APPENDIX I

MASS BALANCE CALCULATIONS

Honeywell

APPENDIX I

MASS BALANCE CALCULATIONS

I.1 CALCULATION ASSUMPTIONS

The mass balance presented in this Appendix has been prepared to provide a basis for the sizing and design of the equipment, pumps, and pipelines that will be utilized in the various sediment management activities that are described in this Intermediate Design Report. Mass balance diagrams have been developed for dredging Phases 1 and 2. As presented in this Appendix, two scenarios have been evaluated for each dredging Phase, the maximum flow produced by the dredge, and the average flow. The maximum flow represents the mass balance of flows while dredging operations are ongoing. The average flow incorporates the dredging "uptime" (assumed to be 70%) to produce calculated average flows over the course of a one-day period.

As described in this design report, selection of a dredging contractor has not been finalized at the time of the preparation of this report. As such, assumptions must be made regarding the flowrate and slurry percent solids that are produced by the equipment utilized to execute the dredging portion of the remedy. As described in Section 2.1.2, a dredge flowrate of 5,000 gpm, and a 10% solids by weight slurry, are assumed to be maintained by the dredging operation. Following selection of the dredging contractor, these assumptions will be reevaluated. If necessary, the mass balance will be updated as part of the Final Design to reflect any changes in these assumptions.

Due to the nature of dredging operations, the achieved percent solids produced will vary significantly over short periods of time, which will result in significant short-term variation in the proportion of water versus solids entering the system at a given time. The impact of these changes on pre-processing equipment is expected to be minimal. Due to the time required for geotextile tube filtrate to flow through the gravel and/or drainage channels, water within the SCA will effectively have some residence time before reaching the sumps. This residence time will attenuate fluctuating solids content, limiting any potential impacts to the SCA WTP.

Slurry Transport Mass Balance Calculation

1.0 Introduction

This package provides the mass balance calculation of the slurry transport, pre-processing, and geotextile tube dewatering. The hydraulically dredged Onondaga Lake sediment will be transported as a slurry to the SCA located on Wastebed 13 via a pipeline. Upon reaching the SCA, the slurry will go through several steps of pre-processing and then the final geotextile tube dewatering. The geotextile tube filtrate, along with water from screened material stockpiles and surface contact water with the active SCA, will be treated in the water treatment plant located on Wastebeds 12 and 13. The clarifier underflow and backwash water generated from the WTP will be sent back to the SCA and dewatered by geotextile tubes.

Following this introduction, Section 2 presents the definition of terms used in this calculation. Section 3 provides the assumptions. Section 4 contains a step-by-step mass balance calculation of the maximum flow scenario (5000 gpm). Section 5 assembles the results in a table format. The calculation of the average flow scenario (70% of the maximum flow or 3500 gpm) uses the same set of equations and steps. The spreadsheets contained in this appendix present calculations for both the maximum and average flow scenarios. Mass balance calculation associated with the water treatment process is provided in a separate submittal.

2.0 Definitions

Primary screening: The process of removing over-sized particles (> 2-inch) by passing the slurry through 2-inch screens.

Secondary screening: The process of removing gravel-sized particles by passing the slurry through 1/4-inch screens.

Hydrocyclone sand-sized particle removal: The process of removing sand-sized particles by passing the slurry through a hydrocyclone system.

Geotextile tube initial dewatering: The first 24 hours after the geotextile tube is filled.

Geotextile tube consolidation dewatering: The duration of 60 days after the initial dewatering. It is assumed that the primary consolidation within the geotextile tubes will complete during this period of time. Longer term consolidation or dewatering (secondary consolidation) is not considered in this calculation.

Filtrate: Including water and total suspended solids.

Geotextile tube filtrate: The summation of filtrate from the geotextile tube initial and consolidation dewatering.

Stockpile filtrate: The filtrate generated by change in water content of screened material stockpile (over-sized, gravel, and sand).

Total filtrate: The summation of geotextile tube filtrate and stockpile filtrate. The total filtrate will be sent to the SCA water treatment plant for treatment.

Phase I: For slurry from Remediation Areas C and D, the dewatering process includes primary screening for over-sized particle removal, polymer injection, and geotextile tube dewatering.

Phase II: For slurry from Remediation Areas A, B, E, and F, the dewatering process includes primary screening for over-sized particle removal, secondary screening for gravel-sized particle removal, hydrocyclone for sand-sized particle removal, polymer and coagulant injection, and geotextile tube dewatering.

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

3.0 Assumptions

- Geotextile tube consolidation dewatering is assumed to complete in 60 days after the initial dewatering. This calculation considers consolidation dewatering peak flow scenario, which starts from 61 days after the first tube is filled and ends at one day after the last tube is filled for the season.
- Polymer and coagulant particles injected to the slurry will be captured in the geotextile tube during the initial dewatering.
- Water density: $\rho_w := 1 \frac{gm}{cm^3}$ $\rho_w = 62.4279606 \frac{lb}{ft^3}$
- Maximum slurry flow rate: q := 5000 gpm, where gpm is gallons per minute.
- Average slurry flow rate: $q_a := q \cdot 70\%$ $q_a = 3500 \text{ gpm}$
- Slurry solids content by weight: $P_s := 10\%$
- Specific gravity of lake sediment (Table 1):
 - Phase I: $Gs_I := 2.56$
 - Phase II: $Gs_{II} := 2.64$
- The specific gravity of total suspended solids is assumed to be the same as lake sediment of each phase.
- Initial water content of screened material stockpile: wC_{istock} = 25%, based on vendor's estimate.
- Final water content of screened material stockpile: $WC_{fstock} := 15\%$, assumed value.
- Total suspended solids (TSS) in geotextile tube filtrate, based on O'Brien & Gere's estimate:

$$TSS_{tube_filtrate} := 195.2 \frac{mg}{L}$$

• Assumed TSS in stockpile filtrate (filtrate generated by change in stockpile water content) :

$$TSS_{stock_filtrate} := 195.2 \frac{mg}{r}$$

- Maximum booster pump seal water (each): $q_{booster} = 50$ gpm , based on vendor's estimate.
- Average booster pump seal water (each): $q_{booster a} := q_{booster} \cdot 70\%$ $q_{booster a} = 35 \text{ gpm}$
- Number of booster pumps: N_{booster} := 5
- Maximum hydrocyclone feed pump seal water (each): $q_{cyclone_pump} \coloneqq 15$ gpm
- Average hydrocyclone feed pump seal water (each): $q_{cyclone_pump_a} := q_{cyclone_pump_} \cdot 70\%$ $q_{cyclone_pump_a} = 10.5 \text{ gpm}$
- Number of hydrocyclone feed pumps: $N_{cyclone_pump} := 2$.
- Maximum geotextile tube feed pump seal water (each): q_{tube_pump} := 15gpm
- Average geotextile tube feed pump seal water (each): $q_{tube_pump_a} := q_{tube_pump} \cdot 70\%$ $q_{tube_pump_a} = 10.5 \text{ gpm}$
- Number of active geotextile tube feed pumps: N_{tube_pump} := 1

Maximum primary screen wash water: q_{primary} := 102gpm , based on vendor's estimate. Average primary screen wash water: $q_{primary a} := q_{primary} \cdot 70\%$ $q_{primary a} = 71.4 \text{ gpm}$ Maximum secondary screen and hydrocyclone screen wash water: , based on vendor's estimate. $q_{second cyclone} := 510 gpm$ Average secondary screen and hydrocyclone screen wash water: $q_{second_cyclone_a} := q_{second_cyclone} \cdot 70\%$ $q_{second cyclone a} = 357 \text{ gpm}$ Clarifier underflow from the SCA water treatment plant, based on O'Brien & Gere's estimate.: $q_{clarifier} = 735 gpm$ TSS_{clarifier} = $3017.9 \frac{mg}{r}$, where TSS is total suspended solids. Spent MMF backwash from the SCA water treatment plant, based on O'Brien & Gere's estimate: $q_{MMF} := 166.3 \text{gpm}$ TSS_{MMF} := 483.3 $\frac{\text{mg}}{\text{L}}$ Spent GAC backwash from the SCA water treatment plant, based on O'Brien & Gere's estimate: $q_{GAC} \approx 164.6$ gpm TSS_{GAC} $\approx 95.8 \frac{\text{mg}}{\text{T}}$ Average percentage of over-sized particle (removed by primary screen), assuming 10% of the gravel-sized particle is over-sized (Table 1):

Phase I: $P_{\text{oversized I}} = 0.2\%$

Phase II: P_{oversized II} = 1.6%

• Average percentage of gravel-sized particle (removed by secondary screen) of Remediation Areas A, B, E, and F (Table 1):

$P_{\text{gravel}} \coloneqq 14.4\%$

Note: Table 1 shows approximately 16% is gravel. Based on the assumption that 10% of the gravel is over-sized and removed by the primary screen, the gravel removed by the secondary screen is 14.4% (i.e., 90% of 16%).

 Average percentage of sand-sized particle (removed by hydrocyclone) of Remediation Areas A, B, E, and F (Table 1):

 $P_{sand} := 41\%$

• Average percentage of fines (silt and clay-sized particles) (Table 1):

Phase I: $P_{fine_I} = 82\%$

Phase II: P_{fine_II} := 43%

Note: The polymer and coagulant dosage is based on dry weight of fines, rather than the total dry solids weight.

• Solids content by weight after initial dewatering in geotextile tubes (i.e., after the first 24 hrs):

 $P_{s2} := 38\%$,based on **P-GDT results**.

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

• Consolidation dewatering in the geotextile tube will take 60 days to complete, with equal daily filtrate volume. Total days of consolidation dewatering:

$$t_c := 60 day$$

• Solids content by weight after consolidation dewatering in geotextile tubes (i.e., 60 days after the first 24 hrs):

$$P_{s3} := 50\%$$

• Maximum discharge to Metro WTP from SCA WTP:

 $MAX_{discharge} \coloneqq 6.5 \cdot 10^{6} \frac{gal}{day} \qquad MAX_{discharge} = 4513.9 \text{ gpm}$ $TSS_{discharge} \coloneqq 4.5 \frac{mg}{L}$

4.0 Calculations

4.1 Incoming Slurry

Slurry water content: $WC := \frac{1 - P_s}{P_s}$ WC = 900 %

Water in slurry:

Phase I:

	$\mathbf{q} \cdot (1 - \mathbf{P}_{c}) \cdot \mathbf{G} \mathbf{s}_{\mathbf{I}}$	col
Volume	$\mathbf{q}_{\mathbf{W}_\mathbf{I}} \coloneqq \frac{\mathbf{r}_{\mathbf{V}}}{\mathbf{P}_{\mathbf{S}} + (1 - \mathbf{P}_{\mathbf{S}}) \cdot \mathbf{G} \mathbf{s}_{\mathbf{I}}}$	$q_{w_I} = 6900499 \frac{gar}{day}$
Weight	$W_{w_I} \coloneqq q_{w_I'} \rho_w$	$W_{w_I} = 57587459.3 \frac{lb}{day}$

Phase II:

Volume	$\mathbf{q}_{\mathbf{W}_\mathbf{II}} \coloneqq \frac{\mathbf{q} \cdot (1 - \mathbf{P}_{\mathbf{s}}) \cdot \mathbf{G} \mathbf{s}_{\mathbf{II}}}{\mathbf{P}_{\mathbf{s}} + (1 - \mathbf{P}_{\mathbf{s}}) \cdot \mathbf{G} \mathbf{s}_{\mathbf{II}}}$	$q_{w_II} = 6909208 \frac{gal}{day}$
Weight	$\mathbf{W}_{\mathbf{W}_{\square} \square} := \mathbf{q}_{\mathbf{W}_{\square} \square} \boldsymbol{\rho}_{\mathbf{W}}$	$W_{w_{II}} = 57660141.3 \frac{lb}{day}$

Solids in slurry:

Phase I:

Volume (zero void ratio)
$$q_{s_I} := \frac{q \cdot P_s}{P_s + (1 - P_s) \cdot Gs_I}$$
 $q_{s_I} = 299500.8 \frac{gal}{day}$ Weight $W_{s_I} := q_{s_I} \cdot Gs_{I} \cdot \rho_w$ $W_{s_I} = 6398607 \frac{lb}{day}$

Phase II:

Volume (zero	void ratio) $q_{s_II} := \frac{q \cdot P_s}{P_s + (1 - P_s) \cdot Gs_{II}}$	$q_{s_II} = 290792 \frac{gal}{day}$
Weight	$W_{s_II} := q_{s_II'}Gs_{II'}\rho_W$	$W_{s_{II}} = 6406682 \frac{lb}{day}$

leight of removed over-sized particles:	
Phase I:	
$W_{oversized_I} := W_{s_I} \cdot P_{oversized_I}$	$W_{oversized_I} = 12797.2 \frac{lb}{day}$
Phase II:	
$W_{oversized_II} := W_{s_II} \cdot P_{oversized_II}$	$W_{oversized_{II}} = 102506.9 \frac{lb}{day}$
olume of removed over-sized particles	(zero void ratio):
Phase I:	
$q_{oversized_I} := q_{s_I} P_{oversized_I}$	$q_{\text{oversized}_I} = 599 \frac{\text{gal}}{\text{day}}$
Phase II:	
q _{oversized_II} := q _{s_II} .P _{oversized_II}	$q_{oversized_{II}} = 4652.7 \frac{gal}{day}$
leight of water removed with over-sized	d particles:
Phase I:	
$W_{w_oversized_I} := W_{oversized_I} \cdot WC_{istock}$	W_{w} oversized I = 3199.3 $\frac{lb}{l}$
Phase II:	day
$W_{w_oversized_{II}} := W_{oversized_{II}} \cdot WC_{istock}$	$W_{w_oversized_{II}} = 25626.7 \frac{lb}{day}$
olume of water removed with over-size	ed particles:
Phase I:	
$q_{w_oversized_I} \coloneqq \frac{W_{w_oversized_I}}{\rho_{w}}$	$q_{w_oversized_I} = 383.4 \frac{gal}{day}$
Phase II:	
$q_{w_oversized_II} \coloneqq \frac{W_{w_oversized_II}}{\rho_{W}}$	$q_{w_oversized_{II}} = 3070.8 \frac{gal}{day}$
emaining dry solids weight in the slurr	'y:
Phase I:	
$W_{sr1_I} := W_{s_I} - W_{oversized_I}$	$W_{sr1_I} = 6385809.4 \frac{lb}{day}$
Phase II:	
$W_{sr1_II} := W_{s_II} - W_{oversized_II}$	$W_{sr1_{II}} = 6304175.5 \frac{lb}{day}$

Remaining solids volume in the slurry (z	ero void ratio):
Phase I:	
$q_{sr1_I} := q_{s_I} - q_{oversized_I}$	$q_{sr1_I} = 298901.8 \frac{gal}{day}$
Phase II:	
$q_{sr1}_{II} := q_{s}_{II} - q_{oversized}_{II}$	$q_{sr1_{II}} = 286138.9 \frac{gal}{day}$
Remaining water weight in the slurry:	
Phase I:	
$W_{wr1_I} := W_{w_I} - W_{w_oversized_I}$	$W_{wr1_I} = 57584260 \frac{lb}{day}$
Phase II:	
$W_{wr1_II} := W_{w_II} - W_{w_oversized_II}$	$W_{wr1_II} = 57634514.6 \frac{lb}{day}$
Remaining water volume in the slurry:	
Phase I:	
$q_{wr1_I} := q_{w_I} - q_{w_oversized_I}$	$q_{wr1_I} = 6900115.8 \frac{gal}{day}$
Phase II:	
$q_{wr1_II} := q_{w_II} - q_{w_oversized_II}$	$q_{wr1}_{II} = 6906137.6 \frac{gal}{day}$
Secondary Screening for Gravel-Sized P	article Removal (Remediation Areas A B F and F c

Weight of removed gravel-sized particles:

$$W_{gravel_{II}} := W_{s_{II}} P_{gravel}$$
 $W_{gravel_{II}} = 922562.3 \frac{lb}{day}$

Volume of removed gravel-sized particles (zero void ratio):

 $q_{gravel_{II}} := q_{s_{II}} P_{gravel}$ $q_{gravel_{II}} = 41874 \frac{gal}{day}$

Weight of water removed with gravel-sized particles:

 $W_{w_gravel_II} := W_{gravel_II} \cdot WC_{istock}$ $W_{w_gravel_II} = 2.30640.6 \frac{lb}{day}$

	Volume of water removed with gravel-size	ed particles:
	$q_{w_gravel_II} := \frac{W_{w_gravel_II}}{\rho_{w}}$	$q_{w_gravel_II} = 27636.8 \frac{gal}{day}$
	Remaining dry solids weight in the slurry	<u>.</u>
	$W_{sr2_II} := W_{sr1_II} - W_{gravel_II}$	$W_{sr2_{II}} = 5381613.2 \frac{lb}{day}$
	Remaining solids volume in the slurry (ze	ero void ratio):
	$q_{sr2_{II}} \coloneqq q_{sr1_{II}} - q_{gravel_{II}}$	$q_{sr2_{II}} = 244264.9 \frac{gal}{day}$
	Remaining water weight in the slurry:	
	$W_{wr2_II} := W_{wr1_II} - W_{w_gravel_II}$	$W_{wr2_II} = 57403874.1 \frac{lb}{day}$
	Remaining water volume in the slurry:	
	$q_{wr2_{II}} := q_{wr1_{II}} - q_{w_{gravel_{II}}}$	$q_{wr2_{II}} = 6878500.8 \frac{gal}{day}$
4.4	Hydrocyclone for Sand-Sized Particle Re	moval (Remediation Areas A, B, E, and F only)
	Weight of removed sand-sized particles:	
	$W_{sand_{II}} := W_{s_{II}} P_{sand}$	$W_{sand_{II}} = 2626739.8 \frac{lb}{day}$
	Volume of removed sand-sized particles	(zero void ratio):
	$q_{sand_II} := q_{s_II} \cdot P_{sand}$	$q_{sand_II} = 119224.6 \frac{gal}{day}$
	Weight of water removed with sand-sized	l particles:
	$W_{w_sand_{II}} := W_{sand_{II}} WC_{istock}$	$W_{w_sand_II} = 656684.9 \frac{lb}{day}$
	Volume of water removed with sand-sized	d particles:
	$q_{w_sand_II} \coloneqq \frac{W_{w_sand_II}}{\rho_{w}}$	$q_{w_sand_II} = 78688.2 \frac{gal}{day}$
	Remaining dry solids weight in the slurry	<i>:</i>
	$W_{sr3_II} := W_{sr2_II} - W_{sand_II}$	$W_{sr3_II} = 2754873.4 \frac{lb}{day}$
	Remaining solids volume in the slurry (ze	ero void ratio):
	$q_{sr3_{II}} \coloneqq q_{sr2_{II}} - q_{sand_{II}}$	$q_{sr3_{II}} = 125040.4 \frac{gal}{day}$

Remaining water weight in the slurry:

 $W_{wr3_II} = 56747189.1 \frac{lb}{day}$ $W_{wr3_{II}} := W_{wr2_{II}} - W_{w_{sand_{II}}}$

Remaining water volu	ume in the slurry:
$q_{wr3_II} := q_{wr2_II} - q_{w_S}$	sand_II $q_{wr3_II} = 6799812.6 \frac{gal}{day}$
4.5 Total Flow from SCA	WTP (Clarifier Underflow and MMF and GAC Backwash Water)
Total flow from WT	TP:
$q_{WTP} := q_{clarifier} + q_{MN}$	MF + q_{GAC} $q_{\text{WTP}} = 1065.9 \text{ gpm}$ $q_{\text{WTP}} = 1534896 \frac{\text{gal}}{\text{day}}$
Weight of total sus	spended solids (TSS) from SCA WTP:
All Remediation Area	eas:
$W_{WTP_TSS} := q_{clarifier}$	$TSS_{clarifier} + q_{MMF}TSS_{MMF} + q_{GAC}TSS_{GAC}$
$W_{WTP_TSS} = 19.3 \frac{lb}{min}$	$W_{WTP_TSS} = 27811.8050701 \frac{lb}{day}$
Volume of total sus	spended solids (TSS) from SCA WTP (zero void ratio):
Phase I:	
$q_{\text{WTP}_\text{TSS}_\text{I}} := \frac{W_{\text{WTP}_\text{I}}}{Gs_{\Gamma}\rho_{\text{V}}}$	$\frac{_{TSS}}{_{W}} \qquad \qquad q_{WTP_TSS_I} = 0.904 \text{ gpm}$
	$q_{WTP_TSS_I} = 1301.8 \frac{gal}{day}$
Phase II:	
$q_{WTP_TSS_II} := \frac{W_{WTP_}}{G_{S_{II}}}$	$q_{WTP_TSS_{II}} = 0.877 \text{ gpm}$
11 '	$q_{WTP_TSS_{II}} = 1262.3 \frac{gal}{day}$
Volume of water fro	rom SCA WTP:
Phase I:	
$q_{W_WTP_I} := q_{clarifier}$	$\left(1 - \frac{\text{TSS}_{\text{clarifier}}}{\text{Gs}_{\Gamma}\rho_{W}}\right) + q_{\text{MMF}}\left(1 - \frac{\text{TSS}_{\text{MMF}}}{\text{Gs}_{\Gamma}\rho_{W}}\right) + q_{\text{GAC}}\left(1 - \frac{\text{TSS}_{\text{GAC}}}{\text{Gs}_{\Gamma}\rho_{W}}\right)$
$q_{W_WTP_I} = 1065.0 \text{gpr}$	m
Phase II:	
$q_{W}_{WTP_{II}} = q_{clarifier}$	$\left(1 - \frac{\text{TSS}_{\text{clarifier}}}{\text{Gs}_{\text{II}} \cdot \rho_{\text{W}}}\right) + q_{\text{MMF}} \left(1 - \frac{\text{TSS}_{\text{MMF}}}{\text{Gs}_{\text{II}} \cdot \rho_{\text{W}}}\right) + q_{\text{GAC}} \left(1 - \frac{\text{TSS}_{\text{GAC}}}{\text{Gs}_{\text{II}} \cdot \rho_{\text{W}}}\right)$
аw wтр ц = 1065.0 gp	nm.

Weight of water from SCA WTP:

Phase I:

 $W_{W_WTP_I} \coloneqq q_{W_WTP_I} \cdot \rho_w$

 $W_{W_WTP_I} = 8887.8 \frac{lb}{min}$ $W_{W_WTP_I} = 12798464.5 \frac{lb}{day}$

Phase II:

 $W_{W_WTP_II} := q_{W_WTP_II} \cdot \rho_W$

$$W_{W_WTP_II} = 8888.1 \frac{lb}{min}$$
 $W_{W_WTP_II} = 12798793.8 \frac{lb}{day}$

4.6 Screened Material Stockpile Filtrate

/

Weight of water in filtrate from screened material stockpile:

Phase I:

$$W_{w_stock_filtrate_I} := (WC_{istock} - WC_{fstock}) \cdot W_{oversized_I}$$

$$W_{w_{stock_{filtrate_{I}}} = 1279.7 \frac{10}{day}}$$

Phase II:

 $\mathbf{W}_{w_stock_filtrate_II} \coloneqq \left(WC_{istock} - WC_{fstock} \right) \cdot \left(W_{oversized_II} + W_{gravel_II} + W_{sand_II} \right)$

 $W_{w_stock_filtrate_II} = 365180.9 \frac{lb}{day}$

Volume of water in filtrate from screened material stockpile:

Phase I:

$$q_{w_stock_filtrate_I} := \frac{W_{w_stock_filtrate_I}}{\rho_{w}} \qquad q_{w_stock_filtrate_I} = 153.3 \frac{gal}{day}$$
Phase II:

$$q_{w_stock_filtrate_II} := \frac{W_{w_stock_filtrate_II}}{\rho_{w}} \qquad q_{w_stock_filtrate_II} = 43758.3 \frac{gal}{day}$$
Weight of total suspended solids in stockpile filtrate:

Phase I:

$$\begin{split} W_{TSS_stock_filtrate_I} &:= \frac{q_{w_stock_filtrate_I} \cdot TSS_{stock_filtrate} \cdot Gs_{I} \cdot \rho_{w}}{Gs_{I} \cdot \rho_{w} - TSS_{stock_filtrate}} \\ W_{TSS_stock_filtrate_I} &= 0.25 \frac{lb}{day} \\ W_{TSS_stock_filtrate_I} &= 0.000079 \frac{kg}{min} \\ \end{split}$$

$$\begin{aligned} Phase \ II: \\ W_{TSS_stock_filtrate_II} &:= \frac{q_{w_stock_filtrate_II} \cdot TSS_{stock_filtrate} \cdot Gs_{II} \cdot \rho_{w}}{Gs_{II} \cdot \rho_{w} - TSS_{stock_filtrate}} \\ W_{TSS_stock_filtrate_II} &= 0.0225 \frac{kg}{min} \\ \end{aligned}$$

Phase I:	
WTSS_stock_filtrate_I	
$^{\rm TSS_stock_filtrate_I} = G_{^{\rm S}I} \rho_{\rm W}$	
q_{TSS} stock filtrate $I = 0.012 \frac{gal}{gal}$ q_{TSS} stock filtrate $I = 8.1$	2042×10^{-6} gpm
day day	
Phase II:	
W _{TSS_stock_filtrate_II}	
$q_{TSS_stock_filtrate_II} = \frac{1}{G_{s_{II}} \rho_{w}}$	
$-3.236 \frac{\text{gal}}{\text{gal}}$ a $-2.236 \frac{\text{gal}}{\text{gal}}$	247×10^{-3} mm
4TSS_stock_filtrate_II = 5.250 day 4TSS_stock_filtrate_II = 2.2	247 × 10 gpm
Neight of stockpile filtrate:	
Phase I:	
W _{stock_filtrate_I} := W _{w_stock_filtrate_I} + W _{TSS_stock_filtrate_I}	$W_{stock_filtrate_I} = 1280 \frac{lb}{day}$
Phase II:	
W _{stock_filtrate_II} := W _{w_stock_filtrate_II} + W _{TSS_stock_filtrate_II}	$W_{stock_filtrate_{II}} = 365252.2 \frac{lb}{day}$
/olume of stockpile filtrate:	
Phase I:	
9stock filtrate I ≔ 9sy stock filtrate I + 9TSS stock filtrate I	$q_{\text{stock filtrate I}} = 153.4 \frac{\text{gal}}{\text{gal}}$
Phase II:	day
^q stock_filtrate_II ^{:=} q _{w_stock_filtrate_II} ⁺ qTSS_stock_filtrate_II	$q_{stock}_{filtrate_{II}} = 43761.6 \frac{gal}{day}$
Neight of final drv solids in stockpile (total minus TSS):	
Phase I [.]	
We stade L'= Weynersized L = WTSS stade filterets L	$I_{a \text{ stack } \mathbf{r}} = 12797 \frac{\text{lb}}{\text{lb}}$
s_stock_1 oversized_1 155_stock_initiate_1	s_stock_1 day
Phase II:	
$W \rightarrow u' = W \rightarrow u + W \rightarrow u + W \rightarrow u - W$	We stack $\mu = 3651737.7$.

Phase I:

$$q_{s_stock_I} := \frac{W_{s_stock_I}}{G_{s_{\Gamma}}\rho_{w}} \qquad \qquad q_{s_stock_I} = 599 \frac{gal}{day}$$

Phase II:

$$q_{s_stock_II} := \frac{W_{s_stock_II}}{Gs_{II} \cdot \rho_{W}} \qquad \qquad q_{s_stock_II} = 165748 \frac{gal}{day}$$

4.7 Polymer Injection

Dry polymer density:

$$DEN_{polymer} \coloneqq 0.7 \frac{gm}{cm^3}$$
 , based on Ashland 2520 MSDS

Dry polymer dosage rate:

$$DOS_{polymer} := 1.59 \frac{lb}{ton}$$
, based on **P-GDT report.**

Weight and volume of dry polymer:

Phase I:

$$W_{drypolymer_I} := DOS_{polymer}(W_{s_I} \cdot P_{fine_I} + W_{WTP_TSS} + W_{TSS_{stock_filtrate_I}})$$

$$W_{drypolymer_{I}} = 2.912 \frac{lb}{min} \qquad W_{drypolymer_{I}} = 4193.36 \frac{lb}{day}$$

$$q_{drypolymer_{I}} := \frac{W_{drypolymer_{I}}}{DEN_{polymer}} \qquad q_{drypolymer_{I}} = 0.4985 \text{ gpm} \qquad q_{drypolymer_{I}} = 717.8 \frac{gal}{day}$$

Phase II:

 $W_{drypolymer_II} \coloneqq DOS_{polymer} (W_{s_II} P_{fine_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II})$

$$W_{drypolymer_{II}} = 1.5 \frac{lb}{min}$$
 $W_{drypolymer_{II}} = 2212.3 \frac{lb}{day}$

$$q_{drypolymer_II} := \frac{w_{drypolymer_II}}{DEN_{polymer}} \qquad q_{drypolymer_II} = 0.3 \text{ gpm} \qquad q_{drypolymer_II} = 379 \frac{gal}{day}$$

Weight and volume of polymer makeup water:

$$q_{polymerwater_I} := \frac{W_{drypolymer_I} \cdot 200 \text{mL}}{0.4 \text{gm}}$$

 $q_{polymerwater_I} = 174.5 \text{ gpm}$

 $W_{polymerwater_I} := q_{polymerwater_I} \rho_w$

 $W_{polymerwater_I} = 2096681.1 \frac{lb}{day}$

Phase II:

$$q_{polymerwater_{II}} := \frac{W_{drypolymer_{II}} \cdot 200 \text{mL}}{0.4 \text{gm}}$$

 $q_{polymerwater_{II}} = 92 \text{ gpm}$

 $W_{polymerwater_{II}} := q_{polymerwater_{II}} \rho_{W}$

 $W_{polymerwater_{II}} = 1106145.7 \frac{lb}{day}$

Note: Assume polymer dissolves in makeup water. Makeup water volume is the polymer emulsion volume.

4.8 Coagulant Injection (emulsion, Remediation Areas A, B, E, and F only) Coagulant emulsion dosage rate: $DOS_{coag} := 5.71 \frac{lb}{ton}$, based on P-GDT report. Coagulant emulsion density: $DEN_{coag} := 1.03 \frac{gm}{cm^3}$, based on Ashland 492 MSDS. Coagulant emulsion weight: $W_{coag} := DOS_{coag} \cdot (W_{s_{II}} \cdot P_{fine_{II}} + W_{WTP_{TSS}} + W_{TSS_{stock_{filtrate_{II}}}})$ $W_{coag} = 7944.8 \frac{lb}{dav}$ $W_{coag} = 5.5 \frac{lb}{min}$ Coagulant emulsion volume: $q_{coag} \coloneqq \frac{DOS_{coag} \cdot \left(W_{s_II} \cdot P_{fine_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II}\right)}{DEN_{coag}}$ $q_{coag} = 924.265 \frac{gal}{day}$ $q_{coag} = 0.64 \text{ gpm}$ Coagulant emulsion makeup water (make down to 1% dilution): $q_{coagwater} \coloneqq \frac{W_{coag} \cdot 100 \text{mL}}{1 \text{gm}}$ $q_{coagwater} = 66.1 \text{ gpm}$ $q_{coagwater} = 95199.3 \frac{\text{gal}}{\text{day}}$ $W_{coagwater} = 794477 \frac{lb}{day}$ $W_{coagwater} = 551.7201 \frac{lb}{min}$ $W_{coagwater} := q_{coagwater} \cdot \rho_W$ 4.9 Geotextile Tube Dewatering 4.9.1 Initial dewatering (the first 24 hrs) Assume all dry polymer and/or coagulant are retained in the geotextile tubes during the initial dewatering. Weight of dry solids retained in tubes after initial dewatering: Phase I: $W_{s_{ret2}I} = 6417814.79 \frac{lb}{day}$ $W_{s_ret2_I} := W_{sr1_I} + W_{WTP_TSS} + W_{TSS_stock_filtrate_I} + W_{drypolymer_I}$ Phase II: $W_{s_ret2_II} := W_{sr3_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II} + W_{drypolymer_II} + W_{coag} \qquad W_{s_ret2_II} = 2792914 \frac{lb}{day}$ Weight of water retained in tubes after initial dewatering: Phase I: × .

$$W_{w_ret2_I} := \frac{(1 - P_{s2}) \cdot (W_{sr1_I} + W_{WTP_TSS} + W_{TSS_stock_filtrate_I} + W_{drypolymer_I})}{P_{s2}} \qquad \qquad W_{w_ret2_I} = 10471171 \frac{lb}{day}$$

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

Phase II:

$$w_{w_ret2_II} = \frac{(1 - P_{s2})(W_{sr3_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II} + W_{drypolymer_II} + W_{coag})}{P_{s2}} \qquad w_{w_ret2_II} = 4556859 \frac{lb}{day}$$
Volume of water retained in tubes after initial dewatering:
Phase I:

$$q_{w_ret2_I} := \frac{W_{w_ret2_II}}{\rho_{w}} \qquad q_{w_ret2_II} = 1254723 \frac{gal}{day}$$
Phase II:

$$q_{w_ret2_II} := \frac{W_{w_ret2_II}}{\rho_{w}} \qquad q_{w_ret2_II} = 546032 \frac{gal}{day}$$
Weight of Water in initial filtrate:
Phase I:

$$w_{w_if_I} := \frac{W_{w_ret2_II}}{P_{w}} \qquad q_{w_ret2_II} = 546032 \frac{gal}{day}$$
Weight of Water in initial filtrate:
Phase I:

$$w_{w_if_I} := \frac{W_{w_ret2_II}}{P_{w}} \qquad q_{w_ret2_III} = 546032 \frac{gal}{day}$$
Phase I:

$$w_{w_if_I} := \frac{W_{w_II_I} + W_{w_WTP_II} + W_{w_stock_filtrate_II} + W_{polymerwater_II} \cdots + (q_{booster} \wedge b_{booster} + q_{ube_pump}) \cdot \rho_{w} - W_{w_ret2_II}$$
Phase I:

$$w_{w_if_II} := \frac{W_{w_iI_II} + W_{w_WTP_II} + W_{w_stock_filtrate_II} + W_{polymerwater_II} \cdots + (q_{booster} \wedge b_{booster} + q_{ube_pump}) \cdot \rho_{w} - W_{w_ret2_II}$$

 $w_{w_if_II} = 70800055 \frac{lb}{day}$

Volume of water in initial filtrate:

Phase I:

 $q_{w_if_I} := q_{wr1_I} + q_{W_WTP_I} + q_{w_stock_filtrate_I} + q_{polymerwater_I} + q_{booster} \cdot N_{booster} + q_{tube_pump} \cdot N_{tube_pump} - q_{w_ret2_I} + q_{v_ret2_I} + q_{v_ret$

$$q_{w_if_I} = 7811978 \frac{gal}{day}$$

Phase II:

 $q_{w_if_II} = 8483717 \frac{gal}{day}$

4.9.2 Consolidation dewatering (during 60 days after initial dewatering)

Weight of water retained in tubes after consolidation dewatering:

Phase I:

$$W_{w_ret3_I} := \frac{(1 - P_{s3}) \cdot (W_{sr1_I} + W_{WTP_TSS} + W_{TSS_stock_filtrate_I} + W_{drypolymer_I})}{P_{s3}}$$

 $W_{w_ret3_I} = 6417815 \frac{lb}{day}$

Phase II:

$$W_{w_ret3_II} := \frac{\left(1 - P_{s3}\right) \cdot \left(W_{sr3_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II} + W_{drypolymer_II} + W_{coag}\right)}{P_{s3}}$$

 $W_{w_ret3_{II}} = 2792914 \frac{lb}{day}$

Volume of water retained in tubes after consolidation dewatering:

Phase I:

$$q_{w_ret3_I} := \frac{W_{w_ret3_I}}{\rho_w} \qquad \qquad q_{w_ret3_I} = 769024 \frac{gal}{day}$$

Phase II:

$$q_{w_ret3_II} \coloneqq \frac{W_{w_ret3_II}}{\rho_w} \qquad \qquad q_{w_ret3_II} = 334665 \frac{gal}{day}$$

Peak weight of water in consolidation dewatering filtrate:

Phase I:

$$W_{w_cf_I} := W_{w_ret2_I} - W_{w_ret3_I} \qquad \qquad W_{w_cf_I} = 4053357 \frac{lb}{day}$$

Phase II:

$$W_{w_cf_II} \coloneqq W_{w_ret2_II} - W_{w_ret3_II} \qquad \qquad W_{w_cf_II} = 1763945 \frac{lb}{day}$$

Peak volume of water in consolidation dewatering filtrate:

Phase I:

$$q_{w_cf_I} \coloneqq \frac{W_{w_cf_I}}{\rho_w} \qquad \qquad q_{w_cf_I} = 485699 \frac{gal}{day}$$

Phase II:

$$q_{w_cf_II} := \frac{W_{w_cf_II}}{\rho_w} \qquad \qquad q_{w_cf_II} = 211367 \frac{gal}{day}$$

Note: Peak consolidation dewatering is assumed to start from 61 days after the first tube in filled and ends at 1 day after the last tube is filled for the season.

4.9.3 Geotextile tube filtrate

Volume of water in geotextile tube filtrate:

Phase I:

 $q_{w_tube_filtrate_I} := q_{w_if_I} + q_{w_cf_I}$

 $q_{w_tube_filtrate_I} = 8297677 \frac{gal}{day}$

Phase II:

 $q_{w_tube_filtrate_II} := q_{w_if_II} + q_{w_cf_II}$

 $q_{w_tube_filtrate_II} = 8695085 \frac{gal}{day}$

Weight of total suspended solids in geotextile tube filtrate:

Phase I:

$$W_{TSS_tube_filtrate_I} := \frac{(q_{w_if_I} + q_{w_cf_I}) \cdot TSS_{tube_filtrate} \cdot Gs_{I} \cdot \rho_{W}}{Gs_{I} \cdot \rho_{W} - TSS_{tube_filtrate}}$$

 $W_{TSS_tube_filtrate_I} = 13518.1 \frac{lb}{day}$ $W_{TSS_tube_filtrate_I} = 4.26 \frac{kg}{min}$

Phase II:

$$W_{TSS_tube_filtrate_II} := \frac{\left(q_{w_if_II} + q_{w_cf_II}\right) \cdot TSS_{tube_filtrate} \cdot Gs_{II} \cdot \rho_{w}}{Gs_{II} \cdot \rho_{w} - TSS_{tube_filtrate}}$$

 $W_{TSS_tube_filtrate_II} = 14166 \frac{lb}{day}$ $W_{TSS_tube_filtrate_II} = 4.46 \frac{kg}{min}$

Volume of total suspended solids in geotextile tube filtrate (zero void ratio):

$$q_{TSS_tube_filtrate_I} := \frac{W_{TSS_tube_filtrate_I}}{Gs_{T}\rho_{w}} \qquad \qquad q_{TSS_tube_filtrate_I} = 0.439 \text{ gpm} \qquad \qquad q_{TSS_tube_filtrate_I} = 633 \frac{gal}{day}$$

Phase II:

$$q_{\text{TSS_tube_filtrate_II}} = \frac{W_{\text{TSS_tube_filtrate_II}}}{G_{^{\text{S}}\text{II}} \rho_{^{\text{W}}}} \qquad q_{\text{TSS_tube_filtrate_II}} = 0.446 \text{ gpm} \qquad q_{\text{TSS_tube_filtrate_II}} = 643 \frac{\text{gal}}{\text{day}}$$

Weight of geotextile tube filtrate (water and TSS):

Phase I:

$$W_{tube_filtrate_I} := W_{w_if_I} + W_{w_cf_I} + W_{TSS_tube_filtrate_I}$$
$$W_{tube_filtrate_I} = 69260995.2 \frac{lb}{day}$$
Phase II:

 $W_{tube_filtrate_II} := W_{w_if_II} + W_{w_cf_II} + W_{TSS_tube_filtrate_II}$

 $W_{tube_filtrate_{II}} = 72578166.4 \frac{lb}{day}$

Phase I :	
$q_{tube_filtrate_I} := q_{w_if_I} + q_{w_cf_I} + q_{TSS_tube_filtrate_I}$	$q_{tube_filtrate_I} = 8298310 \frac{ga}{da}$
Phase II:	
$q_{tube_filtrate_II} := q_{w_if_II} + q_{w_cf_II} + q_{TSS_tube_filtrate_II}$	$q_{tube_filtrate_II} = 8695728 \frac{g}{d}$

Phase I:

 $W_{s_ret_I} \coloneqq W_{sr1_I} + W_{WTP_TSS} + W_{TSS_stock_filtrate_I} + W_{drypolymer_I} - W_{TSS_tube_filtrate_I}$

 $W_{s_ret_I} = 6404296.7 \frac{lb}{day}$

Phase II:

 $W_{s_ret_II} \coloneqq W_{sr3_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II} + W_{drypolymer_II} + W_{coag} - W_{TSS_tube_filtrate_II} + W_{TSS_stock_filtrate_II} + W_{drypolymer_II} + W_{coag} - W_{TSS_tube_filtrate_II} + W_{TSS_stock_filtrate_II} + W_{TSS_stock_filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Filtrate_Fil$

 $W_{s_ret_II} = 2778748 \, \frac{lb}{day}$

Volume of final solids retained in geotextile tubes (zero void ratio, total minus TSS):

Phase I:

 $q_{s_ret_I} \coloneqq \left(\frac{W_{sr1_I} + W_{WTP_TSS} + W_{TSS_stock_filtrate_I} - W_{TSS_tube_filtrate_I}}{G_{s_{I}}\rho_{w}}\right) + q_{drypolymer_I}$ $q_{s_ret_I} = 300288.7 \frac{gal}{day} \quad q_{s_ret_I} = 208.53 \text{ gpm}$

Phase II:

$$q_{s_ret_II} := \left(\frac{W_{sr3_II} + W_{WTP_TSS} + W_{TSS_stock_filtrate_II} - W_{TSS_tube_filtrate_II}}{Gs_{II} \cdot \rho_{W}}\right) + q_{drypolymer_II} + q_{coag}$$

$$q_{s_ret_II} = 126966 \frac{gal}{day}$$
 $q_{s_ret_II} = 88.2 \text{ gpm}$

4.10 Precipitation

Daily average precipitation, based on on-site meteorological tower data:

$$PRE_{daily} \coloneqq 0.15 \frac{in}{day}$$

SCA open area: $A_{SCA} := 50$ acre

Precipitation flow: $q_{PRE} := PRE_{daily} \cdot A_{SCA}$ $q_{PRE} = 141.4 \text{ gpm}$ $q_{PRE} = 203657.1 \frac{\text{gal}}{\text{day}}$

Phase II:

q_{w_dis_II} := MAX_{discharge} - q_{TSS_dis_II}

4.11 Discharge from SCA WTP to Metro
Weight of TSS in discharge:
$W_{TSS_dis} := MAX_{discharge} \cdot TSS_{discharge} W_{TSS_dis} = 244.1 \frac{lb}{day}$
Volume of TSS in discharge:
Phase I:
$q_{TSS_dis_I} := \frac{W_{TSS_dis}}{G_{s_{\Gamma}}\rho_{w}} \qquad \qquad q_{TSS_dis_I} = 0.00793 \text{ gpm}$
Phase II:
$q_{TSS_dis_II} := \frac{W_{TSS_dis}}{G_{s_{II}} \cdot \rho_{W}} \qquad \qquad q_{TSS_dis_II} = 0.008 \text{ gpm}$
Weight of water in discharge:
Phase I:
$W_{w_dis_I} := (MAX_{discharge} - q_{TSS_dis_I}) \cdot \rho_w \qquad \qquad W_{w_dis_I} = 54245036.2 \frac{lb}{day}$
Phase II:
$W_{w_dis_II} := (MAX_{discharge} - q_{TSS_dis_II}) \cdot \rho_{w} \qquad W_{w_dis_II} = 54245039.1 \frac{lb}{day}$
Volume of water in discharge:
Phase I:
$q_{w_dis_I} := MAX_{discharge} - q_{TSS_{dis_I}}$ $q_{w_dis_I} = 4513.9 \text{ gpm}$

 $q_{w_dis_II} = 4513.9 \text{ gpm}$

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

5.0 Mass Balance Tables

This section provides the mass balance calculations of the maximum flow rate (5000 gpm) shown on **Drawings D-002** and 004. The stream numbers are defined on **Drawings D-001 and 003**, respectively. Some of the stream numbers represent individual components, including the pre-processing steps, geotextile tube dewatering, and precipitation. The flow associated with these stream numbers is shown as positive if the component add flow to the slurry (e.g., polymer injection); whereas, the flow is shown as negative if the component subtracts flow from the slurry (e.g., over-sized particle removal). The other stream numbers represents the subtotal flow at a given location along the flow streamline.

The flow at each Stream Number is shown as an array in the following format: (total flow rate, water flow rate, solids flow rate).

Phase I:

Stream Number 1:Incoming slurry

 $S1_{I} := (q \ q_{W \ I} \ q_{S \ I})$ $S1_{I} = (5000 \ 4792 \ 208) gpm$

Stream number 1A: Supplemental lake water intake (normally zero) $s_{1A_{I}} := \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}_{gpm}$

Stream Number 2: booster pump seal water

 $S2_{I} := (N_{booster} \cdot q_{booster} \cdot q_{booster} \cdot q_{booster} \cdot 0 gpm)$ $S2_{I} = (250 \ 250 \ 0) gpm$

Stream Number 3: Subtotal

 $S3_{I} := S1_{I} + S1A_{I} + S2_{I}$ $S3_{I} = (5250 \ 5042 \ 208) gpm$

Stream Number 4: Primary Screen Wash Water

 $S4_{I} := (q_{primary} q_{primary} 0gpm)$ $S4_{I} = (102 \ 102 \ 0)gpm$

Stream Number 5: Over-sized Particle Removal

 $S5_{I} := \left[-(q_{w_oversized_{I}} + q_{oversized_{I}}) - q_{w_oversized_{I}} - q_{oversized_{I}} \right]$

 $S5_{I} = (-0.7 \ -0.3 \ -0.4)$ gpm

Stream Number 6: Subtotal

 $\mathbf{S6}_{I} \coloneqq \mathbf{S3}_{I} + \mathbf{S4}_{I} + \mathbf{S5}_{I}$

 $S6_{I} = (5351.3 \ 5143.7 \ 207.6) \text{gpm}$

Stream Number 7: Geotextile tube feed pump seal water

 $S7_{I} := (N_{tube_pump} \cdot q_{tube_pump} N_{tube_pump} \cdot q_{tube_pump} 0_{gpm})$

 $S7_{I} = (15 \ 15 \ 0) gpm$

Stream Number 8: Subtotal

 $S8_{I} := S6_{I} + S7_{I}$ $S8_{I} = (5366.3 \ 5158.7 \ 207.6) \text{gpm}$

Stream Number 9: SCA WTP clarifier underflow and filter backwash

 $S9_{I} := (q_{WTP} q_{W_WTP_I} q_{WTP_TSS_I})$

 $S9_{I} = (1065.9 \ 1064.996 \ 0.904) gpm$

Stream Number 10: Stockpile filtrate
$S10_{I} := (q_{stock_filtrate_I} q_{w_stock_filtrate_I} q_{TSS_stock_filtrate_I})$
$S10_{I} = (0.1065 \ 0.10649 \ 0.00001) \text{gpm}$
Ster are Number 11. Debreve and realized under
Stream Number 11: Polymer and makeup water
$S11_{I} := (q_{polymerwater_{I}} + q_{drypolymer_{I}} - q_{polymerwater_{I}} - q_{drypolymer_{I}})$
$S11_{I} = (174.9692 \ 174.4707 \ 0.4985) \text{gpm}$
Stream Number 12: Subtotal
$S12_{I} := S8_{I} + S9_{I} + S10_{I} + S11_{I}$ $S12_{I} = (6607.3 \ 6398.3 \ 209) \text{gpm}$
Stream Number 13: Geotextile tube retention
$S13_{I} := \left[-(q_{w_ret3_I} + q_{s_ret_I}) - q_{w_ret3_I} - q_{s_ret_I} \right]$
$S13_{I} = (-742.578119 -534.044292 -208.533827) gpm$
Stream Number 14: Average precipitation
$S14_{I} := (q_{PRE} \ q_{PRE} \ 0gpm)$ $S14_{I} = (141.4 \ 141.4 \ 0)gpm$
Stream Number 15: Subtotal
$S15_{I} := S12_{I} + S13_{I} + S14_{I}$
$S15_{I} = (6006.144 \ 6005.705 \ 0.439) \text{gpm}$
Stream Number 16: Primary screen wash water
$S16_{I} := (-q_{primary} - q_{primary} 0gpm)$ $S16_{I} = (-102 - 102 0)gpm$
Stream Number 17: Net flow to stormwater basins
$S17_{water} := -\left[S15_{I_{0,1}} - q_{primary} - \left(q_{w_dis_I} + q_{polymerwater_I} + q_{W_WTP_I}\right)\right]$
$S17_{TSS} := \frac{S17_{water} \cdot S15_{I_{0,2}}}{S15_{I_{0,1}}}$
$S17_{total} := S17_{water} + S17_{TSS}$
$S17_{I} := (S17_{total} S17_{water} S17_{TSS})$ $S17_{I} = (-150.368 - 150.357 - 0.011) gpm$
Note: If the volume at Stream Number 17 is positive, it indicates no net flow to stormwater basins. Input zero for volume at Strea Number 17 in this case.

Stream Number 18: Effluent to SCA WTP

 $S18_{I} := S15_{I} + S16_{I} + S17_{I}$ $S18_{I} = (5753.8 \ 5753.3 \ 0.4) \text{gpm}$

"Description" "1. Incoming Slurry" "2. Booster Pump Seal Water" "3. Subtotal" "4. Primary Screen Wash Water" "5. Oversized Particle Removal" "6. Subtotal" "7. Geotextile tube Feed Pump Seal Water" "8. Subtotal" $Title_{I} :=$ "9. SCA WTP Underflow and Backwash" "10. Stockpile Filtrate" "11. Polymer and Makeup Water" "12. Subtotal" "13. Geotextile tube Retention" "14. Average Precipitation" "15. Subtotal" "16. Primary Screen Wash Water" "17. Net Flow to Stormwater Basins" "18. Effluent to SCA WTP"

Flow rate

$$\begin{split} &\text{S0} \coloneqq \left(\text{"Total (gpm)" "Water (gpm)" "Solids (gpm)"}\right) \\ &\text{FR}_{volume_I} \coloneqq \text{stack} \left(\text{S0}, \text{S1}_{I}, \text{S2}_{I}, \text{S3}_{I}, \text{S4}_{I}, \text{S5}_{I}, \text{S6}_{I}, \text{S7}_{I}, \text{S8}_{I}, \text{S9}_{I}, \text{S10}_{I}, \text{S11}_{I}, \text{S12}_{I}, \text{S14}_{I}, \text{S15}_{I}, \text{S16}_{I}, \text{S17}_{I}, \text{S18}_{I}\right) \end{split}$$

Solida mass flow rate		Solids (lbs/min)"
Solids mass now rate		s1 _{I0,2} ·Gs _I ·ρ _w
		s2 _{I0,2} ·Gs _I ·ρ _w
		s _{10,2} ·G ₁ ·ρ _w
		s4 _{I0,2} ·Gs _I ·ρ _w
		s5 _{I0,2} ·Gs _I ·ρ _w
		s ₆ _{10,2} ·Gs _I ·ρ _w
		s7 _{I0,2} ·Gs _I ·ρ _w
		ss _{I0,2} ·Gs _I ·ρ _w
	FR _{solids I} ≔	s9 _{I0,2} ·Gs _I ·ρ _w
		^{S10} I _{0,2} . ^{Gs} I ^{, p} w
		S ¹¹ I _{0,2} ^{.DEN} polymer
		$({}^{88}I_{0,2} + {}^{89}I_{0,2} + {}^{810}I_{0,2}) \cdot {}^{6s_{\Gamma} \rho_{W}} + {}^{811}I_{0,2} \cdot {}^{DEN}Polymer}$
		$\left[- \left[\left(\frac{88_{I_{0,2}} + 89_{I_{0,2}} + 810_{I_{0,2}}}{68_{I} \rho_{w} + 811_{I_{0,2}}} \right) - \frac{1}{2} \frac{1}{100} 1$
		^{S14} I _{0,2} ^{·Gs} Γ ^ρ w
		$W_{TSS_tube_filtrate_I} + S14_{I_{0,2}} \cdot G_{S_{I}} \rho_{W}$
		S16 _{I0,2} ·Gs _I ·P _w
		S17 _{I0,2} · Gs _Γ ρ _w
		S18 _{I0,2} · Gs _I ·ρ _w

Concentration

$$CON_{I} := stack \left("Concentration", \left(\frac{submatrix(FR_{solids_{I}}, 1, 18, 0, 0)}{submatrix(FR_{volume_{I}}, 1, 18, 0, 0)} \right) \right)$$

Subject: Mass Balance Calculation

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

Mass balance tables

	0									
0	"Description"									
1	"1. Incoming Slurry"									
2	"2. Booster Pump Seal Water"									
3	"3. Subtotal"									
4	"4. Primary Screen Wash Water"									
5	"5. Oversized Particle Removal"									
6	"6. Subtotal"									
7	. Geotextile tube Feed Pump Seal Water									
8	"8. Subtotal"									
9	"9. SCA WTP Underflow and Backwash"									
10	"10. Stockpile Filtrate"									
11	"11. Polymer and Makeup Water"									
12	"12. Subtotal"									
13	"13. Geotextile tube Retention"									
14	"14. Average Precipitation"									
15	"15. Subtotal"									
16	"16. Primary Screen Wash Water"									
17	"17. Net Flow to Stormwater Basins"									
18	"18. Effluent to SCA WTP"									
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18									

		0	1	2			0				0	
	0	"Total (gpm)"	"Water (gpm)"	"Solids (gpm)"		0	"Solids (Ibs/min)"			0	"Concentration"	
	1	5000	4792	208		1	4443.5			1	106489.2	
	2	250	250	0		2	0			2	0	
	3	5250	5042	208		3	4443.5		:	3	101418.3	
	4	102	102	0		4	0			4	0	
	5	-0.7	-0.3	-0.4		5	-8.9			5	1560975.6	
	6	5351.3	5143.7	207.6	gpm FR _{solids_I} =	6	4434.6			6	99299.1	
FR _{volume_I} =	7	15	15	0		7	0		CON. =	7	0	
	8	5366.3	5158.7	207.6		8	4434.6	lb		8	99021.5	mg
	9	1065.9	1065	0.9		9	19.3	min	9	2171.2	L	
	10	0.1	0.1	0		10	0		10	195.2		
	11	175	174.5	0.5		11	2.9			11	1994.3	
	12	6607.3	6398.3	209		12	4456.8			12	80826.5	
	13	-742.6	-534	-208.5		13	-4447.4			13	717661.1	
	14	141.4	141.4	0		14	0			14	0	
	15	6006.1	6005.7	0.4		15	9.4			15	187.3	
	16	-102	-102	0		16	0		1		0	
-	17	-150.4	-150.4	-0		17	-0.2			17	187.3	1
	18	5753.8	5753.3	0.4		18	9.2			18	190.6	

Note: Stream Number 1A: Supplemental Lake Water Intake is not shown on these tables.

Phase II:

hase II:
Stream Number 1:Incoming slurry
$S1_{II} := (q \ q_{W_{II}} \ q_{S_{II}})$ $S1_{II} = (5000 \ 4798.1 \ 201.9) gpm$
Stream number 1A: Supplemental lake water intake (normally zero)
$S1A_{II} := (0 \ 0 \ 0)gpm$
Stream Number 2: booster pump seal water
$S2_{II} := (N_{booster} \cdot q_{booster} \cdot N_{booster} \cdot q_{booster} \cdot 0 gpm)$ $S2_{II} = (250 \ 250 \ 0) gpm$
Stream Number 3: Subtotal
$s_{3_{II}} \coloneqq s_{1_{II}} + s_{1A_{II}} + s_{2_{II}} \qquad s_{3_{II}} = (5250 \ 5048.1 \ 201.9) \text{gpm}$ Stream Number 4: Primary Screen Wash Water
$S4_{II} := (q_{primary} q_{primary} 0gpm)$ $S4_{II} = (102 \ 102 \ 0)gpm$
Stream Number 5: Over-sized Particle Removal
$S5_{II} := \left[-(q_{w_oversized_{II}} + q_{oversized_{II}}) - q_{w_oversized_{II}} - q_{oversized_{II}} \right]$
$s_{5_{II}} = (-5.4 -2.1 -3.2) gpm$ Stream Number 6: Subtotal
$S6_{II} := S3_{II} + S4_{II} + S5_{II}$ $S6_{II} = (5346.6 \ 5147.9 \ 198.7) gpm$
Stream Number 7: Hydrocyclone feed pump seal water
$S7_{II} := (N_{cyclone_pump} \cdot q_{cyclone_pump} \cdot N_{cyclone_pump} \cdot q_{cyclone_pump} 0gpm)$
$S7_{II} = \begin{pmatrix} 30 & 30 & 0 \end{pmatrix}$ gpm
Stream Number 8: Subtotal $S8_{-} = (5376.6, 5177.9, 198.7)$ mm
Stream Number 9: Secondary screen and hydrocyclone screen wash water
$S9_{II} := (q_{second_cyclone} \ q_{second_cyclone} \ 0 gpm)$ $S9_{II} = (510 \ 510 \ 0) gpm$
Stream Number 10: Gravel removal by secondary screens
$S10_{II} := \left[-(q_{w_gravel_II} + q_{gravel_II}) - q_{w_gravel_II} - q_{gravel_II} \right]$ $S10_{II} = \left(-48.3 - 19.2 - 29.1 \right) \text{gpm}$
Stream Number 11: Sand removal by hydrocyclones
$S11_{II} := \left[-(q_{w_sand_II} + q_{sand_II}) - q_{w_sand_II} - q_{sand_II} \right]$
$S11_{II} = (-137.4 -54.6 -82.8) \text{gpm}$
Stream number 12: Subtotal
$S12_{II} := S8_{II} + S9_{II} + S10_{II} + S11_{II}$ $S12_{II} = (5700.9 \ 5614.1 \ 86.8) \text{gpm}$

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

Stream Number 13: Geotextile tube f	eed pump seal water		
$S13_{II} := (N_{tube_pump} \cdot q_{tube_pump} N_{tube})$	_pump [·] q _{tube_pump} Ogpm)		$S13_{II} = (15 \ 15 \ 0) \text{gpm}$
Stream Number 14: Subtotal			
$S14_{II} := S12_{II} + S13_{II}$ S14	$_{\rm II} = (5715.9 \ 5629.1 \ 86$	5.8) gpm	
Stream Number 15: SCA WTP clarifi	er underflow and filter	backwash	
$S15_{II} := (q_{WTP} q_{W}_{WTP}_{II} q_{WTP}_{TS})$	$\mathbf{S}_{\mathbf{II}}$ $\mathbf{S}_{\mathbf{II}} = ($	1065.9 1065	5 0.9)gpm
Stream Number 16: Stockpile filtrate			
$S16_{II} := (q_{stock}_{filtrate}_{II} q_{w_{stock}_{filtrate}})$	ate_II ^q TSS_stock_filtrate_I	п) _{S16} п	=(30.38997 30.38772 0.00225)gpm
Stream Number 17: Coagulant and m	nakeup water	11	
$S17_{II} := (q_{coagwater} + q_{coag} q_{coagwater})$	q_{coag})		$S17_{II} = (66.752 \ 66.111 \ 0.642) \text{gpm}$
Stream Number 18: Polymer and ma	keup water		
$S18_{II} := (q_{polymerwater_{II}} + q_{drypolymer})$	_II ^q polymerwater_II ^q dryj	polymer_II)	$s_{18_{\text{II}}} = (92.3085 \ 92.0455 \ 0.263) \text{gpm}$
Stream Number 19: Subtotal			
$s19_{II} \coloneqq s14_{II} + s15_{II} + s16_{II} + s17_{II} $	s_{18}_{II} $s_{19}_{II} = (6971.3)$	3 6882.7 88	.6) gpm
$S20_{II} := \left[-(q_{w_ret3_{II}} + q_{s_ret_{II}}) - q_{w_r} \right]$	ret3_II ^{-q} s_ret_II]	$S20_{II} = (-32)$	0.576956 -232.406138 -88.170818)gpm
Stream Number 21: Average precipit	ation		
$S21_{II} := (q_{PRE} \ q_{PRE} \ Ogpm)$	$S21_{II} = (141.4 \ 1)$	41.4 0)gpm	
Stream Number 22: Subtotal			
$S22_{II} := S19_{II} + S20_{II} + S21_{II}$	$S22_{II} = (6792.128 \ 67)$	791.682 0.44	46)gpm
Stream Number 23: Primary, second	ary and hydrocyclone	screen was	sh water
$S23_{II} := -(q_{primary} + q_{second_cyclone} q_{second_cyclone})$	primary ^{+ q} second_cyclone	Ogpm)	$s_{23}_{II} = (-612 \ -612 \ 0)$ gpm
Stream Number 24: Net flow to Stormwater basin $S^{24}_{water} := - [S^{22}II_{0,1} - q_{primary} - q_{sec}]$	ond_cyclone - $(q_{w_dis_II} +$	q _{coagwater} + q	lpolymerwater_II ^{+ q} W_WTP_II)
$S24_{TSS} := \frac{S24_{water} \cdot S22_{II}_{0,2}}{S22_{II}_{0,1}}$ S2	$24_{\text{total}} \coloneqq S24_{\text{water}} + S24_{\text{TS}}$	S	
$S24_{II} := (S24_{total} S24_{water} S24_{TSS})$	$S24_{II} = (-442.6)$	5 -442.621	-0.029)gpm
Note: If the volume at Stream Number 2 in this case.	4 is positive, it indicates no	o net flow to sto	ormwater basins. Input zero for volume at Stream Number 24
Stream Number 25: Effluent to SCA	WTP		、 、
$S25_{II} := S22_{II} + S23_{II} + S24_{II}$	$S25_{II} = (5737.478)$	5737.061 ().417) gpm

"Description" "1. Incoming Slurry" "2. Booster Pump Seal Water" "3. Subtotal" "4. Primary Screen Wash Water"	
"1. Incoming Slurry" "2. Booster Pump Seal Water" "3. Subtotal" "4. Primary Screen Wash Water"	
"2. Booster Pump Seal Water" "3. Subtotal" "4. Primary Screen Wash Water"	
"3. Subtotal" "4. Primary Screen Wash Water"	
"A Primary Screen Wash Water"	
4. I filling Screen wash water	
"5. Oversized Particle Removal"	
"6. Subtotal"	
"7. Hydrocyclone Feed Pump Seal Water"	
"8. Subtotal"	
"9. Secondary Screen and Hydrocyclone Screen Wash Water	."
"10. Gravel Removal by Secondary Screens"	
"11. Sand Removal by Hydrocyclones"	
"12. Subtotal"	
"13. Geotextile tube Feed Pump Seal Water"	
"14. Subtotal"	
"15. SCA WTP Underflow and Backwash"	
"16. Stockpile Filtrate"	
"17. Coagulant and Makeup Water"	
"18. Polymer and Makeup Water"	
"19. Subtotal"	
"20. Geotextile tube Retention"	
"21. Average Precipitation"	
"22. Subtotal"	
"23. Primary, Secondary and Hydrocyclone Screen Wash Wat	er"
"24. Net Flow to Stormwater Basin"	
"25. Effluent to SCA WTP"	

Flow rate

$$\begin{split} & \mathsf{FR}_{volume_IIa} \coloneqq \mathsf{stack} \big(\mathsf{S0}, \mathsf{S1}_{\mathrm{II}}, \mathsf{S2}_{\mathrm{II}}, \mathsf{S3}_{\mathrm{II}}, \mathsf{S4}_{\mathrm{II}}, \mathsf{S5}_{\mathrm{II}}, \mathsf{S6}_{\mathrm{II}}, \mathsf{S7}_{\mathrm{II}}, \mathsf{S8}_{\mathrm{II}}, \mathsf{S10}_{\mathrm{II}}, \mathsf{S11}_{\mathrm{II}}, \mathsf{S12}_{\mathrm{II}} \big) \, * \\ & \mathsf{FR}_{volume_IIb} \coloneqq \mathsf{stack} \big(\mathsf{S13}_{\mathrm{II}}, \mathsf{S14}_{\mathrm{II}}, \mathsf{S15}_{\mathrm{II}}, \mathsf{S16}_{\mathrm{II}}, \mathsf{S17}_{\mathrm{II}}, \mathsf{S18}_{\mathrm{II}}, \mathsf{S20}_{\mathrm{II}}, \mathsf{S21}_{\mathrm{II}}, \mathsf{S22}_{\mathrm{II}}, \mathsf{S24}_{\mathrm{II}}, \mathsf{S25}_{\mathrm{II}} \big) \, * \\ & \mathsf{FR}_{volume_II} \coloneqq \mathsf{stack} \big(\mathsf{FR}_{volume_IIa}, \mathsf{FR}_{volume_IIb} \big) \end{split}$$

PARSONS Client: <u>Honeywell</u> Subject: <u>Mass Balance Ca</u>	culation	Job No: <u>444853</u> By: <u>XDH</u> Checked: MTO					
eusjou. <u>made Balance Ga</u>							
Solids mass flow rate							
	Γ	"Solids (lbs/min)"					
		${}^{S1}\Pi_{0,2} \cdot {}^{Gs}\Pi \cdot {}^{\rho}{}_w$					
		${}^{S2}\Pi_{0,2} \cdot {}^{Gs}\Pi \cdot \rho_{W}$					
		${}^{S3}\Pi_{0,2} \cdot {}^{Gs}\Pi \cdot \rho_w$					

Sheet: <u>26 of 28</u> Date: <u>2/24/2010</u> Rev._2

PARSONS

Client: <u>Honeywell</u> Subject: <u>Mass Balance Calculation</u>

Mass balance table

		0
	0	"Description"
	1	"1. Incoming Slurry"
	2	"2. Booster Pump Seal Water"
	3	"3. Subtotal"
	4	"4. Primary Screen Wash Water"
	5	"5. Oversized Particle Removal"
	6	"6. Subtotal"
	7	"7. Hydrocyclone Feed Pump Seal Water"
	8	"8. Subtotal"
	9	"9. Secondary Screen and Hydrocyclone Screen Wash Water"
	10	"10. Gravel Removal by Secondary Screens"
	11	"11. Sand Removal by Hydrocyclones"
Title _{II} =	12	"12. Subtotal"
	13	"13. Geotextile tube Feed Pump Seal Water"
	14	"14. Subtotal"
	15	"15. SCA WTP Underflow and Backwash"
	16	"16. Stockpile Filtrate"
	17	"17. Coagulant and Makeup Water"
	18	"18. Polymer and Makeup Water"
	19	"19. Subtotal"
	20	"20. Geotextile tube Retention"
	21	"21. Average Precipitation"
	22	"22. Subtotal"
	23	"23. Primary, Secondary and Hydrocyclone Screen Wash Water"
:	24	"24. Net Flow to Stormwater Basin"
	25	"25. Effluent to SCA WTP"

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u> Sheet: <u>27 of 28</u> Date: <u>2/24/2010</u> Rev._<u>2</u>

Job No: <u>444853</u> By: <u>XDH</u> Checked: <u>MTO</u>

		•					0			•	1
		0	1	2			0			0	4
	0	"Total (gpm)"	"Water (gpm)"	'Solids (gpm)"		0	"Solids (lbs/min)"		0	"Concentration"	
	1	5000	4798.1	201.9		1	4449.1		1	106623.6	
	2	250	250	0		2	0		2	0	
	3	5250	5048.1	201.9		3	4449.1		3	101546.3	
	4	102	102	0		4	0		4	0	
	5	-5.4	-2.1	-3.2		5	-71.2		5	1590361.4]
	6	5346.6	5147.9	198.7		6	4377.9		6	98115.5	1
	7	30	30	0		7	0	CON _{II} = 1	7	0	1
	8	5376.6	5177.9	198.7		8	4377.9		8	97568.1	1
	9	510	510	0		9	0		9	0	1
	10	-48.3	-19.2	-29.1		10	-640.7		10	1590361.4	1
FR _{volume_II} =	11	-137.4	-54.6	-82.8		11	-1824.1		11	1590361.4	1
	12	5700.9	5614.1	86.8	$gpm FR_{solids_{II}} = 1$	12	1913.1		12	40211.1	1
	13	15	15	0		13	0		13	0	1
	14	5715.9	5629.1	86.8		14	1913.1		14	40105.6	1
	15	1065.9	1065	0.9		15	19.3		15	2171.2	1
	16	30.4	30.4	0		16	0		16	195.2	1
	17	66.8	66.1	0.6		17	5.5		17	9903.8	1
	18	92.3	92	0.3		18	1.5		18	1994.3	1
	19	6971.3	6882.7	88.6		19	1939.5		19	33337.7	1
	20	-320.6	-232.4	-88.2		20	-1929.7		20	721285.1	1
	21	141.4	141.4	0		21	0		21	0	1
	22	6792.1	6791.7	0.4		22	9.8		22	173.5	1
	23	-612	-612	0		23	0		23	0	1
	24	-442.7	-442.6	-0		24	-0.6	1	24	173.5	1
	25	5737 5	5737 1	0.4		25	9.2		25	102.1	1

Note: Stream Number 1A: Supplemental Lake Water Intake is not shown on these tables.

Table 1 Geotechnical Properties

2.2M m	/ Dredging	Volume	(Base+Contingency)	١
2.21110	Dieuging	volume	Dase+contingency	1

Remediation Area	Total Dry Weight	Over-Sized Grain	Gravel-Sized Grain (including Over-Sized)	Sand-Sized Grain Fines		Percent Over- Sized	Percent Gravel (including Over-sized)	Percent Sand	Percent Fines	Weighted Average Specific Gravity
	(tons)	(tons)	(tons)	(tons)	(tons)	(%)	(%)	(%)	(%)	
А	122,063	415	4,150	43,821	74,214	0.34%	3.4%	35.9%	60.8%	
В	20,228	218	2,185	7,545	10,498	1.08%	10.8%	37.3%	51.9%	
С	39,646	428	4,282	14,788	20,576	1.08%	10.8%	37.3%	51.9%	
D	539,814	756	7,557	77,733	454,523	0.14%	1.4%	14.4%	84.2%	
E	613,208	11,528	115,283	257,547	240,377	1.88%	18.8%	42.0%	39.2%	
C/D	579,460	1,184	11,839	92,521	475,100	0.20%	2.0%	16.0%	82.0%	2.56
A/B/E	755,498	12,162	121,618	308,913	325,090	1.61%	16.1%	40.9%	43.0%	2.64

SPREADSHEET CALCULATIONS

Project Number: 444853	Calc.No. from i	ndex: 3	Preparer: XDH	Date:2/17/2010	Rev. No.:2	Preparer:	Date:	
Project Name:Sediment Manag	gement Design	Calculation Title	e: Mass Balance	Reviewer: MTO	Date: 2/18/20	10	Review:	Date:

RA-C/D	Maximum Fl	ow Scenario		5,000) GPM														
Primary Screens Only																			
Stream Number	1	1A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Description	Dredge Slurry	Supplemental Lake Water Intake	Booster Pumps Seal Water		Primary Screen Wash Water from SCA Sumps	Over-Sized Removed from Primary Screen		Geotextile Tube Feed Pump Seal Water		Clarifier Underflow and Filter Backwash from SCA WTP	Filtrate from Screened Material Stockpile	Polymer and Makeup Water from SCA WTP		Geotextile Tube Retention	Average Precipitation		Primary Screen Wash Water	Net Flow to Stormwater Basins	Dewatering Effluent to SCA WTP Influent
Total (gpm)	5,000	0	250	5,250	102	(0.7)	5,351	15	5,366	1,065.9	0.1	175.0	6,607	(742.6)	141	6,006	(102)	(150)	5,754
Water (gpm)	4,792	0	250	5,042	102	(0.3)	5,144	15	5,159	1,065.0	0.1	174.5	6,398	(534.0)	141	6,006	(102)	(150)	5,753
Solids (gpm) (Note 2)	208.0	0.0	0.0	208.0	0.0	(0.4)	207.6	0.0	207.6	0.9	0.00001	0.5	209.0	(208.5)	0.0	0.4	0.0	(0.01)	0.4
Solids (lbs/min) (Note 2)	4,443.5	0.0	0.0	4,443.5	0.0	(8.9)	4,434.6	0.0	4,434.6	19.3	0.0002	2.9	4,456.8	(4,447.4)	0.0	9.4	0.0	(0.2)	9.2
Concentration (mg/L)	106,489.2	NA	0.0	101,418.3	0.0	1,560,975.6	99,299.1	0.0	99,021.5	2,171.2	195.2	1,994.3	80,826.5	717,661.1	0.0	187.3	0.0	187.3	190.6

99,021.5

2,171.2

195.2

Maximum Flow Scopario 5 000 GPM **D** 4 0/D

NA

0.0

101,418.3

0.0

1,560,975.6 99,299.1

RA-C/D Average Flow Scenario 3,500 GPM Primary Screens Only Stream Number **1A** 6 7 9 10 11 12 13 14 15 16 2 5 Clarifier Primary Over-Sized Geotextile Underflow Filtrate from Polymer and Booster Primary Supplemental Screen Geotextile Dredge Removed Tube Feed and Filter Screened Makeup Average Lake Water Description Pumps Seal Wash Water Tube Screen Slurry from Primary Pump Seal Backwash Material Water from Precipitation Retention Intake Water from SCA Wash Water Screen Water from SCA Stockpile SCA WTP Sumps WTP (520.7) (374.5) 3,500 71 3,746 122.8 141 Total (gpm) 0 175 3,675 (0.5) 11 3,756 1,065.9 0.1 4.945 4,566 (71) 141 3,354 175 71 (0.2) 3,601 3,611 0.1 (71) Water (gpm) 0 3,529 11 1,065.0 122.4 4,799 4,566 Solids (gpm) (Note 2) 145.6 Solids (lbs/min) (Note 2) 3,110.4 0.0 0.0 0.0 0.0 (0.3) 145.3 0.0 0.3 2.0 0.3 7.1 145.6 0.0 145.3 0.9 0.00001 146.6 (146.2) 3,110.4 3,104.2 3,104.2 0.0 19.3 3,125.6 (3,118.5) (6.2) 0.0001

0.0

RA-A/B/E/F	Maximum Fl	ow Scenario			5,000	GPM																				
Primary Screens, Secon	dary Screens,	Hydrocyclones	S																							
Stream Number	1	1A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Description	Dredge Slurry	Supplemental Lake Water Intake	Booster Pumps Seal Water		Primary Screen Wash Water from SCA Sump	Over-Sized Removed from Primary Screen		Sand Separation Feed Pumps Seal Water		Secondary Screen and Hydrocyclone Screen Wash Water from SCA Sump	Gravel Removed from Secondary Screen	Sand Removed from Hydrocyclone		Geotextile Tube Feed Pump Seal Water		Clarifier Underflow and Filter Backwash from SCA WTP	Filtrate from Screened Material Stockpile	Coagulant Emulsion and Makeup Water from SCA WTP	Polymer and Makeup Water from SCA WTP		Geotextile Tube Retention	Average Precipitation		Primary, Secondary and Hydrocyclone Screen Wash Water	Net Flow to Stormwater Basins	Dewatering Effluent to SCA WTP Influent
Total (gpm)	5000	0	250	5,250	102	(5.4)	5,347	30	5,377	510	(48.3)	(137.4)	5,701	15	5,716	1,065.9	30.4	66.8	92.3	6,971	(320.6)	141	6,792	(612)	(442.7)	5,737
Water (gpm)	4798	0	250	5,048	102	(2.1)	5,148	30	5,178	510	(19.2)	(54.6)	5,614	15	5,629	1,065.0	30.4	66.1	92.0	6,883	(232.4)	141	6,792	(612)	(442.6)	5,737
Solids (gpm) (Note 2)	201.9	0.0	0.0	201.9	0.0	(3.2)	198.7	0.0	198.7	0.0	(29.1)	(82.8)	86.8	0.0	86.8	0.9	0.002	0.6	0.3	88.6	(88.2)	0.0	0.4	0.0	(0.03)	0.4
Solids (lbs/min) (Note 2)	4,449.1	0.0	0.0	4,449.1	0.0	(71.2)	4,377.9	0.0	4,377.9	0.0	(640.7)	(1,824.1)	1,913.1	0.0	1,913.1	19.3	0.05	5.5	1.5	1,939.5	(1,929.7)	0.0	9.8	0.0	(0.6)	9.2
Concentration (mg/L)	106,623.6	NA	0.0	101,546.3	0.0	1,590,361.5	98,115.5	0.0	97,568.1	0.0	1,590,361.5	1,590,361.5	40,211.1	0.0	40,105.6	2,171.2	195.2	9,903.8	1,994.3	33,337.7	721,285.1	0.0	173.5	0.0	173.5	192.1

1,994.3 75,736.0 717,576.9

RA-A/B/E/F Primary Screens, Second	A-A/B/E/F Average Flow Scenario 3,500 GPM imary Screens, Secondary Screens, Hydrocyclones Straam Number 1 4 5																									
Stream Number	1	1A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Description	Dredge Slurry	Supplemental Lake Water Intake	Booster Pumps Seal Water		Primary Screen Wash Water from SCA Sump	Over-Sized Removed from Primary Screen		Sand Separation Feed Pumps Seal Water		Secondary Screen and Hydrocyclone Screen Wash Water from SCA Sump	Gravel Removed from Secondary Screen	Sand Removed from Hydrocyclone		Geotextile Tube Feed Pump Seal Water		Clarifier Underflow and Filter Backwash from SCA WTP	Filtrate from Screened Material Stockpile	Coagulant Emulsion and Makeup Water from SCA WTP	Polymer and Makeup Water from SCA WTP		Geotextile Tube Retention	Average Precipitation		Primary, Secondary and Hydrocyclone Screen Wash Water	Net Flow to Stormwater Basins	Dewatering Effluent to SCA WTP Influent
Total (gpm)	3500	0	175	3,675	71	(3.8)	3,743	21	3,764	357	(33.8)	(96.2)	3,991	11	4,001	1,065.9	21.3	46.9	64.9	5,200	(225.3)	141	5,116	(428)	0	4,688
Water (gpm)	3359	0	175	3,534	71	(1.5)	3,604	21	3,625	357	(13.4)	(38.3)	3,930	11	3,940	1,065.0	21.3	46.5	64.7	5,138	(163.4)	141	5,116	(428)	0	4,687
Solids (gpm) (Note 2)	141.4	0.0	0.0	141.4	0.0	(2.3)	139.1	0.0	139.1	0.0	(20.4)	(58.0)	60.8	0.0	60.8	0.9	0.002	0.5	0.2	62.3	(62.0)	0.0	0.3	0.0	0.0	0.3
Solids (lbs/min) (Note 2)	3,114.4	0.0	0.0	3,114.4	0.0	(49.8)	3,064.5	0.0	3,064.5	0.0	(448.5)	(1,276.9)	1,339.2	0.0	1,339.2	19.3	0.03	3.9	1.1	1,363.5	(1,356.1)	0.0	7.4	0.0	0.0	7.4
Concentration (mg/L)	106,623.6	NA	0.0	101,546.3	0.0	1,590,361.5	98,115.5	0.0	97,568.1	0.0	1,590,361.5	1,590,361.5	40,211.1	0.0	40,105.6	2,171.2	195.2	9,903.8	1,994.3	31,418.6	721,095.5	0.0	173.5	0.0	NA	189.3

 Notes:

 (1). Stream number without description indicates the total flow at that point.

 (2). Theoretical dry weight basis.

 (3). Numbers within parenthesis represent diverted flows.

 (4). NA indicates not applicable.

Concentration (mg/L) 106,489.2

17

Net Flow to

Stormwater

Basins

0

0

0.0

0.0

NA

186.1

0.0

0.0

18

Dewatering

Effluent to

SCA WTP

Influent

4,494

4,494

0.3

189.1

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N

 Project Number: 444853
 Calc.No. from index: 3
 Preparer: XDH
 Date:
 PARSONS Project Name:Sediment Management Design Calculation Title: Mass Balance Reviewer:MTO Date:2/18/2010 Review Date: Incoming Slurry Notes Maximum flow 5,000 gpm 24 hr/day 7,200,000 gallons/day 10% Slurry Flow Rate, q Working Hours, I Daily Slurry Volume, q Solids Content by Weight of Incoming Slurry. P, Specific Gravity of Solids, G Unit Weight of Water, Que Slure: Water Content. MC 962,500 ft³/day Tab "Weight&Volume" 2.56 62.4279606 pcf Siury Water Content, W Water Flow Rate, q Dry Solids Flow Rate, q Daily Water Volume, q Daily Water Weight, W Daily Dry Solids Volume, q Daily Dry Solids Volume, q Daily Dry Solids Weight, W 900% 4792 gpm 208 gpm 6,900,499 gallons/day 57,587,459 lbs/day 299,501 gallons/day 6,398,607 lbs/day 0.89 lbs/gallon 96% 922,463 ft³/day 40,037 ft³/day 6.6 lb/ft3 % Water in Slurry (by Volum 96% ooster Pump Seal Water Booster Pump Seal Water (each), q_{booster} Number of Booster Pumps, N_{booster} 50 gpm Daily Volume of Booster Pump Seal Water Daily Weight of Booster Seal Water 48,125 ft³/day 360,000 gallons/day 3,004,346 lbs/day Initial Weight of Versike der Particle Removal, 3-2-inch)
Average Percentage of Over-Sized Particles, P_{ever size}
Daily Dry Weight of Removed Over-Sized Particles, P_{ever size}
Daily Volume of Removed Over-Sized Particles, M_{ever size}
Initial Water Content of Removed Over-Sized Particles in Stockyle, WC_{outed}
Daily Volume of Water Removed with Over-Sized Particles, M_{wooted} and
Daily Volume of Water Removed with Over-Sized Particles, M_{wooted} and
Daily Volume of Water Removed with Over-Sized Particles, M_{wooted} and
Daily Volume Of Water Removed with Over-Sized Particles, M_{wooted} and
Daily Volume Muter Volume Sizery, M_{woot}
Remaining Daily Dry Solids Weight in Slurry, W_{wi},
Remaining Daily Solids Volume Slurry, Q_{wi},
Remaining Daily Water Volume Slurry, Q_{wi},
Remaining Daily Water Volume Slurry, Q_{wi} 0.2% Tab "Weight&Volume" 12,797 lbs/day 599 gallons/day 25% 80 ft³/day 3,199 lbs/day 3,199 lis/day 383 gallons/day 6,385,809 lis/day 57,584,260 lis/day 298,902 gallons/day 6,900,116 gallons/day 51 ft³/day 39,957 ft³/day 922,411 ft³/day 42 Geotextile Tube Feed Pump Seal Water xtile Tube Feed Pump Seal Water (each), q_{tube-pump} Number of Geotextile Tube Feed Pumps, N_{tube-pump} 15 gpm Daily Volume of Tube Feed Pump Seal Water Daily Weight of Tube Feed Pump Seal Water 21,600 gallons/day 2,888 ft³/day 180,261 lbs/day 40 47 48 Secondary Screens (Gravel Removal for RA-A/B/E/F) Average Percentage of Gravel in RA-A/B/E/F, Pgue Average Percentage of Gravel in RA-A/B/E/F, Pgue Average Percentage of Gravet In RA-ARDE:F. P_{aul} Daily Dry Weight of Removed Gravel, W_{gave} Daily Volume of Removed Gravel, W_{gave} Daily Volume of Water Isonovad Gravel, W_{gave} Daily Volume of Water Removed with Gravel, W_{gave} Remaining Daily Dy Solids Weight in Slury, W_{ed} Remaining Daily UN Solids Volume in Slury, Su_e Remaining Daily Water Volume in Slury, Su_e Remaining Daily Water Volume in Slury, Su_e No Applicable 2 2 Hydrocyclone (Sand Removal for RA-A/B/E/F) Average Percentage of Sand in RA-A/B/E/F, P_{sand} Average Precentage of said in RX-RVB/CF, Fas Daily Dry Weight of Removed Sand, Vas Daily Volume of Removed Sand, qas Initial Water Content of Removed Sand in Stockpile, WCsa Water Content of Removed Sand in Stockpile, WC_{astro} Daily Weight of Water Removed with Sand, W_{eastra} Daily Water Removed with Sand Volume, G_{weastra} Remaining Daily Dry Solids Volght in Silumy, W_{wd} Remaining Daily Dry Solids Volume in Silumy, Q_{wd} Remaining Daily Dry Solids Volume in Silumy, Q_{wd} Remaining Daily Water Volume in Silumy, Q_{wd} No Applicable 66 I.P Clarifier Sludge (OBG line number 16 Total Suspended Solids, TSS_{clarifie} Clarifier Sludge Flow Rate, q_{clarifie} Notes OBG's estimate. 0.001 gallon/gallon 3017.9 mg/L 735 gpm 11424.0 mg/gallon 0.87 gpm 734.1 gpm Flow Rate of Solids in Clarifier Sludge, q_{TSS-clarifi} Flow Rate of Water in Clarifier Sludge, q_{w-clarifi} 1110.7 lbs/hr ls in Clarifier Sludge, W Veight of Dry 8.40 kg/r 26,656 lbs/da Ight of Dry Solids in Claimer Studye, WTSS-came Spent MMF Backwash (OBG line number 21) Total Suspended Solids, TSS_{MMF} MMF Backwash Flow Rate, q_{MMF} 483.3 mg/L 166.3 gpm 0.03 gpm 166.3 gpm 1829.5 mg/gallon 0.0002 gallon/gallon MMF Backwash Flow Rate, 0₄₄₀ Flow Rate of Water in MMF Backwash, 0₅₅₃₄ Flow Rate of Water in MMF Backwash, 0₅₅₄₄ Flow Rate of Water in MMF Backwash, 0₅₅₄₄ Spert GAC Backwash (NBF Inn umber 22) Total Suspended Solids, TSS₀₄₅ GAC Backwash (NBF Inov Rate, 0₄₀₆ Flow Rate of Solids in GAC Backwash, 0₅₇₅₅ oct Flow Rate of Water in GAC Backwash, 0₅₇₅₅ oct Flow Rate of Water in GAC Backwash, 0₅₇₅₅ oct Weight of Dry Solids in GAC Backwash, 0₅₇₅₅ oct 82 83 84 0.30 kg/r 40.2 lbs/hr 966 lbs/c 85 95.8 mg/L 362.6 mg/gallon 0.00004 gallon/gallon 164.6 gpm 0.006 gpm 164.6 gpm 0.06 kg/mi 7.9 lbs/hr 91 92 SCA WTP Total Total Flow Rate, q_{WTP} 1,534,896 gallons/day 1065.9 gpm 205,186 ft³/day Solid Flow Rate, q_{w-WTP} Water Flow Rate, q_{w-WTP} Water Weight, W_{w-WTP} 0.9 gpm 1065.0 gpm 1,302 gallons/day 1,533,594 gallons/day 174 ft³/day 205,012 ft³/day 12,798,465 lbs/day 27,812 lbs/day Solids Weight, WWTP-TSS 99 Water from Removed Material (Over-sized) Stockpile 80% 25% 25% 15% Typical Solids Content of Sand from Hydrocyclone Shaker (TotalClean) (75-85% Sand Water Conten DelTank TCW-3000 Assumed Initial Water Content of Screened Material Stockpile, WC $_{\rm tatock}$ Assumed Final Water Content of Screened Material Stockpile, WC $_{\rm tatock}$ eight of Water Removed from Stockpile (Water Content from 25% to 15%), W 1,280 lbs/day 105 ved from Stockpile (Water Content from 25% to 15%), dume of Water Re 153 gallons/day 20 ft³/day 106 1,920 lbs/day Weight of Water Remained in Stockpile, W_{wr-stock} Volume of Water Remained in Stockpile, q_{wr-stock} 230 gallons/day 31 ft³/day 195.2 mg/L 738.9 mg/gallon 0.0001 gallon/gallon 153 gallons/day 0.01 gallons/day 153.34 gallons/day 0.1 gpm 8.12042E-06 gpm 0.11 gpm Weight of Dry Solids in Stockpile Filtrate, WTSS-stock-filtrate 7.86889E-05 kg/min 1,280 lbs/day 0.25 lbs/day Weight of Water in Stockpile Filtrate, Ww olymer and Makeup Water 82% 5274669.47 lbs/day 1.59 lbs/ton ^ 70 g/cm³
 Jaymer and Makeup Water
 Percent Fines in Slumy Solids, P_{link}

 Fine Solids Weight (Fines in Slumy, SCA WTP TSS, Stockple Hirtler TSS)
 Polymer Dosage Rate (Ibs of dry polymer per dry Ion of solids), DOS_{patre}

 Polymer Dosage Rate (Ibs of dry polymer per dry Ion of solids), DOS
 Dry Polymer Pensity, DEV

 Divp Polymer Needed, Waysoyner
 Dry Polymer Needed, Waysoyner

 Divp Polymer Needed, Waysoyner
 Polymer Volume, Gaysoyner

 Polymer Makeup Water Volume, Gaysoyner
 Polymer Makeup Water Weight, Wratequester
 Based on P-GDT draft report. Ashland 2520 MSDS 0.70 g/cm³ 4193.36 lbs/day 2.912 lbs/min 718 gallons/day 251,238 gallons/day 0.4985 gpm 174.47 gpm 2,096,681 lbs/da 96 ft3/day 33,586 ft³/day Based on P-GDT draft report 0.2% dilution oagulant (Emulsion) for RA-A/B/E/F Coagulant Dosage Rate Ibs of emulsion per dry ton of solids, DOS_{coag} Coagulant Density, DEN_{coag} Coagulant Flow Rate, q_{coag} Coagulant Weight, W_{coag} Not Applicable Notes Based on P-GDT draft report 38% 6,417,815 lbs/day 139
 0.417,451b (bs/day)
 300,252 gallons/day
 40,227 ft³/day

 10.471,172 (bs/day)
 12,547,23 gallons/day
 167732.0775 ft³/day

 51.947,21 (bs/day)
 167732.0775 ft³/day
 167732.0775 ft³/day

 It45 Consolidation Dewatering in Geotextile Tubes

 146
 Solids Content by Weight after Consolidation Dewatering, P_{s3}

 Peak Daily Weight of Retained Water in Tubes after Consolidation Dewatering,
 50% Assumed value ering W_{re} 6,417,815 lbs/day 147 ume of Retained Water in Tubes after Consolidation [Peak Da 769,024 gallons/day 102,804 ft³/day 148 149 150 151 Peak Daily Weight of Water in Consolidation Dewatering Filtrate, V_{el} Peak Daily Weight of Water in Consolidation Dewatering Filtrate, Q_{el} Peak Daily Volume of Water in Consolidation Dewatering Duration, Q Average Water Volume from Consolidation Dewatering Ome Day Filing, q_{el} 4,053,357 lbs/day 485,699 gallons/day 64,929 ft³/day 60 days 8,095 gallons/day

152	Average Water Volume from Consolidation Dewatering of One Day Filling, qdcf	8,095	gallons/day	1,082	ft ³ /dav							
153												
154	Peak Volume of Water in Geotextile Tube Filtrate, quite fitrate	8.297.677	gallons/day	1,109,238	ft ³ /day							
155	Daily Water Retained in Geotextile Tube, questioned	769 024	gallons/day	102 804	ft ³ /day							
156		,	30		it /ddy							
157												
158												
159	otal Suspended Solids in Geotextile Tube Filtrate							1	Notes			
160	Total Suspended Solids, TSS _{tube-fitrate}	195.2	mg/L	738.9	mg/gallon	0.0001	gallon/gallon	0	BG's estim	ate.		
161	Total Geotextile Tube Filtrate Flow Rate, qube-fitrate	5762.7	apm	8.298.310	gallons/day							
162	Flow Rate of Solids in Geotextile Tube Filtrate, generation	0.44	apm	633	gallons/day							
163	Flow Rate of Water in Geotextile Tube Filtrate, quite from	5762.3	gpm	8 297 677	gallons/day							
164	Weight of Dry Solids in Gentextile Tube Filtrate W	4.26	ka/min	13 519	lbe/day							
165	Weight of Dify Collab In Occional Faber Intate, W155-tibe-titrate	4.20	kg/mm	13,310	lbarday							
166	Precipitation											
		Open Area, A _{SCA}	Flow Rate	Flow Rate	1							
167	Daily Precipitation, PRE _{daily} (inch)	(acres)	appe (apd)	geor (apm)								
168	0.15	50	203,657	141.4					On-site m	et data.		
169												
170	ffluent Tank Discharge (OBG line number 23)							1				
171	Total Suspended Solids, TSS _{discharge}	4.5	mg/L	17.03	mg/gallon	1.75781E-06	gallon/gallon	0	BG's estim	ate.		
172	Total Flow Rate , MAX _{discharge}	4.514	apm	6.500.000	gallons/day							
173	Flow Rate of Solids in Discharge, group de	0.008	anm	11	gallons/day							
174	Elow Rate of Water in Discharge	4513.88	apm	6 499 989	gallons/day							
175	Weight of Dry Solids in Discharge W	0.08	ka/min	10.2	lhe/hr	244.1	lbs/day					
176	Weight of bity conduction bitomargie, Wijss-as	0.00	kg/mm	10.2	103/11	244.1	burduy					
177			Mace Re	alance Table	•							
178			11033 00	RA-C/D	3							
179		Pri	imary Screens	s and Polymer I	njection							
180				ncremental	-			Ac	cumulative			Notes
					Solids	Stream			Solids		Stream	
181		Total (gpm)	Water (gpm)	Solids (gpm)	(lbs/min)	Number	Total (gpm)	Water (gpm)	(gpm)	Solids (lbs/min)	Number	
182	Dredge Slurry	5000	4792	208	4443.5	1	5,000	4,792	208	4443.5		
183	Booster Pumps Seal Water Primary Screen Wash Water from SCA Summe	250	∠50 102	0	0.0	2	5 352	5,042	208	4443.5	3	Vendor's estimate
185	Over-Sized Removed from Primary Screen	(0.7)	(0.3)	(0.4)	(8.9)	5	5 351	5 144	200	4434.6	6	vendor a estimate.
186	Geotextile Tube Feed Pump Seal Water	15	15	0	0.0	7	5,366	5,159	208	4434.6	8	
187	Secondary Screen and Hydrocyclone Screen Wash Water from SCA Sump	0	0	0	0.0							1
188	Gravel Removed from Secondary Screen	0.0	0.0	0.0	0.0		5,366	5,159	208	4434.6		
189	Sand Removed from Hydrocyclone	0.0	0.0	0.0	0.0		5,366	5,159	208	4434.6		1
190	Geotextile Tube Feed Pump Seal Water	0	0	0	0.0		5,366	5,159	208	4434.6		
191	Claritier Underflow and Filter Backwash from SCA W I P	1066	1065	0.9	19.3	9	6,432	6,224	208	4453.9		4
192	Coordinate routs on Advent Water from SCA WTP	0.1	0.1	0.00001	0.0	10				1		1
194	Polymer and Makeup Water from SCA WTP	175	174	0.000	2.9	11	6.607	6.398	209	4456.8	12	1
195	Geotextile Tube Retention	(742.6)	(534.0)	(208.5)	(4447.4)	13	5864.7	5864.3	0.4	9.4		1
196	Average Precipitation	141	141	0	0.0	14	6006.1	6005.7	0.4	9.4	15	1
197	Primary Screen Wash Water	(102)	(102)	0	0.0	16	5904.1	5903.7	0.4	9.4]
198	Net Flow to Stormwater Basins	(150.4)	(150.4)	(0.01)	(0.2)	17	5753.8	5753.3	0.4	9.2	18	Maximum Flow from EQ Basin to WTP
199	Clarifier Underflow and Filter Backwash	(1066)	(1065)	(0.9)	(19.3)		5,754.26	5,753.35	0.912	1		
200	Polymer Makeup Water	(174)	(174)	0			4,688.36	4,688.35	0.008			Flow from WTP
201	Net Flow to Holding Basin (Downstream Storage) Maximum Diecharge to Metro	U	U	U			4 513 89	4 513 88	0.008	1		Maximum Discharge to Metro (6.5 MCD)
202	Maximum Discharge to Metro		1	1	1		4,010.09	-,010.00	0.000	1	1	(Waximum bischarge to Wello (0.5 WGD)

1		B	C	D	E	F	G Data:	Н		J	К	L	М	N
2 3 4	Project Name:Sediment Management E	esign Calculation T	itle: Mass Bala	ince Reviewer:	MTO Date:2,	/18/2010	Review:	Date:						
5 6 7	Incoming Slurry Siurry Flow Rate, q	3,500	gpm				Notes Maximum flow							
8 9 10	Working Hours, t Daily Slurry Volume, q Solids Content by Weight of Incoming Slurry, P	24 5,040,000 10%	hr/day gallons/day	673,750	ft ³ /day									
11 12	Specific Gravity of Solids, G _k Unit Weight of Water, Y _w	2.56 62.4279606	pcf				Tab "Weight&Vol	ume"						
13 14 15	Slurry Water Content, WC Water Flow Rate, q _u Dry Solids Flow Rate, q _k	900% 3354 146	gpm gpm											
16 17 18	Daily Water Volume, q _a Daily Water Weight, W _a Daily Dv ater Weight, W _a	4,830,349 40,311,222 209.651	gallons/day lbs/day gallons/day	645,724 28.026	ft ³ /day									
19 20	Daily Dry Solids Weight, Ws Slurry Concentration, Cst	4,479,025	lbs/day lbs/gallon	6.6	lb/ft ³									
21 22 23	% Water in Slurry (by Volume)	96%												
24 25 26	Booster Pump Seal Water Booster Pump Seal Water (each), q _{booster} Number of Booster Pumps, N _{booster}	35 5	gpm											
27 28 29	Daily Volume of Booster Pump Seal Water Daily Weight of Booster Seal Water	252,000 2,103,042	gallons/day lbs/day	33,688	ft ³ /day									
30 31	Primary Screens (Over-Sized Particle Removal, >2-inch) Average Percentage of Over-Sized Particles, P _{over-sized}	0.2%					Tab "Weight&Vol	ume"						
32 33 34	Daily Dry Weight of Removed Over-Sized Particle, w over-size Daily Volume of Removed Over-Sized Particle, q _{over-size} Initial Water Content of Removed Over-Sized Particles in Stockpile, WC _{stock}	8,958 419 25%	lbs/day gallons/day	56	ft ³ /day									
35 36	Daily Weight f Water Removed with Over-Sized Particles, W _{w over-sized} Daily Volume of Water Removed with Over-Sized Particles, q _{w over-sized}	2,240 268	lbs/day gallons/day	36	ft ³ /day									
37 38 39	Remaining Daily Dry Solids Weight in Siurry, W _{art} Remaining Daily Water Weight Siurry, W _{art} Remaining Daily Solids Volume Siurry. G _{art}	4,470,067 40,308,982 209,231	lbs/day lbs/day gallons/day	27 970	ft ³ /day									
40 41	Remaining Daily Water Volume Slurry, $\boldsymbol{q}_{\text{wr1}}$	4,830,081	gallons/day	645,688	ft ³ /day									
42	Geotextile Tube Feed Pump Seal Water Geotextile Tube Feed Pump Seal Water (each), q _{tube-pump}	10.5	gpm											
44 45 46	Daily Volume of Tube Feed Pump Seal Water Daily Weight of Tube Feed Pump Seal Water	15,120 126,183	gallons/day lbs/day	2,021	ft ³ /day									
47 48	Secondary Screens (Gravel Removal for RA-A/B/E/F)													
49 50 51	Daily Volume of Removed Gravel, Wgave Daily Dry Weight of Removed Gravel, Wgave Daily Volume of Removed Gravel, ggave													
52 53	Initial Water Content of Removed Gravel in Stockpie, WC _{gravel} Daily Weight of Water Removed with Gravel, W _{w-gravel} Daily Vduwn of Water Removed with Gravel o		No Applica	ble										
55 56	Remaining Daily Dry Solids Weight in Slurry, Wsz Remaining Daily Water Weight in Slurry, Wsz													
57 58	Remaining Daily Dry Solids Volume in Slurry, q _{sr2} Remaining Daily Water Volume in Slurry, q _{sr2}													
58 60 61	Hydrocyclone (Sand Removal for RA-A/B/E/F) Average Percentage of Sand in RA-A/B/E/F, P _{sand}					1								
62 63 64	Daily Dry Weight of Removed Sand, W _{sand} Daily Volume of Removed Sand, Q _{sand} Initial Water Content of Removed Sand in Stocknike, WC													
04 65 66	Daily Weight of Water Removed with Sand, Www.and Daily Water Removed with Sand, Www.and Daily Water Removed with Sand Volume, Qww.and		No Applica	ble										
67 68	Remaining Daily Dry Solids Weight in Slurry, W _{sr3} Remaining Daily Water Weight in Slurry, W _{sr3}													
69 70 71	Remaining Daily Dry Solids Volume in Slurry, q _{ar3} Remaining Daily Water Volume in Slurry, q _{ar3}					J								
72 73 74	SCA WTP I.P Clarifier Studge (OBG line number 16)								Notes OBG's acti	mate.				
75 76	Total Suspended Solids, TSS _{carifier} Clarifier Sludge Flow Rate, q _{clarifier}	3017.9 735	mg/L gpm	11424.0	mg/gallon	0.001	gallon/gallon		000					
77 78 79	Flow Rate of Solids in Clarifier Sludge, q _{TSS-clarifier} Flow Rate of Water in Clarifier Sludge, q _{w-clarifier} Weight of Dry Solids in Clarifier Sludge. W _{TOO}	0.87 734.1 8.40	ypm gpm kg/min	1110.7	lbs/hr	26.656	lbs/day							
80 81	Spent MMF Backwash (OBG line number 21) Total Suspended Solids, TSS Jame	483.3	mg/L	1829.5	mg/gallon	0.0002	- gallon/gallon							
82 83 84	MMH Backwash How Rate, Quare Flow Rate of Solids in MMF Backwash, Q _{TSS Mare} Flow Rate of Water in MMF Backwash, Q _{MARE}	166.3 0.03 166.3	gpm gpm gpm											
85 86	Weight of Dry Solids in MMF Backwash, WTSS-MMF Spent GAC Backwash (OBG line number 22)	0.30	kg/min	40.2	lbs/hr	966	lbs/day							
87 88 89	I otal Suspended Solids, ISS _{ACC} GAC Backwash Flow Rate, q _{BAC} Flow Rate of Solids in GAC Backwash, q _{TSS-ACC}	95.8 164.6 0.006	mg/L gpm gpm	362.6	mg/gallon	0.00004	gallon/gallon							
90 91	Flow Rate of Water in GAC Backwash, q _{w-GAC} Weight of Dry Solids in GAC Backwash, W _{TSS-GAC}	164.6 0.06	gpm kg/min	7.9	lbs/hr	189	lbs/day							
92 93 94	Total Flow Rate, q _{WTP} Solid Flow Rate, q _{WTP-TSS}	1065.9	gpm gpm	1,534,896 1,302	gallons/day gallons/day	205,186 174	ft ³ /day ft ³ /day							
95 96 97	Water Flow Rate, q _{ar-NTP} Water Weight, W _{ar-NTP} Solids Weight W _{ar-NTP}	1065.0 12,798,465 27,812	gpm Ibs/day Ibs/day	1,533,594	gallons/day	205,012	ft ³ /day							
97 98 99	Solids Weight, Wwite-Tssi Water from Removed Material (Over-sized) Stockpile	27,812	los/day											
100	Typical Solids Content of Sand from Hydrocyclone Shaker (TotalClean) (75-85%) Sand Water Content	80% 25%					DelTank TCW-30	00						
102 103 104	Assumed Initial Water Content of Screened Material Stockpile, WG _{stock} Assumed Final Water Content of Screened Material Stockpile, WC _{stock}	25% 15%												
105	Weight of Water Removed from Stockpile (Water Content from 25% to 15%), Ww. stock	896	lbs/day											
106 107	where of water Reinforded iron's stockpile (water Content iron's 25% of 5%), 4a, (100) Weight of Water Remained in Stockpile, W _{westook}	107	gallons/day lbs/day	14	ft ³ /day									
108 109 110	Volume of Water Remained in Stockpile, q _{art-stock}	161	gallons/day	22	ft ³ /day			l						
111	Total Suspended Solids, TSS _{atock-fitrate} Total Stockpile Filtrate Flow Rate, q _{lock-fitrate}	195.2 0.1	mg/L gpm	738.9	mg/gallon gallons/day	0.0001	gallon/gallon							
114 115	Flow Rate of Water in Stockpile Filtrate, Q _{w-stock-fitrate} Weight of Dry Solids in Stockpile Filtrate, W _{TSS-stock-fitrate}	0.07 5.50822E-05	gpm kg/min	107.34	gallons/day lbs/day									
116 117 118	Weight of Water in Stockpile Filtrate, W _{w-stock-fitrate}	896	lbs/day											
119 120	Percent Fines in Slurry Solids, P _{fine} Fine Solids Weight (Fines in Slurry, SCA WTP TSS, Stockpile Filtrate TSS) Polymer Dosage Rate (Ibs of dry oplymer per dry ton of solids). DOS _{Statement}	82% 3700612.17 1.59	lbs/day						Based on F	-GDT draft report				
122	Dry Polymer Density, DER _{Dolymer} Daily Dry Polymer Needed, W _{drypolymer}	0.70	g/cm ³ lbs/day	2.043	lbs/min				Ashland 25	520 MSDS				
124 125 126	Dry Polymer Volume, q _{dypolymer} Polymer Makeup Water Volume, q _{makeup} ater Polymer Makeup water Weight, W _{makeup} ater	0.3497 122.41 1.470.993	gpm gpm lbs/day	504 176,264	gallons/day gallons/day	67 23,563	ft³/day ft³/day		Based on F	P-GDT draft report	0.2% dilution	1		
127	Coagulant (Emulsion) for RA-A/R/E/F	1,711 0,883		·										
130 131	Coagulant Dosage Rate lbs of emulsion per dry ton of solids, DOS _{coag} Coagulant Density, DEN _{coag}			Not Annli-	cable									
132 133 134	Coagulant Flow Rate, q _{coag} Coagulant Weight, W _{coag}				-									
135 136 137	RA-C/D Primary Screens and Pc Initial Dewatering in Geotextile Tubes (i.e., the first 24 hrs in the tubes)	lymer Injection]	Notes							
138	Solids Content by Weight after Initial Dewatering in Tubes, P _{s2} Daily Weight of Dry Solids Retained in Tubes, W _{sret2}	38%	lbs/day		a ^{31.1}		Based on P-GDT	draft report.						
140 141 142	Daily Volume of Solids Retained in Tubes, q _{s-ret2} Daily Weight of Water Retained in Tubes after Initial Dewatering, W _{ret2} Daily Volume of Water Retained in Tubes after Initial Dewatering.	211,037 7,343,444 879,939	gallons/day	28,212	n /day ft ³ /day									
143	Daily Weight of Water in Initial Filtrate Weight, W _{il} Daily Volume of Water in Initial Filtrate, q _i	49,465,116 5,927,228	lbs/day gallons/day	792355.1544	ft ³ /day									
145 146	Solids Content by Weight after Consolidation Dewatering, P _{s3} Peak Daily Weight of Retained Water in Tubes after Consolidation Dewatering,	50%					Assumed value							
147	W red Peak Daily Volume of Retained Water in Tubes after Consolidation Dewatering, ۵	4,500,821 539,317	ibs/day gallons/day	72,096	ft ³ /day									
149	Peak Daily Weight of Water in Consolidation Dewatering Filtrate, W _{ct} Peak Daily Volume of Water in Consolidation Dewatering Filtrate, q _{ct}	2,842,623 340,621	lbs/day gallons/day	45,534	ft ³ /day									
151 152 153	Consolidation Dewatering Duration, t _c Average Water Volume from Consolidation Dewatering of One Day Filling, q _{dct}	60 5,677	gallons/day	759	ft ³ /day									
154 155	Peak Volume of Water in Geotextile Tube Filtrate, 9 _{tobe fitrate} Daily Water Retained in Geotextile Tube, 9 _{te-tetained}	6,267,849 539,317	gallons/day gallons/day	837,890 72,096	ft ³ /day ft ³ /day									
157 158 159	Total Suspended Solids in Geotextile Tube Filtrate							l	Notes					
160 161	Total Suspended Solids, TSS _{habe-titrate} Total Geotextile Tube Filtrate Flow Rate, q _{habe-titrate}	195.2 4353.0	mg/L gpm	738.9 6,268,327	mg/gallon gallons/day	0.0001	gallon/gallon		OBG's estima	ite.				
162 163 164	Flow Rate of Solids in Geotextile Tube Filtrate, q _{s-lube-titrate} Flow Rate of Water in Geotextile Tube Filtrate, q _{w-lube-titrate} Weight of Dry Solids in Geotextile Tube Filtrate. W _{TOO & C}	0.33 4352.7 3.22	gpm gpm kg/min	478 6,267,849 10 211	gallons/day gallons/day lbs/dav									
165 166	Precipitation	Open Area Acca	Flow Rote	Flaw Pote	1									
167	Daily Precipitation, PRE _{dkily} (inch) 0.15	(acres) 50	q _{PRE} (gpd) 203,657	q _{PRE} (gpm) 141.4					On-site me	et data.				
109 170 171	Effluent Tank Discharge (OBG line number 23) Total Suspended Solids, TSS _{discharge}	4.5	mg/L	17.03	mg/gallon	1.75781E-06	gallon/gallon		OBG's estima	ite.				
172 173 174	Total Flow Rate , MAX _{discharge} Flow Rate of Solids in Discharge, q _{TIS-4s} Flow Rate of Water in Discharge, q _{TIS-4s}	3,306 0.006 3306.12	gpm gpm gpm	4,760,824 8 4,760,816	gallons/day gallons/day gallons/dav									
175	Weight of Dry Solids in Discharge, W _{TSS-da}	0.06	kg/min	7.4	lbs/hr	178.8	lbs/day	Ì						
178		Prir	nass Da F nary Screens	A-C/D and Polymer I	- njection				Comulation			Notes		
181	Dradas Street	Total (gpm) 3500	Water (gpm) 3354	Solids (gpm) 146	Solids (lbs/min) 3110 4	Stream Number	Total (gpm) 3 500	Water (gpm) 3 354	Solids (gpm) 146	Solids (lbs/min) 3110.4	Stream Number	Notes		
183 184 185	Booster Pumps Seal Water Primary Screen Wash Water from SCA Sumps Over-Sized Removad from Drimov Screen	175 71 (0.5)	175 71 (0.2)	0 0 0 (0.3)	0.0	2 4 5	3,675 3,746 3,746	3,529 3,601 3,601	146 146 145	3110.4 3110.4 3110.4 3104 2	3	Vendor's estimate.		
186 187 188	Geotextile Tube Feed Pump Seal Water Secondary Screen and Hydrocyclone Screen Wash Water from SCA Sump Gravel Removed from Secondary Screen	11 0 0.0	11 0 0.0	0	0.0	7	3,756	3,611	145	3104.2	8]		
189 190 191	Sand Removed from Hydrocyclone Geotextile Tube Feed Pump Seal Water Clarifier Underflow and Filter Backwash from SCA WTP	0.0 0 1066	0.0 0 1065	0.0 0 0.9	0.0 0.0 19.3	9	3,756 3,756 4,822	3,611 3,611 4,676	145 145 146	3104.2 3104.2 3123.5				
192 193 194	Filtrate from Screened Material Stockpile Coagulant Emulsion and Makeup Water from SCA WTP Polymer and Makeup Water from SCA WTP	0.1 0 123	0.1 0 122	0.00001 0.000 0.3	0.0 0.0 2.0	10 11	4,945	4,799	147	3125.6	12			
195 196 197	Geotextile Tube Retention Average Precipitation Primary Screen Wash Water	(520.7) 141 (71)	(374.5) 141 (71)	(146.2) 0 0	(3118.5) 0.0 0.0	13 14 16	4424.4 4565.8 4494.4	4424.1 4565.5 4494.1	0.3 0.3 0.3	7.1 7.1 7.1	15	-		
198 199 200	Net Flow to Stormwater Basins Clarifier Underflow and Filter Backwash Polymer Makeup Water	0.0 (1066) (122)	0.0 (1065) (122)	0.00 (0.9) 0	0.0 (19.3)	17	4494.4	4494.1	0.3	7.1	18	Maximum Flow from I Flow from WTP	ພ Basin to WTP	
201	Net Flow to Holding Basin (Downstream Storage)	0	0	0	-				-			<u> </u>		

1		B C	D E	F G	Н	1	J	К	L	М	N
2 3 4 5	Project Name:Sediment Management Design	Calculation Title: Mass Balance Rev	viewer:MTO Date:2/18/2010	Review: Di	Date:						
6 7 8	coming Slurry Slurry Flow Rate, q Working Hours, t Daily Slurry Volume, q _T	5,000 gpm 24 hr/day 7.200.000 gallons/day	962.500 ft ³ /day	Notes Maximum flow							
10 11 12	Solids Content by Weight of Incoming Sturry, Ps Specific Gravity of Solids, Gs Unit Weight of Water, Ys Other Water Start	10% 2.64 62.4279606 pcf		Tab "Weight&Volu	lume"						
14 15 16	Water Flow Rate, q _a Dry Solids Flow Rate, q _a Daily Water Volume, q _a	4798 gpm 202 gpm 6,909,208 gallons/day	923,627 ft ³ /day								
17 18 19 20	Daily Water Weight, W _w Daily Dry Solids Voturne, q, Daily Dry Solids Weight, W ₄ Slurry Concentration, C, .	57,660,142 lbs/day 290,792 gallons/day 6,406,682 lbs/day 0.89 lbs/gallon	38,873 ft ³ /day								
21 22 23	% Water in Slurry (by Volume)	96%									
24 25 26 27	Booster Pump Seal Water Booster Pump Seal Water (each), Q _{booster} Number of Booster Pumps, N _{booster} Daily Volume of Booster Pump Seal Water	50 gpm 5 360,000 gallons/day	48,125 ft ³ /day								
29 30 31	rimary Screens (Over-Sized Grain Removal, >2-inch) Average Percentage of Over-Sized Particles, P _{over-sized}	1.6%		Tab "Weight&Volu	lume"						
32 33 34	Daily Dry Weight of Removed Over-Sized Particle, W _{over-stated} Daily Volume of Removed Over-Sized Particle, g _{over-stated} Initial Water Content of Removed Over-Sized Particles in Stockpille, WC _{over-stated} Daily Weight f Water Removed with Duers/Stared Particles, W	102,507 lbs/day 4,653 gallons/day 25% 25.637 lbs/day	622 ft ³ /day								
36 37 38	Daily Vojme v Hadri Charlot and Control back of the State of the State of the State of the State Remaining Daily Dry Solids Weight in Slurry, Wart Remaining Daily Dry Solids Weight in Slurry, Wart	3,071 gallons/day 6,304,175 lbs/day 57,634,515 lbs/day	411 ft ³ /day								
39 40 41	Remaining Daily Solids Volume Slurry, q _{art} Remaining Daily Water Volume Slurry, q _{art}	286,139 gallons/day 6,906,138 gallons/day	38,251 ft ³ /day 923,216 ft ³ /day								
42 H 43 44 45	lydrocyclone Feed Pump Seal Water Hydrocyclone Feed Pump Seal Water (each), q _{cyclone pump} Number of Hydrocyclone Feed Pumps, N _{cyclone pump} Daily Volume of Booster Pump Seal Water	15 gpm 2 43,200 gallons/day	5,775 ft ³ /day								
46 47 48 49	Daily Weight of Booster Seal Water iecondary Screens (Gravel Removal for RA-A/B/E/F) Average Percentage of Gravel in RA-A/B/E/F, P _{gravel}	360,521 lbs/day 14.4%		Tab "Weight&Volu	lume"						
50 51 52 53	Daity Dry Weight of Removed Gravel, W _{gravel} Daity Volume of Removed Gravel, g _{gravel} Initial Water Content of Removed Gravel in Stockpile, WC _{gravel} Daitweinth (Water Removed with Gravel W	922,562 lbs/day 41,874 gallons/day 25% 230.641 lbs/day	5,598 ft ³ /day								
54 55 56	Daily Volume of Water Removed with Gravel, q _{ingravel} Remaining Daily Dolly Solids Weight in Slurry, W _{w22} Remaining Daily Water Weight in Slurry, W _{w22}	27,637 gallons/day 5,381,613 lbs/day 57,403,874 lbs/day	3,695 ft ³ /day								
57 58 59	Remaining Daily Dry Solids Volume in Slurry, q _{sr2} Remaining Daily Water Volume in Slurry, q _{sr2}	244,265 gallons/day 6,878,501 gallons/day	32,653 ft ³ /day 919,522 ft ³ /day	Tab "Maiaht&Valu	lumo"						
61 62 63	Average Percentage of Sand in RA-AIB/E/F, P _{sand} Daily Dry Weight of Removed Sand, W _{sand} Daily Volume of Removed Sand, Q _{sand}	41% 2,626,740 lbs/day 119,225 gallons/day	15,938 ft ³ /day	i au "iveight&Volu							
64 65 66	Initial Water Content of Removed Sand in Stockpile, WC _{sand} Daily Weight of Water Removed with Sand, W _{w4and} Daily Water Removed with Sand Volume, 9 _{w4and} Dearticleare PC PC 2014 No. 1914	25% 656,685 lbs/day 78,688 gallons/day	10,519 ft ³ /day								
67 68 69 70	Remaining Daily Dry Solids Weight in Slurry, W _{w3} Remaining Daily Water Weight in Slurry, W _{w3} Remaining Daily Dry Solids Volume in Slurry, q _{w3} Remaining Daily Water Volume in Slurry n	2,/54,873 lbs/day 56,747,189 lbs/day 125,040 gallons/day 6,799,813 gallons/rlay/	16,715 ft ³ /day 909.003 4 ³ /day								
71 72 73	Sectextile Tube Feed Pump Seal Water Geotextile Tube Feed Pump Seal Water (each), q _{lube pump}	15 gpm	it ruly								
74 75 76	Number of Geotextile Tube Feed Pumps, N _{tube somp} Daily Volume of Tube Feed Pump Seal Water Daily Weight of Tube Feed Pump Seal Water	1 21,600 gallons/day 180,261 lbs/day	2,888 ft ³ /day								
77 78 79 80	I.P Clarifier Sludge (OBG line number 16) Total Suspended Solids, TSS _{curifier}	3017.9 mg/L	11424.0 mg/gallon	0.001 gallon/gallon		Notes OBG's estimate.					
81 82 83	Clarifier Sludge Flow Rate, q _{cuttler} Flow Rate of Solids in Clarifier Sludge, q _{tiss-cuttler} Flow Rate of Water in Clarifier Sludge, q _{s-cuttler} Workbet of Due Solids in Clarifier Sludge, q _{s-cuttler}	735 gpm 0.84 gpm 734.2 gpm	734.2 gpm	20.050 lhaidau	-						
85 86 87	Spent MMF Backwash (OBG line number 21) Total Suspended Solids, TSS _{AMF} MMF Backwash Flow Rate, q _{AMF}	483.3 mg/L 166.3 gpm	1829.5 mg/gallon	0.0002 gallon/gallon	-						
88 89 90	Flow Rate of Solids in MMF Backwash, q _{TSS AMF} Flow Rate of Water in MMF Backwash, q _{mAMF} Weight of Dry Solids in MMF Backwash, W _{TSS AMF}	0.03 gpm 166.3 gpm 0.30 kg/min	166.3 gpm 40.2 lbs/hr	966 lbs/day	-						
91 92 93 94	Total Superiod Cackwash (Oco inter futinger 22) Total Superiod Solids, TSS _{04C} GAC Backwash Flow Rate, q _{04C} Flow Rate of Solids in GAC Backwash, q _{TSS-04C}	95.8 mg/L 164.6 gpm 0.006 gpm	362.6 mg/gallon	0.00004 gallon/gallon	-						
95 96 97	Flow Rate of Water in GAC Backwash, q _{weak} Weight of Dry Solids in GAC Backwash, W _{TSS-GAC} CA WTP Total	164.6 gpm 0.06 kg/min	164.6 gpm 7.9 lbs/hr	189 lbs/day	-						
98 99 100 101	Solid Flow Rate, Q _{WTP-TSS} Water Flow Rate, Q _{WTP-TSS} Water Flow Rate, Q _{WTP} Water Weight, W _{w.WTP}	0.88 gpm 1065.0 gpm 12,798,794 lbs/day	1,262 gallons/day 1,533,634 gallons/day	169 ft ³ /day 205,017 ft ³ /day	-						
102 103 104 105	Solids Weight, W _{WTP-TSS} Water from Removed Material (Over-sized, Gravel, and Sand) Stockpile Typical Solids Content of Sand from Hydrocycione Shaker (TotalChean) (75-85%)	27812 lbs/day 80%		DelTank TCW-300]						
106 107 108	Sand Water Content Assumed Initial Water Content of Screened Material Stockpile, WC _{latock} Assumed Final Water Content of Screened Material Stockpile, WC _{bitock}	25% 25% 15%									
110	Weight of Water Removed from Stockpile (Water Content from 25% to 15%), $W_{w \mbox{-stock}}$	365,181 lbs/day	a ³								
111 112 113	Volume of Water Removed from Stockpile (Water Content from 25% to 15%), q _{iscatock} Weight of Water Remained in Stockpile, W _{ardatock} Volume of Water Remained in Stockpile, q _{ardatock}	43,758 gallons/day 15,376 lbs/day 1,842 gallons/day	5,850 ^{tt} 246 ft ³								
115 115 116 117	otal Suspended Solids in Stockpile Filtrate Total Suspended Solids, TSS _{stock} ,titrate Total Stockpile Filtrate Flow Rate, q _{stock} ,titrate	195.2 mg/L 30.4 gpm	738.9 mg/gallon 43,762 gallons/day	0.0001 gallon/gallon							
118 119 120	Flow Rate of Solids in Stockpile Filtrate, Q _{4 stock} made Flow Rate of Water in Stockpile Filtrate, Q _{4 stock} made Weight of Dry Solids in Stockpile Filtrate, W _{TS stock} made Weight of Materia in Stockpile Filtrate, W _{TS stock} made	0.002 gpm 30.4 gpm 0.02 kg/min	3 gallons/day 43,758 gallons/day 71 lbs/day	0 ft ³ /day 5,850 ft ³ /day	-						
121 122 123 124	Volymer and Makeup Water Percent Fines in Slurry Solids, Proce	43%									
125 126 127 128	Polymer Dosage Rate (ibs of dry polymer per dry ton of solids), DOS _{polymer} Dry Polymer Dosage Rate (ibs of dry polymer per dry ton of solids), DOS _{polymer} Dry Polymer Density, DEN _{polymer} Daily Dry Polymer Needed, W _{drypolymer}	1.59 lbs/ton 0.70 g/cm ³ 1.536 lbs/min	2212.29 lbs/day		-	Based on P-GDT Ashland 2520 MS	draft report				
129 130 131	Dry Polymer Volume, q _{drypolymer} Polymer Makeup Water Volume, q _{makeupnater} Polymer Makeup water Weight, W _{makeupnater}	0.2630 gpm 92.05 gpm 1,106,146 lbs/day	379 gallons/day 132,545 gallons/day	51 ft ³ /day 17,719 ft ³ /day	-	Based on P-GDT	draft report	0.2% dilution	n		
132 133 0 134 135	Coagulant (Emulsion) for RA-A/B/E/F Coagulant Dosage Rate (ibs of emulsion per dry ton of solids), DOS _{coag} Coagulant Emulsion Density, DEN _{coag}	5.71 lbs/ton 1.03 g/cm3	64.300799 pcf			Based on P-GDT Based on Ashlan	draft report d 492 MSD	S			
136 137 138	Coagulant Emulsion Flow Rate, q _{coag} Coagulant Emulsion Weight, W _{coag} Weight of Coagulant Makeup Water, W _{coagulant}	0.64 gpm 5.5 lbs/min 551.7 lbs/min	924 gallons/day 7,945 lbs/day 794,477 lbs/day 95190 nallons/day	124 ft ³ /day	-						
140 141 142	RA-A/JE/F Primary Screens, Secondary Screens, Hydrocyclones,	Polymer Injection, and Coagulant	t Injection	Notes							
144 145 146	Solids Content by Weight after Initia III uite tutes) Solids Content by Weight after Initia Dewatering in Tubes, P _{sc1} Daily Weight of Dry Solids Retained in Tubes, W _{sc102} Daily Volume of Solids Retained in Tubes, Q _{sc102}	38% 2,792,914 lbs/day 127,609 gallons/day	17,059 ft ³ /day	Based on P-GDT d	draft report.						
147 148 149	Daily Weight of Water Retained in Tubes after Initial Dewatering, W _{ret2} Daily Volume of Water Retained in Tubes after Initial Dewatering, Q _{et2} Daily Weight of Water in Initial Filtrate Weight, W _{ret2}	4,556,859 lbs/day 546,032 gallons/day 70,800,056 lbs/day	72993.87901 ft ³ /day								
151 C	Consolidation Dewatering Solids Content by Weight after Consolidation Dewatering, P _{a3}	50%	The too ose it /day	Assumed value							
153 154 155	Peak Daily Weight of Retained Water in Tubes after Consolidation Dewatering, W _{rdb} Peak Daily Volume of Retained Water in Tubes after Consolidation Dewatering, etc. Peak Daily Weight of Water in Consolidation Dewatering Filtrate, W _{cf} Peak Daily Volume of Water in Consolidation Dewatering Filtrate, n.	2,792,914 ibs/day 334,665 gallons/day 1,763,945 lbs/day 211 367 gallons/day	44,738 ft ³ /day								
157 158 159	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	60 days 3,523 gallons/day	471 ft ³ /day								
160 161 162 163	Peak Volume of Water in Geotextile Tube Filtrate, q _{hube-strate} Daily Water Retained in Geotube, q _{in-retained}	8,695,085 gallons/day 334,665 gallons/day	1,162,364 ft ³ /day 44,738 ft ³ /day								
164 165 1 166	otal Suspended Solids in Geotextile Tube Filtrate Total Suspended Solids, TSS _{Libertitute} Total Geotextile Tube Filtrate Firw Pate o.	195.2 mg/L 6038 7	738.9 mg/gallon 8 695 728 psilops/de	0.0001 gallon/gallon	OB	Notes 3G's estimate.					
168 169 170	Flow Rate of Solids in Geotextile Tube Filtrate, q _{5-bce} struct Flow Rate of Water in Geotextile Tube Filtrate, q _{6-bce} struct Flow Rate of Water in Geotextile Tube Filtrate, Q _{1-bce} struct Weight of Dry Solids in Geotextile Tube Filtrate, W _{TS5-bce} struct	0.446 gpm 6038.3 gpm 4.46 kg/min	643 gallons/day 8,695,085 gallons/day 14,166 lbs/day								
171 172 F 173	recipitation Daily Precipitation, PRE _{soly} (inch)	Open Area, A _{SCA} Flow Rate, q _{PRE} (acres) (gpd)	Flow Rate, q _{PRE} (gpm)								
174 175 176	0.15 Effluent Tank Discharge (OBG line number 23) Total Suspenderl Snirk TSS,	50 203,657 4.5 ma/L	141.4 17.03 ma/gallon	1.7045E-06 gallon/gallon]	On-site met data. 3G's estimate					
178 179 180	Total Flow Rate, MAX _{scauge} Flow Rate of Solids in Discharge, q _{rtS-ds} Flow Rate of Water in Discharge, q _{rtds}	4,514 gpm 0.008 gpm 4513.9 gpm	6,500,000 gallons/day 11 gallons/day 6,499,989 gallons/day								
181	Weight of Dry Solids in Discharge, W _{TIS-ds}	0.08 kg/min Mass Balane RA-A/B	10.2 lbs/hr ce Tables WE/F	244.1 lbs/day	L						
182 183 184	Primary Screens	, Secondary Screens, Hydrocyclo	nes, Polymer Injection, and C cremental	Coagulant Injection Stream Number Total (opm)	Acc Water (gpm)	Solids (gpm) Solid	s (lbs/min)	Stream Number	Notes		
182 183 184 185 186 187		Total (gpm) Water (gpm)	Solids (gpm) (lbs/min)	· · · · · · · · · · · · · · · · · · ·							
182 183 184 185 186 187 188 189 190 191	Dredge Slury Booter Pumps Seal Water Primary Screen Wash Water from SCA Sump Over-Stad Removed from Primary Screen	Total (gpm) Water (gpm) 5000 4798 250 250 102 102 (5.4) (2.1)	Solids (gpm) (lbs/min) 201.9 4449.1 0 0.0 0 0.0 (3.2) (71.2)	1 5,000 2 5,250 4 5,352 5 5,347	4,798 5,048 5,150 5,148	202 4 202 4 202 4 199 4	1449.1 1449.1 1449.1 1377.9	3	Vendor's estima	ate.	
182 183 184 185 186 187 188 189 190 191 192 193 194 195	Dredge Stury Booter Pumps Seal Water Primary Screen Wash Water from S.CA Sump Over-Stard Removed from Primary Screen Sand Segration Feed Pumps Seal Water Secondary Screen and Hydrocyclone Screen Wash Water from SCA Sump Gravel Removed from Reyoundary Screen Sand Removed from Hydrocyclone	Total (gpm) Water (gpm) 5000 4798 250 250 102 102 104 (2.1) 30 30 510 510 64) (19) (137) (55)	Solids (gpm) (bs/mn) 201.9 4449.1 0 0.0 0.32.1 (71.2) 0 0.0 0.22.1 (71.2) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	1 5,000 2 5,250 4 5,352 5 5,347 7 5,377 9 10 5,838 11 5,701 13 5,771	4,798 5,048 5,150 5,148 5,178 5,669 5,614	202 4 202 4 199 4 199 4 170 3 87 97	4449.1 4449.1 4377.9 4377.9 3737.2 1913.1	3 6 8 12	Vendor's estima	ate.	
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	Dradge Slury Booter Purps Seal Water Primary Screen Wash Water from SCA Sump Over-Steat Removed from Primary Screen Sand Separation Feed Purps Seal Water Secondary Screen and Hydrocyclone Screen Wash Water from SCA Sump Gravel Removed from Revolutionary Screen Gardel Removed from Hydrocyclone Gardel Removed from Hydrocyclone Clarifler Underflow and Filter Backwash from SCA WITP Filtrate from Screen Material Stockpile Coapulant Emulsion and Makeup Water from SCA WITP Phylemer and Water from SCA WITP Phylemer and Water from SCA WITP Phylemer and Water from SCA WITP	Total (gpm) Water (gpm) 5000 4798 500 250 250 250 102 102 103 30 510 510 511 510 115 15 1166 1065 30,4 30,4 66,75 66,11 92,3 9	Solids (gpm) (lbs/min) 201.9 4449.1 0 0.0 0 0.0	1 5000 2 5280 4 5352 5 5347 7 5,337 9 - 11 5,701 13 5,716 15 6,782 16 17 17 18 6,074	4,798 5,048 5,150 5,148 5,178 5,669 5,614 5,629 6,694 6,883	202 4 202 4 199 4 199 4 170 3 87 7 87 8 88 7 88 7	4449.1 4449.1 4377.9 3737.2 1913.1 1932.4 1939.5	3 6 8 12 14 14	Vendor's estima	ite.	
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 195 196 197 198 200 201 200 201 202 203 204	Dredge Slurry Booster Purings See Water Over, Start, Waah Water from Sca. Sump Over, Start, Waah Water from Sca. Sump Over, Start, Star	Total (gpm) Wate (gpm) 5000 4798 500 250 250 250 102 102 103 102 104 102 105 15 15 15 1066 1065 30:4 30:4 66:75 66:11 141 12:41 1612) (612) (6427) 1447	Sories (gpm) (lbe/ma) 2019 9 44461 0 0 00 (22) 9 0 44461 0 0 00 (22) 71 2) 0 0 00 (22) 71 2) 0 0 00 (32) (1824.1) 0 0.0 0 0.	1 5.000 1 5.250 4 5.352 5 5.347 7 5.377 9	4,798 5,048 5,150 5,148 5,669 5,669 5,614 5,629 6,694 6,883 6,883 6,792 6,792 6,797 7,77	202 4 202 4 202 4 199 4 199 4 87 5 87 5 88 5 89 5 0.4 0.4 0.4 0.4	4449.1 4449.1 4449.1 4377.9 3737.2 1913.1 1913.1 1913.1 1932.4 1939.5 9.8 9.8 9.2	3 6 8 12 14 14 19 22 25	Vendor's estima	ite. from EQ Raein to ^{L4}	TP

G H I J K L M N
 A
 B
 C
 D
 E
 F

 Project Number: 444853
 Calc.No. from index: 3
 Preparer: XDH
 Date:2/17/2010
 Rev. No.:2
 Preparer:

 Project Name-Sediment Management Design
 Calculation Title: Mass Balance
 Reviewer:/MTO
 Date:2/18/2010
 PARSONS Review ncoming Slurry Notes Maximum flow 3,500 gpm 24 hr/day 5,040,000 gallons/day 10% Slurry Flow Rate, q Working Hours, t Daily Slurry Volume, qr Solids Content by Weight of Incoming Slurry, Ps Specific Gravity of Solids, G_k Unit Weight of Water, ye Slurru Mater Content WC 673,750 ft³/day Tab "Weight&Volume" 2.64 62.4279606 pcf Unit Weight of tv aree, ry Slurry Water Content, WC Water Flow Rate, q, Dry Solids Flow Rate, q, Daily Water Volume, q, Daily Water Volume, q, Daily Dry Solids Volume, q, Daily Dry Solids Volume, q, Slurry Concentration, C₈, 900% 3359 gpm 141 gpm 14 i gpm 4.836.446 gallons/day 40.362.099 lbs/day 203.554 gallons/day 4.484.678 lbs/day 0.89 lbs/gallon 96% 646,539 ft³/day 27,211 ft³/day 6.7 lb/ft3 % Water in Slurry (by Volum 96% Booster Pump Seal Water Booster Pump Seal Water (each), q_{booster} Number of Booster Pumps, N_{booster} 35 gpm Daily Weight of Booster Pumps, N_{booster} Daily Weight of Booster Seal Water 252,000 gallons/day 2,103,042 lbs/day 33,688 ft³/day Creens (Over-Sized Grain Removal, >2-inch)
 Average Percentage of Over-Sized Particles, P_{over stars}
 Daily Duy Weight of Removed Over-Sized Particles, W_{over stars}
 Daily Volume of Removed Over-Sized Particles, W_{over stars}
 Daily Volume of Removed Over-Sized Particles, W_{over stars}
 Daily Volume of Water Removed with Over-Sized Particles, W_{over stars}
 Daily Volume of Water Removed with Over-Sized Particles, W_{over stars}
 Remaining Daily Dy Solids Weight in Slory, W_{ur},
 Remaining Daily Dy Solids Weight Nutry, W_{urt}
 Remaining Daily Solids Volume Slurry, Q_{urt}
 Remaining Daily Water Volume Slurry, Q_{urt} Tab "Weight&Volume" 1.6% 71,755 lbs/day 3,257 gallons/day 25% 435 ft³/day 17,939 lbs/day 2,150 gallons/day 4,412,923 lbs/day 40,344,160 lbs/day 200,297 gallons/day 4,834,296 gallons/day 287 ft³/day 26,776 ft³/day 646,251 ft³/day Hydrocyclone Feed Pump Seal Water Hydrocyclone Feed Pump Seal Water (each), q_{cyclone.pump} Number of Hydrocyclone Feed Pumps. N_{cyclone.pump} 10.5 gpm 4,043 ft³/day 30,240 gallons/day 252,365 lbs/day Daily Volume of Booster Pump Seal Water Daily Weight of Booster Seal Water Secondary Screens (Gravel Removal for RA-A/B/E/F) Average Percentage of Gravel in RA-A/B/E/F, Pgrav Tab "Weight&Volume" 14.4% 645,794 lbs/day Average Percentage of Gravel in RA-Wolf Cer, r gave Daily Dry Weight of Removed Gravel, W gave Daily Volume of Removed Gravel and Gravel and Gravel tial Water Content of Removed Gravel in Stockpile, WC gave 29,312 gallons/da 3,918 ft³/day 25% 161,448 lbs/day 19,346 gallons/day 3,767,129 lbs/day 40,182,712 lbs/day 170,985 gallons/day 4,814,951 gallons/day Daily Weight of Water Removed with Gravel, W_{w-grave} Daily Volume of Water Removed with Gravel, g_{w-grave} 2,586 ft³/day Remaining Daily Dry Solids Weight in Slurry, W_{w2} Remaining Daily Water Weight in Slurry, W_{w2} Remaining Daily Dry Solids Volume in Slurry, q_{w2} Remaining Daily Water Volume in Slurry, q_{w2} 22,857 ft³/day 643,665 ft³/day Hydrocyclone (Sand Removal for RA-A/B/E/F) Tab "Weight&Volume" Average Percentage of Sand in RA-A/B/EF, P_{ave} Daily Day Weight of Removed Sand, W_{scas} Daily Valent of Removed Sand, W_{scas} Initial Water Content of Removed Sand in Stockpile, W_{case} Daily Water Removed with Sand Volume, Q_{scase} Daily Water Removed with Sand Volume, Q_{scase} Remaining Daily Vp Softweight in Sturry, W_{sca} Remaining Daily Water Weight in Sturry, Q_{sca} Remaining Daily Water Volume in Sturry, Q_{sca} ercentage of Sand in RA-A/B/E/F, Psan 41% 1,838,718 lbs/day 83,457 gallons/day 25% 11,157 ft³/day 459,679 lbs/day 55,082 gallons/day 1,928,411 lbs/day 39,723,032 lbs/day 7,363 ft³/day 11,701 ft³/day 636,302 ft³/day 87,528 gallons/day 4,759,869 gallons/day extextile Tube Feed Pump Seal Water Gedexile Tube Feed Pump Seal Water (each), q_{base pump} Number of Gedexile Tube Feed Pumps, N_{base pump} 10.5 gpm Daily Volume of Tube Feed Pump Seal Water Daily Weight of Tube Feed Pump Seal Water 2,021 ft³/day 15,120 gallons/day 126,183 lbs/day SCA WTP Notes OBG's estimate. I.P Clarifier Sludge (OBG line number 16) 3017.9 mg/L 735 gpm 0.84 gpm 734.2 gpm 0.001 gallon/gallon 11424.0 mg/gallon Clarifier Sludge Flow Rate, q_{cla} Flow Rate of Solids in Clarifier Sludge, q_{mscla} Flow Rate of Water in Clarifier Sludge, q_{mscla} 734.2 gpr Weight of Dry Solids in Clarifier Sludge, W_{TSS-cla} Spent MMF Backwash (OBG line number Total Suspended Solids, TSS 8.40 kg/min 1110.7 lbs/hr 26,656 lbs/day 483.3 mg/L 166.3 gpm 1829.5 mg/gallon 0.0002 gallon/gallon MMF Backwash Flow Rate, q_{MMF} Flow Rate of Solids in MMF Backwash, q_{TSS-MMF} Flow Rate of Water in MMF Backwash, q_{wMMF} 0.03 gpm 166.3 gpm 166.3 gpm Flow Rate of Water in MMF Backwash, _{Quant} Weight of Dy Solids in MMF Backwash, _{Witsun} Spent GAC Backwash (OBG line number 22) Total Susponded Solids, TSS₀₄, GAC Backwash Flow Rate, _{Quac} Flow Rate of Solids in GAC Backwash, _{Quac} Flow Rate of Water in GAC Backwash, _{Witsu} Weight of Dy Solids in GAC Backwash, _{Witsu} 0.30 kg/mir 40.2 lbs/hr 966 lbs/day 95.8 mg/L 164.6 gpm 0.006 gpm 164.6 gpm 362.6 mg/gallon 0.00004 gallon/gallon 164.6 apr 0.06 kg/min 7.9 lbs/hr 189 lbs/day SCA WTP Total 1,534,896 gallons/day 1,262 gallons/day 1,533,634 gallons/day Total Flow Rate, q_{WTP} 1065.9 gpm 0.88 gpm 205,186 ft³/c Solid Flow Rate, q_{WTP} Water Flow Rate, q_{W-WTP} Water Weight, W_{w-WTP} 0.88 gpm 1065.0 gpm 12,798,794 lbs/d 169 ft³/day 205,017 ft³/day Solids Weight, W_W 27812 lbs Water from Removed Material (Over-sized, Gravel, and Sand) Stockpile Typical Solids Content of Sand from Hydroxyclone Shaker (TolaChean) (75-85%) Typical Solids Content Assumed Initial Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material Shockpile, WGaussi Assumed Final Water Content of Screened Material 80% 25% 25% DelTank TCW-3000 15% Weight of Water Removed from Stockpile (Water Content from 25% to 15%), $W_{w\text{-stock}}$ 255,627 lbs/day 4,095 ft3 Volume of Water Removed from Stockpile (Water Content from 25% to 15%), q_{uesticat} Weight of Water Remained in Stockpile, W_{uesticat} Volume of Water Remained in Stockpile, q_{uesticat} 30,631 gallons/c 10,763 lbs/day 1,290 gallons/ 172 ft³ Total Suspended Solids in Stockpile Filtrate Total Suspended Solids, TSS_{stock-filtrate} 195.2 mg/L 21.3 gpm 0.002 gpm 21.3 gpm 0.02 kg/min 255,627 lbs/day 738.9 mg/gallon 0.0001 gallon/gallon Total Stockpile Filtrate Flow Rate, q_{stock}trate Flow Rate of Solids in Stockpile Filtrate, q_{stock}trate Flow Rate of Water in Stockpile Filtrate, q_{stock}trate 30,633 gallons/day 0 ft³/day 4,095 ft³/day 2 gallons/day 30,631 gallons/day Weight of Dry Solids in Stockpile Filtrate, W_{TSS-stock-fitrate} Weight of Water in Stockpile Filtrate, W_{w-stock-fitrate} 50 lbs/day

> Based on P-GDT draft report. Ashland 2520 MSDS Based on P-GDT draft report 0.2% dilution

Based on P-GDT draft report. Based on Ashland 492 MSDS

Based on P-GDT draft report.

Notes

36 ft³/day 12,456 ft³/day

87 ft³/day

RA-A/B/E/F Primary Screens, Secondary Screens, Hydrocyclo Initial Dewatering in Geotextile Tubes (i.e., the first 24 hrs in the tubes) Solids Content by Weight after Initial Dewatering In Tubes, P_{ed}
Daily Weight of Dys Solids Retained in Tubes, W_{sett}
Daily Weight of Dys Solids Retained in Tubes, M_{sett}
Daily Weight of Noles after Initial Dewatering, W_{sett}
Daily Weight of Water Retained in Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained in Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained in Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained in Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained in Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewatering, W_{sett}
Daily Volume of Water Retained In Tubes after Initial Dewater Initia De 38% 1,963,414 lbs/day 89,709 gallons/day 3,203,464 lbs/day 383,860 gallons/day 53,391,713 lbs/day 6,397,738 gallons/day 11,992 ft³/day 51314.57292 ft³/day e of Water Retained in Tubes atter initial Dewatering, speci Daily Weight of Water in Initial Filtrate Weight, W_i Daily Volume of Water in Initial Filtrate, q 855253.1977 ft³/day Consolidation Dewatering Solids Content by Weight after Consolidation Dewatering, P_{s3} 50% 1,963,414 lbs/day

43% 1956273.11 lbs/day

6273.11 Ibs/day 1.59 Ibs/ton 0.70 g/cm³ 1.080 Ibs/min 0.1849 gpm 64.71 gpm 777,619 Ibs/day

5.71 lbs/ton 1.03 g/cm³ 0.45 gpm 3.9 lbs/min

387.9 lbs/n 46.5 gpm Polymer Injection, and Coagulant Injection

1555.24 lbs/day

64.300799 pcf 650 gallons/da

266 gallons/day 93,179 gallons/day

5,585 lbs/day

558,516 lbs/day 66925 gallons/day

nd Makeup Water
Percent Fines in Slumy Solids, P_{eec}
Fine Solids Weight (Fines in Slumy, SCA WTP TSS, Stockpile Filtrate TSS)
Polymer Dosage Rate (bis of dry polymer per dry ton of solids), DOS_{polymer}
Dry Polymer Density, DENs_{polymer}
Daily Dry Polymer Nested, W _{20polymer}
Dig Polymer Volume, G_{apolymer}
Polymer Makeup Water Volume, G_{apolymer}
Polymer Makeup Water Weight, W_{redesponter}
Polymer Makeup Water Weight, W_{redesponter}

Weight of Coagulant Makeup Water, W_{coagwater} Volume of Coagulant Makeup Water, q_{coagwater}

Coagulant (Emulsion) for RA-A/B/E/F Coagulant Dosage Rate (lbs of emulsion per dry ton of solids), DOS_{Cosg} Coagulant Emulsion Density, DER_{Along} Coagulant Emulsion Flow Rate, G_{loog} Coagulant Emulsion Flow Rate, G_{loog}

Peak Daily Weight of Retained Water in Tubes after Consolidation Dewatering, Wret3

Polymer and Makeup Water

Assumed value

134	reak baily volume or recamed water in rubes alter consolidation bewatering, qrets	233,208	gallons/uay	31,431	π /day							
155	Peak Daily Weight of Water in Consolidation Dewatering Filtrate, Wet	1,240.051	lbs/day									
156	Peak Daily Volume of Water in Consolidation Dewatering Filtrate. g.	148.591	gallons/day	19.864	ft ³ /day							
157	Consolidation Dewatering Puration t.	60) davs		n /udy							
159	Average Water Volume from Consolidation Dewatering of One Day Filling	2 477	aallone/day	221	63(days							
150		2,477	gailoriarddy	331	π /day							
160	Peak Volume of Water in Centextile Tube Filtrate, a	6 546 220	allonaldar	075 117	63rd							
100	Delly Water Detried in Centure a	0,540,328	gallons/day	0/5,11/	nt-/day							
161	Daily Water Retailed in Geotube, qw-retained	235,268	galions/day	31,451	ft"/day							
162												
164												
165 1	otal Suspended Solids in Geotextile Tube Filtrate			1				1	Notes			
166	Total Suspended Solids. TSS take groups	195.2	na/L	738.9	ma/gallon	0.0001	gallon/gallon	0	BG's estim:	te		
167	Total Geotextile Tube Filtrate Flow Rate on the	4546.4	anm	6 546 912	nallons/day		5 <u>5</u>	0	SC 5 Courri			
169	Elow Bate of Solids in Geotextile Tube Filtrate o	4040.4 0 336	ypm	0,340,613	gallone/dev							
160	Flow Rate of Water in Gentevtile Tube Filtrate	0.330 AF40 4	gpm	6 546 220	gallone/dev							
109	Mainh of Day Selide in Contextile Tube Filtrate W	+040.1	ar."	0,040,329	yallulis/udy							
170	weight of Dry Solids in Geotextile Lube Filtrate, WTSS-tube-ritrate	3.36	kg/min	10,665	ibs/day							
1/1	rocinitation											
172	recipitation	Onen Area A	Flow Rate dawn	Firm Data	T							
172	Daily Precipitation, PRE _{daily} (inch)	(acres)	(and)	Flow Rate,								
173		50	203.657	4PRE (9PIII)	4				On site m	data .		
175	0.15	50	200,007	141.4	ţ				Un-site mi	st uata.		
176	ffluent Tank Discharge (OBG line number 23)			1				1				
177	Total Suspended Solids TSS	4 5	5 ma/l	17.03	mg/gallon	1 7045E-06	gallon/gallon	0	DC's actim	to		
170	Total Flow Rate MAX.	4.0	,	E 0EE 470	and and and		gan de ganori	U	uo s esilma	10.		
170	Flow Rate of Solide in Discharge	3,511	gpin	5,055,470	gallons/day							
1/9	Elow Date of Water in Discharge, qTSS-ds	0.006	y gpiñ	5 055 101	gallons/dáy							
180	Flow Rate of water in Discharge, qw-ds	3510.7	ypiñ	5,055,461	yalions/dáy							
181	Weight of Dry Solids in Discharge, WTSS-ds	0.06	i kg/min	7.9	lbs/hr	189.9	Ibs/day					
182			M P!									
183			wass Balanc	e ladies								
184	Brimary Scroon	e Secondary Sere	KA-A/B/I	=/F os Bolymorini	inction and (Cooquiant Inic	etion					
196	Finally Scient	a, Secondary Scre	loc	es, roiyiner in	jection, and c	soaguant inje	Clion	Acc	ovitelum			Notos
			Inc	Gindintai	Solids	Stream		AU	Solids		Stream	
187		Total (gpm)	Water (gpm)	Solids (gpm)	(lbs/min)	Number	Total (gpm)	Water (gpm)	(gpm)	Solids (lbs/min)	Number	
188	Dredge Slurry	3500	3359	141.4	3114.4	1	3,500	3,359	141	3114.4		1
189	Booster Pumps Seal Water	175	175	0	0.0	2	3,675	3,534	141	3114.4	3	
190	Primary Screen Wash Water from SCA Sump	71	71	0	0.0	4	3,746	3,605	141	3114.4		Vendor's estimate.
191	Over-Sized Removed from Primary Screen	(3.8)	(1.5)	(2.3)	(49.8)	5	3,743	3,604	139	3064.5	6	4
192	Sand Separation Feed Pumps Seal Water Secondary Screen and Hydrocyclone Screen, Wash Water from SCA, Sumn	21	21	0	0.0	4	3,764	3,025	139	3004.5	8	1
194	Gravel Removed from Secondary Screen	(34)	(13)	(20)	(448.5)	10	4.087	3.968	119	2616.1		1
195	Sand Removed from Hydrocyclone	(96)	(38)	(58)	(1276.9)	11	3,991	3,930	61	1339.2	12	1
196	Geotextile Tube Feed Pump Seal Water	11	11	0	0.0	13	4,001	3,940	61	1339.2	14	1
197	Clarifier Underflow and Filter Backwash from SCA WTP	1066	1065	0.9	19.3	15	5,067	5,005	62	1358.5]
198	Filtrate from Screened Material Stockpile	21.3	21.3	0.002	0.0	16						4
199	Coagulant Emulsion and Makeup Water from SCA WTP	46.93	46.48	0.45	3.9	17					L	4
200	Polymer and Makeup Water from SCA WTP	64.9	64.7	0.2	1.1	18	5,200	5,138	62	1363.5	19	4
201	Geotextile Tube Retention	(225.3)	(103.4)	(62.0)	(1350.1)	20	E 110	E 110	0	7.4	22	4
202	Average Precipitation Primary, Secondary and Hydrocyclone Second Math Mater	(428)	(428)	0.00	0.0	21	5,110 4687.8	2,110	03	7.4	22	1
204	Net Flow to Stormwater Rasins	0.0	0.0	0.00	0.000	24	4687.8	4687.5	0.3	7.4	25	Maximum Flow from EQ Basin to WTP
205	Clarifier Underflow and Filter Backwash	(1066)	(1065)	(0.9)	(19.3)		4007.0	1001.0	0.0		~~	
206	Coagulant and Polymer Makeup Water	(111)	(111)	0	(13.0)							Flow from WTP
207	Net Flow to Holding Basin (Downstream Storage)	Ò Ó) O	0						I		1
208	Maximum Discharge to Metro						3 511	3 511	0.006			Maximum Discharge to Metro (6.5 MGD)

roject Number: 444853 Calc.No. from index: 3 Preparer: XDH Date: 2/17/2010 Rev. No.:2 Preparer: Date:

Project Name:Sediment Management Design Calculation Title: Mass Balance Reviewer:MTO Date:2/18/2010 Review:

								Calculated properties							
			Average sedir	ment properties i	n dredge zone				2.2M cy Dredging Volume (Base+Contingency) 2M cy Dredgin						
Remediation Area	Average Water Content	Average Specific Gravity	Pore Water Density	Average Percent Gravel- Sized	Average Percent Sand- Sized	Average Percent Silt- Sized	Average Percent Clay- Sized	Solids by Weight	Dry Density	Dredge Volume	Total Dredge Dry Weight	Dry Solids Volume	Dredge Volume	Total Dredge Dry Weight	Dry Solids Volume
	(%)		(pcf)	(%)	(%)	(%)	(%)	(%)	(pcf)	(cy)	(tons)	(cy)	(су)	(tons)	(cy)
A	80.7	2.68	62.4	3.4%	35.9%	51.5%	9.3%	55.3%	52.9	171,000	122,063	54,067	133,000	94,938	42,052
В	68.4	2.80	62.4	10.8%	37.3%	42.3%	9.6%	59.4%	59.9	25,000	20,228	8,576	20,000	16,182	6,861
С	68.4	2.80	62.4	10.8%	37.3%	42.3%	9.6%	59.4%	59.9	49,000	39,646	16,808	38,000	30,746	13,035
D	148.5	2.54	62.4	1.4%	14.4%	64.1%	20.1%	40.2%	33.2	1,204,000	539,814	252,389	1,147,000	514,258	240,440
E	61.3	2.63	62.4	18.8%	42.0%	30.8%	8.4%	62.0%	62.8	723,000	613,208	276,779	588,000	498,708	225,098
TOTAL										2,172,000	1,334,958	608,619	1,926,000	1,154,832	527,486

Date:

2.2M cy Dredging Volume (Base+Contingency)

Remediation Area	Total Dry Weight	Over-Sized Grain	Gravel-Sized Grain (including Over- Sized)	Sand-Sized Grain	Fines	Percent Over- Sized	Percent Gravel (including Over- sized)	Percent Sand	Percent Fines	Weighted Average Specific Gravity
	(tons)	(tons)	(tons)	(tons)	(tons)	(%)	(%)	(%)	(%)	
A	122,063	415	4,150	43,821	74,214	0.34%	3.4%	35.9%	60.8%	
В	20,228	218	2,185	7,545	10,498	1.08%	10.8%	37.3%	51.9%	
С	39,646	428	4,282	14,788	20,576	1.08%	10.8%	37.3%	51.9%	
D	539,814	756	7,557	77,733	454,523	0.14%	1.4%	14.4%	84.2%	
E	613,208	11,528	115,283	257,547	240,377	1.88%	18.8%	42.0%	39.2%	
C/D	579,460	1,184	11,839	92,521	475,100	0.20%	2.0%	16.0%	82.0%	2.56
A/B/E	755,498	12,162	121,618	308,913	325,090	1.61%	16.1%	40.9%	43.0%	2.64

2M cy Dredging Volume (Base)

Remediation Area	Total Dry Weight	Over-Sized Grain	Gravel-Sized Grain (including Over- Sized)	Sand-Sized Grain	Fines	Percent Over- Sized	Percent Gravel (including Over- sized)	Percent Sand	Percent Fines	Weighted Average Specific Gravity
	(tons)	(tons)	(tons)	(tons)	(tons)	(%)	(%)	(%)	(%)	
A	94,938	323	3,228	34,083	57,722	0.34%	3.4%	35.9%	60.8%	
В	16,182	175	1,748	6,036	8,399	1.08%	10.8%	37.3%	51.9%	
С	30,746	332	3,321	11,468	15,957	1.08%	10.8%	37.3%	51.9%	
D	514,258	720	7,200	74,053	433,005	0.14%	1.4%	14.4%	84.2%	
E	498,708	9,376	93,757	209,458	195,494	1.88%	18.8%	42.0%	39.2%	
C/D	545,004	1,052	10,520	85,521	448,962	0.19%	1.9%	15.7%	82.4%	2.55
A/B/E	609,828	9,873	98,733	249,576	261,614	1.62%	16.2%	40.9%	42.9%	2.64