L	N	0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U
SW8082	AROCLOR-1248	ug/L	N	0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U
SW8082	AROCLOR-1254	ug/L	N	0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U
SW8082	AROCLOR-1260	ug/L	N	0.38 U	0.38 U	0.38	U 0.4	U 0.4 U	0.38 U	0.4 U

			Location	OL-SW-10165						
			Sample Depth	5-5 FT	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-12	OL-0685-12-F	OL-0685-18	OL-0685-18-F	OL-0686-02	OL-0686-02-F	OL-0686-03
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319						
			Matrix	WATER						
			Sample Purpose	Regular Sample	Field Duplicate					
			Sample Type	Surface Water						
Method	Parameter Name		Filtered							
SW8260	1,1,1-TRICHLOROETHANE	ug/L	N	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1,2,2-TETRACHLOROETHANE	ug/L	N	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROETHANE	ug/L	N	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L	N	5 UJ	5 UJ	5 U	J 5 U.	J 5 U	5 U	5 U
SW8260	1,1-DICHLOROETHANE	ug/L	N	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1-DICHLOROETHENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L	N	5 UJ	5 UJ	5 U			5 U	5 U
	1,2,4-TRICHLOROBENZENE	ug/L	N	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
SW8260	1,2-DIBROMOETHANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L		8.6	2.3 J	5.4	5.6	7.5	4.6 J	7.3
SW8260	1,2-DICHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROPROPANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L		19	5.1	12	13	17	9.9	16
	2-BUTANONE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	2-HEXANONE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	4-METHYL-2-PENTANONE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	ACETONE	ug/L		11 J	13 J	9.2 J	13 J	6.6 J	7.8 J	7.8 J
	BENZENE	ug/L		2.8 J	5 U	1.3 J	1.6 J	1.8 J	1.2 J	1.9 J
	BROMODICHLOROMETHANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	BROMOFORM	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	BROMOMETHANE	ug/L		5 U	5 U	5 U		5 UJ	5 UJ	5 UJ
	CARBON DISULFIDE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	CARBON TETRACHLORIDE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	CHLOROBENZENE	ug/L		31	8.6	17	20	23	15	22
	CHLORODIBROMOMETHANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	CHLOROETHANE	ug/L		5 UJ	5 UJ	5 U			5 UJ	5 UJ
	CHLOROFORM	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	CHLOROMETHANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
-	CIS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	CIS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
-	CYCLOHEXANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	DICHLORODIFLUOROMETHANE	ug/L		5 U	5 U	5 U			5 UJ	5 UJ
-	ETHYLBENZENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	ISOPROPYLBENZENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	METHYL ACETATE	ug/L		5 UJ	5 UJ	5 U		5 U	5 U	5 U
	METHYL TERT-BUTYL ETHER	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	METHYLCYCLOHEXANE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	METHYLENE CHLORIDE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	STYRENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	TETRACHLOROETHENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	TOLUENE	ug/L		1.8 J	0.88 J	1.2 J	1.2 J	1.4 J	5 U	1.3 J
	TRANS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	TRANS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	TRICHLOROETHENE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	TRICHLOROFLUOROMETHANE	ug/L		5 UJ	5 UJ	5 U.			5 UJ	5 UJ
	VINYL CHLORIDE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	N	8.8 J	2.7 J	5.2 J	6.2 J	6.3 J	4 J	6.2 J

				T				T	T		
Field Sumple 19				Location	OL-SW-10165	OL-SW-10165	OL-SW-10165	OL-SW-10165	OL-SW-10165	OL-SW-10165	OL-SW-10165
Service Date Service Date 1116-02008 1118-02006				Sample Depth	5-5 FT	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT
Service Date Service Date 1116-02008 1118-02006					OL-0685-12	OL-0685-12-F	OL-0685-18	OL-0685-18-F	OL-0686-02	OL-0686-02-F	OL-0686-03
SPOS CREATIONS CREATIONS											
Marie Water Water Water Water Supplement Su											
Semple Purpose Seques Semple Regular Semple Regular Semple Surface Water Surface W											
Surface Water Surface Wate					WATER	WATER		WATER	WATER	WATER	WATER
Surface Water Surface Wate				Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Regular Sample	Field Duplicate
Method Parameter Name Units Filtered											
SYSTED ST. SHIPPENYL U.S. N	Mothod	Doramotor Nama			Canace Water	Canada Water	Canada Trata.	Carrace trater	Carrage Trater	Canace Trater	Gariago Trator
SMB207 2.4 DYNNIST CHEROPROPANCE Mg. N					0.40	0.511	0.511	2011	40.11	0.011	
SMEZIFIC 2.6. PTRICHLICAROPHENOL 1921. N 10 U 9.5 U 10 U 9.8 U 9.9 U 9.9 U 9.9 U 9.8 U 9.9 U 9.9 U 9.8 U 9.8 U 9.9 U 9.8 U 9.9 U 9.8 U 9.8 U 9.9 U 9.8 U 9.8 U 9.8 U 9.8 U 9.9 U 9.8 U 9.8 U 9.8 U 9.9 U 9.8 U		•									
SWESTO 2-AD-TRICK CARD-PIENOL 193. N 190 195.0 9.5.0 9.5.0 9.6.0 100 9.8.0 9.5.0 9	SW8270	2,2'-OXYBIS(1-CHLOROPROPANE)			2 U		1.9 U	1.9 U	2 U	2 U	2 U
SWESTO 2-AD-TRICK CARD-PIENOL 193. N 190 195.0 9.5.0 9.5.0 9.6.0 100 9.8.0 9.5.0 9	SW8270	2,4,5-TRICHLOROPHENOL	ug/L	Ν	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SWIPPION SWIPPION					10 U						
SWEZED 4-DINTEROPHENOL U.g.L N 10 U 9.8 U 9.9 U											
SWESTO 4-DINITROPHENOL Upt. N 10 U 9-D U 9		*									
SWESTO 4-DINITROTOLLENE Ugh. N 10 U 9-5 U 9-5 U 9-6 U 10 U 9-8 U 9-9 U 9		•									
SWESTO A-DINITROTOLLENE ugb, N 10 U 9.5 U	SW8270	2,4-DINITROPHENOL	ug/L	N	50 U	48 U	48 U	48 U	51 U	49 U	50 U
SWESTO A-DINITROTOLLENE ugb, N 10 U 9.5 U	SW8270	2,4-DINITROTOLUENE	ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SWEZED CALIGOROMAPHTHALENE MgL N 2 U 19 U 19 U 19 U 2 U		2 6-DINITROTOLUENE			10 U						
SW8270 Z-HLOROPHENOL Ugl. N											
SWESTO PARETHYLPHENCL UgA N											
SWEZO 2-METHYL-PENOL Ug/L N											
SW8270 ANTROANLINE									0.27 J		0.35 J
SW8270 APTRONHINE Ugb. N	SW8270	2-METHYLPHENOL	ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 2-MTROPHENOL 19/L N 10 10 1.9 1.0		2-NITROANII INF			50 U						
SW8270 ADMINISTRATIONALINE Ugl. N 10 U 9.5 U											
SWE270 3-NITROANILINE											
SW8270 A-DINTRO-Z-METHYLPHENUL 191L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U 9.5 U 9.6 U 10 U 9.8 U 9.8 U 9.9 U 9.5 U 9.6 U 10 U 9.8 U 9.8 U 9.9 U 9.6 U 10 U 9.8 U 9.8 U 9.9 U 9.6 U 10 U 9.8 U 9.8 U 9.8 U 9.9 U 9.6 U 10 U 9.8 U 9.8 U 9.9 U 9.6 U 10 U 9.8 U 9.8 U 9.8 U 9.9 U 9.6 U 10 U 9.8		-									
SW8270 A-BROMOPHENYL PHENYL ETHER UgL N 10 U 9.5 U 9.5 U 9.5 U 9.5 U 0.0 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U 9.5 U 0.0 U 9.5 U 9.5 U 9.5 U 9.5 U 0.0 U 0.0 U 9.5 U 9.5 U 9.5 U 0.0 U 0.0 U 9.5 U 9.5 U 9.5 U 0.0 U 0.0 U	SW8270	3-NITROANILINE	ug/L	N	50 U	48 U	48 U	48 U	51 U	49 U	50 U
SW8270 A-BROMOPHENYL PHENYL ETHER UgL N	SW8270	4.6-DINITRO-2-METHYLPHENOL	ua/L	N	50 U	48 U	48 U	48 U	51 U	49 U	50 U
SWBST0 A-CHLORGA-METHYLPHENOL 0g/L N 10 0 9.5 0		-									
SW8270 A-CHLOROPHENT PIENT ETHER Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 A-CHLOROPHENT PIENT ETHER Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 A-MITROPHEND Ug/L N 50 U 48 U 48 U 51 U 49 U 50 U 48 U 48 U 51 U 49 U 50 U 48 U 48 U 51 U 49 U 50 U 48 U 48 U 51 U 49 U 50 U 5											
SW8270 A-CHLOROPHENYLETHER Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 3.9											
SW8270 AMETHYLPHENOL Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9											
SW8270 A-INTROPHIEND Ug/L N 50 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 A-INTROPHIEND Ug/L N 50 U 48 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 ACENAPHTHENE Ug/L N 2 U 1.9 U 1.9 U 1.9 U 2			ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 A-INTROPHIEND Ug/L N 50 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 A-INTROPHIEND Ug/L N 50 U 48 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 ACENAPHTHENE Ug/L N 2 U 1.9 U 1.9 U 1.9 U 2	SW8270	4-METHYLPHENOL	ua/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 A-INTROPHENOL											
SW8270 ACEMAPHTHYLENE Ug/L N											
SW8270 ACENAPHTHYLENE											
SW8270 ACETOPHENONE Ug/L N			ug/L	N							
SW8270 ATRIRACENE Ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U	SW8270	ACENAPHTHYLENE	ug/L	N	2 U	1.9 U			2 U	2 U	2 U
SW8270 ATRIACENE Ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U	SW8270	ACETOPHENONE	ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 ATRAZINE	SW8270	ANTHRACENE	ua/l	N	2 U	1 9 U	1 9 U	1.9 U	2 U	2 U	
SW8270 BENZOLADENYDE LIGHT LIG											
SW8270 BENZO(A)ANTHRACENE											
SW8270 BENZO(A)PYRENE											
SW8270 BENZO(S)FLUORANTHENE	SW8270	BENZO(A)ANTHRACENE	ug/L	N	2 U	1.4 J	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 BENZO(G,H,I)PERYLENE	SW8270	BENZO(A)PYRENE	ug/L	N	2 U	1 J	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 BENZO(G,H,I)PERYLENE	SW8270	BENZO(B)FLUORANTHENE	ua/L	N	2 U	1.3 J	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 BENZO(K)FLUORANTHENE Ug/L N D D D D D D D D D		· /									
SW8270 BIS(2-CHLOROETHOXY)METHANE Ug/L N 10 U 9.5 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 BIS(2-CHLOROETHYL)ETHER Ug/L N 2 U 1.9 U 1.9 U 1.9 U 1.9 U 2 U											
SW8270 BIS(2-CHLOROETHYL)ETHER ug/L N 2 U 1.9 U 1.9 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 9.9 U SW8270 BIS(2-ETHYLHEXYL)PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.9 U <td></td> <td>` '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		` '									
SW8270 BIS(2-ETHYLHEXYL)PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 BUTYLBENZYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 CAPROLACTAM ug/L N 50 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 CARBAZOLE ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U		,									
SW8270 BUTYLBENZYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 CAPROLACTAM Ug/L N 50 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 CARBAZOLE Ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U	SW8270	BIS(2-CHLOROETHYL)ETHER	ug/L	N					2 U	2 U	2 U
SW8270 BUTYLBENZYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 CAPROLACTAM Ug/L N 50 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 CARBAZOLE Ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U	SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 CAPROLACTAM ug/L N 50 U 48 U 48 U 48 U 51 U 49 U 50 U SW8270 CARBAZOLE ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 CHRYSENE ug/L N 2 U 1.5 J 1.9 U 1.9 U 2 U 2 U 2 U SW8270 DI-N-BUTYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DI-N-OCTYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIBENZO(A,H)ANTHRACENE ug/L N 2 U 1.2 J 1.9 U 1.9 U 2 U 2 U 2 U SW8270 DIBENZO(A,H)ANTHRACENE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIETHYL PHTHALATE ug/L N 10 U <td></td> <td>,</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		,	_								
SW8270 CARBAZOLE ug/L N 2 U 1.9 U 1.9 U 1.9 U 2 U 2 U SW8270 CHRYSENE ug/L N 2 U 1.5 J 1.9 U 1.9 U 2 U 9.6 U 10 U 9.8 U 9.9 U 9.6 U 10 U 9.8 U 9.9 U 2 U 2 U 1.2 J 1.9 U 1.9 U 2 U 2 U 2 </td <td></td>											
SW8270 CHRYSENE ug/L N 2 U 1.5 J 1.9 U 1.9 U 2 U 2 U SW8270 DI-N-BUTYL PHTHALATE ug/L N 10 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DI-N-OCTYL PHTHALATE ug/L N 10 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIBENZO(A,H)ANTHRACENE ug/L N 2 U 1.2 J 1.9 U 1.9 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 9.8 U 9.9 U 9.8 U 9.9 U 9.8<											
SW8270 DI-N-BUTYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DI-N-OCTYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIBENZO(A,H)ANTHRACENE ug/L N 2 U 1.2 J 1.9 U 1.9 U 2 U 2 U 2 U SW8270 DIBENZOFURAN ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIETHYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIMETHYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 FLUORENE ug/L											
SW8270 DI-N-OCTYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIBENZO(A,H)ANTHRACENE Ug/L N 2 U 1.2 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 DIBENZOFURAN Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIMETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE Ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U 2 U SW8270 FLUORENE Ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U											
SW8270 DI-N-OCTYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIBENZO(A,H)ANTHRACENE Ug/L N 2 U 1.2 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 DIBENZOFURAN Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIMETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE Ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U 2 U SW8270 FLUORENE Ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U	SW8270	DI-N-BUTYL PHTHALATE	ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 DIBENZO(A,H)ANTHRACENE Ug/L N 2 U 1.2 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 DIBENZOFURAN Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIMETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE Ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U 2 U SW8270 FLUORENE Ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U											
SW8270 DIBENZOFURAN ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIETHYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIMETHYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U 2 U SW8270 FLUORENE ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U											
SW8270 DIETHYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 DIMETHYL PHTHALATE ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 1.9 U 2 U		(' ' /									
SW8270 DIMETHYL PHTHALATE Ug/L N 10 U 9.5 U 9.5 U 9.6 U 10 U 9.8 U 9.9 U SW8270 FLUORANTHENE Ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U 2 U SW8270 FLUORENE Ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U 2 U											
SW8270 FLUORANTHENE ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 FLUORENE ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U											9.9 U
SW8270 FLUORANTHENE ug/L N 2 U 0.58 J 1.9 U 1.9 U 1.9 U 2 U 2 U 2 U SW8270 FLUORENE ug/L N 2 U 1.9 U 1.9 U 0.32 J 2 U 2 U 2 U	SW8270	DIMETHYL PHTHALATE	ug/L	N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 FLUORENE											
OWOZIU TEANUTLURUDENZENE 10g/L N Z U 1.9 U 1.9 U 1.9 U 1.9 U 2 U											
	2008270	HEXACHLOROBENZENE	ug/L	IN	2 U	1.9 U	1.9 U	1.9 U	2 0	2 U	2 U

	Location	OL-SW-10165						
	Sample Depth	5-5 FT	5-5 FT	1-1 FT	1-1 FT	5-5 FT	5-5 FT	5-5 FT
	Field Sample ID	OL-0685-12	OL-0685-12-F	OL-0685-18	OL-0685-18-F	OL-0686-02	OL-0686-02-F	OL-0686-03
	Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
	SDG	C8K190319						
	Matrix	WATER						
	Sample Purpose	Regular Sample	Field Duplicate					
	Sample Type	Surface Water						
Method Parameter Name	Units Filtered							
SW8270 HEXACHLOROBUTADIENE	ug/L N	2 U	1.9 U	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 HEXACHLOROCYCLOPENTADIENE	ug/L N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 HEXACHLOROETHANE	ug/L N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 INDENO(1,2,3-CD)PYRENE	ug/L N	2 U	1.1 J	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 ISOPHORONE	ug/L N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 N-NITROSO-DI-N-PROPYLAMINE	ug/L N	2 U	34	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 N-NITROSODIPHENYLAMINE	ug/L N	2 U	1.9 U	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 NAPHTHALENE	ug/L N	9.7	1.9 U	7.8	6.9	5.2	7.9	7.8
SW8270 NITROBENZENE	ug/L N	2 U	1.9 U	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 PENTACHLOROPHENOL	ug/L N	10 U	9.5 U	9.5 U	9.6 U	10 U	9.8 U	9.9 U
SW8270 PHENANTHRENE	ug/L N	2 U	1.9 U	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 PHENOL	ug/L N	2 U	1.9 U	1.9 U	1.9 U	2 U	2 U	2 U
SW8270 PYRENE	ug/L N	2 U	0.65 J	1.9 U	1.9 U	2 U	2 U	2 U
		236		430		299		396
		92		153		118		136

			Location	OL-SW-10165	OL-SW-10166	OL-SW-10166		OL-SW-10166	OL-SW-10166	OL-SW-10166	OL-SW-10166
			Sample Depth	5-5 FT	5-5 FT	5-5 FT		5-5 FT	5-5 FT	1-1 FT	1-1 FT
			Field Sample ID	OL-0686-03-F	OL-0685-06	OL-0685-06-F		OL-0685-14	OL-0685-14-F	OL-0685-19	OL-0685-19-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008		11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319		C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Field Duplicate	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered								
E1630	METHYL MERCURY	ng/L	N		0.173			0.387		0.386	
E1630	METHYL MERCURY	ng/L	Υ		0.068			0.13		0.142	
E1631	MERCURY	ug/L	N		0.0032			0.0315		0.0303	
E1631	MERCURY	ug/L	Υ	0.0063		0.00048	J		0.0072		0.024
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	N		0.43			0.32		0.34	
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	Υ	0.33		0.4			0.3		0.35
SM2540D	TSS	mg/L			2.8 J			19.6		15.6	
SW8082	AROCLOR-1016	ug/L		0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U
SW8082	AROCLOR-1221	ug/L		0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U
SW8082	AROCLOR-1232	ug/L	N	0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U
SW8082	AROCLOR-1242	ug/L	N	0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U
SW8082	AROCLOR-1248	ug/L	N	0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U
SW8082	AROCLOR-1254	ug/L	N	0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U
SW8082	AROCLOR-1260	ug/L	1	0.38 U	0.38 U	0.4	U	0.38 U	0.38 U	0.38 U	0.4 U

Sample Depth So FT				Location	OL-SW-10165	OL-SW-10166	OL-SW-10166	OL-SW-10166		OL-SW-10166	OL-SW-10166	OL-SW-10166
Field Sample D												1-1 FT
Sample Date												OL-0685-19-F
SDG				'			11/18/2008	11/18/2008		11/18/2008		11/18/2008
Matrix WATER WATER WATER WATER Sample Regular Sample Surface Water											C8K190319	C8K190319
Method Parameter Name				Matrix								WATER
Method Parameter Name				Sample Purpose							Regular Sample	Regular Sample
National												Surface Water
SW8260 1,2,2-TETRACHLOROETHANE UgL N	ethod Pai	arameter Name										
SW8260 1,2-TRICHLOROETHANE UgA, N 5 U	W8260 1,1	1,1-TRICHLOROETHANE	ug/L	N	5 U	5 U	5 L	J 5 I	U	5 U	5 U	5 U
SW8260 1.2.2 TRICHLORORETHANE UJL N	W8260 1,1	1,2,2-TETRACHLOROETHANE	ug/L	N	5 U	5 U	5 L	J 5 I	U	5 U	5 U	5 U
SWA260 1-1-DICH_ORGETHANE	W8260 1,1	1,2-TRICHLOROETHANE	ug/L	N	5 U	5 U	5 L	J 5	U	5 U	5 U	5 U
SW8260 1,3-DICHLOROSENZENE Ug/L N 5 U 5	W8260 1,1	1,2-TRICHLOROTRIFLUOROETHANE	ug/L	N	5 U	5 UJ	5 L	JJ 5	UJ	5 UJ	5 UJ	5 UJ
SW2600 1,2,3-TRICHLOROBENZENE Ug/L N S U	W8260 1,1	1-DICHLOROETHANE	ug/L	N	5 U	5 U	5 L	J 5 I	U	5 U	5 U	5 U
SW8260 1,2-0 1,2	W8260 1,1	1-DICHLOROETHENE	ug/L	N	5 U	5 U	5 L	J 5 I	U	5 U	5 U	5 U
SW8260 1,2-DIBROMOS-CHLOROPROPANE Ug/L N 5 U	W8260 1,2	2,3-TRICHLOROBENZENE	ug/L	N	5 U	5 UJ	5 L				5 UJ	5 UJ
SW8260 1.2-DIBROMOETHANE	W8260 1,2	2,4-TRICHLOROBENZENE	ug/L	N	5 U	5 U	5 L	J 5 1	U	5 U	5 U	5 U
SW8260 1.2-DICHLOROBENZENE	W8260 1,2				5 U	5 UJ						5 U
SW8260 12-DICHLOROFETHANE Ug/L N S U	W8260 1,2	2-DIBROMOETHANE			5 U				U			5 U
SW8260 1,2-DICHLOROPROPANE ug/L N											7.4	4.9 J
SW8260 1.3.5-TRICHLOROBENZENE Ug/L N												5 U
SW8260 1.3-DICHLOROBENZENE	W8260 1,2	2-DICHLOROPROPANE	ug/L	N	5 U	5 U	5 L	J 5	U	5 U	5 U	5 U
SW8260 1.4-DICHLOROBENZENE	W8260 1,3	3,5-TRICHLOROBENZENE	ug/L	N	5 U							5 U
SW8260 Z-BUTANONE	W8260 1,3	3-DICHLOROBENZENE	ug/L	N	5 U				U	5 U	5 U	5 U
SW8260 2-HEXANONE Ug/L N	W8260 1,4	4-DICHLOROBENZENE	ug/L	N	11	5 U				12	16	11
SW8260 A-METHYL-2-PENTANONE Ug/L N S U S U S U S U S U S U S U S W S W S W S W S W S W S W S W S W S	W8260 2-B	BUTANONE	ug/L	N	5 U	5 U	5 L	J 5 (U	5 U	5 U	5 U
SW8260 ACETONE			ug/L	N	5 U	5 U	5 L	J 5 1	U	5 U	5 U	5 U
SW8260 BENZENE					5 U	5 U	5 L	J 5 1	U	5 U	5 U	5 U
SW8260 BROMODICHLOROMETHANE ug/L N	W8260 AC				9 J	20 U	20 L	JJ 9	J	11 J	9.2 J	13 J
SW8260 BROMOFORM Ug/L N S U S					1.3 J		5 L	J 2.4	J	1.8 J	2 J	1.5 J
SW8260 BROMOMETHANE Ug/L N S U S			ug/L	N								5 U
SW8260 CARBON DISULFIDE Ug/L N S U												5 U
SW8260 CARBON TETRACHLORIDE Ug/L N S U												5 U
SW8260 CHLOROBENZENE Ug/L N S U												5 U
SW8260 CHLORODIBROMOMETHANE ug/L N 5 U					5 U				U	5 U		5 U
SW8260 CHLOROETHANE ug/L N 5 UJ												19
SW8260 CHLOROFORM ug/L N 5 U												5 U
SW8260 CHLOROMETHANE ug/L N 5 U												5 UJ
SW8260 CIS-1,2-DICHLOROETHENE ug/L N 5 U <td></td> <td>5 U</td>												5 U
SW8260 CIS-1,3-DICHLOROPROPENE ug/L N 5 U <td></td> <td>5 U</td>												5 U
SW8260 CYCLOHEXANE ug/L N 5 U <		•										5 U
SW8260 DICHLORODIFLUOROMETHANE ug/L N 5 UJ 5 UJ 5 U 5 U 5 U 5 U 5 UJ SW8260 ETHYLBENZENE ug/L N 5 U		`										5 U
SW8260 ETHYLBENZENE ug/L N 5 U												5 U
SW8260 ISOPROPYLBENZENE ug/L N 5 U												5 UJ
SW8260 METHYL ACETATE ug/L N 5 U 5 UJ 5 UJ 5 UJ 5 UJ 5 UJ 5 UJ 5 U												5 U
SW8260 METHYL TERT-BUTYL ETHER ug/L N 5 U <td></td> <td>5 U</td>												5 U
												5 U
												5 U
					5 U	5 U			_	5 U	5 U	5 U
SW8260 METHYLENE CHLORIDE ug/L N 1.5 J 5 U 2.6 J 5 U 2.6 J 5 U 5 U												1.5 J
SW8260 STYRENE ug/L N 5 U												5 U
SW8260 TETRACHLOROETHENE ug/L N 5 U <td></td> <td>5 U</td>												5 U
SW8260 TOLUENE ug/L N 0.85 J 5 U 5 U 1.7 J 1.3 J 1.6 J												1.1 J
SW8260 TRANS-1,2-DICHLOROETHENE ug/L N 5 U 5 <												5 U
SW8260 TRANS-1,3-DICHLOROPROPENE ug/L N 5 U 5			_									5 U
SW8260 TRICHLOROETHENE ug/L N 5 U												5 U
SW8260 TRICHLOROFLUOROMETHANE ug/L N 5 UJ 5												5 UJ
SW8260 VINYL CHLORIDE ug/L N 5 U												5 U
SW8260 XYLENES, TOTAL ug/L N 4.7 J 15 U 15 U 7.6 J 5.5 J 6.9 J	N8260 XY	YLENES, TOTAL	ug/L	N	4.7 J	15 U	15 L	J 7.6	J	5.5 J	6.9 J	5.2 J

			1	21 211 1212	a. a	<u> </u>	21 211 1212		<u> </u>	0. 0	2: 2:1/ : 2:2
			Location	OL-SW-10165	OL-SW-10166	OL-SW-10166	OL-SW-10166		OL-SW-10166	OL-SW-10166	OL-SW-10166
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5-5 FT		5-5 FT	1-1 FT	1-1 FT
			Field Sample ID	OL-0686-03-F	OL-0685-06	OL-0685-06-F	OL-0685-14		OL-0685-14-F	OL-0685-19	OL-0685-19-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008		11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319		C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER		WATER	WATER	WATER
			Sample Purpose	Field Duplicate	Regular Sample	Regular Sample	Regular Sample	ı l	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered								
SW8270	1,1'-BIPHENYL	ug/L	N	10 U	9.4 U	10 U	0.19 J	J	9.7 U	9.4 U	9.6 U
SW8270	2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L	N	2 U	1.9 U	2 U	1.9 U	J	1.9 U	1.9 U	1.9 U
	2,4,5-TRICHLOROPHENOL	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	2,4,6-TRICHLOROPHENOL	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	2,4-DICHLOROPHENOL	ug/L		2 U	1.9 U	2 U	1.9 U		1.9 U	1.9 U	1.9 U
SW8270	2,4-DIMETHYLPHENOL	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	2,4-DINITROPHENOL	ug/L		50 U	47 U	51 U	47 U	J	48 U	47 U	48 U
SW8270	2,4-DINITROTOLUENE	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	2,6-DINITROTOLUENE	ug/L		10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
	2-CHLORONAPHTHALENE	ug/L		2 U	1.9 U	2 U	1.9 U		1.9 U	1.9 U	1.9 U
	2-CHLOROPHENOL	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
	2-METHYLNAPHTHALENE	ug/L		0.39 J	1.9 U	2 U	0.31 J		0.52 J	0.44 J	0.45 J
	2-METHYLPHENOL	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	2-NITROANILINE	ug/L		50 U	47 U	51 U	47 U	J	48 U	47 U	48 U
SW8270	2-NITROPHENOL	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	3,3'-DICHLOROBENZIDINE	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	3-NITROANILINE	ug/L		50 U	47 U	51 U	47 U		48 U	47 U	48 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	ug/L		50 U	47 U	51 U	47 U		48 U	47 U	48 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	4-CHLORO-3-METHYLPHENOL	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
SW8270	4-CHLOROANILINE	ug/L		10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	4-METHYLPHENOL	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	4-NITROANILINE	ug/L		50 U	47 U	51 U	47 U		48 U	47 U	48 U
SW8270	4-NITROPHENOL	ug/L		50 U	47 UJ	51 U	47 U		48 U	47 UJ	48 U
	ACENAPHTHENE										
SW8270		ug/L		2 U	1.9 U	2 U	1.9 U		1.9 U	1.9 U	1.9 U
	ACENAPHTHYLENE	ug/L		2 U	1.9 U	2 U	1.9 U		1.9 U	1.9 U	1.9 U
	ACETOPHENONE	ug/L		10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	ANTHRACENE	ug/L	N	2 U	1.9 U	2 U	1.9 U	J	1.9 U	1.9 U	4.7
SW8270	ATRAZINE	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
SW8270	BENZALDEHYDE	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
_	BENZO(A)ANTHRACENE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	12
	BENZO(A)PYRENE			2 U	1.9 U	2 U			1.9 U		9.1
	· ,	ug/L								1.9 U	
	BENZO(B)FLUORANTHENE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	10
	BENZO(G,H,I)PERYLENE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	11
SW8270	BENZO(K)FLUORANTHENE	ug/L	N	2 U	1.9 U	2 U	1.9 U	J	1.9 U	1.9 U	13
SW8270	BIS(2-CHLOROETHOXY)METHANE	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	9.6 U
	BIS(2-CHLOROETHYL)ÉTHER	ug/L		2 U	1.9 U	2 U	1.9 U		1.9 U	1.9 U	1.9 U
	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	8.7 J
	BUTYLBENZYL PHTHALATE	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	7.6 J
	CAPROLACTAM	ug/L		50 U	47 U	51 U	47 U		48 U	47 U	48 U
	CARBAZOLE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	1.9 U
	CHRYSENE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	13
SW8270	DI-N-BUTYL PHTHALATE	ug/L	N	10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	5.9 J
SW8270	DI-N-OCTYL PHTHALATE	ug/L		10 U	9.4 U	10 U	9.4 U	J	9.7 U	9.4 U	7.6 J
	DIBENZO(A,H)ANTHRACENE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	11
	DIBENZOFURAN	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
	DIETHYL PHTHALATE	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
	DIMETHYL PHTHALATE	ug/L		10 U	9.4 U	10 U	9.4 U		9.7 U	9.4 U	9.6 U
	FLUORANTHENE	ug/L	N	2 U	1.9 U	2 U	1.9 U	J	1.9 U	1.9 U	8.9
SW8270	FLUORENE	ug/L	N	2 U	1.9 U	2 U	1.9 U	J	0.44 J	1.9 U	1.9 U
	HEXACHLOROBENZENE	ug/L		2 U	1.9 U	2 U			1.9 U	1.9 U	6.2
		1 ~ 3· -	1	2,9	,	= 0		-	,3	,	

			Location	OL-SW-10165	OL-SW-10166	OL-SW-10166		OL-SW-10166	OL-SW-10166	OL-SW-10166	OL-SW-10166
			Sample Depth	5-5 FT	5-5 FT	5-5 FT		5-5 FT	5-5 FT	1-1 FT	1-1 FT
			Field Sample ID	OL-0686-03-F	OL-0685-06	OL-0685-06-F		OL-0685-14	OL-0685-14-F	OL-0685-19	OL-0685-19-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008		11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319		C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER		WATER	WATER	WATER	WATER
			Sample Purpose	Field Duplicate	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered								
SW8270	HEXACHLOROBUTADIENE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	1.9 U
SW8270	HEXACHLOROCYCLOPENTADIENE	ug/L	N	10 U	9.4 U	10 U	J	9.4 U	9.7 U	9.4 U	9.6 U
SW8270	HEXACHLOROETHANE	ug/L	N	10 U	9.4 U	10 U	J	9.4 U	9.7 U	9.4 U	9.6 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	11
SW8270	ISOPHORONE	ug/L	N	10 U	9.4 U	10 U	J	2.1 J	9.7 U	9.4 U	9.6 U
SW8270	N-NITROSO-DI-N-PROPYLAMINE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	1.9 U
SW8270	N-NITROSODIPHENYLAMINE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	1.9 U
SW8270	NAPHTHALENE	ug/L	N	9.9	1.9 U	2 U	J	7.5	11	8.9	8.9
SW8270	NITROBENZENE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	1.9 U
SW8270	PENTACHLOROPHENOL	ug/L	N	10 U	9.4 U	10 U	J	9.4 U	9.7 U	9.4 U	9.6 U
SW8270	PHENANTHRENE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	3.5
SW8270	PHENOL	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	1.9 U
SW8270	PYRENE	ug/L	N	2 U	1.9 U	2 U	J	1.9 U	1.9 U	1.9 U	8.7
					173			387		386	
					68			130		142	

			Τ						T	T	
			Location	OL-SW-10167		OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10168	OL-SW-10168	OL-SW-10168
			Sample Depth	5-5 FT		5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-08		OL-0685-08-F	OL-0685-09	OL-0685-09-F	OL-0685-03	OL-0685-03-F	OL-0685-11
			Sample Date	11/18/2008		11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319		C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER		WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample		Regular Sample	Field Duplicate	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered								
E1630	METHYL MERCURY	ng/L	N	0.112			0.153		0.144		0.127
E1630	METHYL MERCURY	ng/L	Υ	0.061			0.071		0.066		0.052
E1631	MERCURY	ug/L	N	0.0024			0.0029		0.0027		0.0032
E1631	MERCURY	ug/L	Υ			0.00053		0.00049 J		0.00054	
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	N	0.38			0.38		0.38		0.26
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	Υ			0.35		0.37		0.36	
SM2540D	TSS	mg/L		4	U		2.8 J		4 U		3.6 J
SW8082	AROCLOR-1016	ug/L		0.38	U	0.38 U	0.4 U	0.39 U	0.38 U	0.38 U	0.38 U
SW8082	AROCLOR-1221	ug/L	N	0.38	U	0.38 U	0.4 U	0.39 U	0.38 U	0.38 U	0.38 U
SW8082	AROCLOR-1232	ug/L	N	0.38	U	0.38 U	0.4 U	0.39 U	0.38 U	0.38 U	0.38 U
SW8082	AROCLOR-1242	ug/L	N	0.38	U	0.38 U	0.4 U	0.39 U	0.38 U	0.38 U	0.38 U
SW8082	AROCLOR-1248	ug/L		0.38	U	0.38 U	0.4 U	0.39 U	0.38 U	0.38 U	0.38 U
_	AROCLOR-1254	ug/L		0.38	U	0.38 U	0.4 U	0.39 U	0.38 U	0.38 U	0.38 U
	AROCLOR-1260	ug/L		0.38		0.38 U	0.4 U	0.39 U	0.38 U		0.38 U

			Location	OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10168	OL-SW-10168	OL-SW-10168
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-08	OL-0685-08-F	OL-0685-09	OL-0685-09-F	OL-0685-03	OL-0685-03-F	OL-0685-11
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Field Duplicate	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name		Filtered							
SW8260	1,1,1-TRICHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1,2,2-TETRACHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L		5 UJ	5 UJ	5 U.			5 UJ	5 UJ
SW8260	1,1-DICHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,1-DICHLOROETHENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L		5 UJ	5 UJ	5 U.		5 UJ	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE	ug/L		5 U	5 U	5 U	5 U	5 UJ	5 U	5 U
SW8260	1,2-DIBROMOETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,2-DICHLOROPROPANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	0.59 J
SW8260	2-BUTANONE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	2-HEXANONE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	4-METHYL-2-PENTANONE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	ACETONE	ug/L		20 UJ	20 UJ	20 U.		20 U	20 UJ	20 UJ
SW8260	BENZENE BROMODICHLOROMETHANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260		ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	BROMOFORM BROMOMETHANE	ug/L		5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
SW8260 SW8260	CARBON DISULFIDE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
		ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	CARBON TETRACHLORIDE	ug/L								
	CHLOROBENZENE CHLORODIBROMOMETHANE	ug/L ug/L		5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
				5 U	5 UJ	5 U.			5 UJ	5 UJ
	CHLOROETHANE CHLOROFORM	ug/L ug/L		5 UJ 5 U	5 U	5 U	5 U	5 U	5 U	5 U
	CHLOROMETHANE	ug/L ug/L		5 U	5 U	5 U	5 U	5 UJ	5 U	5 U
	CIS-1,2-DICHLOROETHENE	ug/L ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	CIS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	CYCLOHEXANE	ug/L ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	DICHLORODIFLUOROMETHANE	ug/L		5 U	5 U	5 U	5 U	5 UJ	5 U	5 U
	ETHYLBENZENE	ug/L ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	ISOPROPYLBENZENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	METHYL ACETATE	ug/L		5 UJ	5 UJ	5 U.			5 UJ	5 UJ
	METHYL TERT-BUTYL ETHER	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	METHYLCYCLOHEXANE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	METHYLENE CHLORIDE	ug/L		5 U	5 U	5 U	5 U	5 U	1.8 J	5 U
	STYRENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	TETRACHLOROETHENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
	TOLUENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	TRANS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	TRANS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	TRICHLOROETHENE	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260	TRICHLOROFLUOROMETHANE	ug/L		5 UJ	5 UJ	5 U.			5 UJ	5 UJ
SW8260	VINYL CHLORIDE	ug/L		5 U	5 U	5 U		5 U	5 U	5 U
	XYLENES, TOTAL	ug/L		15 U	15 U	15 U	15 U	15 U	15 U	15 U
20200	,	~ ' ' '	<u> </u>	.0 0	.5 5	.5 5	.5,0	.0 0	.5 5	.0 0

			Location	OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10168	OL-SW-10168	OL-SW-10168
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-08	OL-0685-08-F	OL-0685-09	OL-0685-09-F	OL-0685-03	OL-0685-03-F	OL-0685-11
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Field Duplicate	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name		Filtered							
SW8270	1,1'-BIPHENYL	ug/L		12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	1.9 U
SW8270	2,4,5-TRICHLOROPHENOL	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	2,4,6-TRICHLOROPHENOL	ug/L		12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2,4-DICHLOROPHENOL	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	1.9 U
SW8270	2,4-DIMETHYLPHENOL	ug/L		12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2,4-DINITROPHENOL	ug/L	N	58 U	48 U	47 L	J 49 U	47 U	51 U	48 U
SW8270	2,4-DINITROTOLUENE	ug/L		12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2,6-DINITROTOLUENE	ug/L		12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2-CHLORONAPHTHALENE	ug/L		2.3 U	1.9 U	1.9 L	J 2 U	1.9 U	2 U	1.9 U
SW8270	2-CHLOROPHENOL	ug/L	N	12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2-METHYLNAPHTHALENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	0.29 J	1.9 U
SW8270	2-METHYLPHENOL	ug/L	N	12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	2-NITROANILINE	ug/L		58 U	48 U	47 L		47 U	51 U	48 U
SW8270	2-NITROPHENOL	ug/L		12 U	9.6 U	9.4 L	J 9.8 U	9.4 U	10 U	9.7 U
SW8270	3,3'-DICHLOROBENZIDINE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	3-NITROANILINE	ug/L		58 U	48 U	47 L		47 U	51 U	48 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	ug/L		58 U	48 U	47 L		47 U	51 U	15 J
SW8270	4-BROMOPHENYL PHENYL ETHER	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	4-CHLORO-3-METHYLPHENOL	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	4-CHLOROANILINE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	4-METHYLPHENOL	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	4-NITROANILINE	ug/L		58 U	48 U	47 L		47 U	51 U	48 U
SW8270	4-NITROPHENOL	ug/L		58 UJ	48 U	47 L		47 UJ	51 U	48 UJ
SW8270	ACENAPHTHENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	1.9 U
	ACENAPHTHYLENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	1.9 U
SW8270	ACETOPHENONE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
	ANTHRACENE	ug/L		2.3 U	1.9 U	1.9 L			2 U	1.8 J
SW8270	ATRAZINE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
	BENZALDEHYDE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	BENZO(A)ANTHRACENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	7.1
SW8270	BENZO(A)PYRENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	4.7
SW8270	BENZO(B)FLUORANTHENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	6.8
SW8270	BENZO(G,H,I)PERYLENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	6.9
SW8270	BENZO(K)FLUORANTHENE	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	7.3
SW8270	BIS(2-CHLOROETHOXY)METHANE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
SW8270	BIS(2-CHLOROETHYL)ETHER	ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	1.9 U
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	5.5 J
	BUTYLBENZYL PHTHALATE	ug/L		12 U	9.6 U	9.4 L		9.4 U	10 U	4.3 J
SW8270	CAPRAZOLE	ug/L		58 U	48 U 1.9 U	47 L		47 U 1.9 U	51 U 2 U	48 U
SW8270	CHRYSENE	ug/L		2.3 U	1.9 U	1.9 L				1.9 U
SW8270 SW8270	CHRYSENE DI-N-BUTYL PHTHALATE	ug/L ug/L		2.3 U 12 U	9.6 U	1.9 L 9.4 L		1.9 U 9.4 U	2 U 10 U	7.7 2.7 J
SW8270 SW8270	DI-N-OCTYL PHTHALATE	ug/L ug/L		12 U	9.6 U	9.4 U		9.4 U	10 U	
SW8270 SW8270	DIBENZO(A,H)ANTHRACENE	ug/L ug/L		2.3 U	9.6 U 1.9 U	9.4 U 1.9 U		9.4 U 1.9 U	10 U	4.4 J 7.2
SW8270 SW8270	DIBENZOFURAN	ug/L ug/L		2.3 U	9.6 U	9.4 L		9.4 U	10 U	9.7 U
	DIETHYL PHTHALATE	ug/L ug/L		12 U	9.6 U	9.4 U		9.4 U	10 U	9.7 U
	DIMETHYL PHTHALATE	ug/L ug/L		12 U	9.6 U	9.4 U		9.4 U	10 U	9.7 U
	FLUORANTHENE	ug/L ug/L		2.3 U	1.9 U	1.9 L		9.4 U 1.9 U	2 U	4.7
	FLUORENE	ug/L ug/L		2.3 U	1.9 U	1.9 L		1.9 U	2 U	1.9 U
	HEXACHLOROBENZENE	ug/L ug/L		2.3 U	1.9 U	1.9 L			2 U	3
0110210	HEAROHEORODENZENE	ug/∟	1 4	2.5	1.9 0	1.3	20	1.80	2 0	٦

				01 014 10107	01 014/ 40407	01 014 10107	01 014 40407	01 014 40400	01 014 40400	01 014 10100
			Location	OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10167	OL-SW-10168	OL-SW-10168	OL-SW-10168
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-08	OL-0685-08-F	OL-0685-09	OL-0685-09-F	OL-0685-03	OL-0685-03-F	OL-0685-11
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Field Duplicate	Field Duplicate	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered							
SW8270	HEXACHLOROBUTADIENE	ug/L	Ν	2.3 U	1.9 U	1.9 U	2 U	1.9 U	2 U	1.9 U
SW8270	HEXACHLOROCYCLOPENTADIENE	ug/L	N	12 U	9.6 U	9.4 U	9.8 U	9.4 U	10 U	9.7 U
SW8270	HEXACHLOROETHANE	ug/L	Ν	12 U	9.6 U	9.4 U	9.8 U	9.4 U	10 U	9.7 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/L	N	2.3 U	1.9 U	1.9 U	2 U	1.9 U	2 U	6.7
SW8270	ISOPHORONE	ug/L	N	12 U	9.6 U	9.4 U	9.8 U	9.4 U	10 U	9.7 U
SW8270	N-NITROSO-DI-N-PROPYLAMINE	ug/L	N	2.3 U	1.9 U	1.9 U	2 U	1.9 U	2 U	1.9 U
SW8270	N-NITROSODIPHENYLAMINE	ug/L	N	2.3 U	1.9 U	1.9 U	2 U	1.9 U	2 U	1.9 U
SW8270	NAPHTHALENE	ug/L	N	2.3 U	1.9 U	1.9 U	2 U	1.9 U	8	1.9 U
SW8270	NITROBENZENE	ug/L		2.3 U	1.9 U	1.9 U	2 U	1.9 U	2 U	1.9 U
SW8270	PENTACHLOROPHENOL	ug/L	N	12 U	9.6 U	9.4 U	9.8 U	9.4 U	10 U	9.7 U
SW8270	PHENANTHRENE	ug/L	N	2.3 U	1.9 U	1.9 U	2 U	1.9 U	2 U	1.3 J
SW8270	PHENOL	ug/L		2.3 U		1.9 U		1.9 U	2 U	1.9 U
SW8270	PYRENE	ug/L		2.3 U		1.9 U		1.9 U	2 U	4.6
				112		153		144		127
				61		71		66		52

			Location	OL-SW-10168	OL-SW-10169	OL-SW-10169	OL-SW-1	0169	OL-SW-10169	OL-SW-10170	OL-SW-10170
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5	5 FT	5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-11-F	OL-0685-05	OL-0685-05-F	OL-068	5-13	OL-0685-13-F	OL-0685-07	OL-0685-07-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/	2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K19	0319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WA	TER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sa	mple	Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface \	Vater	Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered								
E1630	METHYL MERCURY	ng/L	N		0.114).161		0.126	
E1630	METHYL MERCURY	ng/L	Υ		0.05 B			0.07		0.06	
E1631	MERCURY	ug/L			0.0025		0	0075		0.0021	
E1631	MERCURY	ug/L		0.00074		0.00049	J		0.00067		0.00048 J
E350.1	NITROGEN, AMMONIA (AS N)	mg/L			0.37			0.32 J		0.37	
E350.1	NITROGEN, AMMONIA (AS N)	mg/L	Υ	0.35		0.34			0.33 J		0.36
SM2540D	TSS	mg/L			4 U			4		4 U	
SW8082	AROCLOR-1016	ug/L	N	0.38 U	0.38 U	0.38	U	0.38 U	0.39 U	0.41 U	0.38 U
SW8082	AROCLOR-1221	ug/L		0.38 U	0.38 U	0.38	U	0.38 U	0.39 U	0.41 U	0.38 U
SW8082	AROCLOR-1232	ug/L		0.38 U	0.38 U	0.38	U	0.38 U	0.39 U	0.41 U	0.38 U
SW8082	AROCLOR-1242	ug/L		0.38 U	0.38 U	0.38	U	0.38 U	0.39 U	0.41 U	0.38 U
SW8082	AROCLOR-1248	ug/L	N	0.38 U	0.38 U	0.38	U	0.38 U	0.39 U	0.41 U	0.38 U
SW8082	AROCLOR-1254	ug/L		0.38 U	4.6	0.6		0.38 U	0.39 U	0.41 U	0.38 U
SW8082	AROCLOR-1260	ug/L		0.38 U	0.38 U	0.38	U	0.38 U	0.39 U	0.41 U	0.38 U

			Location	OL-SW-10168	OL-SW-10169	OL-SW-10169	OL-SW-10169		OL-SW-10169	OL-SW-10170	OL-SW-10170
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5-5 FT		5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-11-F	OL-0685-05	OL-0685-05-F	OL-0685-13		OL-0685-13-F	OL-0685-07	OL-0685-07-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008		11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319		C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER		WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water
Method	Parameter Name		Filtered								
SW8260	1,1,1-TRICHLOROETHANE	ug/L	N	5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	1,1,2,2-TETRACHLOROETHANE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROETHANE	ug/L		5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L	N	5 UJ	5 UJ	5 L	IJ 5 U	JJ	5 UJ	5 UJ	5 UJ
SW8260	1,1-DICHLOROETHANE	ug/L	N	5 U	5 U	5 L	5 U	J	5 U	5 U	5 U
SW8260	1,1-DICHLOROETHENE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	1,2,3-TRICHLOROBENZENE	ug/L		5 UJ	5 UJ	5 U			5 UJ	5 UJ	5 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE	ug/L		5 U	5 UJ	5 U	5 U	JJ	5 U	5 UJ	5 U
SW8260	1,2-DIBROMOETHANE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	1,2-DICHLOROBENZENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	1,2-DICHLOROETHANE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	1,2-DICHLOROPROPANE	ug/L		5 U	5 U	5 L	5 U	J	5 U	5 U	5 U
SW8260	1,3,5-TRICHLOROBENZENE	ug/L		5 U	5 U	5 L	5 U	J	5 U	5 U	5 U
SW8260	1,3-DICHLOROBENZENE	ug/L		5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	1,4-DICHLOROBENZENE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	2-BUTANONE	ug/L		5 U	5 U	5 U	5 U	JJ	5 U	5 U	5 U
SW8260	2-HEXANONE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	4-METHYL-2-PENTANONE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	ACETONE	ug/L		19 J	20 U	20 U	J 20 U	JJ	7.7 J	20 U	20 UJ
SW8260	BENZENE	ug/L	N	5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	BROMODICHLOROMETHANE	ug/L		5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	BROMOFORM	ug/L	N	5 U	5 U	5 L	5 U	J	5 U	5 U	5 U
SW8260	BROMOMETHANE	ug/L	N	5 U	5 U	5 L	5 U	J	5 U	5 U	5 U
SW8260	CARBON DISULFIDE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	CARBON TETRACHLORIDE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	CHLOROBENZENE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	CHLORODIBROMOMETHANE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	CHLOROETHANE	ug/L	N	5 UJ	5 UJ	5 U	J 5 U	JJ	5 UJ	5 UJ	5 UJ
SW8260	CHLOROFORM	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	CHLOROMETHANE	ug/L	N	5 U	5 UJ	5 L	J 5 U	J	5 U	5 UJ	5 U
SW8260	CIS-1,2-DICHLOROETHENE	ug/L	N	5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	CIS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	CYCLOHEXANE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	DICHLORODIFLUOROMETHANE	ug/L	N	5 U	5 UJ	5 U			5 U	5 UJ	5 U
SW8260	ETHYLBENZENE	ug/L	N	5 U	5 U	5 U			5 U	5 U	5 U
SW8260	ISOPROPYLBENZENE	ug/L	N	5 U	5 U	5 U			5 U	5 U	5 U
SW8260	METHYL ACETATE	ug/L	N	5 UJ	5 UJ	5 U	J 5 U	JJ	5 UJ	5 UJ	5 UJ
SW8260	METHYL TERT-BUTYL ETHER	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	METHYLCYCLOHEXANE	ug/L	N	5 U	5 U	5 L	J 5 U	J	5 U	5 U	5 U
SW8260	METHYLENE CHLORIDE	ug/L	N	2.2 J	5 U	2.2 J			5 U	5 U	1.5 J
SW8260	STYRENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TETRACHLOROETHENE	ug/L		5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TOLUENE	ug/L	N	5 U	5 U	5 L			5 U	5 U	5 U
SW8260	TRANS-1,2-DICHLOROETHENE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	TRANS-1,3-DICHLOROPROPENE	ug/L		5 U	5 U	5 U			5 U	5 U	5 U
SW8260	TRICHLOROETHENE	ug/L	N	5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	TRICHLOROFLUOROMETHANE	ug/L	N	5 UJ	5 U	5 U	J 5 U	JJ	5 UJ	5 U	5 UJ
SW8260	VINYL CHLORIDE	ug/L		5 U	5 U	5 U	5 U	J	5 U	5 U	5 U
SW8260	XYLENES, TOTAL	ug/L	N	15 U	15 U	15 L	J 15 U	J	15 U	15 U	15 U
	•			1 1						l l	

			I	01 011/ 10100	01 014/ 10100	01 014/ 40400	01 011/ 10100		01 011/ 10/00	01 014/ 404=0	01 014 40470
			Location	OL-SW-10168	OL-SW-10169	OL-SW-10169	OL-SW-10169		OL-SW-10169	OL-SW-10170	OL-SW-10170
			Sample Depth	5-5 FT	5-5 FT	5-5 FT	5-5 FT		5-5 FT	5-5 FT	5-5 FT
			Field Sample ID	OL-0685-11-F	OL-0685-05	OL-0685-05-F	OL-0685-13		OL-0685-13-F	OL-0685-07	OL-0685-07-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008		11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319		C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER		WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample	Regular Sample
			Sample Type	Surface Water	Surface Water	Surface Water	Surface Water		Surface Water	Surface Water	Surface Water
Method	Parameter Name	Units	Filtered								
SW8270	1,1'-BIPHENYL	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
SW8270	2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L		1.9 U	1.9 U	1.9 U	1.9 U	J	1.9 U	1.9 U	1.9 U
	2,4,5-TRICHLOROPHENOL	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	2,4,6-TRICHLOROPHENOL	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	2,4-DICHLOROPHENOL	ug/L		1.9 U	1.9 U	1.9 U			1.9 U	1.9 U	1.9 U
SW8270	2,4-DIMETHYLPHENOL	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	2,4-DINITROPHENOL	ug/L	N	48 U	47 U	48 U	47 U	J	48 U	47 U	48 U
SW8270	2,4-DINITROTOLUENE	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
SW8270	2,6-DINITROTOLUENE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
	2-CHLORONAPHTHALENE	ug/L		1.9 U	1.9 U	1.9 U		_	1.9 U	1.9 U	1.9 U
	2-CHLOROPHENOL	ug/L		9.5 U	9.4 U	9.5 U		_	9.6 U	9.4 U	9.7 U
	2-METHYLNAPHTHALENE	ug/L		1.9 U	1.9 U	1.9 U			1.9 U	1.9 U	1.9 U
SW8270	2-METHYLPHENOL	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
SW8270	2-NITROANILINE	ug/L	Ν	48 U	47 U	48 U	47 U	J	48 U	47 U	48 U
SW8270	2-NITROPHENOL	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	3,3'-DICHLOROBENZIDINE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	3-NITROANILINE	ug/L		48 U	47 U	48 U			48 U	47 U	48 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	ug/L		48 U	47 U	48 U	47 U		48 U	47 U	48 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
SW8270	4-CHLORO-3-METHYLPHENOL	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
SW8270	4-CHLOROANILINE	ug/L		9.5 U	9.4 U	9.5 U		_	9.6 U	9.4 U	9.7 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	4-METHYLPHENOL	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	4-NITROANILINE	ug/L		48 U	47 U	48 U			48 U	47 U	48 U
SW8270	4-NITROPHENOL	ug/L		48 U	47 UJ	48 U			48 U	47 UJ	48 U
SW8270	ACENAPHTHENE	ug/L	N	1.9 U	1.9 U	1.9 U	1.9 U	J	1.9 U	1.9 U	1.9 U
SW8270	ACENAPHTHYLENE	ug/L	N	1.9 U	1.9 U	1.9 U	1.9 U	J	1.9 U	1.9 U	1.9 U
	ACETOPHENONE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
	ANTHRACENE	ug/L		1.9 U	1.9 U	1.9 U			1.9 U	1.9 U	1.9 U
	ATRAZINE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	BENZALDEHYDE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	BENZO(A)ANTHRACENE	ug/L	N	1.9 U	1.9 U	1.9 U	1.9 U	J	2.1	1.9 U	1.9 U
SW8270	BENZO(A)PYRENE	ug/L	N	1.9 U	1.9 U	1.9 U	1.9 U	J	1.5 J	1.9 U	1.9 U
SW8270	BENZO(B)FLUORANTHENE	ug/L		1.9 U	1.9 U	1.9 U	1.9 U	J	2.3	1.9 U	1.9 U
SW8270	BENZO(G,H,I)PERYLENE	ug/L		1.9 U	1.9 U	1.9 U			2	1.9 U	1.9 U
SW8270	BENZO(K)FLUORANTHENE	ug/L		1.9 U	1.9 U	1.9 U			2.2	1.9 U	1.9 U
	` '										
SW8270	BIS(2-CHLOROETHOXY)METHANE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
SW8270	BIS(2-CHLOROETHYL)ETHER	ug/L		1.9 U	1.9 U	1.9 U			1.9 U	1.9 U	1.9 U
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	2.4 J	5 J	9.7 U
SW8270	BUTYLBENZYL PHTHALATE	ug/L	N	9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
SW8270	CAPROLACTAM	ug/L		48 U	47 U	48 U			48 U	47 U	48 U
	CARBAZOLE	ug/L		1.9 U	1.9 U	1.9 U			1.9 U	1.9 U	1.9 U
	CHRYSENE	ug/L		1.9 U	1.9 U	1.9 U			2.5	1.9 U	1.9 U
	DI-N-BUTYL PHTHALATE	ug/L		9.5 U	9.4 U	9.5 U		_	9.6 U	9.4 U	9.7 U
	DI-N-OCTYL PHTHALATE	ug/L		9.5 U	9.4 U	9.5 U		_	9.6 U	9.4 U	9.7 U
SW8270	DIBENZO(A,H)ANTHRACENE	ug/L	N	1.9 U	1.9 U	1.9 U	1.9 U	J	1.9	1.9 U	1.9 U
SW8270	DIBENZOFURAN	ug/L		9.5 U	9.4 U	9.5 U	9.4 U	J	9.6 U	9.4 U	9.7 U
	DIETHYL PHTHALATE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	0.53 J	0.58 J
	DIMETHYL PHTHALATE	ug/L		9.5 U	9.4 U	9.5 U			9.6 U	9.4 U	9.7 U
	FLUORANTHENE	ug/L		1.9 U	1.9 U	1.9 U			1 J	1.9 U	1.9 U
	FLUORENE	ug/L		1.9 U	1.9 U	1.9 U			1.9 U	1.9 U	1.9 U
SW8270	HEXACHLOROBENZENE	ug/L	N	1.9 U	1.9 U	1.9 U	1.9 U	J	1.9 U	1.9 U	1.9 U

			T	0: 0::::::::::	0. 0	<u> </u>	0.00.00	0: 0: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	0.000.000	0: 0:::::::
			Location	OL-SW-10168	OL-SW-10169	OL-SW-10169	OL-SW-10169	OL-SW-10169	OL-SW-10170	OL-SW-10170
			Sample Depth	5-5 FT	5-5 FT	5-5 FT				
			Field Sample ID	OL-0685-11-F	OL-0685-05	OL-0685-05-F	OL-0685-13	OL-0685-13-F	OL-0685-07	OL-0685-07-F
			Sample Date	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/18/2008
			SDG	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319	C8K190319
			Matrix	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			Sample Purpose	Regular Sample	Regular Sample	Regular Sample				
			Sample Type	Surface Water	Surface Water	Surface Water				
Method	Parameter Name	Units	Filtered							
SW8270	HEXACHLOROBUTADIENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	1.9 U	1.9 U	1.9 U
SW8270	HEXACHLOROCYCLOPENTADIENE	ug/L	N	9.5 U	9.4 U	9.5 L	J 9.4 L	9.6 U	9.4 U	9.7 U
SW8270	HEXACHLOROETHANE	ug/L	N	9.5 U	9.4 U	9.5 L	J 9.4 L	9.6 U	9.4 U	9.7 U
SW8270	INDENO(1,2,3-CD)PYRENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	J 1.8 J	1.9 U	1.9 U
SW8270	ISOPHORONE	ug/L	N	9.5 U	9.4 U	9.5 L	J 9.4 L	9.6 U	9.4 U	9.7 U
SW8270	N-NITROSO-DI-N-PROPYLAMINE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	J 1.9 U	1.9 U	1.9 U
SW8270	N-NITROSODIPHENYLAMINE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	J 1.9 U	1.9 U	1.9 U
SW8270	NAPHTHALENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	J 1.9 U	1.9 U	1.9 U
SW8270	NITROBENZENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	J 1.9 U	1.9 U	1.9 U
SW8270	PENTACHLOROPHENOL	ug/L	N	9.5 U	9.4 U	9.5 L	J 9.4 L	9.6 U	9.4 U	9.7 U
SW8270	PHENANTHRENE	ug/L	N	1.9 U	1.9 U	1.9 L	J 1.9 L	J 1.9 U	1.9 U	1.9 U
SW8270	PHENOL	ug/L	-	1.9 U	1.9 U	1.9 L			1.9 U	1.9 U
SW8270	PYRENE	ug/L		1.9 U	1.9 U	1.9 L	J 1.9 L	J 1 J	1.9 U	1.9 U
					114		161		126	
					50 B		70		60	

ATTACHMENT A-5

VALIDATED LABORATORY DATA FOR ADDENDUM 8 SEDIMENT SAMPLES

		Location	OL-STA-80068							
		Sample Depth	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft	8-10 Ft	12-14 Ft	16-18 Ft	20-22 Ft
		Field Sample ID	OL-0696-17	OL-0696-18	OL-0696-19	OL-0696-20	OL-0698-01	OL-0698-02	OL-0698-03	OL-0698-04
		Sample Date	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008
		SDG	C8K280130							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	12.1	19.3	25.1	30	29.7	40.1	33.3	31.9
SW7471	MERCURY	mg/kg	0.7	J 1	J 1.2	1.3	J 1.5 J	1.1	J 1.8 J	4.1 J

		Location	OL-STA-80068							
		Sample Depth	24-26 Ft	28-30 Ft	32-34 Ft	36-38 Ft	40-42 Ft	44-46 Ft	48-50 Ft	52-54 Ft
		Field Sample ID	OL-0698-05	OL-0698-06	OL-0698-07	OL-0698-08	OL-0698-09	OL-0698-10	OL-0698-11	OL-0698-12
		Sample Date	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008
		SDG	C8K280130							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	23.7	25.6	28.8	32.8	35.6	33.5	34.7	35.5
SW7471	MERCURY	mg/kg	72.3	J 40.4	J 64.4 J	1.7 J	1.6 J	1.8 J	1.5 J	1 J

		Location	OL-STA-80068	OL-STA-80068	OL-STA-80068	OL-STA-80068	OL-STA-80073	OL-STA-80073	OL-STA-80073	OL-STA-80073
		Sample Depth	56-58 Ft	60-62 Ft	64-66 Ft	68-70 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft
		Field Sample ID	OL-0698-13	OL-0698-14	OL-0698-15	OL-0698-16	OL-0700-01	OL-0700-02	OL-0700-03	OL-0700-04
		Sample Date	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K280130	C8K280130	C8K280130	C8K280130	C8K290133	C8K290133	C8K290133	C8K290133
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	35.6	40.8	38.6	35.5	19.2	17.2	21.5	24.1
SW7471	MERCURY	mg/kg	1.2	J 0.28	J 0.098 J	0.08 J	1 J	1.5	J 1.2 J	2.2 J

		Location	OL-STA-80073							
		Sample Depth	8-10 Ft	12-14 Ft	16-18 Ft	20-22 Ft	24-26 Ft	28-30 Ft	32-34 Ft	36-38 Ft
		Field Sample ID	OL-0700-05	OL-0700-06	OL-0700-07	OL-0700-08	OL-0700-09	OL-0700-10	OL-0700-11	OL-0700-12
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	28.5	29.1	32.4	33.5	37.8	44.8	43.8	43.8
SW7471	MERCURY	mg/kg	2.4	J 2.4	J 2.4 J	2 J	3 J	1.1 J	2.7 J	J 0.93 J

		Location	OL-STA-80073	OL-STA-80073	OL-STA-80073	OL-STA-80073		OL-STA-80073	OL-STA-80073		OL-STA-80073	OL-STA-80073	
		Sample Depth	40-42 Ft	44-46 Ft	48-50 Ft	52-54 Ft		56-58 Ft	60-62 Ft		64-66 Ft	68-70 Ft	
		Field Sample ID	OL-0700-13	OL-0700-14	OL-0700-15	OL-0700-16		OL-0700-17	OL-0700-18		OL-0700-19	OL-0700-20	
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008		11/26/2008	11/26/2008		11/26/2008	11/26/2008	
		SDG	C8K290133	C8K290133	C8K290133	C8K290133		C8K290133	C8K290133		C8K290133	C8K290133	
		Matrix	SOIL	SOIL	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample		Regular Sample	Regular Sample	
		Sample Type	Sediment	Sediment	Sediment	Sediment		Sediment	Sediment		Sediment	Sediment	
Method	Parameter Name	Units											
SM2540G	SOLIDS, PERCENT	%	50.2	42	39	45.3		37.6	37.4		36.8	38.7	
SW7471	MERCURY	mg/kg	1.1 J	2.5 J	4.2 J	5.8	J	8 J	84.1	J	82.5 J	0.042	J

		Location	OL-STA-80073	OL-STA-80076						
		Sample Depth	72-74 Ft	76-78 Ft	80-82 Ft	84-86 Ft	88-90 Ft	92-94 Ft	96-98 Ft	0-2 Ft
		Field Sample ID	OL-0702-01	OL-0702-02	OL-0702-03	OL-0702-04	OL-0702-05	OL-0702-06	OL-0702-07	OL-0708-08
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	39.5	39.8	40.3	36	41.8	43.1	46.3	14.9
SW7471	MERCURY	mg/kg	74.3	J 49	J 32 J	10.5 J	25.1 J	15.3	J 14.1 J	1.4 J

		Location	OL-STA-80076							
		Sample Depth	2-4 Ft	4-6 Ft	6-8 Ft	8-10 Ft	12-14 Ft	16-18 Ft	20-22 Ft	24-26 Ft
		Field Sample ID	OL-0708-09	OL-0708-10	OL-0708-11	OL-0708-12	OL-0708-13	OL-0708-14	OL-0708-15	OL-0708-16
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	18.1	19	24.4	24.6	32.1	34.8	35	32.2
SW7471	MERCURY	mg/kg	1.5 J	2.1	J 2.3 J	2.3 J	1.8 J	2.8 J	1.4 J	J 2.2 J

		Location	OL-STA-80076							
		Sample Depth	28-30 Ft	32-34 Ft	36-38 Ft	40-42 Ft	44-46 Ft	48-50 Ft	52-54 Ft	56-58 Ft
		Field Sample ID	OL-0708-17	OL-0708-18	OL-0708-19	OL-0708-20	OL-0710-01	OL-0710-02	OL-0710-03	OL-0710-04
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	28.9	24.2	25	26.8	27.5	30.4	37	33.5
SW7471	MERCURY	mg/kg	3.8	J 73.5 J	102 J	38.5 J	67.4	9.4	J 1.4 J	1.3

		Location	OL-STA-80076	OL-STA-80076	OL-STA-80076	OL-STA-80089	OL-STA-80089	OL-STA-80089	OL-STA-80089	OL-STA-80089
		Sample Depth	60-62 Ft	64-66 Ft	68-70 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft	8-10 Ft
		Field Sample ID	OL-0710-05	OL-0710-06	OL-0710-07	OL-0696-01	OL-0696-02	OL-0696-03	OL-0696-04	OL-0696-05
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008	11/25/2008
		SDG	C8K290133	C8K290133	C8K290133	C8K280130	C8K280130	C8K280130	C8K280130	C8K280130
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	32.8	32.2	34.4	16.4	22.3	27.8	29.8	29.5
SW7471	MERCURY	mg/kg	1.8	J 2.3	J 3.2 J	2.2 J	1.9 J	3 J	2.2 J	2.9 J

		Location	OL-STA-80089	OL-STA-80089	OL-STA-80089	OL-STA-80089		OL-STA-80089	OL-STA-80089		OL-STA-80089	OL-STA-80089	,
		Sample Depth	12-14 Ft	16-18 Ft	20-22 Ft	24-26 Ft		28-30 Ft	32-34 Ft		36-38 Ft	40-42 Ft	t
		Field Sample ID	OL-0696-06	OL-0696-07	OL-0696-08	OL-0696-09		OL-0696-10	OL-0696-11		OL-0696-12	OL-0696-13	3
		Sample Date	11/25/2008	11/25/2008	11/25/2008	11/25/2008		11/25/2008	11/25/2008		11/25/2008	11/25/2008	3
		SDG	C8K280130	C8K280130	C8K280130	C8K280130		C8K280130	C8K280130		C8K280130	C8K280130)
		Matrix	SOIL	SOIL	SOIL	SOIL		SOIL	SOIL		SOIL	SOIL	-
		Sample Purpose	Regular Sample	Regular Sample	Regular Sample	Regular Sample		Regular Sample	Regular Sample		Regular Sample	Regular Sample	
		Sample Type	Sediment	Sediment	Sediment	Sediment		Sediment	Sediment		Sediment	Sediment	t
Method	Parameter Name	Units											
SM2540G	SOLIDS, PERCENT	%	31.4	35.2	39.8	37.4		28.2	29.8		23.9	25.5	,
SW7471	MERCURY	mg/kg	2.8 J	2.6 J	1.8 J	2	۲	2.5 J	4.9	J	46.1 J	57.7	J

		Location	OL-STA-80089	OL-STA-80089	OL-STA-80089	OL-STA-80103	OL-STA-80103	OL-STA-80103	OL-STA-80103	OL-STA-80103
		Sample Depth	44-46 Ft	48-50 Ft	52-54 Ft	0-2 Ft	2-4 Ft	4-6 Ft	6-8 Ft	8-10 Ft
		Field Sample ID	OL-0696-14	OL-0696-15	OL-0696-16	OL-0706-08	OL-0706-09	OL-0706-10	OL-0706-11	OL-0706-12
		Sample Date	11/25/2008	11/25/2008	11/25/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K280130	C8K280130	C8K280130	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	24.8	26	28.7	23.8	25.3	17.3	26	27.6
SW7471	MERCURY	mg/kg	17	J 42.2 J	57.1 J	1.5 J	1.2 J	1.6	J 2.4 J	2.4 J

		Location	OL-STA-80103							
		Sample Depth	12-14 Ft	16-18 Ft	20-22 Ft	24-26 Ft	28-30 Ft	32-34 Ft	36-38 Ft	40-42 Ft
		Field Sample ID	OL-0706-13	OL-0706-14	OL-0706-15	OL-0706-16	OL-0706-17	OL-0706-18	OL-0706-19	OL-0706-20
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	30.4	33.9	37.9	37.8	35.5	30.3	28.8	27.2
SW7471	MERCURY	mg/kg	2.1	J 2.1 J	1.6 J	1.3 J	2.3 J	3.9	J 16.2 J	86.1 J

		Location	OL-STA-80103	ST-51a						
		Sample Depth	44-46 Ft	48-50 Ft	52-54 Ft	56-58 Ft	60-62 Ft	64-66 Ft	68-70 Ft	0-2 Ft
		Field Sample ID	OL-0708-01	OL-0708-02	OL-0708-03	OL-0708-04	OL-0708-05	OL-0708-06	OL-0708-07	OL-0704-08
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	31	32.2	29.9	36.7	40.2	40.6	35.1	16.9
SW7471	MERCURY	mg/kg	36.3	J 55.9 .	J 14.3 J	1.4 J	0.95 J	1 J	J 1.8 .	J 1.3

		Location	ST-51a							
		Sample Depth	2-4 Ft	4-6 Ft	6-8 Ft	8-10 Ft	12-14 Ft	16-18 Ft	20-22 Ft	24-26 Ft
		Field Sample ID	OL-0704-09	OL-0704-10	OL-0704-11	OL-0704-12	OL-0704-13	OL-0704-14	OL-0704-15	OL-0704-16
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		SDG	C8K290133							
		Matrix	SOIL							
		Sample Purpose	Regular Sample							
		Sample Type	Sediment							
Method	Parameter Name	Units								
SM2540G	SOLIDS, PERCENT	%	23.7	14.8	19.6	25.7	28.8	30.1	34	36.2
SW7471	MERCURY	mg/kg	1.4	J 1.8 J	2.2 J	2.5 J	1.1 J	1.9	J 4.1 J	1.7

		Location	ST-51a	ST-51a		ST-51a		ST-51a		ST-51a	ST-51a		ST-51a	
		Sample Depth	28-30 Ft	32-34 Ft		36-38 Ft		40-42 Ft		44-46 Ft	48-50 Ft		52-54 Ft	
		Field Sample ID	OL-0704-17	OL-0704-18		OL-0704-19		OL-0704-20		OL-0706-01	OL-0706-02		OL-0706-03	
		Sample Date	11/26/2008	11/26/2008		11/26/2008		11/26/2008		11/26/2008	11/26/2008		11/26/2008	
		SDG	C8K290133	C8K290133		C8K290133		C8K290133		C8K290133	C8K290133		C8K290133	
		Matrix	SOIL	SOIL		SOIL		SOIL		SOIL	SOIL		SOIL	
		Sample Purpose	Regular Sample	Regular Sample		Regular Sample		Regular Sample		Regular Sample	Regular Sample		Regular Sample	
		Sample Type	Sediment	Sediment		Sediment		Sediment		Sediment	Sediment		Sediment	
Method	Parameter Name	Units												
SM2540G	SOLIDS, PERCENT	%	29.2	25.3		20.9		25.6		29.3	28.8		33.1	
SW7471	MERCURY	mg/kg	3.6	4.9	J	77.9	J	44.4	J	31.7 J	28	J	1.2	J

		Location	ST-51a	ST-51a	ST-51a	ST-51a	ST51	ST51		ST51	ST51
		Sample Depth	56-58 Ft	60-62 Ft	64-66 Ft	68-70 Ft	0-2 Ft	2-4 Ft		4-6 Ft	6-8 Ft
		Field Sample ID	OL-0706-04	OL-0706-05	OL-0706-06	OL-0706-07	OL-0702-08	OL-0702-09		OL-0702-10	OL-0702-11
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008		11/26/2008	11/26/2008
		SDG	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133		C8K290133	C8K290133
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		SOIL	SOIL
		Sample Purpose	Regular Sample		Regular Sample	Regular Sample					
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment		Sediment	Sediment
Method	Parameter Name	Units									
SM2540G	SOLIDS, PERCENT	%	35.5	38.8	32.5	30.6	15.1	16.2		12.9	19.5
SW7471	MERCURY	mg/kg	2 .	J 1.7 J	2.1 J	2.9	J 1	J 1.3	J	2.4 J	21.2

		Location	ST51	ST51	ST51	ST51	ST51	ST51		ST51	ST51	
		Sample Depth	8-10 Ft	12-14 Ft	16-18 Ft	20-22 Ft	24-26 Ft	28-30 Ft		32-34 Ft	36-38 Ft	
		Field Sample ID	OL-0702-12	OL-0702-13	OL-0702-14	OL-0702-15	OL-0702-16	OL-0702-17		OL-0702-18	OL-0702-19	
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008		11/26/2008	11/26/2008	
		SDG	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133		C8K290133	C8K290133	
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		SOIL	SOIL	
		Sample Purpose	Regular Sample		Regular Sample	Regular Sample						
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment		Sediment	Sediment	
Method	Parameter Name	Units										
SM2540G	SOLIDS, PERCENT	%	25.4	28.9	31	29.5	39.2	33.6		27.9	23.2	
SW7471	MERCURY	mg/kg	2.4 J	1.2 J	1.8 J	3.1 .	J 1.6	J 2.1	J	3.2 J	12.1	J

		Location	ST51	ST51	ST51	ST51	ST51	ST51		ST51	ST51
		Sample Depth	40-42 Ft	44-46 Ft	48-50 Ft	52-54 Ft	56-58 Ft	60-62 Ft		64-66 Ft	68-70 Ft
		Field Sample ID	OL-0702-20	OL-0704-01	OL-0704-02	OL-0704-03	OL-0704-04	OL-0704-05		OL-0704-06	OL-0704-07
		Sample Date	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008		11/26/2008	11/26/2008
		SDG	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133	C8K290133		C8K290133	C8K290133
		Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		SOIL	SOIL
		Sample Purpose	Regular Sample		Regular Sample	Regular Sample					
		Sample Type	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment		Sediment	Sediment
Method	Parameter Name	Units									
SM2540G	SOLIDS, PERCENT	%	19.4	23.4	26.4	29.1	31.4	34.4		33.9	34.1
SW7471	MERCURY	mg/kg	81.6 J	I 42 J	40.5 J	43.5	J 3.8	J 1.4	J	1.6 J	2.1

ATTACHMENT A-6

VALIDATED LABORATORY DATA FOR ADDENDUM 8 SUPPLEMENTAL SEDIMENT SAMPLES

Honeywell On	ondaga Lake Site	Location ID:	OL-STA-80068	OL-STA-80068	OL-STA-80068	OL-STA-80076	OL-STA-80076	OL-STA-80076	OL-STA-80089	OL-STA-80089
SMU-8 High F	Resolution Cores	Sample ID:	OL-1066-01	OL-1066-02	OL-1066-03	OL-1066-04	OL-1066-05	OL-1066-06	OL-1066-07	OL-1066-08
Validated Sedi	iment Analytical Data	Lab Sample Id:	C0A080487001	C0A080487002	C0A080487003	C0A080487004	C0A080487005	C0A080487006	C0A080487007	C0A080487008
SDG: C0A084	487	Depth:	10-12 CM	14-16 CM	18-20 CM	10-12 CM	14-16 CM	18-20 CM	10-12 CM	14-16 CM
		Source:	TAL-PA							
		SDG:	C0A080487							
		Matrix:	SOIL							
		Sampled:	11/25/2008	11/25/2008	11/25/2008	11/26/2008	11/26/2008	11/26/2008	11/25/2008	11/25/2008
		Validated:	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010
CAS NO.	COMPOUND	UNITS:								
	METALS									
7439-97-6	Mercury	mg/kg	3.4 J	1.3 J	2.7 J	1.7 J	4.9 J	1.2 J	2.4 J	5.5 J
	OTHER				_					
SOLID	Percent Solids	%	31.9	36.8	31.6	28.5	30.8	37.8	43.8	32

Honeywell On	ondaga Lake Site	Location ID:	OL-STA-80089	OL-STA-80103	OL-STA-80103	OL-STA-80103	ST-51	ST-51	ST-51
SMU-8 High I	Resolution Cores	Sample ID:	OL-1066-09	OL-1066-10	OL-1066-11	OL-1066-12	OL-1066-13	OL-1066-14	OL-1066-15
Validated Sedi	iment Analytical Data	Lab Sample Id:	C0A080487009	C0A080487010	C0A080487011	C0A080487012	C0A080487013	C0A080487014	C0A080487015
SDG: C0A084	487	Depth:	18-20 CM	10-12 CM	14-16 CM	18-20 CM	10-12 CM	14-16 CM	18-20 CM
		Source:	TAL-PA						
		SDG:	C0A080487						
		Matrix:	SOIL						
		Sampled:	11/25/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008	11/26/2008
		Validated:	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010	2/11/2010
CAS NO.	COMPOUND	UNITS:							
	METALS								
7439-97-6	Mercury	mg/kg	1.8 J	1.4 J	1.6 J	3.6 J	1.8 J	1.9 J	2.2 J
	OTHER								
SOLID	Percent Solids	%	39.6	27.2	33.3	33.4	27.2	29.1	29.7